

1 **Lactate transport inhibition therapeutically reprograms fibroblast**
2 **metabolism in experimental pulmonary fibrosis**

3 David R. Ziehr^{1,2,3}, Fei Li^{1,3}, K. Mark Parnell⁴, Nathan M. Krah^{5,6}, Kevin J. Leahy¹, Christelle Guillermier^{1,3}, Jack
4 Varon^{1,3}, Rebecca M. Baron^{1,3}, Bradley A. Maron^{7,8}, Nancy J. Philp⁹, Lida P. Hariri^{3,10}, Edy Y. Kim^{1,3}, Matthew L.
5 Steinhauser^{11,12}, Rachel S. Knipe^{2,3}, Jared Rutter^{6,13}, and William M. Oldham^{1,3,‡}

6 ¹ Department of Medicine, Brigham and Women's Hospital, Boston, MA

7 ² Department of Medicine, Massachusetts General Hospital, Boston, MA

8 ³ Department of Medicine, Harvard Medical School, Boston, MA

9 ⁴ Vettore Biosciences, San Francisco, CA

10 ⁵ Department of Internal Medicine, University of Utah, Salt Lake City, UT

11 ⁶ Department of Biochemistry, University of Utah, Salt Lake City, UT

12 ⁷ Department of Medicine, University of Maryland School of Medicine, Baltimore, MD

13 ⁸ University of Maryland Institute for Health Computing, Bethesda, MD

14 ⁹ Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA

15 ¹⁰ Department of Pathology, Massachusetts General Hospital, Boston, MA

16 ¹¹ Aging Institute, University of Pittsburgh, Pittsburgh, PA

17 ¹² UPMC Heart and Vascular Institute, UPMC Presbyterian, Pittsburgh, PA

18 ¹³ Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT

19 [‡] Correspondence: William M. Oldham <woldham@bwh.harvard.edu>

20

21 **SUMMARY**

22 Small molecule inhibitors of lactate transporters, including the novel MCT4 inhibitor VB253, reprogram
23 fibroblast metabolism to prevent myofibroblast differentiation and decrease bleomycin-induced pulmonary
24 fibrosis.

25 **ABSTRACT**

26 Myofibroblast differentiation, essential for driving extracellular matrix synthesis in pulmonary fibrosis, requires
27 increased glycolysis. While glycolytic cells must export lactate, the contributions of lactate transporters to
28 myofibroblast differentiation are unknown. In this study, we investigated how MCT1 and MCT4, key lactate
29 transporters, influence myofibroblast differentiation and experimental pulmonary fibrosis. Our findings reveal
30 that inhibiting MCT1 or MCT4 reduces TGF β -stimulated pulmonary myofibroblast differentiation *in vitro* and
31 decreases bleomycin-induced pulmonary fibrosis *in vivo*. Through comprehensive metabolic analyses, including
32 bioenergetics, stable isotope tracing, metabolomics, and imaging mass spectrometry in both cells and mice, we
33 demonstrate that inhibiting lactate transport enhances oxidative phosphorylation, reduces reactive oxygen
34 species production, and diminishes glucose metabolite incorporation into fibrotic lung regions. Furthermore, we
35 introduce VB253, a novel MCT4 inhibitor, which ameliorates pulmonary fibrosis in both young and aged mice,
36 with comparable efficacy to established antifibrotic therapies. These results underscore the necessity of lactate
37 transport for myofibroblast differentiation, identify MCT1 and MCT4 as promising pharmacologic targets in
38 pulmonary fibrosis, and support further evaluation of lactate transport inhibitors for patients for whom limited
39 therapeutic options currently exist.

40 **KEYWORDS**

41 pulmonary fibrosis, lactate transporters, myofibroblast, imaging mass spectrometry

42

43 **INTRODUCTION**

44 Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with high mortality and limited
45 therapeutic options. IPF affects approximately 150,000 patients in the U.S. with a median survival of 3-5 years
46 (1-3). Currently approved pharmacotherapies for IPF are limited to the antifibrotics pirfenidone and nintedanib
47 that slow, but do not stop, disease progression (4, 5), leaving lung transplantation as the only option available to
48 eligible patients with progressive disease. The limited efficacy of antifibrotic therapies emphasizes the need for
49 novel therapeutic approaches targeting different features of IPF pathobiology.

50 Accumulating evidence suggests that metabolic reprogramming may be one such therapeutic strategy in IPF (6,
51 7). Lung fibrosis is driven by the excessive deposition of extracellular matrix by myofibroblasts (3). Fundamental
52 changes in myofibroblast metabolism support myofibroblast differentiation and extracellular matrix production
53 (8-12). In particular, increased glycolysis and lactate production have been observed in IPF myofibroblasts *ex*
54 *vivo* and following transforming growth factor β 1 (TGF β)-induced myofibroblast differentiation *in vitro* (8, 9, 13,
55 14). These metabolic changes are critical for fibrogenesis, as small molecule inhibitors of glucose uptake,
56 glycolysis, and lactate fermentation prevent myofibroblast differentiation *in vitro* and attenuate pulmonary
57 fibrosis in animal models (8-10, 13, 15, 16). Unfortunately, low target affinities, poor specificity, narrow
58 therapeutic indices, and common genetic resistance have all hampered the translation of these investigational
59 compounds for clinical use (17-19). Moreover, the molecular mechanisms by which these metabolic inhibitors
60 attenuate the myofibroblast differentiation transcriptional program remain unclear. In order to leverage
61 metabolic therapies for IPF, more targeted and better characterized drugs must be developed.

62 Toward this end, we aimed to examine the impact of a novel metabolic strategy — lactate transport inhibition
63 — on myofibroblast differentiation and experimental pulmonary fibrosis. Sustained glycolysis in myofibroblasts
64 relies on lactate secretion, which is conducted by a family of monocarboxylate transporters (MCT1-4). Inhibitors
65 targeting these transporters have been actively explored in clinical trials for oncological conditions where
66 glycolytic reprogramming also features prominently in disease pathobiology (20, 21). Importantly, MCT
67 inhibitors present favorable pharmacologic profiles compared to previously studied glycolysis inhibitors, with
68 successful translation to human clinical trials for advanced solid tumors (22). Before the promise of this
69 therapeutic approach in IPF may be realized, however, the preclinical efficacy and molecular mechanisms-of-
70 action of lactate transport inhibitors must be demonstrated experimentally.

71 In this work, we evaluated the contribution of lactate transporters to experimental pulmonary fibrosis. We
72 found increased expression of the lactate transporters MCT1 and MCT4 in IPF patient lungs. Inhibition of these

73 transporters attenuated bleomycin-induced lung fibrosis *in vivo* and TGF β -induced myofibroblast differentiation
74 *in vitro*, where MCT4 inhibition demonstrated increased therapeutic efficacy. Using metabolomics, stable
75 isotope tracing, and high-resolution spatial metabolomic imaging, we find that lactate transport inhibition
76 promotes glucose oxidation and decreases pro-fibrogenic reactive oxygen species (ROS) production. Building on
77 these results, we introduce VB253, a novel MCT4 inhibitor suitable for human clinical studies that performs
78 similarly to current standard-of-care antifibrotic therapies in bleomycin-induced pulmonary fibrosis. Together,
79 our findings offer insights into disrupting the metabolic pathways driving IPF fibrosis and present a promising
80 strategy targeting lactate transporters for the treatment of this fatal condition.

81 **RESULTS**

82 **MCT expression increases in human pulmonary fibrosis and experimental models**

83 Among the four lactate transporters, MCT1 and MCT4 exhibit the highest expression levels in the lung (23).
84 Based on this observation, we investigated the expression of MCT1 and MCT4 in lung explants from patients
85 with IPF obtained during transplantation. Consistent with a pathologic role for MCT1 and MCT4 in IPF, we
86 observed a significant upregulation of both MCT1 and MCT4 proteins in IPF lung tissues compared to non-
87 fibrotic controls (**Fig. 1A**). These findings were corroborated in an experimental model of pulmonary fibrosis,
88 where intratracheal bleomycin administration led to increased expression of both MCT1 and MCT4 (**Fig. 1B**).

89 A hallmark of IPF is the activation of tissue myofibroblasts, distinguished by their *de novo* expression of smooth
90 muscle α -actin (α -SMA); stress fiber formation; and increased migration, contraction, and extracellular matrix
91 production (7, 9, 24). TGF β is the most potent inducer of myofibroblast activation *in vitro* and *in vivo*. The TGF β -
92 dependent upregulation of α -SMA expression serves as a well-established and widely utilized model for studying
93 myofibroblast activation pertinent to pulmonary fibrosis (10, 25–27). Consistent with our findings in human IPF
94 lungs, we observed increased expression of MCT1 and MCT4 in normal human lung fibroblasts following TGF β
95 treatment (**Fig. 1C**). These findings align with increased expression of other glycolytic enzymes and the
96 associated metabolic changes previously documented in these cells (9). Taken together, these data underscore
97 the association between pulmonary fibrosis and lactate transporter expression in the lung generally and in
98 myofibroblasts specifically.

99 **Myofibroblast differentiation *in vitro* requires lactate transport**

100 We proceeded to investigate whether MCT expression and activity were essential for myofibroblast
101 differentiation *in vitro* using RNA interference and pharmacologic approaches. Lung fibroblasts were transfected

102 with siRNA targeting MCT1 and MCT4 individually and in combination. After 24 h, the cells were treated with
103 TGF β for 48 h to induce myofibroblast differentiation. The siRNAs reduced lactate transporter protein levels (**Fig.**
104 **2A**). Reduction in either MCT1 or MCT4 expression caused a marked decrease in TGF β -stimulated α -SMA
105 expression. Notably, siMCT1 also decreased MCT4 expression. No adverse effects on cell viability were noted
106 following lactate transporter knockdown, and siMCT1 significantly increased cell count in both control and TGF β -
107 treated cells (**Fig. S1A**).

108 After observing a reduction in MCT4 expression following siMCT1 treatment, we proceeded to evaluate the
109 impact of pharmacological MCT inhibitors on myofibroblast differentiation to examine the independent effects
110 of MCT1 and MCT4 inhibition. AZD3965, a high-affinity (K_i 1.6 nM) inhibitor of MCT1 (28), and VB124, a recently
111 developed high-affinity (K_i 11 nM) inhibitor of MCT4 (21), were used in this evaluation. IPF lung fibroblasts were
112 differentiated with TGF β in the presence of these MCT inhibitors (**Fig. 2B**). MCT4 inhibition by VB124 alone, or in
113 combination with AZD3965, decreased Col1a1 and α -SMA expression. These effects were consistent with normal
114 human lung fibroblasts where both AZD3965 and VB124, either individually or in combination, decreased α -SMA
115 expression (**Fig. 2C**). Similarly, AR-C155858, an inhibitor with high-affinity (K_i 2 nM) for both MCT1 and MCT2
116 (29), also reduced α -SMA expression, alone and in combination with VB124 (**Fig. S2B**). Importantly,
117 pharmacologic MCT inhibition did not significantly impact cell count during the 48 h treatment (**Fig. S2C-D**). As
118 expected, decreased Col1a1 and α -SMA expression correlated with reduced myofibroblast contractility, as
119 demonstrated by gel contraction assay (**Fig. 2D**). Together, these data indicate that MCT expression and activity
120 are required for myofibroblast differentiation *in vitro*.

121 **MCT inhibition attenuates pro-fibrotic transcriptional programs**

122 To further characterize the antifibrotic effects of lactate transport inhibition, we conducted RNA sequencing on
123 lung fibroblasts treated with TGF β in conjunction with AZD3965 or VB124 (**Fig. 2E-H, S2**). Principal components
124 analysis (PCA) revealed that the first principal component predominantly represented the effect of TGF β
125 treatment, while MCT4 inhibition, either alone or combined with MCT1 inhibition, aligned with the second
126 principal component (**Fig. 2E**). Samples treated with the MCT1 inhibitor AZD3965 were similar to vehicle-treated
127 controls.

128 Differential expression analysis of TGF β -treated cells revealed the anticipated upregulation of extracellular
129 matrix proteins (**Fig. S2A**) and enrichment of the epithelial-to-mesenchymal (EMT) gene set, among others (**Fig.**
130 **2F**). In line with the PCA results, only GRIK4 (glutamate ionotropic receptor kainate type subunit 4) and BRI3
131 (brain protein I3) were differentially expressed following AZD3965 treatment (**Fig. S2B**). By contrast, VB124,

132 either alone (**Fig. S2C**) or in combination with AZD3965 (**Fig. 2G**), induced more significant alterations in
133 fibroblast transcription, with 2% of 24,902 genes being differentially expressed at a false discovery rate (FDR) <
134 0.05.

135 Both AZD3965 and VB124 reversed TGF β -dependent enrichment of the EMT gene set, which is the Hallmark
136 gene set containing genes related to fibrosis (**Fig. 2F**). Leading edge analysis of the EMT gene set identified seven
137 genes shared among all three comparisons (*i.e.*, genes increased by TGF β and decreased by both AZD3965 and
138 VB124) (**Fig. 2H**). These genes, including biglycan (BGN), COL6A3, Frizzled 8 (FZD8), matrix Gla protein (MGP),
139 Prostate Transmembrane Protein, Androgen Induced 1 (PMEPA1), TIMP metallopeptidase inhibitor 1 (TIMP1),
140 and tenascin-C (TNC), are known contributors to pulmonary fibrosis pathobiology or serve as biomarkers of
141 disease or treatment response (30–34). Taken together, these findings suggest that lactate transport inhibitors
142 attenuate the pro-fibrotic transcriptional program in TGF β -treated lung fibroblasts.

143 **MCT inhibition reprograms myofibroblast metabolism**

144 MCTs play pivotal roles in maintaining cellular lactate and redox homeostasis. MCT1 predominantly imports
145 lactate in cells utilizing lactate for oxidative phosphorylation or gluconeogenesis and is ubiquitously expressed.
146 MCT1 also facilitates lactate export in some glycolytic cells (35, 36). By contrast, MCT4 functions as the main
147 lactate exporter in glycolytic cells and is up-regulated when the glycolytic transcriptional program is activated
148 by, for example, the c-Myc or hypoxia-inducible transcription factors (35, 37). Importantly, MCT4 can also act as
149 a lactate importer with a K_M of 1 mM (38).

150 To assess the metabolic consequences of lactate transporter inhibition, we quantified extracellular lactate in the
151 conditioned medium from cells treated with MCT siRNA or pharmacologic inhibitors. Silencing MCT1 and MCT4,
152 either individually or concurrently, decreased net TGF β -stimulated lactate efflux in lung fibroblasts (**Fig. 3A**). By
153 contrast, pharmacologic inhibition of either MCT1 or MCT4 alone did not decrease TGF β -stimulated lactate
154 efflux (**Fig. 3B**); inhibition of both transporters was required to lower extracellular lactate levels. Inhibition of
155 MCT1, MCT2, and MCT4 with the combination of AR-C155858 and VB124 was required to prevent increases in
156 lactate efflux (**Fig. S3A**). Although less pronounced compared to lactate production, we observed a trend toward
157 decreased extracellular glucose consumption in cells treated with both AZD3965 and VB124 (**Fig. S3B**). These
158 findings align with previous studies indicating compensatory roles for MCT1 and MCT4 in lactate export (39).
159 Furthermore, these results suggest that glycolysis inhibition is not the principal mechanism underlying the
160 attenuation of myofibroblast differentiation by lactate transport inhibition.

161 To further elucidate the metabolic consequences of lactate transport inhibition, we next measured proton efflux
162 (PER) and oxygen consumption (OCR) rates in lung fibroblasts treated with TGF β in combination with MCT
163 inhibitors (**Fig. 3C, S3C**). Given that MCTs co-transport protons with lactate, PER serves as a surrogate measure
164 of lactate efflux. In line with previous findings (8–10, 16, 40), we observed increases in both PER and OCR
165 following 48 h of TGF β stimulation, indicative of increased glycolysis and oxidative phosphorylation. Consistent
166 with our direct measures of extracellular lactate and glucose, concurrent treatment with AZD3965 and VB124
167 was necessary to reduce PER. Consequently, this reduction in PER coincided with an increase in OCR as
168 myofibroblasts transitioned their metabolism from glycolysis to oxidative phosphorylation.

169 Interestingly, individual administration of AZD3965 and VB124 unexpectedly increased OCR without
170 corresponding decreases in PER. Indeed, the primary consequence of MCT1 or MCT4 inhibition alone was
171 increased cellular ATP production rates driven by upregulation of oxidative phosphorylation (**Fig. 3D-E**). MCT
172 inhibition decreased spare respiratory capacity, indicating that the basal respiratory rate of treated cells
173 approached their maximal oxidative capacity (**Fig. S3D**). No significant differences were observed in glycolytic
174 capacity or electron transport chain coupling efficiency (**Fig. S3D**). Together, these data suggest that the
175 principal metabolic effect of MCT inhibition is the stimulation of oxidative phosphorylation rather than inhibition
176 of glycolysis.

177 To further test this hypothesis, we performed liquid chromatography-mass spectrometry-based profiling of
178 extracellular and intracellular metabolites from cells treated with AZD3965 and VB124. In accordance with the
179 Seahorse analysis, inhibiting a single lactate transporter had modest effects on extracellular metabolite levels
180 (**Fig. 4A-D, S4**). This analysis confirmed the results of extracellular lactate measurements by enzyme assay, which
181 showed that dual inhibition was required to decrease lactate efflux (**Fig. 4B**). Besides lactate, dual inhibition of
182 lactate transporters primarily altered transcellular fluxes of amino acids (**Fig. 4C-D**), including several
183 metabolites that were differentially regulated by TGF β treatment (**Fig. S4A**) and dual lactate transport inhibition,
184 including leucine, alanine, ornithine, and ketoleucine.

