
pNet: A toolbox for personalized functional networks modeling 

 

Yuncong Ma1,2, Hongming Li1,2, Zhen Zhou1,2, Xiaoyang Chen1,2, Liang Ma1,2, Erus Guray1,2,  Nicholas L. 

Balderston3, Desmond J. Oathes3, Russell T. Shinohara1,2,4, Daniel H. Wolf1,5, Ilya M. Nasrallah1,2, Haochang 

Shou1,6,7,8, Theodore D. Satterthwaite1,5,9, Christos Davatzikos1,2, Yong Fan1,2 

1. Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the 

University of Pennsylvania, Philadelphia, PA 19104 USA 

2. Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 

3. Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of 

Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 

4. Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology and Informatics, 

the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA 

5. Department of Psychiatry, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 

6. Center for Clinical Epidemiology (CCEB), the Perelman School of Medicine at the University of Pennsylvania, 

Philadelphia, PA, USA 

7. Center for Statistics in Big Data (CSBD), Department of Biostatistics, Epidemiology and Informatics, University 

of Pennsylvania, Philadelphia, PA, USA 

8. Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology and 

Informatics, University of Pennsylvania, Philadelphia, PA, USA 

9. Penn Lifespan Informatics and Neuroimaging Center (PennLINC), the Perelman School of Medicine at the 

University of Pennsylvania, Philadelphia, PA, USA 

 

Abstract 

Personalized functional networks (FNs) derived from functional magnetic resonance imaging (fMRI) data 

are useful for characterizing individual variations in the brain functional topography associated with the 

brain development, aging, and disorders. To facilitate applications of the personalized FNs with enhanced 

reliability and reproducibility, we develop an open-source toolbox that is user-friendly, extendable, and 

includes rigorous quality control (QC), featuring multiple user interfaces (graphics, command line, and a 

step-by-step guideline) and job-scheduling for high performance computing (HPC) clusters. Particularly, 

the toolbox, named personalized functional network modeling (pNet), takes fMRI inputs in either 

volumetric or surface type, ensuring compatibility with multiple fMRI data formats, and computes 

personalized FNs using two distinct modeling methods: one method optimizes the functional coherence 

of FNs, while the other enhances their independence. Additionally, the toolbox provides HTML-based 

reports for QC and visualization of personalized FNs. The toolbox is developed in both MATLAB and 

Python platforms with a modular design to facilitate extension and modification by users familiar with 
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either programming language. We have evaluated the toolbox on two fMRI datasets and demonstrated 

its effectiveness and user-friendliness with interactive and scripting examples. pNet is publicly available 

at https://github.com/MLDataAnalytics/pNet. 

 

Keywords: Personalized functional network, functional magnetic resonance imaging, open-source 

toolbox, quality control, functional coherence optimization, independence enhancement 
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Introduction 

Functional magnetic resonance imaging (fMRI) has become an indispensable tool for exploring 

the brain's function, neuroanatomy, and network dynamics. Functional connectivity (FC) is a useful 

measure for exploring the brain’s functional organization by quantifying covariations of different brain 

regions (Bastos and Schoffelen, 2015; Buckner et al., 2013; van den Heuvel and Hulshoff Pol, 2010). 

The emergence of large-scale fMRI datasets has provided unprecedented opportunities to characterize 

functional networks (FNs) and their variations across individuals, offering insights into behaviors and 

brain disorders (Casey et al., 2018; Harms et al., 2018; Littlejohns et al., 2020; Satterthwaite et al., 2014; 

Van Essen et al., 2012). Recent findings have unveiled significant individual variability in personalized 

FNs, underscoring the importance of delineating individual-specific FNs and their associated FC 

measures for investigating the brain development, aging, and neuropsychiatric disorders (Anderson et 

al., 2021; Cheng et al., 2023; Cohen et al., 2008; Cui et al., 2020; Cui et al., 2022; Gordon et al., 2017a; 

Gordon et al., 2017b; Hacker et al., 2013; Keller et al., 2024; Keller et al., 2023b; Keller et al., 2023c; 

Laumann et al., 2015; Li et al., 2023; Pines et al., 2022; Shanmugan et al., 2022; Wig et al., 2014; Zhou 

et al., 2023).  

