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Abstract

Functional Positron Emission Tomography (fPET) has advanced as an effective tool for
investigating dynamic processes in glucose metabolism and neurotransmitter action, offering
potential insights into brain function, disease progression, and treatment development. Despite
significant methodological advances, extracting stimulation-specific information presents
additional challenges in optimizing signal processing across both spatial and temporal
domains, which are essential for obtaining clinically relevant insights. This study aims to

provide a systematic evaluation of state-of-the-art filtering techniques for fPET imaging.

Forty healthy participants underwent a single ['®FJFDG PET/MR scan, engaging in the
cognitive task Tetris®. Twenty thereof also underwent a second PET/MR session. Eight
fitering techniques, including 3D and 4D Gaussian smoothing, highly constrained
backprojection (hypr), iterative hypr (Ilhypr4D), two MRI-Markov Random Field (MRI-MRF)
filters (L=10 and 14 mm neighborhood) as well as static and dynamic Non-Local Means (sNLM
and dNLM respectively) approaches, were applied to fPET data. Test-retest reliability
(intraclass correlation coefficient), the identifiability of the task signal (temporal signal-to-noise
ratio (tSNR)), spatial task-based activation (group level t-values), and sample size calculations

were assessed.

Results indicate distinct performance between filtering techniques. Compared to standard 3D
Gaussian smoothing, dNLM, sNLM, MRI-MRF L=10 and Ihypr4D filters exhibited superior
tSNR, while only dNLM and hypr showed improved test-retest reliability. Spatial task-based
activation was enhanced by both NLM filters and MRI-MRF approaches. The dNLM enabled a

minimum reduction of 15.4% in required sample size.

The study systematically evaluated filtering techniques in fPET data processing, highlighting
their strengths and limitations. The dNLM filter emerges as a promising choice, with improved
performance across all metrics. However, filter selection should align with specific study

objectives, considering factors like processing time and resource constraints.
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Introduction

Functional Positron Emission Tomography (fPET) has become a powerful tool, enabling
researchers and clinicians to investigate the intricate details of biological processes at the
molecular level in vivo' 2. This capability to visualize and quantify task-driven dynamic changes
in molecular activity has far-reaching implications for understanding brain function, disease
progression, and monitoring treatment efficacy. Although research into fPET began almost a
decade ago® 4, rapid methodological advances in the field have led to improvements in
temporal resolution. Commencing with more conventional PET framing times of 60 s, fPET
quickly progressed to 30 s" 2 ° and more recently 16 s°. Notably, a recent study unveiled acute
temporal changes in the fPET signal after task performance using 3 s frames, which was
previously indiscernible at lower temporal resolutions’. This breakthrough was achieved, in
part, through specialized filtering techniques designed to enhance the temporal signal to noise
ratio (tSNR), while preserving the acute task-specific changes. Given the inherently low tSNR
of PET and the recent interest and rapid advances in high temporal resolution imaging, the
demand for enhancing both spatial and temporal resolution in fPET data is becoming
increasingly imperative. However, the potential of high-resolution fPET is fundamentally limited
by challenges related to spatial® and temporal resolution®. The precise localization of molecular
events and the ability to capture rapid changes over time are essential for extracting clinically

accurate and meaningful information.

Despite the considerable progress in the methodology behind fPET, achieving optimal spatial
and/or temporal SNR (tSNR) remains an ongoing challenge. The need for improved resolution
is emphasized by the complexities of biological systems, where rapid and subtle changes are
often the key indicators of physiological and pathological processes. As such, the investigation
and optimization of filtering techniques used to enhance spatial and temporal resolution in

fPET is crucial for unlocking its full potential.

