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Abstract 21 

It is projected that 10 million deaths could be attributed to drug-resistant bacteria infections in 22 

2050. To address this concern, identifying new-generation antibiotics is an effective way. 23 

Antimicrobial peptides (AMPs), a class of innate immune effectors, have received significant 24 

attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and 25 

fungi.  Recent years have witnessed widespread applications of computational methods 26 

especially machine learning (ML) and deep learning (DL) for discovering AMPs. However, 27 

existing methods only use features including compositional, physiochemical, and structural 28 

properties of peptides, which cannot fully capture sequence information from AMPs. Here, we 29 

present SAMP, an ensemble random projection (RP) based computational model that leverages a 30 

new type of features called Proportionalized Split Amino Acid Composition (PSAAC) in 31 

addition to conventional sequence-based features for AMP prediction. With this new feature set, 32 

SAMP captures the residue patterns like sorting signals at around both the N-terminus and the C-33 

terminus, while also retaining the sequence order information from the middle peptide fragments. 34 

Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP 35 

consistently outperforms existing state-of-the-art methods, such as iAMPpred and AMPScanner 36 

V2, in terms of accuracy, MCC, G-measure and F1-score. In addition, by leveraging an ensemble 37 

RP architecture, SAMP is scalable to processing large-scale AMP identification with further 38 

performance improvement, compared to those models without RP.  To facilitate the use of 39 

SAMP, we have developed a Python package freely available at https://github.com/wan-40 

mlab/SAMP. 41 

 42 
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Keywords: Antimicrobial peptides; Proportionalized split amino acid composition; Random 43 

projection; Ensemble learning; SAMP.  44 

 45 

Introduction 46 

Between the period of 1940s and 1960s, one of the greatest breakthroughs was the 47 

development of antibiotics [1], a remarkable medication that has saved thousands of lives by 48 

defeating various infectious diseases [2–6]. However, the long-term and rapid increase of 49 

antibiotic use for disease treatment in large populations has resulted in the emergence of drug 50 

resistance in pathogens [7–11]. The Centers for Disease Control and Prevention (CDC) has 51 

reported that drug-resistant bacteria caused around 2.8 million infections and more than 35000 52 

deaths in the United States [12]. According to the World Health Organization (WHO), 53 

approximately 700,000 patients worldwide die from drug-resistant bacterial infections every year, 54 

and the total number of deaths is predicted to increase to 10 million by 2050 [13], making it an 55 

urgent challenge in the healthcare system [14,15]. Therefore, expanding a large range of new 56 

antimicrobial agents to fight against pathogens is essential to relieve the huge burden of global 57 

health [16]. 58 

Antimicrobial peptides (AMPs) are amino-acid-based oligomers or polymers, naturally 59 

widespread in all forms of life, such as bacteria, animals, and plants [17–19]. They have played 60 

an important role in protecting organisms from infectious diseases for millions of years, serving 61 

as the first line of defense against pathogens through interrupting pathogen-associated molecular 62 

processes in the innate immune system [20–24]. It has been suggested as excellent candidates for 63 

developing a new generation of antibiotics due to their special ability to kill multi-resistant 64 

microorganisms, including bacteria, fungi, parasites, and viruses [25–29]. In addition, substantial 65 
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evidence indicates that AMPs can recruit immature phagocytic and dendritic cells, leading to the 66 

destruction of cancer cells and healing wounds in certain areas [24,30]. Cationic and 67 

hydrophobic residues are two main characteristics of linear AMPs, enabling sequences to fold 68 

into amphipathic secondary structures which tend to disrupt negatively charged membranes of 69 

pathogens while sparing the healthy eukaryotic cells. Moreover, the enrichment of cholesterol 70 

and neutral phospholipids in membranes also makes eukaryotic cells much less susceptible to 71 

AMPs [31,32]. The main mechanism of AMPs’ action is to form pores and micellization in cell 72 

membranes or directly cause osmotic shock when present in high concentration [33,34]. 73 

Additionally, binding to specific cytosolic macromolecules is another way of AMPs to inhibit the 74 

synthesis process of the cell wall or ribosomes [35,36]. Hence, AMPs can interact with many 75 

different components of bacteria for multiple hits, while traditional antibiotics are typically 76 

designed to target one specific enzyme. The broad interactions of AMPs make it difficult for 77 

bacteria to develop resistance in a short time [37–39].   78 

Natural AMPs discovery typically relies on traditional time-consuming and labor-intensive 79 

wet experiments, resulting in low efficiency. Therefore, to find natural AMPs in a more efficient 80 

and convenient way, it is necessary to develop in-silico predictive models to identify possible 81 

AMP candidates prior to synthesis and wet lab testing. In the past decade, numerous 82 

computational models based on various algorithms, such as support vector machine (SVM) [40], 83 

random forest (RF) [41] and logistic regression (LR) [42], have been introduced to identify 84 

peptides [43]. Most recently, Huang et al. [44] constructed a sequential model ensemble pipeline 85 

