

A genetic and microscopy toolkit for live imaging of whole-body regeneration in *Macrostomum lignano*

R. Nelson Hall^{1,*}, Hongquan Li², Chew Chai¹, Sidney Vermeulen³, Robin R. Bigasin¹, Eun Sun Song⁴, Jesse Gibson¹, Manu Prakash¹, Andrew Z. Fire^{3,5}, Bo Wang^{1,*}

¹Department of Bioengineering, Stanford University, Stanford, CA, USA

²Department of Electrical Engineering, Stanford University, Stanford, CA, USA

³Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA

⁴Department of Applied Physics, Stanford University, CA, USA

⁵Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA

*Correspondence should be addressed to R.N.H. (rnhall@stanford.edu) or B.W.

(wangbo@stanford.edu)

15 **Summary**

16 Live imaging of regenerative processes can reveal how animals restore their bodies after injury
17 through a cascade of dynamic cellular events. Here, we present a comprehensive toolkit for live
18 imaging of whole-body regeneration in the flatworm *Macrostomum lignano*, including a high
19 throughput cloning pipeline, targeted cellular ablation, and advanced microscopy solutions. Using
20 tissue-specific reporter expression, we examine how various structures regenerate. Enabled by a
21 custom, low-cost luminescence/fluorescence microscope, we overcome intense stress-induced
22 autofluorescence to demonstrate the first application of genetic cellular ablation in flatworms to
23 reveal the limited regenerative capacity of neurons and their essential role during wound-healing.
24 Finally, we build a novel open-source tracking microscope to continuously image moving animals
25 throughout the week-long process of regeneration, quantifying kinetics of wound healing, nerve
26 cord repair, body regeneration, growth, and behavioral recovery. Our findings suggest that nerve
27 cord reconnection operates independently from primary body axis re-establishment and other
28 downstream regenerative processes.

29 **Introduction**

30 In response to injury, regenerative animals initiate a cascade of dynamic cellular processes,
31 including signaling, apoptosis, proliferation, differentiation, and patterning to restore lost tissue
32 (Gemberling et al., 2013; Tanaka, 2016; Reddien, 2018). However, most studies infer dynamics
33 based on snapshots spaced out in time. In contrast, live imaging can allow for continuous direct
34 observation of these dynamic processes in the same individual (Currie et al., 2016; Zattara et al.,
35 2016; Ratnayake et al., 2021). While short-term live imaging is routine, imaging the entire process
36 of regeneration has been challenging, if not impossible, for three major reasons. First, very few
37 systems offer both optical transparency and minimal autofluorescence required for fluorescence
38 imaging. Second, except for a few genetically tractable systems (Siebert et al., 2019; Ricci &
39 Srivastava, 2021; Weissbourd et al., 2021; Paix et al., 2023), most regenerative organisms lack
40 tissue-specific transgenic labeling necessary for visualizing cells *in vivo*. Finally, restraining, or
41 paralyzing animals for prolonged imaging over days – the timescale relevant for observing
42 regeneration – is technically challenging and can negatively affect the organism’s physiology and
43 change the course of regeneration. In this study, we address these challenges by combining the
44 favorable physiology and genetics of the flatworm *Macrostomum lignano* with novel microscopy
45 techniques to enable sensitive and long-term imaging of whole-body regeneration and illustrate
46 the mechanistic insights that may be gained through such studies.

47

48 The interstitial, marine flatworm *M. lignano*, studied for diverse biological processes (Wudarski
49 et al., 2020) including sexual selection (Brand et al., 2020; Marie-Orleach et al., 2021), bio-
50 adhesion (Lengerer et al., 2014), genome evolution (Wasik et al., 2015; Zadesenets et al., 2017;
51 Wiberg et al., 2023), and host-microbiome interactions (Ma et al., 2023), is also capable of
52 regenerating all tissues posterior to the pharynx but not anterior structures, presenting a unique
53 opportunity to compare the molecular and cellular basis of regenerative and non-regenerative
54 outcomes (Egger et al., 2006, 2009). In addition, *M. lignano* is conducive to live imaging thanks
55 to its small body size, optical transparency, minimal autofluorescence, and robust physiology.

56

57 In contrast to other commonly studied flatworm models like planarians, which have limited
58 transgenic tools (Hall et al., 2022), *M. lignano* has the ability to integrate exogenous DNAs into
59 its genome, enabling transgenesis (Wudarski et al., 2017; Ustyantsev et al., 2021; Wudarski et al.,

60 2022), which is further facilitated by the animal's short egg-to-egg generation time (3 weeks at 20
61 °C) and abundant, injectable zygotes (Mouton et al., 2018). However, our repertoire of transgenic
62 tools is in its infancy and advanced microscopy tools capable of imaging entire organisms in their
63 native physiological state throughout regeneration have been lacking. Here, we integrate three key
64 technologies to synergistically facilitate the use of *M. lignano* as a model system for the study of
65 regeneration biology.

66

67 First, we established and utilized a modular library of genetic parts to enable the hierarchical
68 assembly of complex expression cassettes within a single day. This high throughput cloning is
69 coupled with a refined injection procedure allowing a single person to comfortably inject ~200
70 fertilized eggs within a 2 hour session, which has routinely provided us with 1-2 germline-
71 transmitting transformants per session. Using this pipeline, we have generated tissue-specific
72 reporter lines expressing green nanolatern (GeNL) (Suzuki et al., 2016) which allows for both
73 fluorescence and luminescence imaging. These lines have allowed us to better characterize
74 anatomical structures, track the dynamics of axonal extension during neural regeneration, and
75 reveal key steps during the regeneration of complex organs such as the male copulatory apparatus.

76

77 Second, we demonstrate the first application of targeted ablation in a regenerative flatworm by
78 generating tissue-specific lines expressing nitroreductase (NTR2.0) (Sharrock et al., 2022), a
79 genetically encoded, inducible toxin, but found that intense stress-induced autofluorescence
80 resulting from cellular ablation obscured the ablation outcomes. Therefore, we built an affordable
81 multimodal epifluorescence/luminescence microscope that circumvented autofluorescence and
82 enabled the sensitive detection of cells to reveal a lack of neural regeneration following ablation,
83 indicating that the turnover of the *M. lignano* nervous system may be slow, if it occurs at all.
84 Furthermore, neural-ablated animals failed to heal their wounds after amputation, suggesting that
85 the nervous system plays a critical role in the organism's ability to repair and regenerate.

86

87 Third, we designed and built an epifluorescence tracking microscope, based on the open-source
88 Squid platform (Li et al., 2020), to image live, free-moving animals for up to one week. Using
89 infrared (IR) light to track the animal, this microscope continually adjusts the stage position to
90 ensure the subject remains within the field-of-view (FOV). With this, we demonstrated the first

91 continuous fluorescence imaging of whole-body regeneration and identified milestones during
92 posterior neural regeneration with high temporal and spatial resolution. A particularly striking
93 observation is that the rate of nerve cord extension depends on the distance needed to travel for
94 nerve cords to reconnect after asymmetric amputations.

95

96 Finally, combining all these techniques, we investigated the function of β -catenin, a central
97 regulator of the Wnt signaling pathway, in *M. lignano* regeneration. We found that animals failed
98 to extend their body and regenerate posterior structures upon β -catenin RNAi, but nerve cord
99 reconnection was unaffected, suggesting that nerve cord repair is separated from other processes
100 of regeneration, including the primary body-axis specification. With the toolkit we created, our
101 work positions *M. lignano* to become a powerful platform for live imaging studies to reveal
102 dynamic cellular processes during tissue regeneration.

103

104 **Results**

105 **A modular cloning protocol enables rapid generation of tissue-specific reporter lines**

106 Cloning can often be a bottleneck when constructing complex transgene cassettes. To streamline
107 this process and facilitate resource sharing, we took inspiration from the idea of modular assembly,
108 which breaks down transgenes into ‘parts’ – promoters, genes, and terminators – that can be
109 hierarchically assembled through simple biochemical reactions (Canton et al., 2008). Building
110 upon the 3G Assembly pipeline (Halleran et al., 2018), we have implemented a single-day protocol
111 to generate multi-transcriptional unit (TU) plasmids. We first assembled parts via Golden Gate into
112 TUs, which were further assembled into plasmids via Gibson assembly using positionally indexed
113 homology arms added during the prior Golden Gate reactions (**Figure 1A**). Our approach
114 minimizes scar sites within TUs but preserves modularity and flexibility. A key change we made
115 to the original 3G method is the introduction of a new backbone, into which all parts can be cloned,
116 thereby reducing the reliance on PCR for generating part fragments. This allows for the long-term
117 storage of parts as glycerol stocks and simplifies the process of part sharing and reuse. We have
118 built a parts library (**Table S1, File S1**) and expect to continue expanding it.

119

120 Using our toolkit, we have created a series of transgenic lines carrying increasingly complex
121 expression cassettes. First, we generated lines ubiquitously expressing GeNL, a fusion of

122 mNeonGreen and nanoluciferase (Nluc) (Suzuki et al., 2016), under the control of either the
123 enolase (**Figure 1B**) or the eukaryotic elongation factor 1 α (Eef1 α) promoter. Notably, the
124 pEnolase::GeNL::tEnolase line exhibited more uniform expression, at least in the epidermis
125 (**Figure 1C, Figure S1A**), allowing us to visualize various anatomical features including the
126 epidermal cilia, seminal vesicles, stylet, testes, muscles, and intestinal cells (**Figure 1C, Video**
127 **S1**).

128

129 Next, we created a transgenic line co-expressing GeNL and NTR2.0 in neurons, driven by the
130 promoter of a prohormone convertase 2 (PC2) homolog (**Figure 1D**) – a gene expressed across all
131 neural cell types in *M. lignano* (**Figure S1B**). The pPC2::GeNL-P2A-NTR2.0::tPC2 line showed
132 strong transgene expression in the central nervous system, consisting of the cephalic ganglia, two
133 major and various minor ventral nerve cords, as well as peripheral neural structures such as the
134 anterior sensory organs and posterior neurons associated with reproductive and adhesive organs.
135 The NTR gene was incorporated to enable targeted chemical ablation of the labeled cells, which
136 is discussed below.

137

138 Finally, we produced lines with transgenes expressed in multiple distinct patterns. We used the
139 APOB and MHY6 promoters (Wudarski et al., 2017) to co-express GeNL and NTR2.0 in intestinal
140 and muscle cells, respectively (**Figure S2A-B**). The constructs also contained an additional
141 expression cassette, pEef1 α ::mScarlet::tEef1 α , serving as a co-transfection marker. This marker
142 was crucial in determining the locations of GeNL $^+$ cells in various organs (as described below).
143 Overall, these results demonstrate how our approach can combine new and existing genetic parts
144 and facilitate the efficient generation of genetic lines carrying complex transgenes.

145

146 **Tissue-specific labeling resolves detailed anatomy**

147 These tissue-specific reporter lines allowed us to characterize the fine anatomy of various tissues
148 in live animals using confocal microscopy. In the PC2 reporter line, the cephalic ganglia was
149 clearly labeled in the anterior, revealing a dense neuropil located just above the photoreceptors,
150 and a battery of ciliated sensory neurons projecting towards the far anterior of the animal (**Figure**
151 **2A**). The pharynx was encircled by a highly enervated ring (**Figure 2A, Video S2**), and two
152 photoreceptors each projected an axon into the neuropil (**Figure 2B**). Along the body, we observed

153 a pair of major ventral nerve cords and several minor nerve cords situated medially, which often
154 projected horizontally to connect between nerve cords (**Figure 2C**). The tail region was highly
155 innervated, with the ventral nerve cords looping around the tail base, encircling a mesh of neurons
156 in the middle. Along the exterior of the tail was a fan-like array of neurons likely controlling the
157 duo-adhesive gland of the adhesive organ (**Figure 2D**). A closer inspection of these neurons
158 revealed that they were connected to the major nerve cord by a single long projection with a second
159 projection extending to the edge of the tail (**Figure 2E**). Finally, we discovered unique
160 arrangements of neurons around the stylet opening (**Figure 2F**) and the antrum (**Figure 2G**), the
161 opening from which eggs are deposited. Intriguingly, similar groupings of neurons regulate various
162 copulatory behaviors and egg laying from the vulva in *C. elegans* as well (Emmons, 2018).
163 Notably, many of these neural structures were not visible in previous studies of the nervous system
164 using immunofluorescence (Ladurner et al., 1997; Morris et al., 2007).

165

166 In the APOB reporter line, the gut architecture was revealed as a dense tiling of highly vacuolated
167 cells. While both APOB and *Eefl α* promoters drove expression in the gut, the ratio of their
168 expression was variable between cells (**Figure 2H**), consistent with our single-cell ATAC-seq data
169 suggesting that *eefl α* is highly expressed in one subpopulation of intestinal cells (**Figure S1B**). In
170 the head, large pAPOB::GeNL $^+$ cells extended numerous tracts of cytoplasmic processes, which
171 often encased neighboring cells (**Figure 2I**). Surprisingly, pAPOB::GeNL $^+$ cells were present
172 within the ovaries, with their cell bodies located at the periphery and cytoplasmic processes
173 surrounding developing oocytes (**Figure 2J, 2J'**). Similarly, we observed pAPOB::GeNL $^+$ cells
174 straddling the exterior of the testes, though not within the testes (**Figure 2K, 2K'**). These
175 observations are consistent with single-cell analysis that revealed a population of *apob* $^+$ *cathepsin* $^+$
176 cells (**Figure S1B**), suggesting that these previously undescribed extraintestinal cells could play
177 phagocytic roles patrolling through various organs.

178

179 The MHY6 reporter line showed distinct layers of circular and diagonal muscle fibers beneath the
180 epidermis (**Figure 2L**) (Rieger et al., 1994). The tail was particularly rich in muscle fibers (**Figure**
181 **2M**). A closer examination revealed that the seminal vesicle, false seminal vesicle, and stylet were
182 all wrapped in muscular rings, which likely control sperm expulsion and stylet movement during
183 copulation (**Figure 2N**). In parallel, the pEefl α ::mScarlet expression uncovered clusters of

184 presumptive prostate gland cells (Ladurner et al., 2005), extending into the stylet (**Figure 2N**,
185 **Figure S2C**). Within the trunk, a secondary inner layer of muscle fibers pressed against internal
186 organs including the gut (**Figure 2O**). This was most obvious around the testes and ovaries, which
187 were sandwiched between the muscle layers (**Figure 2P**, **Video S3**). Finally, the antrum was
188 surrounded by concentric muscle rings (**Figure 2Q**), aligning with the neural ring (**Figure 2G**),
189 suggesting that the muscles are innervated to regulate egg laying. Together, these observations
190 demonstrate the capability to resolve anatomical details with high resolution using combinations
191 of tissue-specific and ubiquitous transgenes, establishing many anatomical landmarks that should
192 be instrumental in evaluating the regeneration process.

193

194 **Time course imaging using tissue-specific reporters reveals stages of posterior regeneration**
195 To investigate how tissue structures regenerate, we amputated each transgenic line (PC2, APOB,
196 and MYH6) and performed live imaging at regular time points over a week. Using the PC2 line,
197 we observed that the major nerve cords remained severed and produced an elaborate fan-like array
198 of axonal projections towards the wound at 6 hours post-amputation (hpa) (**Figure 3A**).
199 Occasionally, these major nerve cords connected with minor ones forming loops (**Figure 3B**). By
200 48 hpa, the nerve cords were fully reconnected, though no adhesive gland neurons were yet
201 observed (**Figure 3C**). By 4 days post-amputation (dpa), we observed an increasingly elaborate
202 array of neurons at the tail tip (**Figure 3D**), consistent with prior observations that the duo-adhesive
203 system regenerates by 3 dpa (Egger et al., 2006). By 7 dpa, the tail plate regained its normal club-
204 shaped appearance (**Figure 3E**). These results suggest a potential role for axonal guidance cues
205 during wound healing as existing nerve cords appear to seek out for connection, followed by
206 neurogenesis in the tail plate as the adhesive system regrows.

207

208 Turning to the APOB line, at 6 hpa, the epidermis at the wound appeared distorted and stretched,
209 resembling a drawstring being pulled tight (**Figure 3F**). Below the wound, the gut sat directly
210 beneath the epidermis with no tissue in between (**Figure 3G**). By 24 hpa, the blastema had grown
211 between gut and epidermis, often with a subset of cells encircled by pAPOB::GeNL⁺ cells (**Figure**
212 **3H, 3H'**). This pattern was similarly observed for the pAPOB::GeNL⁺ cells within the head during
213 homeostasis in the APOB line, hinting at a possible role of phagocytes in removing extra cells.

214

215 Finally, we analyzed the musculature during regeneration using the MYH6 line. At 6 hpa, muscle
216 fibers formed wavy concentric rings around the wound (**Figure 3I**), and by 24 hpa, muscles
217 enclosed the wound site (**Figure 3J, 3J'**). We often observed muscle fibers with termini forming
218 multiple filamentous projections in both pre-existing and regenerating tissues, suggesting that the
219 muscle network was in the process of reforming during regeneration (**Figure 3K**).

220

221 The MYH6 line also revealed key steps during the organogenesis of the male copulatory apparatus.
222 Starting at 3 dpa, a ring of pMYH6::GeNL⁺ cells appeared in tail blastema with a small rosette of
223 pEef1 α ::mScarlet⁺ cells at the center (**Figure 3L**). Next, this ring developed into three connecting
224 rings that went on to become seminal vesicles and the stylet sheath, inside of which a small stylet
225 primordium began to form (**Figure 3M**). The rings continued to grow, as did the stylet. By this
226 point, many prostate gland cells were present around the edges of the rings and extended long
227 processes down into the stylet, sometimes traveling many cell bodies in distance (**Figure 3N**,
228 **Figure S2D**). Finally, the rings became fully formed chambers sheathed in muscle fibers, and the
229 stylet adopted a sharp bend at its base that was heavily invaded by processes of the surrounding
230 prostate glands (**Figure 3O**). These results highlight the complex dynamic processes within
231 regenerating tissues, providing multiple examples of intricate cellular processes, which likely
232 involve continuous coordination between cells and across tissues.

233

234 **Luminescence imaging tracks neural ablation outcomes**

235 Cell type-specific expression not only facilitates the observation of tissue dynamics during
236 regeneration but also enables targeted cell ablation using conditional, genetically encoded toxins
237 like NTR2.0 (Sharrock et al., 2022), which can help elucidate the function of specific cell
238 populations; however, such a method had never been applied in flatworms. To test the functionality
239 of NTR2.0 in flatworms, we treated each of our strains with 0.5 or 5 mM metronidazole (MTZ), a
240 prodrug reduced by NTR to induce cytotoxicity (Sharrock et al., 2022), for 7 days. Compared to
241 controls treated with an equal concentration of DMSO (vehicle), the PC2 strain showed a loss of
242 muscle tone and paralysis (**Video S4**), the APOB animals ejected their gut (**Figure S3A**), and the
243 MYH6 line, though still capable of moving, contracted into spherical shapes (**Video S4**). We chose
244 the PC2 strain for further analysis, as they preserved their gross morphology after the MTZ

245 treatment. However, we also observed drastically increased autofluorescence after treatment,
246 obscuring the extent of neural ablation (**Figure 4A**).