Existing methods to enhance fPET data predominantly involve 3D filtering techniques. The

most common and widely used approach is Gaussian smoothing, employed not only in fPET™
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", but also in structural and functional magnetic resonance imaging (fMRI)'> '3, Other 3D
filtering techniques exist, such as highly constrained backprojection (hypr)', static non-local
means’® (sNLM) and a more recent technique incorporating anatomical knowledge to enhance
the image using a Bowsher-like prior'®. Each of these techniques has its own advantages and
limitations. Although, NLM filtering including the temporal domain has been explored in fMRI""
and in PET for denoising low-count frames'® its rigorous evaluation in the context of fPET is
missing. Other techniques like Gaussian smoothing and hypr have seen recent improvements

by incorporating a temporal component'®-2",

While each filtering technique has been shown to improve spatial and/or tSNR when compared
to a standard approach using either simulations or phantom data, a comprehensive
assessment of the most well-known techniques on the same real-world dataset using multiple
test metrics, has yet to be performed. The primary objective of this study was to assess the
efficacy of various filtering techniques in optimizing fPET task imaging results, with a specific
focus on practically relevant parameters such as test-retest reliability, temporal SNR, group
level spatial effects and sample size estimation. By systematically evaluating and comparing
different filtering techniques in a practical manner, we aim to identify the most promising

approaches for enhancing the quality of fPET images.
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Materials and Methods

For this retrospective analysis, data from our previous test-retest study was used 22. Thus, full

details about the study design and data acquisition can also found there and in related work '

1

Participants

Data from 40 healthy participants (20 male, mean age + SD: 23.0 £ 3.4 years, all right-handed)
were used, and for 20 participants, data for test-retest reliability analysis was available (10
male, 23.1 £ 3.1 years). All participants underwent a routine medical investigation at the
screening visit including electrocardiography, blood tests, neurological and physiological
examination, and a urine drug test. Psychiatric disorders were ruled out with the Structural
Clinical Interview DSM-IV conducted by an experienced psychiatrist. Female participants
additionally underwent a pregnancy test at the screening visit and before each PET/MRI
measurement. Participants had to fast for at least four hours prior to the scan, including the
consumption of sweetened beverages and caffeine?. Exclusion criteria included current or
previous neurological, somatic or psychiatric diseases, current breastfeeding or pregnancy,
left-handedness, substance abuse, MRI contraindications, past participation in a study with
ionizing radiation exposure and regular experience playing puzzle games i.e. Tetris® or similar.
Due to radiation protection, participants above 100 kg were also excluded. After a detailed
explanation of the study protocol, all participants gave written informed consent. Participants
were insured and reimbursed for their participation. The study was approved by the Ethics
Committee of the Medical University of Vienna (ethics number: 1479/2015) and all procedures
were carried out in accordance with the Declaration of Helsinki. The study was registered at

ClinicalTrials.gov (ID: NCT03485066).
Cognitive task

Participants were required to play an adapted version of Tetris®, including 2 levels of difficulty

to induce various levels of cognitive load. Participants were required to perform all actions
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using only their right hand. To familiarize themselves with the task and the controls, participants
completed a 30 s training of each condition before each scanning session. A more detailed

description of the task can be found in?? 24,
Study design

The experimental protocol aimed to assess cognitive tasks using a combination of continuous
task performance and a conventional block design. The session started with the acquisition of
a structural T1-weighted image. Thereafter, ['®F]FDG was administered in a bolus + constant
infusion protocol. The initial baseline was 8 minutes of rest. Participants then performed four
task conditions of varying difficulty (6 min each, 2 easy, 2 hard in a pseudo-randomized order),
followed by a 5-minute rest condition where subjects were instructed to look at a crosshair and
let their thoughts wander. Additional data acquired for different purposes were not used in this
study (ASL, BOLD and DTI sequences). The total scan time was 100 minutes, representing a
typical duration for PET studies. See Hahn et al. for a more detailed description®. Data for test-

retest analysis were acquired 4.2 + 0.7 weeks after the first scan.
Data acquisition and blood sampling

