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Abstract
Missense variants that change the amino acid sequences of proteins cause one third of human
genetic diseases1. Tens of millions of missense variants exist in the current human population,
with the vast majority having unknown functional consequences. Here we present the first
large-scale experimental analysis of human missense variants across many different proteins.
Using DNA synthesis and cellular selection experiments we quantify the impact of >500,000
variants on the abundance of >500 human protein domains. This dataset, Human Domainome
1, reveals that >60% of pathogenic missense variants reduce protein stability. The contribution
of stability to protein fitness varies across proteins and diseases, and is particularly important in
recessive disorders. Combining stability measurements with protein language models annotates
functional sites across proteins. Mutational effects on stability are largely conserved in
homologous domains, allowing accurate stability prediction across entire protein families using
energy models. Domainome 1 demonstrates the feasibility of assaying human protein variants
at scale and provides a large consistent reference dataset for clinical variant interpretation and
the training and benchmarking of computational methods.
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Introduction
The human genome encodes >20,000 proteins. Missense variants in nearly 5,000 of these
proteins cause Mendelian diseases2, however the functional consequences of nearly all
missense variants in nearly all proteins are unknown3–5. Given the current human population
size, most variants compatible with life are present in someone currently alive6–8, making the
large-scale experimental analysis of variant function a central challenge for human genetics7–9.
However, experiments to date have mostly quantified variant effects in one or a few proteins7,10.
Despite recent improvements11–14, computational variant effect predictors are not deemed to
provide sufficient evidence to classify clinical variants as pathogenic or benign15. They also do
not identify the molecular mechanisms by which variants cause disease, information that is
important for therapy development and clinical trial design. Whereas many disease variants are
likely to destabilize proteins and reduce their abundance8,16,17, others may affect specific
molecular interactions, or cause gain-of-function phenotypes18,19.

Previous studies have established reduced abundance as a frequent causal mechanism for
pathogenic variants in diverse proteins8,20–24, but larger scale studies of human disease variants
across many disease genes to test the generality of these observations are lacking. Most
human proteins contain multiple independently folding structural units called domains25,26. For
example, the human genome encodes more than 200 homeodomains that bind DNA to control
gene expression and more than 250 PDZ domains that mediate protein-protein interactions27,28.
The small size of protein domains (median ~100 amino acids) and their independent folding
make them a useful target for large-scale experimental measurement of variant effects29.

Here, using a highly-validated assay that quantifies the effects of variants on protein abundance
in cells30 we perform the first large-scale mutagenesis of human protein domains. In total we
report the impact of >500,000 missense variants on the stability of >500 different human
domains. This dataset, which we refer to as Human Domainome 1, provides a large reference
dataset for the interpretation of clinical genetic variants, and for benchmarking and training
computational methods for stability variant effect prediction. We use the dataset to quantify the
contribution of stability changes to human genetic disease and how this varies across proteins
and diseases. We also show how stability measurements can be combined with protein
language models to annotate functional sites across proteins, and that measurements made on
a small number of proteins can be used to accurately predict stability changes across entire
protein families.
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Results

Massively parallel saturation mutagenesis of human protein
domains
We used mMPS synthesis technology (manuscript in preparation) to construct a library of
1,230,584 amino acid (aa) variants in 1,248 structurally diverse protein domains (Extended Data
Table 1). In this library, which we refer to as Human Domainome 1, every amino acid is mutated
to all other 19 aa at every position in each domain (Fig. 1a). Sequencing the library revealed it
to be high quality, with coverage of 91% of designed aa substitutions (Extended Data Table 1,
Extended Data Fig. 1a). To quantify the impact of these variants on domain stability, we used an
in cell selection system, abundance protein fragment complementation assay (aPCA)30,31. In
aPCA, the protein domain of interest is expressed fused to a fragment of an essential enzyme
and its concentration linearly determines the cellular growth rate over at least three orders of
magnitude30 (Fig. 1b). The effects of variants on protein abundance are quantified using
high-throughput sequencing to measure the change in variant frequencies between the input
and output cell populations in selection experiments (Fig. 1a). This strategy thus allows pooled
cloning, transformation and selection of hundreds of thousands of variants in diverse proteins in
a single experiment (Fig. 1a).

In total, we performed 27 transformation, selection and sequencing experiments (three
independent replicates of nine sub-libraries). After filtering (see Methods), the final dataset
consists of cellular abundance measurements for 563,534 variants in 522 protein domains, of
which 503 are human (Extended Data Table 2). Abundance measurements were highly
reproducible (median Pearson’s correlation coefficient, r = 0.85 between replicates for all
variants, Fig. 1c, Extended Data Fig. 1b). They also correlated well to independent in vitro
measurements of protein fold stability32,33 (median Spearman’s rho = 0.73 with folding free
energy changes (∆∆G), n=10 domains, Fig. 1g,h, Extended Data Fig. 1d). Moreover, they
correlated well with high-throughput stability measurements from protease sensitivity assays29

(median rho = 0.65, n = 13 domains, Fig. 1h, Extended Data Fig. 1e).

The 522 domains are structurally diverse, constituting 195 all alpha, 127 all beta, 47 alpha+beta,
1 alpha/beta, and 148 metal-binding zinc finger domains (Fig. 1e). In total, they cover 127
different domain families, including 14 families with 10 or more homologous domains (Fig. 1f,
Fig. 2), and 97 families with only one or two domains (Fig. 1f). Altogether they comprise 2.1% of
all proteins, 1.2% of all domains and 2.0% of all unique domain families in the human proteome.
275 of the domains are encoded by human disease genes with 108 domains containing
annotated pathogenic variants. Across the dataset, mutations in the buried cores of the domains
are more detrimental than in their surfaces (Fig. 1d), with mutations to polar amino acids having
stronger destabilizing effects in cores and mutations to hydrophobics having stronger effects in
surfaces (Extended Data Fig. 1f). Mutations to proline are the most detrimental overall (Fig. 1d),
both in core and surface residues, with highly destabilizing effects in beta strands and helices
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and milder effects in coils (Extended Data Fig. 1f,g). The full mutagenesis dataset is presented
in Extended Data Fig. 2.

Evaluation of variant effect predictors on protein abundance
Our dataset represents a nearly 10-fold increase in stability measurements for mutations in
human protein domains (Fig. 3a) and so an opportunity to evaluate how well computational
variant effect predictors (VEPs) predict changes in stability. Several general VEPs provide
reasonable prediction of abundance changes, including the protein language model ESM1v12

(median rho = 0.48) and the deep generative model EVE11 (median rho = 0.48). Amongst
dedicated stability predictors, the graph neural network ThermoMPNN34 performs best (median
rho = 0.50, Fig. 3b,c), and is the best predictor overall. Interestingly, all tested stability predictors
perform poorly on small zinc finger domains that require metal binding for stability (Extended
Data Fig. 3). After excluding zinc fingers, ThermoMPNN is still the best performing method
overall (median rho = 0.57, Extended Data Fig. 3), even when evaluating on protein domains
with no homology to the Megascale dataset used for ThermoMPNN training (median rho = 0.57,
Extended Data Fig. 3).

The contribution of stability to protein fitness
Fold stability is just one of many biophysical properties that contribute to protein function and
protein sequence conservation during evolution. In particular, many proteins bind other proteins,
nucleic acids and small molecules or catalyze enzymatic reactions, and these functions often
trade off with stability35. The extent to which selection on protein sequences is driven by
changes in stability rather than other biophysical properties is an important open question36.

To address this, we compared experimentally quantified stability to evolutionary fitness
quantified by ESM1v across >500,000 variants in >500 domains (Methods). We find that protein
stability accounts for a median of 30% of the variance in protein fitness across all domains (Fig.
3d). However, the contribution of stability to fitness varies across domain families, with stability
making a larger contribution to the fitness of all-beta domains (40% of the variance) than to that
of all-alpha (25%) and mixed domains (25%) (Fig. 3e). This is consistent with the lower
structural tolerance to mutations of beta sheets compared to alpha helices37, and suggests that
stability is a more important determinant of the fitness landscapes of all-beta domains. The
overall contribution of stability to protein fitness also varies in domains with different molecular
functions. For example, stability has a larger contribution to fitness in SH3, WW, PHD finger, and
Pointed protein-protein interaction domains, and a lower contribution in DNA-binding HMG-box
domains, nuclear hormone-type C4 zinc fingers, and homeodomains (Fig. 3f).