185 Similar effects were observed on intracellular metabolites. PCA showed distinct clustering of treatment groups,
186 with the drug effects aligning with PC1 and TGF β treatment effects with PC2 (**Fig. 4E**). Similar to the extracellular
187 flux results, the magnitude of drug-induced perturbations increased from MCT1 to MCT4 to combined inhibition
188 (**Fig. 4E**), reflected by intracellular lactate levels (**Fig. 4F**). As expected from extracellular lactate measures
189 following MCT inhibition, intracellular lactate accumulated moderately with MCT4 inhibition and substantially
190 with MCT1/4 inhibition. TGF β treatment resulted in diverse changes in the intracellular metabolomic profile of

191 treated fibroblasts (**Fig. S4C-D**). The effect of AZD3965 alone on intracellular metabolite levels was modest (**Fig.**
192 **S4G-H**). Conversely, MCT4 inhibition by VB124 alone (**Fig. SK-L**) or in combination with AZD3965 (**Fig. 4G-H**)
193 caused substantial perturbations to intracellular metabolism. Specifically, we observed enrichment of the
194 glycolysis and tricarboxylic acid (TCA) cycle metabolite sets with MCT4 inhibition. These findings collectively
195 suggest that inhibiting lactate export leads to the accumulation of upstream glycolytic intermediates that are
196 rerouted to mitochondrial oxidative metabolic pathways.

197 To test this hypothesis, we labeled lung fibroblasts with [$U-^{13}C_6$]-glucose (8 mM) in medium containing lactate (2
198 mM), glutamine (1 mM), and pyruvate (1 mM) during TGF β stimulation and treatment with MCT inhibitors (**Fig.**
199 **4J, S5**). TGF β increased ^{13}C incorporation from glucose into pyruvate, lactate, citrate, succinate (SUC), and
200 malate (MAL), indicating enhanced flux from glucose into the TCA cycle. While AZD3965 had minimal impact on
201 these labeling patterns, MCT4 inhibition significantly elevated the fractions of these metabolites labeled by ^{13}C ,
202 providing direct evidence for a proportional increase in glucose oxidation following MCT4 inhibition, consistent
203 with the results of our bioenergetic and steady-state metabolomics experiments described above.

204 Increased metabolite labeling from [$U-^{13}C_6$]-glucose must be offset by decreased labeling from other substrates.
205 Given recent data suggesting lactate as a major oxidative fuel source in the lung (41–43), we hypothesized that
206 MCT inhibition would decrease exogenous lactate oxidation. To test this, lung fibroblasts were cultured with [$U-$
207 $^{13}C_3$]-lactate (2 mM) in medium containing naturally labeled glucose, glutamine, and pyruvate (**Fig. 4K, S5**).
208 Extracellular [$U-^{13}C_3$]-lactate labeled approximately 50% of intracellular pyruvate and lactate at baseline, with
209 significant downstream incorporation into TCA metabolites. This labeling decreased following TGF β treatment,
210 mirroring increased fractional labeling from glucose (**Fig. 4J**). MCT inhibition had no impact on fractional labeling
211 of TCA intermediates by [$U-^{13}C_5$]-glutamine (**Fig. S4M, S5**). MCT4 inhibition alone or in combination with
212 AZD3965 decreased ^{13}C labeling of intracellular metabolites by lactate. These findings demonstrate the
213 importance of MCT4 for lactate import at physiologic lactate concentrations, in contrast to the prevailing
214 sentiment that MCT4 is primarily a lactate exporter. Moreover, these data further underscore the relatively
215 greater importance of MCT4 activity in fibroblast metabolism compared to MCT1. Consistent with our
216 measurements of extracellular lactate, the effects of MCT inhibition were more pronounced when both
217 inhibitors were used simultaneously, again highlighting some functional redundancy of MCT1 and MCT4 in these
218 cells.

219 **Lactate transport inhibition contributes to antioxidant defense mechanisms**

220 Lactate metabolism is closely coupled to cellular redox homeostasis through its metabolism by lactate
221 dehydrogenases, which transfer electrons from lactate to NADH. Building on previous findings highlighting the
222 significance of ROS in TGF β -mediated gene expression (44, 45), we investigated the impact of lactate transport
223 inhibition on cellular redox balance. Consistent with increased intracellular lactate upon MCT4 inhibition, we
224 observed a corresponding rise in intracellular NADH/NAD $^+$ (**Fig. 4L**), coupled with a reduction in total ROS as
225 measured using the CellROX fluorescent probe (**Fig. 4M**). AZD3965, but not VB124, decreased mitochondrial
226 superoxide production (**Fig. 4N**). Neither inhibitor affected mitochondrial biomass measured by MitoTracker
227 fluorescence (**Fig. S6B**). Less substantial changes were observed in the NADPH/NADP $^+$ ratio, where VB124
228 decreased NADPH/NADP $^+$ in TGF β -treated cells (**Fig. S6A**). Notably, TGF β did not induce ROS production in our
229 experimental system.

230 Previous research has proposed proline biosynthesis as a mechanism for NIH-3T3 fibroblasts to mitigate ROS
231 accumulation following TGF β stimulation (45). In this model, proline synthesis from glutamine consumes
232 reducing equivalents from NADPH and NADH, thereby ameliorating reductive stress and decreasing ROS
233 production. Contrary to these findings, we did not observe TGF β -induced proline elevations in primary lung
234 fibroblasts (**Fig. S6C**). Overall, the fractional labeling of proline from [U- $^{13}\text{C}_5$]-glutamine was modest at 10%
235 compared to the previously reported 40% (**Fig. S6D**). While we noted trends toward increased proline
236 production from glutamine with MCT4 inhibition, this mechanism appears insufficient to explain the effects of
237 MCT inhibitors on ROS generation.

238 **Lactate transport inhibition does not alter classical TGF β signaling pathways**

239 Next, we examined TGF β -dependent signaling, which activates both SMAD and non-SMAD signaling pathways
240 through a cascade of protein phosphorylation events. Following 48 h of TGF β stimulation, MCT inhibitors did not
241 diminish Smad3 or ERK phosphorylation (**Fig. 5A-B**).

242 Given that increased intracellular lactate correlated with more potent inhibition of α -SMA expression, we
243 treated cells with TGF β in combination with extracellular lactate (10 mM). A previous study suggested that
244 extracellular lactate modestly increases α -SMA expression independently of TGF β (13). However, we observed
245 no impact of extracellular lactate on α -SMA expression in TGF β -treated lung fibroblasts (**Fig. S7A**), indicating
246 intracellular lactate accumulation alone does not mediate the antifibrotic effects of MCT inhibition.

247 Prior research has linked inhibition of glycolysis and lactate production to hypoxia-inducible factor 1 α activation
248 (HIF-1 α), contributing to myofibroblast differentiation (10, 13). We observed maximal HIF-1 α activation 6 h after
249 TGF β stimulation. At this time point, HIF-1 α protein levels remained consistent across vehicle-, AZD3965-, and
250 VB124-treated cells (Fig. S7B). However, in lung fibroblasts treated with dual inhibitors, HIF-1 α protein increased
251 compared to vehicle, consistent with the enrichment of the “Hypoxia” gene set in our RNA-seq analysis (Fig. 2F).
252 These findings, alongside previous studies, suggest that lactate transport inhibition acts downstream of HIF-1 α -
253 dependent transcriptional programs to inhibit myofibroblast differentiation.

254 **MCT inhibition decreases experimental pulmonary fibrosis**

255 Building on our *in vitro* findings indicating an antifibrotic effect of lactate transporter inhibition, we proceeded
256 to evaluate the efficacy of MCT inhibitors in a bleomycin-induced mouse model of pulmonary fibrosis. Mice
257 received 1.2 U/kg bleomycin by intratracheal administration. Seven days later, the animals began treatment
258 with AZD3965 (100 mg/kg twice daily) or VB124 (30 mg/kg once daily) or vehicle by oral gavage (Fig. 6A).
259 Considering likely toxicity, we did not assess the combination of inhibitors. Compared to vehicle, mice treated
260 with VB124 had increased weight recovery 21 days after bleomycin administration (Fig. S8). Lung mechanics
261 improved by approximately 50% of baseline compared to vehicle controls following 14 days of MCT inhibitor
262 treatment (Fig. 6B-C). This improvement in measures of lung stiffness was further supported by histologic
263 assessment of fibrosis severity using Ashcroft scoring (46) (Fig. 6D-E) and hydroxyproline content measurement
264 (Fig. 6F). Taken together, these data demonstrate substantially decreased pulmonary fibrosis severity after 14
265 days of treatment with lactate transport inhibitors.

266 **MCT inhibition reprograms lung metabolism *in vivo***

267 To explore metabolic changes following lactate transporter inhibition *in vivo*, we conducted metabolomic
268 profiling of lung and plasma from mice treated with bleomycin and MCT inhibitors (Fig. S9). While bleomycin
269 administration substantially altered the lung metabolic profile, treatment with AZD3965 or VB124 had little
270 additional impact on total metabolite levels. However, unlike bleomycin alone or following AZD3965 treatment,
271 VB124 treatment resulted in significant alterations in several circulating metabolites (Fig. S9I). Among these,
272 VB124 significantly increased circulating lactate, while AZD3965 led to decreased circulating lactate (Fig. 7A).
273 This trend was also reflected in the lung, where only modest changes were noted following bleomycin, contrary
274 to prior reports (13). Considering the influence of our treatments on circulating lactate, we calculated the lung-
275 to-plasma lactate ratio. This analysis revealed the anticipated increase in lactate in fibrotic lungs, with levels
276 returning to baseline following the addition of VB124 (Fig. 7A).

277 We were surprised to observe relatively few metabolic changes in whole lung lysates following MCT inhibition
278 compared to our *in vitro* findings. We speculated that this discrepancy might arise from measuring steady-state
279 metabolite levels that do not reflect differences in metabolic flux. To test this hypothesis, we performed multi-
280 isotope imaging mass spectrometry (MIMS) of mouse lungs following administration of ¹⁵N-proline and either
281 ²H-glucose or ¹³C-glucose. MIMS enables the quantification of stable isotope tracer flux into tissue biomass with
282 subcellular spatial resolution (47, 48). For three days preceding tissue collection, mice received twice daily
283 intraperitoneal injections of 5 mg ¹⁵N-proline as a fibrosis tracer and 50 mg glucose isotope as a metabolic
284 tracer. Subsequently, lung tissue sections were imaged by nanoscale secondary ion mass spectrometry to
285 quantify spatially resolved isotope tracer uptake (Fig. 7B-C). This labeling approach proved effective,
286 demonstrating approximately 1.5-fold enrichment ¹⁵N, 4.6-fold for ²H, and 2.4-fold for ¹³C above natural isotope
287 abundance. Pulmonary fibrosis correlated with a significant increase in ¹⁵N labeling from proline, consistent with
288 increased collagen synthesis and deposition during the labeling period. Similarly, drug-treated animals exhibited
289 less ¹⁵N incorporation per tissue area, consistent with lung function and histological analyses. Glucose labeling
290 displayed a similar pattern, wherein lactate transporter inhibition led to reduced glucose incorporation into
291 tissue biomass. Importantly, these findings are not merely attributable to decreased tissue fibrosis, as we
292 selectively imaged more fibrotic areas (Fig. 7B) and normalized the enrichment values to tissue area.

293 **VB253, a novel MCT4 inhibitor, alleviates experimental pulmonary fibrosis**

294 Our preclinical findings indicate that MCT4 inhibition, as a single therapeutic target, exhibits greater antifibrotic
295 efficacy than MCT1 inhibition, both in suppressing myofibroblast differentiation *in vitro* and reducing bleomycin-
296 induced fibrosis. VB253 is a novel inhibitor of MCT4 with ~10-fold increased selectivity for MCT4 v. MCT1 and
297 ~10-fold increased potency for MCT4 inhibition. Like VB124, VB253 dose-dependently decreased TGF β -
298 stimulated α -SMA in human IPF lung fibroblasts *ex vivo* (Fig. 8A). To assess its efficacy compared to established
299 therapies, we compared VB253 to nintedanib, a clinically approved antifibrotic medication for pulmonary
300 fibrosis (Fig. 8A-B). Nintedanib inhibits TGF β -mediated myofibroblast differentiation and decreases Col1a1
301 expression *in vitro* and *in vivo* (49). While both compounds effectively attenuated α -SMA expression, nintedanib
302 exhibited moderate cytotoxicity absent with VB253 (Fig. 8B). Nintedanib mitigates myofibroblast differentiation
303 partly by inhibiting TGF β receptor phosphorylation and Smad-dependent signaling pathways (50).
304 Correspondingly, nintedanib dose-dependently attenuated TGF β -mediated Smad3 phosphorylation, while
305 VB253 and VB124 had no impact on this signaling pathway (Fig. 5, S10).

306 Subsequently, we evaluated the potential of VB253 to counter bleomycin-induced pulmonary fibrosis. In
307 experiments conducted independently from those reported above, VB253 was administered to young mice (8-

308 10 weeks) beginning on day 7 following bleomycin (**Fig. 8C**). The existing pulmonary fibrosis therapies,
309 nintedanib and pirfenidone, served as comparators. Three weeks after bleomycin, whole-body plethysmography
310 was performed to assess breathing patterns in unrestrained mice. Enhanced pause (Penh) is a dimensionless
311 index describing airflow during tidal breathing found to increase significantly in bleomycin-treated mice (51).
312 VB253 restored Penh to baseline levels, suggesting normalization of respiratory patterns in bleomycin-treated
313 mice (**Fig. 8D**). Histologic assessment confirmed reduced pulmonary fibrosis (**Fig. 8E**) and α -SMA expression (**Fig.**
314 **8F**). Moreover, the effects of VB253 were comparable to the antifibrotic effects of nintedanib and pirfenidone
315 with decreased cytotoxicity in *in vitro* assays.

316 Compared to young mice, aged mice exhibit more severe and persistent bleomycin-induced pulmonary fibrosis
317 (52). Given the clinical relevance of age-related IPF incidence, we investigated the antifibrotic effects of VB253 in
318 aged (60+ weeks) mice. Similar to young mice, VB253 decreased fibrosis severity, as quantified by Ashcroft score
319 and α -SMA expression (**Fig. 8G-I**). The magnitude of improvement paralleled that of nintedanib and pirfenidone.
320 As expected, VB253 decreased total lung lactate akin to VB124 (**Fig. 7A**). Collectively, these findings provide
321 compelling preclinical evidence supporting lactate transporter inhibition as a novel therapeutic strategy for
322 fibrotic lung disease.

323

324 **DISCUSSION**

325 Our findings identify the pivotal role of lactate transport in the metabolic reprogramming associated with
326 myofibroblast differentiation both *in vitro* and *in vivo*. Elevated expression of the lactate transporters MCT1 and
327 MCT4 was observed in IPF lung explants and experimental models, underscoring their significance. Inhibiting
328 these transporters mitigated TGF β -stimulated myofibroblast differentiation and attenuated the severity of
329 bleomycin-induced pulmonary fibrosis without a demonstrable impact on classical TGF β receptor signaling
330 pathways. Metabolically, MCT antagonists promoted glucose oxidation while reducing glucose carbon
331 incorporation into fibrotic lung regions, correlating with decreased oxidative stress. MCT4 inhibition consistently
332 exhibited superior antifibrotic potency compared to MCT1 inhibition. We introduce a novel MCT4 inhibitor,
333 VB253, which has a more favorable pharmacologic profile than VB124, and is currently undergoing Phase 1
334 clinical trials. Altogether, these data establish lactate transport as a promising metabolic target for therapeutic
335 intervention in pulmonary fibrosis.

336 Metabolic reprogramming characterizes myofibroblast differentiation, with previous studies revealing
337 alterations in carbohydrate, amino acid, and lipid metabolic pathways that promote fibrogenesis (7). Of these,
338 increased lactate production emerged as an early metabolic hallmark associated with pulmonary fibrosis (13).
339 Subsequent investigations identified glycolysis activation as the driving force behind increased lactate
340 production by myofibroblasts (9). Furthermore, inhibition of glycolysis not only prevented myofibroblast
341 differentiation (8, 9, 14), but also attenuated experimental pulmonary fibrosis (15, 16). Our findings align with
342 this metabolic shift, as we observed upregulated expression of lactate transporters MCT1 and MCT4, supporting
343 this glycolytic phenotype in myofibroblasts.

344 MCTs are proton-coupled monocarboxylate symporters with varying affinities for lactate, pyruvate, and other
345 monocarboxylates (35). MCT1 is constitutively and ubiquitously expressed and primarily considered to be a
346 lactate importer with a lactate affinity (K_M) ranging from 3-6 mM. By contrast, MCT4 expression is dynamically
347 regulated, including by HIF-1 α , and traditionally considered a lactate exporter with a lower lactate affinity (K_M
348 30-40 mM). However, recent evidence suggests that MCT4 has a much higher affinity for lactate import than
349 previously appreciated (K_M 1 mM) (38). These findings align with our results where inhibiting both MCT1 and
350 MCT4 was required to block lactate export (Fig. 3, S3) and isotope incorporation from extracellular [U- $^{13}\text{C}_3$]-
351 lactate import (Fig. 4K). Previous studies in cancer cells have also noted that MCT4-expressing cells are resistant
352 to the cytotoxic effects of MCT1 inhibition (28). Interestingly, inhibiting either MCT1 or MCT4 decreased

353 myofibroblast differentiation without affecting lactate export, adding further complexity to their roles in cellular
354 metabolism.

355 To clarify the metabolic consequences of lactate transporter inhibition, we performed a comprehensive
356 metabolic analysis of myofibroblasts treated with MCT inhibitors, encompassing bioenergetic measurements,
357 metabolomic profiling, and stable isotope tracing. The primary metabolic consequence of MCT inhibition is
358 stimulation of oxidative phosphorylation. MCT inhibitors increased the fraction of mitochondrial ATP
359 production, which was associated with increased levels of TCA intermediates and increased isotope
360 incorporation from glucose. Collectively, these data suggest that MCT inhibition redirects glucose carbon flux
361 away from lactate fermentation and toward glucose oxidation. Several mechanisms could underlie this shift.
362 Given that the observed effects generally scale with intracellular lactate levels, mass action likely plays an
363 important role in driving this metabolic phenomenon. Additionally, lactate accumulation is closely coupled in
364 NADH production through lactate dehydrogenase activity. Cytoplasmic NADH may be transported into the
365 mitochondria through the malate-aspartate shuttle and oxidized by the electron transport chain. Recently,
366 lactate itself was shown to activate the mitochondrial electron transport chain independent of its metabolism (53),
367 though the molecular mechanism remains unknown.

