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Abstract

Biochemical reaction networks perform a variety of signal processing
functions, one of which is computing the integrals of signal values.
This is often used in integral feedback control, where it enables a
system’s output to respond to changing inputs, but to then return
exactly back to some pre-determined setpoint value afterward. To gain
a deeper understanding of how biochemical networks are able to both
integrate signals and perform integral feedback control, we investi-
gated these abilities for several simple reaction networks. We found
imperfect overlap between these categories, with some networks able
to perform both tasks, some able to perform integration but not inte-
gral feedback control, and some the other way around. Nevertheless,
networks that could either integrate or perform integral feedback con-
trol shared key elements. In particular, they included a chemical species
that was neutrally stable in the open loop system (no feedback),
meaning that this species does not have a unique stable steady-state
concentration. Neutral stability could arise from zeroth order decay
reactions, binding to a partner that was produced at a constant rate
(which occurs in antithetic control), or through a long chain of cova-
lent cycles. Mathematically, it arose from rate equations for the reaction
network that were underdetermined when evaluated at steady-state.
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Introduction

Many biochemical reaction networks behave as signaling systems, in which
there is an input, some signal processing, and an output. These networks can
perform a wide variety of possible functions, such as simply duplicating the
input value to the output [1-4], converting an input pulse with some given
dose to an output with a proportionately scaled duration [5], and converting a
graded input to a switch-like output [6-8]. In addition, several networks have
been identified that are able to integrate the input signal over time [9, 10].

Signal integration is particularly useful when used as a component of inte-
gral feedback control (Figure 1). Here, a system has some setpoint value,
whether from an external input or internal parameters, to which its output
always returns. It achieves this by integrating the difference between its actual
output and setpoint value and then adjusting the pathway input in response.
While all types of negative feedback methods adjust the system output to
more closely equal the setpoint value, integral feedback control is notable for
being able to bring the system output to exactly equal the setpoint, even with
constant disturbances.
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Fig. 1 Block diagram of integral feedback control. The system output responds to
changes in the input but always returns afterward to exactly match the value of the setpoint.

Integral feedback control has been widely used in engineering applications
for nearly a century [11], but wasn’t investigated in biochemical systems until
relatively recently (see reviews [12-15]). This work largely began with research
into E. coli chemotaxis signaling (Figure 2A). E. coli bacteria perform a biased
random walk of forward “runs” that are separated by random “tumbles” in
order to produce a net motion toward nutrients and away from repellents
[16-19]. As the bacteria swim, they respond to changes in their surrounding
nutrient concentrations by changing their tumbling likelihood, but they then
adapt to these changes over the next few minutes to allow them to accurately
respond to additional changes. This adaptation was found to operate through
integral feedback control, in which the bacteria integrate the difference between
their current tumbling tendency and their setpoint tumbling likelihood, which
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is stored internally as methyl groups bound to chemotaxis receptors, and then
use this integral to adjust their tumbling probability [20, 21]. The adaptation
is termed “perfect adaptation” if the controlled parameter returns exactly to
its setpoint after perturbation [20].
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Fig. 2 Examples of biochemical integral feedback. (A) Schematic of E. coli chemo-
taxis control. The dashed box represents receptor (Tar protein) states, where asterisks
represent ligand-bound receptors and numbers in parentheses represent the number of methyl
groups bound to a receptor. CheR (top) methylates receptors, while phosphorylated CheB
(bottom) demethylates receptors. Receptor activity, depicted by shading, decreases with lig-
and binding and increases with methylation. Active receptors phosphorylate CheY to CheYp
(right), which is the system output, and also phosphorylate CheB to CheBp, which provides
negative feedback. (B) Flux-restriction control. The concentration of E responds to changes
in X but always returns to the same steady-state value afterward due to integral feedback
through P. (C) Antithetic integral control. This maintains a constant concentration of Yn,
which responds to changes in Y1, or other species between Y1 and Y, but always returns
to the same value afterward.

Since the discovery of integral feedback control in FE. coli chemotaxis,
several other biological examples have been identified. They include yeast reg-
ulation of cell volume despite perturbations by osmotic shock [22], mammalian
homeostasis of blood glucose levels during exercise [23], dairy cow maintenance
of blood plasma calcium levels despite large calcium fluxes that occur dur-
ing milk production [24], and nitrate homeostasis in plants despite variations
in soil nitrate and environmental conditions [25, 26]. Presumably, many other
homeostatic mechanisms are also based on integral feedback control.

Theoretical work on biochemical integral feedback control has generally
focused on two classes of systems. The first, called Type I [27], relies on
reactions with zeroth order kinetics, meaning that their reaction rates are
independent of their reactant concentrations; enzyme-catalyzed reactions with
saturated enzymes are an example. Figure 2B shows a particularly simple
example of a Type I mechanism, based on an example published previously [21],
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which we call a flux-restriction integrator. Here, P is formed with first order
kinetics, meaning that the reaction rate is proportional to the concentration
of E, and is degraded with zeroth order kinetics. As a result, its concentration
is effectively the integral of the difference between the E concentration and
a setpoint that is determined by these two reaction rates; we investigate this
result more thoroughly below. In its role as a feedback controller, an increased
level of P imposes increasing suppression on the production of E until it has
been restored to its steady-state value. Similar mechanisms can also perform
integral feedback control in gene regulatory networks [28].

The other class, called Type II [27], are those that include two species
that bind to each other to create an inactive product. This approach, shown
in Figure 2C, is often called antithetic integral control [29-31]. Because the
two species, shown as Z; and Zs in the figure, bind to each other in a one-to-
one ratio, any excess of either species represents the integral of the difference
between their net production rates. Feeding this integral back into the con-
trolled system, in this case in the arrow from Z; to Y, creates negative
feedback control that maintains the output, in this case Y,, at its setpoint
level. Antithetic feedback control, although not named this way at the time,
was used to linearize the dose-response function of gene expression in yeast
cells [32]. It has also been used as the foundation for an ultrasensitive molecular
controller [33].