Identification of functional sites
Mutations in binding interfaces, active sites and allosteric control sites typically have larger
effects on function than can be accounted for by changes in protein stability23,25,31. For example,
quantifying the effects of mutations on protein binding and abundance allows binding interfaces
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and allosteric sites to be comprehensively mapped25,37. We reasoned that a similar approach
could be used to identify functional sites in hundreds of domains by combining our abundance
measurements with evolutionary fitness quantified by ESM1v.

For individual domains, protein abundance is non-linearly related to evolutionary fitness
predicted by ESM1v (Fig. 4a, Extended Data Fig. 4a). We used sigmoidal curves to model this
relationship (n = 426 domains, ESM1v fitness range > 10, WT aPCA fitness percentile < 30, Fig.
4a, Extended Data Fig. 4a). The residuals to these fits identify mutations with larger or smaller
effects on evolutionary fitness than can be accounted for by changes in stability (Fig. 4a,b).

This analysis identifies a total of 102,231 mutations with larger effects on evolutionary fitness
than can be accounted for by changes in stability (24% of the total; Z-test FDR < 0.1,
normalized aPCA residual > 0.3). These mutations are enriched in known functional sites
annotated in the conserved domains database (CDD, OR = 2.72, FET p < 2.2e-16, n = 3,104
functional sites in 2,800 residues, Fig. 4d, Extended Data Fig. 4b). Defining evolutionary
functional sites as residues with a weighted mean residual > 0.3 identifies a total of 5,231 sites
in 426 domains. These sites are strongly enriched in CDD annotated sites (OR = 4.50, FET p <
2.2e-16, Fig. 4e) and identify many known DNA, RNA, and protein binding interfaces (Fig. 4e,f).
However, these evolutionary functional sites also include 1,942 sites in 180 domains without
existing CDD annotations, and 1,873 additional sites in domains with other CDD annotations
(Extended Data Table 3).

Interestingly, evolutionary functional sites without known annotations are located in closer
proximity to annotated functional sites (median side chain heavy atom distance = 3.62 Å) than
the rest of residues (median d = 6.93 Å, p < 2.2 x 10-16). Many of these therefore act as ‘second
shell’ residues contacting DNA, RNA and protein binding interfaces (Fig. 4c,g, Extended Data
Fig. 4c), where sequence changes may indirectly impact binding via energetic interactions with
interface residues25,37.

The contribution of stability to pathogenicity
Domainome 1 contains 3,652 variants with clinical annotations. 621 of these are classified as
pathogenic/likely pathogenic (henceforth pathogenic), 322 as benign/likely benign (henceforth
benign) and 2,709 as variants of uncertain significance (VUS), with 116 domains containing at
least one pathogenic variant. Pathogenic variants are unevenly distributed across domains, with
75% of pathogenic variants contained in 25% of domains, and 41 domains containing only a
single pathogenic variant (Extended Data Fig. 5a).

380/621 pathogenic variants (61%) cause a detectable domain destabilization (Z-test, FDR <
0.1) and 303/621 (48%) are strongly destabilizing (FDR < 0.1, normalized aPCA fitness < -0.3).
This contrasts with 129/322 (40%) and 50/322 (16%) of benign variants, respectively. However,
the association between pathogenicity and destabilization varies across domain families (Fig.
5b, Extended Data Fig. 5b). For example, many pathogenic mutations in beta-gamma crystallins
that cause cataract disease are strongly destabilizing (13/18, odds ratio (OR) = 11.98 compared
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to benign variants, p = 1.99 x 10-6, Fisher’s exact test (FET), Fig. 5b). In contrast, a smaller
proportion of pathogenic variants are strongly destabilizing in homeodomains (OR = 3.94, p =
1.45 x 10-7), HMG-box domains (OR = 2.10, p = 0.045), and CUT domains (OR = 1.65, p = 0.55)
(Fig. 5b), all of which bind DNA, suggesting that many pathogenic variants in these domain
families affect other biophysical properties such as DNA binding. Consistent with this variable
association of destabilization with pathogenicity, aPCA has an overall lower performance than
variant effect predictors in the classification of clinical variants across all domains, as the
readout is specific for protein stability (Extended Data Fig. 5c,d).

We next quantified the relationship between stability and pathogenicity in all individual domains
with at least 20 annotated clinical variants (n = 17). Stability is the major contributor to
pathogenicity in some domains. In the LIM domain 2 of FHL1, stability is an excellent classifier
of pathogenic variants that cause reducing body myopathy (Matthew’s correlation coefficient,
MCC = 1, Fig. 5c), a disease caused by the accumulation of FHL1 aggregates38 Similarly, the
dominant Ankyloblepharon-Ectodermal Defects-Clefting (AEC) Syndrome is caused by
mutations in the SAM domain of TP63 that lead to TP63 aggregation39. Accordingly, most
pathogenic variants in the SAM domain of TP63 are destabilizing (MCC = 0.83, Fig. 5c).

In contrast, stability changes are a poorer predictor of pathogenic variants in other domains. A
large proportion of mutations in the methyl-binding domain (MBD) of MECP2 that cause the
dominant Rett Syndrome are not destabilizing (MCC = 0.4, Fig. 5c). This suggests that many of
these haploinsufficient variants interfere with the methylated DNA binding function of
MECP240–42 without impacting the overall stability of the domain. Indeed, pathogenic mutations
in MECP2 MBD that are not strongly destabilizing are concentrated in its DNA binding interface
(OR = 5.00, p=0.09, Fig. 5d), in second-shell (OR = 4.09, p = 0.15) and in positively charged
surface residues (OR = 4.35, p = 0.019), likely leading to a loss of binding affinity. Similarly,
multiple mutations in the CRX homeodomain that cause inherited retinal dystrophies are not
strongly destabilizing (MCC = 0.52, Fig. 5c). These variants are also enriched in its DNA binding
interface (OR=6.33, p = 0.14 Fig. 5d) and in positively charged sites (OR = 3.58, p = 0.11).
Interestingly, the mode of inheritance of mutations in CRX43 correlates with their stability effects:
while the recessive R90W is strongly destabilizing (Fig. 5c), the dominant K88N and E80A are
stable (Fig. 5c), consistent with their described gain-of-function mechanisms.43 This again
suggests that destabilization is the major disease mechanism for some proteins and diseases
but much less important for others.

Protein stability in recessive and dominant disorders
Comparing across all domains with at least 20 clinical variants, there is a striking correlation
between how well stability explains pathogenicity and how well stability explains evolutionary
fitness, as quantified by ESM1v (Pearson’s r = 0.81, Fig. 4d). We therefore used the correlation
between stability and evolutionary fitness to rank all 108 domains with at least one known
pathogenic variant (Extended Data Fig. 5f). Domains where stability is highly predictive of
fitness include many PHD finger and PDZ domains (Extended Data Fig. 5f). In these domains
we expect stability changes to be the major driver of pathogenicity. In contrast, stability only
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poorly predicts the fitness of homeodomains, HMG-box, and nuclear hormone receptor-type
zinc finger domains (Extended Data Fig. 5f), suggesting that other molecular mechanisms will
more frequently cause pathogenicity.

The contribution of stability to protein fitness also varies among genes with different modes of
inheritance and disease mechanisms (Fig. 5g,h). Recessive diseases are strongly associated
with loss-of-function (LOF), while dominant diseases can also be caused by additional
mechanisms such as gain-of-function and dominant negative effects, or toxic aggregation45,46. A
median 44% of the variance in protein fitness is accounted for by stability changes in proteins
mutated in recessive diseases, in contrast to only 26% in dominant disorders (p = 1.1 x 10-3,
Wilcoxon rank sum test), suggesting that protein variants more frequently affect biophysical
properties other than stability in dominant disorders. Indeed, LOF and aggregation diseases are
better explained by protein destabilization than “altered function” diseases associated with
gain-of-function or dominant negative mechanisms (Fig. 5h). Despite this overall association,
however, we also find that within LOF diseases the extent to which destabilization explains
protein fitness is variable (Fig. 5h). In summary, mutagenesis of >500 domains suggests that
stability changes are an important cause of pathogenicity but that this varies across proteins,
with changes in stability particularly important in recessive diseases.