247

248 To overcome this challenge, we utilized the Squid platform (Li et al., 2020) to develop an upgraded
249 version of our previous low-cost luminescence microscope (Hall et al., 2022) by incorporating full
250 motorization, dual-color fluorescence imaging, and a python-based graphical user interface
251 (**Figure S3B, Figure S4A**). Instead of an EMCCD, this new microscope uses a cooled CMOS
252 camera, with high peak quantum efficiency (91%) and very low dark current, reducing the camera
253 cost by over an order of magnitude with little compromise in performance, and making
254 luminescence imaging more broadly accessible. Comparing fluorescence and luminescence
255 images of the same animal, we confirmed that luminescence imaging was consistent with
256 fluorescence but had reduced background signal, permitting the visualization of fine neural
257 processes (**Figure S3C**).

258

259 In contrast to fluorescence, luminescence imaging revealed a progressive reduction of neuronal
260 cells in the PC2 animals kept in 5mM MTZ (**Figure 4B**). By 11 days post-ablation (dpab), only a
261 few neurons remained, yet our microscope was able to detect their faint luminescent signal. The
262 ability to sensitively detect cells without confounding autofluorescence opens the possibility to
263 explore the regenerative capacity of the nervous system post-ablation.

264

265 To investigate whether the nervous system could regenerate after ablation, we removed the animals
266 from MTZ at 6 dpab, followed by 7 days of recovery in artificial seawater (ASW). We performed
267 luminescence live imaging before and after the recovery and found no substantial changes to the
268 degenerated nervous system, with landmark cells persisting across the whole period (**Figure 4C**).
269 This indicates a lack of neural regeneration after extensive neural ablation.

270

271 Finally, we explored whether the nervous system is necessary for regeneration and whether injury
272 is needed to activate neural regeneration after ablation. We amputated animals at 7 dpab and
273 followed their regeneration in the absence of MTZ. MTZ-treated non-transgenic controls showed
274 full regeneration by 7 dpa (**Figure S3D**). The PC2 strain treated with DMSO (vehicle) exhibited
275 normal wound healing and the nerve cords reconnected by 24 hpa. In contrast, the PC2 animals

276 subjected to neural ablation with MTZ failed to reconnect what remained of their nerve cords and
277 the posterior wound remained open (**Figure 4D**), eventually leading to lysis. This observation
278 highlights the critical role of the nervous system in wound healing and shows that injury alone
279 does not trigger neural regeneration. Overall, these results demonstrate the first application of
280 cellular ablation in regenerative flatworms and showcase the importance of luminescence imaging
281 in accurately assessing ablation outcomes.

282

283 **Tracking microscope enables continuous imaging of posterior neural regeneration in free-** 284 **moving animals**

285 To observe regeneration from start to finish in real-time requires long-term imaging performed on
286 minimally perturbed, freely moving animals. Using the Squid platform (Li et al., 2020), we built
287 a novel epifluorescence microscope capable of tracking the animal while continuously capturing
288 high resolution images.

289

290 The animal is imaged in bright field with low intensity infrared (IR) light, which does not elicit
291 photophobic responses in *M. lignano* (Paskin et al., 2014) or heat up the water. The images are
292 acquired at a frequency of ~6 Hz and segmented in real-time to determine the animal's centroid
293 and adjust the stage's position to keep the animal at the center of the FOV. In parallel, the
294 microscope acquires fluorescence images through a separate optical path in up to four possible
295 channels (**Figure 5A**, **Figure S4B**). To avoid the loss of tracking due to vertical movements of the
296 animal, we engineered a flat imaging chamber that confined the animal in only the z-axis (**Figure**
297 **5B**) without affecting its normal behavior and long-term survival (**Figure 5C**).

298

299 We horizontally bisected the PC2 strain and immediately mounted the head fragments for imaging.
300 Initially, the gut protruded out of the wound and the nerve cords were severed, terminating abruptly
301 at the injury site. Within the first 12 hrs, the gut retracted into the body, but the nerve cords
302 remained disconnected. The two cords gradually extended towards each other and finally
303 reconnected at ~30 hpa. Once connected, the posterior tissue began to grow outwards, forming a
304 new tail plate between 40 to 50 hpa. As the tail plate restored its characteristic pad shape, the nerve
305 cords remained on the periphery of the newly regenerated tissue. Additional neurons started to

306 emerge posterior to the nerve cords around 55 hpa, eventually arranging into their usual fan-like
307 configuration in the adhesive organ by ~100 hpa (**Figure 5D-E, Video S5**).

308

309 Intrigued by the bilateral symmetry observed during regeneration, we wondered how asymmetric
310 amputation might affect this process. Specifically, would the nerve cords reconnect at the original
311 midline or at the midpoint between the severed cords? To investigate this, we amputated animals
312 at a 45-degree angle and monitored their regeneration using the tracking microscope. Initially, one
313 of the severed nerve cords was ~90 μ m longer than the other. As the wound closed, the shorter
314 nerve cord extended quickly towards the posterior while the longer nerve cord grew laterally a
315 slight distance (**Figure 5F**). This asymmetry resulted in the two nerve cords meeting only slightly
316 offset from the midline. By ~65 hpa, neurons of the adhesive organ began forming at the midline
317 adjacent to nerve cord closure site (**Figure 5G, Video S6**), suggesting that the specification of the
318 adhesive organ is influenced by global body patterning cues, rather than the cues that instruct the
319 location of nerve cord reconnection. To further confirm this impression, we amputated an animal
320 at an extreme angle, which caused the remaining posterior tissue to wrap around the wound site,
321 resulting in the nerve cords reconnecting on one side of the animal. Even in this extreme case,
322 neurons associated with the tail plate regenerated further posterior than the site of nerve cord
323 closure (**Figure S5A-B**), supporting that nerve cord closure and posterior regeneration may be
324 controlled by distinct cues.

325

326 **Continuous live imaging allows quantification of regeneration progress across scales**

327 With continuous tracking and live imaging, we now have the capability to simultaneously quantify
328 the regeneration process across tissue, organismal, and behavioral scales in a single experiment.
329 For example, at the tissue level, we annotated the nerve cords and measured their length following
330 the 45-degree oblique cut. Strikingly, the shorter nerve cord extended linearly at a rate twice higher
331 than the longer nerve cord (~10 μ m/hr vs. ~5 μ m/hr) (**Figure 6A**), indicating an adaptive
332 mechanism where nerve cords modulate their extension rate in a manner reflecting the distance
333 needed to travel for reconnection. Consistently, the distance between nerve cords also decreased
334 linearly, after both oblique and symmetric cuts, though the absolute rates varied between animals
335 and cuts (**Figure 6A, Figure S5C**).

336

337 At the organismal level, the animals rescaled their bodies as regeneration progresses. Using an
338 automated pipeline to segment and orient animals, we quantified their length throughout the course
339 of regeneration. Unlike linear nerve cord extension, the animal length grew according to a
340 ‘saturation curve,’ with the rate of regeneration proportional to the amount of tissue to be
341 regenerated. Surprisingly, the time constant of this saturation appeared consistent across animals
342 at $0.027 \pm 0.004 \text{ hr}^{-1}$ (**Figure 6B**), suggesting a potentially characteristic time scale for
343 *Macrostomum* tail regeneration.

344

345 At the behavioral level, the microscope’s tracking feature allowed us to quantify the animal
346 movement with a time step of 2 s using the stage’s position and the animal’s location within the
347 FOV. From the velocity data, we calculated a behavioral activity score (Bray et al., 2023), with
348 high activity scores corresponding to animals actively exploring their environment, punctuated by
349 body extension and scrunching (**Figure 6C-D**). After amputation, we observed a decrease in
350 average activity during the first 20 hr, followed by a 50 hr bout of hyperactivity, eventually
351 returning to the baseline level (**Figure 6E**). Correlating the behavioral output with the steps in
352 tissue regeneration (**Figure 5D**), our data suggested that the animal’s activity was suppressed
353 during wound healing. Overall, our tracking microscope represents a major advance in our capacity
354 to simultaneously collect tissue and morphological data with high temporal resolution in freely
355 moving animals throughout the regeneration process. This approach enables the quantitative
356 analysis of neural regeneration while simultaneously providing a rich behavioral dataset to
357 investigate how these processes are realted across scales.

358

359 **Multimodal imaging characterizes posterior regeneration defects induced by β -catenin RNAi**
360 In planarian flatworms, knockdown of β -catenin causes anterior-posterior (A-P) patterning defects
361 (Gurley et al., 2008; Petersen & Reddien, 2008), and in other systems, β -catenin is known to play
362 important roles in neural induction and axonal regeneration (Rocheleau et al., 1999; Onishi et al.,
363 2014; Watanabe et al., 2014; Garcia et al., 2018). This prompted us to postulate that β -catenin
364 knockdown could block or incorrectly guide nerve cord extension post-injury in *M. lignano*.

365

366 To elucidate the role of β -catenin in posterior regeneration, we first sought a molecular posterior
367 marker that reactivates early after tail amputation. In planarians, *wnt-1* marks the posterior pole,

368 expressed in a single train of cells along the midline and is quickly induced at injury sites (Petersen
369 & Reddien, 2009). We identified a *wnt-1* ortholog in the *M. lignano* genome (**Figure S6A**), which
370 was upregulated in the posterior wound after amputation. We developed a hybridization chain
371 reaction (HCR) protocol to detect *wnt-1* expression. In intact animals, *wnt-1* was expressed in a
372 wide swathe of anchor cells located in the posterior adjacent to the adhesive glands stained by
373 peanut agglutinin (PNA) (Lengerer et al., 2016) (**Figure 7A**). Following injury, *wnt-1* expression
374 was induced within the posterior blastema (**Figure 7B**), providing a means to assess whether the
375 posterior is successfully re-specified at the early stages of regeneration.

376

377 *M. lignano* has three β -*catenin* homologs, which we targeted with double stranded RNA (dsRNA)
378 designed against a common sequence for RNAi-induced gene silencing (Mouton et al., 2023)
379 (**Figure S6B**). Whereas control animals regenerated both adhesive glands and *wnt-1*⁺ anchor cells,
380 β -*catenin* RNAi animals failed to regenerate posterior structures, with *wnt-1*⁺ cells absent in the
381 majority (n=16/22) or rarely observed (n=6/22) (**Figure 7C**), indicating that regeneration was
382 halted at an early stage under β -*catenin* knockdown conditions.

383

384 Remarkably, despite the impaired regeneration within β -*catenin* knockdowns, nerve cords still
385 extended and reconnected normally by 24 hpa, as observed in the PC2 reporter strain through
386 luminescence imaging (**Figure 7D**). Yet, beyond nerve cord reconnection, regeneration ceased
387 (**Figure 7E**): tracking microscopy revealed no significant changes in the animal length over time,
388 suggesting a complete lack of regenerative growth (**Figure 7F**). Furthermore, tracking data
389 revealed a marked reduction in the behavioral activity of the β -*catenin* knockdown animals
390 compared to controls in the process of regeneration (**Figure 7G**), indicating that nerve cord
391 reconnection alone is insufficient to restore normal behavior. These findings are consistent with
392 the notion that nerve cord reconnection is a part of the wound healing process, which can occur
393 even after halting regeneration by β -*catenin* knockdown. Together, these results demonstrate the
394 utility of our toolbox in dissecting complex regeneration phenotypes caused by genetic
395 manipulations.

396 **Discussion**

397 Whole-body regeneration is a complex, dynamic, organism-wide process involving many different
398 cell types (Reddien, 2018; Fan et al., 2023) that has been challenging to study due to the limited
399 tools available for transgenic manipulations and sensitive, longitudinal live imaging. Here, we
400 presented three key techniques to accelerate the use of *M. lignano* as a platform system for studying
401 whole-body regeneration. First, we established a modular genetic toolkit for rapidly assembling
402 transgenes. As our research community matures, this toolkit will facilitate the engineering of
403 increasingly sophisticated genetic constructs as labs contribute compatible parts to expand the
404 library. Second, we demonstrated the use of chemical cellular ablation in a regenerative flatworm
405 species, opening the door to investigating the regenerative potential of specific cell types and their
406 individual contributions in the context of tissue regeneration. To complement targeted ablation, we
407 developed an affordable and scalable open-source luminescence/fluorescence microscope to
408 monitor the behavior of remaining cells post-ablation with high sensitivity, spatial resolution, and
409 accuracy. Finally, we built a fluorescence tracking microscope, allowing for the observation of
410 regeneration from initiation to completion, acquiring dynamic, quantitative data across multiple
411 scales, ranging from the microscopic details within the tissue, through the macroscopic changes at
412 the organismal level, and ultimately to the complex outputs of animal behavior. Collecting these
413 multi-scale data on the same animal within a single experiment can help to understand how cellular
414 and tissue-level processes translate into functional outcomes at both the organismal and behavioral
415 levels.

416

417 By integrating these tools— transgenesis, ablation, and continuous live imaging – we pave the way
418 for tagging and ablating various cell types (or even sub-types) to systematically delineate their
419 roles during whole-body regeneration and to explore the crosstalk between these cell types. For
420 example, our neural ablation experiments highlighted the critical role of the nervous system in
421 facilitating wound healing. The tools are now becoming available to identify which neuronal
422 populations are essential in this process, and whether neurons communicate directly with
423 epidermal cells, as recently noted in the fly gut post-injury (Petsakou et al., 2023), or indirectly via
424 other cell types, such as muscles or phagocyte-like cells we observed within the blastema.

425

426 A remarkable finding from our work is the differential extension rates of nerve cords following an
427 oblique cut: the shorter nerve cord extended at a rate that was double that of the longer one. This
428 suggests that the regulation of nerve cord repair may be adaptive, with the extension rate reflective
429 of the distance needed to travel for reconnection. Interestingly, once the nerve cords began to
430 extend, they extended at a constant rate until the nerve cords reconnected, indicating that the rate
431 became fixed early in the repair process. This behavior contrasted with the growth of body length,
432 which followed a saturation curve, meaning that the growth rate decreases as regeneration
433 advances. Unraveling the mechanisms underlying this distinct kinetic pattern in neural repair is an
434 important avenue for future research.

435

436 Intriguingly, the site at which nerve cords reconnected after oblique cuts did not necessarily
437 correspond to the new posterior end of the body, where the adhesive organ consistently formed
438 and where *wnt-1* expression was reliably reactivated. This observation, alongside the fact that
439 nerve cords reconnected even after β -catenin RNAi – which resulted in the absence of posterior
440 regeneration and the loss of posterior identity as indicated by *wnt-1* expression – suggests that
441 nerve cord repair may operate independently of A-P patterning cues. This may explain how nerve
442 cords can begin to extend before the new posterior gets re-specified. This is further supported by
443 the ability of nerve cords to reconnect in the anterior of the non-regenerative tail fragments (**Figure**
444 **S7A**). Possible mechanisms for guiding nerve cord extension and reconnection may be midline
445 genes, known to be crucial for axonal guidance in various systems (Blockus & Chédotal, 2016),
446 which may also function in conjunction with other morphogenic cues (Charron et al., 2003), as
447 well as genes that may regulate mediolateral patterning, including the non-canonical Wnt signaling
448 or planar cell polarity pathway (Almuedo-Castillo et al., 2011; Onishi et al., 2014). With tools
449 including RNAi, tracking microscopy, and the neuronal reporter strain, *M. lignano* can become a
450 new system to dissect the molecular logic underlying axonal guidance in the context of
451 regeneration.

452

453 Finally, our characterization of the β -catenin RNAi phenotype in *M. lignano* unveiled significant
454 variations in how the Wnt signaling pathway specifies the A-P axis during regeneration across
455 different flatworm species. Unlike the planarian *Schmidtea mediterranea*, which regenerates a
456 head in place of a tail after β -catenin RNAi (Gurley et al., 2008; Petersen & Reddien, 2008), *M.*

457 *lignano* simply failed to regenerate anything. Furthermore, in planarian species that exhibit
458 compromised anterior regeneration, β -catenin RNAi can often rescue this deficiency (Sikes &
459 Newmark, 2013; Vila-Farré et al., 2023); however, we observed no such rescue in non-regenerative
460 *M. lignano* tails (**Figure S7B-C**). Another key difference is observed in the expression of *wnt-1*.
461 In *M. lignano*, *wnt-1* is expressed in a wide swathe of cells around the posterior end, which is in
462 stark contrast to its expression in the planarian, where it is restricted to a single line of cells strictly
463 at the posterior tip of the animal body. This difference is compounded by the finding that, while
464 the injury-induced *wnt-1* expression is β -catenin independent in the planarian (Petersen &
465 Reddien, 2009), β -catenin RNAi largely abolished *wnt-1* expression in *M. lignano* after amputation
466 (**Figure 7C**) but not during homeostasis (**Figure S6C**), suggesting that distinct regulatory
467 relationships between *wnt-1* and β -catenin may respond to injury in these two flatworms. Lastly,
468 the relationship between axon guidance and body patterning may differ between the planarian and
469 *M. lignano*. In *S. mediterranea*, it has been recently shown that the regeneration of guidepost cells
470 is coupled with body axis re-specification following amputation, and these guidepost cells are
471 essential for guiding the reconnection of visual axons across midline and to the central nervous
472 system, a process downstream of body patterning (Scimone et al., 2020). In contrast, nerve cord
473 reconnection in *M. lignano* seems to progress independent of A-P axis regeneration. Overall, these
474 observed differences highlight the utility of studying *M. lignano* as a critical model for examining
475 the requirements and evolutionary modifications in the role of Wnt signaling in controlling neural
476 repair and primary body axis regeneration.

477

478 **Limitations of the study**

479 While our current protocol has made injection easier, the fundamental limitation remains the low
480 rates of germline transmission due to random integration (~1%). In an effort to enhance
481 transformation efficiency, we experimented with injecting recombinant Tol2 transposase (rTol2)
482 mixed with transgenes flanked by Tol2 inverted repeats. To date, this approach has not yielded
483 higher efficiencies compared to random integration. However, with future work in both
484 transposon-based and targeted integration, our modular cloning toolkit should facilitate both
485 methodological comparisons and screening of alternative integration methods, with the overall
486 design ensuring compatibility between existing and new plasmids.