A related body of work focuses on which biochemical systems can exhibit
perfect adaptation [34, 35]. Through an exhaustive search of three-node net-
works, in which each node was an enzyme-catalyzed covalent cycle between
inactive and active states, Ma et al. identified two classes of networks that
exhibit adaptation [36]. One performs negative feedback, which works through
essentially the same integral feedback control methods described above and
explored here, and are robust to modest parameter variations. The other class
performs negative (incoherent) feedforward, in which two network paths each
transmit the same signal but at different rates and with opposing signs; this
leads to a transient response and then adaptation, and relies on precisely tuned
parameters. These same classes were also found to apply to more complex net-
works [37] and, by using more systematic methods, were determined to be the
only biochemical solutions to adaptation [38, 39]. In recent experimental work,
Jones et. al. [40] showed that a single phosphorylation cycle is sufficient for
creating negative feedback by building a negative feedback gene expression sys-
tem in mammalian cells using engineered versions of the E. coli EnvZ/OmpR
two-component regulatory system. Their system would be able to perform
quasi-integral feedback control with appropriately tuned parameters.

Here, we investigate the Type I and II classes of integrators, along with
several variants. We show that the two classes of integrators are actually more
similar than they intially appear. Many of the variants explore the influences
of covalent cycles, such as protein molecules that can be phosphorylated or
dephosphorylated, in order to investigate their possible roles in integral feed-
back control. We find that some types of networks, both with and without
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cycles, can compute integrals, and some are able to perform integral feedback
control, but that there is imperfect overlap between networks with these two
abilities. Nevertheless, there are key similarities. In particular, we find that an
essential property of either integrating or performing integral feedback control
is the presence of a species that is neutrally stable in the open loop system,
meaning that its concentration does not tend toward any specific value. There
are several ways to create such a neutrally stable species, including with zeroth
order decay reactions, binding to a partner that was created at a constant rate,
or with a long chain of covalent cycles.

Results

Networks that exhibit perfect adaptation

1. Fluz-restriction network. Figure 3A shows the flux-restriction network. The
top row of the diagram, from X to E and then on to degradation, represents
the main pathway, while the other portions represent the integral feedback
controller. The dotted line represents negative feedback, which is removed for
the open loop configuration of this network and included for the closed loop
configuration. The v values represent reaction rates; we assume here that v
obeys Michaelis-Menten kinetics with maximum rate V; and Michaelis constant
K,n1, and v is a first order reaction with rate constant ko. The k values
represent reaction rate constants. We assume that k; is first order and kg4
zeroth order, where these subscripts represent the formation and degradation
of P, respectively.
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Fig. 3 Flux-restriction network. (A) Network diagram. (B) and (C) Responses of open
and closed loop configurations of this network to step inputs, with X/10 in green, E in blue,
and P in red. The dashed line represents E°. Parameters: V1 = 3, K1 = ke = ky = kg = 1.
X is 2 initially and stepped up to 6 at ¢ = 0. For the open loop, P(0) = 0; for the closed
loop, K; = 1. See SI 1 for simulation code.

For both the open and closed loop configurations, the dynamics of P are
given by )

P=FkiE —kq, (1)

where the dot represents a time derivative and species names in italics represent

their concentrations. Setting this to zero and solving for F yields the value of
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FE for which P does not change over time,

kg

Eo=1
kp’

(2)

where the degree symbol indicates the steady-state condition. In the open loop
configuration, F is only equal to E° for a specific X value. If X has that
value, then FE settles to E° and P does not change, as shown in Figure 3B
for t < 0. Increasing X, accomplished with a step increase at ¢ = 0 in Figure
3B, increases F to a new higher stable value, which causes P to be formed
faster than it is degraded, so its concentration increases continually. This P
concentration is found by integrating eq. 1 from some arbitrary initial time,
to, to the current time, ¢,

P(t) = P(to) + k; / (B@) - Bt (3)

to

This shows that P(t) represents the integral of E(t) — E° (scaled by k). The
initial P concentration, P(t(), is not expanded into other variables because it
is unconstrained by this system. In this open loop configuration, there is no
unique stable fixed value for P, due to the fact that no P terms appear in eq.
1 or any other rate equation for this system; in other words, P is neutrally
stable.

Closing the loop does not change egs. 1 to 3, so P is still the integral of
E(t) — E° and the steady-state value for FE is still the same E° value, which
is now called its setpoint value. In this case, increasing X, shown in Figure
3C, increases E above E°, causing P to increase, which then feeds back to
decrease E. The strength of this negative feedback continues to increase until
F has been reduced back down to exactly equal E°, meaning that this network
exhibits perfect adaptation. Showing this analytically requires nothing more
than eq. 2, which shows that the steady-state value of E is independent of
X (provided that the system is stable, which it is, described below). In the
closed loop configuration, P is no longer neutrally stable, but has a unique
steady-state value that is whatever it needs to be to make E exactly equal to
E° (given below in eq. 6).

To show that the steady-state solution given by eq. 2 is stable, we start with
the rate equation for E. E is produced from X by Michaelis-Menten kinetics,
and we assume non-competitive inhibition from P, so its concentration varies

over time as VXK
E= 12 — koF — ktE, 4
(Ko + X)(K; +P) 20 @

where K; is the inhibition constant. Assuming small pertubations, this
equation linearizes about the steady state condition as

L Gl )
E=BE.P)+ 22 E-E)+ 2] pop
E )38 ol LT I )
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ViXK;
(K1 + X)(Ki + P°)?

