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Abstract 

Functional Positron Emission Tomography (fPET) has advanced as an effective tool for 

investigating dynamic processes in glucose metabolism and neurotransmitter action, offering 

potential insights into brain function, disease progression, and treatment development. Despite 

significant methodological advances, extracting stimulation-specific information presents 

additional challenges in optimizing signal processing across both spatial and temporal 

domains, which are essential for obtaining clinically relevant insights. This study aims to 

provide a systematic evaluation of state-of-the-art filtering techniques for fPET imaging. 

Forty healthy participants underwent a single [18F]FDG PET/MR scan, engaging in the 

cognitive task Tetris®. Twenty thereof also underwent a second PET/MR session. Eight 

filtering techniques, including 3D and 4D Gaussian smoothing, highly constrained 

backprojection (hypr), iterative hypr (Ihypr4D), two MRI-Markov Random Field (MRI-MRF) 

filters (L=10 and 14 mm neighborhood) as well as static and dynamic Non-Local Means (sNLM 

and dNLM respectively) approaches, were applied to fPET data. Test-retest reliability 

(intraclass correlation coefficient), the identifiability of the task signal (temporal signal-to-noise 

ratio (tSNR)), spatial task-based activation (group level t-values), and sample size calculations 

were assessed.  

Results indicate distinct performance between filtering techniques. Compared to standard 3D 

Gaussian smoothing, dNLM, sNLM, MRI-MRF L=10 and Ihypr4D filters exhibited superior 

tSNR, while only dNLM and hypr showed improved test-retest reliability. Spatial task-based 

activation was enhanced by both NLM filters and MRI-MRF approaches. The dNLM enabled a 

minimum reduction of 15.4% in required sample size. 

The study systematically evaluated filtering techniques in fPET data processing, highlighting 

their strengths and limitations. The dNLM filter emerges as a promising choice, with improved 

performance across all metrics. However, filter selection should align with specific study 

objectives, considering factors like processing time and resource constraints.  
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Introduction 

Functional Positron Emission Tomography (fPET) has become a powerful tool, enabling 

researchers and clinicians to investigate the intricate details of biological processes at the 

molecular level in vivo1, 2. This capability to visualize and quantify task-driven dynamic changes 

in molecular activity has far-reaching implications for understanding brain function, disease 

progression, and monitoring treatment efficacy. Although research into fPET began almost a 

decade ago3, 4, rapid methodological advances in the field have led to improvements in 

temporal resolution. Commencing with more conventional PET framing times of 60 s, fPET 

quickly progressed to 30 s1, 2, 5 and more recently 16 s6. Notably, a recent study unveiled acute 

temporal changes in the fPET signal after task performance using 3 s frames, which was 

previously indiscernible at lower temporal resolutions7. This breakthrough was achieved, in 

part, through specialized filtering techniques designed to enhance the temporal signal to noise 

ratio (tSNR), while preserving the acute task-specific changes. Given the inherently low tSNR 

of PET and the recent interest and rapid advances in high temporal resolution imaging, the 

demand for enhancing both spatial and temporal resolution in fPET data is becoming 

increasingly imperative. However, the potential of high-resolution fPET is fundamentally limited 

by challenges related to spatial8 and temporal resolution9. The precise localization of molecular 

events and the ability to capture rapid changes over time are essential for extracting clinically 

accurate and meaningful information. 

Despite the considerable progress in the methodology behind fPET, achieving optimal spatial 

and/or temporal SNR (tSNR) remains an ongoing challenge. The need for improved resolution 

is emphasized by the complexities of biological systems, where rapid and subtle changes are 

often the key indicators of physiological and pathological processes. As such, the investigation 

and optimization of filtering techniques used to enhance spatial and temporal resolution in 

fPET is crucial for unlocking its full potential. 