To achieve reliable and robust computation of the personalized FNs, we have developed group 

Sparsity-Regularized Non-negative Matrix Factorization (SR-NMF) and Group-Information-Guided 

Independent Component Analysis (GIG-ICA) methods that optimizes the functional coherence of FNs 

and enhances their independence respectively  (Cui et al., 2020; Du and Fan, 2013; Li et al., 2016; Li et 

al., 2017). Both methods can decompose brain fMRI data into personalized FNs with spatial 

correspondence across individuals and have been used in a variety of brain imaging studies to capture 

precise individual functional network topography and their associations with personal behaviors, disease 

symptoms, and treatment responses (Cheng et al., 2023; Cui et al., 2020; Cui et al., 2022; Fu et al., 2023; 

Jing et al., 2023; Keller et al., 2023a; Keller et al., 2023c; Li and Fan, 2018, 2019; Li et al., 2016; Li et al., 

2017, 2018a; Li et al., 2023; Lin et al., 2023; Pines et al., 2022; Shah et al., 2023; Shanmugan et al., 

2022; Zhou et al., 2023; Zhu et al., 2021). While source code of these methods is publicly available, we 

recognize the need for a user-friendly and extendable toolbox with an intuitive graphical user interface 

(GUI) and native Python support. Additionally, the integration of quality control is essential to facilitate 

rigorous studies of the personalized FNs (Li et al., 2023; Zhou et al., 2023). It is worth noting that GIG-

ICA has been integrated in other toolboxes developed in MATLAB platform, such as IABC (Du et al., 

2023). 

As part of our effort to create NiChart that enables mapping of large-scale multi-modal brain MRI 

data into a dimensional system of neuroimaging derived measures (https://github.com/CBICA/niCHART), 

we introduce personalized functional network modeling (pNet), an open-source toolbox designed for 
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computing personalized FNs efficiently and rigorously from fMRI data. Implemented in both MATLAB and 

Python, pNet features a modular design, facilitating extension and customization by users to suit their 

individual requirements. The toolbox accepts fMRI data input in either volumetric or surface formats,  

compatible to fMRI data preprocessed with different preprocessing protocols, including AFNI (Cox, 1996), 

SPM (Penny et al., 2011), FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), HCP workbench 

(Marcus et al., 2013), fMRIPrep (Esteban et al., 2019), and XCP (Ciric et al., 2018). pNet generates 

personalized FNs and provides HTML-based reports for quality control and visualization. 

The rest of this paper is organized as follows. We first give an overview of pNet v1.0, including its 

inputs, outputs, and user interfaces. We then introduce its workflow, MATLAB GUI design, Python user 

interfaces, main modules, and toolbox deployment. The effectiveness and user-friendliness of our toolbox 

are demonstrated using two fMRI datasets. We demonstrated pNet’s features in terms of compatibility, 

flexibility, reliability, intuitive visualization, and reproducibility. These features have the potential to 

enhance user experiences and further benefit studies of subject-specific brain’s functional topography. 

 

 

Figure 1. Illustration of pNet’s workflow. pNet accepts fMRI data in either volumetric or surface formats as input. 

Optionally, group-level FNs can be used as an additional input to guide the computation of personalized FNs. pNet 

offers several user interfaces, including a GUI, a command-line based interactive step-by-step guide, and a variety 

of scripts for running the toolbox on workstations and HPC clusters. It computes and outputs personalized FNs and 

provides preconfigured visualizations of FNs and quality control results in HTML format. pNet works on both 

MATLAB and Python platforms. 
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Methods 

Toolbox overview 

 pNet v1.0 is an open-source toolbox with a modular design for computing personalized FNs. As 

illustrated in Figure 1, pNet consists of extendable modules of input, computation and output, as well as 

multiple user interfaces. It supports fMRI input in either volume or surface formats and can load existing 

group-level FNs as an optional input to derive personalized FNs. Implemented with native code in both 

MATLAB and Python platforms, pNet offers two different methods, SR-NMR and GIG-ICA that optimizes 

the functional coherence of FNs and enhances their independence respectively  (Cui et al., 2020; Du and 

Fan, 2013; Li et al., 2016; Li et al., 2017), to compute personalized FNs. It provides user interfaces 

tailored for different user preferences and computation environments, including a MATLAB-based GUI, 

interactive step-by-step command line guides, and scripts for workstation and cluster computation. pNet 

outputs group-level and personalized FN results along with preconfigured visualizations, quality control 

results, and HTML-based computation reports. pNet is publicly available at 

https://github.com/MLDataAnalytics/pNet. 