— (ks + ky)(E — E°) — (P—P). ()

We also set eq. 4 to zero and solve for P to find its steady-state value, yielding

Viky X
P =K; —11. 6
(ks + k) (s & X ©)

Substituting this P° solution into the denominator of the second term of eq. 5,
differentiating both sides with respect to time, and substituting in for P using
eq. 1 yields the second order differential equation

(ko + kf)?k% (K1 + X)
kiViK; X

0=E+ (ks +kp)E + (E — E°). (7)

From dynamical systems theory, a differential equation with the form & +
2¢wo® + wiz = 0 produces oscillations upon perturbation with natural fre-
quency wy and damping ratio (. Eq. 7 has this form, from which we find that
the natural frequency and damping ratio of E are

- Ko+ X
wo = (kg + ky)ka VKX (8)
1 VKX
€= 2kg V K1 + X (9)

This damping ratio is always greater than zero, showing that any oscillations
will damp out over time and the system will settle to its new stable steady
state.

A final comment about the flux-restriction network is that it only provides
integral feedback control if the X input is above some minimum threshold.
Below this level, E is not produced quickly enough, relative to its degradation
rate, to stay at its setpoint level. Another way of seeing this same result is that
the P concentration is required to be non-negative for physical reasons, with
the result that it is only able to decrease the value of E, whereas an increase
would be needed for E to stay at its setpoint. The minimum threshold for X
is found by setting P° to 0 in eq. 6 and solving for X, yielding the constraint

x> Koika(ke + ky)
kal — kd(k‘z + k‘f)

(10)

The X concentration can be set below this value, but then P =0 and E < E°,
showing that the network fails to maintain its setpoint level.

Figure 4 shows several variations on the flux-restriction network that also
enable perfect adaptation through integral feedback control, and that bring
up interesting points.
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Fig. 4 Variants of the flux-restriction reaction network. All of these exhibit perfect
adaptation for the E concentration through integral feedback control, with the integral stored
in P (or P; and P3). Dashed lines represent feedback; they are removed for the open-loop
configuration and present for closed loop.

1. Extra pathway steps and general feedback mechanism. We investigated
the effect of adding extra pathway steps within the negative feedback loop,
and also of having different negative feedback mechanisms, by generalizing the
production rate of E to the function v; (X, P). This generalizes eq. 4 to

E =uv(X,P)— (ky + ko)E. (11)

These extra steps don’t affect the validity of eq. 1, so this network also exhibits
perfect adaptation for E, with the same setpoint value.

Using the same linear analysis as above, this network’s natural frequency
and damping ratio are

B dv1(X, P)
wo = \/ Mo | (12)
k?f + ko
= 1
(== (13)

If the partial derivative in the the natural frequency result is positive, meaning
that increases in P create faster production of E, then this represents positive
feedback. In this case, the natural frequency is imaginary, implying that E
would change exponentially over time up until some natural limit is encoun-
tered, such as some precursor concentration being driven to zero. In contrast,
a negative partial derivative implies that an increase in P slows the produc-
tion of E, which is negative feedback. In this case, the frequency is real and
the damping ratio is necessarily positive. This shows that negative feedback
always leads to a stable steady-state solution, even with the extra pathway
steps and regardless of the precise feedback mechanism.
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In most cases, there is a one-to-one relationship between the steady-state
concentrations of the new pathway species and that of E, where E can be
found from those concentrations or vice versa. If this is the case, then the fact
that E always returns to E° implies that the new species concentrations must
also return to their setpoints. In other words, all parts of the pathway that
are inside the negative feedback loop, up to and including E, exhibit perfect
adaptation.

We did not include these extra pathway steps in subsequent networks,
although these results show that adding them doesn’t affect either the ability
of a network to exhibit perfect adaptation or its stability. They also show that
the precise feedback mechanism is unimportant, so long as an increased value
of P causes a decrease in F.

1II. A positive feedforward loop. Network III replaces the negative feedback
loop that restricted production of E with a positive feedforward loop that
enhances degradation of E. To do so, we replaced the rate equation for E, given
in eq. 4, with

E=kX —kEP—kE. (14)
This feedforward loop still qualifies as a negative feedback effect because
increased P concentrations cause a decrease in E concentrations. This doesn’t
change egs. 1 to 3, so the setpoint is unchanged, P still represents the integral
between E and E°, and the system still exhibits perfect adaptation.

On the other hand, some things do change. First, this pathway typically has
a higher mass throughput, potentially requiring greater biosynthesis. Whereas
Network I always restricts production of E as much as possible, thereby having
a low throughput, this network has a constant production rate of E and then
degrades the excess, typically giving higher throughput (an exception arises if
X is very low, in which case this one can have less flux due to reduced degrada-
tion through the ko reaction). A consequence of the larger mass throughput is
that this network typically responds to perturbations more slowly. This result
can be found from the same linearization treatment as before, which shows
that the natural frequency and damping ratio are

wo =V kgk’d (15)
kiky X

= e 16

¢ 2kgvkokq (16)

Comparing this damping ratio to the one in eq. 9 shows that this one increases
without limit as X increases, whereas the prior one only increases slightly and
then levels off. As a result, this positive feedforward system becomes sluggish
at high input values, exhibiting perfect adaptation, but only very slowly and
with greater deviation first. This slow response can be seen by comparing
Figure 5A, for this network, with Figure 3C, for the flux-restriction network.
1V. E is an enzyme and controller reaction rates are generalized. In Network
IV, the E species acts as an enzyme for the production of P, rather than as a
reactant. By itself, this makes no significant difference to the network function.
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Fig. 5 Dynamics of flux-restriction network variants. Where shown, X/10 is in
green, E is in blue, P (or Pp) is in red, and P» is in purple. (A) Response of Network IIT
to a step input, showing slow adaptation. (B) Response of Network IV to a step input,
showing that P is a transformed version of the integral. (C) Response of Network VI with
open loop (i.e. just a single cycle), to a step input in F, showing a truncated integral output.
P(0) = 0.5, Piot. = 2. (D) Steady-state of Network VI with closed loop as a function
of the X input, showing truncation effects. K; = 2, Piot. = 2. (E) Response of Network
VII (antithetic control), with open loop, to a step input. P;(0) = P2(0) = 1. (F) Same
as panel E but with closed loop. Parameters, as appropriate and except as noted above:
ki =k =ky =kg=K; = Km1 = kpina = 1, V1 = 3; at t = 0, X was stepped from 2 to
6 in (A) and (B), and from 1 to 3 in (E) and (F), and E was stepped from 1 to 1.5 in (C).
See SI 2 for simulation code.