Existing methods to enhance fPET data predominantly involve 3D filtering techniques. The 

most common and widely used approach is Gaussian smoothing, employed not only in fPET10, 
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11, but also in structural and functional magnetic resonance imaging (fMRI)12, 13. Other 3D 

filtering techniques exist, such as highly constrained backprojection (hypr)14, static non-local 

means15 (sNLM) and a more recent technique incorporating anatomical knowledge to enhance 

the image using a Bowsher-like prior16. Each of these techniques has its own advantages and 

limitations. Although, NLM filtering including the temporal domain has been explored in fMRI17 

and in PET for denoising low-count frames18 its rigorous evaluation in the context of fPET is 

missing. Other techniques like Gaussian smoothing and hypr have seen recent improvements 

by incorporating a temporal component19-21. 

While each filtering technique has been shown to improve spatial and/or tSNR when compared 

to a standard approach using either simulations or phantom data, a comprehensive 

assessment of the most well-known techniques on the same real-world dataset using multiple 

test metrics, has yet to be performed. The primary objective of this study was to assess the 

efficacy of various filtering techniques in optimizing fPET task imaging results, with a specific 

focus on practically relevant parameters such as test-retest reliability, temporal SNR, group 

level spatial effects and sample size estimation. By systematically evaluating and comparing 

different filtering techniques in a practical manner, we aim to identify the most promising 

approaches for enhancing the quality of fPET images. 
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Materials and Methods 

For this retrospective analysis, data from our previous test-retest study was used 22. Thus, full 

details about the study design and data acquisition can also found there and in related work 1, 

11. 

Participants 

Data from 40 healthy participants (20 male, mean age ± SD: 23.0 ± 3.4 years, all right-handed) 

were used, and for 20 participants, data for test-retest reliability analysis was available (10 

male, 23.1 ± 3.1 years). All participants underwent a routine medical investigation at the 

screening visit including electrocardiography, blood tests, neurological and physiological 

examination, and a urine drug test. Psychiatric disorders were ruled out with the Structural 

Clinical Interview DSM-IV conducted by an experienced psychiatrist. Female participants 

additionally underwent a pregnancy test at the screening visit and before each PET/MRI 

measurement. Participants had to fast for at least four hours prior to the scan, including the 

consumption of sweetened beverages and caffeine23. Exclusion criteria included current or 

previous neurological, somatic or psychiatric diseases, current breastfeeding or pregnancy, 

left-handedness, substance abuse, MRI contraindications, past participation in a study with 

ionizing radiation exposure and regular experience playing puzzle games i.e. Tetris® or similar. 

Due to radiation protection, participants above 100 kg were also excluded. After a detailed 

explanation of the study protocol, all participants gave written informed consent. Participants 

were insured and reimbursed for their participation. The study was approved by the Ethics 

Committee of the Medical University of Vienna (ethics number: 1479/2015) and all procedures 

were carried out in accordance with the Declaration of Helsinki. The study was registered at 

ClinicalTrials.gov (ID: NCT03485066). 

Cognitive task 

Participants were required to play an adapted version of Tetris®, including 2 levels of difficulty 

to induce various levels of cognitive load. Participants were required to perform all actions 
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using only their right hand. To familiarize themselves with the task and the controls, participants 

completed a 30 s training of each condition before each scanning session. A more detailed 

description of the task can be found in22, 24.  

Study design 

The experimental protocol aimed to assess cognitive tasks using a combination of continuous 

task performance and a conventional block design. The session started with the acquisition of 

a structural T1-weighted image. Thereafter, [18F]FDG was administered in a bolus + constant 

infusion protocol. The initial baseline was 8 minutes of rest. Participants then performed four 

task conditions of varying difficulty (6 min each, 2 easy, 2 hard in a pseudo-randomized order), 

followed by a 5-minute rest condition where subjects were instructed to look at a crosshair and 

let their thoughts wander. Additional data acquired for different purposes were not used in this 

study (ASL, BOLD and DTI sequences). The total scan time was 100 minutes, representing a 

typical duration for PET studies. See Hahn et al. for a more detailed description1. Data for test-

retest analysis were acquired 4.2 ± 0.7 weeks after the first scan. 