368 Our data reveal that lactate transport inhibition exploits novel antifibrotic mechanisms distinct from TGF β
369 signaling pathways and suggest that these metabolic effects may signal to antifibrotic transcriptional programs
370 by dampening ROS levels. Increased ROS production has been observed following TGF β treatment and seems to
371 be essential for myofibroblast differentiation (44, 45). While our cells and model system did not replicate TGF β -
372 dependent increases in ROS, we observed decreased CellROX oxidation with MCT4 inhibition and decreased
373 MitoSOX oxidation with AZD3965. Additional signaling mechanisms may also contribute, such as post-
374 translational modification of protein lysines by lactate (*i.e.*, protein lactylation). Histone lactylation serves as an
375 epigenetic modification that stimulates gene expression (54) and this modification has been increasingly
376 identified as a critical regulator of protein function, including cytoskeletal proteins (55). Furthermore, ongoing
377 research is uncovering novel lactate targets and mechanisms as significant mediators of metabolic signaling (56,
378 57).

379 Through our comprehensive metabolic investigation of lactate transport inhibition, we have also generated
380 valuable data on the metabolic and transcriptional consequences of human lung myofibroblast differentiation.
381 TGF β stimulation induced notable alterations in amino acid and nucleic acid metabolic pathways (Fig. S4). While
382 previous studies have underscored the significance of glutamine, proline, and taurine (7, 58, 59), the role of

383 branched chain amino acid metabolism, for instance, remains unexplored. Integrating these multi-omics data
384 sets could unveil novel molecular targets for future drug development.

385 In addition to metabolomic profiling, we conducted stable isotope tracing using glucose, lactate, and glutamine
386 substrates in TGF β -treated primary human lung fibroblasts. To our knowledge, this represents the first
387 comprehensive dataset on intracellular substrate metabolism in this widely employed model of myofibroblast
388 differentiation. Overall, isotope labeling patterns changed little following TGF β treatment (**Fig. S5**). This
389 observation, coupled with the results of our extracellular flux experiments, suggests that TGF β primarily
390 enhances metabolite flow through metabolic pathways without substantially altering the pathways themselves.
391 Consistent with increased glucose uptake and accumulation of glycolytic metabolites, a greater fraction of
392 pyruvate, lactate, alanine, and serine are labeled by [U- $^{13}\text{C}_6$]-glucose, countered by a reduction in the fractional
393 labeling from [U- $^{13}\text{C}_3$]-lactate. Consistent with our prior findings (43), nearly 50% of TCA metabolites (citrate, 2-
394 oxoglutarate, succinate, and malate) are labeled by [U- $^{13}\text{C}_3$]-lactate, highlighting the importance of lactate as a
395 respiratory fuel source in these cells.

396 Recently, the contributions of fibroblast metabolic pathways to extracellular matrix production have garnered
397 significant attention (7). Serine and glycine synthesis from the glycolytic intermediate 3-phosphoglycerate, and
398 proline synthesis from glutamine, have been implicated in myofibroblast differentiation and pulmonary fibrosis
399 (11, 12, 45, 58, 60). Intriguingly, our data indicate limited incorporation of glucose or lactate carbon into serine
400 and minimal glutamine carbon incorporation into proline. These differences may stem from differences in the
401 cell types (IMR-90 fetal lung fibroblasts or NIH-3T3 spontaneously immortalized mouse embryonic fibroblasts) or
402 the culture medium composition (Eagle's minimum essential medium, which lacks serine, glycine, and proline).
403 Our study suggests that fibroblasts preferentially utilize available amino acids over rerouting substrates into
404 biosynthetic pathways. Developing metabolic flux models using human physiologic medium (61) could provide a
405 more accurate and comprehensive understanding of substrate flow into energetic and biosynthetic pathways,
406 better mimicking fibroblast metabolism *in vivo*.

407 Even more informative than *in vitro* model systems are approaches that enable the study of cell metabolism *in*
408 *vivo*. Here, we performed metabolomic profiling of lung and plasma samples from mice treated with bleomycin
409 and MCT inhibitors (**Fig. S9**). These analyses did not reveal changes in whole lung metabolite levels,
410 demonstrating a potential limitation of using bulk metabolomics to monitor metabolic changes in
411 heterogeneous cell populations *in vivo*. To overcome this challenge, we employed spatial metabolic imaging.
412 Mice were administered stable isotope tracers of proline and glucose before euthanasia. Since these tracers are

413 administered to live animals, multi-isotope imaging mass spectrometry identifies lung regions that are
414 metabolically active during the labeling period. Since tissues were fixed and processed *ex vivo*, the isotope
415 signals indicate substrate incorporation into fixable biomass (62, 63). Thus, using multi-isotope imaging mass
416 spectrometry, we directly quantify isotope flux from glucose into fibrotic lung regions.

417 Our findings demonstrated that ¹⁵N-proline enrichment levels correlated with tissue fibrosis as assessed
418 histologic and biochemically. This finding emphasizes the ability of cells to utilize circulating proline for protein
419 synthesis, potentially diminishing the significance of *de novo* proline biosynthesis *in vivo*. Moreover, the ²H-
420 glucose signal provided direct evidence for MCT-dependent metabolic reprogramming in mice, showing reduced
421 carbohydrate incorporation into matrix proteins. Owing to the financial and time costs of isotope tracing and
422 imaging, we were able to study only a few animals per group. Nevertheless, metabolic imaging at high spatial
423 resolution holds great promise for correlating cell identities from spatial transcriptomic profiles with metabolic
424 features. Furthermore, stable isotopes may be safely administered to human patients prior lung biopsy or
425 explant (47, 64), offering a strategy that could significantly advance our understanding of how cell metabolism
426 contributes to pulmonary fibrosis.

427 MCT1 and MCT4 are expressed by many cells in the lung, notably macrophages and dendritic cells (65). Although
428 our *ex vivo* and *in vitro* experiments suggest that inhibiting myofibroblast differentiation is a primary antifibrotic
429 mechanism, the inhibition of lactate transporters expressed by other cell types may also contribute to their
430 therapeutic effect. For example, MCT4 expression is upregulated as part of a HIF-1 α gene expression signature
431 in transitional AT2 cells that accumulate in pulmonary fibrosis and contribute to aberrant repair processes (66,
432 67). Future work will explore the cell-type-specific effects of these transporters in conditional knockout mice.

433 The poor pharmacologic properties of small molecules studied previously have prevented translation into
434 metabolic therapies for human pulmonary fibrosis. Both AZD3965 and VB253 exhibit low IC₅₀ values of
435 approximately 2 nM, compared to the next most potent inhibitor studied in pulmonary fibrosis models,
436 lonidamine, with an IC₅₀ of 7,000 nM (68). As metabolic targets downstream of glycolysis, lactate transport
437 inhibitors also offer better tolerance by allowing glycolysis to continue supporting glucose oxidation, contrasting
438 with upstream glycolysis inhibitors that more severely impact cellular bioenergetics. Pharmacologic interest in
439 lactate transporters has been driven by the recognition of increased lactate transporter expression in a variety
440 of cancers (69). AZD3965 was selected for this study as it has been investigated in human clinical trials for
441 advanced solid organ malignancies (22). In this Phase 1 study, AZD3965 was generally well-tolerated with 7 of 40
442 patients experiencing dose-limiting toxicities including asymptomatic, reversible ocular changes; acidosis; and

443 increased troponin. VB124 was the first selective MCT4 inhibitor developed (21) and we now introduce VB253 as
444 a second generation MCT4 inhibitor. Our data demonstrate that VB253 has similar efficacy in experimental
445 pulmonary fibrosis models as the established antifibrotics, nintedanib and pirfenidone, with potentially less
446 cytotoxicity (**Fig. 8**). MCT4 global knockout mice are viable and breed normally (70, 71), raising optimism that
447 VB253 will be well tolerated in humans, and a Phase 1 clinical trial of VB253 is currently underway.

448 In summary, our findings highlight the pivotal role of lactate transporter in driving myofibroblast differentiation
449 and pulmonary fibrosis. Through a comprehensive metabolic phenotyping approach, we have characterized the
450 antifibrotic mechanisms associated with MCT inhibition and provided compelling evidence of metabolic
451 reprogramming in animal models. Furthermore, we have validated the antifibrotic effectiveness of existing
452 lactate transport inhibitors using established preclinical disease models. Altogether, our results significantly
453 advance lactate transport inhibition as a promising therapeutic approach for patients suffering from pulmonary
454 fibrosis.

455

456 **MATERIALS AND METHODS**

457 **Study Design**

458 This study was designed to investigate the role of lactate transporters in myofibroblast differentiation and
459 pulmonary fibrosis. The objectives of this study were (i) to determine the expression of lactate transporters in
460 IPF lungs and model systems, (ii) to characterize the phenotypic effects of lactate transport inhibition in model
461 systems, and (iii) to profile the metabolic consequences of lactate transport inhibitors.

462 Cell culture experiments were performed at least three times. The number of animals per experimental group
463 was chosen based on prior publications and experiments were repeated at least once. Stable isotope tracing
464 experiments were performed on three animals per group owing to resource availability. Animals were randomly
465 assigned to treatment. The pathologist scoring histologic fibrosis severity was blinded to treatment assignment.
466 The number of unique patient samples was determined by clinical availability.

467 **Statistical Analysis**

468 Data analysis, statistical comparisons, and visualization were performed in R (72). Experiments included
469 technical and biological replicates as noted in the Materials and Methods. The number of biological replicates
470 (N) is indicated in the figure legends. Summary data show the mean \pm SEM. Outliers were identified using twice
471 the median absolute deviation as a cutoff threshold. Comparisons were performed using linear mixed-effects
472 models with condition (\pm TGF β), treatment, and their interaction as fixed effects and biological replicate or donor
473 as a random effect. Significant differences in estimated marginal means were identified by comparisons to the
474 multivariate *t* distribution. Metabolomics and RNA-seq data were analyzed as described in the Materials and
475 Methods. Probability values less than 0.05 were considered statistically significant.

476 **Study approval**

477 Human samples were obtained through the BWH Biorepository for Understanding Inflammatory Lung Disease
478 (BUILD) or the MGH ILD Translational Research Program and their collection was approved by the Mass General
479 Brigham Institutional Review Board (2013P002332, 2016P001890, 2019P003592, 2020P002765). All animal
480 experiments were approved by the Brigham and Women's Hospital IACUC (2020N000199).

481

482 **LIST OF SUPPLEMENTARY MATERIALS**

483 Materials and Methods

484 Fig. S1-S10

485

486 REFERENCES AND NOTES

487 1. D. B. Esposito, S. Lanes, M. Donneyong, C. N. Holick, J. A. Lasky, D. Lederer, S. D. Nathan, S. O’Quinn, J. Parker,
488 T. N. Tran, **Idiopathic Pulmonary Fibrosis in United States Automated Claims. Incidence, Prevalence, and**
489 **Algorithm Validation.** *Am J Respir Crit Care Med* **192**, 1200–1207 (2015).

490 2. G. Raghu, S.-Y. Chen, Q. Hou, W.-S. Yeh, H. R. Collard, **Incidence and prevalence of idiopathic pulmonary**
491 **fibrosis in US adults 18–64years old.** *Eur Respir J* **48**, 179–186 (2016).

492 3. F. J. Martinez, H. R. Collard, A. Pardo, G. Raghu, L. Richeldi, M. Selman, J. J. Swigris, H. Taniguchi, A. U. Wells,
493 **Idiopathic pulmonary fibrosis.** *Nat Rev Dis Primers* **3**, 17074 (2017).

494 4. T. E. King, W. Z. Bradford, S. Castro-Bernardini, E. A. Fagan, I. Glaspole, M. K. Glassberg, E. Gorina, P. M.
495 Hopkins, D. Kardatzke, L. Lancaster, D. J. Lederer, S. D. Nathan, C. A. Pereira, S. A. Sahn, R. Sussman, J. J. Swigris,
496 P. W. Noble, ASCEND Study Group, **A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis.**
497 *N Engl J Med* **370**, 2083–2092 (2014).

498 5. L. Richeldi, R. M. du Bois, G. Raghu, A. Azuma, K. K. Brown, U. Costabel, V. Cottin, K. R. Flaherty, D. M. Hansell,
499 Y. Inoue, D. S. Kim, M. Kolb, A. G. Nicholson, P. W. Noble, M. Selman, H. Taniguchi, M. Brun, F. Le Mauff, M.
500 Girard, S. Stowasser, R. Schlenker-Herceg, B. Disse, H. R. Collard, **INPULSIS Trial Investigators, Efficacy and safety**
501 **of nintedanib in idiopathic pulmonary fibrosis.** *N Engl J Med* **370**, 2071–2082 (2014).

502 6. M. Bueno, J. Calyeca, M. Rojas, A. L. Mora, **Mitochondria dysfunction and metabolic reprogramming as drivers**
503 **of idiopathic pulmonary fibrosis.** *Redox Biol* **33**, 101509 (2020).

504 7. B. Selvarajah, I. Azuelos, D. Anastasiou, R. C. Chambers, **Fibrometabolism-An emerging therapeutic frontier in**
505 **pulmonary fibrosis.** *Sci Signal* **14**, eaay1027 (2021).

506 8. K. Bernard, N. J. Logsdon, S. Ravi, N. Xie, B. P. Persons, S. Rangarajan, J. W. Zmijewski, K. Mitra, G. Liu, V. M.
507 Darley-Usmar, V. J. Thannickal, **Metabolic Reprogramming Is Required for Myofibroblast Contractility and**
508 **Differentiation.** *J Biol Chem* **290**, 25427–25438 (2015).

509 9. N. Xie, Z. Tan, S. Banerjee, H. Cui, J. Ge, R.-M. Liu, K. Bernard, V. J. Thannickal, G. Liu, **Glycolytic**
510 **Reprogramming in Myofibroblast Differentiation and Lung Fibrosis.** *Am J Respir Crit Care Med* **192**, 1462–1474
511 (2015).

512 10. J. Goodwin, H. Choi, M.-H. Hsieh, M. L. Neugent, J.-M. Ahn, H. N. Hayenga, P. K. Singh, D. B. Shackelford, I.-K.
513 Lee, V. Shulaev, S. Dhar, N. Takeda, J.-W. Kim, Targeting Hypoxia-Inducible Factor-1 α /Pyruvate Dehydrogenase
514 Kinase 1 Axis by Dichloroacetate Suppresses Bleomycin-induced Pulmonary Fibrosis. *Am J Respir Cell Mol Biol* **58**,
515 216–231 (2018).

516 11. R. B. Hamanaka, E. M. O’Leary, L. J. Witt, Y. Tian, G. A. Gökalp, A. Y. Meliton, N. O. Dulin, G. M. Mutlu,
517 Glutamine Metabolism Is Required for Collagen Protein Synthesis in Lung Fibroblasts. *Am J Respir Cell Mol Biol*
518 **61**, 597–606 (2019).

519 12. B. Selvarajah, I. Azuelos, M. Platé, D. Guillotin, E. J. Forty, G. Contento, H. V. Woodcock, M. Redding, A.
520 Taylor, G. Brunori, P. F. Durrenberger, R. Ronzoni, A. D. Blanchard, P. F. Mercer, D. Anastasiou, R. C. Chambers,
521 mTORC1 amplifies the ATF4-dependent de novo serine-glycine pathway to supply glycine during TGF- β 1-induced
522 collagen biosynthesis. *Sci Signal* **12**, eaav3048 (2019).

523 13. R. M. Kottmann, A. A. Kulkarni, K. A. Smolnycki, E. Lyda, T. Dahanayake, R. Salibi, S. Honnons, C. Jones, N. G.
524 Isern, J. Z. Hu, S. D. Nathan, G. Grant, R. P. Phipps, P. J. Sime, Lactic acid is elevated in idiopathic pulmonary
525 fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor- β .
526 *Am J Respir Crit Care Med* **186**, 740–751 (2012).

527 14. R. M. Kottmann, E. Trawick, J. L. Judge, L. A. Wahl, A. P. Epa, K. M. Owens, T. H. Thatcher, R. P. Phipps, P. J.
528 Sime, Pharmacologic inhibition of lactate production prevents myofibroblast differentiation. *Am J Physiol Lung
529 Cell Mol Physiol* **309**, L1305–1312 (2015).

530 15. J. L. Judge, D. J. Nagel, K. M. Owens, A. Rackow, R. P. Phipps, P. J. Sime, R. M. Kottmann, Prevention and
531 treatment of bleomycin-induced pulmonary fibrosis with the lactate dehydrogenase inhibitor gossypol. *PLoS
532 One* **13**, e0197936 (2018).

533 16. S. J. Cho, J.-S. Moon, C.-M. Lee, A. M. K. Choi, H. W. Stout-Delgado, Glucose Transporter 1-Dependent
534 Glycolysis Is Increased during Aging-Related Lung Fibrosis, and Phloretin Inhibits Lung Fibrosis. *Am J Respir Cell
535 Mol Biol* **56**, 521–531 (2017).

536 17. S. Rodríguez-Enríquez, A. Marín-Hernández, J. C. Gallardo-Pérez, L. Carreño-Fuentes, R. Moreno-Sánchez,
537 Targeting of cancer energy metabolism. *Mol Nutr Food Res* **53**, 29–48 (2009).

538 18. E. D. Michelakis, V. Gurtu, L. Webster, G. Barnes, G. Watson, L. Howard, J. Cupitt, I. Paterson, R. B.
539 Thompson, K. Chow, D. P. O’Regan, L. Zhao, J. Wharton, D. G. Kiely, A. Kinnaird, A. E. Boukouris, C. White, J.