487

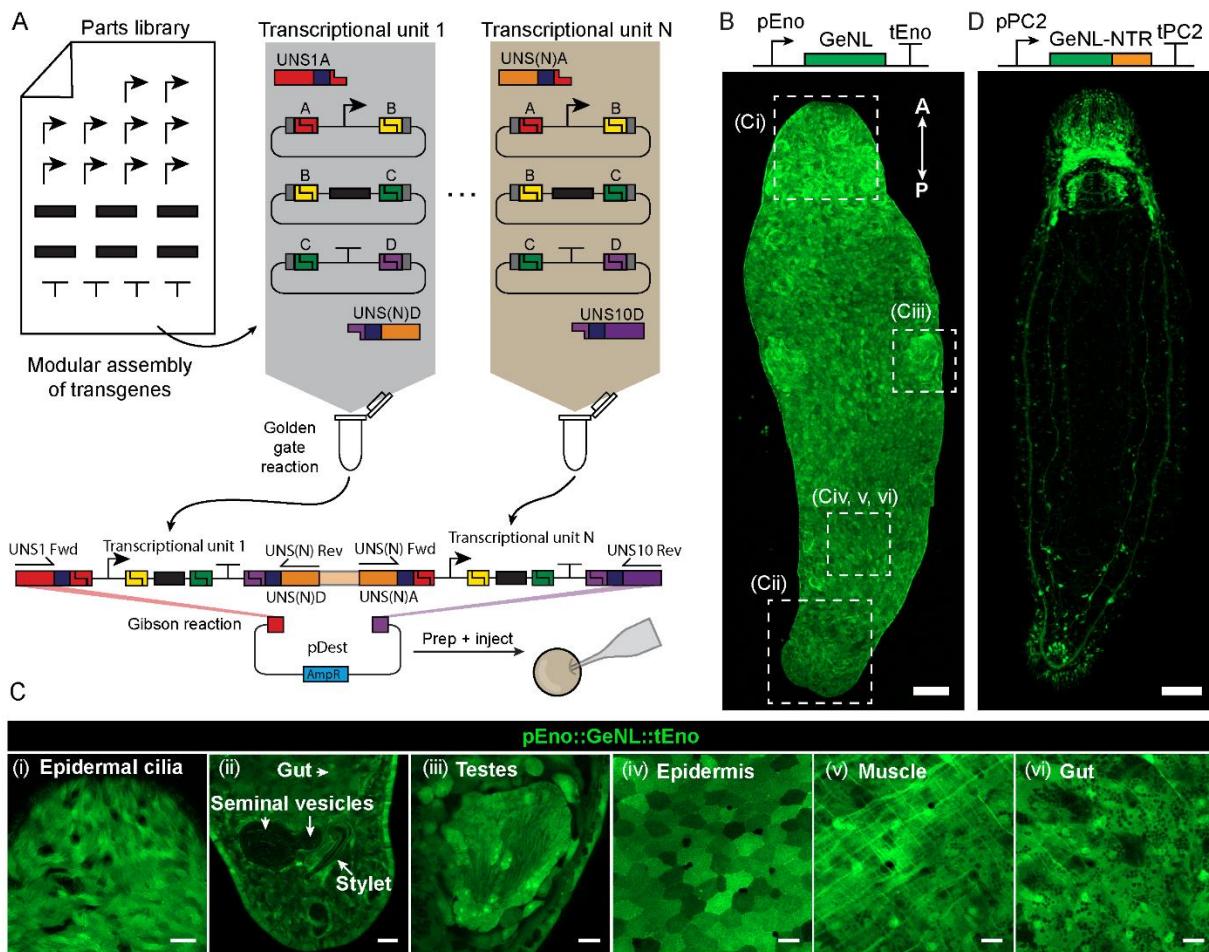
488 Regarding the microscopy techniques, using the same objective for both tracking and imaging in
489 the tracking microscope introduces a trade-off between spatial resolution and the tracking
490 consistency, as higher magnification reduces the FOV, thereby increasing the likelihood of losing
491 track of the animal. Moreover, the current setup relies on wide-field epifluorescence for imaging
492 which has the limitations of reduced signal to noise ratio due to out-of-focus light and disruption
493 in tracking cellular structures when they move out of focus due to animal rotation or deformation.
494 These issues may be addressed in future iterations by using separate objectives for tracking and
495 imaging and incorporating optical sectioning and/or multifocal imaging technologies.

496 **Acknowledgements**

497 We thank E Berezikov and J Wudarski for sharing the *M. lignano* NL-12 strain, plasmids, and the
498 experimental protocols for animal husbandry, E Davies along with members in the Berezikov
499 and Davies labs for stimulating discussion. This work is supported by a Stanford Bio-X
500 Interdisciplinary Initiative seed grant (IIP11-40), an NSF EDGE grant (IOS-1923534), and a
501 NIH grants 1R35GM138061 to BW and R35GM130366 to AZF.

502

503 **Author Contributions**


504 Conceptualization: RNH, JG, AZF, BW; Methodology: RNH, HL, CC, RRB, ES, MP;
505 Instrumentation: HL, CC, ES; Investigation: RNH, SV, RRB, JG; Writing – Original Draft:
506 RNH, BW; Writing – Review & Editing: RNH, HL, CC, JG, AZF, BW; Supervision: AZF, BW;
507 Funding acquisition: AZF, BW.

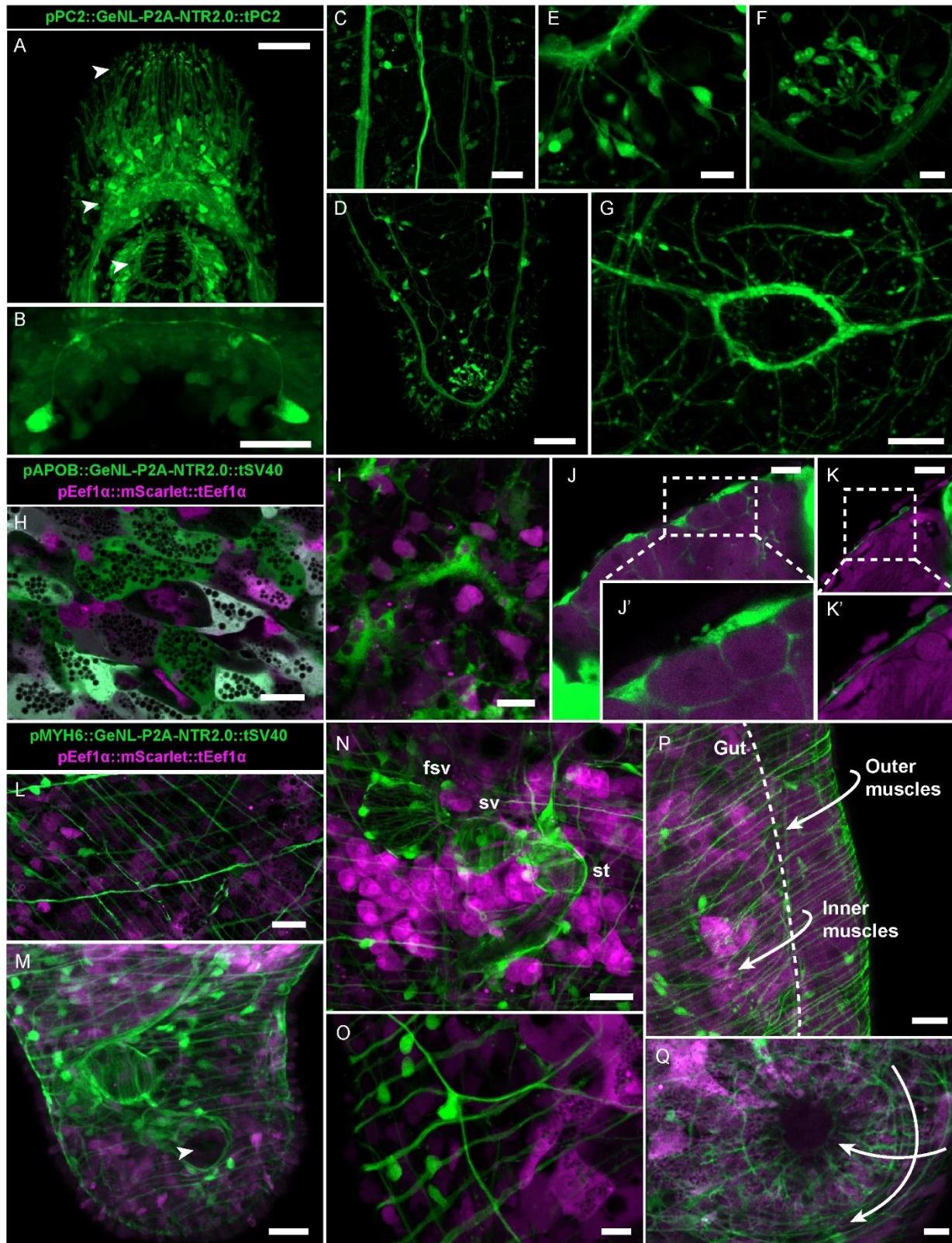
508

509 **Declaration of Interests**

510 HL and MP are co-founders of Cephla, commercializing the Squid platform. Other authors
511 declare no competing interests.

512 **Figures**

513


514 **Figure 1: A modular cloning protocol enables rapid generation of tissue-specific reporter**
515 **lines**

516 **(A)** A diagram showing the design of the modular cloning toolkit. A parts library, composed of
517 promoters, genes, and terminators are assembled into different TUs via Golden Gate reactions
518 (gray and brown regions), along with adapter oligos containing numbered unique sequences (UNS)
519 which define their position in the later Gibson assembly. Within each reaction, each lettered site
520 (A through D) ligates with its complementary overhang (matching colors), thus stitching together
521 a complete TU flanked by the appropriate unique sequence adapters. A PCR reaction amplifies the
522 assembled TU and Gibson assembly then combines TUs into a destination vector (pDest).
523 Throughout this paper, transgenes are presented in the form 'pPromoter:::Gene:::tTerminator'.
524

525 **(B)** Confocal image showing mNeonGreen fluorescence in the pEnolase::GeNL::tEnolase strain.
526 Dashed boxes correspond to the anatomical regions depicted in panel C. A-P: anterior-posterior.
527 Scale bar: 100 μm .

528 **(C)** Example images of the pEnolase::GeNL::tEnolase transgene expression across various tissues:
529 (i) epidermal cilia; (ii) tail, showing gut, seminal vesicles, and stylet; (iii) testes; (iv) epidermis;
530 (v) muscle; (vi) gut. Images are single confocal slices. Scale bars: 20 μm (i, ii), 10 μm (iii-vi).

530 **(D)** Confocal image of an animal expressing pPC2::GeNL-NTR2.0::tPC2. Scale bar: 100 μm .

531

532 **Figure 2: Tissue-specific labeling resolves detailed anatomy**

533 (A) Confocal image of the *M. lignano* brain. Arrows highlight (from top to bottom) anterior
534 sensory projections, the dense neuropil, and pharynx. The imaging regions of all panels in this
535 figure are specified in **Figure S1C**.

536 (B) A close-up of the two photoreceptor cells and the axonal projections they send into the
537 neuropil.

538 (C) The major nerve cord (left) and minor nerve cords (right) run from the head to the tail of the
539 animal.

540 (D) An overview of the nervous system in the tail showing the major nerve cords looping around
541 the base of the adhesive organ.

542 (E) Neurons of the adhesive organ each sending a projection into the major nerve cord and another
543 outward to the epidermis.

544 (F) A circular arrangement of neurons around the opening of the stylet.

545 (G) Dense nerve fibers around the opening of the antrum.

546 (H) Tiled gut cells with highly vacuolated cytoplasm.

547 (I) Large pAPOB::GeNL⁺ cells (green) enclosing other cells (magenta) present in the anterior of
548 the animal.

549 (J) Ovaries (magenta) are wrapped by pAPOB::GeNL⁺ cell bodies (green) on the exterior,
550 extending cytoplasmic processes around individual oocytes. Inset: two oocytes surrounded by
551 cytoplasmic processes of pAPOB::GeNL⁺ cells.

552 (K) A pAPOB::GeNL⁺ cell (green) sits on the exterior of the testes (magenta). Inset: a magnified
553 view of this cell, which extends a long process down the length of the testes.

554 (L) Crosshatched circular and diagonal muscle cells (green) with intestinal cells beneath
555 (magenta).

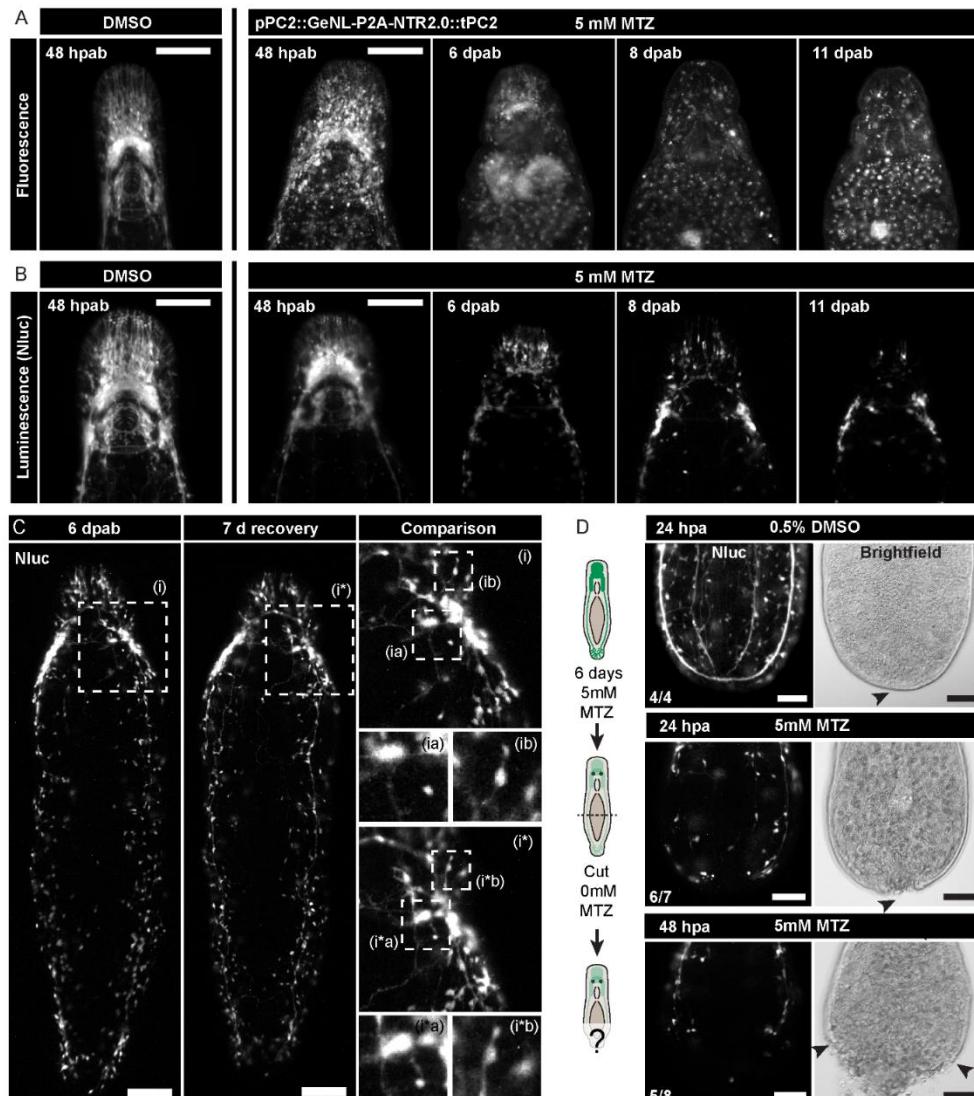
556 (M) An overview of the tail, showing the muscular structure of the male copulatory apparatus
557 (green) within. Arrow: the stylet opening.

558 (N) The male copulatory apparatus, with the false seminal vesicle (fsv), seminal vesicle (sv), and
559 stylet (st) visualized by the layer of muscle cells (green) wrapping each compartment. Abundant
560 prostate gland cells (magenta) surround the seminal vesicles and stylet.

561 (O) Individual muscle cell bodies hang like beads from circular muscle fibers (green) around the
562 gut (magenta).

563 (P) Two layers of muscles with body-wall muscles under the epidermis and another around the
564 gut. The ovaries (magenta) sit between these two muscle layers (green). Dashed line: boundary
565 between the gut and parenchyma. Arrows trace the two layers of muscles.

566 (Q) The antrum is surrounded by concentric rings of muscle intersected by a second set of
567 perpendicular radial muscle cells (green). Arrows trace the radial and perpendicular muscle fibers.