(SMEP) consisting of multiple steps, including empirical selection, classification, ranking, 86 

regression, and wet-lab validation. Algorithms, like boosting method (XGBoost) [45], RF as well 87 

as deep learning such as the convolutional neural network (CNN) [46] and the long short-term 88 
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memory (LSTM) [47], were applied in different modules. With SMEP, a series of potent AMPs 89 

from the entire search space of peptide libraries were identified accurately within a short period 90 

of time. In another study [48], multiple natural language processing neural network models, 91 

including LSTM layer, Attention layer and Encoder Representations from Transformers (BERT) 92 

[49], were combined to form a unified pipeline which has been used to mine functional peptides 93 

from metagenome data for in-depth investigations. Based on the algorithms applied in the 94 

prediction models, they can be divided into two main categories. Models in the first category are 95 

based on the deep learning (DL) architectures, like AMPScanner V2 [50] and Deep-AmPEP30 96 

[51]. AMPScanner V2 applied deep neural networks (DNN) [52] with convolutional, maximal 97 

pooling and LSTM layers for AMPs prediction. Deep-AmPEP30 based on convolutional neural 98 

network (CNN) with two convolutional layers, two maximum pooling layers, and one fully 99 

connected hidden layer to identify specifically short length AMPs which contain fewer than 20 100 

amino acids. As for the second category of models, conventional machine learning (ML) 101 

algorithms are generally exploited, such as iAMPpred [53] which used SVM to classify positive 102 

or negative peptides.  Previous studies [54] indicated that DL models did not always outperform 103 

conventional ML models due to the modeling complexities and/or modeling overfitting during 104 

the process of DL model construction based on training limited AMPs. Therefore, DL models are 105 

not necessarily the most suitable approach for AMPs identification [54]. Nonetheless, no matter 106 

the ML or DL based methods, existing computational methods rely primarily on features derived 107 

from the composition, physicochemical and structural features of the peptide sequence. These 108 

features may not be sufficient to fully express the rich information contained in antimicrobial 109 

peptides and there is still considerable room for enhancing accuracy of AMP prediction. 110 
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To address the aforementioned concerns, we propose herein an ensemble random projection 111 

(RP) [55] based computational model named SAMP, for which we develop a new type of 112 

features called proportionalized split amino acid composition (PSAAC) [56] in addition to 113 

conventional sequence-based features to improve the prediction performance of AMP 114 

identification. Residue patterns such as sorting signals at around both the N-terminus and the C-115 

terminus could be captured by SAMP by using this enhanced feature set, while also remaining 116 

the sequence order information extracted from the middle region fragments. Meanwhile, we 117 

demonstrate that SAMP outperforms existing state-of-the-art methods in terms of accuracy, 118 

Matthews correlation coefficient (MCC), the geometric mean of recall and precision (G-measure) 119 

and F1-score, including iAMPpred and AMPScanner V2, when benchmarking on both balanced 120 

and imbalanced datasets from different natural peptide groups, including humans, bacteria, 121 

amphibians and plants. Furthermore, we integrate an ensemble RP architecture into SAMP to 122 

strengthen the ability of handling large-scale AMP screening while achieving enhanced 123 

performance compared to those without RP. We believe SAMP will play a significant role in 124 

AMP identification, complementary to existing AMP identification approaches.  125 

 126 

Materials and Methods 127 

Datasets 128 

The positive data set for natural AMPs was accumulated in the antimicrobial peptide 129 

database in the past 20 years [57,58]. The negative data set was extracted from UniProt by 130 

excluding peptides/proteins annotated with key words such as “antimicrobial”, “antibacterial”, 131 

“antiviral”, and “antifungal” [59]. To benchmark the performance of SAMP and other state-of-132 

the-art approaches, we selected two sets of training data reported in the literature. As many 133 
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existing approaches only provide web servers which have already been trained in different 134 

training data, to make a fair comparison, we will compare SAMP with those approaches based 135 

on the same training dataset based on which the corresponding web servers were trained. 136 

Specifically, the first set consists of 984 positive and 984 negative antimicrobial peptide 137 

sequences obtained from [53]. This set is used to train our model and compare our proposed 138 

model SAMP with iAMPpred (Fig. 1A). The second set consists of 2021 positive and 2021 139 

negative antimicrobial peptide sequences from [50], as shown in Fig. 1B. This set is used to train 140 

our model and compare SAMP with AMPScanner V2 [50].  141 

In addition, independent testing data were collected from the dbAMP database [60], 142 

containing AMP and non-AMP sequences (Fig. 1C). Specifically, we chose the AMP and non-143 

AMP datasets across four different species: plants, bacteria, amphibians, and humans, which 144 

were originally collected in the APD [57,58] database. Given the varying peptide sequence 145 

length distributions of our AMP datasets (Figs. 1A-C), we filtered out sequences shorter than 10 146 

amino acids and longer than 500 amino acids. The sequences containing non-standard amino 147 

acids were also removed. In the dbAMP benchmark dataset (Fig. 1D-E), in total, there are 1089 148 

AMPs and 9732 non-AMPs. As found in the APD database, amphibians predominantly 149 

constitute the natural AMP sequences, while bacteria form the majority in the non-AMP 150 

sequences. Specifically, for the AMPs (Fig. 1D) of the dbAMP dataset, around half are 151 

amphibian, one third belong to plant, and one fifth are bacteria. On the contrary, in the non-AMP 152 

cases (Fig. 1D), amphibian sequences account for only 10%, and half of them are bacteria. 153 