 

 

Figure 2. GUI design. (A) The menu bar and six tabs on the MATLAB GUI;  (B) Preconfigured displays of four 

selected group-level FNs computed based on the HCP dataset; (C) Interactive display of a single personalized FN; 

and (D) Display of a binarized atlas created from the group FNs.  For all intensity maps, spatial weights of each FN 

are displayed with the values ranging from the 50th to the 99.8th percentile. 
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GUI Design 

The MATLAB GUI is designed to align with the pNet workflow, as illustrated in Figure 2. It 

comprises 6 tabs dedicated to setting input data, adjusting parameters for computing personalized FNs, 

visualizing computational results, and checking quality control results (Figure 2A). Interactive 

visualization options within the GUI allow users to visually examine multiple FNs, change views, and 

compare FNs obtained from different scans (Figure 2B and C). In addition, users can check the binarized 

functional atlas derived from group-level or personalized FNs (Figure 2D). The visualization of statistical 

results for personalized FNs also features interactive and synchronized display to ensure a consistent 

user experience. 

 

Python user interfaces 

The Python version of pNet offers a variety of user interfaces (Figure 3). First, a step-by-step 

guide prompts users with questions and choices to configure a suitable workflow. This process 

automatically generates a Python script with detailed descriptions for the computation settings. Second, 

several example scripts are provided to setup a workflow with either minimal parameters or advanced 

settings for creating brain templates and customized the computational parameters of personalized FNs. 

For the computation on HPC clusters, users can configure the cluster environment with advanced settings 

for computation resources including CPU thread and memory allowance. In addition, pNet provides open-

source internal functions, independent to the overall workflow, for users to take the advantage of the built-

in FN models and preconfigured visualizations.  
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Figure 3. User interfaces of the Python version. The Python version offers different user interfaces, with illustrations 

of minimal setup options for fast deployment on workstations (pNet.workflow_simple) and advanced settings for 

HPC clusters (pNet.setup_cluster), respectively.  

 

Input module 

The input module is designed to load preprocessed fMRI scans and their corresponding brain 

template files. It supports both volumetric and surface fMRI data stored in a variety of file formats and 

allows flexible file searching and modification. For volumetric data, both NIFTI and MAT formats are 

supported, which stores 3D spatial + 1D temporal fMRI signals. The surface data typically comprises a 

set of gray matter vertices, each attached with an 1D temporal fMRI signal. pNet supports four surface 

data formats, including CIFTI, MGZ, MGH, and MAT. Specifically, CIFTI, MGZ, and MAT formats store 

data for each scan in a single file, and the MGH format employs two files to store data for the left and 

right hemispheres separately. For the MGH format, pNet merges the directories of the two files into one. 

In addition, pNet supports a combination of surface and volumetric data types stored in HCP grayordinate 

format.  

pNet obtains its input by utilizing a text file that contains full directory information for the fMRI 

scans. Additionally, it allows users to curate customized fMRI datasets through an intuitive GUI for 

searching fMRI scans by file names, extensions, or manually select multiple scans. pNet combines the 

search results to generate a dataset file for subsequent computation of the FNs. Furthermore, it allows 

manual modifications of the scan list file to further customize the fMRI dataset. 

Since fMRI signals may exhibit a limited signal-to-noise ratio (SNR), multiple scans are often 

acquired for the same individual to enhance fMRI data quality. In response to this need, pNet offers 

flexibility for concatenating multiple fMRI scans to form a single continuous one. When concatenating 

data, pNet can automatically use the sub-folder name (where the fMRI files are stored) as the subject ID. 

This simplifies the process by associating each concatenated scan with a specific subject. Alternatively, 

users can load text files containing subject IDs. These files should follow the same order as the 

corresponding fMRI files. This approach ensures accurate alignment between subject IDs and their 

respective scans. The segments of the same fMRI scan can be stored in sub-folders  with a same subject 

ID and the file information of segments can also be stored in text files. When data concatenation is 

enabled, a single set of personalized FNs will be generated for each subject; otherwise, each fMRI scan 

segment will have its own set of personalized FNs. 