In particular, it doesn’t change the dependence of P on E, so it doesn’t affect
the ability of the network to adapt perfectly.

This network also generalizes the reaction rates for the production and
degradation of P in order to explore their constraints. These changes modify
eq. 1 to )

P =v(E) —vq(P). (17)

Setting the left side to zero yields the steady-state solution for F,
E° = v} (va(P)), (18)

where the “—1” superscript denotes the inverse function. This result shows that
FE” is a function of P°. However, a dependency between these concentrations is
inconsistent with perfect adaptation because perfect adaptation requires the
P° value to adjust in response to different X input values in order to provide
effective feedback (see eq. 6), but also for E° to be independent of X. The only
way to maintain perfect adaptation occurs if vg is independent of P, meaning
that it represents a zeroth order reaction. Thus, we return to this assumption
and specify that vg(P) = kg, from which E° becomes

E° = v} (ka). (19)

Now, the steady-state of E is independent of X (including via P), so the
network exhibits perfect adaptation, as before.
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Considering the v¢(E) function, the integral of the P rate equation is now

P(t) = / [vs (E) — vy (E")]dt’ (20)

to

If v;(E) is a first order reaction, as it was in Networks I to III, then P(¢) is
proportional to the integral of E(t) — E°. However, vs(E) can also be some
other function without affecting perfect adaptation. In this case, P(t) would
not necessarily be proportional to the integral of E(t) — E°, but would be the
integral of some transformed version of F. For example, Figure 5B shows the
response of this network when v¢(E) = kyE?, showing that P is no longer
the integral, but that the system still adapts perfectly. Thus, integral feedback
control does not need to use the actual integral of the error to create perfect
adaptation, but only some transformed version of that integral.

V. Adding a cycle to the integrator. Network V includes a new species, S,
which is produced and degraded, and can also be converted to and from P
via a cycle. We left all reaction rates general here, with the exception of the
reverse reaction rate from P to S, which is set to the zeroth order reaction rate
constant, ky. The rate equation for P is

P =v(S) - kq. (21)
At steady-state, this implies that
5° = vyt (ka) (22)

This is independent of all other concentrations, implying that the S concen-
tration has its own fixed setpoint value that it returns to after perturbations.
The rate equation for S is

S = v4(E) — vp(S) + kg — vf(S). (23)

The last two terms equal to each other because P is at steady state, which
implies that
B° = vg" (s(S°)). (24)
Using the result that S° is constant implies that E° is constant as well; its
independence of X and P shows that this network exhibits perfect adaptation.
This adaptation is quite robust, in that most rate constants and even the
forms of the rate equations were left general; the sole required assumption
is that conversion of P to S needs to be zeroth order with respect to the P
concentration. As before, P(t) stores the integral of a transformed version of
the deviation of E away from E°.
On futher inspection, this network can be seen to be essentially identical
to Network II, in which extra steps were added to the pathway inside the
negative feedback loop. Here, E and S are both within the negative feedback
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loop, so both adapt perfectly to their own setpoints. The only aspect that is
fundamentally different is that P is converted to S in this case rather than
being degraded. However, this has no impact because its loss rate is still zeroth
order.

VI. Cycle in a different orientation. Network VI explores a different
arrangement of the covalent cycle, this time with a conserved total amount
of S + P, which we denote P;,;.. We assume that both the forward and
reverse reactions of the cycle are zeroth order with respect to their reactant
concentrations (although the forward reaction rate depends on the enzyme
concentration, E). This network topology is similar to that for Network IV,
but differs in that P is both produced from and degrades to a species that has
a finite quantity, rather than an effectively infinite quantity. Nevertheless, this
difference doesn’t affect the validity of eqgs. 1 to 3 due to the assumption of
zeroth order reactions.

The conserved total amount of S + P has the effect that the integral has
a fixed upper limit, in addition to the fixed lower limit that was mentioned
earlier (eq. 10). Figure 5C shows this constraint for the open loop version of
this network, showing that a step input in E causes P to increase linearly for
a while, as expected from the integral relationship, but then stops when S has
been fully depleted.

The same limitation can affect the closed loop configuration. Here, the
network performs perfect adaptation so long as P is between 0 and P,,;., but
fails once P gets “pegged” to either of these endpoints. Figure 5D shows this
behavior by showing the steady-state values for £ and P as a function of X.
To determine the range of inputs that enable perfect adaptation, we return
to our assumptions that the v; reaction rate is a Michaelis-Menten reaction
with non-competitive inhibition from P and that the vy reaction represents
first-order degradation. These give the E rate equation as

VI XK;

b= (K1 + X)(K,; + P)

— koE (25)

Setting this to zero for the steady-state condition, substituting in either 0 or
P, for P to represent its physical limits, and rearranging yields the allowable
input range for X,

KipikokaK; < X< Konikoka(K; + Piot.) (26)
kiVi — kokqaK; kiVi — koka(K; + Piot.)
Beyond these limits, the steady state value of E either drops below or exceeds
its setpoint value. Whether this new constraint matters or not depends on
the parameter values. In particular, increasing P;,:. above a threshold value
reduces the denominator in the upper limit to become zero (or negative), in
which case the upper limit becomes infinite. In this case, this network behaves
essentially just like Network I, with no additional constraints.
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VII. Antithetic integral control. Network VII represents a simplified version
of antithetic integral feedback control, drawn so that it’s more easily com-
pared to the other networks. In contrast to the prior networks, this one does
not include any zeroth order degradation or conversion reactions, making it
appear to work by a different mechanism. However, it’s functionally very sim-
ilar because P; is produced at a constant rate, and P only decays through
its reaction with Py, with the effect that P; is effectively degraded at a zeroth
order rate.