Conservation of mutational effects in homologous proteins
An important goal of Domainome 1 is to quantify the extent to which mutational effects are
conserved in structurally homologous proteins. Mutations in homologous sites might be
expected to have very similar effects. However, mutations can also interact energetically,
resulting in changes in mutational effects depending upon the sequence context, a phenomenon
known as epistasis44. If epistasis is prevalent then mutational effects will be poorly conserved in
divergent homologous proteins, limiting the extent to which experimental data from some
proteins can be used to predict stability changes in homologs45. Domainome 1 contains
saturation mutagenesis data for five or more domains for 26 different domain families, allowing
us to quantify the importance of epistasis for protein stability in structurally diverse protein folds.

To quantify the conservation of mutational effects, we fitted a thermodynamic model based on
the Boltzmann partition function to all of the data for a domain family (Fig. 6a). The model
assumes that mutations cause the same change in folding energy (∆∆G) in all homologous
domains, and that the energetic effects of mutations combine additively with no specific
epistasis (Fig. 6a,b). We first fitted this model to homeodomains, the most abundant domain
family in the dataset, with 37 homologs. The model provides very good prediction of mutational
effects across all 37 homeodomains (Pearson’s r = 0.78 by ten-fold cross validation, Fig. 6c,d).
The inferred free energy changes can be considered homolog-averaged mutational effects,
providing an energy model describing the entire family (Fig. 6e,f). A linear model provides
similarly good performance but with biased prediction residuals (r = 0.78, Extended Data Fig. 6).
We additionally evaluated the performance of the Boltzmann energy model by leaving out single
homeodomains from the training dataset (n = 37 models) and found similarly good performance
(median Pearson’s r = 0.74). Predictive performance was, as expected, better for domains with
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more similar sequence to the training dataset, but reasonable across a wide range of sequence
divergence (Pearson’s r = 0.73, Fig. 6g).

The genetic architecture of protein stability across protein families
Extending this analysis to all 26 families with at least five homologs in Domainome 1, results in
similarly accurate Boltzmann energy models for all families (median Pearson’s r = 0.80, median
percent of explainable variance = 80.7%, Fig. 6i, Extended Data Fig. 7a,b). The performance
on individual left out homologs is also very good (median Pearson’s r = 0.66, median percent of
explainable variance = 73.5%, Fig. 6j). For most domains, predictions were best for the domains
most similar to the training dataset but also good for domains with higher sequence divergence
(Extended Data Fig. 7c). Predictions using these energy models were better than those made
with ThermoMPNN, the top performing stability predictor on our dataset (Fig. 6j), and also had a
good performance on stability deep mutagenesis scans generated using in vitro proteolysis
selections29 (n = 38 homologs, median Pearson’s r = 0.65, Fig. 6k).

The excellent performance of these additive energy models is both useful and important: it
demonstrates that epistasis makes only a small contribution to protein stability across these
levels of sequence divergence. Combinatorial mutagenesis of individual proteins suggests a
similar conclusion46. The decay of predictive performance with sequence divergence does,
however, suggest a role for epistasis in the evolution of protein stability. Indeed, we identify
25,410 mutations with evidence of epistasis as variants with large residuals to the Boltzmann
model fits (FDR < 0.1 Z-test, | residual | > 0.05 h-1, Extended Data Fig. 8a,b). These epistatic
variants are enriched in the buried cores of protein domains (OR = 2.71, FET p = 1.05 x 10-5)
and depleted from protein surfaces (OR = 0.19, FET p = 9.79 x 10-14, Extended Data Fig. 8c),
across the full range of measured stabilities (Extended Data Fig. 8d) and protein families
(Extended Data Fig. 8e). This data suggests that genetic interactions are more important for the
evolution of protein cores, consistent with these residues having a larger number of structural
contacts than solvent-exposed residues (Extended Data Fig. 8f).

Energy models identify destabilizing mutations across entire
domain families
Finally, the good performance of the Boltzmann energy models across all 26 families suggests
that we can use them to provide proteome-wide stability predictions for these domain families.
Using the models we made predictions for an additional 4,107,436 variants in 7,271 domains
(Extended Data Fig. 9), including an additional 13,878 clinical variants, of which 1,310 are
pathogenic, 951 are benign, and 11,617 are variants of uncertain significance (Fig. 7a,b).
Consistent with the results for clinical variants with experimentally measured stability changes,
686 (52%) of these pathogenic variants are predicted to reduce protein stability (FDR < 0.1, OR
= 2.95 compared to benign), and 452 (34%) are predicted to have strongly destabilizing effects
(scaled ∆∆G > 0.3, FDR < 0.1, OR = 5.95 compared to benign, Fig. 7b,c). Similarly to the
fitness-level data, our energy models outperform stability predictors in pathogenicity prediction,
and have a lower performance than general variant effect predictors (Extended Data Fig. 9c).
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These high-quality stability predictions provide a resource for the mechanistic interpretation of
clinical variants for entire protein families and suggest a strategy for expanding the Domainome
proteome-wide by experimentally mutagenizing representative examples for all families.

Discussion
We have presented here the first large-scale experimental analysis of mutational effects in
human proteins. Human Domainome 1 demonstrates the feasibility of quantifying human protein
variant effects at scale and provides high confidence measurements of changes in protein
abundance for 563,534 variants in 522 structurally diverse protein domains. The dataset
increases the number of stability measurements for human variants about 4.5-fold and serves
as a large and standardized reference dataset for the interpretation of clinical variants and for
benchmarking and training computational methods.

An important goal of this project was to evaluate the contribution of protein stability to genetic
disease and sequence evolution. We found that at least 60% of pathogenic missense variants
reduce protein stability but that this varies quite extensively across domains and diseases, with
stability changes particularly important in recessive disorders. Similarly, we found that the
contribution of stability to evolutionary fitness varies across protein families, with a larger
contribution in all-beta protein domains compared to other fold types. How this relates to protein
evolvability and the importance of trade-offs between stability and other molecular functions will
be interesting avenues for future research. A further goal of Domainome 1 was to quantify the
conservation of mutational effects in structurally homologous proteins. Fitting additive energy
models to the data for domain families revealed that mutational effects on stability are largely
conserved in homologous domains, with a small contribution from epistasis that increases with
sequence divergence. This energetic additivity allows proteome-wide prediction of stability
changes for entire families and suggests an efficient strategy to complete a first draft of the
Domainome by mutagenizing representative examples for every family.

To maximize diversity and experimental efficiency, Domainome 1 focussed on structurally
diverse small protein domains. An important caveat of this approach is the use of domains
isolated from their native sequence context, and the extent to which mutational effects differ in
full-length proteins is a key question for future work. Advances in DNA synthesis47, assembly48

and mutagenesis49,50 should facilitate this. Moreover, many domains did not yield sufficient
signal in aPCA, indicating low stability or solubility, and other domains had mutational effects
incompatible with two-state folding. In future work it will be important to understand the
behavior of these domains in the assay and to test methods to increase the signal-to-noise such
as altering domain boundaries, expression as full-length proteins, mutagenesis of exposed
hydrophobic residues, and the use of different reporters or solubilization tags. In this study we
have reported the effects of Domainome 1 variants on cellular protein abundance. However the
same libraries can be re-used in future work to quantify variant effects on additional molecular
traits, for example abundance in different cellular contexts8,51,52, in vitro fold stability29,
protein-protein53,54 and protein-nucleic acid55 interactions, protein localisation56, aggregation57,
and allostery31,58. It will also be important to include more complex genetic variants such as
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insertions and deletions59 and to extend to proteome-wide coverage, including extracellular and
transmembrane proteins60.

