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Abstract

It is projected that 10 million deaths could be attributed to drug-resistant bacteria infections in
2050. To address this concern, identifying new-generation antibiotics is an effective way.
Antimicrobial peptides (AMPs), a class of innate immune effectors, have received significant
attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and
fungi. Recent years have witnessed widespread applications of computational methods
especially machine learning (ML) and deep learning (DL) for discovering AMPs. However,
existing methods only use features including compositional, physiochemical, and structural
properties of peptides, which cannot fully capture sequence information from AMPs. Here, we
present SAMP, an ensemble random projection (RP) based computational model that leverages a
new type of features called Proportionalized Split Amino Acid Composition (PSAAC) in
addition to conventional sequence-based features for AMP prediction. With this new feature s,
SAMP captures the residue patterns like sorting signals at around both the N-terminus and the C-
terminus, while also retaining the sequence order information from the middle peptide fragments.
Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP
consistently outperforms existing state-of-the-art methods, such as iAMPpred and AMPScanner
V2, interms of accuracy, MCC, G-measure and F1-score. In addition, by leveraging an ensemble
RP architecture, SAMP is scalable to processing large-scale AMP identification with further
performance improvement, compared to those models without RP. To facilitate the use of

SAMP, we have developed a Python package freely available at https.//github.com/wan-

mlab/SAMP.
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Introduction

Between the period of 1940s and 1960s, one of the greatest breakthroughs was the
development of antibiotics [1], a remarkable medication that has saved thousands of lives by
defeating various infectious diseases [2-6]. However, the long-term and rapid increase of
antibiotic use for disease treatment in large populations has resulted in the emergence of drug
resistance in pathogens [7-11]. The Centers for Disease Control and Prevention (CDC) has
reported that drug-resistant bacteria caused around 2.8 million infections and more than 35000
deaths in the United States [12]. According to the World Hedth Organization (WHO),
approximately 700,000 patients worldwide die from drug-resistant bacterial infections every year,
and the total number of deaths is predicted to increase to 10 million by 2050 [13], making it an
urgent challenge in the healthcare system [14,15]. Therefore, expanding a large range of new
antimicrobial agents to fight against pathogens is essential to relieve the huge burden of global
health [16].

Antimicrobial peptides (AMPs) are amino-acid-based oligomers or polymers, naturaly
widespread in all forms of life, such as bacteria, animals, and plants [17-19]. They have played
an important role in protecting organisms from infectious diseases for millions of years, serving
as thefirst line of defense against pathogens through interrupting pathogen-associated molecular
processes in the innate immune system [20-24]. It has been suggested as excellent candidates for
developing a new generation of antibiotics due to their special ability to kill multi-resistant

microorganisms, including bacteria, fungi, parasites, and viruses [25-29]. In addition, substantial
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evidence indicates that AMPs can recruit immature phagocytic and dendritic cells, leading to the
destruction of cancer cells and healing wounds in certain areas [24,30]. Cationic and
hydrophobic residues are two main characteristics of linear AMPs, enabling sequences to fold
into amphipathic secondary structures which tend to disrupt negatively charged membranes of
pathogens while sparing the healthy eukaryotic cells. Moreover, the enrichment of cholesterol
and neutral phospholipids in membranes also makes eukaryotic cells much less susceptible to
AMPs [31,32]. The main mechanism of AMPS action is to form pores and micellization in cell
membranes or directly cause osmotic shock when present in high concentration [33,34].
Additionally, binding to specific cytosolic macromolecules is another way of AMPs to inhibit the
synthesis process of the cell wall or ribosomes [35,36]. Hence, AMPs can interact with many
different components of bacteria for multiple hits, while traditional antibiotics are typically
designed to target one specific enzyme. The broad interactions of AMPs make it difficult for
bacteriato devel op resistance in a short time [37-39].