The time dependence of this network is given by the rate equations

P = kg — kpinaPL Py
Py = kfE — kyinaP1 Py
E=FkXP — kE. (27)

The first two can be combined to show that the steady-state of E is independent
of X, and has the same relationship given previously (eq. 2),

kq
E°=—, 28
o (25)
once again showing perfect adaptation. The difference of the P; and P, rate
equations shows that P, — P; represents the integral of the error between the

FE and E°,
Py — P =kiE —kg=ks(E—E°)

Py— Py = AP(to) + ks / (B — B (29)

to

These results are analogous to those for the flux-restriction network, showing
essentially the same behavior for E and similar integration. The only significant
difference is that the integral of the error is contained in the difference P, — Py
rather than in the single species concentration P.

Figure 5E shows the response of the open loop configuration of this anti-
thetic integral control network to a step input in X. As usual, increasing X
causes F to increase; that then increases P, which binds to Py and causes its
concentration to decrease. Their difference increases as the integral of E above
its setpoint value, which quickly becomes a linear increase in P,. The closed
loop configuration, shown in Figure 5F, is similar initially, but the decrease in
P, then feeds back to decrease E, eventually returning it to its setpoint value.
As before, we investigated the stability of the steady state by linearizing the
differential equations for this network, finding that it’s also stable for all X
input values.
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Removing zeroth order assumption breaks perfect
adaptation

All of the networks investigated so far exhibit perfect adaptation in their closed
loop configurations, where this functionality relies on either zeroth order decay
reactions or an antithetic control system that has a zeroth order synthesis
reaction. To build a better understanding of this requirement, we modified
Network VI by replacing the zeroth order forward reaction in the covalent
cycle with a first order forward reaction.

VIII. Single cycle with first order forward reaction. Figure 6A illustrates
this modified network.

A Network VIl 14[B c

i Vg Closed loop
/k}'_:k‘ g 081 g Open loop
S, Pg '

Time Time

Fig. 6 Network VIII. (A) Network diagram, showing a cycle with first order formation
kinetics and zeroth order degradation kinetics. (B) Open loop response in which E is stepped
up (from 0.67 to 1.33), showing E in blue and P in red. P(0) = 0.5. (C) Closed loop response
in which X is stepped up (from 2 to 6), showing partial adaptation. Green represents X/15.
Parameters: ko = ky = kg = Km1 =1, V1 = 3, K; = 0.1, Piot. = 2. See SI 3 for simulation
code.

The S and P formation rates for this system are
S=—-P=ky—ksES. (30)

Whereas the open loop configuration of Network VI (the same topology, but a
zeroth order formation reaction) had neutrally stable S and P concentrations,
that’s no longer true here. Instead, the open loop configuration of this network
has a single stable steady-state. Considering E as the input to the cycle, the
steady-state for P is

k
POZPtOt.*kf;JEJ. (31)

The existence of this stable steady state turns out to remove the ability of this
cycle to act as an integrator. To show this, if this cycle were an integrator,
then a stepwise increase in E would cause P to increase linearly over time,
as was shown in Figure 5C. However, now P increases non-linearly, and levels
off at the new steady-state, shown in Figure 6B. This same result is found
analytically by solving eq. 30 for a step increase of E from Ey to Ey + AFE,
and then solving for P(t). We assume that P starts at its steady-state value,
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P°, and use the identity that P(t) = Piot. — S(t), yielding

AE(Pio;. — P°) .
P(t) = po 2 \tote 7 ) (q _ ot/ )
(*) T T B+ AE ( € ) ’ (32)

where

1
"7 k(o + AE)
Thus, P(t) asymptotically approaches its new steady-state with exponential
kinetics, where 7 is the time constant of the exponential. Of course, expo-
nentials are linear over very short times, so it’s legitimate to say that P
does integrate E over times that are much less than 7; however, this integral
information decays rapidly as P approaches its new steady-state.

The closed loop version of this network exhibits partial adaptation, but not
complete adaptation, as shown in Figure 6C. Upon a step increase in X, the
concentration of E increases, which converts S to P. This negatively feeds back
to vy, creating a decrease of E. However, the feedback is insufficient to reduce
E back to its initial value. Solving for the steady state of P in the closed loop
configuration yields

(33)

ViXkpPio. — koka(Kpmi + X)

P =K; 34
KViXks + kokq(Km + X) (34)
This is substituted into eq. 31 to yield
K1 Xk¢+ kokg(Kp1 + X
B — 1 Xkyp + kokg(Km1 + X) (35)

B kka(Ki + PtotA)(Kml + X)

The salient point of this equation is that E° is a function of X, meaning that
this network does not exhibit perfect adaptation.

Multicycle networks improve integration but not perfect
adaptation

We found that the poor integration abilities of the single cycle can be improved
by extending it to multiple cycles in series, such as the 5 cycles shown in Figure
7. We assume the same rate constants for each cycle, including forward reac-
tions that are either general (v;(S;)) or first order (ks) and reverse reactions
that are zeroth order (kgq).

The rate equations for the system, in both general and more specific forms,
are

S =kq—vs(S1) =kqg—k;ES;
Si = ’Uf(Sifl) — ’Uf(Si) = kaSi,1 — ]CfESi, 2 § ) S n

P =wvy(Sn) — ka = ksES, — ka, (36)
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Fig. 7 Network IX, open loop. A diagram of an integrator network with 5 cycles in its
open loop configuration.

From these equations, the steady-state solution has the same concentration for
each of the S; species, which is

kq

S1° =8 =---=8,"=0v; (kg) = —=.
! ki E

(37)

The steady-state concentration for P is not constrained by the differential
equations, but comes from an assumption that the total concentration of the S;
species plus the P species is P;,:.. This gives the steady-state P concentration
as

P =P — Y Sy (38)
=1

Whereas the analogous network with a single cycle (Network VIII) could
be investigated to yield the response to a step input (eq. 32), the additional
cycles in this network make it too complicated to solve analytically. Thus, we
show instead that the network’s ability to integrate improves with increasing
numbers of cycles in four different ways, each of which provides good evidence
but none is complete on its own.