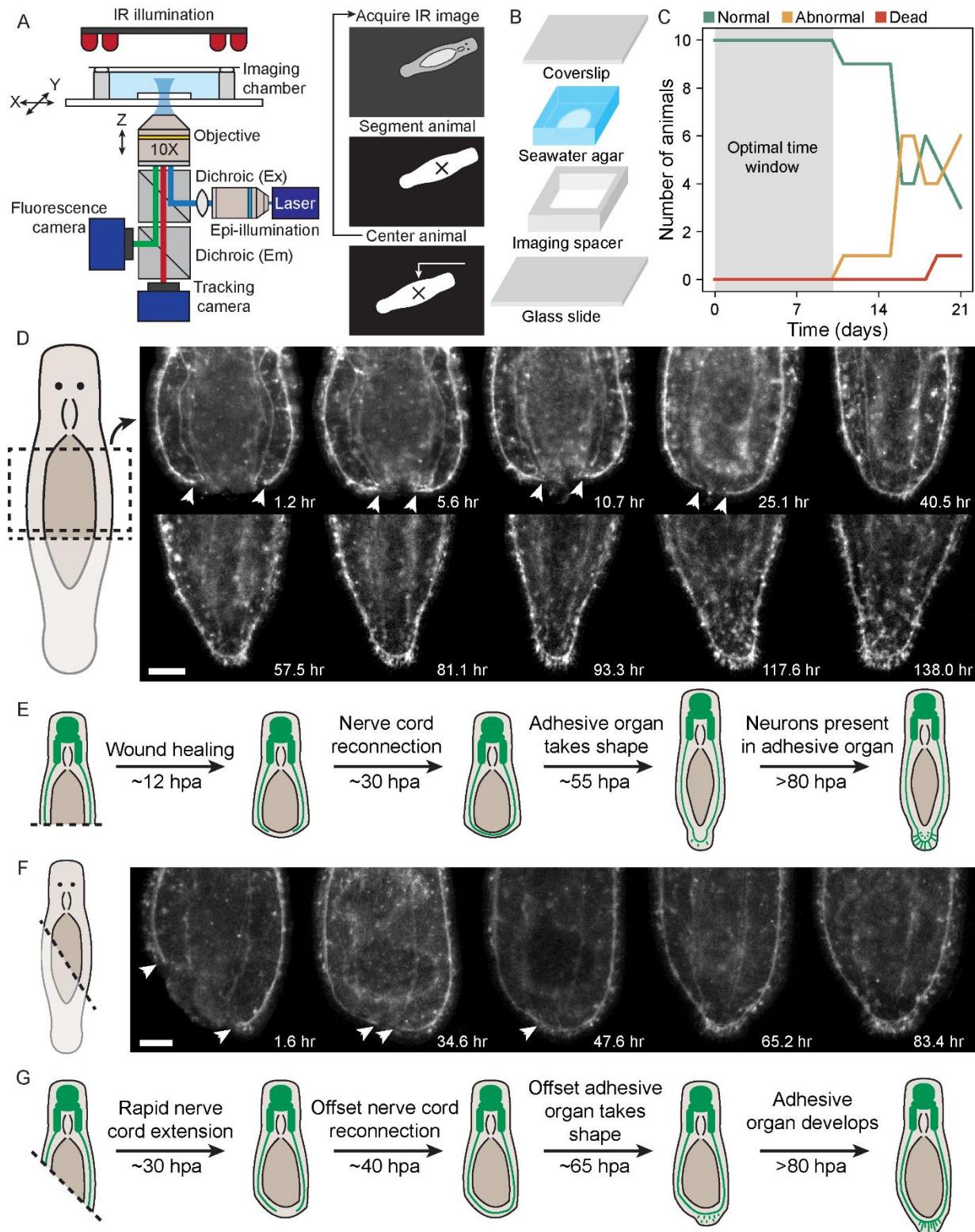

568 Scale bars: 50 µm (A, D), 20 µm (B, C, G, H, L-O, Q), 10 µm (E, F, I-K, P).

569
570
571

Figure 3: Time course imaging using tissue-specific reporters reveals stages of posterior regeneration

572 (A) Cartoon showing an amputated animal with the nervous system highlighted (left). The
573 images are taken from the head fragment. At 6 hpa, the major nerve cords (arrows) are severed
574 but extend projections towards the wound site (asterisk). Dashed box: region imaged.
575 (B) Another view of severed ventral nerve cords extending projections towards the wound
576 (asterisk) forming loops with minor ventral nerve cords (arrows trace the loop).
577 (C) By 48 hpa, the nerve cords have reconnected fully.
578 (D) By 4 dpa, neurons of the adhesive organ have begun repopulating the tail.
579 (E) By 7 dpa, the adhesive organ has regained its normal shape.
580 (F) Cartoon showing an amputated animal with GeNL expression in the gut (green) and
581 ubiquitous mScarlet expression (magenta) (left). By 6 hpa, the epithelium (magenta) is stretched
582 towards the wound with the gut underneath (green). Dashed box: region imaged.
583 (G) A confocal slice deeper into the tissue showing the gut (green) appears immediately beneath
584 the epithelium (magenta) at the wound.
585 (H) By 24 hpa, phagocytes adjacent to the gut (green) are in close contact with cells in the
586 regenerating blastema (magenta) (left). Inset: a magnified view showing numerous blastemal
587 cells (magenta) are surrounded by cytoplasmic processes of pAPOB::GeNL⁺ cells (green) (right).
588 (I) Cartoon showing an amputated animal with GeNL expression in muscles (green) and
589 ubiquitous mScarlet expression (magenta) throughout the body (magenta) (left). At 6 hpa,
590 circular muscles are wavy and buckled as the wound (asterisk) closes. Dashed box: region
591 imaged.
592 (J) By 24 hpa, the muscles (green) enclose the wound (left). Inset: a magnified view showing slight
593 disorganization in the new meshwork of muscle fibers (green) in the blastema (right).
594 (K) An example of a muscle fiber at 3 dpa with a terminus ending in many filamentous projections
595 (green).
596 (L-O) A staged progression of male reproductive organ regeneration. **L**, stage 1, a ring of GeNL⁺
597 cells appears in the posterior blastema. **M**, stage 2, multiple rings of GeNL⁺ cells outline the
598 primordia of seminal vesicles and stylet. A stylet primordium begins to form (arrow). **N**, stage 3,
599 the rings continue to grow into larger chambers as the stylet continues to elongate and the prostate
600 gland cells (magenta) extend projections into the chambers and growing stylet (arrow). **O**, stage 4,
601 the stylet adopts its final bent shape, the chambers have grown into matured seminal vesicles, and
602 numerous prostate gland cells send abundant processes into the stylet. Numbers: GeNL⁺ circular
603 rings.
604 Scale bars: 20 μ m (B-J), 10 μ m (A, L-M, H', J'), 5 μ m (K).

605

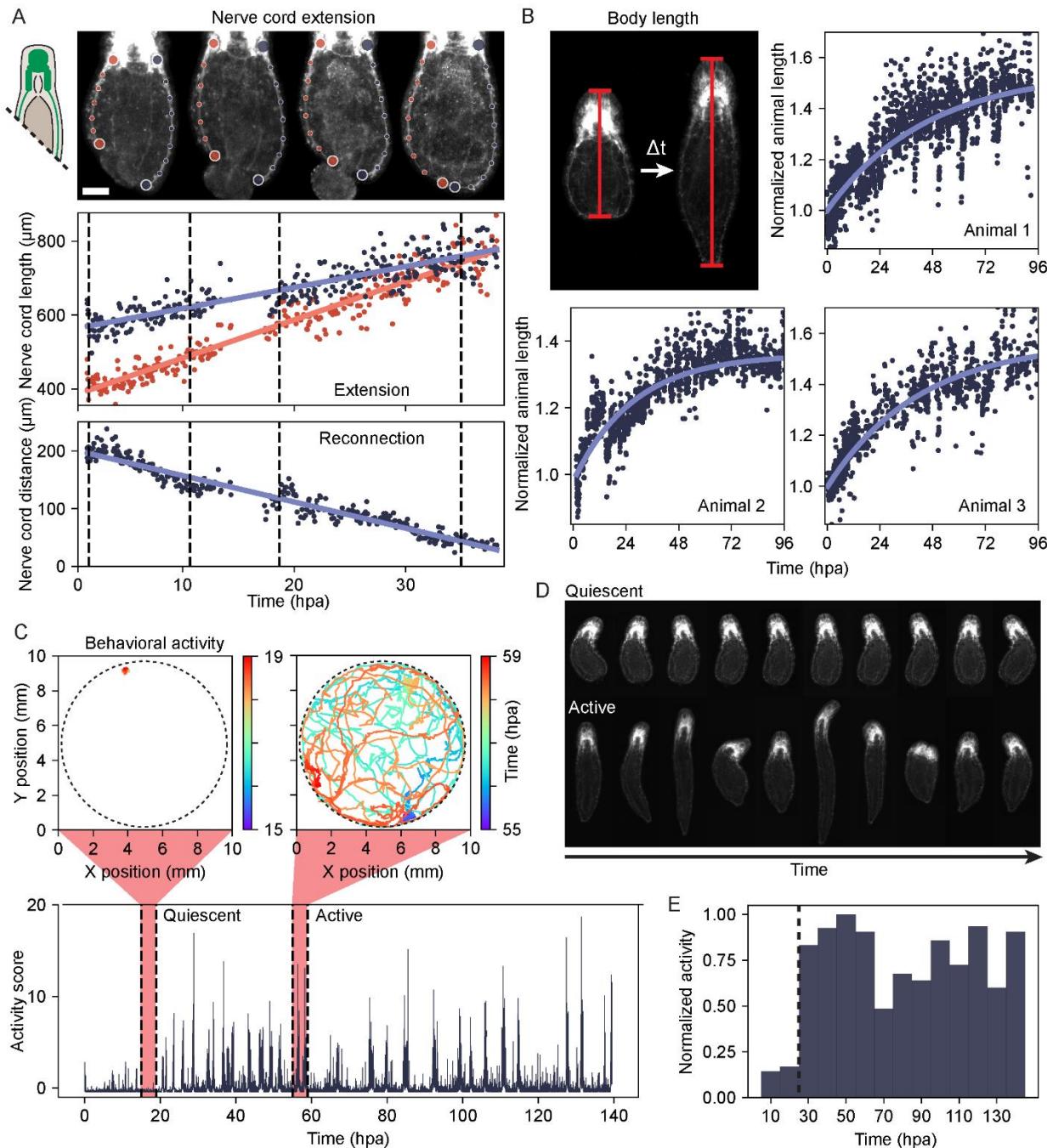

606 **Figure 4: Luminescence imaging tracks neural ablation outcomes**

607 **(A-B)** Time-course fluorescence (A) and luminescence (B) images of PC2 animals after neural
608 ablation.

609 **(C)** Images on the same animal immediately after 6 d MTZ (5mM) treatment (left) and after 7 days
610 of recovery in ASW (middle). The highlighted regions (dashed boxes, i, i*) show little change
611 between the two time points. Further magnified views (dashed boxes, ia, ib, i*a, i*b) show specific
612 cell arrangements that can be mapped between the time points to highlight the lack of change
613 (right).

614 **(D)** Neural ablation prevents wound-healing and subsequent regeneration. Control animals treated
615 with 0.5% DMSO successfully reconnected their nerve cords and healed the epidermis (top) (n =
616 4/4). Animals after neural ablation showed no ventral nerve cords and failed to heal the epidermis
617 by 24 hpa (middle) (n = 6/7). By 48 hpa, epidermal integrity continued to deteriorate, resulting in
618 animals with exposed wounds (bottom) (n=5/8). All ablated and amputated animals (n > 40) lysed
619 by 7 dpa. Arrows: a normally closed epidermis (top), disrupted epidermis (middle), severely
620 disrupted epidermis (bottom).

621 Scale bars: 100 μ m (A-C), 50 μ m (D).



622

623 **Figure 5: Tracking microscope enables continuous imaging of posterior neural regeneration**
624 **in free-moving animals**

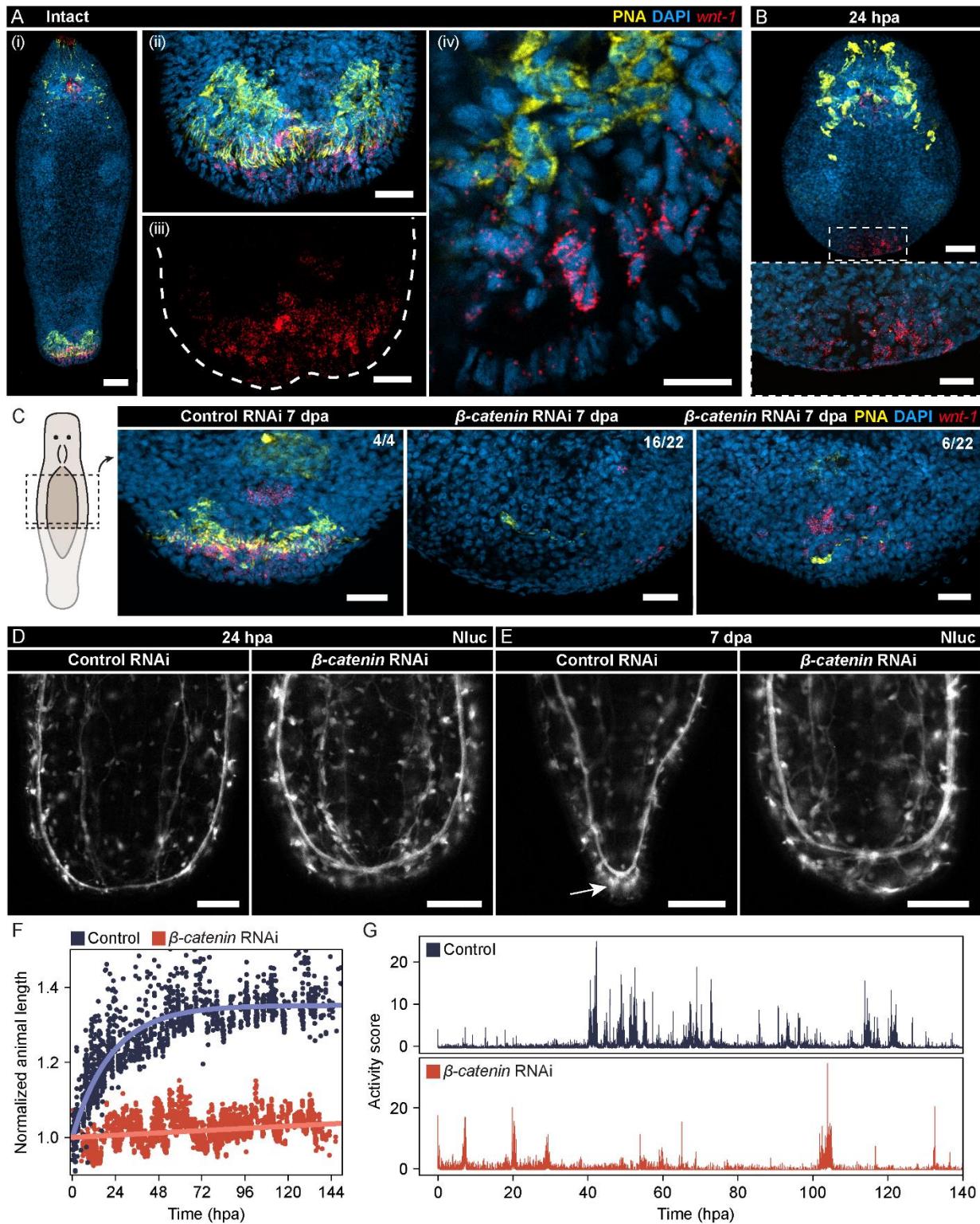
625 (A) A diagram of the tracking microscope (left). An overview of the tracking routine involving
626 infrared (IR) image capture, segmentation, and stage repositioning (right).

627 **(B)** An exploded diagram of the long-term imaging chamber.
628 **(C)** Survival curve of 10 animals placed in individual chambers and maintained at room
629 temperature in the dark. All animals were phenotypically normal and actively moving up to 9 days,
630 after which time half of the animals began limiting their movement and forming mucus cysts. By
631 week three, only one animal had lysed.
632 **(D)** Representative images of neural regeneration from a head fragment taken from a continuous
633 week-long tracking microscopy session. Images are from the region highlighted in the cartoon
634 (dashed box). Scale bar: 100 μ m.
635 **(E)** Cartoon showing the different stages of neural regeneration following a horizontal cut. By 12
636 hpa, the posterior tissue closes; 30 hpa, the ventral nerve cords reconnect; 55 hpa, additional
637 neurons appear in the tail plate, 80 hpa, the tail continue to add new neurons while refining its
638 shape.
639 **(F)** Representative images of neural regeneration from an oblique cut. Arrows: termini of the
640 ventral nerve cords. Scale bar: 100 μ m.
641 **(G)** Cartoon showing regeneration of the nervous system after an oblique cut. The oblique cut
642 introduces an asymmetry evident in the uneven extension of the major nerve cords and offset
643 adhesive organ. In the first 30 hpa, the left nerve cord extends a longer distance than the right,
644 eventually meeting slightly off-center by 40 hpa. By 65 hpa, the tail plate begin to form adjacent
645 the point of nerve cord reconnection, consistent with the anatomical posterior of the animal, and
646 the tail continue to re-center by 80 dpa.

647

648 **Figure 6: Continuous live imaging allows quantification of regeneration progress across**
649 **scales**

650 **(A)** A cartoon of oblique amputation (left). Nerve cord are manually annotated from the lateral
651 ganglia (large upper dots) to the termini of the nerve cords (large lower dots). Scale bar: 50 μm .
652 The length of each nerve cord is plotted over time showing linear extension (middle). The
653 Euclidian distance between the nerve cord termini also decreases linearly (bottom). Dashed lines:
654 the times corresponding to the representative images of the animal shown above.


655 **(B)** An example showing body extension during regeneration (top left). Quantification of body
656 length across 3 animals. The length of the animal is normalized to the starting length, and the

657 data is fit to a curve $y = y_0 - y_1 e^{-kx}$ where y is the length of the animal, y_0 is the final length,
658 $y_0 - y_1$ is the starting length of the animal, k is the time constant, and x is time. Dots: data
659 points. Lines: best fit.

660 **(C)** The activity score of a tracked animal over ~140 hrs. The highlighted regions correspond to a
661 period of quiescence (left) in which the animal remains stationary, and a period of high activity
662 (right) in which the animal explores much of its enclosure. Trajectories of the animal's position
663 over time in each time period are shown above.

664 **(D)** Example images of tracked animals during the quiescent and active periods. Each image is
665 spaced ~20-25 min apart. During times of high activity, the animal is often stretched whereas the
666 animal occasionally bends during the quiescent period.

667 **(E)** The distribution of normalized average activity within 10 hr windows measured from the
668 activity score in panel C. Dotted line: low average activity during the first 30 hpa, followed by an
669 increase in average activity.

670

671 **Figure 7: Multimodal imaging characterizes posterior regeneration defects in β -catenin**
 672 **RNAi animals**

673 (A) Normal homeostatic appearance of the adhesive glands (yellow) and *wnt-1* expression (red) in
 674 the posterior. (i) An overview of the whole animal. (ii) A magnified view showing the *wnt-1*⁺ cells

675 posterior to the adhesive glands. (iii) The same view as (ii) showing just *wnt-1* expression. Dashed
676 line: outline of the tail plate. (iv) *wnt-1*⁺ anchor cells and PNA stained adhesive glands are adjacent
677 to each other in the posterior. Scale bars: 50 μm (i); 20 μm (ii); 20 μm (iii); 10 μm (iv).
678 (B) Normal animals showing *wnt-1* expression at 24 hpa. An overview of the animal (top), with a
679 magnified view of the posterior (bottom) showing no adhesive glands but numerous *wnt-1*⁺ cells.
680 Scale bar: 50 μm (top); 20 μm (bottom).
681 (C) A cartoon of the amputation made (far left). The posteriors of control (left, n = 4/4) showing a
682 regenerated array of adhesive glands and *wnt-1*⁺ anchor cells. In contrast, β -catenin RNAi animals
683 show none (middle, n = 16/22) or few (right, n = 6/22) *wnt-1*⁺ cells and no adhesive glands at 7
684 dpa. Scale bars: 20 μm .
685 (D-E) Luminescence imaging of control (left) and β -catenin RNAi (right) treated PC2 animals. At
686 24 hpa (D), animals in both groups healed the wound and the ventral nerve cords reconnected. At
687 7 dpa (E), control animals regenerated a full tail with neurons innervating the adhesive organ
688 (arrow), β -catenin RNAi animals showed no tail regeneration or adhesive organ neurons radiating
689 from the ventral nerve cord. Scale bars: 100 μm .
690 (F) Normalized body length of control (blue) or β -catenin RNAi animals (red) showing now
691 growth after β -catenin knockdown. Dots: individual data points. Lines: best fit.
692 (G) Activity score of control animals (top) compared to β -catenin RNAi animals (bottom) showing
693 reduced activity and the lack of recovery after β -catenin knockdown.

