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SUMMARY

Small molecule inhibitors of lactate transporters, including the novel MCT4 inhibitor VB253, reprogram
fibroblast metabolism to prevent myofibroblast differentiation and decrease bleomycin-induced pulmonary

fibrosis.

ABSTRACT

Myofibroblast differentiation, essential for driving extracellular matrix synthesis in pulmonary fibrosis, requires
increased glycolysis. While glycolytic cells must export lactate, the contributions of lactate transporters to
myofibroblast differentiation are unknown. In this study, we investigated how MCT1 and MCT4, key lactate
transporters, influence myofibroblast differentiation and experimental pulmonary fibrosis. Our findings reveal
that inhibiting MCT1 or MCT4 reduces TGFB-stimulated pulmonary myofibroblast differentiation in vitro and
decreases bleomycin-induced pulmonary fibrosis in vivo. Through comprehensive metabolic analyses, including
bioenergetics, stable isotope tracing, metabolomics, and imaging mass spectrometry in both cells and mice, we
demonstrate that inhibiting lactate transport enhances oxidative phosphorylation, reduces reactive oxygen
species production, and diminishes glucose metabolite incorporation into fibrotic lung regions. Furthermore, we
introduce VB253, a novel MCT4 inhibitor, which ameliorates pulmonary fibrosis in both young and aged mice,
with comparable efficacy to established antifibrotic therapies. These results underscore the necessity of lactate
transport for myofibroblast differentiation, identify MCT1 and MCT4 as promising pharmacologic targets in
pulmonary fibrosis, and support further evaluation of lactate transport inhibitors for patients for whom limited

therapeutic options currently exist.
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INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with high mortality and limited
therapeutic options. IPF affects approximately 150,000 patients in the U.S. with a median survival of 3-5 years
(1-3). Currently approved pharmacotherapies for IPF are limited to the antifibrotics pirfenidone and nintedanib
that slow, but do not stop, disease progression (4, 5), leaving lung transplantation as the only option available to
eligible patients with progressive disease. The limited efficacy of antifibrotic therapies emphasizes the need for

novel therapeutic approaches targeting different features of IPF pathobiology.

Accumulating evidence suggests that metabolic reprogramming may be one such therapeutic strategy in IPF (6,
7). Lung fibrosis is driven by the excessive deposition of extracellular matrix by myofibroblasts (3). Fundamental
changes in myofibroblast metabolism support myofibroblast differentiation and extracellular matrix production
(8—12). In particular, increased glycolysis and lactate production have been observed in IPF myofibroblasts ex
vivo and following transforming growth factor 1 (TGFB)-induced myofibroblast differentiation in vitro (8, 9, 13,
14). These metabolic changes are critical for fibrogenesis, as small molecule inhibitors of glucose uptake,
glycolysis, and lactate fermentation prevent myofibroblast differentiation in vitro and attenuate pulmonary
fibrosis in animal models (8-10, 13, 15, 16). Unfortunately, low target affinities, poor specificity, narrow
therapeutic indices, and common genetic resistance have all hampered the translation of these investigational
compounds for clinical use (17-19). Moreover, the molecular mechanisms by which these metabolic inhibitors
attenuate the myofibroblast differentiation transcriptional program remain unclear. In order to leverage

metabolic therapies for IPF, more targeted and better characterized drugs must be developed.

Toward this end, we aimed to examine the impact of a novel metabolic strategy — lactate transport inhibition
— on myofibroblast differentiation and experimental pulmonary fibrosis. Sustained glycolysis in myofibroblasts
relies on lactate secretion, which is conducted by a family of monocarboxylate transporters (MCT1-4). Inhibitors
targeting these transporters have been actively explored in clinical trials for oncological conditions where
glycolytic reprogramming also features prominently in disease pathobiology (20, 21). Importantly, MCT
inhibitors present favorable pharmacologic profiles compared to previously studied glycolysis inhibitors, with
successful translation to human clinical trials for advanced solid tumors (22). Before the promise of this
therapeutic approach in IPF may be realized, however, the preclinical efficacy and molecular mechanisms-of-

action of lactate transport inhibitors must be demonstrated experimentally.

In this work, we evaluated the contribution of lactate transporters to experimental pulmonary fibrosis. We

found increased expression of the lactate transporters MCT1 and MCT4 IPF patient lungs. Inhibition of these
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transporters attenuated bleomycin-induced lung fibrosis in vivo and TGFB-induced myofibroblast differentiation
in vitro, where MCT4 inhibition demonstrated increased therapeutic efficacy. Using metabolomics, stable
isotope tracing, and high-resolution spatial metabolomic imaging, we find that lactate transport inhibition
promotes glucose oxidation and decreases pro-fibrogenic reactive oxygen species (ROS) production. Building on
these results, we introduce VB253, a novel MCT4 inhibitor suitable for human clinical studies that performs
similarly to current standard-of-care antifibrotic therapies in bleomycin-induced pulmonary fibrosis. Together,
our findings offer insights into disrupting the metabolic pathways driving IPF fibrosis and present a promising

strategy targeting lactate transporters for the treatment of this fatal condition.

RESULTS

MCT expression increases in human pulmonary fibrosis and experimental models

Among the four lactate transporters, MCT1 and MCT4 exhibit the highest expression levels in the lung (23).
Based on this observation, we investigated the expression of MCT1 and MCT4 in lung explants from patients
with IPF obtained during transplantation. Consistent with a pathologic role for MCT1 and MCT4 in IPF, we
observed a significant upregulation of both MCT1 and MCT4 proteins in IPF lung tissues compared to non-
fibrotic controls (Fig. 1A). These findings were corroborated in an experimental model of pulmonary fibrosis,

where intratracheal bleomycin administration led to increased expression of both MCT1 and MCT4 (Fig. 1B).