540 Nagendran, D. H. Freed, S. J. Wort, J. S. R. Gibbs, M. R. Wilkins, Inhibition of pyruvate dehydrogenase kinase
541 improves pulmonary arterial hypertension in genetically susceptible patients. *Sci Transl Med* **9**, eaao4583 (2017).

542 19. H. Pelicano, D. S. Martin, R.-H. Xu, P. Huang, Glycolysis inhibition for anticancer treatment. *Oncogene* **25**,
543 4633–4646 (2006).

544 20. S. Puri, K. Juvale, Monocarboxylate transporter 1 and 4 inhibitors as potential therapeutics for treating solid
545 tumours: A review with structure-activity relationship insights. *Eur J Med Chem* **199**, 112393 (2020).

546 21. A. A. Cluntun, R. Badolia, S. Lettlova, K. M. Parnell, T. S. Shankar, N. A. Diakos, K. A. Olson, I. Taleb, S. M.
547 Tatum, J. A. Berg, C. N. Cunningham, T. Van Ry, A. J. Bott, A. T. Krokidi, S. Fogarty, S. Skedros, W. I. Swiatek, X. Yu,
548 B. Luo, S. Merx, S. Navankasattusas, J. E. Cox, G. S. Ducker, W. L. Holland, S. H. McKellar, J. Rutter, S. G. Drakos,
549 The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. *Cell Metab* **33**, 629–648.e10 (2021).

550 22. S. Halford, G. J. Veal, S. R. Wedge, G. S. Payne, C. M. Bacon, P. Sloan, I. Dragoni, K. Heinzmann, S. Potter, B.
551 M. Salisbury, M. Chénard-Poirier, A. Greystoke, E. C. Howell, W. A. Innes, K. Morris, C. Plummer, M. Rata, G.
552 Petrides, H. C. Keun, U. Banerji, R. Plummer, A Phase I Dose-escalation Study of AZD3965, an Oral
553 Monocarboxylate Transporter 1 Inhibitor, in Patients with Advanced Cancer. *Clin Cancer Res* **29**, 1429–1439
554 (2023).

555 23. N. Frangogiannis, Transforming growth factor- β in tissue fibrosis. *J Exp Med* **217**, e20190103 (2020).

556 24. J. J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, R. A. Brown, Myofibroblasts and mechano-regulation of
557 connective tissue remodelling. *Nat Rev Mol Cell Biol* **3**, 349–363 (2002).

558 25. H. Cui, N. Xie, D. Jiang, S. Banerjee, J. Ge, Y. Y. Sanders, G. Liu, Inhibition of Glutaminase 1 Attenuates
559 Experimental Pulmonary Fibrosis. *Am J Respir Cell Mol Biol* **61**, 492–500 (2019).

560 26. S. Rangarajan, N. B. Bone, A. A. Zmijewska, S. Jiang, D. W. Park, K. Bernard, M. L. Locy, S. Ravi, J. Deshane, R.
561 B. Mannon, E. Abraham, V. Darley-Usmar, V. J. Thannickal, J. W. Zmijewski, Metformin reverses established lung
562 fibrosis in a bleomycin model. *Nat Med* **24**, 1121–1127 (2018).

563 27. M. L. Locy, S. Rangarajan, S. Yang, M. R. Johnson, K. Bernard, A. Kurundkar, N. B. Bone, J. W. Zmijewski, J.
564 Byun, S. Pennathur, Y. Zhou, V. J. Thannickal, Oxidative cross-linking of fibronectin confers protease resistance
565 and inhibits cellular migration. *Sci Signal* **13**, eaau2803 (2020).

566 28. N. J. Curtis, L. Mooney, L. Hopcroft, F. Michopoulos, N. Whalley, H. Zhong, C. Murray, A. Logie, M. Revill, K. F.
567 Byth, A. D. Benjamin, M. A. Firth, S. Green, P. D. Smith, S. E. Critchlow, Pre-clinical pharmacology of AZD3965, a
568 selective inhibitor of MCT1: DLBCL, NHL and Burkitt's lymphoma anti-tumor activity. *Oncotarget* **8**, 69219–69236
569 (2017).

570 29. M. J. Ovens, A. J. Davies, M. C. Wilson, C. M. Murray, A. P. Halestrap, AR-C155858 is a potent inhibitor of
571 monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane
572 helices 7–10. *Biochem J* **425**, 523–530 (2010).

573 30. G. Kwapiszewska, A. Gungl, J. Wilhelm, L. M. Marsh, H. Thekkekara Puthenparampil, K. Sinn, M. Didiasova,
574 W. Klepetko, D. Kosanovic, R. T. Schermuly, L. Wujak, B. Weiss, L. Schaefer, M. Schneider, M. Kreuter, A.
575 Olschewski, W. Seeger, H. Olschewski, M. Wygrecka, Transcriptome profiling reveals the complexity of
576 pirfenidone effects in idiopathic pulmonary fibrosis. *Eur Respir J* **52**, 1800564 (2018).

577 31. L. M. Williams, F. E. McCann, M. A. Cabrita, T. Layton, A. Cribbs, B. Knezevic, H. Fang, J. Knight, M. Zhang, R.
578 Fischer, S. Bonham, L. M. Steenbeek, N. Yang, M. Sood, C. Bainbridge, D. Warwick, L. Harry, D. Davidson, W. Xie,
579 M. Sundström, M. Feldmann, J. Nanchahal, Identifying collagen VI as a target of fibrotic diseases regulated by
580 CREBBP/EP300. *Proc Natl Acad Sci U S A* **117**, 20753–20763 (2020).

581 32. H. A. Baarsma, M. Königshoff, 'WNT-er is coming': WNT signalling in chronic lung diseases. *Thorax* **72**, 746–
582 759 (2017).

583 33. J. L. Todd, R. Vinisko, Y. Liu, M. L. Neely, R. Overton, K. R. Flaherty, I. Noth, L. K. Newby, J. A. Lasky, M. A.
584 Olman, C. Hesslinger, T. B. Leonard, S. M. Palmer, J. A. Belperio, IPF-PRO Registry investigators, Circulating
585 matrix metalloproteinases and tissue metalloproteinase inhibitors in patients with idiopathic pulmonary fibrosis
586 in the multicenter IPF-PRO Registry cohort. *BMC Pulm Med* **20**, 64 (2020).

587 34. S. Bhattacharyya, W. Wang, L. Morales-Nebreda, G. Feng, M. Wu, X. Zhou, R. Lafyatis, J. Lee, M. Hinchcliff, C.
588 Feghali-Bostwick, K. Lakota, G. R. S. Budinger, K. Raparia, Z. Tamaki, J. Varga, Tenascin-C drives persistence of
589 organ fibrosis. *Nat Commun* **7**, 11703 (2016).

590 35. A. P. Halestrap, The SLC16 gene family - structure, role and regulation in health and disease. *Mol Aspects
591 Med* **34**, 337–349 (2013).

592 36. G. A. Brooks, The Science and Translation of Lactate Shuttle Theory. *Cell Metab* **27**, 757–785 (2018).

593 37. M. S. Ullah, A. J. Davies, A. P. Halestrap, The plasma membrane lactate transporter MCT4, but not MCT1, is
594 up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. *J Biol Chem* **281**, 9030–9037 (2006).

595 38. Y. Contreras-Baeza, P. Y. Sandoval, R. Alarcón, A. Galaz, F. Cortés-Molina, K. Alegría, F. Baeza-Lehnert, R.
596 Arce-Molina, A. Guequén, C. A. Flores, A. San Martín, L. F. Barros, Monocarboxylate transporter 4 (MCT4) is a
597 high affinity transporter capable of exporting lactate in high-lactate microenvironments. *J Biol Chem* **294**,
598 20135–20147 (2019).

599 39. D. Benjamin, D. Robay, S. K. Hindupur, J. Pohlmann, M. Colombi, M. Y. El-Shemerly, S.-M. Maira, C. Moroni,
600 H. A. Lane, M. N. Hall, Dual Inhibition of the Lactate Transporters MCT1 and MCT4 Is Synthetic Lethal with
601 Metformin due to NAD⁺ Depletion in Cancer Cells. *Cell Rep* **25**, 3047–3058.e4 (2018).

602 40. E. Schruf, V. Schroeder, C. A. Kuttruff, S. Weigle, M. Krell, M. Benz, T. Bretschneider, A. Holweg, M. Schuler,
603 M. Frick, P. Nicklin, J. P. Garnett, M. C. Sobotta, Human lung fibroblast-to-myofibroblast transformation is not
604 driven by an LDH5-dependent metabolic shift towards aerobic glycolysis. *Respir Res* **20**, 87 (2019).

605 41. S. Hui, J. M. Ghergurovich, R. J. Morscher, C. Jang, X. Teng, W. Lu, L. A. Esparza, T. Reya, null Le Zhan, J.
606 Yanxiang Guo, E. White, J. D. Rabinowitz, Glucose feeds the TCA cycle via circulating lactate. *Nature* **551**, 115–
607 118 (2017).

608 42. S. Hui, A. J. Cowan, X. Zeng, L. Yang, T. TeSlaa, X. Li, C. Bartman, Z. Zhang, C. Jang, L. Wang, W. Lu, J. Rojas, J.
609 Baur, J. D. Rabinowitz, Quantitative Fluxomics of Circulating Metabolites. *Cell Metab* **32**, 676–688.e4 (2020).

610 43. C. A. Copeland, B. A. Olenchock, D. Ziehr, S. McGarrity, K. Leahy, J. D. Young, J. Loscalzo, W. M. Oldham, MYC
611 overrides HIF-1 α to regulate proliferating primary cell metabolism in hypoxia. *Elife* **12**, e82597 (2023).

612 44. M. Jain, S. Rivera, E. A. Monclus, L. Synenki, A. Zirk, J. Eisenbart, C. Feghali-Bostwick, G. M. Mutlu, G. R. S.
613 Budinger, N. S. Chandel, Mitochondrial reactive oxygen species regulate transforming growth factor- β signaling.
614 *J Biol Chem* **288**, 770–777 (2013).

615 45. S. Schwörer, M. Berisa, S. Violante, W. Qin, J. Zhu, R. C. Hendrickson, J. R. Cross, C. B. Thompson, Proline
616 biosynthesis is a vent for TGF β -induced mitochondrial redox stress. *EMBO J* **39**, e103334 (2020).

617 46. T. Ashcroft, J. M. Simpson, V. Timbrell, Simple method of estimating severity of pulmonary fibrosis on a
618 numerical scale. *J Clin Pathol* **41**, 467–470 (1988).

619 47. M. L. Steinhauser, A. P. Bailey, S. E. Senyo, C. Guillermier, T. S. Perlstein, A. P. Gould, R. T. Lee, C. P. Lechene,
620 Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. *Nature* **481**, 516–519
621 (2012).

622 48. F. Gyngard, M. L. Steinhauser, Biological explorations with nanoscale secondary ion mass spectrometry. *J
623 Anal At Spectrom* **34**, 1534–1545 (2019).

624 49. L. Wollin, I. Maillet, V. Quesniaux, A. Holweg, B. Ryffel, Antifibrotic and anti-inflammatory activity of the
625 tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. *J Pharmacol Exp Ther* **349**, 209–220
626 (2014).

627 50. S. Rangarajan, A. Kurundkar, D. Kurundkar, K. Bernard, Y. Y. Sanders, Q. Ding, V. B. Antony, J. Zhang, J.
628 Zmijewski, V. J. Thannickal, Novel Mechanisms for the Antifibrotic Action of Nintedanib. *Am J Respir Cell Mol Biol*
629 **54**, 51–59 (2016).

630 51. J. A. J. Vanoirbeek, M. Rinaldi, V. De Vooght, S. Haenen, S. Bobic, G. Gayan-Ramirez, P. H. M. Hoet, E.
631 Verbeken, M. Decramer, B. Nemery, W. Janssens, Noninvasive and invasive pulmonary function in mouse
632 models of obstructive and restrictive respiratory diseases. *Am J Respir Cell Mol Biol* **42**, 96–104 (2010).

633 52. E. F. Redente, K. M. Jacobsen, J. J. Solomon, A. R. Lara, S. Faubel, R. C. Keith, P. M. Henson, G. P. Downey, D.
634 W. H. Riches, Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis.
635 *Am J Physiol Lung Cell Mol Physiol* **301**, L510–518 (2011).

636 53. X. Cai, C. P. Ng, O. Jones, T. S. Fung, K. W. Ryu, D. Li, C. B. Thompson, Lactate activates the mitochondrial
637 electron transport chain independently of its metabolism. *Mol Cell*, S1097-2765(23)00800-6 (2023).

638 54. D. Zhang, Z. Tang, H. Huang, G. Zhou, C. Cui, Y. Weng, W. Liu, S. Kim, S. Lee, M. Perez-Neut, J. Ding, D. Czyz, R.
639 Hu, Z. Ye, M. He, Y. G. Zheng, H. A. Shuman, L. Dai, B. Ren, R. G. Roeder, L. Becker, Y. Zhao, Metabolic regulation
640 of gene expression by histone lactylation. *Nature* **574**, 575–580 (2019).

641 55. Z. Yang, C. Yan, J. Ma, P. Peng, X. Ren, S. Cai, X. Shen, Y. Wu, S. Zhang, X. Wang, S. Qiu, J. Zhou, J. Fan, H.
642 Huang, Q. Gao, Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in
643 hepatocellular carcinoma. *Nat Metab* **5**, 61–79 (2023).

644 56. X. Liu, K. Dai, X. Zhang, G. Huang, H. Lynn, A. Rabata, J. Liang, P. W. Noble, D. Jiang, Multiple Fibroblast
645 Subtypes Contribute to Matrix Deposition in Pulmonary Fibrosis. *Am J Respir Cell Mol Biol* **69**, 45–56 (2023).

646 57. W. Liu, S. Zhang, Q. Li, Y. Wu, X. Jia, W. Feng, Z. Li, Y. Shi, Q. Hou, J. Ma, Y. Liu, P. Gao, T. Ganz, S. Liu, Lactate
647 modulates iron metabolism by binding soluble adenylyl cyclase. *Cell Metab* **35**, 1597–1612.e6 (2023).

648 58. M. Choudhury, K. J. Schaefbauer, T. J. Kottom, E. S. Yi, D. J. Tschumperlin, A. H. Limper, Targeting Pulmonary
649 Fibrosis by SLC1A5 Dependent Glutamine Transport Blockade. *Am J Respir Cell Mol Biol* (2023),
650 doi:10.1165/rcmb.2022-0339OC.

651 59. S. H. Phan, New strategies for treatment of pulmonary fibrosis. *Thorax* **50**, 415–421 (1995).

652 60. K. Bernard, N. J. Logsdon, G. A. Benavides, Y. Sanders, J. Zhang, V. M. Darley-Usmar, V. J. Thannickal,
653 Glutaminolysis is required for transforming growth factor-B1-induced myofibroblast differentiation and
654 activation. *J Biol Chem* **293**, 1218–1228 (2018).

655 61. J. R. Cantor, M. Abu-Remaileh, N. Kanarek, E. Freinkman, X. Gao, A. Louissaint, C. A. Lewis, D. M. Sabatini,
656 Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP
657 Synthase. *Cell* **169**, 258–272.e17 (2017).

658 62. Y. Zhang, C. Guillermier, T. De Raedt, A. G. Cox, O. Maertens, D. Yimlamai, M. Lun, A. Whitney, R. L. Maas, W.
659 Goessling, K. Cichowski, M. L. Steinhauser, Imaging Mass Spectrometry Reveals Tumor Metabolic Heterogeneity.
660 *iScience* **23**, 101355 (2020).

661 63. B. M. Wertheim, R.-S. Wang, C. Guillermier, C. V. Hütter, W. M. Oldham, J. Menche, M. L. Steinhauser, B. A.
662 Maron, Proline and glucose metabolic reprogramming supports vascular endothelial and medial biomass in
663 pulmonary arterial hypertension. *JCI Insight* **8**, e163932 (2023).

664 64. C. Guillermier, P. K. Fazeli, S. Kim, M. Lun, J. P. Zuflacht, J. Milian, H. Lee, H. Francois-Saint-Cyr, F. Horreard,
665 D. Larson, E. D. Rosen, R. T. Lee, C. P. Lechene, M. L. Steinhauser, Imaging mass spectrometry demonstrates age-
666 related decline in human adipose plasticity. *JCI Insight* **2**, e90349 (2017).

667 65. K. J. Travaglini, A. N. Nabhan, L. Penland, R. Sinha, A. Gillich, R. V. Sit, S. Chang, S. D. Conley, Y. Mori, J. Seita,
668 G. J. Berry, J. B. Shrager, R. J. Metzger, C. S. Kuo, N. Neff, I. L. Weissman, S. R. Quake, M. A. Krasnow, A molecular
669 cell atlas of the human lung from single-cell RNA sequencing. *Nature* **587**, 619–625 (2020).

670 66. J. Choi, J.-E. Park, G. Tsagkogeorga, M. Yanagita, B.-K. Koo, N. Han, J.-H. Lee, Inflammatory Signals Induce AT2
671 Cell-Derived Damage-Associated Transient Progenitors that Mediate Alveolar Regeneration. *Cell Stem Cell* **27**,
672 366–382.e7 (2020).

673 67. W. Zhu, C. Tan, J. Zhang, **Alveolar Epithelial Type 2 Cell Dysfunction in Idiopathic Pulmonary Fibrosis**. *Lung*
674 **200**, 539–547 (2022).

675 68. X. Yin, M. Choudhury, J.-H. Kang, K. J. Schaefbauer, M.-Y. Jung, M. Andrianifahanana, D. M. Hernandez, E. B.
676 **Leof**, **Hexokinase 2 couples glycolysis with the profibrotic actions of TGF- β** . *Sci Signal* **12**, eaax4067 (2019).