Interestingly, human sequences constitute less than 10% in both AMPs and non-AMPs (Figs. 154 

1D-E). While for the amino acid sequence length distribution (Figs. 1F-I), most AMPs for all 155 

species are with shorter amino acid sequences compared to non-AMPs, suggesting significantly 156 
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different sequence distributions between AMPs and non-AMPs. However, it is unlikely to use 157 

the length of peptide sequences to determine whether a peptide is an AMP or non-AMP, given 158 

that a significant portion of AMPs are also overlapped with non-AMPs, especially for bacteria, 159 

human, and plant (Figs. 1F-I). 160 

 161 

Fig. 1 Peptide sequence distribution of AMPs and non-AMPs in benchmarking datasets. 162 

(A-C) The peptide sequence distribution of AMPs and non-AMPs collected from the iAMPpred 163 

dataset (A), the AMPScanner V2 dataset (B) and the dbAMP dataset (C), respectively. (D-E) 164 

Species breakdowns of AMPs (D) and non-AMPs (E) in the dbAMP dataset. (F-I) Species-165 

specific peptide sequence distribution of AMPs and non-AMPs in the dbAMP dataset, including 166 

amphibian (F), bacteria (G), human (H) and plant (I). 167 

 168 

Feature extraction           169 

Conventional features 170 

First, we embedded the string of peptide sequences into categories of numeric feature 171 

vectors similar to those proposed in [53], which includes amino acid sequence compositional 172 

features and physio-chemical (PHYC) features. The compositional features include amino acid 173 

composition (AAC), pseudo amino acid composition (PAAC), and normalized amino acid 174 

composition (NAAC). The PHYC features consider the hydrophobicity, net-charge, and iso-175 

electric point of peptide sequences, and were calculated using the ‘Peptide’ package [61] in R. 176 

 177 

Proportionalized split amino acid composition (PSAAC) 178 
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In addition, to maximally extract peptide sequence information, we propose a new 179 

compositional feature called proportionalized split amino acid composition (PSAAC). This 180 

concept refines the split amino acid composition (SAAC) approach, which differentiates between 181 

the amino acid compositions at the N and C-terminus of protein sequences [62,63]. PSAAC 182 

adapts this concept specifically for peptide sequences, dividing them into distinct segments 183 

according to proportions defined by the users. Given a peptide sequence P of length L, we split 184 

it into 3 segments using proportions (or percentage) ��, �� and ��, where ��, �� and �� represent 185 

the proportion of amino acid segments for the N-terminus region, the middle region and the C-186 

terminus region, respectively, and �� � �� � ��  �  1. The lengths of these segments, �� , �� , 187 

and ��, are: 188 

�� � �� � ��	
1�  �� � �� � ��	
2�  �� � � 
 ��
��
3�       189 
The segments are:  190 

�� � P�1: ��	
4�  �� � P���: 
�� � ���	 
5�  �� � P�
�� � �� � 1�: �	
6�   191 

Now, let � be the set of 20 standard amino acids. The amino acid composition (AAC) in segment 192 

��  for � �  � is given by: 193 

����,� � ����� �� � �� ��� �� � 1，2，3 
7�  
Note that the count of the X in each segment was divided by the whole length of the peptide 194 

sequence. Then, the proportionalized split amino acid composition (PSAAC) is: 195 

"#����,� � $����,�, ����,� , & , ����,	, ����,�, & , ����,	' 
8�       196 

 197 
Previous studies [64,65] have reported that some sorting signals exist in the short segments 198 

of amino acid sequences around the N-terminus, representing special information of amino acid 199 
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composition. In other words, different regions of a protein sequence can provide extra 200 

information. For example, some specific regions may form structural domains that determine the 201 

function of proteins, such as binding sites for other molecules, active sites for enzymes, or 202 

domains for protein-protein interaction [65]. The PSAAC feature captures the residue patterns 203 

around both the N-terminus region and the C-terminus region, while also retaining the sequence 204 

order information from the middle region. Based on peptide sequences from [50], the amino acid 205 

compositions for each segment (e.g., the N-terminus region, the C-terminus region, and the 206 

middle region) were calculated respectively. Non-standard amino acid residues are ignored. As 207 

shown in Fig. 2, Leucine and Glycine are the most abundant amino acids in AMPs as found 208 

originally in the APD, and non-AMPs dataset respectively (Figs. 2A-B). There are obvious 209 

differences in the composition of each amino acid at the N-terminus, the C-terminus and middle 210 

region for both datasets (Figs. 2C-D). In the non-AMPs dataset, the least abundant amino acids 211 

are Tyrosine, Methionine and Tryptophan at the N-terminus, middle region, and the C-terminus 212 

respectively. Conversely, Leucine is the most abundant in all three segments. For the AMPs 213 

dataset, Glycine is the most abundant at both the N-terminus and the middle region, while Lysine 214 

is the most abundant at the C-terminus. The amino acids with the lowest content in the AMPs 215 

dataset are Histidine at the N-terminus, Methionine in the middle region, and Tryptophan at the 216 