The radiotracer ['®F]JFDG was synthesized each measurement day at the Department of
Biomedical Imaging and Image guided Therapy, Division of Nuclear Medicine, Medical
University of Vienna. Simultaneous to fPET start, ['®F]FDG was administered via a cubital vein
as a 1 minute bolus followed by constant infusion for 51 minutes with an infusion pump
(Syramed mSP6000, Arcomed, Switzerland, dosage: 5.1 MBqg/kg, bolus speed: 816 ml/h,
infusion speed: 42.8 ml/h, bolus-infusion ratio of activity: 20:80%), which was placed in an MR-
shield. fPET data was acquired in list-mode using a Siemens 3T mMR scanner (Erlangen,

Germany), enabling the retrospective definition of frame lengths during reconstruction.

A T1-weighted structural image was acquired with a magnetization prepared rapid gradient
echo (MPRAGE) sequence prior to radiotracer administration (TE/TR=4.21/2200 ms, voxel

size=1x1x 1.1 mm, matrix size=240x256, slices=160, flip angle=9°, TI=900 ms, 7.72 min). The
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image was used to rule out severe structural abnormalities, for attenuation correction®® and

spatial normalization to MNI space.

Prior to each PET/MRI measurement, the individual fasting blood glucose level was measured
as an average of a triplicate. Arterial blood samples were drawn from a radial artery throughout
the radiotracer administration (time points: 3, 4, 5, 14, 25, 36 and 47 min after infusion start)
and were timed not to interfere with task performance and the MRI acquisition. Blood samples
were processed as previously described . In short, whole blood activity and plasma activity
after centrifugation were measured in a gamma-counter (Wizard2, 3”; Perkin Elmer, USA). The
whole blood curve was linearly interpolated and resampled to match the time points of the
reconstructed fPET frames. The plasma to whole-blood ratio was averaged across time points.
The whole blood curve was then multiplied with the mean plasma-to-whole-blood ratio to obtain

an arterial input function for absolute quantification.
Preprocessing and quantification

All fPET data was reconstructed using an Ordinary Poisson — Ordered Subset Expectation
Maximization Algorithm (OP-OSEM), set at 3 iterations and 21 subsets. The output image
contained a matrix size of 344 x 344 with 127 slices and a voxel size of 2.09 x 2.09 x 2.03 mm.
The reconstructed data was binned into 104 frames of 30s each. Standard corrections,
including dead time, decay, and scatter, were applied, and attenuation correction was
performed using a pseudo-CT approach based on the structural MRI acquired during the initial

measurement?>.

Preprocessing and quantification followed established procedures from previous studies™ * 5.

Specifically, SPM12 (https://www.fil.ion.ucl.ac.uk/spm) was utilized for head movement

correction (quality = best, registered to mean image), spatial normalization to MNI space using
the structural MRI. The mean PET image was coregistered to the structural MRI, and the
resulting transformations were applied to the dynamic fPET data. Once normalized, the data
was smoothed using different techniques, see filter assessment below. The smoothed data

was subsequently masked using a grey matter mask (SPM12 tissue prior, thresholded at 0.1),
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and a low pass filter with a cutoff frequency of half the task duration was applied to the time

course of each voxel.

A general linear model (GLM) was employed to distinguish between task-specific and baseline
metabolism, using four regressors: baseline, easy task block, hard task block and the first

principal component of the six movement regressors obtained during movement correction*.

The Gjedde-Patlak plot was employed to derive the influx constant (K;), with linearity assumed
after 15 min after tracer application. This resulted in three separate Ki; maps for rest, easy, and
hard. Finally, the cerebral metabolic rate of glucose (CMRGIu) was quantified using the lumped

constant of 0.89%. For a more detailed description please see?.
Filter assessment

In this work we aimed to assess the most recognized PET filtering techniques and were

implemented in MATLAB unless otherwise specified. These filters include:

3D Gaussian filter: Is the most commonly used spatial smoothing technique in image
processing. It operates by convolving the image with a three-dimensional Gaussian kernel.
The convolution process assigns a weighted average to each voxel in the image, with the
weights determined by the Gaussian distribution. This smoothing helps reduce noise and
emphasize larger-scale features in the data?’. Here we used the SPM function with a

smoothing kernel with a full width half maximum (FWHM) of 8 mm.