Natural AMPs discovery typically relies on traditional time-consuming and labor-intensive
wet experiments, resulting in low efficiency. Therefore, to find natural AMPs in a more efficient
and convenient way, it is necessary to develop in-silico predictive models to identify possible
AMP candidates prior to synthesis and wet lab testing. In the past decade, numerous
computational models based on various algorithms, such as support vector machine (SVM) [40],
random forest (RF) [41] and logistic regression (LR) [42], have been introduced to identify
peptides [43]. Most recently, Huang et al. [44] constructed a sequential model ensemble pipeline
(SMEP) consisting of multiple steps, including empirical selection, classification, ranking,
regression, and wet-lab validation. Algorithms, like boosting method (XGBoost) [45], RF as well

as deep learning such as the convolutional neural network (CNN) [46] and the long short-term
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89 memory (LSTM) [47], were applied in different modules. With SMEP, a series of potent AMPs
90 from the entire search space of peptide libraries were identified accurately within a short period
91 of time. In another study [48], multiple natural language processing neural network models,
92 including LSTM layer, Attention layer and Encoder Representations from Transformers (BERT)
93  [49], were combined to form a unified pipeline which has been used to mine functional peptides
94  from metagenome data for in-depth investigations. Based on the algorithms applied in the
95  prediction models, they can be divided into two main categories. Models in the first category are
96 based on the deep learning (DL) architectures, like AMPScanner V2 [50] and Deep-AmPEP30
97 [51]. AMPScanner V2 applied deep neural networks (DNN) [52] with convolutional, maximal
98 pooling and LSTM layers for AMPs prediction. Deep-AmPEP30 based on convolutional neural
99 network (CNN) with two convolutional layers, two maximum pooling layers, and one fully
100  connected hidden layer to identify specifically short length AMPs which contain fewer than 20
101 amino acids. As for the second category of models, conventional machine learning (ML)
102  algorithms are generally exploited, such asiAMPpred [53] which used SVM to classify positive
103  or negative peptides. Previous studies [54] indicated that DL models did not always outperform
104  conventional ML models due to the modeling complexities and/or modeling overfitting during
105 theprocess of DL mode construction based on training limited AMPs. Therefore, DL models are
106  not necessarily the most suitable approach for AMPs identification [54]. Nonetheless, no matter
107 the ML or DL based methods, existing computational methods rely primarily on features derived
108 from the composition, physicochemical and structural features of the peptide sequence. These
109 features may not be sufficient to fully express the rich information contained in antimicrobial

110 peptidesand thereis still considerable room for enhancing accuracy of AMP prediction.
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111 To address the aforementioned concerns, we propose herein an ensemble random projection
112 (RP) [55] based computational mode named SAMP, for which we develop a new type of
113  features called proportionalized split amino acid composition (PSAAC) [56] in addition to
114  conventional sequence-based features to improve the prediction performance of AMP
115 identification. Residue patterns such as sorting signals at around both the N-terminus and the C-
116  terminus could be captured by SAMP by using this enhanced feature set, while also remaining
117  the sequence order information extracted from the middle region fragments. Meanwhile, we
118 demonstrate that SAMP outperforms existing state-of-the-art methods in terms of accuracy,
119  Matthews correlation coefficient (MCC), the geometric mean of recall and precision (G-measure)
120  and Fl-score, including iAMPpred and AMPScanner V2, when benchmarking on both balanced
121 and imbalanced datasets from different natural peptide groups, including humans, bacteria,
122 amphibians and plants. Furthermore, we integrate an ensemble RP architecture into SAMP to
123  strengthen the ability of handling large-scale AMP screening while achieving enhanced
124  performance compared to those without RP. We believe SAMP will play a significant role in
125 AMP identification, complementary to existing AMP identification approaches.