A hallmark of IPF is the activation of tissue myofibroblasts, distinguished by their de novo expression of smooth
muscle a-actin (a-SMA); stress fiber formation; and increased migration, contraction, and extracellular matrix
production (7, 9, 24). TGFB is the most potent inducer of myofibroblast activation in vitro and in vivo. The TGFj-
dependent upregulation of a-SMA expression serves as a well-established and widely utilized model for studying
myofibroblast activation pertinent to pulmonary fibrosis (10, 25-27). Consistent with our findings in human IPF
lungs, we observed increased expression of MCT1 and MCT4 in normal human lung fibroblasts following TGF
treatment (Fig. 1C). These findings align with increased expression of other glycolytic enzymes and the
associated metabolic changes previously documented in these cells (9). Taken together, these data underscore
the association between pulmonary fibrosis and lactate transporter expression in the lung generally and in

myofibroblasts specifically.

Myofibroblast differentiation in vitro requires lactate transport

We proceeded to investigate whether MCT expression and activity were essential for myofibroblast

differentiation in vitro using RNA interference and pharmacologic approaches. Lung fibroblasts were transfected
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with siRNA targeting MCT1 and MCT4 individually and in combination. After 24 h, the cells were treated with
TGFp for 48 h to induce myofibroblast differentiation. The siRNAs reduced lactate transporter protein levels (Fig.
2A). Reduction in either MCT1 or MCT4 expression caused a marked decrease in TGFB-stimulated a-SMA
expression. Notably, siMCT1 also decreased MCT4 expression. No adverse effects on cell viability were noted
following lactate transporter knockdown, and siMCT1 significantly increased cell count in both control and TGFp-

treated cells (Fig. S1A).

After observing a reduction in MCT4 expression following siMCT1 treatment, we proceeded to evaluate the
impact of pharmacological MCT inhibitors on myofibroblast differentiation to examine the independent effects
of MCT1 and MCT4 inhibition. AZD3965, a high-affinity (K; 1.6 nM) inhibitor of MCT1 (28), and VB124, a recently
developed high-affinity (K; 11 nM) inhibitor of MCT4 (21), were used in this evaluation. IPF lung fibroblasts were
differentiated with TGFp in the presence of these MCT inhibitors (Fig. 2B). MCT4 inhibition by VB124 alone, or in
combination with AZD3965, decreased Collal and a-SMA expression. These effects were consistent with normal
human lung fibroblasts where both AZD3965 and VB124, either individually or in combination, decreased a-SMA
expression (Fig. 2C). Similarly, AR-C155858, an inhibitor with high-affinity (K; 2 nM) for both MCT1 and MCT2
(29), also reduced a-SMA expression, alone and in combination with VB124 (Fig. S2B). Importantly,
pharmacologic MCT inhibition did not significantly impact cell count during the 48 h treatment (Fig. S2C-D). As
expected, decreased Collal and a-SMA expression correlated with reduced myofibroblast contractility, as
demonstrated by gel contraction assay (Fig. 2D). Together, these data indicate that MCT expression and activity

are required for myofibroblast differentiation in vitro.

MCT inhibition attenuates pro-fibrotic transcriptional programs

To further characterize the antifibrotic effects of lactate transport inhibition, we conducted RNA sequencing on
lung fibroblasts treated with TGFB in conjunction with AZD3965 or VB124 (Fig. 2E-H, S2). Principal components
analysis (PCA) revealed that the first principal component predominantly represented the effect of TGF
treatment, while MCT4 inhibition, either alone or combined with MCT1 inhibition, aligned with the second
principal component (Fig. 2E). Samples treated with the MCT1 inhibitor AZD3965 were similar to vehicle-treated

controls.

Differential expression analysis of TGFB-treated cells revealed the anticipated upregulation of extracellular
matrix proteins (Fig. S2A) and enrichment of the epithelial-to-mesenchymal (EMT) gene set, among others (Fig.
2F). In line with the PCA results, only GRIK4 (glutamate ionotropic receptor kainate type subunit 4) and BRI3

(brain protein I13) were differentially expressed following AZD3965 treatment (Fig. S2B). By contrast, VB124,
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either alone (Fig. S2C) or in combination with AZD3965 (Fig. 2G), induced more significant alterations in
fibroblast transcription, with 2% of 24,902 genes being differentially expressed at a false discovery rate (FDR) <
0.05.

Both AZD3965 and VB124 reversed TGFB-dependent enrichment of the EMT gene set, which is the Hallmark
gene set containing genes related to fibrosis (Fig. 2F). Leading edge analysis of the EMT gene set identified seven
genes shared among all three comparisons (i.e., genes increased by TGFB and decreased by both AZD3965 and
VB124) (Fig. 2H). These genes, including biglycan (BGN), COL6A3, Frizzled 8 (FZD8), matrix Gla protein (MGP),
Prostate Transmembrane Protein, Androgen Induced 1 (PMEPA1), TIMP metallopeptidase inhibitor 1 (TIMP1),
and tenascin-C (TNC), are known contributors to pulmonary fibrosis pathobiology or serve as biomarkers of
disease or treatment response (30—34). Taken together, these findings suggest that lactate transport inhibitors

attenuate the pro-fibrotic transcriptional program in TGFB-treated lung fibroblasts.

MCT inhibition reprograms myofibroblast metabolism

MCTs play pivotal roles in maintaining cellular lactate and redox homeostasis. MCT1 predominantly imports
lactate in cells utilizing lactate for oxidative phosphorylation or gluconeogenesis and is ubiquitously expressed.
MCT1 also facilitates lactate export in some glycolytic cells (35, 36). By contrast, MCT4 functions as the main
lactate exporter in glycolytic cells and is up-regulated when the glycolytic transcriptional program is activated
by, for example, the c-Myc or hypoxia-inducible transcription factors (35, 37). Importantly, MCT4 can also act as

a lactate importer with a Km of 1 mM (38).