694

Key Resources Table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Biological samples		
<i>Nitzschia c.f. curvilineata</i>		
Chemicals, peptides, and recombinant proteins		
Artificial Sea Water	Bulk Reef Supply	Cat# 208269
F/2 Media	Bigelow	Cat# MKf250L
EcoRV-HF	NEB	Cat# R3195S
10× T4 DNA Ligase Buffer	NEB	Cat# B0202S
T4 DNA Ligase	NEB	Cat# M0202L
Bsal-HFv2	NEB	Cat# R3733S
2× Phusion Polymerase Master Mix	Thermo Fisher	Cat# F531L
Dithiothreitol (DTT)	Thermo Fisher	Cat# R0861
6H2OxMgCl2	Fisher Scientific	Cat# BP214-500
Methylcellulose	Sigma-Aldrich	Cat# M0512-100G
Fluorofurimazine	Promega	Cat# N4100
Low melting point agarose	GoldBio	Cat# A-204-100
Metronidazole	Sigma-Aldrich	Cat# M1547-5G
16% paraformaldehyde	Fisher Scientific	Cat# 50-980-487
FITC-PNA	Vector Laboratories	Cat# FL-1071-10
DAPI	Sigma-Aldrich	Cat# D9542-1MG
VectaShield Antifade Media	Fisher Scientific	Cat# NC9532821
Recombinant Tol2	Creative BioMart	Cat# Tol2 transposase-12O
Fast Green FCF	Abcam	Cat# ab146267
Dimethyl sulfoxide (DMSO)	Fisher Scientific	Cat# D1391
Ammonium acetate	Sigma-Aldrich	Cat# A7330-100G
10×Phosphate buffered saline (PBS)	Fisher Scientific	Cat# AM9625
Tween-20	Sigma-Aldrich	Cat# 11332465001
Nonidet P 40 substitute (NP-40)	Sigma-Aldrich	Cat# 74385
Sodium citrate	Thermo Fisher	Cat# S279-500
Critical commercial assays		
Zymo Gel Extraction Kit	Zymo	Cat# D4008
2× Gibson Assembly Master Mix	NEB	Cat# E2611S
Molecular Instruments HCR RNA-FISH Kit	Molecular Instruments	N/A
Experimental models: Organisms/strains		
<i>Macrostomum lignano</i>	Eugene Berezikov	NL-12
<i>Macrostomum lignano</i>	This paper	SU2
<i>Macrostomum lignano</i>	This paper	SU5
<i>Macrostomum lignano</i>	This paper	SU6
<i>Macrostomum lignano</i>	This paper	SU7
Oligonucleotides		
Primers used in this study	This paper	See Table S1
Recombinant DNA		
Plasmids used in this study	This paper	See Table S1
pT2/HE	Perry Hackett	Addgene #26557
pDEST_R4_R3	Thermo Fisher	N/A

pDONOR221	Thermo Fisher	Cat# 12536017
pJC53.2	(Collins et al., 2010)	Addgene #26536
Software and algorithms		
Fiji	(Schindelin et al., 2012)	http://fiji.sc/
Scikit-image	(Van Der Walt et al., 2014)	https://scikit-image.org/
OpenCV2	N/A	https://opencv.org/
Zen 2	Zeiss	
Other		
Tracking microscope	This paper	See Table S2
Luminescence microscope	This paper	See Table S2
18x18 mm Coverslips	Fisher Scientific	Cat# 12-541AP
60x24 mm Coverslips	Fisher Scientific	Cat# 12-545-MP
Zeiss Primovert	Zeiss	Cat# 491206-0006-000
Sutter XenoWorks Microinjector	Sutter	Cat# BRE
Sutter 3-axis micromanipulator	Sutter	Cat# MPC-200
Sutter 3-axis micromanipulator controller	Sutter	Cat# ROE-200
3-axis manual stage	Newport	Cat# 9067-XYZ-R-V-M
Borosilicate glass capillary (with filament)	MPI	Cat# 1B100F-3
Borosilicate glass capillary (thin walled)	MPI	Cat# TW100-3
Sutter P97 needle puller	Sutter	Cat# P-97
Narishige MicroForge	Narishige	Cat# MF-900
Eppendorf PiezoXpert	Eppendorf	Cat# 5194000024
Zeiss LSM800	Zeiss	N/A
3 mm Imaging spacers	SunJin Lab	Cat# S013
Cryolabels	Fisher Scientific	Cat# 03-391-102

695

696 Resource availability

697 Lead contact

698 Further information and requests for resources and reagents should be directed toward and will be
699 fulfilled by the lead contact, Bo Wang (wangbo@stanford.edu).

700

701 Materials availability

702 Plasmids used in this study are available upon request and have been deposited to Addgene (#IDs).

703 Fluorescent/luminescent strains generated are available upon request.

704

705 Data and code availability

706 Imaging and tracking data reported in this paper will be shared by the lead contact upon request.

707 This paper does not report any original code.

708

709 **Experimental model and subject details**

710 **Animal care and maintenance**

711 *M. lignano* strain NL-12 (Wudarski et al., 2020) and derived strains were maintained at 20°C and
712 60% humidity with a 14/10 day/night cycle in ASW (Bulk Reef Supply, Cat# 208269) with a
713 specific gravity of 0.026. The diatom *Nitzschia c.f. curvilineata* was seeded in 150 mm glass dishes
714 and grown in F/2 media (Bigelow, Cat# MKf250L). When confluent and ready for feeding to
715 animals, the F/2 media was poured off and replaced with fresh ASW into which animals were
716 transferred. Feeding was performed once a week. To maintain cultures suitable for egg preparation,
717 age synchronized cultures were collected by removing adults from a plate after feeding and
718 allowing the eggs to hatch. The juveniles from multiple plates were pooled and used to seed a fresh
719 plate of age synchronized animals.

720 **Method Details**

721 **Cloning**

722 All primers and oligos used are referred to in **Table S1**, and all parts and constructs have been
723 included in **File S1**. Parts (promoters, genes, terminators) were assembled by PCR amplification
724 of the desired sequence with overhangs including Gibson assembly homology arms and BsaI
725 restriction sites. The sequences are listed in **Table S1**

726

727 GeNL (Suzuki et al., 2016) and NTR2.0 (Sharrock et al., 2022) were codon optimized using
728 <https://www.macgenome.org/codons/> without introns and synthesized by Twist Bioscience.
729 GeNL-P2A-NTR2.0 was assembled by Gibson assembly. Promoters from *enolase* and *pc2* were
730 amplified from genomic DNA. mScarlet as well as promoters from *eef1a*, *apob*, and *myh6* were
731 amplified from plasmids described in (Wudarski et al., 2017).

732

733 pEmpty was linearized with EcoRV-HF (NEB, Cat# R3195S), run on a 1% agarose gel, and
734 extracted using the Zymo Gel Extraction kit (Zymo, Cat# D4008). Gibson assembly was
735 performed by combining a part amplicon and linearized pEmpty in a 2:1 mass ratio in 2× NEB
736 Gibson Assembly Master Mix (NEB, Cat# E2611S) and incubating at 50°C for 2 hr before

737 transformation. Clones were sequenced using M13 Forward (5'-GTAAAACGACGGCCAGT-3')
738 or M13 Reverse (5'-CAGGAAACAGCTATGAC-3') primers.

739

740 Unique sequence (UNS) oligos were annealed by combining sense and antisense oligos at 5 μ M
741 in duplex buffer (IDT, Cat# 11-05-01-12), incubated at 94 °C for 2 min, and cooled slowly at a rate
742 of 1 °C/min. The duplexed oligos were then diluted to 50 nM in H₂O.

743

744 Parts were assembled into TUs via Golden Gate assembly. 0.5 μ L of each part (promoter, gene,
745 and terminator, 30 nM), 0.5 μ L of 5' and 3' UNS oligos each (50 nM) corresponding to their
746 position in the final plasmid, 0.5 μ L of 10 \times T4 DNA Ligase Buffer (NEB, Cat# B0202S), 0.25 μ L
747 of T4 DNA Ligase (NEB, Cat# M0202L), and 0.25 μ L of BsaI-HFv2 (NEB, Cat# R3733S), were
748 mixed to a final volume of 10 μ L in nuclease free water. The samples were cycled with the
749 following program: [37 °C for 3 min, 16°C for 4 min] \times 12, 50°C for 5 min, hold at 4°C.

750

751 For example, a single TU vector would require only UNS1A and UNS10D oligos in the prior
752 Golden Gate reaction and would be amplified using UNS1F and UNS10R primers. Alternatively,
753 dual TU vectors would require the first TU use UNS1A and UNS3D oligos, while the second
754 would require UNS3A and UNS10D oligos, and would be amplified by UNS1F/UNS3R, and
755 UNS3F/UNS10R primers, respectively.

756

757 Assembled TUs were amplified by PCR from the prior Golden Gate reaction products. 2 μ L of
758 Golden Gate reaction were added to 25 μ L of 2 \times Phusion Polymerase Master Mix (ThermoFisher,
759 Cat# F531L), mixed with 18 μ L of H₂O, and 3 μ L of 10 μ M forward and reverse primers
760 corresponding to the terminal UNS sequences used for that TU. The samples were cycled with the
761 following program: 98°C for 30 sec, [98°C for 30 sec, 60°C for 30 sec, 72°C for 30 sec per kb] \times
762 35-40, 72°C for 5 min, hold at 4°C. The resulting product was run on a 1% agarose gel and the
763 band corresponding to the TU was extracted using the Zymo Gel Extraction kit and eluted in 11
764 μ L of H₂O.

765

766 pDest and pTol2Dest were constructed by performing primer extension PCR and Gibson assembly
767 to insert an EcoRV-HF restriction site between a 5' UNS1A and 3' UNS10D sequences. pDest was

768 constructed by amplification of pDEST_R4-R3 (Invitrogen) with primers BW-NH-710 and BW-
769 NH-711 while pTol2Dest was constructed by amplification of pT2/HE (Addgene Plasmid ID:
770 26557) with BW-NH-792 and BW-NH-793. The backbone amplicons were then self-ligated using
771 Gibson assembly. Unlike pDest, pTol2Dest contains terminal repeats for integration via Tol2
772 transposase.

773

774 TUs were assembled into the destination vectors, pDest or pTol2Dest, via Gibson assembly.
775 Destination vectors were linearized using EcoRV-HF, run on a 1% agarose gel, and extracted using
776 the Zymo Gel Extraction kit. Gibson assembly was performed combining TUs and linearized
777 destination vector in a 2:1 mass ratio in 2× NEB Gibson Assembly Master Mix. The samples were
778 incubated at 50°C for 2 hr before transformation.

779

780 Egg preparation

781 To prepare fertilized eggs for microinjection, ~200-300 individual gravid animals (evident by a
782 large, well-developed oocyte present in their posterior) from age-synchronized populations at ~4-
783 7 days post feeding were collected into two separate 60 mm dishes filled with ASW. Every hour,
784 freshly laid eggs were transferred using an eyelash pick and transferred to the up-side down lid of
785 a 100 mm polystyrene petri dish, which was cooled to 4 °C to halt the development at 1-cell stage.
786 Once ~100-150 eggs were lined up on the lid, the eggs were washed in 30 mM DTT in ASW for
787 5-10 min, swirling the plate occasionally. The eggs were then washed three times with ASW before
788 microinjection.

789

790 Microinjection

791 Eggs were injected on a Zeiss Primovert (Zeiss, Cat# 491206-0006-000) inverted
792 stereomicroscope equipped with a Sutter XenoWorks electronic micromanipulator (Sutter, Cat#
793 MPC-200), controller (Sutter, Cat# ROE-200) and pressure source (Sutter, Cat# BRE). A manual
794 3-axis stage was used to manipulate the holding pipette (Newport, Cat# 9067-XYZ-R-V-M).
795 Needles were pulled from borosilicate glass capillaries (MPI, Cat# 1B100F-3) on a Sutter P97
796 needle puller using a 3-step pulling protocol (1. Heat = 754, Pull = 90, Velocity = 8, Time = 250;
797 2. Same as 1. 3. Heat = 754, Pull = 85, Velocity = 8, Time = 250). A 20-degree bend at the tip of
798 the needle was introduced using a Narishige MicroForge (Narishige, Cat# MF-900). Holding

799 pipettes were pulled from borosilicate glass capillaries (MPI, Cat# TW100-3) (Heat = 738, Pull =
800 None, Velocity = 150, Time = None) and cut, flame polished, and bent to a 30-degree angle.

801
802 Injection mix was prepared by adding 1 μ L of recombinant Tol2 transposase (rTol2, Creative
803 BioMart) and 0.5 μ L of Fast Green FCF (Abcam, Cat# ab146267) followed by plasmid DNA and
804 rTol2 storage buffer (10 mM HEPES, 300 mM KCl, pH 6.9) to a final plasmid concentration of 50
805 ng/ μ L. Injection in the absence of rTol2, however, yielded similar transformation efficiencies. The
806 solution was mixed and centrifuged for 1 min to pellet any small particles that may clog the needle.
807 Injection mix was then loaded by back filling the needle. Injections were performed using an initial
808 pressure of 1,000 hPa and back-pressure of +100 hPa, which was adjusted depending upon the
809 flow of the needle. Without applying negative pressure, the holding pipette was placed behind the
810 egg as a backstop. A PiezoXpert (Eppendorf, Cat# 5194000024) was used to assist in penetrating
811 the oocyte's membrane with settings "Int = 86, Speed = 10, Pulse". Mix was ejected until a visible
812 bolus of fluid became visible within the oocyte.

813
814 **Amputations**
815 Animals were anesthetized in 7.14% 6H₂O \times MgCl₂ (Fisher, Cat# BP214-500) for 5 min and then
816 amputated using a stainless-steel scalpel. Fragments were transferred to ASW to recover. Once
817 mobile, fragments were transferred to chambers with fresh ASW for downstream analyses.

818
819 **Luminescence/fluorescence microscope**
820 A thermoelectrically cooled camera using the Sony IMX571 sensor (ToupTek Cat#
821 ITR3CMOS26000KMA) was chosen for its high quantum efficiency (91%), low read noise
822 (<1.5e- at 12 dB gain), and low dark current. To increase photon capture efficiency, a 10 MP, f =
823 50 mm imaging lens was used as a tube lens to provide demagnification (enabling the use of higher
824 NA objectives). The light tight enclosure was constructed from opaque black acrylic, laser cut, and
825 assembled into a box with electrical tape to prevent light bleeding through the seams (**Figure S4A**).
826 Existing and new Squid components were designed for optomechanical integration, with CAD
827 files available at <https://squid-imaging.org>.

828

829 **Tracking microscope**

830 Components comprising the microscope were constructed from modules described in (Li et al.,
831 2020) and <https://squid-imaging.org>. Animals were illuminated with an IR LED light source at 850
832 nm. IR images for tracking were acquired at ~6 Hz using a monochrome camera (Daheng Imaging,
833 Cat# MER-1220-32U3M) at 10× magnification (BoliOptics, Cat# 03033331). Images were
834 binarized by user-input threshold in the GUI. The binarized images were eroded and dilated to
835 remove noise and fill gaps. OpenCV was used to calculate the centroid of the largest contiguous
836 region. Centroid tracking was performed using a nearest neighbor approach in which the animal's
837 centroid in the subsequent frame was determined within a search radius centered on the animal's
838 previous centroid location. The displacement of the centroid was converted into x-y stage
839 movements using a proportional-integral-derivative (PID) controller, implemented on an Arduino
840 Due microcontroller. The stage position was then adjusted by a stepper motor with optical encoder
841 to precisely maintain the centroid (and animal) in the center of the FOV. Code for tracking was
842 adapted from <https://github.com/prakashlab/squid-tracking>.

843

844 While tracking, fluorescence images were acquired every 50 s. Fiber-coupled 405/488/561/638
845 nm lasers were despeckled through a Molex despeckler and used as excitation. A quad-bandpass
846 dichroic filter set (405/488/561/640) was used to split the emission light (**Figure S4B**). Image
847 acquisition software can be found at <https://github.com/hongquanli/octopi-research>.

848

849 **Live luminescence and fluorescence confocal imaging**

850 Animals were first anesthetized in 7.14% 6H₂O×MgCl₂ and 2% methylcellulose (Sigma, Cat#
851 M0512-100G) in deionized water and then transferred to a coverslip slide in a 20 μL droplet. For
852 luminescence imaging, 0.5 μL of 8.7 mM Fluorofurimazine (FFz) (Promega, Cat# N4100) in PBS
853 was added to the droplet and mixed thoroughly. The corners of a coverslip were then scraped across
854 clay to make four small clay 'feet' and gently placed over the droplet. Using forceps, corners of
855 the coverslip were pressed down to firmly restrict the animal in place. If the animal continued to
856 move, a paper towel was used to wick away excess water from the underside of the slide to decrease
857 the distance between the coverslip and the slide. The slide was then imaged on the luminescence
858 microscope using an Olympus 20× objective (NA=0.75) with an exposure time varying between
859 10 and 60 s. For confocal imaging, slides were prepared as above, skipping the FFz step. Imaging

860 was performed on a Zeiss LSM800 AxioObserver using a 40 \times water-immersion objective
861 (NA=1.1). After short imaging sessions (~10-20 min), animals may be recovered by adding a
862 droplet of ASW to the corner of the coverslip and gently lifting it with a razor blade.

863

864 Preparation of long-term imaging chambers

865 Animals were starved for 48 hr to reduce gut autofluorescence. Imaging chambers were produced
866 by gluing a 3 mm imaging spacer (SunJin Lab, Cat# S013) to a glass slide and sticking 1-2 stacked
867 circular cryolabels (Fisher Scientific, Cat# 03-391-102) in the center of the spacer. ~2 mL of 2%
868 low melting-point agarose (GoldBio, Cat# A-204-100) in ASW was pipetted into the imaging
869 spacer until it completely fills the chamber. A second slide was pressed flat over the agarose
870 carefully not to trap any bubbles. The agarose block was solidified in the fridge. A scalpel was
871 used to separate the agarose block from the sides of the imaging spacer, and the block was placed
872 upside down on a slide. A single animal was placed in 1-2% methylcellulose in ASW and then
873 pipetted onto the depression in the agarose made by the cryolabels. A second slide with a 3 mm
874 imaging spacer (without cryolabels) was then slowly lowered upside down onto the agarose block
875 without generating any bubbles or removing the animal. Once placed, the whole assembly was
876 flipped back right side up to remove the top glass slide. Finally, vacuum grease was applied to the
877 top of the imaging spacer and a coverslip was placed over the top to seal the contents within the
878 imaging spacer.