 

FN computation module 
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This module is designed to setup and carry out the computation of personalized FNs.  In particular, 

pNet computes the personalized FNs with either SR-NMF or GIG-ICA, both of them yielding personalized 

FNs that are regularized with group-level FNs for establishing spatial correspondence across individuals 

(Cui et al., 2020; Du and Fan, 2013; Li et al., 2016; Li et al., 2017).  

For GIG-ICA, any group ICA method can be used to compute group-level FNs for guiding the 

computation of the personalized FNs, such as GIFT and MELODIC (Beckmann and Smith, 2004; Correa 

et al., 2005), and then the group-level FNs can be used as guidance information for computing the 

personalized FNs (Du and Fan, 2013).  pNet provides scripts for computing group-level FNs using GIFT 

(https://trendscenter.org/software/gift/). 

For SR-NMF, the personalized FNs are computed jointly for a group of subjects regularized by 

group sparsity (Li et al., 2016; Li et al., 2017). Since such a joint computation of personalized FNs does 

not scale well to large-scale datasets due to its prohibitive computational memory consumption (fMRI 

data of all scans has be considered simultaneously), the similar strategy of GIG-ICA is adopted to 

compute the personalized FNs with regularization information provided by group-level FNs, in conjunction 

with a bootstrapping strategy by sampling the large datasets (Cui et al., 2020). 

To further enhance reliability, a spatial correspondence constrain is integrated into GIG-ICA and 

SR-NMF to ensure one-to-one correspondence between personalized FNs and their group-level 

counterparts. Hence, the spatial correspondence is guaranteed for group or individual level comparisons. 

 

Output module 

pNet outputs personalized FNs along with QC and visualization results, which can be accessed 

through the GUI tabs (Figure 2A). Moreover, computational log files are generated to store information 

of the fMRI dataset and parameters used for the computation, as well as intermediate results in folders 

named as “Data_Input”, “FN_Computation”, “Group_FN”, and “Personalized_FN”, respectively. FNs and 

their corresponding time courses are stored in separate files, and based on the time courses, functional 

connectivity (FC) measures can be computed as Pearson correlation values (Zhou et al., 2023). QC 

results are stored in a folder named “Quality_Control”. An HTML file named “Report.HTML” provides links 

to HTML-based QC reports of individual scans or subjects in their corresponding subfolders within folder 

“Personalized_FN”. 

 

Quality control 

 Quality control is implemented to ensure that personalized FNs have higher functional 

homogeneity than their group-level counterparts and maintain good spatial correspondence with their 

group-level counterparts (Li et al., 2023; Zhou et al., 2023). Particularly, the functional coherence of each 
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FN is measured by a weighted mean of the correlation coefficients between the time courses of all the 

voxels within the FN and its centroid time course, which is calculated as a weighted mean time course 

over the FN with its voxel-wise loadings as weights. The spatial correspondence between each 

personalized FN and its group-level FN is measured based on their pairwise spatial correlation 

coefficients. Specifically, each personalized FN is deemed to maintain correspondence with its 

corresponding group-level counterpart if its spatial correspondence value is greater than all pairwise 

spatial correlation coefficients between the personalized FN under consideration and all other group-level 

FNs. The quality control results are generated with the computation of FNs. 

 

Statistical analysis 

 pNet incorporates four commonly-used statistical tests for analyzing the personalized FNs. 

Particularly, one-sample t-test and Wilcoxon signed rank test are integrated to assess the significance of 

personalized FNs (voxels for volumetric data and vertices for surface data) across subjects. Two-sample 

t-test and Wilcoxon signed rank test are included to facilitate group comparison of the FNs. Covariates, 

such as demographic data, can be included in the statistical analyses. The resulting statistical results, 

including spatial maps of p or t/z values, can be visualized with the GUI. To mitigate the risk of type I 

errors, p-values can be further adjusted using the false discovery rate (FDR) correction method 

(Lieberman et al., 2009).  