To assess the metabolic consequences of lactate transporter inhibition, we quantified extracellular lactate in the
conditioned medium from cells treated with MCT siRNA or pharmacologic inhibitors. Silencing MCT1 and MCT4,
either individually or concurrently, decreased net TGFB-stimulated lactate efflux in lung fibroblasts (Fig. 3A). By
contrast, pharmacologic inhibition of either MCT1 or MCT4 alone did not decrease TGFB-stimulated lactate
efflux (Fig. 3B); inhibition of both transporters was required to lower extracellular lactate levels. Inhibition of
MCT1, MCT2, and MCT4 with the combination of AR-C155858 and VB124 was required to prevent increases in
lactate efflux (Fig. S3A). Although less pronounced compared to lactate production, we observed a trend toward
decreased extracellular glucose consumption in cells treated with both AZD3965 and VB124 (Fig. S3B). These
findings align with previous studies indicating compensatory roles for MCT1 and MCT4 in lactate export (39).
Furthermore, these results suggest that glycolysis inhibition is not the principal mechanism underlying the

attenuation of myofibroblast differentiation by lactate transport inhibition.
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To further elucidate the metabolic consequences of lactate transport inhibition, we next measured proton efflux
(PER) and oxygen consumption (OCR) rates in lung fibroblasts treated with TGFB in combination with MCT
inhibitors (Fig. 3C, S3C). Given that MCTs co-transport protons with lactate, PER serves as a surrogate measure
of lactate efflux. In line with previous findings (8—10, 16, 40), we observed increases in both PER and OCR
following 48 h of TGFp stimulation, indicative of increased glycolysis and oxidative phosphorylation. Consistent
with our direct measures of extracellular lactate and glucose, concurrent treatment with AZD3965 and VB124
was necessary to reduce PER. Consequently, this reduction in PER coincided with an increase in OCR as

myofibroblasts transitioned their metabolism from glycolysis to oxidative phosphorylation.

Interestingly, individual administration of AZD3965 and VB124 unexpectedly increased OCR without
corresponding decreases in PER. Indeed, the primary consequence of MCT1 or MCT4 inhibition alone was
increased cellular ATP production rates driven by upregulation of oxidative phosphorylation (Fig. 3D-E). MCT
inhibition decreased spare respiratory capacity, indicating that the basal respiratory rate of treated cells
approached their maximal oxidative capacity (Fig. $3D). No significant differences were observed in glycolytic
capacity or electron transport chain coupling efficiency (Fig. S3D). Together, these data suggest that the
principal metabolic effect of MCT inhibition is the stimulation of oxidative phosphorylation rather than inhibition

of glycolysis.

To further test this hypothesis, we performed liquid chromatography-mass spectrometry-based profiling of
extracellular and intracellular metabolites from cells treated with AZD3965 and VB124. In accordance with the
Seahorse analysis, inhibiting a single lactate transporter had modest effects on extracellular metabolite levels
(Fig. 4A-D, S4). This analysis confirmed the results of extracellular lactate measurements by enzyme assay, which
showed that dual inhibition was required to decrease lactate efflux (Fig. 4B). Besides lactate, dual inhibition of
lactate transporters primarily altered transcellular fluxes of amino acids (Fig. 4C-D), including several
metabolites that were differentially regulated by TGFf treatment (Fig. S4A) and dual lactate transport inhibition,

including leucine, alanine, ornithine, and ketoleucine.

Similar effects were observed on intracellular metabolites. PCA showed distinct clustering of treatment groups,
with the drug effects aligning with PC1 and TGFp treatment effects with PC2 (Fig. 4E). Similar to the extracellular
flux results, the magnitude of drug-induced perturbations increased from MCT1 to MCT4 to combined inhibition
(Fig. 4E), reflected by intracellular lactate levels (Fig. 4F). As expected from extracellular lactate measures
following MCT inhibition, intracellular lactate accumulated moderately with MCT4 inhibition and substantially

with MCT1/4 inhibition. TGFB treatment resulted in diverse changes in the intracellular metabolomic profile of
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treated fibroblasts (Fig. S4C-D). The effect of AZD3965 alone on intracellular metabolite levels was modest (Fig.
S4G-H). Conversely, MCT4 inhibition by VB124 alone (Fig. SK-L) or in combination with AZD3965 (Fig. 4G-H)
caused substantial perturbations to intracellular metabolism. Specifically, we observed enrichment of the
glycolysis and tricarboxylic acid (TCA) cycle metabolite sets with MCT4 inhibition. These findings collectively
suggest that inhibiting lactate export leads to the accumulation of upstream glycolytic intermediates that are

rerouted to mitochondrial oxidative metabolic pathways.

To test this hypothesis, we labeled lung fibroblasts with [U-*Cs]-glucose (8 mM) in medium containing lactate (2
mM), glutamine (1 mM), and pyruvate (1 mM) during TGFB stimulation and treatment with MCT inhibitors (Fig.
4), S5). TGFB increased 3C incorporation from glucose into pyruvate, lactate, citrate, succinate (SUC), and
malate (MAL), indicating enhanced flux from glucose into the TCA cycle. While AZD3965 had minimal impact on
these labeling patterns, MCT4 inhibition significantly elevated the fractions of these metabolites labeled by 3C,
providing direct evidence for a proportional increase in glucose oxidation following MCT4 inhibition, consistent

with the results of our bioenergetic and steady-state metabolomics experiments described above.

Increased metabolite labeling from [U-13C¢]-glucose must be offset by decreased labeling from other substrates.
Given recent data suggesting lactate as a major oxidative fuel source in the lung (41-43), we hypothesized that
MCT inhibition would decrease exogenous lactate oxidation. To test this, lung fibroblasts were cultured with [U-
13¢;]-lactate (2 mM) in medium containing naturally labeled glucose, glutamine, and pyruvate (Fig. 4K, S5).
Extracellular [U-13Cs]-lactate labeled approximately 50% of intracellular pyruvate and lactate at baseline, with
significant downstream incorporation into TCA metabolites. This labeling decreased following TGFB treatment,
mirroring increased fractional labeling from glucose (Fig. 4J). MCT inhibition had no impact on fractional labeling
of TCA intermediates by [U-'Cs]-glutamine (Fig. $4M, S5). MCT4 inhibition alone or in combination with
AZD3965 decreased 3C labeling of intracellular metabolites by lactate. These findings demonstrate the
importance of MCT4 for lactate import at physiologic lactate concentrations, in contrast to the prevailing
sentiment that MCT4 is primarily a lactate exporter. Moreover, these data further underscore the relatively
greater importance of MCT4 activity in fibroblast metabolism compared to MCT1. Consistent with our
measurements of extracellular lactate, the effects of MCT inhibition were more pronounced when both
inhibitors were used simultaneously, again highlighting some functional redundancy of MCT1 and MCT4 in these

cells.
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Lactate transport inhibition contributes to antioxidant defense mechanisms

Lactate metabolism is closely coupled to cellular redox homeostasis through its metabolism by lactate
dehydrogenases, which transfer electrons from lactate to NADH. Building on previous findings highlighting the
significance of ROS in TGFB-mediated gene expression (44, 45), we investigated the impact of lactate transport
inhibition on cellular redox balance. Consistent with increased intracellular lactate upon MCT4 inhibition, we
observed a corresponding rise in intracellular NADH/NAD* (Fig. 4L), coupled with a reduction in total ROS as
measured using the CellROX fluorescent probe (Fig. 4M). AZD3965, but not VB124, decreased mitochondrial
superoxide production (Fig. 4N). Neither inhibitor affected mitochondrial biomass measured by MitoTracker
fluorescence (Fig. S6B). Less substantial changes were observed in the NADPH/NADP* ratio, where VB124
decreased NADPH/NADP* in TGFB-treated cells (Fig. S6A). Notably, TGFB did not induce ROS production in our

experimental system.