C-terminus. Then, all the features are scaled by subtracting the mean from each column and 217 

dividing it by the standard deviation. For the data collected from AMPScanner V2 and dbAMP, 218 

the amino acid distribution at the N-terminus, the C-terminus and middle region is also 219 

investigated and shown in Supplementary Figs. S1-S2. For each peptide sequence, the PSAAC 220 

feature will be generated with 60 dimensions. We note that �� , ��  and ��  are user-defined 221 
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hyperparameters that allow flexible sequence context extraction and the number of splits can also 222 

be customized, and we used three splits because of its prominent performance. 223 

 224 

Fig. 2 Amino acid distribution in AMPs and non-AMPs datasets based on the dataset 225 

collected from iAMPpred. Amino acid distribution of all sequences in (A) AMPs and (B) non-226 

AMPs dataset. Distribution of amino acid sequences in the N-terminus region, the middle region 227 

and the C-terminus region of (C) AMPs Dataset and (D) non-AMPs dataset. 228 

 229 

Random projection 230 

Random projection (RP) is a dimension reduction technique proposed based on the 231 

Johnson-Lindenstrauss lemma [66]. For our experimental analysis, we used the Gaussian random 232 

matrix as our random projection matrix, which is generated from the following the distribution 233 

) *0, �


����������

, where -��

������ represents the number of dimensions to which the data is 234 

to be reduced. In cases where the number of feature dimensions is high, the use of random 235 

projection can greatly speed up the model training process. In our experiments, the optimal 236 

number of components to be kept was determined by the model training step using a grid-search 237 

approach. We also enabled the option of using a sparse matrix as the random projection matrix in 238 

our package.  239 

For dimension reduction, from original R dimension to the reduced r dimension, a very 240 

sparse random matric Q � .���
 is designed to reduce the computational complexity [67]. 241 

Specifically, elements of Q (i.e., /�,�) are defined as:  242 
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/�,� � √�
123
241   with probability �

��
                                                                         

0   with probability 1 
 �

�
, where i � A1, … , CDE, j � A1, … , GEC

�1   with probability 
1

2�
                                                                               

C (9) 243 

As suggested by [67], we select t=√G.  244 

 245 

Ensemble learning      246 

We use an ensemble learning model in SAMP (Fig. 3) where given the training and testing 247 

feature matrices H�����  and H����  that have been scaled, and whose scaling process will be 248 

detailed in the feature scaling session, we first applied random projection on the matrices 249 

respectively to get the new feature matrices H�
����� and H�

���� in a lower dimension. We then 250 

used the SVM as our base model to train and test on H�
�����  and H�

����  respectively. The 251 

decision function scores on the testing data are recorded. We repeated the above steps for 10 252 

times to stabilize the result of random projection, where randomness is often introduced when 253 

generating the random projection matrix. Finally, the decision function scores in each iteration 254 

are averaged to get the final scores.  255 

 256 

Fig. 3 Schematic representation of SAMP workflow. Benchmarking data consisting of AMPs 257 

and non-AMPs were used for training.  Features including our proposed proportionalized split 258 

amino acid composition (PSAAC) as well as conventional sequence features were constructed. 259 

Random projection (RP) was applied multiple times to reduce the feature dimension for 260 

robustness. For each RP, the feature matrix was transformed in a low-dimensional space and was 261 

then fed into a classification model (here we used a radial basis function (RBF) based support 262 

vector machine (SVM) model). The decision scores generated by the RBF-SVM model were 263 
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integrated by an ensemble learning scheme, based on which predictions for independent test data 264 

were made to identify AMPs. 265 

 266 

We then compared and selected the appropriate classifier for AMP sequences classification, 267 

including RF, LR, SVM, multilayer perceptron (MLP) and XGBoost. Specifically, SVM is a 268 

widely used classification model that allows for the use of different kernel functions to make 269 

predictions on both linear and non-linear data. The model is characterized by several parameters, 270 

including the regularization parameter (C), the choice of kernel function, and the kernel's gamma 271 

parameter (such as Radial Basis Function (RBF)). Random Forest is a powerful ensemble 272 

learning method used for both classification and regression tasks. It works by building multiple 273 

decision trees and merging their outputs to make predictions. Hyperparameters like n_estimators, 274 

max_depth, min_samples_split, min_samples_leaf and bootstrap need to be optimized.  Logistic 275 

regression makes predictions by modeling the relationship between variables based on 276 

logistic/sigmoid function, which is a recognized powerful algorithm used for binary variable 277 

classification. Its hyperparameter contains regularization parameter (C), penalty type and solver 278 

type. MLP consists at least three layers of notes, including input layer, one/more hidden layers, 279 

and an output layer, and it has been used widely for classification and regression analysis. All 280 

notes except the input, apply a nonlinear activation function and utilize backpropagation for 281 

training. XGBoost is designed for gradient boosting specifically with high performance and 282 

scalability, based on the combination of multiple decision trees to create a strong prediction 283 

model. It includes the parameter of max_depth, learning_rate and n_estimators. In each iteration 284 

of five classifier models, we trained them by performing grid search with repeated 10-fold cross 285 

validation to search for the best hyperparameters. Then, the model with the best hyperparameters 286 
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was used to generate decision function scores for the independent testing datasets. Subsequently, 287 

based on the prediction performance, the classifier demonstrating the highest accuracy will be 288 

selected to form the foundational architecture of SAMP. 289 

 290 

Overview of SAMP 291 

SAMP is an ensemble-based model that accurately classifies antimicrobial peptides by 292 

averaging the prediction scores from a set of base SVM models. Importantly, SAMP introduces 293 

the PSAAC feature, in addition to the widely used numeric features for antimicrobial peptide 294 

prediction task proposed in [53]. By implementing the ensemble technique and including a novel 295 

feature set, SAMP can excel performance of state-of-the-art approaches.  296 

SAMP first encoded the peptide sequence into numeric features, such as AAC, PHYC, and 297 