Domainome 1 is a first important step in the comprehensive experimental analysis of human
protein variants. It forms part of an ongoing global effort to determine the consequences of
every mutation in every human protein and to produce reference atlases for the mechanistic
interpretation of clinical variants7. Beyond human genetics, it is also part of a broader effort to
produce large, well-calibrated datasets that quantify how changes in sequence alter the
biophysical properties of proteins. We believe that such multimodal biophysical measurements
for millions of proteins and variants will enable machine learning approaches to be effectively
brought to bear on the generative functions of molecular biology, allowing accurate prediction
and engineering from sequence61.

Figure legends
Figure 1: Mutating the Human Domainome.
a. Experimental strategy for multiplexed generation of sequence-to-stability maps of human
protein domains based on pooled cloning, transformation and selection of pooled saturation
mutagenesis libraries. b. DHFR complementation assay to measure in vivo stability of variant
human protein domains (abundancePCA30, aPCA). Variants causing unfolding and degradation
of the target domain result in a decrease in concentration in the cell, leading to impaired cell
growth. c. Replicate correlations of aPCA fitness scores. d. Comparison of aPCA fitness score
distributions of synonymous, missense, and nonsense variants (top panel), core (rSASA < 25%)
and surface variants (bottom left panel), and mutations to proline and other missense variants
(bottom right panel). e. Structural similarity network of domains retained in the final dataset.
Nodes represent protein domains, and edges represent foldseek hit probabilities in pairwise
structural alignments. Colors correspond to SCOP structural classes. f. Distribution of number of
domains per family in the library. g. Correlations between in vitro ∆∆Gs and aPCA scores in four
representative domains. h. Distribution of correlations (Spearman’s rho) between aPCA scores
and in vitro ∆∆Gs32,33 or stabilities derived by a high-throughput proteolysis assay29.

Figure 2: Deep mutational scans of protein homologs.
Five examples of deep mutational scanning aPCA datasets of the most abundant protein
families. Heatmaps depict the effects of mutating every residue in the protein domains (x axis) to
all possible 19 amino acids (y axis).

Figure 3: The contribution of protein stability to evolutionary fitness.
a. Total number of stability measurements for human single missense variants in the
Domainome 1 compared to previous comprehensive datasets of protein stability29,32,62. b.
Correlations between aPCA normalized fitness and ESM1v predictions (top panel) or
ThermoMPNN stability predictions (bottom panel) for the YBX1 cold-shock domain. c.
Comparison of performance of variant effect and protein stability predictors. The distribution of
Spearman’s r across all domains is shown for each predictor, with the median Spearman’s r
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labeled in text. d. Quantification of the degree of sequence constraint attributable to protein
stability across protein families with at least 5 measured homologs. Colors correspond to SCOP
structural classes. e-f. Quantification of the degree of sequence constraint attributable to protein
stability across domains grouped by their SCOP structural classes (e) and molecular functions
(f).

Figure 4: Identification of functional sites.
a. Sigmoidal curves to model the relationship between stability and overall fitness of variants in
the dsRNA binding domain of ADARB1. Data points are colored by their residuals to the fit. b.
Heat map depicting the residuals to the fit of all measured variants. The dsRNA binding site
residues are marked with blue bold letters. The blue boxes capture all the contiguous stretches
of sequence containing the binding site. c. AlphaFold2 predicted structure of the dsRNA binding
domain of ADARB1, with residues coloured by the weighted mean residuals to the fit. Residues
forming the dsRNA binding site are marked with a red silhouette. d. Distribution of residuals for
mutations in annotated functional sites, and in other protein residues. e. Distribution of weighted
mean residuals of protein residues in annotated functional sites, and of other residues. f.
Enrichment of functional sites (residues with weighted mean residuals > 0.3) in several types of
CDD annotated functional sites. Error bars depict the 95% confidence interval for the odds ratio
of enrichment. g. AlphaFold2 predicted structures of representative domains containing
functional sites, with residues coloured by the weighted mean residuals. Residues that belong to
CDD functional sites are marked with a red silhouette.

Figure 5: The contribution of destabilization to genetic disease.
a. Distributions of normalized aPCA fitness values of pathogenic, benign, uncertain, and
gnomAD variants (allele frequency > 10-5). b. Proportions of stability classes (stable, mild,
strongly destabilizing) in the full dataset (top bars), and in several protein families. c.
Distributions of mutational effects on stability in representative examples of human disease
protein domains, showing all measured variants (yellow), benign variants (dark blue), gnomAD
variants with an allele frequency > 1 x 10-5 (light blue), and pathogenic variants (red). Specific
CRX variants with their associated mode of inheritance are labeled. AD = autosomal dominant,
AR = autosomal recessive. MCC = Matthew’s correlation coefficient. d-e. Spatial distribution of
mutations that do not strongly destabilize the MBD domain of MECP2 (d) and the CRX
homeodomain (e). f. Correlation between the classification performance of stability on clinical
variants (measured using Matthew’s correlation coefficient, MCC), and the fraction of protein
fitness explained by stability changes, for domains with at least 20 clinical and gnomAD variants
(allele frequency > 10-5). g-h. Fraction of variance in protein fitness explained by stability
changes in domains grouped by the mode of inheritance of their associated disorders (g), or
their disease mechanisms (h).

Figure 6: The genetic architecture of protein stability.
a. Two-state folding equilibrium and corresponding thermodynamic model. ∆Gf, Gibbs free
energy of folding; Kf, folding equilibrium constant; pf, fraction folded; ff, nonlinear function of ∆Gf;
R, gas constant; T, temperature in Kelvin. b. Neural network architecture used to fit
thermodynamic models to protein families. c. Relationship between predicted fitness and
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additive trait (∆G) in a Boltzmann model fit to the homeodomain family (PF00046). d. Correlation
between observed fitness values and MoCHI fitness predictions of the homeodomain family for
test set variants (10-fold cross validation; variants held out in any of the 10 training folds are
shown). e. Structure of a representative homeodomain, with residues colored by the weighted
mean homolog-averaged ∆∆G of mutations at each position. f. Heatmap depicting inferred
homolog-averaged folding ∆∆G defining the stability of the homeodomain fold. g. Performance
of the energy model on held out homeodomains as a function of the average genetic distance to
the training set. h. Structures of representative domains of all modeled families with residues
colored by the weighted mean homolog-averaged ∆∆G of mutations at each position. i.
Summary of energy model performance on held out variants across protein families (10-fold
cross validation). j. Summary of energy model performance on held out homologs across
protein families, compared to the performance of the top stability predictor (ThermoMPNN). k.
Summary of energy model performance on deep mutational scans of homologous domains
generated using an in vitro proteolysis assay for stability determination29.

Figure 7: Extension of stability predictions to entire domain families.
a. Number of pathogenic clinical variants covered by the predictions of homolog-averaged
folding ∆∆Gs. Colors represent whether variants are present in the aPCA fitness dataset (red) or
not (blue). b. Distributions of scaled folding ∆∆G values of pathogenic, benign, uncertain, and
gnomAD variants (allele frequency > 10-5). c. Proportion of strongly destabilizing variants (FDR
< 0.1, scaled folding ∆∆G > 0.3) across classes of clinical variants.

Extended Data Figure legends
Extended Data Figure 1: Mutating the human Domainome at scale.
a. Histograms depicting sequencing coverage of the 9 site saturation mutagenesis libraries
selected in this study. b. Correlations (Pearson’s r) between replicates for the 9 libraries. c.
Distributions of quality control metrics in folded domains that were retained for further analyses,
in folded domains excluded from further analysis, and in domains with less than 10% core
residues or disordered. d. Correlations (Spearman’s rho) between aPCA scores and in vitro
∆∆Gs for individual protein domains. e. Correlations (Spearman’s rho) between aPCA scores
and ∆∆Gs derived through a high-throughput proteolysis assay for individual protein domains. f.
Distributions of stability effects of mutations in protein cores and surfaces across the entire
Domainome 1. Colors represent the physicochemical properties of the mutated amino acids
(polar/charged = D, E, K, N, Q, R, S, T, hydrophobic = A, F, I, L, M, V, W, Y). g. Distributions of
stability effects of mutations in different secondary structure types.