677 69. V. L. Payen, E. Mina, V. F. Van Hée, P. E. Porporato, P. Sonveaux, **Monocarboxylate transporters in cancer**.
678 *Mol Metab* **33**, 48–66 (2020).

679 70. S. Bisetto, D. Whitaker-Menezes, N. A. Wilski, M. Tuluc, J. Curry, T. Zhan, C. M. Snyder, U. E. Martinez-
680 **Outschoorn**, N. J. Philp, **Monocarboxylate Transporter 4 (MCT4) Knockout Mice Have Attenuated 4NQO Induced**
681 **Carcinogenesis; A Role for MCT4 in Driving Oral Squamous Cell Cancer**. *Front Oncol* **8**, 324 (2018).

682 71. S. Bisetto, M. C. Wright, R. A. Nowak, A. C. Lepore, T. S. Khurana, E. Loro, N. J. Philp, **New Insights into the**
683 **Lactate Shuttle: Role of MCT4 in the Modulation of the Exercise Capacity**. *iScience* **22**, 507–518 (2019).

684 72. R Core Team, *R: A language and environment for statistical computing* (R Foundation for Statistical
685 Computing, Vienna, Austria, 2024; <https://www.R-project.org/>).

686 73. H. Lee, Q. Fei, A. Streicher, W. Zhang, C. Isabelle, P. Patel, H. C. Lam, A. Arciniegas-Rubio, M. Pinilla-Vera, D.
687 P. Amador-Munoz, D. Barragan-Bradford, A. Higuera-Moreno, R. K. Putman, L. M. Sholl, E. P. Henske, C. M.
688 Bobba, N. Higuita-Castro, E. M. Shalosky, R. D. Hite, J. W. Christman, S. N. Ghadiali, R. M. Baron, J. A. Englert,
689 **mTORC1 is a mechanosensor that regulates surfactant function and lung compliance during ventilator-induced**
690 **lung injury**. *JCI Insight* **6**, e137708 (2021).

691 74. R.-H. Hübner, W. Gitter, N. E. El Mokhtari, M. Mathiak, M. Both, H. Bolte, S. Freitag-Wolf, B. Bewig,
692 **Standardized quantification of pulmonary fibrosis in histological samples**. *Biotechniques* **44**, 507–511, 514–517
693 (2008).

694 75. A. M. Tager, P. LaCamera, B. S. Shea, G. S. Campanella, M. Selman, Z. Zhao, V. Polosukhin, J. Wain, B. A.
695 Karimi-Shah, N. D. Kim, W. K. Hart, A. Pardo, T. S. Blackwell, Y. Xu, J. Chun, A. D. Luster, **The lysophosphatidic**
696 **acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak**.
697 *Nat Med* **14**, 45–54 (2008).

698 76. S. A. Mookerjee, A. A. Gerencser, D. G. Nicholls, M. D. Brand, **Quantifying intracellular rates of glycolytic and**
699 **oxidative ATP production and consumption using extracellular flux measurements**. *J Biol Chem* **292**, 7189–7207
700 (2017).

701 77. D. Broadhurst, R. Goodacre, S. N. Reinke, J. Kuligowski, I. D. Wilson, M. R. Lewis, W. B. Dunn, Guidelines and
702 considerations for the use of system suitability and quality control samples in mass spectrometry assays applied
703 in untargeted clinical metabolomic studies. *Metabolomics* **14**, 72 (2018).

704 78. F. Dieterle, A. Ross, G. Schlotterbeck, H. Senn, Probabilistic quotient normalization as robust method to
705 account for dilution of complex biological mixtures. Application in ¹H NMR metabonomics. *Anal Chem* **78**, 4281–
706 4290 (2006).

707 79. M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, G. K. Smyth, Limma powers differential expression
708 analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res* **43**, e47 (2015).

709 80. G. Korotkevich, V. Sukhov, N. Budin, B. Shpak, M. N. Artyomov, A. Sergushichev, Fast gene set enrichment
710 analysis, 060012 (2021).

711 81. M. Kanehisa, S. Goto, KEGG: Kyoto encyclopedia of genes and genomes. *Nucleic Acids Res* **28**, 27–30 (2000).

712 82. D. Kim, B. P. Fiske, K. Birsoy, E. Freinkman, K. Kami, R. L. Possemato, Y. Chudnovsky, M. E. Pacold, W. W.
713 Chen, J. R. Cantor, L. M. Shelton, D. Y. Gui, M. Kwon, S. H. Ramkissoon, K. L. Ligon, S. W. Kang, M. Snuderl, M. G.
714 Vander Heiden, D. M. Sabatini, SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on
715 glycine clearance. *Nature* **520**, 363–367 (2015).

716 83. C. A. Fernandez, C. Des Rosiers, S. F. Previs, F. David, H. Brunengraber, Correction of ¹³C mass isotopomer
717 distributions for natural stable isotope abundance. *J Mass Spectrom* **31**, 255–262 (1996).

718 84. R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, C. Kingsford, Salmon provides fast and bias-aware quantification
719 of transcript expression. *Nat Methods* **14**, 417–419 (2017).

720 85. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with
721 DESeq2. *Genome Biol* **15**, 550 (2014).

722 86. W. M. Oldham, C. B. Clish, Y. Yang, J. Loscalzo, Hypoxia-Mediated Increases in L-2-hydroxyglutarate
723 Coordinate the Metabolic Response to Reductive Stress. *Cell Metab* **22**, 291–303 (2015).

724 87. C. Guillermier, J. C. Poczatek, W. R. Taylor, M. L. Steinhauser, Quantitative imaging of deuterated metabolic
725 tracers in biological tissues with nanoscale secondary ion mass spectrometry. *Int J Mass Spectrom* **422**, 42–50
726 (2017).

728 **ACKNOWLEDGEMENTS**

729 The authors thank Louise Trakimas and the HMS Electron Microscopy Facility for MIMS sample preparation and
730 consultation. The content is solely the responsibility of the authors and does not necessarily represent the
731 official views of the National Institutes of Health. VB124 was a gift from Vettore, LLC to the Oldham laboratory.

732 **Funding**

733 • National Institutes of Health grant R01HL167718 (WMO)
734 • Brigham and Women's Hospital Research Institute (WMO)
735 • American Lung Association grant DA-827785 (EYK)
736 • BWH Bell Family Award (EYK)
737 • National Institutes of Health grant R01HL152075 (LH)
738 • National Institutes of Health grant T32HL007633 (JV)

739 **Author contributions**

740 • Conceptualization: KMP, MLS, JR, WMO
741 • Methodology: DRZ, FL, KMP, CG, JV, BAM, MLS, RSK, JR, WMO
742 • Investigation: DRZ, FL, KMP, NMK, KJL, CG, JV, LPH, RSK, WMO
743 • Visualization: WMO
744 • Funding acquisition: KMP, JR, WMO
745 • Project administration: KMP, JR, WMO
746 • Resources: DRZ, KMP, NMK, RMB, NJP, EYK, RSK
747 • Supervision: KMP, JR, WMO
748 • Writing - original draft: WMO
749 • Writing - review and editing: DRZ, FL, KMP, NMK, CG, JV, RMB, BAM, NJP, EYK, MLS, RSK, JR, WMO

750 **Competing interests**

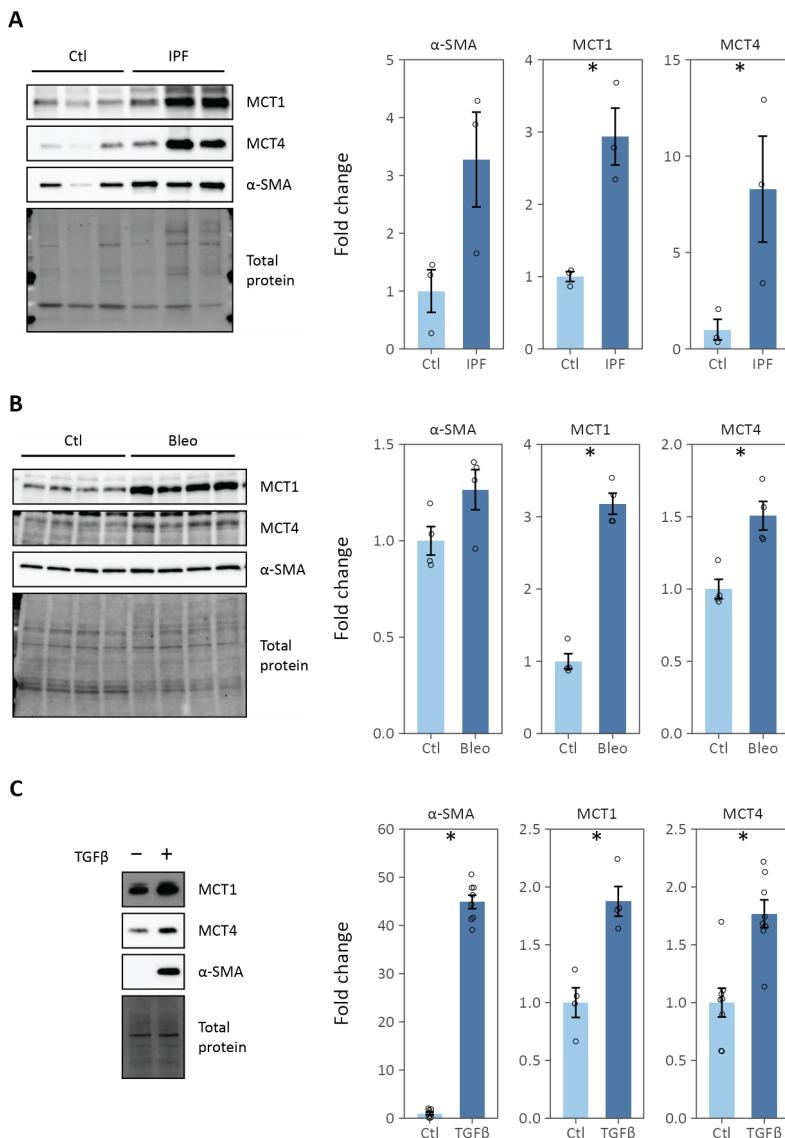
751 • W.M.O. has received consulting fees from Nikang Therapeutics outside the scope of this research.
752 • J.R. is a consultant and shareholder for Vettore Biosciences.
753 • R.S.K. received a Discovery ILD Award from Boehringer Ingelheim and received support through the
754 Partners Drug Development Lab from Bayer Pharmaceuticals, all outside the scope of this research.

755 • E.Y.K. received unrelated research funding from Bayer AG, Roche Pharma Research and Early
756 Development, and 10X Genomics. E.Y.K. has a financial interest in Novartis AG unrelated to this work.

757 • B.A.M. has received consulting fees from Actelion and Tenax and has performed investigator-initiated
758 research with support from Deerfield, all outside the scope of this research.

759 • L.P.H. reports grants from Boehringer Ingelheim Pharmaceuticals, Inc. (BIPI) and has received personal
760 consulting fees from BIPI, Pliant Therapeutics, Clario, and Abbvie Pharmaceuticals.

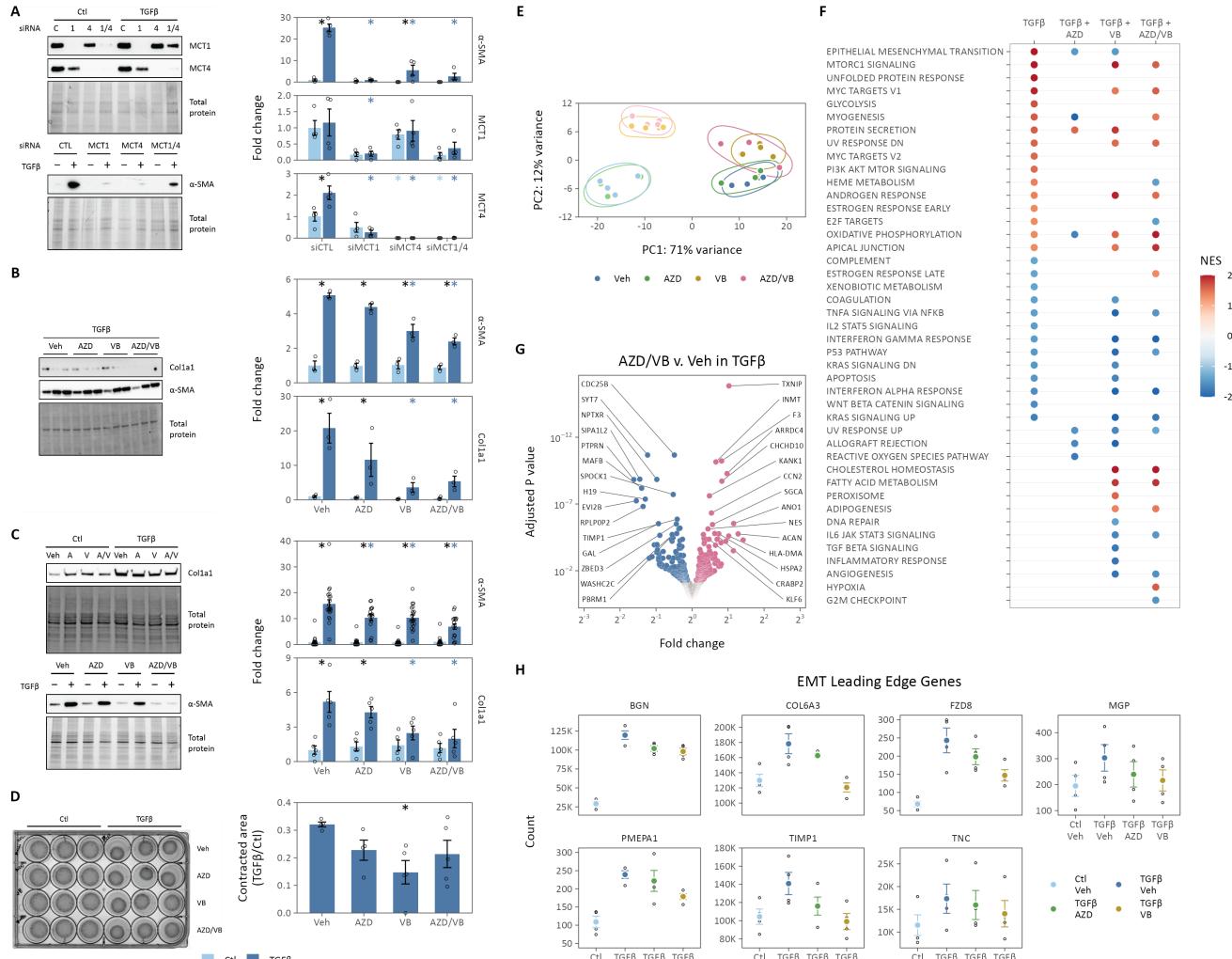
761 • The remaining authors declare that they have no competing interests.


762 **Data and materials availability**

763 The raw data and annotated analysis code necessary to reproduce this manuscript are contained in an R package
764 research compendium available from the Oldham Lab GitHub repository
765 (github.com/oldhamlab/Ziehr.2023.ipf.mcti).

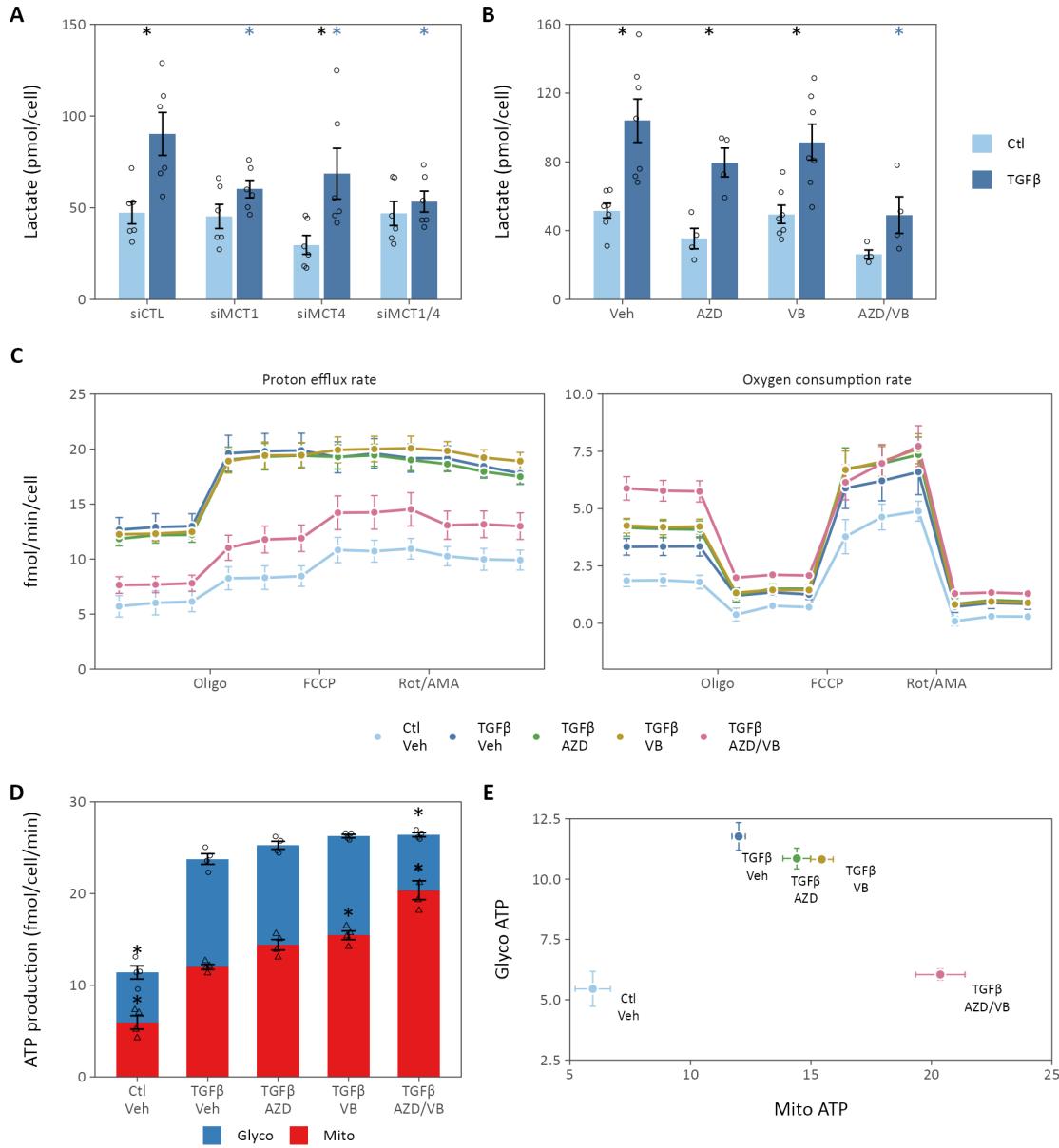
766 RNA sequences were deposited in the NIH SRA (PRJNA1011992). Details of the processing pipeline and
767 summarized data are available from the Oldham Lab GitHub repository
768 (github.com/oldhamlab/rnaseq.lf.tgfb.mcti).