Data acquisition and blood sampling  

The radiotracer [18F]FDG was synthesized each measurement day at the Department of 

Biomedical Imaging and Image guided Therapy, Division of Nuclear Medicine, Medical 

University of Vienna. Simultaneous to fPET start, [18F]FDG was administered via a cubital vein 

as a 1 minute bolus followed by constant infusion for 51 minutes with an infusion pump 

(Syramed mSP6000, Arcomed, Switzerland, dosage: 5.1 MBq/kg, bolus speed: 816 ml/h, 

infusion speed: 42.8 ml/h, bolus-infusion ratio of activity: 20:80%), which was placed in an MR-

shield. fPET data was acquired in list-mode using a Siemens 3T mMR scanner (Erlangen, 

Germany), enabling the retrospective definition of frame lengths during reconstruction. 

A T1-weighted structural image was acquired with a magnetization prepared rapid gradient 

echo (MPRAGE) sequence prior to radiotracer administration (TE/TR=4.21/2200 ms, voxel 

size=1x1x 1.1 mm, matrix size=240x256, slices=160, flip angle=9°, TI=900 ms, 7.72 min). The 
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image was used to rule out severe structural abnormalities, for attenuation correction25 and 

spatial normalization to MNI space. 

Prior to each PET/MRI measurement, the individual fasting blood glucose level was measured 

as an average of a triplicate. Arterial blood samples were drawn from a radial artery throughout 

the radiotracer administration (time points: 3, 4, 5, 14, 25, 36 and 47 min after infusion start) 

and were timed not to interfere with task performance and the MRI acquisition. Blood samples 

were processed as previously described 11. In short, whole blood activity and plasma activity 

after centrifugation were measured in a gamma-counter (Wizard2, 3”; Perkin Elmer, USA). The 

whole blood curve was linearly interpolated and resampled to match the time points of the 

reconstructed fPET frames. The plasma to whole-blood ratio was averaged across time points. 

The whole blood curve was then multiplied with the mean plasma-to-whole-blood ratio to obtain 

an arterial input function for absolute quantification.  

Preprocessing and quantification  

All fPET data was reconstructed using an Ordinary Poisson – Ordered Subset Expectation 

Maximization Algorithm (OP-OSEM), set at 3 iterations and 21 subsets. The output image 

contained a matrix size of 344 x 344 with 127 slices and a voxel size of 2.09 x 2.09 x 2.03 mm. 

The reconstructed data was binned into 104 frames of 30s each. Standard corrections, 

including dead time, decay, and scatter, were applied, and attenuation correction was 

performed using a pseudo-CT approach based on the structural MRI acquired during the initial 

measurement25. 

Preprocessing and quantification followed established procedures from previous studies1, 4, 5. 

Specifically, SPM12 (https://www.fil.ion.ucl.ac.uk/spm) was utilized for head movement 

correction (quality = best, registered to mean image), spatial normalization to MNI space using 

the structural MRI. The mean PET image was coregistered to the structural MRI, and the 

resulting transformations were applied to the dynamic fPET data. Once normalized, the data 

was smoothed using different techniques, see filter assessment below. The smoothed data 

was subsequently masked using a grey matter mask (SPM12 tissue prior, thresholded at 0.1), 
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and a low pass filter with a cutoff frequency of half the task duration was applied to the time 

course of each voxel. 

A general linear model (GLM) was employed to distinguish between task-specific and baseline 

metabolism, using four regressors: baseline, easy task block, hard task block and the first 

principal component of the six movement regressors obtained during movement correction4. 

The Gjedde-Patlak plot was employed to derive the influx constant (Ki), with linearity assumed 

after 15 min after tracer application. This resulted in three separate Ki maps for rest, easy, and 

hard. Finally, the cerebral metabolic rate of glucose (CMRGlu) was quantified using the lumped 

constant of 0.8926. For a more detailed description please see22. 

Filter assessment 

In this work we aimed to assess the most recognized PET filtering techniques and were 

implemented in MATLAB unless otherwise specified. These filters include:  

3D Gaussian filter: Is the most commonly used spatial smoothing technique in image 

processing. It operates by convolving the image with a three-dimensional Gaussian kernel. 