Previous research has proposed proline biosynthesis as a mechanism for NIH-3T3 fibroblasts to mitigate ROS
accumulation following TGFp stimulation (45). In this model, proline synthesis from glutamine consumes
reducing equivalents from NADPH and NADH, thereby ameliorating reductive stress and decreasing ROS
production. Contrary to these findings, we did not observe TGFB-induced proline elevations in primary lung
fibroblasts (Fig. S6C). Overall, the fractional labeling of proline from [U-!Cs]-glutamine was modest at 10%
compared to the previously reported 40% (Fig. S6D). While we noted trends toward increased proline
production from glutamine with MCT4 inhibition, this mechanism appears insufficient to explain the effects of

MCT inhibitors on ROS generation.

Lactate transport inhibition does not alter classical TGFp signaling pathways

Next, we examined TGFB-dependent signaling, which activates both SMAD and non-SMAD signaling pathways
through a cascade of protein phosphorylation events. Following 48 h of TGF stimulation, MCT inhibitors did not
diminish Smad3 or ERK phosphorylation (Fig. 5A-B).

Given that increased intracellular lactate correlated with more potent inhibition of a-SMA expression, we
treated cells with TGFB in combination with extracellular lactate (10 mM). A previous study suggested that
extracellular lactate modestly increases a-SMA expression independently of TGFB (13). However, we observed
no impact of extracellular lactate on a-SMA expression in TGFB-treated lung fibroblasts (Fig. S7A), indicating

intracellular lactate accumulation alone does not mediate the antifibrotic effects of MCT inhibition.
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Prior research has linked inhibition of glycolysis and lactate production to hypoxia-inducible factor 1a activation
(HIF-1a), contributing to myofibroblast differentiation (10, 13). We observed maximal HIF-1a activation 6 h after
TGFB stimulation. At this time point, HIF-1a protein levels remained consistent across vehicle-, AZD3965-, and
VB124-treated cells (Fig. S7B). However, in lung fibroblasts treated with dual inhibitors, HIF-1a protein increased
compared to vehicle, consistent with the enrichment of the “Hypoxia” gene set in our RNA-seq analysis (Fig. 2F).
These findings, alongside previous studies, suggest that lactate transport inhibition acts downstream of HIF-1a-

dependent transcriptional programs to inhibit myofibroblast differentiation.

MCT inhibition decreases experimental pulmonary fibrosis

Building on our in vitro findings indicating an antifibrotic effect of lactate transporter inhibition, we proceeded
to evaluate the efficacy of MCT inhibitors in a bleomycin-induced mouse model of pulmonary fibrosis. Mice
received 1.2 U/kg bleomycin by intratracheal administration. Seven days later, the animals began treatment
with AZD3965 (100 mg/kg twice daily) or VB124 (30 mg/kg once daily) or vehicle by oral gavage (Fig. 6A).
Considering likely toxicity, we did not assess the combination of inhibitors. Compared to vehicle, mice treated
with VB124 had increased weight recovery 21 days after bleomycin administration (Fig. S8). Lung mechanics
improved by approximately 50% of baseline compared to vehicle controls following 14 days of MCT inhibitor
treatment (Fig. 6B-C). This improvement in measures of lung stiffness was further supported by histologic
assessment of fibrosis severity using Ashcroft scoring (46) (Fig. 6D-E) and hydroxyproline content measurement
(Fig. 6F). Taken together, these data demonstrate substantially decreased pulmonary fibrosis severity after 14

days of treatment with lactate transport inhibitors.

MCT inhibition reprograms lung metabolism in vivo

To explore metabolic changes following lactate transporter inhibition in vivo, we conducted metabolomic
profiling of lung and plasma from mice treated with bleomycin and MCT inhibitors (Fig. $9). While bleomycin
administration substantially altered the lung metabolic profile, treatment with AZD3965 or VB124 had little
additional impact on total metabolite levels. However, unlike bleomycin alone or following AZD3965 treatment,
VB124 treatment resulted in significant alterations in several circulating metabolites (Fig. S91). Among these,
VB124 significantly increased circulating lactate, while AZD3965 led to decreased circulating lactate (Fig. 7A).
This trend was also reflected in the lung, where only modest changes were noted following bleomycin, contrary
to prior reports (13). Considering the influence of our treatments on circulating lactate, we calculated the lung-
to-plasma lactate ratio. This analysis revealed the anticipated increase in lactate in fibrotic lungs, with levels

returning to baseline following the addition of VB124 (Fig. 7A).
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We were surprised to observe relatively few metabolic changes in whole lung lysates following MCT inhibition
compared to our in vitro findings. We speculated that this discrepancy might arise from measuring steady-state
metabolite levels that do not reflect differences in metabolic flux. To test this hypothesis, we performed multi-
isotope imaging mass spectrometry (MIMS) of mouse lungs following administration of **N-proline and either
2H-glucose or *C-glucose. MIMS enables the quantification of stable isotope tracer flux into tissue biomass with
subcellular spatial resolution (47, 48). For three days preceding tissue collection, mice received twice daily
intraperitoneal injections of 5 mg °*N-proline as a fibrosis tracer and 50 mg glucose isotope as a metabolic
tracer. Subsequently, lung tissue sections were imaged by nanoscale secondary ion mass spectrometry to
quantify spatially resolved isotope tracer uptake (Fig. 7B-C). This labeling approach proved effective,
demonstrating approximately 1.5-fold enrichment N, 4.6-fold for 2H, and 2.4-fold for 3C above natural isotope
abundance. Pulmonary fibrosis correlated with a significant increase in °N labeling from proline, consistent with
increased collagen synthesis and deposition during the labeling period. Similarly, drug-treated animals exhibited
less >N incorporation per tissue area, consistent with lung function and histological analyses. Glucose labeling
displayed a similar pattern, wherein lactate transporter inhibition led to reduced glucose incorporation into
tissue biomass. Importantly, these findings are not merely attributable to decreased tissue fibrosis, as we

selectively imaged more fibrotic areas (Fig. 7B) and normalized the enrichment values to tissue area.