 

Toolbox Development  

 pNet is developed with native MATLAB and Python code respectively, facilitating code integration 

with other packages and toolboxes available on the two platforms. As an open-source software, pNet is 

available on GitHub (https://github.com/MLDataAnalytics/pNet), promoting collaborative development 

and providing a platform for receiving valuable feedback for enhancement and future development. The 

MATLAB version has been tested on macOS, Linux, and Windows operating systems. It provides several 

execution methods, including its GUI design, which can function as a MATLAB GUI or be installed as a 

MATLAB APP. The Python version is tested on Anaconda (https://www.anaconda.com). It can also be 

built into a Docker container (https://www.docker.com) to facilitate easy adoption of the toolbox. Moreover, 

scripts are provided to facilitate job-scheduling for computing on HPC clusters. Our scripts have been 

tested on the CUBIC (a RedHat Enterprise Linux-based HPC cluster, 

https://www.med.upenn.edu/cbica/cubic.HTML) at the University of Pennsylvania. 

 

Expandability 
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With the rapid evolution of the fMRI field, new data formats and modeling methods are being 

introduced at a rapid pace. To facilitate expandability, pNet is developed with a modular  design, allowing 

for addition of new functions and methods. Additionally, pNet encourages future software development 

to include new data formats and personalized functional network models, and statistic methods. With the 

availability of both MATLAB and Python versions, pNet allows users with different coding preferences for 

further expansion. 

 

Toolbox Validation 

To evaluate the effectiveness and versatility of pNet, we applied it to two different resting state 

fMRI (rsfMRI) datasets with fMRI scans preprocessed in their specific studies. In the first application, we 

tested pNet on volumetric fMRI data from the UK Biobank dataset (Littlejohns et al., 2020). We loaded 

two sets of precomputed group-level FNs (k=17 and 21) from our existing multi-scale FN study (Zhou et 

al., 2023) and another study (Miller et al., 2016) for testing the MATLAB version. For this dataset, we 

chose a small subset (10 subjects) to calculate personalized FNs, thereby demonstrating the ease-of-

use of the GUI-based pNet and convenience for visual examinations and comparisons. For the second 

application, we tested pNet on surface fMRI data of 478 subjects from the Human Connectome Project 

(HCP) dataset (Van Essen et al., 2012). We used the Python version to obtain both group-level and 

personalized FNs, as well as the quality control results, demonstrating its usability in an HPC cluster 

environment. The results of this toolbox validation confirmed its compatibility, flexibility, reliability, and 

efficiency, thus establishing it as an asset for exploring brain functional networks and their relationship to 

behavior or mental disorders. 

The toolbox comes with two sets of precomputed group-level FNs (k=17), computed with SR-

NMF based on the HCP young adult dataset and a subset of UKBB from the iSTAGING study (Zhou et 

al., 2023), respectively. Specifically, the HCP derived group-level FNs are in surface format, and the 

UKBB derived ones are in volumetric format. The group-level FNs can be loaded to compute personalized 

FNs on other datasets. This eliminates the computationally heavy burden of computing group-level FNs 

and ensure reliable comparisons across datasets as well as reproducibility. 

 

Application 1: Utilizing precomputed group-level FNs to obtain personalized FNs  

We adopted a subset of the UK Biobank (UKBB) dataset, which passed quality control in our previous 

study (1571 subjects, 695 males, ages 45-79, 420 volumes per scan) (Zhou et al., 2023). A standardized 

preprocessing pipeline was used (Alfaro-Almagro et al., 2018). Subsequently, preprocessed data were 

transformed into the MNI space and stored in NIFTI format. In this application, we employed two sets of 

precomputed group-level FNs, including 17 FNs from our previous study (Zhou et al., 2023) that were 
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derived from a multi-cohort iSTAGING dataset (4186 subjects, ages 22-97), and 21 group-ICA 

components obtained from UKBB dataset (Miller et al., 2016). These results were loaded from the GUI, 

and subsequently used to compute personalized FNs for a subset of the UKBB dataset (10 subjects, 490 

time points per scan). SR-NMF and GIG-ICA were used for computing personalized FNs guided with the 

two sets of group-level FNs, respectively. 

Figure 4B and D show results of personalized FNs derived via SR-NMF and GIG-ICA, respectively. 

The GUI can display preconfigured visualizations (Figure 4A and C) and also allows for interactive 

visualization of results (Figure 4B and D). Synchronized display is also available to facilitate swift 

comparisons between group-level and personalized FNs with customizable display settings. For example, 

users can compare group-level and personalized FNs with the same FN selection (Figure 4A and B) and 

view center point (Figure 4C and D).  