4D Gaussian filter: which extends on the concept of the 3D Gaussian filter to four dimensions,
incorporating time as an additional dimension. This filter is particularly relevant in the context
of dynamic imaging data, such as functional imaging over time. A spatial kernel of 8 mm FWHM

and a temporal window of 5 frames (2 before and 2 after selected frame; 2.5 min) were used.

Hypr filter: is an advanced filtering technique designed to improve spatial resolution in medical
imaging. It operates by incorporating constraints into the back-projection process during image
reconstruction or preprocessing. These constraints, derived from both the acquired data and

prior knowledge, guide the reconstruction algorithm to produce images with enhanced spatial
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details. Hypr is particularly useful in scenarios where high spatial resolution is crucial, such as
in the case of small anatomical structures™. The composite (i.e., temporally summed) image

was smoothed using an 8 mm FWHM kernel.

Iterative 4D hypr (lhypr4D) filter: represents an extension of the hypr filter combined with a
4D Gaussian filter, which incorporates both spatial and temporal constraints, while the iterative
step reduces errors during the filtering process through multiple iterations?'. Parameters were
selected from'. In summary, the segmentation of homogenous regions from the mean fPET
image was performed using k-means clustering where k was set to 30 for feature extraction
prior to running ihyper4D. The number of iterations were set to 4 and the smoothing kernel

was set using the same parameters as the 4D Gaussian smoothing.

MRI-Markov Random Field (MRI-MRF): The MRI-MRF prior, a modified Bowsher-like
technique, enhances fPET image quality by incorporating anatomical information from
coregistered MRI. This technique utilizes a continuous weighting scheme, patch-based
similarity, and smoothly-decaying function which contribute to improved identification of brain
activations'®. Here we tested two different MRF neighborhood width parameters L = 10 mm
and 14 mm, as used in'®. Where the neighborhood refers to a spatial arrangement of nearby

voxels around a central voxel.

sNLM Filter: is an extension of the traditional non-local means filter, adapted for time-series
imaging data. The non-local means approach involves averaging pixel values based on
similarity patterns in the image. In the sNLM, this concept is extended to capture temporal
correlations over the entire time course in addition to spatial similarities. By considering both
spatial and temporal information, the sNLM filter aims to preserve fine details in the data while
effectively reducing noise in dynamic imaging sequences'®. The following parameters were
used: a search window of D = 11 voxels and a patch size of 3 x 3 x 3 voxels' 28, A post
smoothing 5 mm FWHM was used for better comparison to the other techniques, as this yields

a total filter kernel of approximately 8 mm FWHM.
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dNLM filter: is a further extension of the sNLM by capturing only correlations over a short
duration, similar to a sliding window approach. The dNLM filter aims to preserve acute (e.g.,
task-induced) signal changes while reducing noise’. To incorporate a temporal parameter we
used the standard setting as for the sNLM filter but added a 4" dimension to the patch size of

5 frames or 2.5 min. Here a 5 mm FWHM post smoothing was also used.
Statistical analysis

A rigorous analysis of the acquired data was conducted employing a multifaceted approach to
ensure comprehensive insights of each filter's properties of both spatial and temporal
dimensions. For all tests three regions of interest (ROIs) were selected from previous analyses
on the same dataset, which represent a robust task-activation assessed via a conjunction of
three imaging modalities’. These regions comprise the frontal eye field (FEF), intraparietal

sulcus (IPS) and the occipital cortex (OCC).