Extended Data Figure 2: Deep mutational scans of 522 protein domains.
Domains are ranked according to data quality (see Methods).

Extended Data Figure 3: The contribution of protein stability to evolutionary constraint.
a. Comparison of performance of variant effect and protein stability predictors in non-zinc finger
domains (left) and zinc finger domains (right). The distribution of Spearman’s rho across all
domains is shown for each predictor. b. Comparison of performance of variant effect and protein
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stability predictors in non-zinc finger domains with (right) and without (left) homology to protein
domains in the Megascale dataset used for ThermoMPNN training. (left). c. Correlation between
Pearson’s r and Spearman’s rho-based variance explained estimates of the contribution of
stability to protein evolutionary constraint. d. Correlation between the contribution of stability to
protein fitness estimated using aPCA data and using ThermoMPNN34 predictions, for non-zinc
finger domains containing at least one pathogenic variant.

Extended Data Figure 4: Identifying evolutionary functional sites using language models
and abundance measurements.
a. Representative examples of linear model and sigmoid model fits to the relationship between
ESM1v predictions and abundance. b. Residuals to the fit of protein domain variants in several
classes of annotated functional sites. Classes of functional sites with at least 50 residues
annotated across the full domainome dataset are shown. c. Distribution of abundance to ESM1v
residuals in functional sites, second shell sites, and other sites, for domains with at least 1
annotated functional site in CDD.

Extended Data Figure 5: The contribution of protein destabilization to genetic disease.
a. Gini plot depicting the cumulative number of pathogenic variants present in Domainome 1
domains ranked by pathogenic variant counts (from highest to lowest). b. Proportions of
non-destabilizing, mildly destabilizing (FDR < 0.1, 0 > normalized aPCA fitness > -0.3), and
strongly destabilizing (FDR < 0.1, normalized aPCA fitness < -0.3) variants in the pathogenic
and benign sets, for several protein families. gnomAD variants with an allele frequency (af) > 1 x
10-5 were included as benign. Families with at least 10 variants in the pathogenic and in the
benign classes are shown. c. ROC curves comparing clinical variant classification performance
of aPCA data and variant effect or stability predictors. d. ROC curves comparing clinical variant
classification performance of aPCA, ESM1v, protein structural features (secondary structure,
rSASA, wild-type aa, mutant aa), and combinations of these using logistic regression (see
Methods). e. Distributions of the proportions of variance in fitness explained by stability changes
corrected by protein composition differences across domains. Protein domains are split
according to the mode of inheritance of pathogenic mutations (left) or their disease mechanisms
(right). f. Ranking of all 108 domains containing at least 1 pathogenic variant by the percentage
of variance in fitness explained by stability changes (top left domains = highly explained by
stability, bottom right domains = poorly explained by stability).

Extended Data Figure 6: Comparison of linear and Boltzmann energy model fits to a
protein family.
Correlations between observed fitness values and energy model predictions for test set variants
held out in any of the 10 training folds, for an energy model with a linear activation function (a)
or a Boltzmann activation function (b) at the additive trait layer.

Extended Data Figure 7: Thermodynamic models of protein families.
a. Correlations between observed fitness values and energy model fitness predictions for test
set variants held out in any of the 10 training folds, for Boltzmann models across protein
families. b. Inferred homolog-averaged folding ∆∆Gs across protein families, normalized such
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that the 2.5th percentile of the data corresponds to a scaled ∆∆G of -1. c. Correlation between
model performance on left out protein domains, and the averaged genetic distance of the
left-out domains to the rest of the training set, quantified as the hamming distance.

Extended Data Figure 8: Protein cores are more epistatic than surfaces.
a-b. Representative examples of an epistatic site (a) and a non-epistatic site (b) in the PDZ
family. Epistatic mutations (FDR < 0.1, | residual | > 0.05 h-1) are shown in blue, and
non-epistatic mutations are shown in pink. The epistatic site is enriched in epistatic mutations. c.
Distributions of enrichment of epistatic mutations in protein core sites (rSASA<25% in >75% of
homologs), surface sites (rSASA>25% in >75% of homologs), or changing sites. d. Enrichment
of epistatic mutations in core (n = 368), surface (n = 1,039), and changing (n = 193) sites as a
function of the average fitness of all variants per site. The running median of each class of sites
across the fitness range (window size = 0.05 h-1) is shown as a colored line. e. Distribution of
enrichment of epistatic mutations in core, surface, and changing sites across protein families. f.
Distribution of total contact numbers per residue in core (n = 87,316) and surface (n = 193,797)
residues across the Domainome, estimated from getcontacts.

Extended Data Figure 9: Proteome-wide extension of stability predictions.
a. Number of measured and predicted protein variants, by family. b. Number of measured and
predicted protein domains, by family. c. ROC curves comparing clinical variant classification
performance of ESM1v, FoldX, and energy models of protein families.

Data availability
All DNA sequencing data have been deposited in the Gene Expression Omnibus under the
accession number GSE265942. All aPCA measurements and their associated errors are
available as Extended Data Table 2, including quality ranking by domain for data filtering.
Weighted mean residuals of the comparisons between abundance and evolutionary fitness
predictions are available as Extended Data Table 3. Homolog-averaged ∆∆G values and their
associated errors mapped to homologous domains proteome-wide are available as Extended
Data Table 4. aPCA scores and matching variant effect predictions are available as Extended
Data Table 5.

Code availability
Source code used to perform all analyses and to reproduce all figures in this work is available
at: https://github.com/lehner-lab/domainome. Files required to reproduce the analyses can be
downloaded at https://zenodo.org/records/11043643.
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Materials and methods
Media

- LB: 10 g/L Bacto-tryptone, 5 g/L Yeast extract, 10 g/L NaCl. Autoclaved 20 min at 120ºC.
- YPDA: 20 g/L glucose, 20 g/L Peptone, 10 g/L Yeast extract, 40 mg/L adenine sulphate.

Autoclaved 20 min at 120ºC.
- SORB: 1 M sorbitol, 100 mM LiOAc, 10 mM Tris pH 8.0, 1 mM EDTA.
- Filter sterilized (0.2 mm Nylon membrane, ThermoScientific).
- Plate mixture: 40% PEG3350, 100 mM LiOAc, 10 mM Tris-HCl pH 8.0, 1 mM EDTA pH

8.0. Filter sterilized.
- Recovery medium: YPD (20 g/L glucose, 20 g/L Peptone, 10 g/L Yeast extract) +0.5 M

sorbitol. Filter sterilized.
- SC -URA: 6.7 g/L Yeast Nitrogen base without amino acid, 20 g/L glucose, 0.77 g/L

complete supplement mixture drop-out without uracil. Filter sterilized.
- SC -URA/ADE: 6.7 g/L Yeast Nitrogen base without amino acid, 20 g/L glucose, 0.76 g/L

complete supplement mixture drop-out without uracil, adenine and methionine. Filter
sterilized.

- MTX competition medium: SD –URA/ADE + 200 μg/mL methotrexate (BioShop Canada
Inc., Canada), 2% DMSO.
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- DNA extraction buffer: 2% Triton-X, 1% SDS, 100mM NaCl, 10mM Tris-HCl pH8, 1mM
EDTA pH8.

Library design, synthesis, and cloning

We sampled PFAM-annotated human protein domains (version 34.0) of intracellular human
proteins (not defined as “extracellular”, “transmembrane”, or “secreted” in UniProt), prioritizing
proteins that had at least one annotated pathogenic variant ClinVar3. We additionally included
protein domains with in vitro stability measurements to benchmark the assay. We designed the
library in two rounds: we first designed and selected two libraries (A1 and B3) containing single
mutants of a total of 485 domains that had been previously tested to grow as WTsTo design
second set of libraries (C1 to C7), based on the results of A1 and B3, we excluded domains
without a well-defined hydrophobic core (not having at least 10% of residues with rSASA < 25%)
and disordered domains defined as having an average AlphaFold2 pLDDT<50, indicative of
protein disorder. This second set contained 631 domains that had been previously tested to
grow as wildtype, and 132 additional domains not previously tested.