VB253, a novel MCT4 inhibitor, alleviates experimental pulmonary fibrosis

Our preclinical findings indicate that MCT4 inhibition, as a single therapeutic target, exhibits greater antifibrotic
efficacy than MCT1 inhibition, both in suppressing myofibroblast differentiation in vitro and reducing bleomycin-
induced fibrosis. VB253 is a novel inhibitor of MCT4 with ~10-fold increased selectivity for MCT4 v. MCT1 and
~10-fold increased potency for MCT4 inhibition. Like VB124, VB253 dose-dependently decreased TGFp3-
stimulated a-SMA in human IPF lung fibroblasts ex vivo (Fig. 8A). To assess its efficacy compared to established
therapies, we compared VB253 to nintedanib, a clinically approved antifibrotic medication for pulmonary
fibrosis (Fig. 8A-B). Nintedanib inhibits TGFB-mediated myofibroblast differentiation and decreases Collal
expression in vitro and in vivo (49). While both compounds effectively attenuated a-SMA expression, nintedanib
exhibited moderate cytotoxicity absent with VB253 (Fig. 8B). Nintedanib mitigates myofibroblast differentiation
partly by inhibiting TGFB receptor phosphorylation and Smad-dependent signaling pathways (50).
Correspondingly, nintedanib dose-dependently attenuated TGFB-mediated Smad3 phosphorylation, while
VB253 and VB124 had no impact on this signaling pathway (Fig. 5, $10).

Subsequently, we evaluated the potential of VB253 to counter bleomycin-induced pulmonary fibrosis. In

experiments conducted independently from those reported above, VB253 was administered to young mice (8-
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10 weeks) beginning on day 7 following bleomycin (Fig. 8C). The existing pulmonary fibrosis therapies,
nintedanib and pirfenidone, served as comparators. Three weeks after bleomycin, whole-body plethysmography
was performed to assess breathing patterns in unrestrained mice. Enhanced pause (Penh) is a dimensionless
index describing airflow during tidal breathing found to increase significantly in bleomycin-treated mice (51).
VB253 restored Penh to baseline levels, suggesting normalization of respiratory patterns in bleomycin-treated
mice (Fig. 8D). Histologic assessment confirmed reduced pulmonary fibrosis (Fig. 8E) and a-SMA expression (Fig.
8F). Moreover, the effects of VB253 were comparable to the antifibrotic effects of nintedanib and pirfenidone

with decreased cytotoxicity in in vitro assays.

Compared to young mice, aged mice exhibit more severe and persistent bleomycin-induced pulmonary fibrosis
(52). Given the clinical relevance of age-related IPF incidence, we investigated the antifibrotic effects of VB253 in
aged (60+ weeks) mice. Similar to young mice, VB253 decreased fibrosis severity, as quantified by Ashcroft score
and a-SMA expression (Fig. 8G-l). The magnitude of improvement paralleled that of nintedanib and pirfenidone.
As expected, VB253 decreased total lung lactate akin to VB124 (Fig. 7A). Collectively, these findings provide
compelling preclinical evidence supporting lactate transporter inhibition as a novel therapeutic strategy for

fibrotic lung disease.
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DISCUSSION

Our findings identify the pivotal role of lactate transport in the metabolic reprogramming associated with
myofibroblast differentiation both in vitro and in vivo. Elevated expression of the lactate transporters MCT1 and
MCT4 was observed in IPF lung explants and experimental models, underscoring their significance. Inhibiting
these transporters mitigated TGFB-stimulated myofibroblast differentiation and attenuated the severity of
bleomycin-induced pulmonary fibrosis without a demonstrable impact on classical TGFB receptor signaling
pathways. Metabolically, MCT antagonists promoted glucose oxidation while reducing glucose carbon
incorporation into fibrotic lung regions, correlating with decreased oxidative stress. MCT4 inhibition consistently
exhibited superior antifibrotic potency compared to MCT1 inhibition. We introduce a novel MCT4 inhibitor,
VB253, which has a more favorable pharmacologic profile than VB124, and is currently undergoing Phase 1
clinical trials. Altogether, these data establish lactate transport as a promising metabolic target for therapeutic

intervention in pulmonary fibrosis.

Metabolic reprogramming characterizes myofibroblast differentiation, with previous studies revealing
alterations in carbohydrate, amino acid, and lipid metabolic pathways that promote fibrogenesis (7). Of these,
increased lactate production emerged as an early metabolic hallmark associated with pulmonary fibrosis (13).
Subsequent investigations identified glycolysis activation as the driving force behind increased lactate
production by myofibroblasts (9). Furthermore, inhibition of glycolysis not only prevented myofibroblast
differentiation (8, 9, 14), but also attenuated experimental pulmonary fibrosis (15, 16). Our findings align with
this metabolic shift, as we observed upregulated expression of lactate transporters MCT1 and MCT4, supporting

this glycolytic phenotype in myofibroblasts.

MCTs are proton-coupled monocarboxylate symporters with varying affinities for lactate, pyruvate, and other
monocarboxylates (35). MCT1 is constitutively and ubiquitously expressed and primarily considered to be a
lactate importer with a lactate affinity (Kv) ranging from 3-6 mM. By contrast, MCT4 expression is dynamically
regulated, including by HIF-1a, and traditionally considered a lactate exporter with a lower lactate affinity (Kw
30-40 mM). However, recent evidence suggests that MCT4 has a much higher affinity for lactate import than
previously appreciated (Km 1 mM) (38). These findings align with our results where inhibiting both MCT1 and
MCT4 was required to block lactate export (Fig. 3, $3) and isotope incorporation from extracellular [U-'3Cs]-
lactate import (Fig. 4K). Previous studies in cancer cells have also noted that MCT4-expressing cells are resistant

to the cytotoxic effects of MCT1 inhibition (28). Interestingly, inhibiting either MCT1 or MCT4 decreased
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myofibroblast differentiation without affecting lactate export, adding further complexity to their roles in cellular

metabolism.