 

Figure 4. Visualization of group-level and personalized FNs, including preconfigured visualization of group-level (A) 

and personalized (B) FNs for K=17, as well as interactive displays of a single group-level (C) and corresponding 

personalized (D) FN for K=21. Double-sided blue arrows denote synchronized displays between group-level and 

personalized FNs. 
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Application 2: HCP dataset  

We utilized a subset of minimally preprocessed resting-state fMRI (rsfMRI) data from the HCP S1200 

dataset, consisting of 478 subjects aged between 22 and 35 years. Each subject underwent two or four 

15-minute scans (two resting-state fMRI sessions with two scans in each session, yielding 1200 volumes 

per scan). Details of this minimal preprocessing pipeline can be found in (Glasser et al., 2013). We 

selected surface-based data in CIFTI format for evaluating pNet. A built-in brain surface template is used 

to provide spatial information for visualizations. The fMRI signals were further processed using XCP-D 

(https://xcp-d.readthedocs.io/en/latest/index.HTML, FWHM = 5mm, band pass filtering at 0.01-0.1Hz, 36 

parameters for nuisance regression). We computed personalized FNs for each scan separately with 

default parameter settings on an HPC cluster. To enhance the computation efficiency, the whole process 

was automatically divided into multiple bash jobs to take the advantage of parallel computation in a cluster 

environment. 

Figure 5 shows part of the results generated by pNet, including group-level FNs and personalized 

FNs of a randomly selected fMRI scan (Figure 5 A and B). Figure 5C shows QC results in terms of spatial 

correspondence of the personalized FNs, reflecting the spatial similarity between personalized FNs and 

their group-level counterparts higher than those between unmatched FNs, i.e., each personalized FN 

had higher spatial similarity with the corresponding group-level FN than with others and the difference 

(delta spatial correspondence) was significantly larger than 0. The functional coherence of the 

personalized FNs was significantly higher than their corresponding group-level FNs’ (p value < 0.0001, 

via Wilcoxon signed-rank test) (Figure 5D).  

pNet also outputs a computation report in HTML format to facilitate visual examination of the 

computational results. As illustrated in Figure 6, the report includes a brief description about the dataset, 

main settings of the workflow, visualization results of both group-level and personalized FNs, and QC 

results. For fast web page navigation, visualization results of FNs are stored at a lower resolution and 

the report provides visualization of randomly selected personalized FNs while all personalized FNs can 

be visually checked through hyperlinks to individual reports.  
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Figure 5. Illutration of results of the HCP dataset with 17 FNs, including three select group-level FNs (A), their 

corresponding personalized FNs obtained from a single fMRI scan (B), as well as QC results of spatial 

correspondence (C) and average functional coherence of group-level and personalized FNs of individual fMRI scans. 
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Figure 6. HTML-based computation report. pNet generates an HTML-based report for users to navigate through 

the results. It consists of basic information of the dataset and workflow, visualization results of group-level FNs, and 

examples of personalized FNs. All personalized FNs are accessible via hyperlinks. Results of quality control are 

also included in the report. 

 

Discussion 

 We introduced pNet v1.0, a user-friendly toolbox designed for computing personalized FNs from 

fMRI data. This toolbox encapsulates two personalized functional network modeling methods, SR-NMF 

and GIG-ICA, with native source code in both MATLAB and Python. pNet v1.0 is designed primarily to 

assist neuroscientists, psychiatrists, and researchers, with interactive visualizations. pNet offers multiple 

user interfaces, including a GUI, an interactive command-line based step-by-step guide, and scripts for 

computation on both personal computers and high-performance clusters. In addition, the modular design 

of pNet v1.0 allows for accommodating future expansions for other fMRI data formats, brain 
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decomposition and statistical methods, ensuring its continued development and expandability. We have 

demonstrated its effectiveness and user-friendliness by testing it on two fMRI datasets.  