The domain sequences were codon optimized with emboss backtranseq63 using a S. cerevisiae
codon usage table, and excluding the GCT alanine codon to prevent the appearance of HindIII
restriction sites. The domain sequences were fused to 5´ gggctgctctagaatggctagc and 3´
aagcttggcggtggcgggtctg constant regions containing NheI and HindIII restriction sites for
cloning. Libraries were synthesized by BGI using the mMPS technology (manuscript in
preparation). The standard bases and degenerate bases N/K (representing the mixture of A, T,
C and G, or the mixture of T and G respectively) were used for synthesis. The degenerated
bases N/K are pre-mixed with an optimized ratio of each base to achieve an equal proportion of
each amino acid at the mutation position. Compared with library A1 (sequence lengths ranging
from 101 to 128 bases), all other eight libraries are relatively longer (sequence lengths ranging
from 125 to 341 bases). To avoid the fact that the quality of synthesized DNA decreases when
the length of DNA increases, we first segmented the sequences into 378,896 sub-sequences
with length at ~80-100 nt for synthesis using the mMPS synthesis system. Then we used
polymerase cycling assembly (PCA)-PCR to construct each full-length DNA fragment of the
libraries with the corresponding generated sub-fragments.

Libraries were cloned at a variant coverage of ~100x or greater by restriction digestion and
ligation into pGJJ162, an aPCA assay plasmid where the DHFR3 fragment is fused at the
C-terminus of the target protein domains and the fusion is driven by the CYC promoter, and the
DHFR1,2 fragment is expressed at high levels as is driven by the GPD promoter.

Large-scale transformation and competition assay

Variant libraries were transformed in triplicate with a coverage of 20x or greater (with a mean
coverage across libraries ~170x). For each transformation, we grew a 1 L YPDA culture of late
log phase S. cerevisiae BY4741 cells (OD600~0.8-1), harvested the cells by centrifugation (5
minutes, 4000 g), resuspended in 43 mL SORB medium and incubated for 30 min on a shaker
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at room temperature. 875 μL 10 mg/mL previously boiled (5 min, 100 ºC) ssDNA was added to
the cells, followed by 17.5 μg library plasmid DNA and 175 mL Plate Mixture. The mix was
incubated for 30 min on a shaker at room temperature. 17.5 mL DMSO were then added, and
the cells were split in 50 mL Falcon tubes for 20 min heat shock at 42ºC. Following incubation,
cells were pooled and harvested by centrifugation, the supernatant was discarded with a pump,
and cells were resuspended in 250 mL Recovery Media and incubated at 30ºC for 1h. Cells
were then centrifuged for 3 min at 3,000 g and transferred into 1 L SC –URA. 10 μL of this
culture were immediately plated onto SC -URA selective plates to monitor transformation
efficiency. The rest of the culture was incubated for one or two overnights at 30ºC.

SC -URA cultures were used to inoculate a 1 L culture of SC -URA-ADE at an OD600=0.2-0.4,
which was grown overnight (input culture). Cells from this culture were inoculated in 1 L SC
-URA/ADE +200 μg/mL MTX to select stably expressed protein domain variants. The remaining
input cells grown SC -URA/ADE were harvested and frozen for DNA extraction. MTX cultures
were left to grow overnight to an OD600=1.6-2.5, corresponding approximately to 5 generations,
harvested, and frozen for DNA extraction (outputs).

DNA extraction, plasmid quantification and sequencing library preparation

Total DNA was extracted from yeast pellets equivalent to 50 mL of cells at OD600=1.6 as
described in our previous work31,58. Plasmid concentrations in the resulting samples were
quantified by against a standard curve of known concentrations by qPCR, using oGJJ152 and
oGJJ153 as qPCR primers that amplify in the origin of replication of the aPCAa assay plasmid.

To generate the sequencing libraries, we performed two rounds of PCR amplification. In the first
round, we used primer pools (oTB595+ and oTB748+) flanking the inserts that introduce
frame-shifting nucleotides between the Illumina adapters and the sequencing region of interest.
To maintain variant representation, we carried out eight 100 μL PCR1 reactions per sample,
each of which starting with 125 million plasmid molecules that we amplified for 8 cycles. The
reactions were column-purified (QIAquick PCR purification kit, QIAGEN), and the purified
product was amplified further using the standard i5 and i7 primers to add the remainder of the
Illumina adapter sequences and the demultiplexing indices (dual indexing) unique to each
sample. We carried out a total of 8 100 μL PCR2 reactions per sample, each starting with 20-40
ng of purified product, that was amplified for 8 more cycles. The resulting amplicons were run on
a 2% agarose gel to quantify and pool the samples for joint purification, and to ensure the
specificity of the amplification and check for any potential excess amplification problems. The
final libraries were size selected by electrophoresis on a 2% agarose gel, and gel-purified
(QIAEX II Gel Extraction Kit ,QIAGEN). The amplicons were subjected to Illumina paired end
2x150 sequencing on a NextSeq2000 instrument at the CRG Genomics facility.

Sequencing data processing and normalization

FastQ files from paired-end sequencing of all aPCA selections were processed with DiMSum64

v1.2.11 (https://github.com/lehner-lab/DiMSum) using default settings with minor adjustments.
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The option “barcodeIdentityPath” was used to specify a variants file in order to recover designed
variants only (NNK mutations in the protein domains present in each sublibrary), and starting
and final culture optical densities and selection times were specified to infer absolute growth
rates across libraries.

Data filtering and normalization

We computed several quality control metrics on a per-domain basis. First, the wild-type position
in the fitness distribution, as the difference between the wild-type and the 95th percentile of the
distribution, divided by the difference between the 95th and 5th percentile in the distribution
(fitness 90% range). Second, the Pearson’s correlation coefficient between replicates for
missense variants. Third, the correlation between fitness and solvent accessibility for all variants
in each domain. And fourth, the correlation between fitness and hydrophobicity of all variants in
each domain (measured as the first principal component of a comprehensive table of amino
acid properties57).

Compared to folded domains (more than 10% core residues and pLDDT>50), disordered and
domains without a well-defined hydrophobic core (see Library Design) behave in a very distinct
fashion in aPCA, with the wild type located in the middle of the fitness distribution,
hydrophobicity negatively correlated with protein abundance, and narrow dynamic ranges
resulting from typically small effects of mutations (Extended Data Fig. 1c). We thus excluded
these domains from further analysis in the main text. Folded domains showed larger dynamic
ranges, with the wild-type among the fittest variants, a negative correlation between mutation
sensitivity and solvent accessibility, and a lack of correlation to hydrophobicity (Extended Data
Fig 1c). For folded domains, the four quality metrics described above were highly correlated with
each other, and we combined them using principal component analysis. The first principal
component explained 64% of the variance, and was used as a single quality metric to rank all
domains.

We retained all domains ranked 600 or higher, with a missense Pearson’s r > 0.485, and with
more than 50% of variants measured (with at least 10 counts in at least 1 replicate), resulting in
538 domains. We removed from this set 16 additional domains that were not compatible with
2-state folding, either showing many large effect abundance-increasing mutations
(O75364_PF00046_64, O75956_PF09806_73, P10242_PF00249_89, P52952_PF00046_140,
Q13263_PF00643_205, Q86TZ1_PF13181_60, Q8IX03_PF00397_1, Q8NDW8_PF13181_799,
Q9Y2H9_PF17820_968, Q9Y6M9_PF05347_15), narrow fitness ranges
(P35637_PF00641_421, EHEE-rd2-0005_1, HHH-rd2-0133_1), or clear correlations to
hydrophobicity (E9PAV3_PF19026_2040, HEEH-rd3-0223_1, Q5VTD9_PF00096_193),
resulting in a final set of 522 domains.