PSAAC (Fig. 2). The features were then scaled and projected to a pre-defined lower dimension 298 

using random projection technique. Base SVM models were built to generate the prediction 299 

scores for each run, which were eventually integrated by an ensemble learning scheme. SAMP 300 

was then evaluated on independent test data from four species (including amphibian, bacteria, 301 

human, and plant) and compared to other state-of-the-art methods, including iAMPpred and 302 

AMPScanner V2. To make fair comparisons, the same training data and independent test data 303 

were used to compare SAMP and other state-of-the-art methods.  304 

Overall, the PSAAC enables SAMP to capture the peptide sequence information from both 305 

the middle region and the N/C-terminus regions, which significantly boosts the model 306 

performance in comparison to state-of-the-art methods. In the following sections, we 307 

demonstrate the superb performance of SAMP across datasets from different species.  308 

 309 
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Benchmarking with the state-of-the-art methods 310 

We compared the performance of our model with two state-of-the-art methods, iAMPpred 311 

and AMPScanner V2. The benchmark test was performed by using the AMP and non-AMP data 312 

collected from the dbAMP database. The training data reported in the papers [50,53] for 313 

iAMPpred and AMPScanner V2 were obtained to train SAMP separately. To demonstrate the 314 

importance of our proposed feature PSAAC and the robustness of our ensemble based SVM 315 

model design, we conducted two types of further analyses. First, we trained models both with 316 

and without the PSAAC features, evaluating the results to ascertain the importance of PSAAC. 317 

Following this, we employed both the ensemble based SVM model design and basic SVM model 318 

with one time RP for training and assessed their respective performances. For performance 319 

evaluation, we considered four major metrics: accuracy, MCC, G-measure and F1-score. Here, 320 

MCC is a measure which produces high score only if the prediction obtained good performance 321 

in all four aspects, true and false positives and negatives, of the confusion matrix, making it a 322 

reliable rate particularly for imbalanced datasets, as it is not biased toward the majority class [68]. 323 

The closer the value of MCC is to 1, the better the prediction effect of the classifier is. G-324 

measure is the geometric mean of precision and recall, where the precision is the number of true 325 

positive cases divided by the number of all predicted as positive samples, and the recall is the 326 

number of true positive results divided by the number of all samples which should be regarded as 327 

positive. G-measure effectively balances the extreme ratio of positive to negative instances and 328 

the value ranges from 0 to 1, then a value closer to 1, indicating the classifier is performing well 329 

in both predicting the positive cases and maintaining accuracy, conversely, a value closer to 0 330 

indicates bad performance. F1-score is the harmonic mean of precision and recall, equally 331 

weighting the two values. It differs from G-measure in that, F1-score is more sensitive to the 332 
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extreme values, if there is low precision or recall, the F1-score decreases significantly, however, 333 

g-measure will be more tolerant. Similarly, a closer value to 1 means the better prediction ability 334 

of the classifier. 335 

 336 

Results 337 

Model performance and classifier selection 338 

To enhance the prediction capability of SAMP, we initially selected five ML classifiers, 339 

namely SVM, RF, LR, MLP and XGBoost, using the same training and independent test dataset 340 

to train and test, then evaluated their performance. We performed 10-fold cross validation for 10 341 

times, each time will get an assessment value, as shown in Fig. 4, SVM had better performance 342 

than LR, MLP, RF and XGBoost, and LR always presents the worst result, based on accuracy, 343 

MCC, G-measure and F1-score. Then, five trained classifiers were applied to predict labels for 344 

independent test data, as shown in Fig. 5, SVM exhibited the highest accuracy, MCC, G-measure 345 

and F1-score among all four test datasets. In summary, SVM presents a better performance than 346 

RF, MLP, XGBoost and LR, which was determined to serve as the basement of SAMP for 347 

further analysis. 348 

 349 

Fig. 4 Comparing different classifiers for SAMP. All classifiers were trained on the same 350 

dataset collected from iAMPpred to perform 10 times of 10-fold cross validations. Performance 351 

measures based on (A) Accuracy, (B) MCC, (C) G-measure, and (D) F1-score were reported. 352 

Classifiers include logistic regression (LR), deep learning like multi-layer perceptron (MLP), 353 

random forest (RF), SVM (support vector machine), and XGBoost. 354 

 355 
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Fig. 5 Comparison five machine learning models based on independent tests across 356 

multiple species. (A) Accuracy, (B) MCC, (C) G-measure, and (D) F1-score were compared 357 

across all species including bacteria, human, amphibian, and plant. All models were trained on 358 

the dataset collected from [53] and tested on independent test datasets collected from [60]. 359 