The convolution process assigns a weighted average to each voxel in the image, with the 

weights determined by the Gaussian distribution. This smoothing helps reduce noise and 

emphasize larger-scale features in the data27. Here we used the SPM function with a 

smoothing kernel with a full width half maximum (FWHM) of 8 mm. 

4D Gaussian filter: which extends on the concept of the 3D Gaussian filter to four dimensions, 

incorporating time as an additional dimension. This filter is particularly relevant in the context 

of dynamic imaging data, such as functional imaging over time. A spatial kernel of 8 mm FWHM 

and a temporal window of 5 frames (2 before and 2 after selected frame; 2.5 min) were used. 

Hypr filter: is an advanced filtering technique designed to improve spatial resolution in medical 

imaging. It operates by incorporating constraints into the back-projection process during image 

reconstruction or preprocessing. These constraints, derived from both the acquired data and 

prior knowledge, guide the reconstruction algorithm to produce images with enhanced spatial 
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details. Hypr is particularly useful in scenarios where high spatial resolution is crucial, such as 

in the case of small anatomical structures14. The composite (i.e., temporally summed) image 

was smoothed using an 8 mm FWHM kernel.  

Iterative 4D hypr (Ihypr4D) filter: represents an extension of the hypr filter combined with a 

4D Gaussian filter, which incorporates both spatial and temporal constraints, while the iterative 

step reduces errors during the filtering process through multiple iterations21. Parameters were 

selected from19. In summary, the segmentation of homogenous regions from the mean fPET 

image was performed using k-means clustering where k was set to 30 for feature extraction 

prior to running ihyper4D. The number of iterations were set to 4 and the smoothing kernel 

was set using the same parameters as the 4D Gaussian smoothing.   

MRI-Markov Random Field (MRI-MRF): The MRI-MRF prior, a modified Bowsher-like 

technique, enhances fPET image quality by incorporating anatomical information from 

coregistered MRI. This technique utilizes a continuous weighting scheme, patch-based 

similarity, and smoothly-decaying function which contribute to improved identification of brain 

activations16. Here we tested two different MRF neighborhood width parameters L = 10 mm 

and 14 mm, as used in16. Where the neighborhood refers to a spatial arrangement of nearby 

voxels around a central voxel.  

sNLM Filter: is an extension of the traditional non-local means filter, adapted for time-series 

imaging data. The non-local means approach involves averaging pixel values based on 

similarity patterns in the image. In the sNLM, this concept is extended to capture temporal 

correlations over the entire time course in addition to spatial similarities. By considering both 

spatial and temporal information, the sNLM filter aims to preserve fine details in the data while 

effectively reducing noise in dynamic imaging sequences15. The following parameters were 

used: a search window of D = 11 voxels and a patch size of 3 x 3 x 3 voxels18, 28. A post 

smoothing 5 mm FWHM was used for better comparison to the other techniques, as this yields 

a total filter kernel of approximately 8 mm FWHM. 
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dNLM filter: is a further extension of the sNLM by capturing only correlations over a short 

duration, similar to a sliding window approach. The dNLM filter aims to preserve acute (e.g., 

task-induced) signal changes while reducing noise7. To incorporate a temporal parameter we 

used the standard setting as for the sNLM filter but added a 4th dimension to the patch size of 

5 frames or 2.5 min. Here a 5 mm FWHM post smoothing was also used. 

Statistical analysis  

A rigorous analysis of the acquired data was conducted employing a multifaceted approach to 

ensure comprehensive insights of each filter’s properties of both spatial and temporal 

dimensions. For all tests three regions of interest (ROIs) were selected from previous analyses 

on the same dataset, which represent a robust task-activation assessed via a conjunction of 

three imaging modalities1. These regions comprise the frontal eye field (FEF), intraparietal 

sulcus (IPS) and the occipital cortex (OCC). 

The Intraclass Correlation Coefficient (ICC) was utilized to assess the reliability and 

consistency of the observed effects between two repeated fPET measurements. Additionally, 

the individual tSNR was computed to gauge the robustness of the signal over time. This 

provides information about the ability to identify stimulation-induced changes in the presence 

of noise and, thus, an insight into the temporal information captured by the filtering techniques. 