The Intraclass Correlation Coefficient (ICC) was utilized to assess the reliability and
consistency of the observed effects between two repeated fPET measurements. Additionally,
the individual tSNR was computed to gauge the robustness of the signal over time. This
provides information about the ability to identify stimulation-induced changes in the presence
of noise and, thus, an insight into the temporal information captured by the filtering techniques.
At the group level, peak and mean task-specific t-values were compared to quantify the
strength of neural responses and model fit after each filter technique. T-tests were corrected
for multiple testing using Gaussian random field theory as implemented in SPM12 and the
threshold for significance was set at p < 0.05 family-wise error (FWE)-corrected at the cluster-
level following p < 0.001 uncorrected at the voxel-level and separately at the peak FWE-
corrected p < 0.05. A power analysis was conducted to determine the requisite sample size
for detecting a significant effect in a prospectively planned study (one sample case, a = 0.05,
Power = 0.95, two-tailed). The effect size for each filtering approach was assessed by utilizing
the mean and standard deviation of task-induced CMRGIu clusters, while accounting for

multiple comparisons, i.e., number of voxels, via the Bonferroni adjustment method (p < 2.585
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*107). CMRGlu clusters were determined using each filter's quantified fPET maps where an
overlap with the aforementioned three specified ROls occurred. The 3D Gaussian filter was
used as a reference for filter comparisons, since it represents the most commonly employed

approach in functional neuroimaging.
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Results

An overview of each filter's performance for each test can be found in table 1. A more detailed
overview of each filter's regional performance can be found in table S1-4. Group activation
maps at cluster level correction (Figure 1) and voxel level correction (Figure 2) for each filter
were created. While both Gaussian filtering techniques exhibit very low runtime on our data
(mean runtime: ~30 s), the MRI-MRF (mean runtime: 14 — 16.5 h) and NLM (mean runtime:
7.9 h) filters require substantially longer processing times. The NLM filters were processed on
a single core for fair comparison, although parallelization is available, halving the runtime per
core. The hypr and lhypr4D filter displayed moderate mean runtimes of 4 and 5 min per

dataset, respectively.
Test-retest reliability

When comparing ICC values of the 3D Gaussian filter to those obtained with other filters, only
the dNLM and hypr filter showed improvements to task-based test-retest reliability. The 4D
Gaussian filter, MRI-MRF L = 14 and lhypr4D displayed the greatest decrease in ICC
compared to the 3D Gaussian filter (table 1, S1). The other filter techniques (MRI-MRF L=10,

sNLM) performed similarly well.
Temporal signal-to-noise ratio

All filter approaches, excluding the 4D Gaussian smoothing, and MRI-MRF L = 14, displayed
similar or improved tSNR values when compared to the 3D Gaussian smoothing (table 1, S2),

whereas, the greatest improvements were seen in both NLM filtering techniques.
Spatial task-based activation

Similar to the individual tSNR, most filter techniques displayed an improvement in group-level
peak and mean t-values extracted from the task-active ROls. The 4D Gaussian showed
substantially decreased performance compared to the 3D Gaussian filter, whereas, the hypr

indicated similar t-values. Increased mean and peak t-values were found for both MRI-MRF
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and highest values were observed for both NLM filtering techniques (table 1, S3-4). Task-

based spatial activation maps for each filtering technique can be found in figure 1 and 2.

Temporal differences

The temporal dynamics of each filtering technique were scrutinized through the analysis of the
task-specific fPET signal, as illustrated in figure 3, supplementary figures 1 and 2. Notably, the
MRI-MRF 14 and Gaussian 4D filters exhibited a tendency to overly smooth the signal, which
is in line with the lower tSNR for these two filters (table 1). The MRI-MRF 14, while capturing
more acute changes in the PET signal, tended to excessively smooth out the overall task trend
(Figure 3). Conversely, the Gaussian 4D filter demonstrated an opposite effect, preserving the
general task effect but smoothing the acute changes excessively (figure 3). In contrast, the
hypr, and MRI-MRF 10 filters demonstrated a better temporal alignment with the Gaussian 3D
signal, showing reduced peaks while maintaining signal stability, see figure 3. The sNLM filter
exhibited a notably smoother time course compared to the hypr, and MRI-MRF 10 filters, yet
still followed the general time course of the Gaussian 3D data. The dNLM filter, akin to the
sNLM, presented a smoother time course while better preserving the amplitude of task-induced
changes. Interestingly, the MRI-MRF 14 was observed to underestimate tracer uptake also for
the baseline condition when compared to other filtering techniques, as depicted in

supplementary figure 1.