 360 

We also measured the performance of SAMP across different dimensions of random 361 

projection and all the possible proportions of PSAAC (Table 1). Specifically, we trained SAMP 362 

on the data collected from iAMPpred and AMPScanner V2 respectively. Grid-search with 363 

repeated 10-fold cross validation was applied to assess the model performance on training 364 

datasets. The number of dimensions used in RP was 50, 100, and 150. Importantly, the novel 365 

feature PSAAC enables a customized proportion of information to be obtained from a peptide 366 

sequence. To this end, we also evaluated the effect of different proportions of PSAAC on model 367 

performance. A given peptide sequence was first split into three parts according to the 368 

proportions specified. Next, the amino acid composition within each split was calculated, 369 

resulting in a total of 60 new features (see Method). The proportions evaluated include 2:2:6, 370 

6:2:2, 2:6:2, and 3:4:3, where, for example, 2:2:6 represents cutting the peptide sequence from 371 

the N-terminus for 20% of the total sequence length, another 20% in the middle, and the 372 

remaining 60% for the C-terminus.  373 

 374 

Table 1 Comparing different splitting schemes and reduced dimensions for SAMP. The 375 

splitting scheme means different ratios of the sequence lengths of the N-terminus region, the 376 

middle region, and C-terminus region. For example, 2:2:6 means splitting a peptide into three 377 

regions as the N-terminus region accounting for 20% of the total sequences, the middle region 378 
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20%, and the C-terminus region 60%. Here we tried four different splitting schemes including 379 

2:2:6, 6:2:2, 2:6:2, and 3:4:3. For reduced dimensions of features, we tried three different cases, 380 

50, 100, and 150. ACC, accuracy; MCC, Matthews correlation coefficient; Sn, sensitivity; Sp, 381 

specificity; AUC, area under the receiver operating characteristic curve. Numbers in bold 382 

represent the best performance for each splitting scheme. 383 

PSAAC 

Split 

Dimensions Evaluation Metrics 

ACC MCC Sn Sp AUC 

2:2:6 50 93.04 86.04 91.06  94.92  97.58  

 100 93.29 86.24 91.16  95.02 97.79  

 150 93.09 86.43 91.57  94.82  97.77  

6:2:2 50 93.24 86.28 90.65  95.53 97.63  

 100 93.24 86.70  90.75  95.83  97.68  

 150 93.29 86.59  90.75  95.73  97.72  

2:6:2 50 93.09 86.29 90.55 95.63 97.63 

 100 93.60 87.24 91.97 95.22 97.87 

 150 93.65 87.35 91.97 95.33 97.82 

3:4:3 50 93.65 87.36 91.77  95.53   97.83  

 100 93.39 86.85  91.57  95.22  97.89  

 150 93.65 87.34  92.07  95.22  97.93  

 384 

 385 

 386 
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As shown in Table 1, it presented a comprehensive overview of the SAMP performance 387 

under varying ratios of PSAAC with different dimensions. It emphasized how different splitting 388 

schemes influenced the performance of SAMP, such as ACC, MCC, Sn, Sp, and AUC. The ACC 389 

presented minimum variation, ranging from 93.04 to 93.65 which indicated a consistently good 390 

performance across different configurations. The MCC, Sn, Sp and AUC values varied slightly 391 

more but still could demonstrate the robust performance of SAMP, with MCC ranging from 392 

86.06 to 87.36, Sn from 90.55 to 92.07, Sp from 94.82 to 95.83, and AUC ranging from 97.58 to 393 

97.93. Among all the configurations, the 6:2:2 PSAAC ratio reached the highest Sp, while the 394 

2:6:2 ratio got the best accuracy and the 3:4:3 ratio outperformed others in terms of ACC, MCC, 395 

Sn, and AUC. Analyzing performance based on dimensions, obviously, the dimension of 50 led 396 

in ACC and MCC, the dimension of 100 exceeding in Sp, and the dimension of 150 topped in 397 

ACC, Sn, and AUC. Therefore, the best model performance was achieved when the proportion 398 

was 2:6:2 with feature dimensions reduced to 150 using RP, which indicated the importance of 399 

the peptide sequence information from the middle region of peptides. 400 

 401 

Benchmarking with the state-of-the-art methods 402 

To further evaluate the predictive performance of SAMP, we compared it with the 403 

performance of two state-of-the-art AMP prediction tools, iAMPpred and AMPScanner V2. We 404 

first retrained SAMP with the same training data from the two methods respectively. We 405 

compared their performance by using datasets collected from the dbAMP database. In particular, 406 

we chose the AMPs and non-AMPs from plants, bacteria, amphibians, and humans. We 407 

considered accuracy, MCC, G-measure and F-1 score as our major evaluation metrics.  408 
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First, SAMP was trained on 984 AMPs and 984 non-AMPs obtained from the iAMPpred 409 

paper. The trained SAMP was tested on the independent dataset from dbAMP. To assess the 410 

performance of iAMPpred, we uploaded the independent testing dataset to their web portal 411 