The distributions of quality metrics for retained and discarded folded domains, and for
disordered domains and folded domains without a well-defined core are in Extended Data Fig.
1c. Of the 478 discarded folded domains, 224 had slow growth rates as wt (< 0.075 h-1), 176
had an unfit wild type (wt position < 0.4), 107 were negatively correlated with hydrophobicity
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(Pearson’s r < -0.25), and 158 were not correlated with solvent accessibility (Pearson’s r < 0)
(we note that many of the discarded domains meet more than one of these criteria). Discarded
domains are shorter (median length = 49 aa) than retained domains (length = 58 aa, p = 1.87 x
10-14, Wilcoxon rank sum test), and are enriched in zinc-finger domains (57% of zinc finger
domains discarded in contrast to 43%, 41%, and 39% for all-alpha, all-beta, and a+b,
respectively, p = 2.33 x 10-6, Fisher’s exact test). Multimerization status only affected success
rate marginally, as 49% of domains from proteins that form complexes65 were discarded,
compared to 53% of those that do not engage in protein-protein interactions (p = 0.2, Fisher’s
exact test). Finally, domains with yeast orthologs66 were less likely to be retained (45%) than
domains without yeast orthologs (53%, p = 0.08, Fisher’s exact test).

We normalized the growth rates and growth rate errors within each protein domain by linearly
scaling the data such that the WT normalized fitness equals zero, and the 2.5th percentile of the
distribution of growth rates of all missense variants plus the WT is equivalent to a normalized
fitness of -1. In all boxplots shown in the manuscript, the central line represents the median, the
upper and lower hinges correspond to the first and third quartiles, with the upper whisker
extending from the hinge to the largest value no further than 1.5 * IQR (inter-quartile range) from
the hinge, and the lower whisker extending from the hinge to the smallest value no further than
1.5 * IQR from the hinge.

Structural similarity network representation

We generated a structural distance matrix based on Foldseek67 hit probabilities. We computed
all pairwise alignments between the domains in the final retained set by first creating a Foldseek
database ‘foldseek_domainome_db’ containing all domains, and then searching all domains
against the database using foldseek easy-search *.pdb foldseek_domainome_db
foldseek_easy_allvsall tmp --format-output "query,target,alntmscore,qtmscore,ttmscore,prob"
--exhaustive-search TRUE -e inf.

To visualize the similarity network, we imported the domains as nodes and the Foldseek
probabilities as edges into Gephi68, and applied two layout algorithms: first the Fruchterman
Reingold algorithm to equilibrium, which resulted in a clear separation of the different SCOP
classes, followed by a Force Atlas 2 layout algorithm (preventing node overlap), which
accentuated the separation between the different domain family clusters within each SCOP
class.

Comparison to reference ∆∆G datasets

To compare aPCA measurements with in vitro ∆∆Gs, we used domains containing at least 10
variants in more than a single residue measured in vitro and in aPCA, and with a range of at
least 2 kcal/mol for the in vitro measurements, and of 0.075 h-1 log growth rate units for the
aPCA measurements (n = 10 domains). To compare aPCA measurements with ∆∆Gs derived
from high-throughput proteolysis deep mutational scans29, we used protein domains with an
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overlap (overlapping length / total alignment length) of at least 80%, and an aPCA measurement
range of 0.075 h-1 log growth rate units (n = 12).

The total number of human missense variants measured in the mega-scale dataset29 was
retrieved from the high-confidence dataset excluding double mutants and domain duplicates
(from different PDB entries and genetic backgrounds of the same PDB entry). We also
quantified the total number of human missense variants measured in all abundance (VAMP-seq,
aPCA) datasets available (as of July 7th 2024) in MaveDB62 total number of human missense
variants in ProthermDB32.

Comparison to variant effect predictors

We generated ESM1v12 predictions (https://github.com/facebookresearch/esm) using the
domain sequences alone as input, and using sliding windows across the human proteome
(size=1000 aa, step=250 aa). For each domain, we used the predictions corresponding to the
window in which the domain is most centered. We obtained EVE11, popEVE69 and Tranception13

scores from https://pop.evemodel.org/. ‘EVE domain’ scores computed on high-coverage
alignments generated specifically for domainome domains were kindly shared by Aaron
Kollasch and Debora Marks. We used precomputed RaSP scores70, and generated DDMut71

and ThermoMPNN34 predictions with the aid of AlphaFold2 structure predictions. FoldX72

predictions were obtained from
https://ftp.ebi.ac.uk/pub/databases/ProtVar/predictions/stability/65. We used Spearman’s rho to
quantify the relationship between the predictions and aPCA fitness. Domains with homology to
protein domains in the Megascale dataset were defined using hmmer (​​http://hmmer.org/)
hmmscan against PFAM, and predictors were evaluated on a homolog-free set to prevent
leakage from ThermoMPNN training.

To estimate the fraction of the variance in mutational effects on evolutionary fitness that are
attributable to protein stability, we calculated the correlation between ESM1v fitness predictions
on full-length protein sequences and aPCA scores. The correlation coefficient was adjusted by
the measurement error of the aPCA scores according to the Spearman disattenuation formula:

where is the disattenuated correlation coefficient, is the observed correlation𝑅
𝑥𝑦

=  
𝑟

𝑥𝑦

𝑟
𝑥𝑥

𝑅
𝑥𝑦

𝑟
𝑥𝑦

coefficient, is the mean correlation coefficient between aPCA replicates. This procedure was𝑟
𝑥𝑥

applied to both linear (Pearson’s) and rank (Spearman’s) correlation coefficients. The two were
highly correlated (r = 0.94) and we report the Pearson’s r-based version for ease of
interpretation.

Analysis of functional sites

We carried out this analysis for domains where (1) the WT is above the 30th percentile in the
fitness distribution, and (2) the range between the 5th and 95th percentile of the distribution of
ESM1v predicted fitness is > 10 (n = 426 domains). We used sigmoid curves to model the
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relationship between normalized aPCA fitness (stability) and predicted function (ESM1v) of all
variants in each individual domain, with an upper bound of 0 (WT aPCA normalized fitness) and
a lower bound of -1:

𝑓
𝑎𝑃𝐶𝐴

 =  − 1 + 1

1+𝑒
−(𝑓

𝐸𝑆𝑀1𝑣
 − 𝑥𝑚𝑖𝑑)/𝑠𝑐𝑎𝑙

Where is the aPCA normalized fitness, is the ESM1v predicted fitness, xmid is the𝑓
𝑎𝑃𝐶𝐴

𝑓
𝐸𝑆𝑀1𝑣

midpoint of the sigmoid and scal is the steepness parameter. To prioritize fitting the low stability
variants, we weighted the fit by the aPCA normalized fitness:

𝑤
𝑖
 = 𝑚𝑎𝑥(𝑓

𝑎𝑃𝐶𝐴
) −  𝑚𝑖𝑛 (𝑓

𝑎𝑃𝐶𝐴
) − (𝑓

𝑎𝑃𝐶𝐴,𝑖
+ 1)  

We used a two-tailed z-test to identify mutations whose effects on fitness cannot be accounted
for by stability effects. We calculated z-scores as the aPCA residuals to the fit divided by the
aPCA error, derived p-values based on the normal distribution, and performed multiple testing
correction using Benjamini-Hochberg’s false discovery rate (FDR). We additionally calculated
per-residue mean residuals weighted by the aPCA normalized fitness error.

We obtained residue-level functional site annotations corresponding to the Conserved Domains
Database (CDD)73 using the InterPro API. Second-shell residues were defined as those with a
minimum heavy atom distance of 5Å to functional site residues.

Analysis of the stability effects of pathogenic variants

We identified destabilizing variants using a one-tailed z-test. Z-scores were calculated as the
normalized fitness divided by the normalized fitness error, a p-value was derived on the basis of
a normal distribution, and FDR multiple test correction was applied. Destabilizing variants were
defined as variants with FDR < 0.1, and strongly destabilizing variants as FDR < 0.1 and a
normalized aPCA fitness < -0.3. We obtained clinical variant annotations from ClinVar (January
2024 version) and from the UniProt API. Variant annotations were highly consistent between the
two sources, and were merged. We tested for enrichments of clinical variant classes in stability
classes using a two-tailed Fisher’s exact test.