At the group level, peak and mean task-specific t-values were compared to quantify the 

strength of neural responses and model fit after each filter technique. T-tests were corrected 

for multiple testing using Gaussian random field theory as implemented in SPM12 and the 

threshold for significance was set at p < 0.05 family-wise error (FWE)-corrected at the cluster-

level following p < 0.001 uncorrected at the voxel-level and separately at the peak FWE-

corrected p < 0.05. A power analysis was conducted to determine the requisite sample size 

for detecting a significant effect in a prospectively planned study (one sample case, α = 0.05, 

Power = 0.95, two-tailed). The effect size for each filtering approach was assessed by utilizing 

the mean and standard deviation of task-induced CMRGlu clusters, while accounting for 

multiple comparisons, i.e., number of voxels, via the Bonferroni adjustment method (p < 2.585 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2024. ; https://doi.org/10.1101/2024.04.25.591053doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.25.591053
http://creativecommons.org/licenses/by/4.0/


  

* 10-7). CMRGlu clusters were determined using each filter’s quantified fPET maps where an 

overlap with the aforementioned three specified ROIs occurred. The 3D Gaussian filter was 

used as a reference for filter comparisons, since it represents the most commonly employed 

approach in functional neuroimaging. 
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Results 

An overview of each filter’s performance for each test can be found in table 1. A more detailed 

overview of each filter’s regional performance can be found in table S1-4. Group activation 

maps at cluster level correction (Figure 1) and voxel level correction (Figure 2) for each filter 

were created. While both Gaussian filtering techniques exhibit very low runtime on our data 

(mean runtime: ~30 s), the MRI-MRF (mean runtime: 14 – 16.5 h) and NLM (mean runtime: 

7.9 h) filters require substantially longer processing times. The NLM filters were processed on 

a single core for fair comparison, although parallelization is available, halving the runtime per 

core. The hypr and Ihypr4D filter displayed moderate mean runtimes of 4 and 5 min per 

dataset, respectively. 

Test-retest reliability 

When comparing ICC values of the 3D Gaussian filter to those obtained with other filters, only 

the dNLM and hypr filter showed improvements to task-based test-retest reliability. The 4D 

Gaussian filter, MRI-MRF L = 14 and Ihypr4D displayed the greatest decrease in ICC 

compared to the 3D Gaussian filter (table 1, S1). The other filter techniques (MRI-MRF L=10, 

sNLM) performed similarly well.  

Temporal signal-to-noise ratio 

All filter approaches, excluding the 4D Gaussian smoothing, and MRI-MRF L = 14, displayed 

similar or improved tSNR values when compared to the 3D Gaussian smoothing (table 1, S2), 

whereas, the greatest improvements were seen in both NLM filtering techniques.  

Spatial task-based activation 

Similar to the individual tSNR, most filter techniques displayed an improvement in group-level 

peak and mean t-values extracted from the task-active ROIs. The 4D Gaussian showed 

substantially decreased performance compared to the 3D Gaussian filter, whereas, the hypr 

indicated similar t-values. Increased mean and peak t-values were found for both MRI-MRF 
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and highest values were observed for both NLM filtering techniques (table 1, S3-4). Task-

based spatial activation maps for each filtering technique can be found in figure 1 and 2. 

Temporal differences  

The temporal dynamics of each filtering technique were scrutinized through the analysis of the 

task-specific fPET signal, as illustrated in figure 3, supplementary figures 1 and 2. Notably, the 

MRI-MRF 14 and Gaussian 4D filters exhibited a tendency to overly smooth the signal, which 

is in line with the lower tSNR for these two filters (table 1). The MRI-MRF 14, while capturing 

more acute changes in the PET signal, tended to excessively smooth out the overall task trend 

(Figure 3). Conversely, the Gaussian 4D filter demonstrated an opposite effect, preserving the 

general task effect but smoothing the acute changes excessively (figure 3). In contrast, the 

hypr, and MRI-MRF 10 filters demonstrated a better temporal alignment with the Gaussian 3D 

signal, showing reduced peaks while maintaining signal stability, see figure 3. The sNLM filter 

exhibited a notably smoother time course compared to the hypr, and MRI-MRF 10 filters, yet 

still followed the general time course of the Gaussian 3D data. The dNLM filter, akin to the 

sNLM, presented a smoother time course while better preserving the amplitude of task-induced 

changes. Interestingly, the MRI-MRF 14 was observed to underestimate tracer uptake also for 

the baseline condition when compared to other filtering techniques, as depicted in 

supplementary figure 1. 