(http://cabgrid.res.in:8080/amppred/). Similarly, we trained SAMP using the exact same training 412 

dataset from AMPScanner V2 and uploaded the testing data to the web portal provided on 413 

https://www.dveltri.com/ascan/v2/ascan.html. As shown in Fig. 6, SAMP demonstrates better 414 

performance compared to both iAMPpred and AMPScanner across all four metrics: accuracy, 415 

MCC, G-measure and F1-score. When specifically comparing SAMP with iAMPpred (Fig. 6A), 416 

the most obvious advantage of SAMP is observed in MCC for predicting amphibian labels, 417 

where SAMP is 73% more accurate than iAMPpred. On the other hand, the smallest difference is 418 

noticed in the F1-score for predicting human labels, with SAMP being 11% more effective than 419 

iAMPpred. Notably, all MCC values for iAMPpred are negative, indicating this tool may predict 420 

adverse results. Comparing SAMP with AMPScanner (Fig. 6B) reveals similar trends. Probably 421 

due to a smaller data set in the APD, the largest disparity is seen in Accuracy for human AMP 422 

predictions, where SAMP shows a 29% improvement over AMPScanner, whereas the smallest 423 

difference is in the G-measure for human predictions, with a small improvement of 8% by 424 

SAMP over AMPScanner. 425 

 426 

Fig. 6 Comparing SAMP with state-of-the-art methods on different species datasets. 427 

Comparing SAMP and iAMPpred across different species in terms of (A) Accuracy, (B) MCC, 428 

(C) G-measure and (D) F1-score. SAMP was trained on the same training dataset collected from 429 

iAMPpred and tested on independent test dataset collected from dbAMP. Comparing SAMP and 430 

AMPScanner V2 across different species in terms of (E) Accuracy, (F) MCC, (G) G-measure 431 
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and (H) F1-score. SAMP was trained on the same training dataset collected from AMPScanner 432 

V2 and tested on independent test dataset collected from dbAMP. 433 

 434 

Furthermore, we evaluated the impact of proportionalized split amino acid composition 435 

(PSAAC) and the ensemble-based SVM model architecture on the predictive performance (Fig. 436 

7). After training with data from iAMPpred, SAMP consistently outperformed both the SAMP 437 

without the PSAAC feature and the vanilla SVM model without ensemble learning. This 438 

improvement was consistent in all label predictions. Specifically, SAMP demonstrated at least a 439 

11% increase in accuracy, 9% in MCC, 5% in G-measure, and 7% in F1-score compared to the 440 

situation of deleting the PSAAC feature, and at least a 2% increase in accuracy, 1% in MCC, 1% 441 

in G-measure, 1% in F1-score compared to the situation of deleting the layer of ensemble 442 

learning. Similar outcomes were observed when trained with AMPScanner data, with SAMP 443 

outperforming the aforementioned situations across all measures. 444 

 445 

Fig. 7 PSAAC and ensemble learning contribute to improving prediction performance of 446 

SAMP for identifying AMPs. Comparing SAMP and SAMP without the PSAAC feature across 447 

different species in terms of (A) Accuracy, (B) MCC, (C) G-measure and (D) F1-score. All 448 

models were trained on the same training dataset collected from iAMPpred and tested on 449 

independent test dataset collected from dbAMP. Comparing SAMP and SAMP without ensemble 450 

learning across different species in terms of (E) Accuracy, (F) MCC, (G) G-measure and (H) F1-451 

score. All models were trained on the same training dataset collected from AMPScanner V2 and 452 

tested on independent test dataset collected from dbAMP. 453 

 454 
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Feature scaling 455 

A crucial step in improving the performance of SVM-based models is feature scaling. 456 

Intuitively, if the features are measured in different scales, the decision boundary calculation of 457 

SVM would be dominated by the features with the largest scales. In our study, we always scaled 458 

the features after the feature generation stage using the scale function in R. In particular, the 459 

peptide sequence features are calculated in different scales. For example, the amino acid 460 

composition is measured as some values between 0 and 1, but certain physio-chemical properties 461 

such as hydrophobicity can have various ranges of value. We believe this step is essential for 462 

SAMP to make accurate predictions and is worth experimenting. We generated two sets of 463 

features from the peptide sequences used to train iAMPpred, in which one set of features was 464 

scaled and the other was not. Two separate SAMP models were trained and evaluated on the 465 

independent test datasets. Our results indicate that scaling is indeed extremely important for 466 

SAMP, consistently boosting the model performance by a least 50% across datasets (Table 2).  467 

 468 

Table 2 Scaling the features is crucial for SAMP for identifying AMPs. The scaling is 469 

performed by subtracting the mean of each feature and dividing by the feature’s standard 470 

deviation. Scaling is a crucial step for SAMP. ACC, accuracy; MCC, Matthews correlation 471 

coefficient; AUC, area under the receiver operating characteristic curve.  472 

Dataset Metric SAMP (Scaled) SAMP (No Scale) 

dbAMP Plant Accuracy 0.668 0.102 

AUC 0.744 0.112 

MCC 0.332 -0.184 

dbAMP Bacteria Accuracy 0.647 0.071 
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AUC 0.703 0.088 