879

880 Chemical ablation

881 MTZ (Sigma-Aldrich, Cat# M1547-5G) was dissolved in DMSO to a stock concentration of 1 M.
882 Animals starved for 2 d and placed in 3 mL of ASW containing either 0.5 mM (gut ablation) or 5
883 mM MTZ (neural and muscle ablation). The ASW-MTZ mixture was pipetted up and down until
884 there were no visible crystals of MTZ remaining. Controls contained an equivalent percentage of
885 DMSO. ASW and MTZ was replaced every other day for the duration of ablation.

886

887 RNAi

888 Primers (**Table S1**) were used to amplify a ~500 bp region of β -catenin and TA-cloned into
889 pJC53.2 (Addgene Plasmid ID: 26536) (Collins et al., 2010). Linear templates flanked by T7
890 promoters were generated using PCR. *In vitro* RNA synthesis was performed using T7 polymerase,

891 RNA was precipitated using ammonium acetate (NH₄Ac, 10 M) and ethanol, denatured, then re-
892 annealed. Control RNAi was derived from the ccdB insert of the unmodified pJC53.2 plasmid.

893

894 RNAi was performed by soaking. Animals were starved overnight to eliminate diatoms from their
895 gut. In a 24-well plate, ~15-20 animals were placed in 1 mL of ASW containing 2 µg of dsRNA.
896 The ASW and dsRNA mixture was replaced every other day for 3 weeks until amputation.

897

898 [Fixation](#)

899 Animals were starved overnight in fresh ASW. Before fixation, animals were washed twice with
900 ASW for 5 min each. ASW was then replaced with 2 mL of 7.14% 6H₂O×MgCl₂ for 5 min to relax
901 the animals. 500 µL of the MgCl₂ solution was removed and 500 µL of 16% paraformaldehyde
902 (PFA) (Fisher Scientific, Cat# 50-980-487) was added to a final concentration of 4% PFA. After
903 15 min of fixation, 100 µL of 10% NP-40 was added. After 45 min of fixation, the fixative was
904 replaced with PBS containing 0.1% Tween-20 (PBSTw). Animals were then washed twice with
905 PBSTw for 5 min each, then dehydrated by incubating for 5 min in increasing concentrations of
906 methanol (25%, 50%, 75%, 100%), which can be stored at -20°C.

907

908 [Hybridization chain reaction](#)

909 Fixed animals in methanol were rehydrated by 5 min incubations in increasing concentrations of
910 PBSTw (25%, 50%, 75%, 100%). Animals were incubated in a 1:1 volume ratio of PBSTw to
911 probe hybridization buffer (Molecular Instruments) for 10 min at room temperature (RT). The
912 solution was then replaced with pre-hybridization solution (Molecular Instruments) for 1 hr at 37
913 °C. The pre-hybridization solution was then replaced with probe solution (4 pmol of probe mixture
914 for every 500 µL of probe hybridization buffer). Probes targeting *wnt-1* were designed using
915 https://github.com/rwnull/insitu_probe_generator and ordered from IDT. Probe sequences are
916 included in **Table S1**.

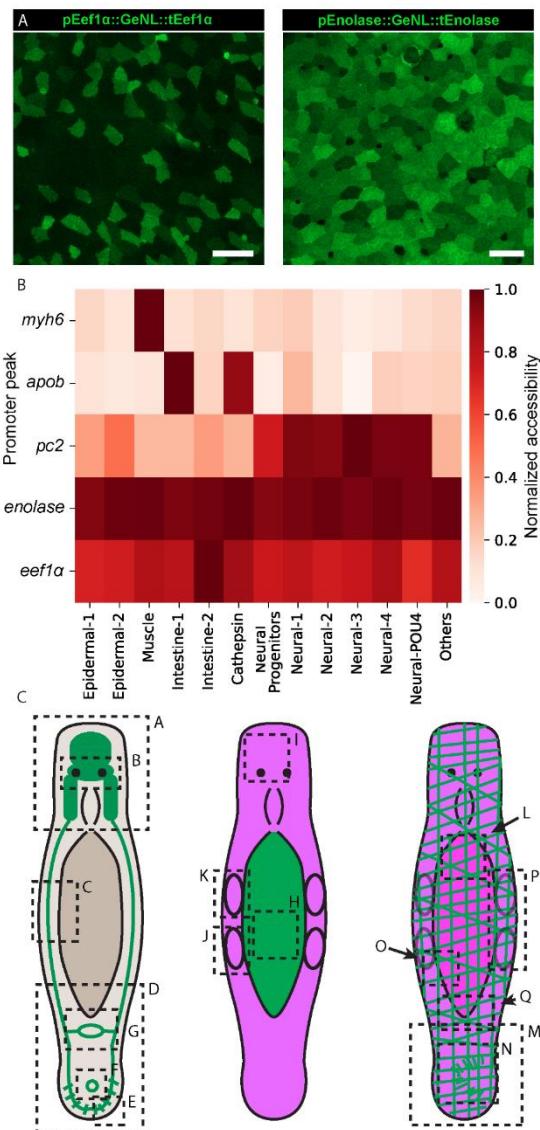
917

918 Samples were incubated overnight (~20 hr) at 37°C. Probe solution was removed, and the samples
919 were washed 4 times with 500 µL of probe wash buffer (Molecular Instruments), pre-heated to 37
920 °C, for 20 min each at 37 °C, and then washed twice for 5 min each with 5× SSC supplemented
921 with 0.1% Tween-20 (5× SSCT). Pre-amplification was performed by incubating samples with

922 500 μ L amplification buffer (Molecular Instruments) for 30 min at RT. 30 pmol of hairpin H1 and
923 30 pmol of hairpin H2 in 10 μ L of 3 μ M stock solutions were snap cooled (heated to 95°C for 90
924 sec and cooled to RT in a dark drawer for 30 min) separately for every 500 μ L of amplification
925 buffer. Snap cooled hairpins H1 and H2 (10 μ L each) were added to a tube of 500 μ L amplification
926 buffer. Amplification buffer was removed from the samples and replaced with the hairpin-
927 containing amplification buffer and incubated overnight (~12-16 hr) in the dark at RT. On the
928 following day, excess hairpins were removed by washing the samples with 500 μ L of 5 \times SSCT at
929 RT (2 \times for 5 min, 2 \times for 30 min, and finally once for 5 min). The samples were transferred to
930 PBSTw by incubating in increasing concentrations of PBSTw in 5 \times SSCT (25%, 50%, 75%, 100%)
931 for 5 min each. For visualizing the adhesive organs, samples were incubated in 1:200 FITC-PNA
932 (Vector Laboratories, Cat# FL-1071-10) and 1:5000 DAPI (10 mg/mL, Sigma-Aldrich, Cat#
933 D9542-1MG) for 30 min. Samples were washed 2 \times with PBSTw for 5 min each and mounted in
934 VectaShield Antifade (Fisher Scientific, Cat# NC9532821) mounting solution and stored at 4 °C.
935

936 Quantification and Statistical Analysis

937 Image processing

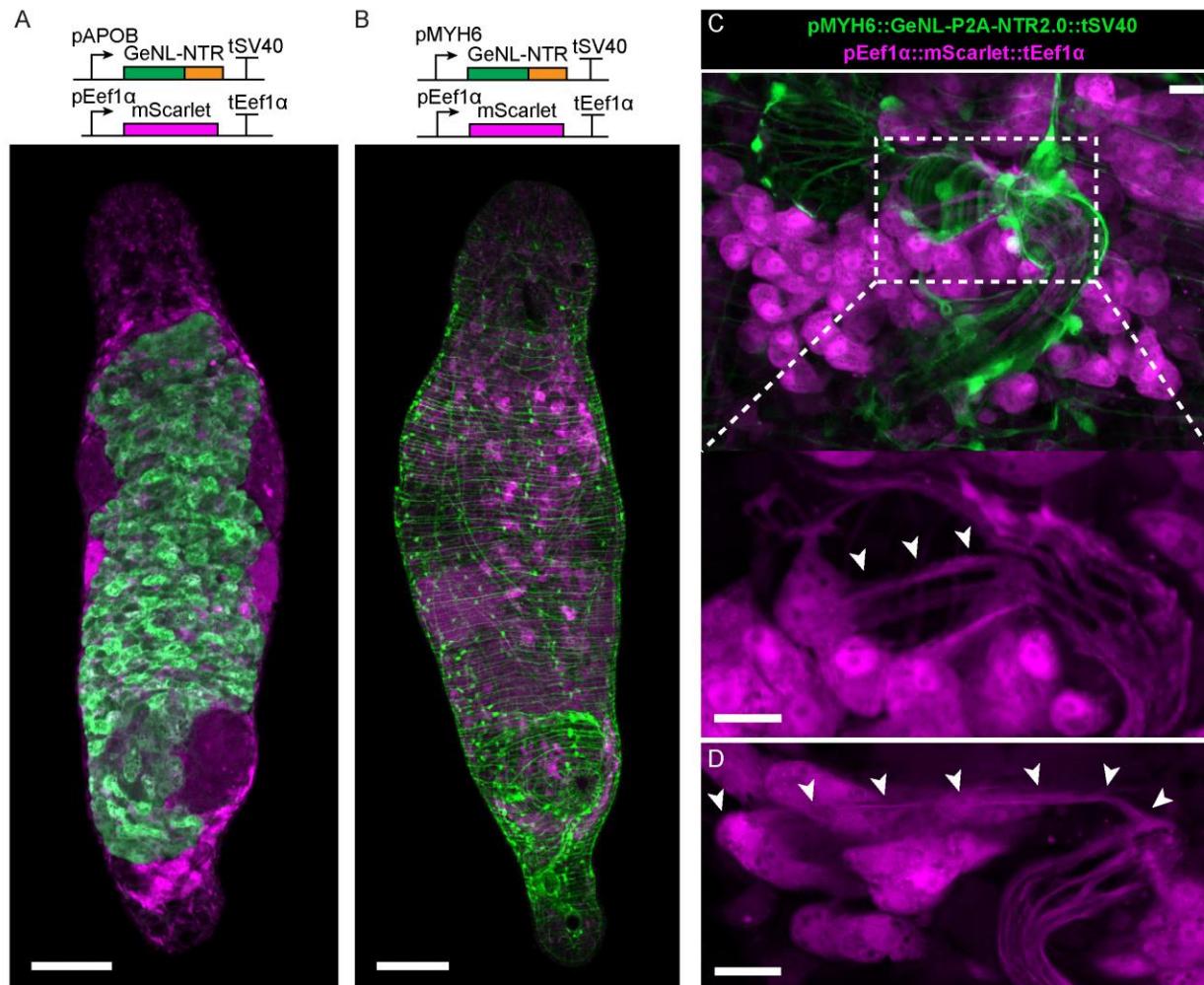

938 Confocal images were processed in the Zeiss Zen 2 software. Confocal stacks were aligned using
939 the z-stack alignment tool. Dual-color images were spectrally de-mixed. Epifluorescence and
940 luminescence images were processed using ImageJ v1.53k.

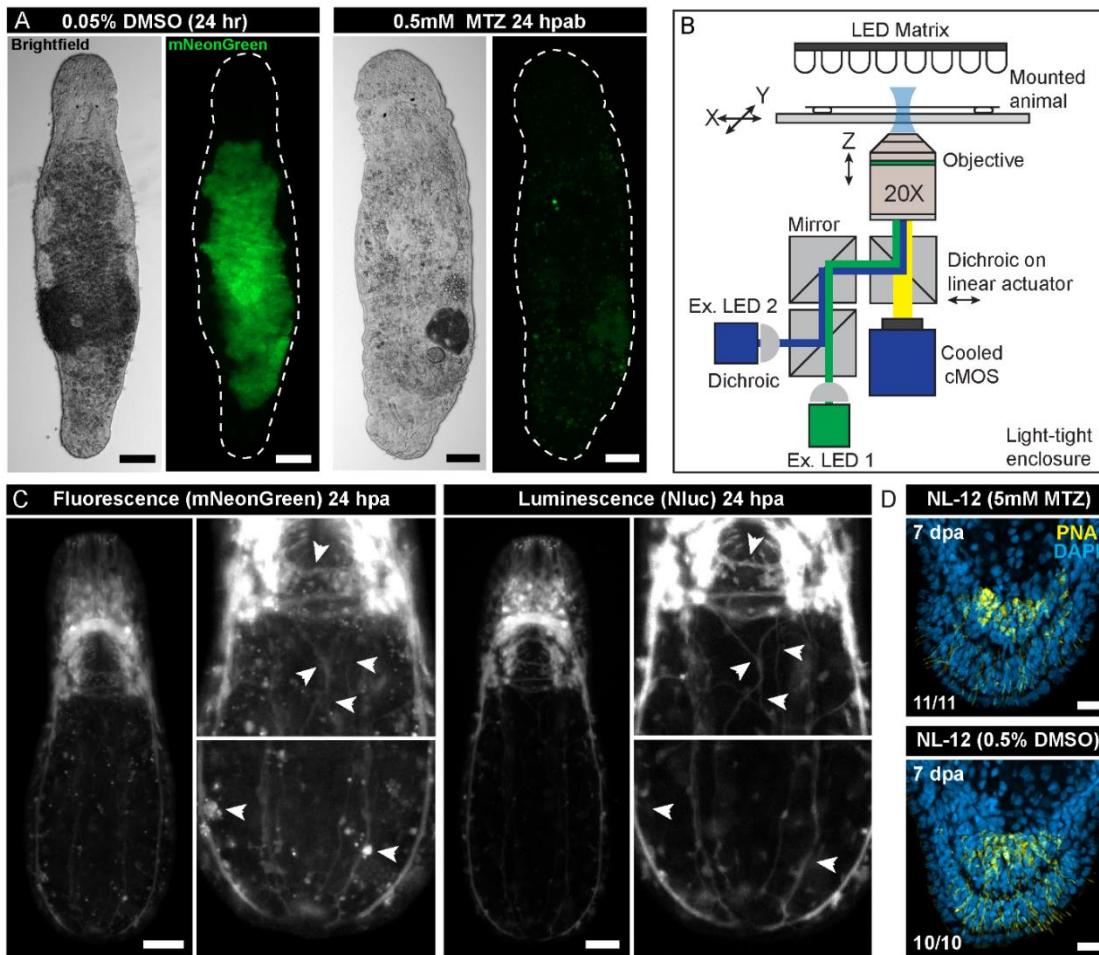
941

942 Tracking microscope image processing

943 Raw images were processed using Python 3.8, Scikit-Image and OpenCV2. Images were first
944 binarized by gaussian thresholding. An ellipse was fitted to the resulting segmented shape and the
945 image was rotated to align the major axis of the ellipse vertically. The image was then rotated
946 another 180° if the animal was detected with the anterior facing downward. Images were then
947 cropped based on a common bounding box which encompassed the animal across all frames of the
948 video. Nerve cords were manually annotated using a custom GUI for loading images and selecting
949 anatomical landmarks. The body length of the animal was determined by the longest projection
950 among the radially projecting rays every 5° from the centroid of the animal. Activity scores were
951 calculated by denoising the instantaneous velocity, using a Morlet wavelet transformation and
952 summing scales 1-31 (Bray et al., 2023). The activity scores are baseline subtracted.

953 **Supplemental Figures**


954

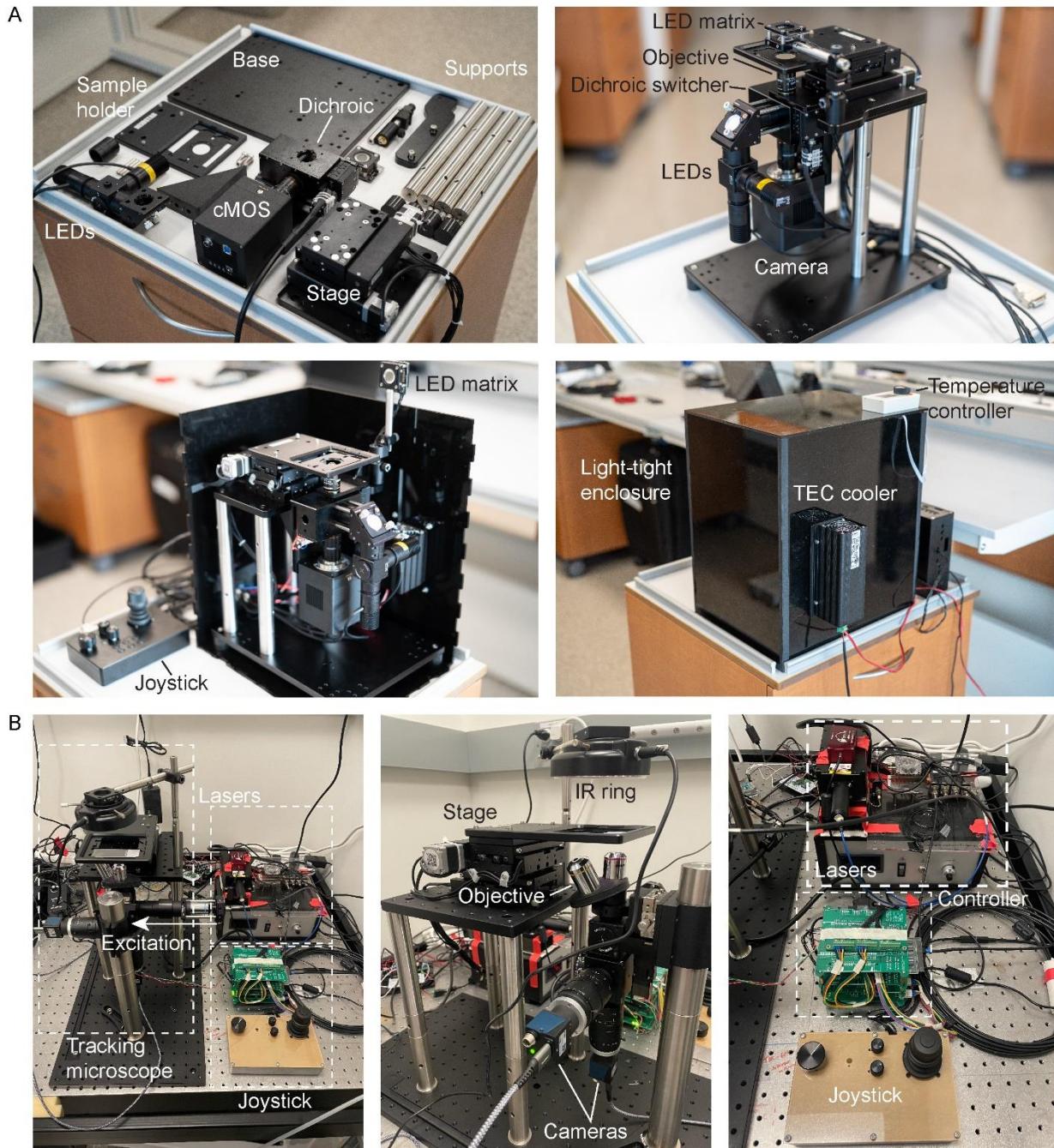

955 **Figure S1: Reporter expression is consistent with single-cell gene expression analyses.**
956 **Related to Figure 1 and 2**

957 (A) Confocal images of live, anesthetized animals showing transgene expression in the epidermis.
958 Expression is more stochastic when the reporter is driven by the *Eef1 α* promoter (left) than the
959 *Enolase* promoter (right). Green: mNeonGreen. Scale bars: 20 μ m.