First, Figure 8 compares numerically computed responses of networks with
a single cycle (top row) and five cycles (bottom row) to various inputs. The left
column of the figure investigates a step increase in E, for which the integral is
a linear increase. In the single cycle network, P transitions to a new steady-
state with exponential kinetics (eq. 32), which has substantial curvature at all
times, while the 5-cycle network is more nearly linear for short times, before
eventually leveling off as well. The middle column investigates a brief pulse in
FE, acting almost as a Dirac delta function, which integrates to a step function.
Here, the output of the single system rises almost instantaneously, as expected
for an integral, but then decays with the same exponential behavior as before.
However, the 5-cycle network keeps the increased output initially, before it
decays as well. The right column investigates a sinusoidal input function, where
the integral is a negative cosine, meaning that it’s phase delayed by 90° from
the input. Here, the output of the single cycle network has a 35° phase shift,
showing that the output nearly tracks the input rather than integrating the
input. On the other hand, the output for the 5-cycle network exhibits the full
90° phase shift, showing good integration.

Second, we explain the improved integration from a physical standpoint.
Figure 9 shows a fluid flow analogy for the 5-cycle system, in which water from
tank S; flows to tank S;, and on down to tank P, and water is also pumped
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Fig. 8 Responses of open loop one-cycle and multi-cycle networks. The top row
represents Network VIII, with 1 cycle, and the bottom row represents Network IX, with 5
cycles. E is in blue, P is in red, and S is in purple, with light purple for S; and dark purple
for S5. (A and B) Response to a step input. (C and D) Response to a pulse input. (E and
F) Response to a sinusoidal input. Parameters: ky = kg = 1, P(0) = 0.5, and Piot. = 2 for
single cycle and 8 for 5-cycle; for panels A and B, E stepped up from 0.667 to 1.667 at t = 0;
for panels C and D, E started at 0.667 and was given a pulse with area of 1 unit at ¢ = 0;
for panels E and F, E oscillated as 0.667 4 0.1sin(0.5t). See SI 4 for simulation code.

uphill from each tank to the previous one. This is a close analogy to the system
because the forward reactions depend on their substrate and E concentrations,
while the reverse reactions proceed at a constant rate. This system settles
to an initial steady-state with equal concentrations in each of the S; tanks.
When E undergoes a stepwise increase, the flow from each S; to the next one
is increased. At each S; with ¢ > 1, this increases both the influx and eflux
by the same amount, so the fluxes balance out and the concentration of S;
doesn’t change. However, the increased eflux depletes S, which is an effect
that casades down the chain gradually, lowering the level of each S; in turn.
While this process is occuring, the concentration of P continues to increase
linearly until the wave of depletions finally catches up to it, at which point P
stops increasing linearly and levels off at its new steady-state. These qualitative
results agree with those that are shown in Figure 8B. More generally, the
longer the chain of cycles that precede P, the longer that depletion is delayed
and the longer its concentration increases linearly.

Similar arguments apply to other input functions, including the pulse and
sinusoidal ones. In each case, the chain of tanks delays the effect of the deple-
tion at S; from influencing P. As a result, the input to P is nearly independent
of S; for a period of time, during which this influx acts as a zeroth order reac-
tion. For a sinusoidal input with a fast enough frequency, the depletion effect
is sufficiently delayed that S,, barely changes over time, with the result that
the upstream depletion never has a significant effect on the influx to P.

Third, we investigate the concentration of P immediately after a step
increase in E, going from Ey to Ey + AE at t = 0T, showing that the P
increase becomes more linear with more cycles. The first derivatives of .S; and
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Fig. 9 Fluid flow analogy for multicycle network. In this analogy, forward reactions
have rates that depend on their substrate and enzyme concentrations, while reverse reactions
have constant rates.

P at t — 0" are computed from egs. 36 to be

: AEky,
Yy @
S;(07) =0, 2<i<n
: AEE
P(0) = <. (39)
Ey

As expected, the loss from 57 is equal to the gain at P, while the intermediate
species are unaffected. Higher time derivatives are more complicated to com-
pute but are derived in Appendix A. The result is that higher time derivatives
of P vanish as t — 0", up to and including the nth derivative (for n > 1),
where n is the number of cycles in the network. This means that P(t) increases
more linearly with more cycles, again suggesting that more cycles improves its
integration of E.

Fourth, we consider an arbitrary change of F over time, provided that
it’s small, and show that P approaches the integral of F as the number of
cycles increases. As before, we assume that the system is at steady-state for
t < 0, with steady-state values S;° given by eq. 37, and initial product con-
centration P°. At ¢ = 0, the enzyme concentration starts changing in a small
time-dependent manner, so E(t) = Eg+3dFE(t), with 0E(t) < Fy. The response
of the system is then, to good approximation, a first order perturbation of its
initial steady state value, giving S;(t) = S;° + 6S;(t) and P(t) = P° 4+ §P(t).
The perturbation of S; can be linearized as

0S;
055 + 9B

=27, SE, (40)

{Sk°}

{Sk°}

where the {Si°} subscripts indicate that the partial derivatives are evaluated
at the initial steady-state. Substituting in the general forms of the rates from
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eq. 36 yields

~9vy(S1) 0vy(Sh)

o _ B 5
051 5, 051 5E 1)
g _0vs(Si-1) v (S;) vy (Sj-1)
0S; = 1258 1 — 2255 Ly )
R T R To
dvs(S;)
These simplify with the result, evaluated at steady-state,
(i), qo_ ka
We also define B0s(S;)
LA
= =k+E). 4
« 8S] k‘f 0 ( 3)

In the language of metabolic control analysis [41], « is essentially a control
coefficient. Alternatively, 1/« is the time constant for the change in S; due to
the changes in v that are produced by changing E, which is consistent with
the fact that o &~ 1/7. These derivatives simplify eqgs. 41 to