To clarify the metabolic consequences of lactate transporter inhibition, we performed a comprehensive
metabolic analysis of myofibroblasts treated with MCT inhibitors, encompassing bioenergetic measurements,
metabolomic profiling, and stable isotope tracing. The primary metabolic consequence of MCT inhibition is
stimulation of oxidative phosphorylation. MCT inhibitors increased the fraction of mitochondrial ATP
production, which was associated with increased levels of TCA intermediates and increased isotope
incorporation from glucose. Collectively, these data suggest that MCT inhibition redirects glucose carbon flux
away from lactate fermentation and toward glucose oxidation. Several mechanisms could underlie this shift.
Given that the observed effects generally scale with intracellular lactate levels, mass action likely plays an
important role in driving this metabolic phenomenon. Additionally, lactate accumulation is closely coupled in
NADH production through lactate dehydrogenase activity. Cytoplasmic NADH may be transported into the
mitochondria through the malate-aspartate shuttle and oxidized by the electron transport chain. Recently,
lactate itself was shown activate the mitochondrial electron transport chain independent of its metabolism (53),

though the molecular mechanism remains unknown.

Our data reveal that lactate transport inhibition exploits novel antifibrotic mechanisms distinct from TGFB
signaling pathways and suggest that these metabolic effects may signal to antifibrotic transcriptional programs
by dampening ROS levels. Increased ROS production has been observed following TGFB treatment and seems to
be essential for myofibroblast differentiation (44, 45). While our cells and model system did not replicate TGFB-
dependent increases in ROS, we observed decreased CellROX oxidation with MCT4 inhibition and decreased
MitoSOX oxidation with AZD3965. Additional signaling mechanisms may also contribute, such as post-
translational modification of protein lysines by lactate (i.e., protein lactylation). Histone lactylation serves as an
epigenetic modification that stimulates gene expression (54) and this modification has been increasingly
identified as a critical regulator of protein function, including cytoskeletal proteins (55). Furthermore, ongoing
research is uncovering novel lactate targets and mechanisms as significant mediators of metabolic sighaling (56,

57).

Through our comprehensive metabolic investigation of lactate transport inhibition, we have also generated
valuable data on the metabolic and transcriptional consequences of human lung myofibroblast differentiation.
TGFB stimulation induced notable alterations in amino acid and nucleic acid metabolic pathways (Fig. S4). While

previous studies have underscored the significance of glutamine, proline, and taurine (7, 58, 59), the role of
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branched chain amino acid metabolism, for instance, remains unexplored. Integrating these multi-omics data

sets could unveil novel molecular targets for future drug development.

In addition to metabolomic profiling, we conducted stable isotope tracing using glucose, lactate, and glutamine
substrates in TGFB-treated primary human lung fibroblasts. To our knowledge, this represents the first
comprehensive dataset on intracellular substrate metabolism in this widely employed model of myofibroblast
differentiation. Overall, isotope labeling patterns changed little following TGFpB treatment (Fig. S5). This
observation, coupled with the results of our extracellular flux experiments, suggests that TGFB primarily
enhances metabolite flow through metabolic pathways without substantially altering the pathways themselves.
Consistent with increased glucose uptake and accumulation of glycolytic metabolites, a greater fraction of
pyruvate, lactate, alanine, and serine are labeled by [U-'3Cs]-glucose, countered by a reduction in the fractional
labeling from [U-3C;]-lactate. Consistent with our prior findings (43), nearly 50% of TCA metabolites (citrate, 2-
oxoglutarate, succinate, and malate) are labeled by [U-13Cs]-lactate, highlighting the importance of lactate as a

respiratory fuel source in these cells.

Recently, the contributions of fibroblast metabolic pathways to extracellular matrix production have garnered
significant attention (7). Serine and glycine synthesis from the glycolytic intermediate 3-phosphoglycerate, and
proline synthesis from glutamine, have been implicated in myofibroblast differentiation and pulmonary fibrosis
(11, 12, 45, 58, 60). Intriguingly, our data indicate limited incorporation of glucose or lactate carbon into serine
and minimal glutamine carbon incorporation into proline. These differences may stem from differences in the
cell types (IMR-90 fetal lung fibroblasts or NIH-3T3 spontaneously immortalized mouse embryonic fibroblasts) or
the culture medium composition (Eagle’s minimum essential medium, which lacks serine, glycine, and proline).
Our study suggests that fibroblasts preferentially utilize available amino acids over rerouting substrates into
biosynthetic pathways. Developing metabolic flux models using human physiologic medium (61) could provide a
more accurate and comprehensive understanding of substrate flow into energetic and biosynthetic pathways,

better mimicking fibroblast metabolism in vivo.

Even more informative than in vitro model systems are approaches that enable the study of cell metabolism in
vivo. Here, we performed metabolomic profiling of lung and plasma samples from mice treated with bleomycin
and MCT inhibitors (Fig. S9). These analyses did not reveal changes in whole lung metabolite levels,
demonstrating a potential limitation of using bulk metabolomics to monitor metabolic changes in
heterogeneous cell populations in vivo. To overcome this challenge, we employed spatial metabolic imaging.

Mice were administered stable isotope tracers of proline and glucose before euthanasia. Since these tracers are
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administered to live animals, multi-isotope imaging mass spectrometry identifies lung regions that are
metabolically active during the labeling period. Since tissues were fixed and processed ex vivo, the isotope
signals indicate substrate incorporation into fixable biomass (62, 63). Thus, using multi-isotope imaging mass

spectrometry, we directly quantify isotope flux from glucose into fibrotic lung regions.