To estimate to what extent destabilization explains pathogenic mutations in individual domains,
we used Mathew’s correlation coefficient (MCC). To increase statistical power, we included
gnomAD variants with an allele frequency > 10-5 as benign. We estimated the errors in MCCs by
resampling the dataset based on the mean and errors of aPCA scores, 10 times. To analyze
the distribution of pathogenic mutations in the MECP2 methyl-binding domain and the CRX
homeodomain, we generated AlphaFold3 predictions74. DNA-binding interface residues were
defined using getcontacts75, and second-shell residues were defined as those with a minimum
heavy atom distance of 5Å to binding interface residues.
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To extend the analysis to a larger number of domains with small numbers of pathogenic
variants, we used the fraction of variance in ESM1v predicted fitness explained by aPCA scores
as described above. MCCs based on clinical and gnomAD variants correlated well with the
fraction of evolutionary fitness explained by stability effects in domains with at least 20 clinical
and gnomAD variants, validating the approach. To further validate the estimates of the
contribution of stability to fitness, we estimated the fraction of variance in ESM1v predicted
fitness explained by thermoMPNN predicted stabilities for non-zinc finger domains with at least
1 pathogenic variant (n = 86). These correlated well with the original estimates derived using our
abundance data (Pearson’s r = 0.81, Extended Data Figure 3d).

Modes of inheritance and mechanisms of disease information were obtained from OMIM
(https://www.omim.org/). To analyze the contribution of stability changes to disease according to
mode of inheritance and mechanism of action controlling for protein composition (ED Fig. 5e),
we modeled the contribution of secondary structure and the percentage of core residues to the
scores using linear models. We then extracted the model residuals as the composition-corrected
scores.

Clinical variant classification performance comparisons

We used the pROC R package76 to generate ROC curves and calculate ROC AUCs. We
incorporated gnomAD variants with an allele frequency > 10-5 as benign. To test the
performance when combining structural and sequence features (secondary structure, rSASA,
wild-type residue, mutated residue), ESM1v, and aPCA scores, we used generalized linear
models (glm) in R. In addition to training and evaluating on the full dataset, we trained the
logistic regression models with 90% of the data and evaluated on the remaining 10% unseen
data.

Thermodynamic modeling of protein domain families

We used MoCHI77 to fit two-state thermodynamic models on a per-family basis (for families with
at least 5 homologs and variants with a mean count >29). We specified a neural network
architecture consisting of a single additive trait layer for shared folding energies across the
family and a shared linear transformation layer. We used a “TwoStateFractionFolded”
transformation derived from the Boltzmann distribution function that relates energies to
proportions of folded protein. To map homologous positions across families, we used PFAM
alignments. To input into MoCHI, we recoded each domain WT sequence as an indel sequence
as long as the PFAM alignment, plus additional positions in the alignment with variants that
encode the WT identity of each homolog. Mutations in each domain were encoded in the
corresponding alignment position. This design allows MoCHI’s one-hot encoding of both the
mutations and the WT identities simultaneously, and the joint fitting of mutation ∆∆G and starting
∆G of each homolog. We trained the model using a 10-fold cross-validation approach and
evaluated the performance on held-out data.
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We additionally fitted a linear model, and a “TwoStateFractionFolded” model with shared
energies across all homologs of a family but with domain-specific linear transformations that
account for potential differences in solubility of the folded and unfolded states between domains
of the same family. These models resulted in highly correlated inferred energies to the original
Boltzmann model (Pearson’s r = 0.972 for the linear model, and r = 0.938 for the Boltzmann
model with domain-specific linear transformations) and similar performances on held out data
across families. We discarded the linear model due to highly biased residuals, and chose the
“TwoStateFractionFolded” model without homolog-specific linear scaling as the simplest of the
remaining models. To compare across protein families, energies were rescaled such that the
2.5th percentile of the distribution of energies is equivalent to a scaled ∆∆G = -1 and the WT to
a ∆∆G = 0.

We further evaluated the performance of the “TwoStateFractionFolded” model in families with at
least 10 homologs by training the model leaving out a single domain at a time. The genetic
distance (hamming distance and BLOSUM62 distance) of each left-out homolog to each of the
homologs that went into training was calculated and averaged, to compare to model
performance. The fraction of explainable variance in aPCA scores accounted for by the models
was estimated as the R2 between observed and predicted fitness divided by the R2 between
replicates.

Epistasis analysis of protein domain families

We identified epistatic variants with large residuals to the MoCHI fits using a two-tailed z-test.
We calculated z-scores as the residuals to the fit divided by the aPCA fitness errors, derived
p-values on the basis of a normal distribution, and applied FDR multiple testing correction.
Epistatic mutations were defined as those with |residual| > 0.05 and FDR < 0.1. Enrichments of
alignment sites in epistatic variants were calculated, and significantly enriched sites were
identified using a two-tailed Fisher’s exact test. Epistatic sites were defined as those with a
log2(OR)>1.5 and a Fisher’s Exact test FDR < 0.05. We classified alignment sites as core
residues (rSASA < 25% in at least 75% of homologs), surface residues (rSASA > 25% in at
least 75% of homologs), or changing residues (the rest). We defined contacts using
getcontacts75.

Extended Data tables

Extended Data table 1: Library design: sequences, library statistics.
Extended Data table 2: Fitness scores and errors.
Extended Data table 3: Weighted mean residuals of abundance to evolutionary fitness
predictions.
Extended Data table 4: Homolog-averaged ∆∆G predictions across families mapped to
homologous domains proteome-wide.
Extended Data table 5: aPCA fitness scores and variant effect predictor scores.
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Extended Data table 6: Plasmids

pGJJ162 aPCA empty
Available upon request (Material Transfer
Agreement required).

Extended Data table 7: Oligonucleotides

qPCR quantification oligos

oGJJ152 GCCTACATACCTCGCTCTGC

oGJJ153 CAACCCGGTAAGACACGACT

Frameshifting PCR1 oligos

oGJJ595 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTGCTCTAGAATGGCTAGC

oGJJ595_+1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGCTGCTCTAGAATGGCTAGC

oGJJ595_+2 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNGCTGCTCTAGAATGGCTAGC

oGJJ595_+3 ACACTCTTTCCCTACACGACGCTCTTCCGATCTHWAGCTGCTCTAGAATGGCTAGC

oGJJ595_+4 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNHTAGCTGCTCTAGAATGGCTAGC

oGJJ595_+5 ACACTCTTTCCCTACACGACGCTCTTCCGATCTSSSAAGCTGCTCTAGAATGGCTAGC

oGJJ748 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCCGCCACCGCCAAG

oGJJ748_+1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNCCCGCCACCGCCAAG

oGJJ748_+2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTNCCCGCCACCGCCAAG

oGJJ748_+3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNTGCCCGCCACCGCCAAG

oGJJ748_+4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGWWWCCCGCCACCGCCAAG

oGJJ748_+5 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTWWCCCGCCACCGCCAAG

oGJJ748_+6 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCATWWWCCCGCCACCGCCAAG

oGJJ748_+7 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTATADDCCCGCCACCGCCAAG

oGJJ748_+8 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGGGDWWWCCCGCCACCGCCAAG

Extended Data Table 8: Sequences used in AF3 predictions

MECP2 MBD bound to methylated DNA;
- MECP2 MBD:

RGPMYDDPTLPEGWTRKLKQRKSGRSAGKYDVYLINPQGKAFRSKVELIAYFEKVGDT
SLDPNDFDFTVTGR

- DNA chain 1: TCTGGAA-5mC-GGAATTCTTCTA
- DNA chain 2: TAGAAGAATTC-5meC-GTTCCAGA

CRX homeodomain bound to DNA:
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- CRX homeodomain:
RERTTFTRSQLEELEALFAKTQYPDVYAREEVALKINLPESRVQVWFKNRRAKCRQ

- DNA chain 1: ACGTGTGCACGTGATTAGTGCCATGCAACA
- DNA chain 2: TGTTGCATGGCACTAATCACGTGCACACGT
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