; ky
351 = —adS; — E—O(SE
65; = adS;_1 — ads;. (44)
Taking the Fourier transform of these equations (defined as f(w) =
\/% [, f(t)e~*dt and recalling that f(w) = iwf(w)) yields
N kq
0= (a+iw)iS(w) + =dE(w)
Eq
0=—adS; 1(w) + (o +iw)dS;(w), (45)
which can then be solved to get

p __kdéﬁ’(w) ak-t
O5) = T arw)E

(46)

The variation of P can be obtained using mass conservation as JP(t) =
— > h_10Sk(t). Therefore,

§P(w) = — Zn: 55 (w)
k=1
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:W[1—< - )n] (47)

iwkEy o+ iw

The term in parentheses, o/(a + iw) has a magnitude that is less than 1, so it
approaches zero as n increases toward infinity. In this limit,

. ka0 E(w)
0P(w) = ———= 48
(W) = 2 (19)
which inverse Fourier transforms to yield
_ ka ! AP
O0P(t) = — | SE(t)dt (49)
Eo Jo

Thus, we see that the P species integrates JFE over time in the limit of a
large number of cycles. This result holds no matter what the time depen-
dence of §E(t) is, provided that §E(t) is small enough that the linearization
approximation carried out here is reasonable.

Together, these four arguments provide strong evidence that the multicycle
system acts as an accurate integrator of the input signal. However, as with
Network VIII, it still settles to a new steady-state eventually, at which point it
stops integrating. In this case, the characteristic time is around n7, where the
integral is reasonably accurate for substantially shorter times and the steady-
state is a better description at substantially longer times. The characteristic
time can be seen to be n7 by the fact that each cycle has time constant 7 and
the cycles are in series.

This reversion to the steady-state result turns out to be critical when con-
sidering the ability of the system to perform integral feedback control. When
this multicycle system is inserted into a negative feedback loop, shown in
Figure 10A, it functions similarly to the single cycle version shown in Figure
6C. In particular, the E concentration does adapt to disturbances, but only
partially. We solved for the steady-state concentration of E as a function of X

A. Network IX
X T/5 V2 [%] <
I Y N W W W
L0 N D2 4 5\/;

Fig. 10 Network IX, closed loop. (A) Diagram of Network IX, with 5 cycles. (B)
Response of the network to a step increase in X, showing incomplete adaptation. Green
represents X /10, blue is F, red is P, and purple is S;, with S; in light purple and S5 in
dark purple. Parameters: k2 = ky = kg = K; = K1 = 1, V1 = 3, X steps up from 2 to 6
at t = 0. See SI 5 for simulation code.

in the closed loop network by following the same method as before (eq. 35),
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yielding

B — KViXky + nkokq(Kpn1 + X)
kpko(K; 4+ Prot.)(Km1 + X)

Thus, despite the good integration ability of this system over short times, E°

is still a function of X, which shows that this network does not exhibit perfect

adaptation (except in the limit of n increasing toward infinity).

(50)

Discussion

These results show that both integral feedback control and signal integration
can be achieved by a wide variety of networks. These networks do not require
specific topologies, reaction mechanisms, or parameter values, but they do
require that one species, or a pair of species as in the antithetic control case, is
neutrally stable in the network’s open loop configuration. This species contains
either the value of the integral or some transformed version of the integral.
Closing the loop means that it’s no longer neutrally stable, but tends toward
the integral of the difference between the pathway output and its setpoint,
which then feeds back to reduce that difference. All species that are within the
negative feedback loop then settle to their setpoint values, which is necessarily
stable for small perturbations.

Even if a network does not have a species that is neutrally stable in the
open loop configuration, there are situations where it can still integrate signals
accurately over short time periods. However, it then loses its integral informa-
tion over longer times as it reverts to its stable concentration. In particular,
Network VIII computes approximate integrals over very short time periods
and Network IX computes more accurate integrals over longer time periods.
This improved performance with more cycles can be seen as arising from its
species that contains the integral (P) as being closer to being neutrally stable;
it still reverts toward a stable fixed point, but this reversion is delayed by the
chain of cycles which allows it to behave as though it is neutrally stable for a
longer time period.

Most of the networks investigated here gave a species neutral stability
through one or more zeroth order reactions. These were typically degradation
reactions for the species that contained the integral information. However,
this essential zeroth order reaction was a production reaction in the antithetic
control case, creating a species that then bound to and caused decay of a
different species; these two species together contained the integral information.

The importance of these zeroth order reactions can be seen through a
mathematical argument. If there are m internal species, then there are m rate
equations. At steady-state, these turn into m equations that can be solved for
the m steady-state concentrations, typically leading to a unique solution for
each species. However, if a species only decays through zeroth order reactions,
then its concentration doesn’t appear in any of the steady-state equations,
making them underdetermined; in that case, the steady-state concentration
for that missing species is undefined, meaning that it’s neutrally stable. This
argument is closely related to a theorem proved by Shinar and Feinberg,
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which shows that reaction networks that have a deficiency in the reaction net-
work, computed from a graph theoretic treatment, are able to exhibit perfect
adaptation [42].

This same logic makes sense of the differences between Networks VI and
VIII, of which the first has two zeroth order reactions and integrates input
signals while the second has one zeroth order reaction and fails to integrate.
In these cases, there is still one rate equation for each internal species, but
there is also a conservation law, stating that S+ P is constant, which serves as
an additional equation. To make the system underdetermined by one degree
of freedom, two species need to have zeroth order reactions. Similar logic also
explains how the antithetic network functions. In its open loop form, the P,
and Ps species only occur in the rate equations as the product P;P,, and
never as separate species or in any other combinations. As a result, the system
of steady-state equations for this network are again underdetermined by one
degree of freedom, which creates neutral stability.

Looking back at the previously published networks that exhibit perfect
adaptation through negative feedback, described in refs. [36, 37, 40], shows
that they function in the same manner as well. They also require zeroth
order reactions, typically from saturated enzyme kinetics, to exhibit perfect
adaptation.