Sample size calculation 

The power analysis revealed varying sample size requirements across filter techniques, with 

the 3D Gaussian filter necessitating 13 participants to detect a meaningful effect. In 

comparison, hypr and Ihypr4D both required 16 participants, representing 123.1% of the 

sample size needed for 3D Gaussian. Similarly, MRI-MRF 10, MRI-MRF 14 and sNLM required 

15, 17, and 15 participants, respectively, reflecting 115.4%, 130.8%, and 115.4% of the 

reference sample size. The 4D Gaussian required 33 participants (253.8%), while the dNLM 

exhibited the lowest requirement with 11 participants or 84.6% of the 3D Gaussian sample 

size, see table 1 for an overview. 
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Discussion 

The aim of this paper was to systematically evaluate various filtering techniques in the context 

of stimulation-induced changes in glucose metabolism using fPET, with a focus on practically 

relevant parameters such as test-retest variability, tSNR, and spatial task-based activation. 

The results present a nuanced understanding of the strengths and weaknesses of each filtering 

method, providing valuable information to choose the most suitable technique. 

Spatial filtering techniques 

The comparison of 3D Gaussian, hypr, sNLM and MRI-MRF 10 filters revealed similar 

performance across all metrics. These similarities, coupled with the additional complexity and 

processing time of the sNLM and MRI-MRF filter, emphasize the importance of considering 

performance and computational efficiency. While the MRI-MRF filter technique shows decent 

task-induced activation at the group level, it faces challenges due to the absence of a temporal 

component16. The crucial parameter L (i.e., MRF neighborhood) in MRI-MRF was found to 

significantly influence its performance, introducing a trade-off between spatial resolution and 

overall efficacy. When choosing the L parameter, the decision should be guided by the specific 

requirements of the study, as it has a profound impact on the spatial resolution. While the 

sNLM showed high spatial task-based activation statistics, its test-retest variability remained 

average when compared to other spatial filtering techniques. Upon examining the spatial task-

based activation (figure 1 and 2), it appears that the elevated t-statistic values (table 1) may 

result from the overestimation of task-based activation (see below, section: Temporal and 

spatial differences). This further shows that increasing effect sizes do not always signify 

favorable outcomes when employing certain filtering techniques, as they may also indicate 

overfitting or other undesirable effects. 

Spatiotemporal filtering techniques  

While the 4D Gaussian, Ihypr4D and dNLM filter techniques employ a similar sliding-window 

approach with comparable spatial and temporal parameters, pronounced differences in the 
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outcome parameters were found. The 4D Gaussian filter exhibited suboptimal performance in 

all categories, as evidenced by its decreased uptake during task and rest, which could be 

attributed to excessive temporal smoothing over the task effect. This highlights the importance 

of preserving temporal features. In contrast, the dNLM filter, which emerged as a more robust 

choice, employs a local search window and patch-based strategy18. This allows for the 

preservation of task-induced features while adapting to variations in temporal signals. 

Application of such an adaptive smoothing kernel, as seen in NLM, is further supported by its 

ability to maintain sharp edges, by not sampling voxels outside the brain or grey matter. The 

Ihypr4D filter showcased improved results when compared to the 4D Gaussian filter, which 

could be attributed to its iterative processing and inclusion of a composite image.  