Sample size calculation

The power analysis revealed varying sample size requirements across filter techniques, with
the 3D Gaussian filter necessitating 13 participants to detect a meaningful effect. In
comparison, hypr and lhypr4D both required 16 participants, representing 123.1% of the
sample size needed for 3D Gaussian. Similarly, MRI-MRF 10, MRI-MRF 14 and sNLM required
15, 17, and 15 participants, respectively, reflecting 115.4%, 130.8%, and 115.4% of the
reference sample size. The 4D Gaussian required 33 participants (253.8%), while the dNLM
exhibited the lowest requirement with 11 participants or 84.6% of the 3D Gaussian sample

size, see table 1 for an overview.
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Discussion

The aim of this paper was to systematically evaluate various filtering techniques in the context
of stimulation-induced changes in glucose metabolism using fPET, with a focus on practically
relevant parameters such as test-retest variability, tSNR, and spatial task-based activation.
The results present a nuanced understanding of the strengths and weaknesses of each filtering

method, providing valuable information to choose the most suitable technique.
Spatial filtering techniques

The comparison of 3D Gaussian, hypr, sNLM and MRI-MRF 10 filters revealed similar
performance across all metrics. These similarities, coupled with the additional complexity and
processing time of the sSNLM and MRI-MREF filter, emphasize the importance of considering
performance and computational efficiency. While the MRI-MRF filter technique shows decent
task-induced activation at the group level, it faces challenges due to the absence of a temporal
component'®. The crucial parameter L (i.e., MRF neighborhood) in MRI-MRF was found to
significantly influence its performance, introducing a trade-off between spatial resolution and
overall efficacy. When choosing the L parameter, the decision should be guided by the specific
requirements of the study, as it has a profound impact on the spatial resolution. While the
sNLM showed high spatial task-based activation statistics, its test-retest variability remained
average when compared to other spatial filtering techniques. Upon examining the spatial task-
based activation (figure 1 and 2), it appears that the elevated t-statistic values (table 1) may
result from the overestimation of task-based activation (see below, section: Temporal and
spatial differences). This further shows that increasing effect sizes do not always signify
favorable outcomes when employing certain filtering techniques, as they may also indicate

overfitting or other undesirable effects.
Spatiotemporal filtering techniques

While the 4D Gaussian, IhyprdD and dNLM filter techniques employ a similar sliding-window

approach with comparable spatial and temporal parameters, pronounced differences in the
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outcome parameters were found. The 4D Gaussian filter exhibited suboptimal performance in
all categories, as evidenced by its decreased uptake during task and rest, which could be
attributed to excessive temporal smoothing over the task effect. This highlights the importance
of preserving temporal features. In contrast, the dNLM filter, which emerged as a more robust
choice, employs a local search window and patch-based strategy'®. This allows for the
preservation of task-induced features while adapting to variations in temporal signals.
Application of such an adaptive smoothing kernel, as seen in NLM, is further supported by its
ability to maintain sharp edges, by not sampling voxels outside the brain or grey matter. The
Ihypr4D filter showcased improved results when compared to the 4D Gaussian filter, which

could be attributed to its iterative processing and inclusion of a composite image.
Implications of filter selection