126

127  Materialsand Methods

128 Datasets

129 The positive data set for natural AMPs was accumulated in the antimicrobial peptide
130 database in the past 20 years [57,58]. The negative data set was extracted from UniProt by
131  excluding peptides/proteins annotated with key words such as “antimicrobial”, “antibacterial”,
132 *“antiviral”, and “antifungal” [59]. To benchmark the performance of SAMP and other state-of-

133 the-art approaches, we selected two sets of training data reported in the literature. As many
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134  existing approaches only provide web servers which have already been trained in different
135 training data, to make a fair comparison, we will compare SAMP with those approaches based
136 on the same training dataset based on which the corresponding web servers were trained.
137  Specifically, the first set consists of 984 positive and 984 negative antimicrobial peptide
138  sequences obtained from [53]. This set is used to train our model and compare our proposed
139 modd SAMP with iAMPpred (Fig. 1A). The second set consists of 2021 positive and 2021
140  negative antimicrobial peptide sequences from [50], as shown in Fig. 1B. This set isused to train
141  our mode and compare SAMP with AMPScanner V2 [50].

142 In addition, independent testing data were collected from the dbAMP database [60],
143  containing AMP and non-AMP sequences (Fig. 1C). Specifically, we chose the AMP and non-
144  AMP datasets across four different species. plants, bacteria, amphibians, and humans, which
145 were originally collected in the APD [57,58] database. Given the varying peptide sequence
146  length distributions of our AMP datasets (Figs. 1A-C), we filtered out sequences shorter than 10
147  amino acids and longer than 500 amino acids. The sequences containing non-standard amino
148  acids were aso removed. In the dbAMP benchmark dataset (Fig. 1D-E), in total, there are 1089
149 AMPs and 9732 non-AMPs. As found in the APD database, amphibians predominantly
150 constitute the natural AMP sequences, while bacteria form the majority in the non-AMP
151  sequences. Specifically, for the AMPs (Fig. 1D) of the dbAMP dataset, around half are
152  amphibian, one third belong to plant, and one fifth are bacteria. On the contrary, in the non-AMP
153 cases (Fig. 1D), amphibian sequences account for only 10%, and half of them are bacteria
154  Interestingly, human sequences constitute less than 10% in both AMPs and non-AMPs (Figs.
155 1D-E). While for the amino acid sequence length distribution (Figs. 1F-1), most AMPs for all

156  species are with shorter amino acid sequences compared to non-AMPs, suggesting significantly
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157  different sequence distributions between AMPs and non-AMPs. However, it is unlikely to use
158 the length of peptide sequences to determine whether a peptide is an AMP or non-AMP, given
159 that a significant portion of AMPs are also overlapped with non-AMPs, especially for bacteria,
160  human, and plant (Figs. 1F-I).

161

162 Fig. 1 Peptide sequence distribution of AMPs and non-AMPs in benchmarking datasets.
163  (A-C) The peptide sequence distribution of AMPs and non-AMPs collected from the iAM Ppred
164  dataset (A), the AMPScanner V2 dataset (B) and the dbAMP dataset (C), respectively. (D-E)
165  Species breakdowns of AMPs (D) and non-AMPs (E) in the dbAMP dataset. (F-I) Species-
166  specific peptide sequence distribution of AMPs and non-AMPs in the dbAMP dataset, including
167  amphibian (F), bacteria (G), human (H) and plant (1).

168

169 Featureextraction

170  Conventional features

171 First, we embedded the string of peptide sequences into categories of numeric feature
172  vectors similar to those proposed in [53], which includes amino acid sequence compositional
173  features and physio-chemical (PHYC) features. The compositional features include amino acid
174  composition (AAC), pseudo amino acid composition (PAAC), and normalized amino acid
175 composition (NAAC). The PHYC features consider the hydrophobicity, net-charge, and iso-
176  €electric point of peptide sequences, and were calculated using the ‘ Peptide’ package [61] in R.
177