Our findings demonstrated that >N-proline enrichment levels correlated with tissue fibrosis as assessed
histologic and biochemically. This finding emphasizes the ability of cells to utilize circulating proline for protein
synthesis, potentially diminishing the significance of de novo proline biosynthesis in vivo. Moreover, the 2H-
glucose signal provided direct evidence for MCT-dependent metabolic reprogramming in mice, showing reduced
carbohydrate incorporation into matrix proteins. Owing to the financial and time costs of isotope tracing and
imaging, we were able to study only a few animals per group. Nevertheless, metabolic imaging at high spatial
resolution holds great promise for correlating cell identities from spatial transcriptomic profiles with metabolic
features. Furthermore, stable isotopes may be safely administered to human patients prior lung biopsy or
explant (47, 64), offering a strategy that could significantly advance our understanding of how cell metabolism

contributes to pulmonary fibrosis.

MCT1 and MCT4 are expressed by many cells in the lung, notably macrophages and dendritic cells (65). Although
our ex vivo and in vitro experiments suggest that inhibiting myofibroblast differentiation is a primary antifibrotic
mechanism, the inhibition of lactate transporters expressed by other cell types may also contribute to their
therapeutic effect. For example, MCT4 expression is upregulated as part of a HIF-1a gene expression signature
in transitional AT2 cells that accumulate in pulmonary fibrosis and contribute to aberrant repair processes (66,

67). Future work will explore the cell-type-specific effects of these transporters in conditional knockout mice.

The poor pharmacologic properties of small molecules studied previously have prevented translation into
metabolic therapies for human pulmonary fibrosis. Both AZD3965 and VB253 exhibit low ICso values of
approximately 2 nM, compared to the next most potent inhibitor studied in pulmonary fibrosis models,
lonidamine, with an 1Cso of 7,000 nM (68). As metabolic targets downstream of glycolysis, lactate transport
inhibitors also offer better tolerance by allowing glycolysis to continue supporting glucose oxidation, contrasting
with upstream glycolysis inhibitors that more severely impact cellular bioenergetics. Pharmacologic interest in
lactate transporters has been driven by the recognition of increased lactate transporter expression in a variety
of cancers (69). AZD3965 was selected for this study as it has been investigated in human clinical trials for
advanced solid organ malignancies (22). In this Phase 1 study, AZD3965 was generally well-tolerated with 7 of 40

patients experiencing dose-limiting toxicities including asymptomatic, reversible ocular changes; acidosis; and
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increased troponin. VB124 was the first selective MCT4 inhibitor developed (21) and we now introduce VB253 as
a second generation MCT4 inhibitor. Our data demonstrate that VB253 has similar efficacy in experimental
pulmonary fibrosis models as the established antifibrotics, nintedanib and pirfenidone, with potentially less
cytotoxicity (Fig. 8). MCT4 global knockout mice are viable and breed normally (70, 71), raising optimism that

VB253 will be well tolerated in humans, and a Phase 1 clinical trial of VB253 is currently underway.

In summary, our findings highlight the pivotal role of lactate transporter in driving myofibroblast differentiation
and pulmonary fibrosis. Through a comprehensive metabolic phenotyping approach, we have characterized the
antifibrotic mechanisms associated with MCT inhibition and provided compelling evidence of metabolic
reprogramming in animal models. Furthermore, we have validated the antifibrotic effectiveness of existing
lactate transport inhibitors using established preclinical disease models. Altogether, our results significantly
advance lactate transport inhibition as a promising therapeutic approach for patients suffering from pulmonary

fibrosis.
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MATERIALS AND METHODS

Study Design

This study was designed to investigate the role of lactate transporters in myofibroblast differentiation and
pulmonary fibrosis. The objectives of this study were (i) to determine the expression of lactate transporters in
IPF lungs and model systems, (ii) to characterize the phenotypic effects of lactate transport inhibition in model

systems, and (iii) to profile the metabolic consequences of lactate transport inhibitors.

Cell culture experiments were performed at least three times. The number of animals per experimental group
was chosen based on prior publications and experiments were repeated at least once. Stable isotope tracing
experiments were performed on three animals per group owing to resource availability. Animals were randomly
assigned to treatment. The pathologist scoring histologic fibrosis severity was blinded to treatment assignment.

The number of unique patient samples was determined by clinical availability.

Statistical Analysis

Data analysis, statistical comparisons, and visualization were performed in R (72). Experiments included
technical and biological replicates as noted in the Materials and Methods. The number of biological replicates
(N) is indicated in the figure legends. Summary data show the mean + SEM. Outliers were identified using twice
the median absolute deviation as a cutoff threshold. Comparisons were performed using linear mixed-effects
models with condition (+TGFpB), treatment, and their interaction as fixed effects and biological replicate or donor
as a random effect. Significant differences in estimated marginal means were identified by comparisons to the
multivariate t distribution. Metabolomics and RNA-seq data were analyzed as described in the Materials and

Methods. Probability values less than 0.05 were considered statistically significant.

Study approval

Human samples were obtained through the BWH Biorepository for Understanding Inflammatory Lung Disease
(BUILD) or the MGH ILD Translational Research Program and their collection was approved by the Mass General
Brigham Institutional Review Board (2013P002332, 2016P001890, 2019P003592, 2020P002765). All animal

experiments were approved by the Brigham and Women’s Hospital IACUC (2020N000199).
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LIST OF SUPPLEMENTARY MATERIALS

Materials and Methods

Fig. $1-S10
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Fig. 1. Lactate transporter expression increases in human IPF lung and experimental models. (A) MCT1, MCT4, and a-SMA protein
expression in whole lung homogenates from explanted IPF lungs and controls (Ctl). (B) MCT1, MCT4, and a-SMA protein expression in

whole lung homogenates from bleomycin (Bleo)- and vehicle (Ctl)-treated mice. (C) MCT1, MCT4, and a-SMA protein expression in cell

lysates from normal human lung fibroblasts treated with TGF( to induce myofibroblast differentiation. Individual data points are

biological replicates. Summary data are mean + SEM (* p-value < 0.05).
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779 Fig. 2. Lactate transport inhibition decreases myofibroblast differentiation and pro-fibrotic gene transcription in vitro. (A) RNA

780 interference targeting MCT1 or MCT4 decreases TGFB-stimulated a-SMA expression in normal human lung fibroblasts. (B-C) Small