While every study poses a unique hypothesis, it is important to note that each filter has its
strengths and weaknesses. The output parameters tested highlight their relevance in different
facets of fPET analyses. The emphasis on tSNR, which is important for single subject analysis
and comparing task conditions, highlights the superior performance of the Ihypr4D, MRI-MRF
L=14, sNLM, and dNLM filters. On the other hand, power calculations, which are usually
performed using task-based activations (i.e., peak or mean T-values), favored static and
dynamic NLM filters, while MRI-MRF also demonstrated decent improvements compared to
standard 3D Gaussian filtering. The assessment of ICC for comparing the reliability between
multiple measurements emphasized the strengths of hypr and dNLM filters. Albeit with the
caveat of the hypr filter not taking the temporal component into account, which can be crucial
when working with high-temporal resolution fPET data’. Furthermore, the observed variations
in sample size requirements across different filtering techniques underscore the impact of
methodological choices on statistical power. The 4D Gaussian demonstrated notably lower
power, necessitating larger sample sizes compared to the 3D Gaussian filter, which implies
increased resource allocation. On the other hand, the hypr, Ihypr4D, MRI-MRF 10 and 14 as
well as sNLM exhibited comparable sample size requirements. Notably, the dNLM stood out

with the lowest sample size demand, potentially decreasing the sample size needed for a
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study. Consequently, this reduction may play a vital role when disentangling more nuanced
task effects between different conditions. The selection of an appropriate filter, therefore,
becomes contingent on the specific metric of interest, underlining the need for a nuanced

approach based on the study's objectives.
Temporal and spatial differences

The temporal overview of various filtering techniques offers critical insights into their effects on
the fPET signal dynamics. The observed tendency of the MRI-MRF 14 and Gaussian 4D filters
to excessively smooth the signal in the temporal domain highlights potential drawbacks in
capturing both acute changes and the general task effect. Conversely, the Gaussian 3D, hypr,
and MRI-MRF 10 filters demonstrated a more balanced approach, reducing peaks while
maintaining signal stability. The sNLM filter demonstrated a notably smoother global time
course, suggesting a potential noise reduction without compromising the overall signal pattern
observed in the data. However, this excessive temporal smoothing, driven by the large
temporal window, appears to be influenced more by baseline uptake, which is considerably
higher, rather than the task-induced uptake changes. Additionally, these factors contribute to
an overestimation of task activation throughout the brain and have been demonstrated to
dampen the magnitude of task-induced effects. Consequently, this could result in a lack of
spatial specificity, despite producing high task-specific group statistic metrics. The dNLM filter
further underscored the ability to maintain the amplitude of task-induced changes, while
providing a time course with less noise. Moreover, the MRI-MRF 14's underestimation of both
global and task-active tracer uptake indicates that using a large neighborhood parameter (L =
14) is not optimal for fPET. The MRI-MRF 10 shows a more similar tracer uptake when
compared to other filtering techniques. Furthermore, both NLM techniques and MRI-MRF 14
show markedly improved T-values at peak level and across the entire task-active region in
comparison to other filter techniques. All in all, filtering techniques that overly smooth the time

course are not suitable in high temporal resolution fPET frameworks’.
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Processing time

A consideration of processing time provided valuable insights into the feasibility of
implementing different filters on typical hardware configurations. While 3D Gaussian
smoothing proved to be a quick and efficient option, the high processing times associated with
NLM and MRI-MREF filters or the requirement for dedicated processing servers underlined the
need for careful consideration in resource-constrained environments. The hypr, Ihypr4D, and
4D Gaussian smoothing fell within a moderate processing time range, making them more
practical for a broader range of applications and hardware options. Although all filters were
programmed in MATLAB, optimizing the code or utilizing other programming languages
capable of more efficient data processing could significantly decrease the runtime of complex

filtering techniques, potentially rendering them more suitable for general use.
Limitations