We did not find a strong impact of covalent cycles on the ability of networks
to exhibit perfect adaptation, finding networks both with and without cycles
that were able to perfectly adapt. However, it’s noteworthy that our work
agrees with prior theory work [35, 36] that demonstrated successful integral
feedback control through the use of covalent cycles, along with experimental
work that would presumably demonstrate the same result if their system used
different kinetic parameters [40].

Some physical limitations add complications to these networks. First,
zeroth order reactions have been shown to be rare in actual biochemistry [13].
Also, even when they do occur, it’s clearly impossible for the reactions to have
constant velocities at all reactant levels because, at a minimum, their rates
have to drop to zero when they have no reactant at all. More realistically, their
rates tend to decrease smoothly toward zero as their reactant concentrations
become increasingly depleted, which means that real biochemical networks pre-
sumably compute integrals less accurately than those described here. A related
issue is that zeroth order reactions typically arise from enzyme-catalyzed reac-
tions in which the enzyme is saturated. This implies that essentially all copies
of the enzyme are bound to substrate molecules, which may be a concern. For
example, Network VI exhibits perfect adaptation for the total concentration
of E, but it’s worth realizing that these are substrate-bound E molecules, not
free E molecules. Yet another concern is that all reactions described here are
assumed to be irreversible. This is often a valid approximation, but rarely com-
pletely true. If one accounts for reversibility, then the species that contain the
integrals generally become more interconnected with the rest of the network,
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causing them to be less neutrally stable, and again degrading the quality of
the integration.

The antithetic control network doesn’t solve all of these problems, but does
alleviate them to some extent. First, zeroth order production reactions are
easier to achieve than first order degradation reactions, because, for example,
they can arise from the conversion of a reactant that has a fixed concentration.
Also, the combined action of two species in antithetic control means that
its integral value can be either positive or negative. As a result, it is not
constrained to specific range of X input values (as in eq. 26), but supports
integral feedback control over the entire physically sensible range of X values,
meaning X > 0. For these reasons, antithetic control may perform better in
practice than the flux-restriction network or its variants.

As mentioned in the Introduction, there are many biological examples of
integral feedback control. Most have not been studied adequately to give a
detailed understanding of how they function. However, this work shows the
importance of a species that is neutrally stable in the open loop version of the
network, and that this species typically relies on either zeroth order production
or degradation reactions, so it seems likely that most biological examples oper-
ate with a similar mechanism. Indeed, for the best studied biological example,
E. coli chemotaxis, there is strong evidence to suggest that the methylation
reaction that is catalyzed by CheR operates under saturated conditions [43].
This may lead to zeroth order kinetics, which can then enable accurate integral
feedback control.

Appendix: Proof of vanishing of higher time
derivatives of P as t — 0T

We first introduce the following notation. For an arbitrary function f, f; is
the [th derivative of f with respect to its argument. We wish to prove that

P,.t)—0, 2<r<n ast—0". (51)
In order to do so, we will first prove that
Sip(t) =0, 2<i<n1<r<i—1, ast—0" (52)

Proof of Equation 52

The proof of eq. 52 is as follows. First, we have already established in eq. 39
that S;1(t) >0 ast— 0" for 2 <i<n.

Consider now the rth time derivative of S;, which can be obtained by
repeated differentiation of eqs. 36 with respect to ¢. In order to take the rth
time derivative of the right hand sides of those equations, we use the formula
of Faa di Bruno for the nth time derivative of a composite function f(z(t))
(see Roman[44] for a modern proof of this formula and Mishkov [45] for a
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generalization of the formula to vector arguments). The formula is

2160 = (o) T (20) e

Jj=1

where k = ki + --- + k,, and the sum is over all sequences of kq,...,k, that
are non-negative integer solutions of the equation ki + 2ky + - - - + nk, =
Application of this formula to find the rth time derivative of S; gives

w3 () ()

) (2 o

where K = k1 + --- + k._1 and the sum is over all kq,...,k,._1 satisfying
k1+2k2—|—-~-(r—1)kr,1 =r—1.

It is therefore clear that S; () depends on all time derivatives of S;_; and
S; up to and including the (r — 1)th time derivative; and furthermore, that
S;.»(t) vanishes if these time derivatives vanish. This observation, coupled with
the fact that S; 1(t = O+) =0 for 2 < ¢ < n, completes an inductive proof of
eq. H2.

To see this, think of S; ,-(t) as the entries of a n x n matrix with the index
i labeling the rows and the index r labeling the columns. The first entry in
the first column of this matrix is non-zero, all other entries in the first column
are zero. The considerations above imply that an entry in the (¢,7) cell of this
matrix will vanish if all preceding entries in the same row and all preceding
entries in the previous row vanish. Because all entries in the first column
(except the first entry) vanish, the entire lower triangular half of the matrix is
populated by zeros (excluding the main diagonal), which is exactly what we
set out to prove.

Proof of Equation 51

The proof of eq. 51 follows from eq. 52. Again, using the Faa di Bruno formula
on eq. 39, we find that the rth time derivative of P can be expressed in terms
of up to r — 1 time derivatives of .S,,.

Pt)=) <,vak ) li[l ( >k’. (55)

By eq. 52, all time derivatives of S,, up to and including the (n — 1)th time
derivative vanish. Therefore, all higher (r > 1) time derivatives of P up to and
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including the nth time derivative vanish. This completes the proof of eq. 51.

P =X (o) (220)" o

Methods

Analytical work was performed by hand and/or with the Mathematica software
version 12 (Wolfram Research, Inc.). Simulations were run in the Tellurium
software [46] version 2.2.4.1, a Python environment for dynamical model-
ing of biological networks, along with its associated library for simulation
of biological models, libRoadRunner [47]. This work supports reproducibility
standards by making the models themselves, with complete code, available for
download [48-50]. They were packaged with SED-ML Level 1 Version 4 [51],
producing COMBINE files [52] that are available at our research group github
site (https://github.com/saurolab-papers/). These models follow the MIRIAM
guidelines [53].
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