960 (B) Single-cell ATAC-seq promoter peak accessibility for each promoter used in this study. The
961 data is from (Chai et al., 2024). Briefly, *myh6* accessibility is specific to muscles; *apob* is accessible
962 in a subpopulation of intestinal cells (intestine 1) and a subset of the *cathepsin* $^+$ phagocytic cells;
963 *pc2* promoter is accessible in neural progenitors and all neural clusters; *enolase* shows uniform
964 accessibility across all tissues, and *eef1 α* has broad accessibility, with uniquely high expression in
965 the intestine 2 cluster.

966 (C) Diagrams of the three transgenic strains (PC2, APOB, MYH6). Dotted boxes correspond the
967 region imaged in **Figure 2** and its matching panel lettering (**Figure 2A-Q**).

978


979 **Figure S3: Fluorescence and luminescence characterization of the ablation strains. Related**
980 **to Figure 4**

981 (A) Gut ablation during homeostasis. Animals treated with DMSO (0.05%) show bright reporter
982 signal in their gut after 24 hr of incubation (left). In contrast, animals incubated in MTZ (0.5 mM)
983 showed no detectable gut fluorescence after 24 hr of treatment, suggesting efficient ablation
984 (right). Scale bars: 100 μ m.

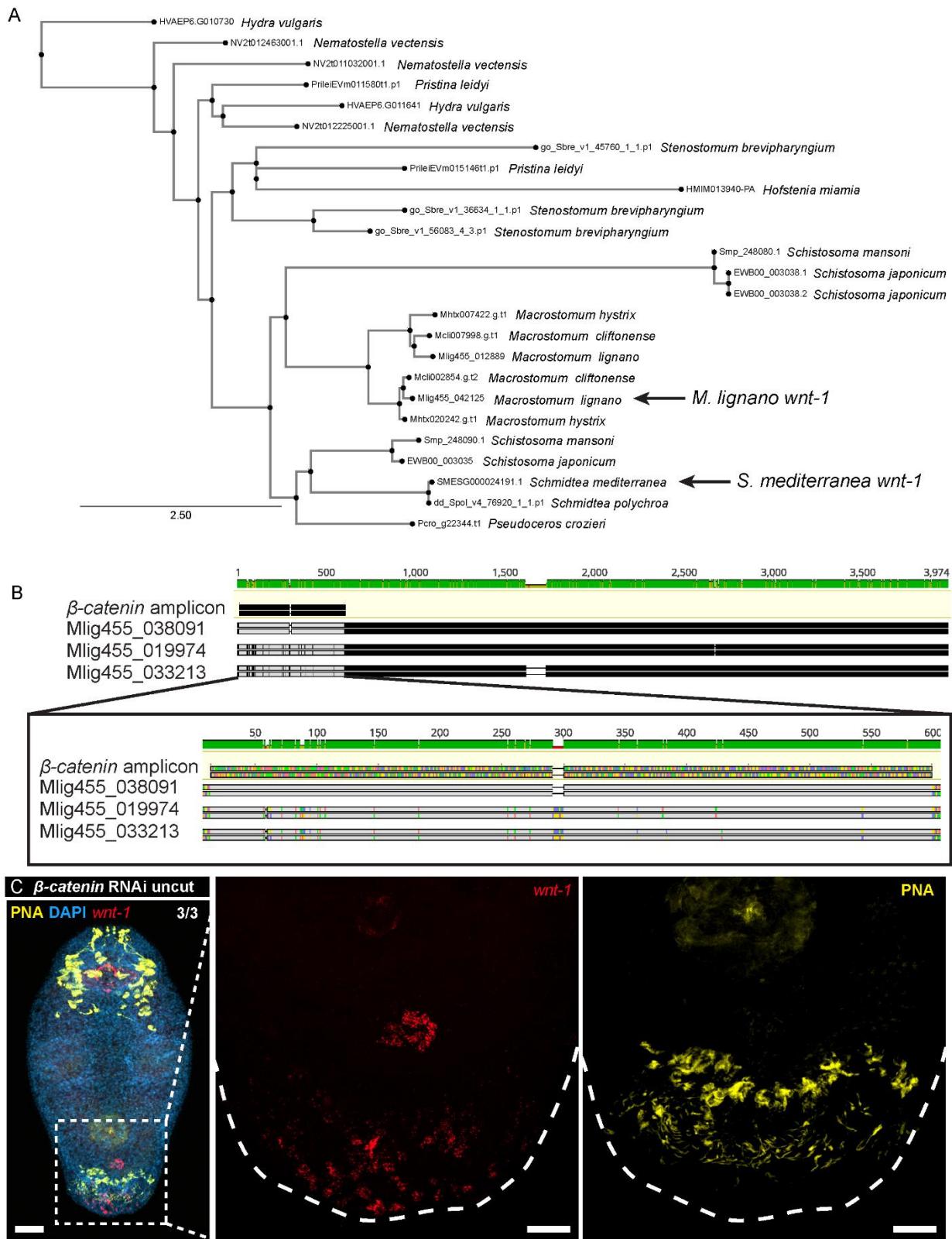
985 (B) Schematic showing the luminescence microscope design. Briefly, the animal is illuminated by
986 an LED array for brightfield imaging. Two LEDs provide excitation at 375 nm, and 470 nm,
987 respectively. A dichroic filter cube sits on a linear actuator controlling the filter switch. A cooled
988 CMOS sensor detects both luminescence and fluorescence signal. The entire microscope is
989 enclosed in a light-tight, temperature-controlled chamber. The motorized stage is controlled from
990 a joystick and computer outside of the enclosure. All parts are listed in **Table S2**.

991 (C) A comparison of fluorescence (left) and luminescence (right) images on the same animal 24
992 hpa. The magnified views show the anterior and posterior regions. Arrows: features for
993 comparisons between fluorescence and luminescence images. Luminescence provides higher
994 contrast of neural processes (top right) and eliminates autofluorescent puncta (bottom right). Scale
995 bar: 50 μ m.

996 (D) Confocal images of wild-type (NL-12) animals treated for 6 d with MTZ (5 mM) (n = 11/11)
997 or DMSO (0.5%) (n = 10/10) show no defects in posterior regeneration at 7 dpa while recovering
998 in ASW, evidenced by the presence of PNA stained adhesive glands (yellow). Scale bar: 10 μ m.


999

1000 **Figure S4: The luminescence/fluorescence and tracking microscopes. Related to Methods**

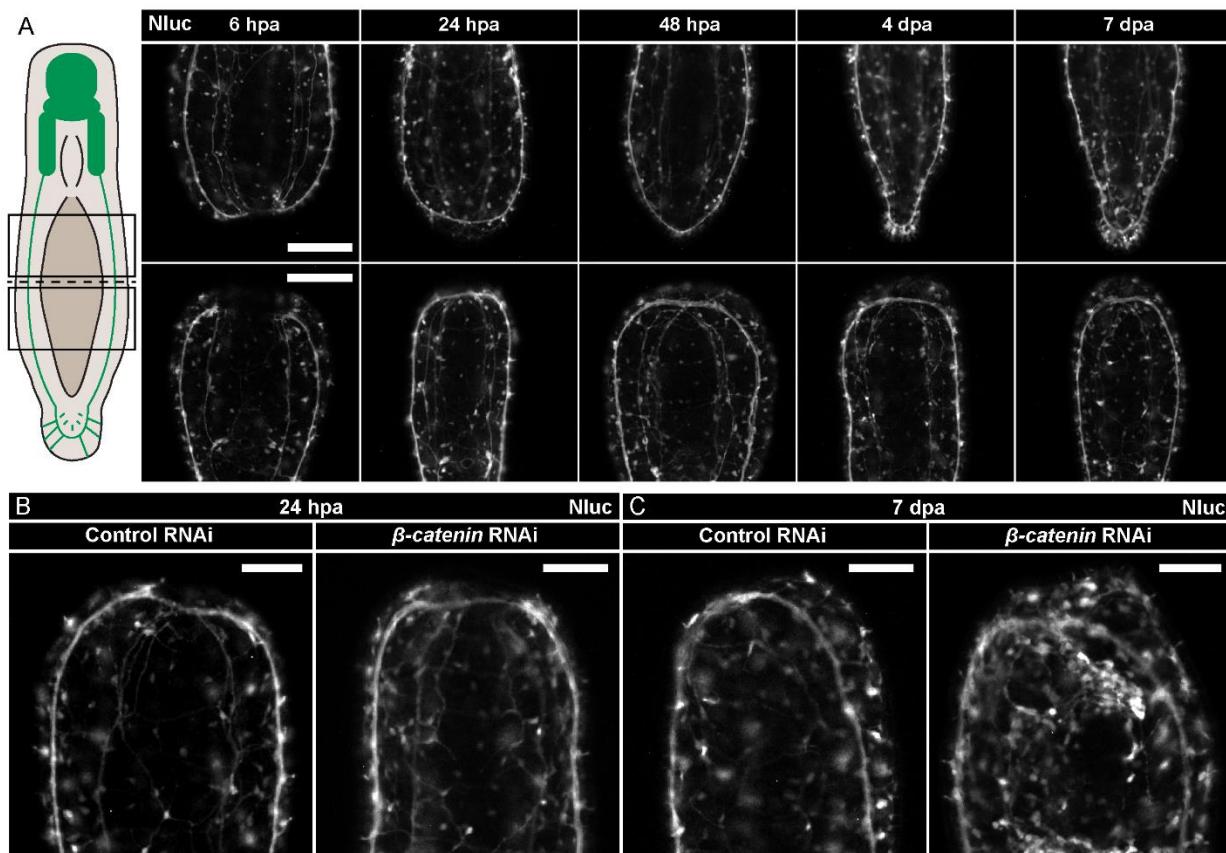

1001 (A) The components required to construct the luminescence microscope laid out (top left). The
1002 assembled microscope outside of its light-tight enclosure (top right). The microscope is situated
1003 within the light-tight enclosure (bottom left). The microscope is fully enclosed, showing the
1004 temperature controller incorporated into the enclosure (bottom right). Relevant components are
1005 labeled.

1006 (B) The tracking microscope consists of the body of the microscope, fiber coupled lasers and driver
1007 providing excitation light from the right, and joystick and stage controller (left). A ring of IR LEDs
1008 (850 nm) illuminates the sample from above. IR and fluorescence light is sent to separate cameras

1009 (middle). The microscope can be controlled manually with a joystick and through software while
1010 tracking (right).

1011
1012 **Figure S5: Additional characterization of nerve cord closure. Related to Figure 5 and 6**
1013 (A) Extreme oblique cut reveals differences in nerve cord closure and adhesive organ regeneration.
1014 Representative images of neural regeneration from a head fragment selected from a continuous
1015 week-long tracking microscopy session after an extreme ($>45^\circ$) oblique amputation. White arrows:
1016 nerve cord termini and site of reconnection. Green arrow: site of adhesive organ regeneration.
1017 Scale bars: 100 μ m.
1018 (B) Cartoon showing the process highlighting that adhesive organ regeneration occurs at a site
1019 more posterior to the point of nerve cord reconnection.
1020 (C) Nerve cord closure progresses at a linear rate. Nerve cord termini were manually annotated
1021 (red dots). The Euclidian distance between the two termini is plotted vs. time and exhibits a linear
1022 decrease (bottom). Dashed lines: the times corresponding to the representative images of the
1023 animal shown at the top. Scale bars: 50 μ m.

1024


1025 **Figure S6: Homeostatic *wnt-1* expression remains after β-catenin RNAi. Related to Figure 7**

1026 (A) A phylogenetic tree of *wnt-1* homologs establishes *M. lignano wnt-1* as an ortholog of *S.*
1027 *mediterranea wnt-1*. Peptide sequences are clustered with Clustal Omega, the tree is constructed
1028 using IQTree and visualized using phylo.io. Sequences include *wnt-1* homologs in *Stenostomum*
1029 *brevipharyngium* (Sbre), *Schistosoma mansoni* (Smp), *Schistosoma japonicum* (EWB), *Hydra*
1030 *vulgaris* (HVAEP), *Nematostella vectensis* (NV), *Pseudoceros crozieri* (Pcro), and *Pristina leidyi*
1031 (Prilei), *Hofstenia miamia* (HMIM), *Macrostomum cliftonense* (Mcli), *Macrostomum hystrix*
1032 (Mhtx), *Macrostomum lignano* (Mlig), *Schmidtea mediterranea* (SMESG), *Schmidtea polychroa*
1033 (dd_Spol).

1034 (B) A MAFFT pairwise alignment of the region targeted by β -catenin RNAi to the three β -catenin
1035 sequences present in the genome (Mlig445_038091, Mlig445_019974, Mlig445_033213). Inset
1036 shows the broad nucleotide similarity between all three copies. Agreement with reference sequence
1037 (gray).

1038 (C) Homeostatic *wnt-1* expression (red) after β -catenin RNAi in uncut animals (left, n = 3/3). A
1039 magnified view showing *wnt-1* expression in the posterior (middle) and the adhesive glands
1040 (yellow) (right). Dashed line: outline of the tail region. Scale bars: 50 μ m (left), 20 μ m (middle
1041 and right).

1042

1043

1044 **Figure S7: β -catenin RNAi fails to restore anterior regeneration. Related to Figure 7**
1045 (A) Representative luminescence images of neural regeneration from both head (top) and tail
1046 (bottom) fragments. Note that nerve cords are reconnected in both anterior and posterior fragments
1047 by 24 hpa. However, the posterior fragment shows no further elaboration of the neural structures
1048 even by 7 dpa. Scale bars: 50 μ m.
1049 (B-C) Luminescence images showing anterior regeneration in control (left) and β -catenin RNAi
1050 (right) treated PC2 animals. At 24 hpa (D), animals in both groups heal the wound and the ventral
1051 nerve cords reconnect. At 7 dpa (E), both control animals and β -catenin RNAi treated animals
1052 failed to regenerate any anterior structures. Scale bars: 100 μ m.

1053 **Supplemental Tables**

1054

1055 **Table S1: Primers, oligos, parts, and cloning utilities.** Primers for amplification of parts and
1056 TUs are provided, as well as sense and antisense primers for UNS oligo generation, the parts
1057 themselves, HCR oligo pools, and utilities for generating primers to amplify novel parts.

1058

1059 **Table S2: Bill of materials.** Contains key components for constructing both the
1060 luminescence/fluorescence microscope (LumiSQUID) and the tracking microscope
1061 (TrackingSQUID).

1062

1063 **Supplemental Videos**

1064

1065 **Video S1:** A montage of volumetric live confocal imaging stacks showing various tissues labeled
1066 by pEnolase::GeNL.

1067

1068 **Video S2:** A montage of Live confocal imaging stacks showing various neural tissues labeled by
1069 pPC2::GeNL.

1070

1071 **Video S3:** 3D volumetric rendering of the two muscle layers wrapping the gut and body of the
1072 animal, sandwiching the ovaries.

1073

1074 **Video S4:** Bright field stereomicroscopy video of paralyzed pPC2::GeNL-P2A-NTR2.0::tPC2
1075 animals treated with 5 mM MTZ for 7 days and abnormally shaped pMYH6::GeNL-P2A-
1076 NTR2.0::tSV40 animals treated with 5 mM MTZ for 7 days.

1077

1078 **Video S5:** Time-lapse fluorescence tracking microscope images of a two independent horizontally
1079 amputated pPC2::GeNL-P2A-NTR2.0::tPC2 animal over the course of 1 week.

1080

1081 **Video S6:** Time-lapse fluorescence tracking microscopy of an obliquely amputated pPC2::GeNL-
1082 P2A-NTR2.0::tPC2 animal over the course of 1 week.

1083

1084 **Supplemental Files**

1085

1086 **File S1:** An archive containing plasmid maps for all parts, backbones, oligos, and additional
1087 utilities for modular assembly of transgenes.

1088 **References**

1089 Almuedo-Castillo, M., Saló, E., & Adell, T. (2011). Dishevelled is essential for neural
1090 connectivity and planar cell polarity in planarians. *Proceedings of the National Academy of
1091 Sciences of the United States of America*, 108(7), 2813–2818.
1092 <https://doi.org/10.1073/pnas.1012090108>

1093 Blockus, H., & Chédotal, A. (2016). Slit-robo signaling. *Development*, 143(17), 3037–3044.
1094 <https://doi.org/10.1242/dev.132829>

1095 Brand, J. N., Wiberg, R. A. W., Pjeta, R., Bertemes, P., Beisel, C., Ladurner, P., & Schärer, L.
1096 (2020). RNA-Seq of three free-living flatworm species suggests rapid evolution of
1097 reproduction-related genes. *BMC Genomics*, 21(1), 462. <https://doi.org/10.1186/s12864-020-06862-x>

1098 Bray, S. R., Wyss, L. S., Chai, C., Lozada, M. E., & Wang, B. (2023). Adaptive robustness
1099 through incoherent signaling mechanisms in a regenerative brain. *BioRxiv*, 523817.
1100 <https://doi.org/10.1101/2023.01.20.523817>

1101 Canton, B., Labno, A., & Endy, D. (2008). Refinement and standardization of synthetic
1102 biological parts and devices. *Nature Biotechnology*, 26(7), 787–793.
1103 <https://doi.org/10.1038/nbt1413>

1104 Chai, C., Gibson, J., Li, P., King, H., Ameen, M., Pampari, A., Patel, A., Wang, K., Kundaje, A.,
1105 Wang, B. (2024). Opportunistic usage of regulatory genome sequence motifs underlies cell
1106 type conservation. In preparation.