769


770 **FIGURES**

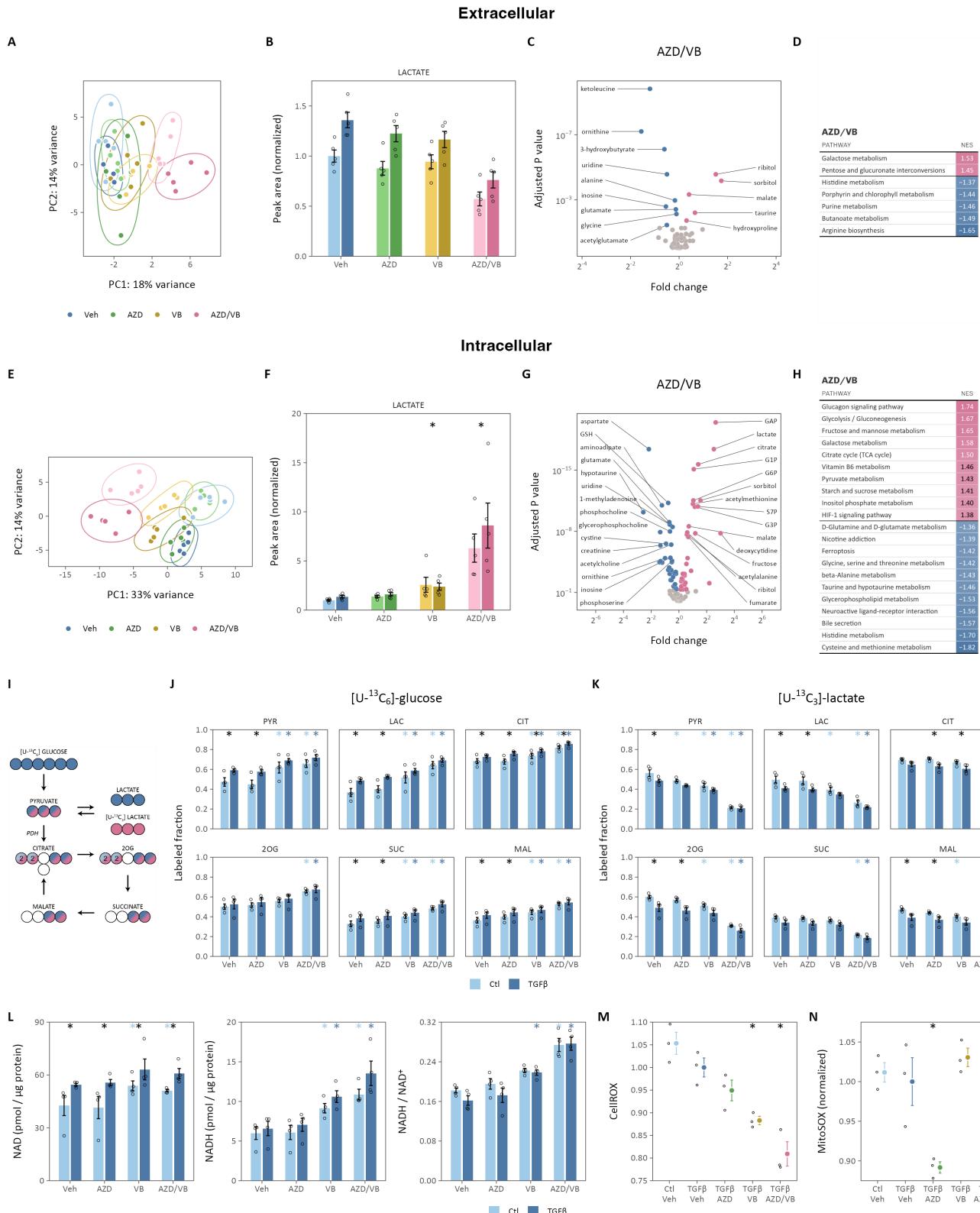
771

772 **Fig. 1. Lactate transporter expression increases in human IPF lung and experimental models.** (A) MCT1, MCT4, and α-SMA protein
773 expression in whole lung homogenates from explanted IPF lungs and controls (Ctl). (B) MCT1, MCT4, and α-SMA protein expression in
774 whole lung homogenates from bleomycin (Bleo)- and vehicle (Ctl)-treated mice. (C) MCT1, MCT4, and α-SMA protein expression in cell
775 lysates from normal human lung fibroblasts treated with TGFβ to induce myofibroblast differentiation. Individual data points are
776 biological replicates. Summary data are mean ± SEM (* p-value < 0.05).


777

778

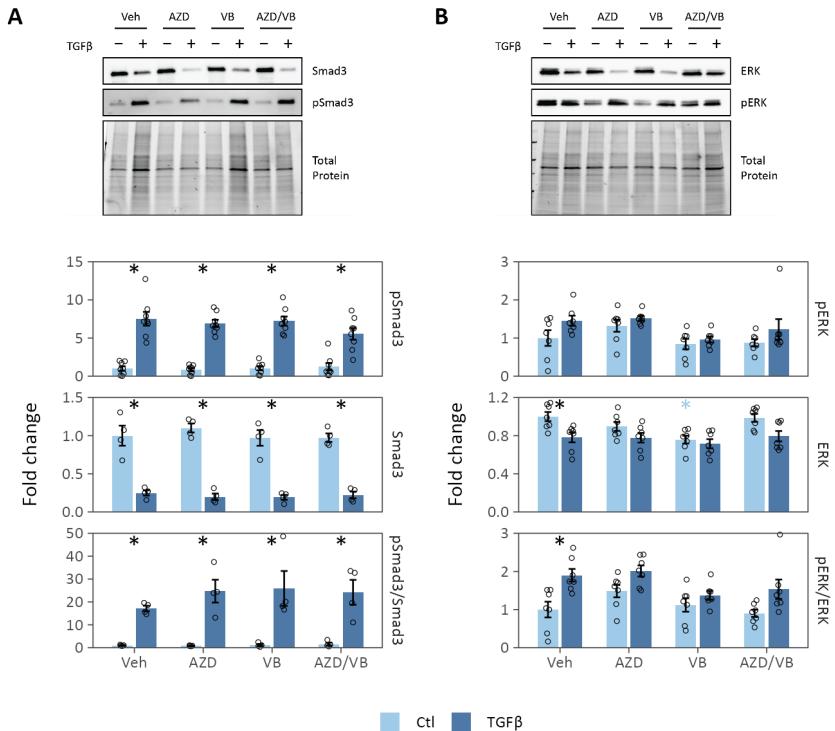
779 **Fig. 2. Lactate transport inhibition decreases myofibroblast differentiation and pro-fibrotic gene transcription *in vitro*.** (A) RNA
780 interference targeting MCT1 or MCT4 decreases TGFβ-stimulated α-SMA expression in normal human lung fibroblasts. (B–C) Small
781 molecule inhibitors of MCT1 (AZD3965, AZD) or MCT4 (VB124, VB) decrease TGFβ-stimulated α-SMA expression in IPF lung fibroblasts (B)
782 and normal human lung fibroblasts (C). (D) Lactate transport inhibitors decrease gel contractility measured 24 h following TGFβ. (E)
783 Principal components analysis of RNA-seq data from lung fibroblasts treated with TGFβ (**bold colors**) or vehicle (**light colors**) and lactate
784 transport inhibitors (N = 4). (F) Dot plot of Hallmark gene set enrichment analysis. Significantly enriched pathways with adjusted p-value <
785 0.05 are included and points are colored by normalized enrichment score (NES). Positive NES indicated relative enrichment following
786 TGFβ compared to control (TGFβ) or with MCT inhibitor compared to vehicle in TGFβ-treated cells. (G) Volcano plot of significantly
787 differentially expressed genes in TGFβ-stimulated cells treated with AZD3965 and VB124 compared to vehicle control. Significantly
788 differentially expressed genes are highlighted (adjusted p-value < 0.05), the top 15 up- and down-regulated of which are labeled. (H)
789 Transcript counts from the leading edge of enrichment for the epithelial mesenchymal transition Hallmark gene set demonstrating down-
790 regulation of pro-fibrotic genes with MCT inhibition. Individual data points are biological replicates. Summary data are mean ± SEM (*
791 adjusted p-value < 0.05; black compares TGFβ to control within a given treatment, colored compares the treatment effect to control for a
792 given condition).


793

794

795 **Fig. 3. Lactate transport inhibition alters cellular bioenergetics.** (A) Extracellular lactate was determined by enzymatic assay following
796 TGF β stimulation of cells treated with siRNA targeting MCT1 or MCT4, separately or together (N = 6 biological replicates, * adjusted p-
797 value < 0.05, black compares TGF β v. Ctl, colored compares siMCT v. siCTL). (B) TGF β -stimulated lactate secretion was measured following
798 treatment with MCT1 inhibitor AZD3965 (AZD), MCT4 inhibitor VB124 (VB), or both (N = 4-13 biological replicates, * adjusted p-value <
799 0.05, black compared TGF β v. Ctl, colored compares Drug v. Veh). (C) Oxygen consumption (OCR) and proton efflux (PER) rates of lung
800 fibroblasts treated with TGF β and MCT inhibitors for 48 h prior to the assay. Measurements were performed at baseline and following
801 injection of ATP synthase inhibitor oligomycin (Oligo), mitochondrial membrane uncoupler FCCP, and Complex I and III inhibitors
802 rotenone and antimycin A (Rot/AMA) (N = 4 biological replicates, data are mean \pm SEM). (D) Glycolytic (Glyco) and mitochondrial (Mito)
803 ATP production rates were calculated from PER and OCR, respectively (* adjusted p-value < 0.05 compared to TGF β /Veh). (E) Energy
804 phenogram derived from data presented in (D). TGF β increases ATP production from both glycolysis and oxidative phosphorylation,
805 favoring the former, while MCT inhibition increases mitochondrial ATP production. Summary data are mean \pm SEM.

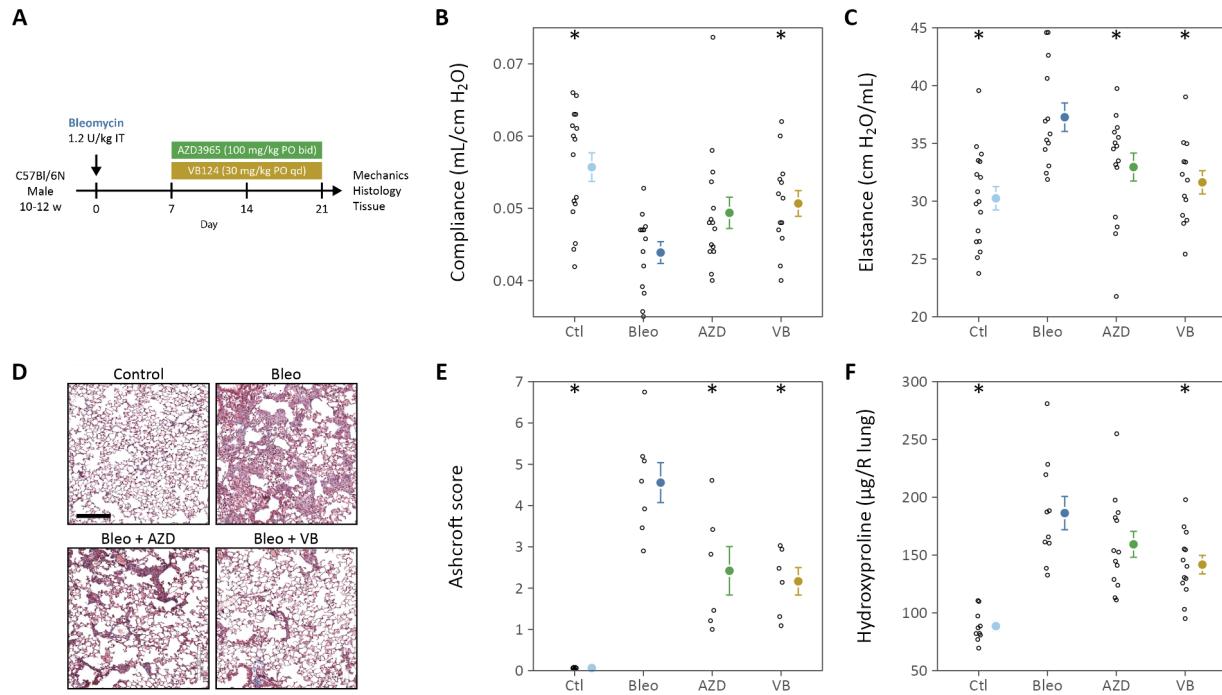
806



807

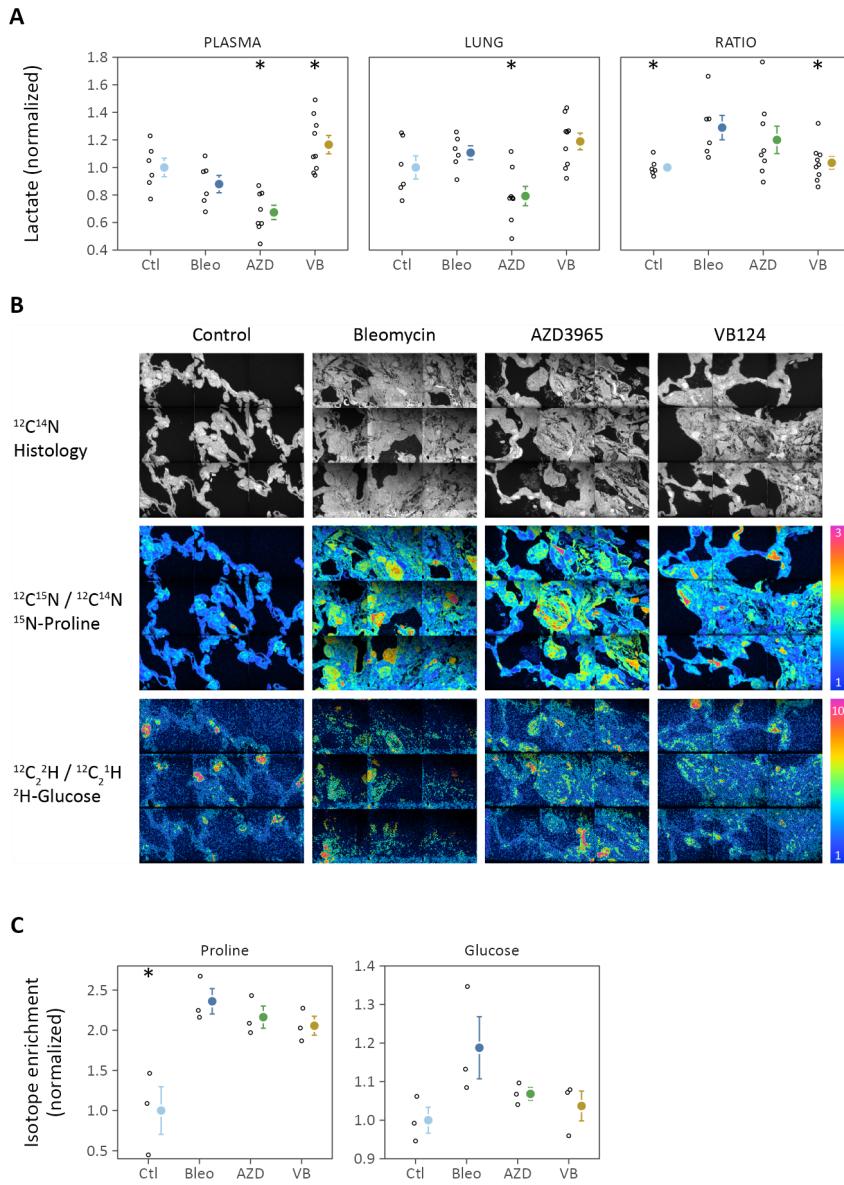
808 **Fig. 4. Lactate transporter inhibition promotes oxidative phosphorylation.** (A) Principal components analysis of metabolites in
809 conditioned medium from lung fibroblasts treated with TGF β (**bold colors**) or vehicle (**light colors**) and lactate transport inhibitors (N = 5).