While the absence of a ground truth method can be seen as a limitation, we relied on the 3D
Gaussian filter as a reference, due to its widespread usage in multiple modalities. Furthermore,
the definition of task-active ROls using a conjunction of signals may introduce a potential
source of bias, but on the other hand makes it less dependent on fPET alone. The limited
sample size, although typical for PET studies, poses constraints, for the future assessment of
advanced techniques such as deep learning?®® *°, where larger datasets are often required. The
use of standard algorithm parameters from previous literature, while practical, may not capture
the full spectrum of parameter space, limiting the generalizability of the findings. However, an
exhaustive evaluation is limited by the computational expense of several filters. The structural
component was not included in filters other than MRI-MRF, representing another limitation.
This could potentially influence the overall performance of the filters, particularly in scenarios

where structural information is crucial.
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Conclusion

We aimed to provide an overview of the strengths and limitations of various filtering
approaches in the context of fPET studies. The choice of filtering technique should be tailored
to the specific parameter of interest in improving the hypothesis. The dNLM filter emerges as
a promising compromise, exhibiting the best overall performance across various metrics.
However, it may be less suitable for specific use cases such as when minimal processing
power is available or only a specific parameter is of interest. Following closely are the MRI-
MRF L = 10 and the hypr filters, each offering unique advantages. The 3D Gaussian filter
stands out for its efficient processing time and respectable performance, still making it a viable

option in scenarios where computational efficiency is paramount.
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Figure 1: Spatial overview of task-performance (Hard > baseline) after filtering was performed.
Group level statistical analysis was carried out for the hard task condition (n=40), corrected at
p < 0.05 FWE cluster level, after p < 0.001 uncorrected voxel level. White outlines indicate the

3 task-active regions. The color bar represents the mean T-values.
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Figure 2: Spatial overview of task-performance (Hard > baseline) after filtering was performed.
Group level statistical analysis was carried out for the hard task condition (n=40), corrected at
p < 0.05 FWE voxel level. White outlines indicate the 3 task-active regions. The color bar

represents the mean T-values.
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Figure 3: lllustration of the average task regressors’ time course for each filtering technique for a subset of participants whose task difficulty was
ordered as easy-hard-easy-hard (n = 10), extracted from each task-positive region of interest. Excluding the MRI-MRF 14 filter, each filter successfully
captured the task-induced increases in glucose metabolism. The MRI-MRF 14 (dark blue) and 4D Gaussian (red) filters exhibited a notable
detrimental impact on baseline uptake, evident in the flatter lines, pronounced to a much lesser degree in the MRI-MRF 10 (orange). Filters such as
hypr (pink), Ihypr4D (green), and dNLM (black) displayed uptake profiles most akin to the 3D Gaussian filter (yellow), with dNLM demonstrating the
least noise. Similarly, SNLM (light blue) exhibited a high signal-to-noise ratio akin to dNLM, albeit with attenuated task-specific effects. These regions

included the (a) frontal eye field (FEF), (b) intraparietal sulcus (IPS) and (c) the occipital cortex (OCC).
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Sample Size
Filter

ICC tSNR Peak T-value | Mean T-value | Calculation

3D Gaussian 0.57 11.20 10.75 4.51 13 [100%]
4D Gaussian 0.31 3.79 6.31 1.34| 33[253.8%]
hypr 0.58 11.16 10.45 4.441 16[123.1%]
lhyprdD 0.48 11.72 11.24 4.37| 16[123.1%]
MRI-MRF 10mm 0.55 11.30 11.86 4.80| 15[115.4%]
MRI-MRF 14mm 0.47 10.53 13.12 6.12| 17 [130.8%]
Static NLM 0.50 13.49 15.57 7.58| 15[115.4%)]
Dynamic NLM 0.61 11.98 14.18 6.22| 11[84.6%]

Table 1: Summarized overview of all examined parameters including Intraclass Correlation
Coefficients (ICC), temporal signal to noise ratio (tSNR), peak and mean T-values for each of
the filtering techniques. Furthermore, the estimated sample size per filter is also listed as
absolute numbers and relative to the 3D Gaussian filter in %. The values represent an average
of both difficulty levels and all three regions of interest encompassing the frontal eye field,
intraparietal sulcus and the occipital cortex. Separate values for each brain region and task

difficulty are available in supplementary tables 1-4.
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