 

Comparisons with other similar toolboxes 

 Several widely used toolboxes offer similar functions for computing functional networks from fMRI 

data, such as GIFT, MELODIC, and HINT (Beckmann and Smith, 2004; Correa et al., 2005; Lukemire et 

al., 2020). These toolboxes follow a similar workflow that encompasses the loading of an fMRI dataset, 

setting up the computation parameters, generating FN results, and providing visualizations through a 

GUI. Despite their methodological differences, we briefly compare them to our toolbox regarding data 

format support, visualization options, and quality control (Table 1). With the increasing diversity in the 

fMRI field, a variety of data formats have been introduced to facilitate data analyses. Surface-based data 

have been developed to significantly reduce data size and benefit from precise surface-based image 

registration (Glasser et al., 2013). Our toolbox supports CIFTI, MGH, MGZ, and the MATLAB based 

formats. pNet also allows customizable data organization to support multi-cohort datasets. Users can 

easily modify the file selection in the GUI to curate the desired dataset, allowing for the removal of 

unwanted scans or those of insufficient quality. 

Recognizing the growing need for both automatic and customizable visualizations of FNs, pNet 

offers two unique features in addition to common interactive display in GUI. Firstly, it includes 

preconfigured visualization figures saved in the result folder, allowing users to visually examine group-

level and personalized FNs in GUI, HTML-based reports and result folders. Secondly, it features a 

synchronized display for swift comparisons between group-level and personalized FNs. Uniquely, our 

toolbox integrates quality control directly into brain decomposition methods, and provides an additional 

quality control in the report. Users can also examine the quality assurance indices in the quality control 

for comprehensive information. In addition, pNet provides HTML-based reports to navigate through the 

results without using the toolbox, enhancing user-friendliness and reproducibility. 

 

TABLE 1 Comparison of the main features of the available toolboxes 

 GIFT MELODIC HINT pNet 

Interface GUI, command GUI, command GUI, command GUI, command 

Standalone software × ✓ × ✓ 

Volumetric format  2 2 1 2 

Surface format × 2 × 4 

Preconfigured visualization × × × ✓ 

Synchronized display × × × ✓ 

Quality Control × × × ✓ 

HTML-based report × × × ✓ 
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Compatibility and computational requirement 

 pNet is available on both MATLAB and Python platforms. The MATLAB version requires MATLAB 

no older than R2021A and can run on macOS, Linux, and Windows systems, as well as Linux-based 

clusters. pNet also operates as a standalone software with the freely available MATLAB Runtime. All GUI 

version experiments were conducted on a 2019 Mac Pro, equipped with a 2.7GHz 24-core Intel Xeon W-

3265M CPU and 256GB memory. The compatibility of Linux and Windows systems was primarily tested 

using Parallel Virtual Machine, and the cluster-based scripts was tested on the RedHat Linux-based 

cluster (CUBIC) at the University of Pennsylvania. The Python version was tested with anaconda (Python 

3.8), which ensures a reproducible computation environment across different operation systems. 

pNet is designed to run on personal computers with limited computational resources, high-end 

workstations and HPC clusters. pNet uses a two-stage strategy for the computation of personalized FNs, 

which first computes or loads group-level FNs, then computes personalized FNs with group-level results 

as initialization. The group-level FN computation typically requires a large amount of memory space to 

load numerous fMRI scans. For instance, loading 100 resting-state fMRI scans from the HCP S1200 

dataset to compute FNs requires around 100GB of memory in total. In this case, we recommend 

allocating 100GB of memory for each bootstrap repetition. For computing the personalized FNs, fMRI 

data of single subjects will be loaded into memory each time. We recommend a memory requirement set 

as twice as the data size, plus the need to load the computation software (0.5-1GB). pNet also supports 

parallel computation, which typically requires a substantial amount of memory. The toolbox includes 

automatic hardware configuration detection in GUI mode and provides a rough memory usage estimation 

based on the CPU core number.  

 

Limitations and future works 

 Currently, pNet supports two personalized FN modeling methods. We will integrate more 

advanced brain decomposition methods, such as deep learning-based models (Li et al., 2023; Li et al., 

2018b), to further enhance the toolbox's capability. Currently, our Python version uses PyTorch 

(https://pytorch.org) to accelerate matrix computation with CPU, which can be further improved with GPU-

based acceleration in term of the computational efficiency. 

 

Conclusions 

pNet offers user-friendly functions for computing  personalized FNs from fMRI data. This toolbox 

delivers an integrated solution for computation, visualization, quality control, statistical analyses, 

significantly simplifying and enhancing research in this domain. 
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