1107 Charron, F., Stein, E., Jeong, J., McMahon, A. P., & Tessier-Lavigne, M. (2003). The
1108 morphogen sonic hedgehog is an axonal chemoattractant that collaborates with Netrin-1 in
1109 midline axon guidance. *Cell*, 113(1), 11–23. [https://doi.org/10.1016/S0092-8674\(03\)00199-5](https://doi.org/10.1016/S0092-8674(03)00199-5)

1110 Collins, J. J., Hou, X., Romanova, E. V., Lambrus, B. G., Miller, C. M., Saberi, A., Sweedler, J.
1111 V., & Newmark, P. A. (2010). Genome-wide analyses reveal a role for peptide hormones in
1112 planarian germline development. *PLoS Biology*, 8(10), e1000509.
1113 <https://doi.org/10.1371/journal.pbio.1000509>

1114 Currie, J. D., Kawaguchi, A., Traspas, R. M., Schuez, M., Chara, O., & Tanaka, E. M. (2016).
1115 Live imaging of axolotl digit regeneration reveals spatiotemporal choreography of diverse
1116 connective tissue progenitor pools. *Developmental Cell*, 39(4), 411–423.
1117 <https://doi.org/10.1016/j.devcel.2016.10.013>

1118 Egger, B., Gschwentner, R., Hess, M. W., Nimeth, K. T., Adamski, Z., Willems, M., Rieger, R.,
1119 & Salvenmoser, W. (2009). The caudal regeneration blastema is an accumulation of rapidly
1120 proliferating stem cells in the flatworm *Macrostomum lignano*. *BMC Developmental
1121 Biology*, 9(1), 41. <https://doi.org/10.1186/1471-213X-9-41>

1122 Egger, B., Ladurner, P., Nimeth, K., Gschwentner, R., & Rieger, R. (2006). The regeneration
1123 capacity of the flatworm *Macrostomum lignano* - On repeated regeneration, rejuvenation,
1124 and the minimal size needed for regeneration. *Development Genes and Evolution*, 216(10),
1125 565–577. <https://doi.org/10.1007/s00427-006-0069-4>

1126 Emmons, S. W. (2018). Neural circuits of sexual behavior in *Caenorhabditis elegans*. *Annual
1127 Review of Neuroscience*, 41(1), 349–369. <https://doi.org/10.1146/annurev-neuro-070815>

1128 Fan, Y., Chai, C., Li, P., Zou, X., Ferrell, J. E., & Wang, B. (2023). Ultrafast distant wound
1129 response is essential for whole-body regeneration. *Cell*, 186(17), 3606-3618.e16.
1130 <https://doi.org/10.1016/j.cell.2023.06.019>

1131 Garcia, A. L., Udeh, A., Kalahasty, K., & Hackam, A. S. (2018). A growing field: The regulation

1134 of axonal regeneration by Wnt signaling. *Neural Regeneration Research*, 13(1), 43–52.
1135 <https://doi.org/10.4103/1673-5374.224359>

1136 Gemberling, M., Bailey, T. J., Hyde, D. R., & Poss, K. D. (2013). The zebrafish as a model for
1137 complex tissue regeneration. *Trends in Genetics*, 29(11), 611–620.
1138 <https://doi.org/10.1016/j.tig.2013.07.003>

1139 Gurley, K. A., Rink, J. C., & Sánchez Alvarado, A. (2008). β -catenin defines head versus tail
1140 identity during planarian regeneration and homeostasis. *Science*, 319(5861), 323–327.
1141 <https://doi.org/10.1126/science.1150029>

1142 Hall, R. N., Weill, U., Drees, L., Leal-Ortiz, S., Li, H., Khariton, M., Chai, C., Xue, Y., Rosenthal,
1143 B., Quake, S. R., Sánchez Alvarado, A., Melosh, N. A., Fire, A. Z., Rink, J. C., & Wang, B.
1144 (2022). Heterologous reporter expression in the planarian Schmidtea mediterranea through
1145 somatic mRNA transfection. *Cell Reports Methods*, 2(10), 100298.
1146 <https://doi.org/10.1016/j.crmeth.2022.100298>

1147 Halleran, A. D., Swaminathan, A., & Murray, R. M. (2018). Single day construction of
1148 multigene circuits with 3G assembly. *ACS Synthetic Biology*, 7(5), 1477–1480.
1149 <https://doi.org/10.1021/acssynbio.8b00060>

1150 Ladurner, P., Mair, G. R., Reiter, D., Salvenmoser, W., & Rieger, R. M. (1997). Serotonergic
1151 nervous system of two Macrostomid species: recent or ancient divergence? *Invertebrate
1152 Biology*, 116(3), 178. <https://doi.org/10.2307/3226895>

1153 Ladurner, P., Pfister, D., Seifarth, C., Schärer, L., Mahlknecht, M., Salvenmoser, W., Gerth, R.,
1154 Marx, F., & Rieger, R. (2005). Production and characterisation of cell- and tissue-specific
1155 monoclonal antibodies for the flatworm Macrostomum sp. *Histochemistry and Cell Biology*,
1156 123(1), 89–104. <https://doi.org/10.1007/s00418-004-0722-9>

1157 Lengerer, B., Hennebert, E., Flammang, P., Salvenmoser, W., & Ladurner, P. (2016). Adhesive
1158 organ regeneration in Macrostomum lignano. *BMC Developmental Biology*, 16(1), 20.
1159 <https://doi.org/10.1186/s12861-016-0121-1>

1160 Lengerer, B., Pjeta, R., Wunderer, J., Rodrigues, M., Arbore, R., Schärer, L., Berezikov, E.,
1161 Hess, M. W., Pfaller, K., Egger, B., Obweger, S., Salvenmoser, W., & Ladurner, P.
1162 (2014). Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland
1163 system and is mediated by a cell type-specific intermediate filament protein. *Frontiers in
1164 Zoology*, 11(1), 12. <https://doi.org/10.1186/1742-9994-11-12>

1165 Li, H., Krishnamurthy, D., Li, E., Vyas, P., Akireddy, N., Chai, C., & Prakash, M. (2020). Squid:
1166 Simplifying quantitative imaging platform development and deployment. *BioRxiv*, 424613.
1167 <https://doi.org/10.1101/2020.12.28.424613>

1168 Ma, Y., He, J., Sieber, M., von Frielin, J., Bruchhaus, I., Baines, J. F., Bickmeyer, U., &
1169 Roeder, T. (2023). The microbiome of the marine flatworm Macrostomum lignano provides
1170 fitness advantages and exhibits circadian rhythmicity. *Communications Biology*, 6(1), 289.
1171 <https://doi.org/10.1038/s42003-023-04671-y>

1172 Marie-Orleach, L., Vellnow, N., & Schärer, L. (2021). The repeatable opportunity for selection
1173 differs between pre- and postcopulatory fitness components. *Evolution Letters*, 5(1), 101–
1174 114. <https://doi.org/10.1002/evl3.210>

1175 Morris, J., Cardona, A., De Miguel-Bonet, M. D. M., & Hartenstein, V. (2007). Neurobiology of
1176 the basal platyhelminth Macrostomum lignano: Map and digital 3D model of the juvenile
1177 brain neuropile. *Development Genes and Evolution*, 217(8), 569–584.
1178 <https://doi.org/10.1007/s00427-007-0166-z>

1179 Mouton, S., Mougel, A., Ustyantsev, K., Dissous, C., Melnyk, O., Berezikov, E., & Vicogne, J.

1180 (2023). Optimized protocols for RNA interference in *Macrostomum lignano*. *BioRxiv*,
1181 565441. <https://doi.org/10.1101/2023.11.09.565441>

1182 Mouton, S., Wudarski, J., Grudniewska, M., & Berezikov, E. (2018). The regenerative flatworm
1183 *macrostomum lignano*, a model organism with high experimental potential. *International
1184 Journal of Developmental Biology*, 62(6–8), 551–558.
1185 <https://doi.org/10.1387/ijdb.180077eb>

1186 Onishi, K., Hollis, E., & Zou, Y. (2014). Axon guidance and injury-lessons from Wnts and Wnt
1187 signaling. *Current Opinion in Neurobiology*, 27, 232–240.
1188 <https://doi.org/10.1016/j.conb.2014.05.005>

1189 Paix, A., Basu, S., Steenbergen, P., Singh, R., Prevedel, R., & Ikmi, A. (2023). Endogenous
1190 tagging of multiple cellular components in the sea anemone *Nematostella vectensis*.
1191 *Proceedings of the National Academy of Sciences of the United States of America*, 120(1),
1192 e2215958120. <https://doi.org/10.1073/pnas.2215958120>

1193 Paskin, T. R., Jellies, J., Bacher, J., & Beane, W. S. (2014). Planarian phototactic assay reveals
1194 differential behavioral responses based on wavelength. *PLoS ONE*, 9(12), e114708.
1195 <https://doi.org/10.1371/journal.pone.0114708>

1196 Petersen, C. P., & Reddien, P. W. (2008). Smed-βcatenin-1 is required for anteroposterior
1197 blastema polarity in planarian regeneration. *Science*, 319(5861), 327–330.
1198 <https://doi.org/10.1126/science.1149943>

1199 Petersen, C. P., & Reddien, P. W. (2009). A wound-induced Wnt expression program controls
1200 planarian regeneration polarity. *Proceedings of the National Academy of Sciences of the
1201 United States of America*, 106(40), 17061–17066. <https://doi.org/10.1073/pnas.0906823106>

1202 Petsakou, A., Liu, Y., Liu, Y., Comjean, A., Hu, Y., & Perrimon, N. (2023). Cholinergic neurons
1203 trigger epithelial Ca²⁺ currents to heal the gut. *Nature*, 623(7985), 122–131.
1204 <https://doi.org/10.1038/s41586-023-06627-y>

1205 Ratnayake, D., Nguyen, P. D., Rossello, F. J., Wimmer, V. C., Tan, J. L., Galvis, L. A., Julier,
1206 Z., Wood, A. J., Boudier, T., Isiaku, A. I., Berger, S., Oorschot, V., Sonntag, C., Rogers, K.
1207 L., Marcelle, C., Lieschke, G. J., Martino, M. M., Bakkers, J., & Currie, P. D. (2021).
1208 Macrophages provide a transient muscle stem cell niche via NAMPT secretion. *Nature*,
1209 591(7849), 281–287. <https://doi.org/10.1038/s41586-021-03199-7>

1210 Reddien, P. W. (2018). The cellular and molecular basis for planarian regeneration. *Cell*, 175(2),
1211 327–345. <https://doi.org/10.1016/j.cell.2018.09.021>

1212 Ricci, L., & Srivastava, M. (2021). Transgenesis in the acoel worm *Hofstenia miamia*.
1213 *Developmental Cell*, 56(22), 3160–3170. <https://doi.org/10.1016/j.devcel.2021.10.012>

1214 Rieger, R. M., Salvenmoser, W., Legniti, A., & Tyler, S. (1994). Phalloidin-rhodamine
1215 preparations of *Macrostomum hystricinum marinum* (Plathelminthes): morphology and
1216 postembryonic development of the musculature. *Zoomorphology*, 114(3), 133–147.
1217 <https://doi.org/10.1007/BF00403261>

1218 Rocheleau, C. E., Yasuda, J., Tae Ho Shin, Lin, R., Sawa, H., Okano, H., Priess, J. R., Davis, R.
1219 J., & Mello, C. C. (1999). WRM-1 activates the LIT-1 protein kinase to transduce
1220 anterior/posterior polarity signals in *C. elegans*. *Cell*, 97(6), 717–726.
1221 [https://doi.org/10.1016/S0092-8674\(00\)80784-9](https://doi.org/10.1016/S0092-8674(00)80784-9)

1222 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
1223 S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V.,
1224 Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for
1225 biological-image analysis. *Nature Methods*, 9(7), 676–682.

1226 https://doi.org/10.1038/nmeth.2019
1227 Scimone, M. L., Atabay, K. D., Fincher, C. T., Bonneau, A. R., Li, D. J., & Reddien, P. W.
1228 (2020). Muscle and neuronal guidepost-like cells facilitate planarian visual system
1229 regeneration. *Science*, 368(6498), eaba3203. <https://doi.org/10.1126/science.aba3203>
1230 Sharrock, A. V., Mulligan, T. S., Hall, K. R., Williams, E. M., White, D. T., Zhang, L.,
1231 Emmerich, K., Matthews, F., Nimmagadda, S., Washington, S., Le, K. D., Meir-Levi, D.,
1232 Cox, O. L., Saxena, M. T., Calof, A. L., Lopez-Burks, M. E., Lander, A. D., Ding, D., Ji,
1233 H., ... Mumm, J. S. (2022). NTR 2.0: a rationally engineered prodrug-converting enzyme
1234 with substantially enhanced efficacy for targeted cell ablation. *Nature Methods*, 19(2), 205–
1235 215. <https://doi.org/10.1038/s41592-021-01364-4>
1236 Siebert, S., Farrell, J. A., Cazet, J. F., Abeykoon, Y., Primack, A. S., Schnitzler, C. E., & Juliano,
1237 C. E. (2019). Stem cell differentiation trajectories in Hydra resolved at single-cell
1238 resolution. *Science*, 365(6451), eaav9314. <https://doi.org/10.1126/science.aav9314>
1239 Sikes, J. M., & Newmark, P. A. (2013). Restoration of anterior regeneration in a planarian with
1240 limited regenerative ability. *Nature*, 500(7460), 77–80. <https://doi.org/10.1038/nature12403>
1241 Suzuki, K., Kimura, T., Shinoda, H., Bai, G., Daniels, M. J., Arai, Y., Nakano, M., & Nagai, T.
1242 (2016). Five colour variants of bright luminescent protein for real-time multicolour
1243 bioimaging. *Nature Communications*, 7(1), 13718. <https://doi.org/10.1038/ncomms13718>
1244 Tanaka, E. M. (2016). The molecular and cellular choreography of appendage regeneration. *Cell*,
1245 165(7), 1598–1608. <https://doi.org/10.1016/j.cell.2016.05.038>
1246 Ustyantsev, Kirill, Wudarski, J., Sukhikh, I., Reinoite, F., Mouton, S., & Berezikov, E. (2021).
1247 Proof of principle for piggybac-mediated transgenesis in the flatworm *macrostomum*
1248 *lignano*. *Genetics*, 218(3), iyab076. <https://doi.org/10.1093/GENETICS/IYAB076>
1249 Van Der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N.,
1250 Gouillart, E., & Yu, T. (2014). Scikit-image: Image processing in python. *PeerJ*, 2014(1),
1251 e453. <https://doi.org/10.7717/peerj.453>
1252 Vila-Farré, M., Rozanski, A., Ivanković, M., Cleland, J., Brand, J. N., Thalen, F., Grohme, M.
1253 A., von Kannen, S., Grosbusch, A. L., Vu, H. T. K., Prieto, C. E., Carbayo, F., Egger, B.,
1254 Bleidorn, C., Rasko, J. E. J., & Rink, J. C. (2023). Evolutionary dynamics of whole-body
1255 regeneration across planarian flatworms. *Nature Ecology and Evolution*, 7(12), 2108–2124.
1256 <https://doi.org/10.1038/s41559-023-02221-7>
1257 Wasik, K., Gurtowski, J., Zhou, X., Ramos, O. M., Delás, M. J., Battistoni, G., El Demerdash,
1258 O., Falciatori, I., Vizoso, D. B., Smith, A. D., Ladurner, P., Schärer, L., McCombie, W. R.,
1259 Hannon, G. J., & Schatz, M. (2015). Genome and transcriptome of the regeneration-
1260 competent flatworm, *Macrostomum lignano*. *Proceedings of the National Academy of
1261 Sciences of the United States of America*, 112(40), 12462–12467.
1262 <https://doi.org/10.1073/pnas.1516718112>
1263 Watanabe, H., Kuhn, A., Fushiki, M., Agata, K., Özbek, S., Fujisawa, T., & Holstein, T. W.
1264 (2014). Sequential actions of β -catenin and Bmp pattern the oral nerve net in *Nematostella
1265 vectensis*. *Nature Communications*, 5(1), 5536. <https://doi.org/10.1038/ncomms6536>
1266 Weissbourd, B., Momose, T., Nair, A., Kennedy, A., Hunt, B., & Anderson, D. J. (2021). A
1267 genetically tractable jellyfish model for systems and evolutionary neuroscience. *Cell*,
1268 184(24), 5854–5868.e20. <https://doi.org/10.1016/j.cell.2021.10.021>
1269 Wiberg, R. A. W., Brand, J. N., Viktorin, G., Mitchell, J. O., Beisel, C., & Schärer, L. (2023).
1270 Genome assemblies of the simultaneously hermaphroditic flatworms *Macrostomum
1271 cliftonense* and *Macrostomum hystrix*. *G3: Genes, Genomes, Genetics*, 13(9), jkad149.

1272 <https://doi.org/10.1093/g3journal/jkad149>

1273 Wudarski, J., Egger, B., Ramm, S. A., Schärer, L., Ladurner, P., Zadesenets, K. S., Rubtsov, N.

1274 B., Mouton, S., & Berezikov, E. (2020). The free-living flatworm *Macrostomum lignano*.

1275 *EvoDevo*, 11(1), 5. <https://doi.org/10.1186/s13227-020-00150-1>

1276 Wudarski, J., Simanov, D., Ustyantsev, K., De Mulder, K., Grelling, M., Grudniewska, M.,

1277 Beltman, F., Glazenburg, L., Demircan, T., Wunderer, J., Qi, W., Vizoso, D. B., Weissert,

1278 P. M., Olivieri, D., Mouton, S., Guryev, V., Aboobaker, A., Schärer, L., Ladurner, P., &

1279 Berezikov, E. (2017). Efficient transgenesis and annotated genome sequence of the

1280 regenerative flatworm model *Macrostomum lignano*. *Nature Communications*, 8(1), 2120.

1281 <https://doi.org/10.1038/s41467-017-02214-8>

1282 Wudarski, J., Ustyantsev, K., Reinoite, F., & Berezikov, E. (2022). Random integration

1283 transgenesis in a free-living regenerative flatworm *Macrostomum lignano*. *Methods in*

1284 *Molecular Biology*, 2450, 493–508. https://doi.org/10.1007/978-1-0716-2172-1_26

1285 Zadesenets, K. S., Schärer, L., & Rubtsov, N. B. (2017). New insights into the karyotype

1286 evolution of the free-living flatworm *Macrostomum lignano* (Platyhelminthes, Turbellaria).

1287 *Scientific Reports*, 7(1), 6066. <https://doi.org/10.1038/s41598-017-06498-0>

1288 Zattara, E. E., Turlington, K. W., & Bely, A. E. (2016). Long-term time-lapse live imaging

1289 reveals extensive cell migration during annelid regeneration. *BMC Developmental Biology*,

1290 16(1), 6. <https://doi.org/10.1186/s12861-016-0104-2>