MCC 0.234 -0.165 

dbAMP Amphibian Accuracy 0.779 0.336 

AUC 0.844 0.039 

MCC 0.624 -0.169 

dbAMP Human Accuracy 0.637 0.058 

AUC 0.712 0.137 

MCC 0.204 -0.2 

 473 
 474 

 475 

Discussion 476 

AMPs have gained greater attention as an alternative to chemical antibiotics. Indeed, some 477 

are already in applications either as antibiotics or as food preservatives [69]. Computational 478 

methods are developed as a supplement for wet lab experiments to design and identify AMPs, 479 

which reduces the cost and resources required. In this study, we present a novel ensemble-based 480 

model that achieves better AMP prediction performance than existing, state-of-the-art methods. 481 

To the best of our knowledge, SAMP is the first method that adopts PSAAC as one of the 482 

numeric features for AMP prediction tasks. Amino acid compositional splitting sheds new light 483 

on amino acid compositions of natural AMPs, which was initially discovered in 2009 [70]. In 484 

natural AMPs, alanine, glycine, leucine, and lysine are frequently occurring (or abundant) amino 485 

acids, while histidine, methionine, and tryptophan are least abundant amino acids. Our sequence 486 

splitting here reveals that leucine is preferentially dominant at the N-terminus of AMPs, while 487 

alanine is mainly located at the middle region. Glycine can appear frequently both at the N and 488 
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the middle regions. In contrast, lysine is primarily abundant in the middle and C-terminus of 489 

natural AMPs. Interestingly after sequence splitting, the least abundant methionine and 490 

tryptophan appear mainly at the middle and the C-terminus regions, whereas histidine occupies 491 

the N-terminus. Also of note is that acidic glutamic acid is located at the N-terminus and acidic 492 

aspartic acid prefers the C-terminus region.   493 

By combining this novel sequence-splitting feature with an ensemble-based SVM model 494 

architecture, SAMP is able to maximally extract peptide sequence information and outperform 495 

methods that apply either deep learning or traditional machine learning techniques. Additionally, 496 

we developed SAMP based on RP, a powerful dimension-reduction algorithm based on the 497 

Johnson–Lindenstrauss lemma [66] which can preserve the distances between data points while 498 

reducing the dimension [71]. As the number of data points continues to grow, the accuracy of 499 

prediction may be influenced due to the low efficiency of computational efficiency. Therefore, 500 

RP based models should have better performance compared to those without it. This has been 501 

evidenced in a large-scale single-cell RNA-sequencing (scRNA-seq) data processed algorithm 502 

which showed a higher classification efficiency under the contribution of ensemble RP layer [72]. 503 

As expected, our model with the ensemble RP layer also has a better performance as shown in 504 

Fig. 7. Our prediction also implies that data size influences prediction performance since the 505 

human AMPs, with the least data (<150 AMPs in the current APD), behave poorest compared to 506 

AMPs from bacteria, plants, and animals with more known positive data.  507 

We also assessed the performance of SAMP with specific tools, like iAMPpred and 508 

AMPScanner V2, which are also designed for AMP prediction based on SVM and DNN 509 

respectively. SAMP proved slightly better performance than AMPScanner V2 and obviously 510 

higher accuracy than iAMPpred. Possible explanation for this discrepancy should be the 511 
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omission of PSAAC and ensemble RP layer. Overall, this newly designed tool, SAMP, is 512 

expected to compensate for the existing tools for AMP prediction. 513 

For future research directions, we will consider different ensemble methods by including 514 

more diverse model categories to improve the prediction accuracy. With the advance of deep 515 

learning, it would be appealing to investigate the performance of DL based models combined 516 

with PSAAC features, or whether the deep neural networks are able to capture the PSAAC 517 

features within their embedding space.518 
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Key points 519 

We propose a novel method called SAMP that develops a new type of features called 520 

proportionalized split amino acid composition (PSAAC) to significantly boost the performance 521 

of identifying antimicrobial peptides. 522 

 523 

PSAAC can identify residue patterns at both the N-terminus and the C-terminus as well as to 524 

retain sequence order information from the middle region of peptide fragments. 525 

 526 

SAMP leverages an ensemble learning framework based on random projection to integrate 527 

various classifiers into a cohesive framework, effectively improving the performance accuracy. 528 

 529 

SAMP outperforms state-of-the-art methods for AMP identification in terms of accuracy, G-530 

measure, MCC and F1-score. 531 

 532 

SAMP is a versatile tool capable of identifying AMPs from a variety of organisms including 533 

human, plant, bacteria and amphibian. 534 
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Amino acid distribution in AMPs and non-AMPs datasets based on the dataset collected 541 

from AMPScanner V2. Amino acid distribution of all sequences in (A) AMPs and (B) non-542 

AMPs dataset. Distribution of amino acid sequences in the N-terminus region, the middle region 543 

and the C-terminus region of (C) AMPs Dataset and (D) non-AMPs dataset. 544 

 545 

Supplementary Fig. S2 546 

Amino acid distribution in AMPs and non-AMPs datasets based on the dataset collected 547 

from dbAMP. Amino acid distribution of all sequences in (A) AMPs and (B) non-AMPs dataset. 548 

Distribution of amino acid sequences in the N-terminus region, the middle region and the C-549 

terminus region of (C) AMPs Dataset and (D) non-AMPs dataset. 550 
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