Implications of filter selection 

While every study poses a unique hypothesis, it is important to note that each filter has its 

strengths and weaknesses. The output parameters tested highlight their relevance in different 

facets of fPET analyses. The emphasis on tSNR, which is important for single subject analysis 

and comparing task conditions, highlights the superior performance of the Ihypr4D, MRI-MRF 

L=14, sNLM, and dNLM filters. On the other hand, power calculations, which are usually 

performed using task-based activations (i.e., peak or mean T-values), favored static and 

dynamic NLM filters, while MRI-MRF also demonstrated decent improvements compared to 

standard 3D Gaussian filtering. The assessment of ICC for comparing the reliability between 

multiple measurements emphasized the strengths of hypr and dNLM filters. Albeit with the 

caveat of the hypr filter not taking the temporal component into account, which can be crucial 

when working with high-temporal resolution fPET data7. Furthermore, the observed variations 

in sample size requirements across different filtering techniques underscore the impact of 

methodological choices on statistical power. The 4D Gaussian demonstrated notably lower 

power, necessitating larger sample sizes compared to the 3D Gaussian filter, which implies 

increased resource allocation. On the other hand, the hypr, Ihypr4D, MRI-MRF 10 and 14 as 

well as sNLM exhibited comparable sample size requirements. Notably, the dNLM stood out 

with the lowest sample size demand, potentially decreasing the sample size needed for a 
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study. Consequently, this reduction may play a vital role when disentangling more nuanced 

task effects between different conditions. The selection of an appropriate filter, therefore, 

becomes contingent on the specific metric of interest, underlining the need for a nuanced 

approach based on the study's objectives. 

Temporal and spatial differences 

The temporal overview of various filtering techniques offers critical insights into their effects on 

the fPET signal dynamics. The observed tendency of the MRI-MRF 14 and Gaussian 4D filters 

to excessively smooth the signal in the temporal domain highlights potential drawbacks in 

capturing both acute changes and the general task effect. Conversely, the Gaussian 3D, hypr, 

and MRI-MRF 10 filters demonstrated a more balanced approach, reducing peaks while 

maintaining signal stability. The sNLM filter demonstrated a notably smoother global time 

course, suggesting a potential noise reduction without compromising the overall signal pattern 

observed in the data. However, this excessive temporal smoothing, driven by the large 

temporal window, appears to be influenced more by baseline uptake, which is considerably 

higher, rather than the task-induced uptake changes. Additionally, these factors contribute to 

an overestimation of task activation throughout the brain and have been demonstrated to 

dampen the magnitude of task-induced effects. Consequently, this could result in a lack of 

spatial specificity, despite producing high task-specific group statistic metrics. The dNLM filter 

further underscored the ability to maintain the amplitude of task-induced changes, while 

providing a time course with less noise. Moreover, the MRI-MRF 14's underestimation of both 

global and task-active tracer uptake indicates that using a large neighborhood parameter (L = 

14) is not optimal for fPET. The MRI-MRF 10 shows a more similar tracer uptake when 

compared to other filtering techniques. Furthermore, both NLM techniques and MRI-MRF 14 

show markedly improved T-values at peak level and across the entire task-active region in 

comparison to other filter techniques. All in all, filtering techniques that overly smooth the time 

course are not suitable in high temporal resolution fPET frameworks7. 
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Processing time 

A consideration of processing time provided valuable insights into the feasibility of 

implementing different filters on typical hardware configurations. While 3D Gaussian 

smoothing proved to be a quick and efficient option, the high processing times associated with 

NLM and MRI-MRF filters or the requirement for dedicated processing servers underlined the 

need for careful consideration in resource-constrained environments. The hypr, Ihypr4D, and 

4D Gaussian smoothing fell within a moderate processing time range, making them more 

practical for a broader range of applications and hardware options. Although all filters were 

programmed in MATLAB, optimizing the code or utilizing other programming languages 

capable of more efficient data processing could significantly decrease the runtime of complex 

filtering techniques, potentially rendering them more suitable for general use.  

Limitations 

While the absence of a ground truth method can be seen as a limitation, we relied on the 3D 

Gaussian filter as a reference, due to its widespread usage in multiple modalities. Furthermore, 

the definition of task-active ROIs using a conjunction of signals may introduce a potential 

source of bias, but on the other hand makes it less dependent on fPET alone. The limited 

sample size, although typical for PET studies, poses constraints, for the future assessment of 

advanced techniques such as deep learning29, 30, where larger datasets are often required. The 

use of standard algorithm parameters from previous literature, while practical, may not capture 

the full spectrum of parameter space, limiting the generalizability of the findings. However, an 

exhaustive evaluation is limited by the computational expense of several filters. The structural 

component was not included in filters other than MRI-MRF, representing another limitation. 