178  Proportionalized split amino acid composition (PSAAC)
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179 In addition, to maximally extract peptide sequence information, we propose a new
180 compositional feature called proportionalized split amino acid composition (PSAAC). This
181  concept refines the split amino acid composition (SAAC) approach, which differentiates between
182 the amino acid compositions at the N and C-terminus of protein sequences [62,63]. PSAAC
183  adapts this concept specifically for peptide sequences, dividing them into distinct segments

184  according to proportions defined by the users. Given a peptide sequence Z”of length L, we split

185 it into 3 segments using proportions (or percentage) p,, p, and p;, where p,, p, and p; represent
186  the proportion of amino acid segments for the N-terminus region, the middle region and the C-
187  terminus region, respectively, and p, + p, + p; = 1. The lengths of these segments, L,, L,,
188 andL;, are

Ly = [Lxp](D)

L, = [L X p,](2)
189 Ly=L-L,—L,(3)
190 Thesegmentsare:

L = A1 L](4)
ly = ALy (Ly + L)1 (5)
191 I; = AW, + L, + 1):L](6)

192  Now, let A be the set of 20 standard amino acids. The amino acid composition (AAC) in segment
193 [, for X € Aisgiven by:
Countof Xinl;
AAC; x = Lf (i =1,2, 3) (7)
194  Note that the count of the X in each segment was divided by the whole length of the peptide

195  sequence. Then, the proportionalized split amino acid composition (PSAAC) is:

196 PSAAC; x = [AACLA,AACLC, -, AAC, v, AAC, 4, ---,AAC&Y] (8)
197
198 Previous studies [64,65] have reported that some sorting signals exist in the short segments

199  of amino acid sequences around the N-terminus, representing special information of amino acid
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200 composition. In other words, different regions of a protein sequence can provide extra
201 information. For example, some specific regions may form structural domains that determine the
202 function of proteins, such as binding sites for other molecules, active sites for enzymes, or
203 domains for protein-protein interaction [65]. The PSAAC feature captures the residue patterns
204  around both the N-terminus region and the C-terminus region, while also retaining the sequence
205  order information from the middle region. Based on peptide sequences from [50], the amino acid
206  compositions for each segment (e.g., the N-terminus region, the C-terminus region, and the
207  middle region) were calculated respectively. Non-standard amino acid residues are ignored. As
208 shown in Fig. 2, Leucine and Glycine are the most abundant amino acids in AMPs as found
209 originaly in the APD, and non-AMPs dataset respectively (Figs. 2A-B). There are obvious
210 differences in the composition of each amino acid at the N-terminus, the C-terminus and middle
211  region for both datasets (Figs. 2C-D). In the non-AMPs dataset, the least abundant amino acids
212  are Tyrosine, Methionine and Tryptophan at the N-terminus, middle region, and the C-terminus
213  respectively. Conversely, Leucine is the most abundant in all three segments. For the AMPs
214  dataset, Glycineisthe most abundant at both the N-terminus and the middle region, while Lysine
215 isthe most abundant at the C-terminus. The amino acids with the lowest content in the AMPs
216  dataset are Higtidine at the N-terminus, Methionine in the middle region, and Tryptophan at the
217  C-terminus. Then, all the features are scaled by subtracting the mean from each column and
218 dividing it by the standard deviation. For the data collected from AMPScanner V2 and dbAMP,
219 the amino acid distribution at the N-terminus, the C-terminus and middle region is also
220 investigated and shown in Supplementary Figs. S1-S2. For each peptide sequence, the PSAAC

221  feature will be generated with 60 dimensions. We note that p,, p, and p; are user-defined
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222  hyperparameters that alow flexible sequence context extraction and the number of splits can also
223 be customized, and we used three splits because of its prominent performance.

224

225 Fig. 2 Amino acid distribution in AMPs and non-AMPs datasets based on the dataset
226  collected from iIAMPpred. Amino acid distribution of all sequencesin (A) AMPs and (B) non-
227  AMPs dataset. Distribution of amino acid sequences in the N-terminus region, the middle region
228  andthe C-terminus region of (C) AMPs Dataset and (D) non-AM Ps dataset.