810 (B) Extracellular lactate determined by LC-MS. (C) Volcano plot of significantly altered extracellular metabolites following combined
811 treatment with AZD3965 and VB124. Differentially regulated metabolites are colored (adjusted p-value < 0.1), the top 10 up- and down-
812 regulated of which are labeled. (D) KEGG pathways significantly enriched (adjusted p-value < 0.1) with metabolites differentially
813 regulated by combined MCT1 and MCT4 inhibition ordered by normalized enrichment score (NES). Positive NES indicates enrichment in
814 AZD/VB-treated cells while negative NES indicates enrichment in Vehicle-treated cells. (E) Principal components analysis of intracellular
815 metabolites extracted from lung fibroblasts stimulated with TGF β (*bold colors*) or vehicle (*light colors*) in the presence of lactate transport
816 inhibitors (N = 5). (F) Intracellular lactate increases significantly with MCT4 inhibition alone (VB) or when combined with MCT1 inhibition
817 (AZD/VB) (* adjusted p-value < 0.05 compared to vehicle control for the main effect of the inhibitor). (G) Volcano plot of significantly
818 altered metabolites following combined treatment with AZD3965 and VB124. Differentially regulated metabolites are colored (adjusted
819 p-value < 0.1), the top 10 up- and down-regulated of which are labeled. (H) KEGG pathways significantly enriched (adjusted p-value < 0.1)
820 with metabolites differentially regulated by combined MCT1 and MCT4 inhibition ordered by NES. Positive NES indicates enrichment in
821 AZD/VB-treated cells while negative NES indicates enrichment in Vehicle-treated cells. (I) Schematic of ^{13}C isotope labeling of carbon
822 atoms from glucose (*blue*) or lactate (*pink*) into tricarboxylic acid cycle metabolites. Each circle represents a carbon atom. (J-K) Stable
823 isotope incorporation from [$\text{U-}^{13}\text{C}_6$]-glucose (J) or [$\text{U-}^{13}\text{C}_3$]-lactate (K) into the intracellular metabolites pyruvate (PYR), lactate (LAC),
824 citrate (CIT), 2-oxoglutarate (2OG), succinate (SUC), and malate (MAL) (N = 4 biological replicates, * adjusted p-value < 0.05, *black*
825 compares TGF β v. Ctl for a given treatment, *colored* compares treatment v. vehicle for the indicated condition). (L) Intracellular lactate
826 oxidation is coupled to NADH/NAD $^+$, which was determined by enzymatic cycling assay (N = 4 biological replicates; * adjusted p-value <
827 0.05; *black* compares TGF β to control within a given treatment, *colored* compares the treatment effect to control for a given condition).
828 (M) Normalized CellROX fluorescence, an indicator of cellular reactive oxygen species, normalized to TGF β -treated cells (N = 3 biological
829 replicates; * adjusted p-value < 0.05 compared to TGF β -treated cells). (N) MitoSOX fluorescence, a marker of mitochondrial superoxide
830 production, was measured and normalized to MitoTracker fluorescence, a marker of mitochondrial mass (N = 3 biological replicates; *
831 adjusted p-value < 0.05 compared to TGF β -treated cells). Summary data are mean \pm SEM.


832

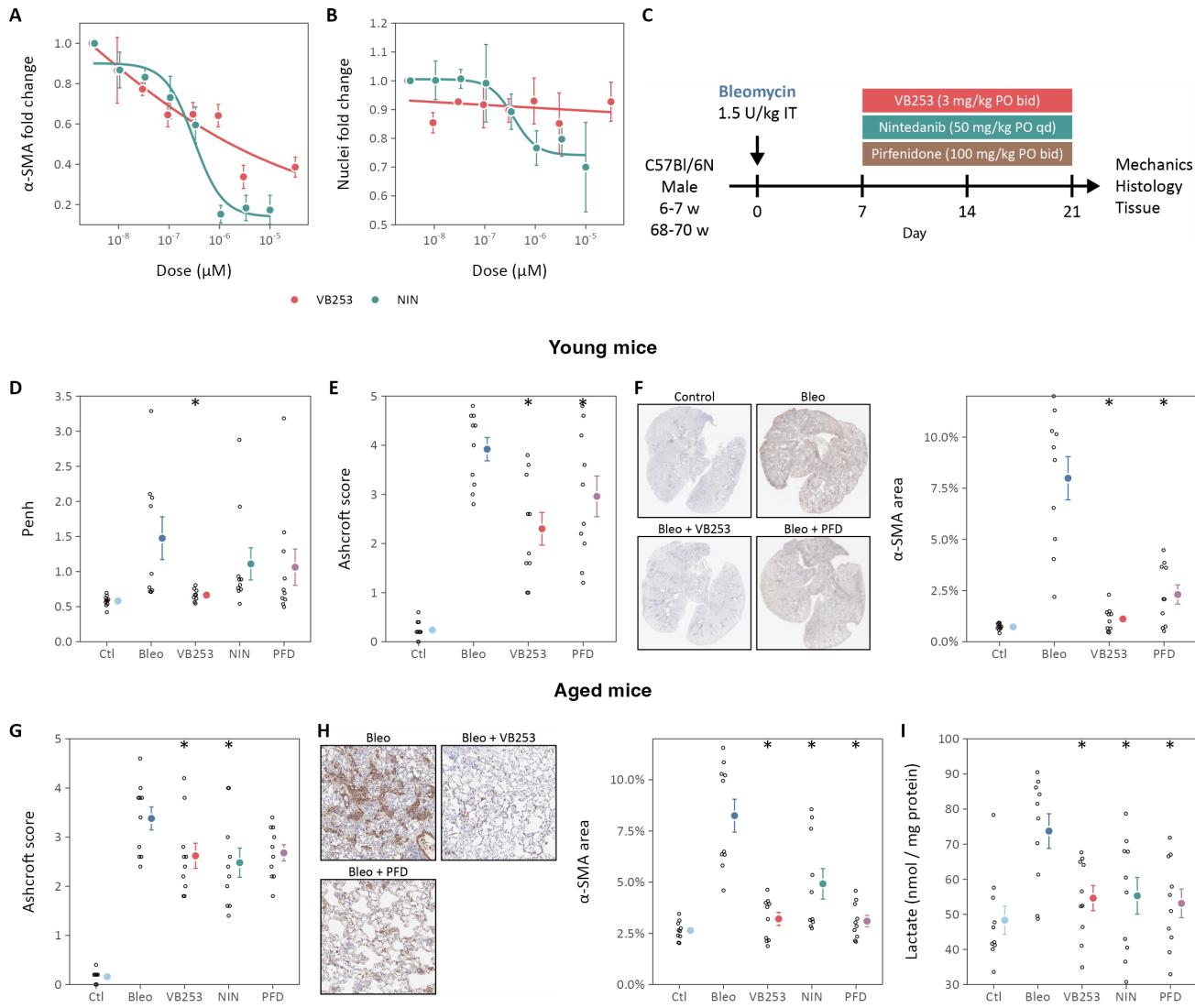
833

834 **Fig. 5. Lactate transport inhibition does not alter TGF β signaling pathways. (A)** Phosphorylation of canonical TGF β receptor target,
835 Smad3, in lung fibroblasts treated with MCT inhibitors. **(B)** Phosphorylation of non-canonical TGF β receptor target, ERK, in lung
836 fibroblasts treated with MCT inhibitors. Summary data are mean \pm SEM (* adjusted p-value < 0.05 ; black compares TGF β to control within
837 a given treatment, colored compares the treatment effect to control for a given condition).

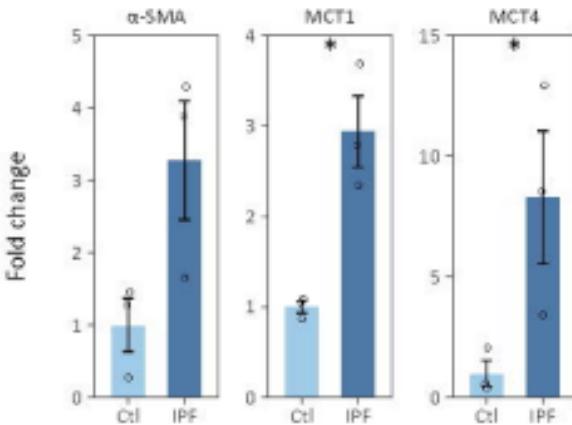
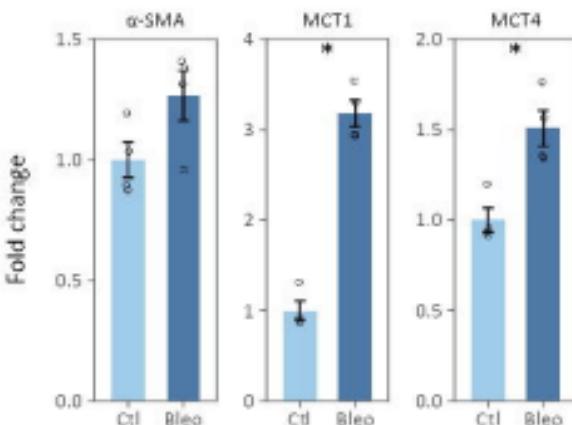
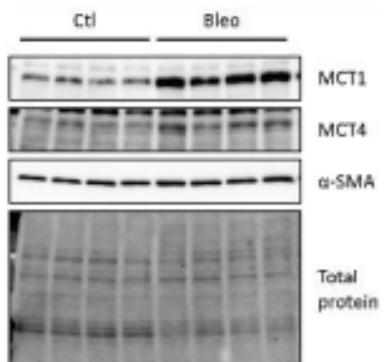
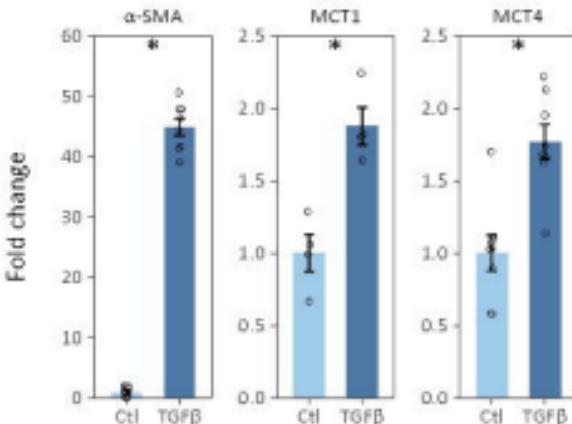
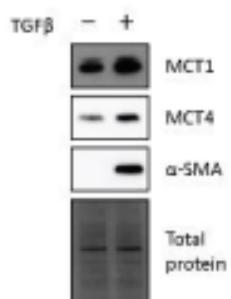

838

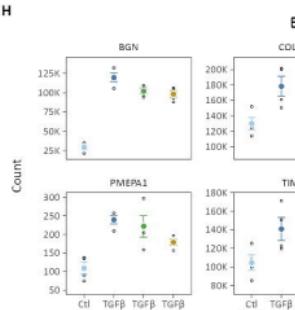
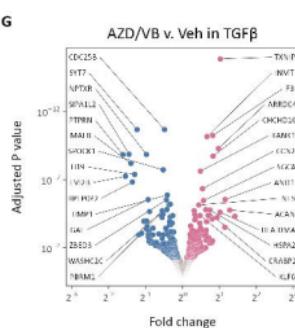
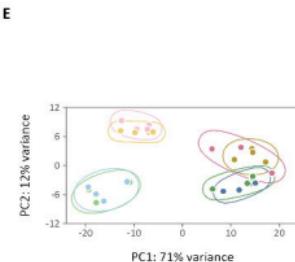
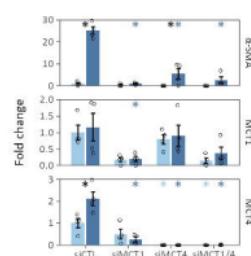
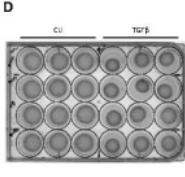
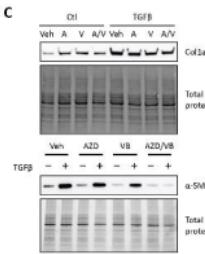
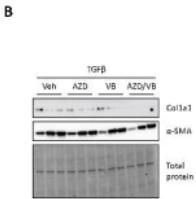
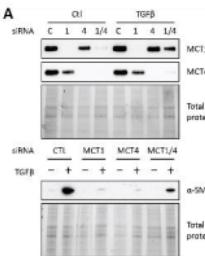
839

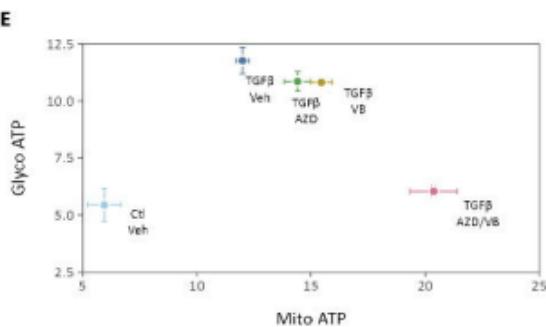
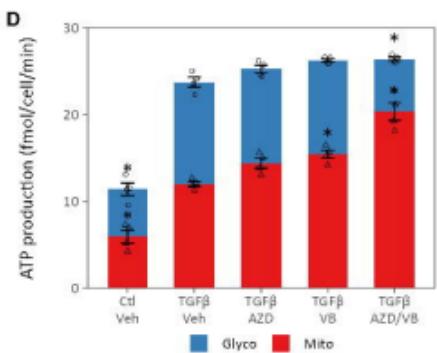
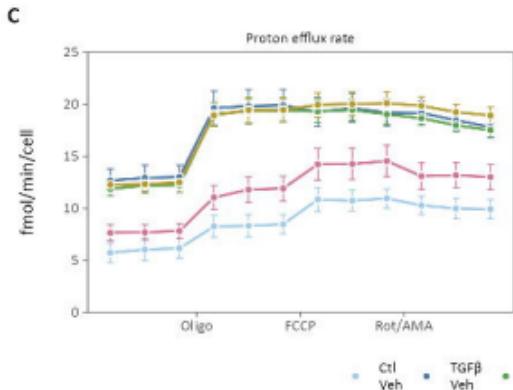
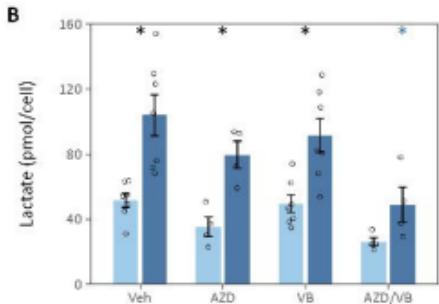
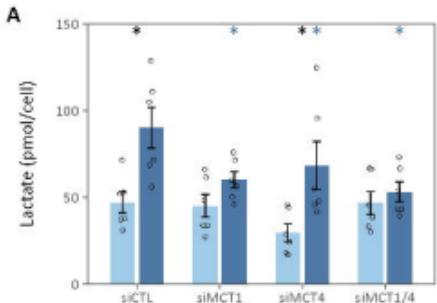
Fig. 6. Lactate transporter inhibition attenuates bleomycin-induced pulmonary fibrosis. (A) C57BL/6N mice were administered bleomycin (1.2 U/kg) on day 0. Beginning on day 7, animals were treated with AZD3965 (AZD) or VB124 (VB) for 14 days prior to euthanasia on day 21. On day 21, mice were anesthetized with pentobarbital for lung function measurements. (B) Static compliance of the lung was measured by pressure-volume loop analysis. (C) Elastance was measured using the forced oscillation technique for 8 s (Prime-8) (N = 13-17). (D) Representative trichrome-stained histologic sections of mouse lungs. Scale bar is 200 μ m. (E) Ashcroft scores from histologic sections from (D) determined by a lung pathologist blinded to treatment assignment (N = 6-7). (F) Right lung hydroxyproline content (N = 10-13). Data points show individual mice, summary statistics show the mean \pm SEM, * adjusted p-value < 0.05 compared to bleomycin-treated (Bleo) vehicle control.


840

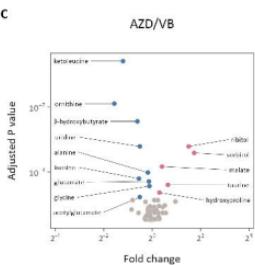
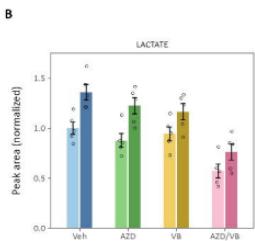
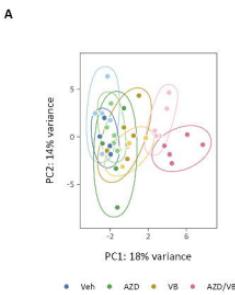
849






850 **Fig. 7. Lactate transporter inhibition reprograms lung metabolism *in vivo*.** (A) Plasma and lung lactate levels following 14-day treatment
 851 with AZD3965 or VB124 (N = 6-9; * adjusted p-value < 0.05 compared to bleomycin control). (B) Representative images from multi-
 852 isotope imaging mass spectrometry (MIMS). The $^{12}\text{C}^{14}\text{N}$ ion illustrates tissue histology. The $^{12}\text{C}^{15}\text{N}/^{12}\text{C}^{14}\text{N}$ ion ratio image shows
 853 enrichment from ^{15}N -proline (colorbar 1-3-fold of natural abundance). The $^{12}\text{C}_2\text{H}/^{12}\text{C}_2^{1\text{H}}$ ratio shows enrichment above natural
 854 abundance from ^2H -glucose (colorbar 1-10-fold of natural abundance). (C) Quantification of isotope enrichment (N = 3 biological
 855 replicates, * adjusted p-value < 0.05 compared to bleomycin-treated control).