This could potentially influence the overall performance of the filters, particularly in scenarios 

where structural information is crucial. 
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Conclusion 

We aimed to provide an overview of the strengths and limitations of various filtering 

approaches in the context of fPET studies. The choice of filtering technique should be tailored 

to the specific parameter of interest in improving the hypothesis. The dNLM filter emerges as 

a promising compromise, exhibiting the best overall performance across various metrics. 

However, it may be less suitable for specific use cases such as when minimal processing 

power is available or only a specific parameter is of interest. Following closely are the MRI-

MRF L = 10 and the hypr filters, each offering unique advantages. The 3D Gaussian filter 

stands out for its efficient processing time and respectable performance, still making it a viable 

option in scenarios where computational efficiency is paramount.   
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Figure 1: Spatial overview of task-performance (Hard > baseline) after filtering was performed. 

Group level statistical analysis was carried out for the hard task condition (n=40), corrected at 

p < 0.05 FWE cluster level, after p < 0.001 uncorrected voxel level. White outlines indicate the 

3 task-active regions. The color bar represents the mean T-values. 
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Figure 2: Spatial overview of task-performance (Hard > baseline) after filtering was performed. 

Group level statistical analysis was carried out for the hard task condition (n=40), corrected at 

p < 0.05 FWE voxel level. White outlines indicate the 3 task-active regions. The color bar 

represents the mean T-values. 
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Figure 3: Illustration of the average task regressors’ time course for each filtering technique for a subset of participants whose task difficulty was 

ordered as easy-hard-easy-hard (n = 10), extracted from each task-positive region of interest. Excluding the MRI-MRF 14 filter, each filter successfully 

captured the task-induced increases in glucose metabolism. The MRI-MRF 14 (dark blue) and 4D Gaussian (red) filters exhibited a notable 

detrimental impact on baseline uptake, evident in the flatter lines, pronounced to a much lesser degree in the MRI-MRF 10 (orange). Filters such as 

hypr (pink), Ihypr4D (green), and dNLM (black) displayed uptake profiles most akin to the 3D Gaussian filter (yellow), with dNLM demonstrating the 

least noise. Similarly, sNLM (light blue) exhibited a high signal-to-noise ratio akin to dNLM, albeit with attenuated task-specific effects. These regions 

included the (a) frontal eye field (FEF), (b) intraparietal sulcus (IPS) and (c) the occipital cortex (OCC).   
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Filter 
ICC tSNR Peak T-value Mean T-value 

Sample Size 

Calculation 

3D Gaussian   0.57 11.20 10.75 4.51 13 [100%] 

4D Gaussian  0.31 3.79 6.31 1.34 33 [253.8%] 

hypr 0.58 11.16 10.45 4.44 16 [123.1%] 

Ihypr4D 0.48 11.72 11.24 4.37 16 [123.1%] 

MRI-MRF 10mm 0.55 11.30 11.86 4.80 15 [115.4%] 

MRI-MRF 14mm 0.47 10.53 13.12 6.12 17 [130.8%] 

Static NLM 0.50 13.49 15.57 7.58 15 [115.4%] 

Dynamic NLM  0.61 11.98 14.18 6.22 11 [84.6%] 

Table 1: Summarized overview of all examined parameters including Intraclass Correlation 

Coefficients (ICC), temporal signal to noise ratio (tSNR), peak and mean T-values for each of 

the filtering techniques. Furthermore, the estimated sample size per filter is also listed as 

absolute numbers and relative to the 3D Gaussian filter in %. The values represent an average 

of both difficulty levels and all three regions of interest encompassing the frontal eye field, 

intraparietal sulcus and the occipital cortex. Separate values for each brain region and task 

difficulty are available in supplementary tables 1-4. 
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