781 molecule inhibitors of MCT1 (AZD3965, AZD) or MCT4 (VB124, VB) decrease TGFB-stimulated a-SMA expression in IPF lung fibroblasts (B)
782 and normal human lung fibroblasts (C). (D) Lactate transport inhibitors decrease gel contractility measured 24 h following TGFp. (E)

783 Principal components analysis of RNA-seq data from lung fibroblasts treated with TGF (bold colors) or vehicle (light colors) and lactate
784 transport inhibitors (N = 4). (F) Dot plot of Hallmark gene set enrichment analysis. Significantly enriched pathways with adjusted p-value <
785 0.05 are included and points are colored by normalized enrichment score (NES). Positive NES indicated relative enrichment following

786 TGFP compared to control (TGFB) or with MCT inhibitor compared to vehicle in TGFB-treated cells. (G) Volcano plot of significantly

787 differentially expressed genes in TGFB-stimulated cells treated with AZD3965 and VB124 compared to vehicle control. Significantly

788 differentially expressed genes are highlighted (adjusted p-value < 0.05), the top 15 up- and down-regulated of which are labeled. (H)

789 Transcript counts from the leading edge of enrichment for the epithelial mesenchymal transition Hallmark gene set demonstrating down-
790 regulation of pro-fibrotic genes with MCT inhibition. Individual data points are biological replicates. Summary data are mean + SEM (*
791 adjusted p-value < 0.05; black compares TGFp to control within a given treatment, colored compares the treatment effect to control for a
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Fig. 3. Lactate transport inhibition alters cellular bioenergetics. (A) Extracellular lactate was determined by enzymatic assay following
TGFP stimulation of cells treated with siRNA targeting MCT1 or MCT4, separately or together (N = 6 biological replicates, * adjusted p-
value < 0.05, black compares TGFp v. Ctl, colored compares siMCT v. siCTL). (B) TGFB-stimulated lactate secretion was measured following
treatment with MCT1 inhibitor AZD3965 (AZD), MCT4 inhibitor VB124 (VB), or both (N = 4-13 biological replicates, * adjusted p-value <
0.05, black compared TGFp v. Ctl, colored compares Drug v. Veh). (C) Oxygen consumption (OCR) and proton efflux (PER) rates of lung
fibroblasts treated with TGF and MCT inhibitors for 48 h prior to the assay. Measurements were performed at baseline and following
injection of ATP synthase inhibitor oligomycin (Oligo), mitochondrial membrane uncoupler FCCP, and Complex | and lll inhibitors
rotenone and antimycin A (Rot/AMA) (N = 4 biological replicates, data are mean + SEM). (D) Glycolytic (Glyco) and mitochondrial (Mito)
ATP production rates were calculated from PER and OCR, respectively (* adjusted p-value < 0.05 compared to TGFB/Veh). (E) Energy
phenogram derived from data presented in (D). TGFB increases ATP production from both glycolysis and oxidative phosphorylation,
favoring the former, while MCT inhibition increases mitochondrial ATP production. Summary data are mean + SEM.
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Fig. 4. Lactate transporter inhibition promotes oxidative phosphorylation. (A) Principal components analysis of metabolites in
conditioned medium from lung fibroblasts treated with TGFB (bold colors) or vehicle (light colors) and lactate transport inhibitors (N = 5).
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(B) Extracellular lactate determined by LC-MS. (C) Volcano plot of significantly altered extracellular metabolites following combined
treatment with AZD3965 and VB124. Differentially regulated metabolites are colored (adjusted p-value < 0.1), the top 10 up- and down-
regulated of which are labeled. (D) KEGG pathways significantly enriched (adjusted p-value < 0.1) with metabolites differentially
regulated by combined MCT1 and MCT4 inhibition ordered by normalized enrichment score (NES). Positive NES indicates enrichment in
AZD/VB-treated cells while negative NES indicates enrichment in Vehicle-treated cells. (E) Principal components analysis of intracellular
metabolites extracted from lung fibroblasts stimulated with TGFB (bold colors) or vehicle (light colors) in the presence of lactate transport
inhibitors (N = 5). (F) Intracellular lactate increases significantly with MCT4 inhibition alone (VB) or when combined with MCT1 inhibition
(AZD/VB) (* adjusted p-value < 0.05 compared to vehicle control for the main effect of the inhibitor). (G) Volcano plot of significantly
altered metabolites following combined treatment with AZD3965 and VB124. Differentially regulated metabolites are colored (adjusted
p-value < 0.1), the top 10 up- and down-regulated of which are labeled. (H) KEGG pathways significantly enriched (adjusted p-value < 0.1)
with metabolites differentially regulated by combined MCT1 and MCT4 inhibition ordered by NES. Positive NES indicates enrichment in
AZD/VB-treated cells while negative NES indicates enrichment in Vehicle-treated cells. (I) Schematic of 13C isotope labeling of carbon
atoms from glucose (blue) or lactate (pink) into tricarboxylic acid cycle metabolites. Each circle represents a carbon atom. (J-K) Stable
isotope incorporation from [U-13Cs]-glucose (J) or [U-13C5]-lactate (K) into the intracellular metabolites pyruvate (PYR), lactate (LAC),
citrate (CIT), 2-oxoglutarate (20G), succinate (SUC), and malate (MAL) (N = 4 biological replicates, * adjusted p-value < 0.05, black
compares TGFp v. Ctl for a given treatment, colored compares treatment v. vehicle for the indicated condition). (L) Intracellular lactate
oxidation is coupled to NADH/NAD*, which was determined by enzymatic cycling assay (N = 4 biological replicates; * adjusted p-value <
0.05; black compares TGFp to control within a given treatment, colored compares the treatment effect to control for a given condition).
(M) Normalized CellROX fluorescence, an indicator of cellular reactive oxygen species, normalized to TGFB-treated cells (N = 3 biological
replicates; * adjusted p-value < 0.05 compared to TGFB-treated cells). (N) MitoSOX fluorescence, a marker of mitochondrial superoxide
production, was measured and normalized to MitoTracker fluorescence, a marker of mitochondrial mass (N = 3 biological replicates; *
adjusted p-value < 0.05 compared to TGFB-treated cells). Summary data are mean + SEM.
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