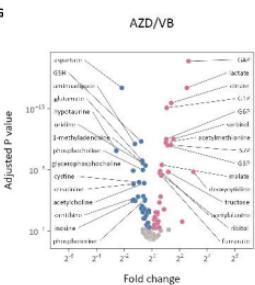
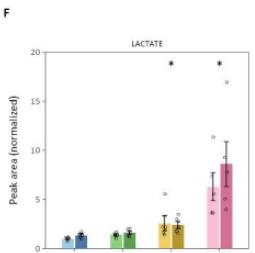
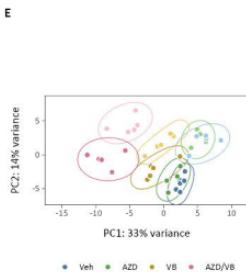








856

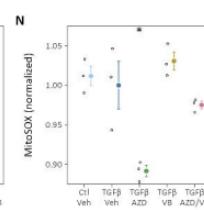
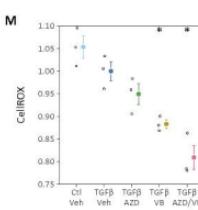
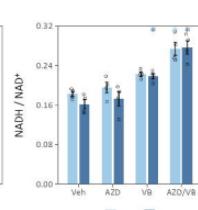
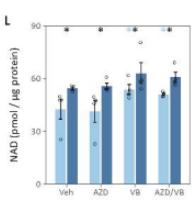
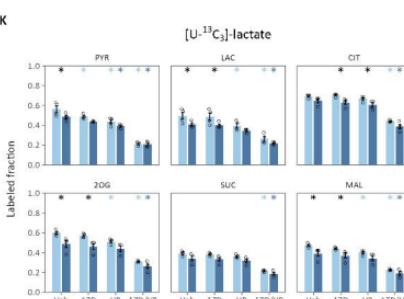
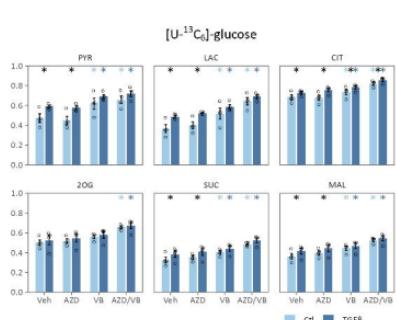
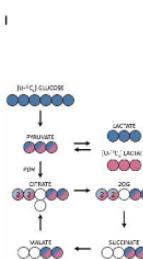
857

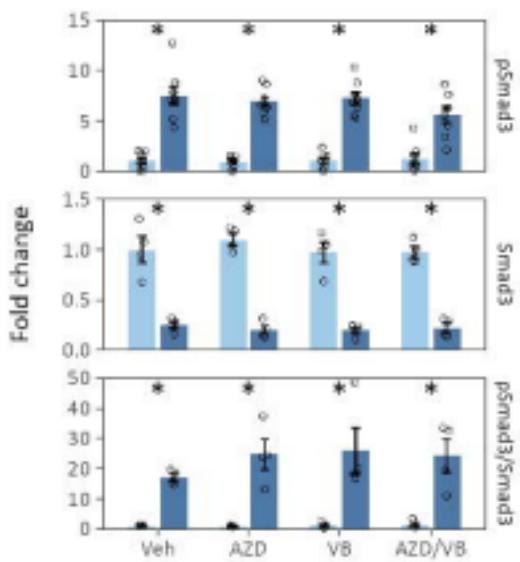
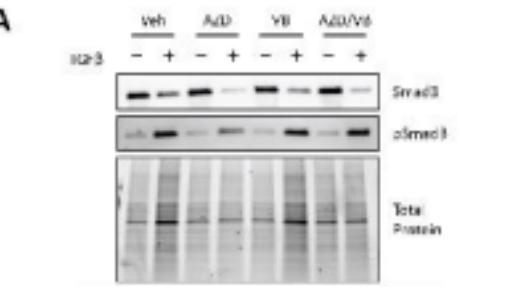
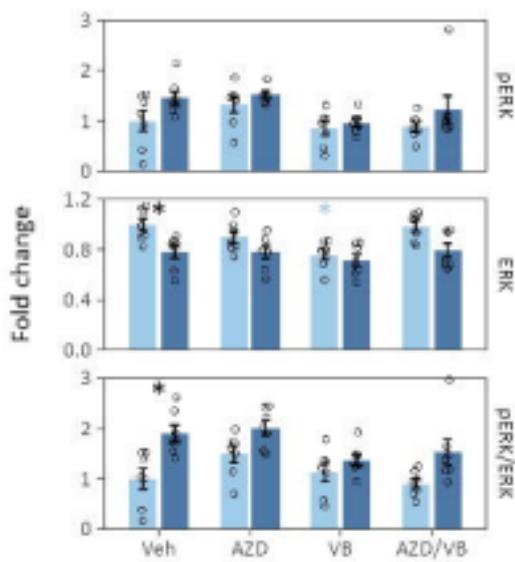
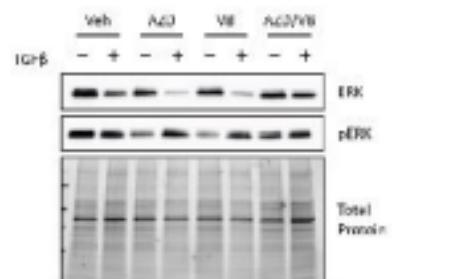



858 **Fig. 8. VB253, a novel MCT4 inhibitor, is potently antifibrotic *in vitro* and *in vivo*.** (A) Dose-response of α -SMA protein expression in IPF
859 lung fibroblasts treated with VB253 or nintedanib (NIN). (B) Number of nuclei, a marker of cell viability, following treatment with VB253
860 or NIN. Summary data are mean \pm SEM of cell responses from $N = 3$ different donors. (C) Young (8-10 w) or aged (60+ w) mice were
861 treated with bleomycin (1 U/kg) on day 0. Beginning on day 7, animals were treated with VB253 or the FDA-approved antifibrotics
862 nintedanib (NIN) and pirfenidone (PFD) for 14 days prior to euthanasia on day 21. (D) Enhanced pause (Penh) is a non-invasive index of
863 mouse tidal breathing that increases with bleomycin treatment. (E-G) Histologic assessment of VB253-treated mouse lungs demonstrates
864 decreased fibrosis by Ashcroft score (E) and decreased α -SMA protein expression (F). (G-I) Similar histologic improved was observed in
865 aged mice with decreased histologic fibrosis (G) and decreased α -SMA protein expression (H). (I) VB253 decreased lung lactate, similar to
866 established antifibrotics. Data points show individual mice, summary statistics show the mean \pm SEM, * adjusted p-value < 0.05 compared
867 to bleomycin-treated (Bleo) vehicle control.

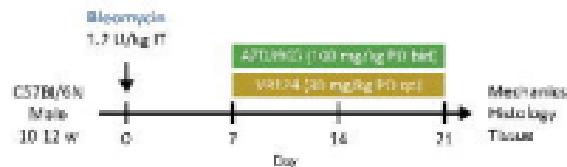
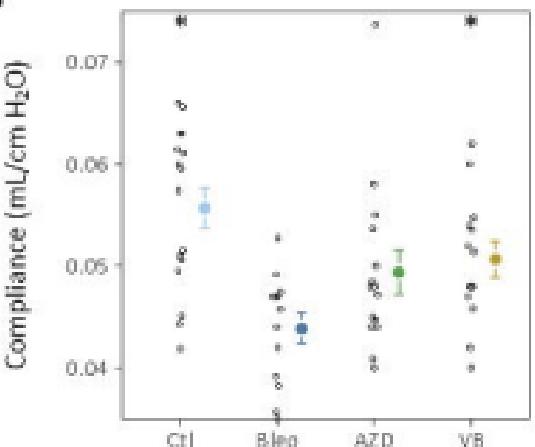
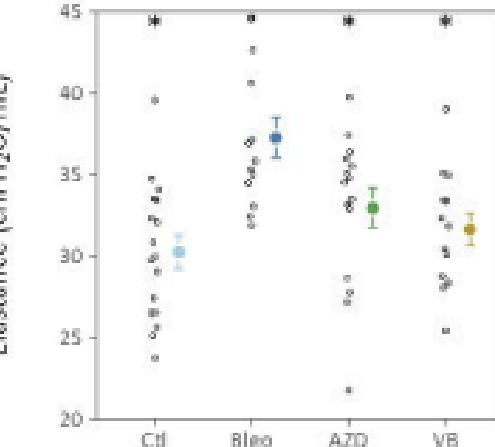
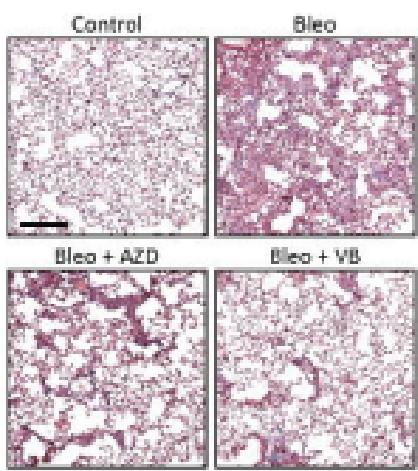
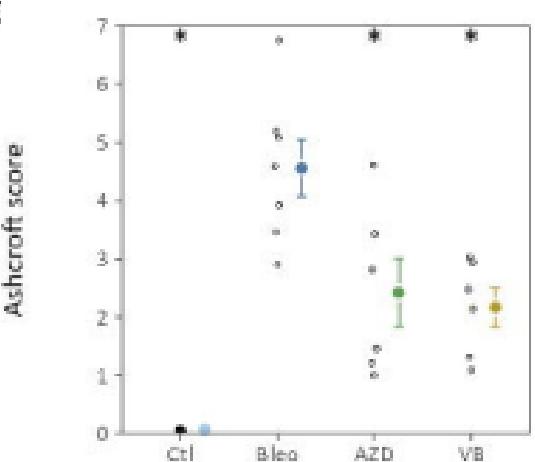
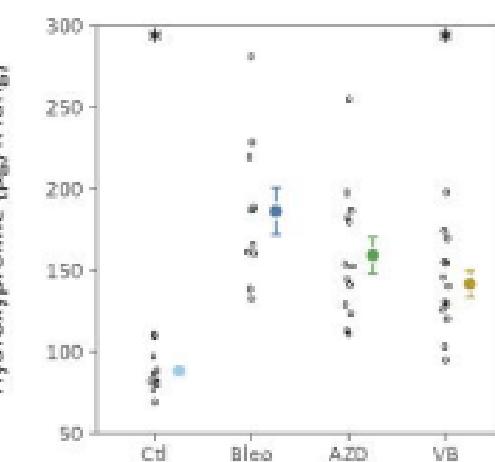
A**B****C**

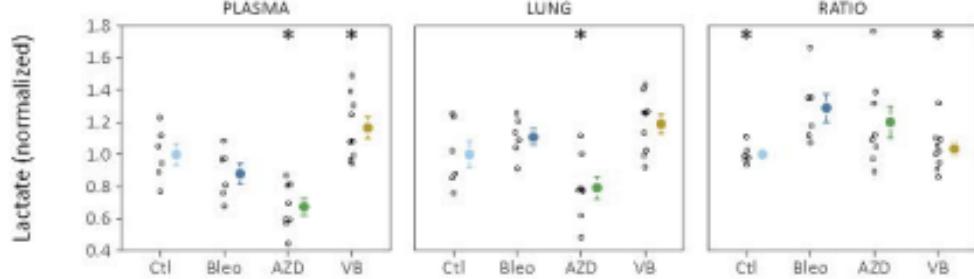
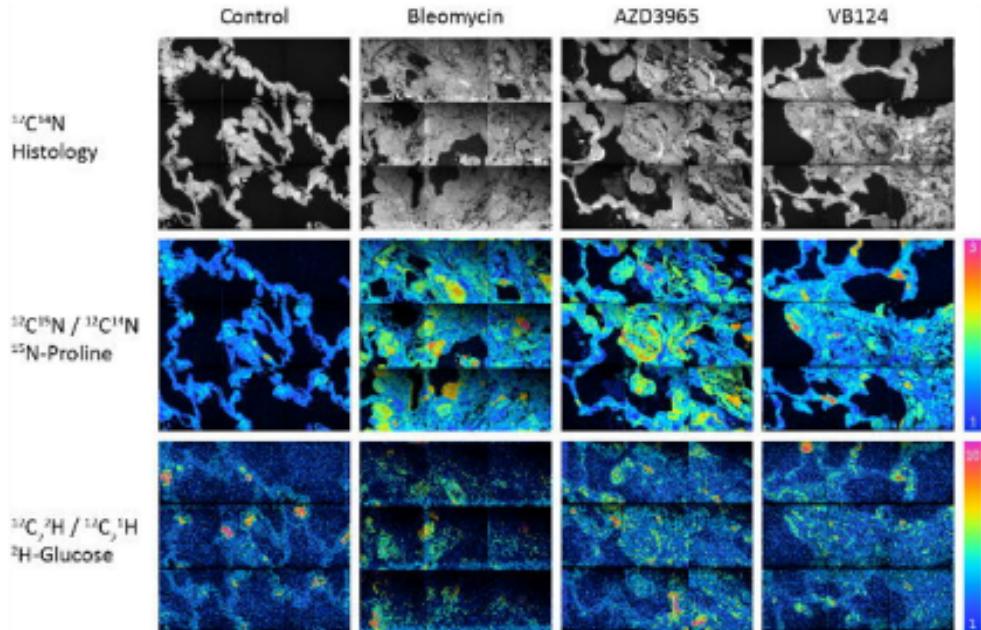
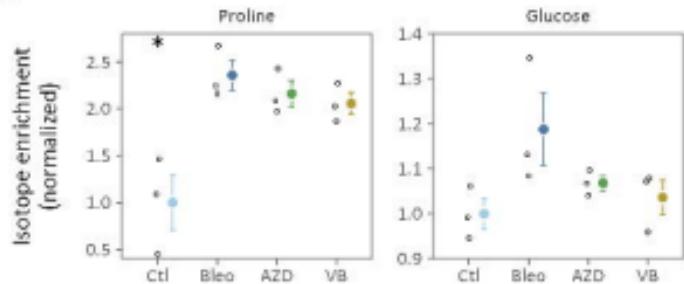



Extracellular

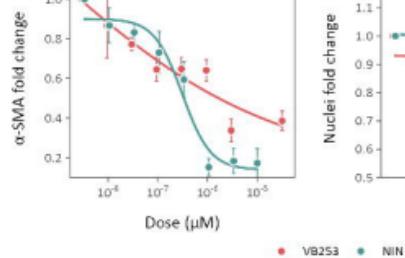
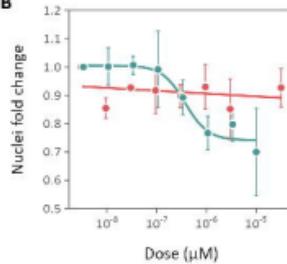
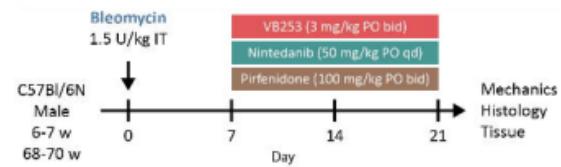
AZD/VB








	NEB
Galactose metabolism	1.53
Proline and proline衍生物 metabolism	1.45
Alanine, glycine and proline metabolism	1.37
Phenylalanine, tyrosine and tryptophan metabolism	1.36
Proline metabolism	1.36
Butanate metabolism	1.39
Arginine biosynthesis	1.83

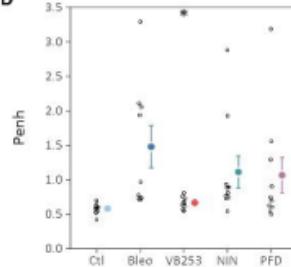
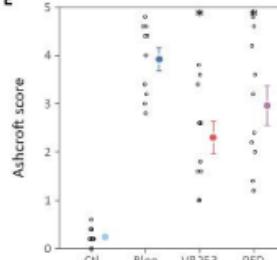
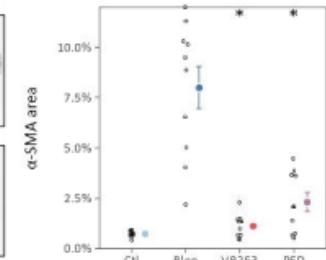
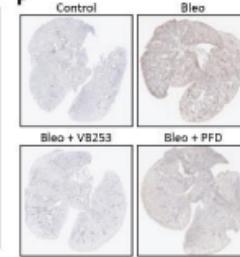




Intracellular







AZD/VB

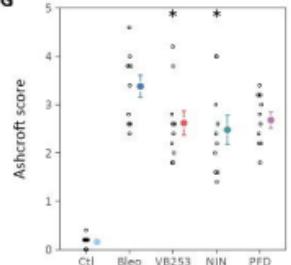
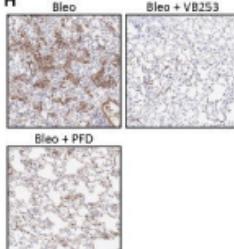
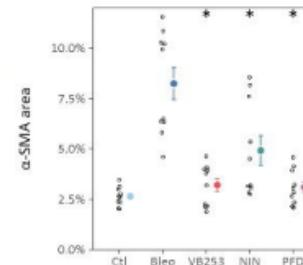
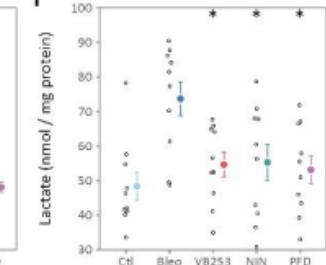



	NEB
Glutathione metabolism	1.74
Sphingolipid metabolism	1.71
Fructose and mannose metabolism	1.65
Galactose metabolism	1.58
Citrate cycle (TCA cycle)	1.50
Pyruvate metabolism	1.43
Vitamin B6 metabolism	1.43
Starch and sucrose metabolism	1.41
Hemiketulose-1-phosphate metabolism	1.40
HT 1 capping pathway	1.38
D-Glucuronic acid and D-glycuronate metabolism	1.36
Neuroactive ligand-receptor interaction	1.33
Ferroptosis	1.42
Glycine, serine and threonine metabolism	1.42
Steroid biosynthesis	1.33
Isobutane and hydrocarbon metabolism	1.33
Chlorophyll metabolism	1.33
Neurotransmitter ligand-receptor interactions	1.33
Bile secretion	1.32
Histidine metabolism	1.30
Cysteine and methionine metabolism	1.02

A**B**





■ Ctrl ■ TGF β

A**B****C****D****E****F**





A**B****C**

A**B****C**

Young mice

D**E****F**

Aged mice

G**H****I****J**