229

230 Random projection

231 Random projection (RP) is a dimension reduction technique proposed based on the
232  Johnson-Lindenstrauss lemma[66]. For our experimental analysis, we used the Gaussian random
233  matrix as our random projection matrix, which is generated from the following the distribution

1

234 N (0, ) WhEre M omponents represents the number of dimensions to which the data is

Mcomponents

235 to be reduced. In cases where the number of feature dimensions is high, the use of random
236  projection can greatly speed up the mode training process. In our experiments, the optimal
237  number of components to be kept was determined by the model training step using a grid-search
238  approach. We also enabled the option of using a sparse matrix as the random projection matrix in
239  our package.

240 For dimension reduction, from origina R dimension to the reduced r dimension, a very
241  sparse random matric Q€ R"™*R is designed to reduce the computational complexity [67].

242 Specificaly, elements of Q (i.e,, g; ;) are defined as:
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1 with probability%
243 q;; =Vt{ 0 with probability 1 — %,Where i={1,..,r},j={1,..,R} (9

—1 with probability %
244  Assuggested by [67], we select t=v/R.
245
246  Ensemblelearning
247 We use an ensemble learning model in SAMP (Fig. 3) where given the training and testing
248  feature matrices M,,.,;, and M., that have been scaled, and whose scaling process will be
249 detailed in the feature scaling session, we first applied random projection on the matrices
250  respectively to get the new feature matrices M*,,.,;,, and M* ..., in a lower dimension. We then
251 used the SVM as our base model to train and test on M*,,.,;, and M*,,,; respectively. The
252  decison function scores on the testing data are recorded. We repeated the above steps for 10
253  times to stabilize the result of random projection, where randomness is often introduced when
254  generating the random projection matrix. Finally, the decision function scores in each iteration
255  areaveraged to get thefinal scores.
256
257  Fig. 3 Schematic representation of SAMP wor kflow. Benchmarking data consisting of AMPs
258 and non-AMPs were used for training. Features including our proposed proportionalized split
259 amino acid composition (PSAAC) as well as conventional sequence features were constructed.
260 Random projection (RP) was applied multiple times to reduce the feature dimension for
261  robustness. For each RP, the feature matrix was transformed in a low-dimensional space and was
262 then fed into a classification model (here we used a radial basis function (RBF) based support

263  vector machine (SVM) model). The decision scores generated by the RBF-SVM model were
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264  integrated by an ensemble learning scheme, based on which predictions for independent test data
265  were made to identify AMPs.

266

267 We then compared and selected the appropriate classifier for AMP sequences classification,
268 including RF, LR, SVM, multilayer perceptron (MLP) and XGBoost. Specifically, SVM is a
269  widely used classification model that allows for the use of different kernel functions to make
270  predictions on both linear and non-linear data. The model is characterized by several parameters,
271  including the regularization parameter (C), the choice of kernel function, and the kernel's gamma
272  parameter (such as Radia Basis Function (RBF)). Random Forest is a powerful ensemble
273  learning method used for both classification and regression tasks. It works by building multiple
274  decision trees and merging their outputs to make predictions. Hyperparameters like n_estimators,
275  max_depth, min_samples _split, min_samples_leaf and bootstrap need to be optimized. Logistic
276  regression makes predictions by modeling the relationship between variables based on
277 logistic/sigmoid function, which is a recognized powerful algorithm used for binary variable
278  classification. Its hyperparameter contains regularization parameter (C), penalty type and solver
279 type. MLP consists at least three layers of notes, including input layer, one/more hidden layers,
280 and an output layer, and it has been used widely for classification and regression analysis. All
281 notes except the input, apply a nonlinear activation function and utilize backpropagation for
282 training. XGBoost is designed for gradient boosting specifically with high performance and
283  scalability, based on the combination of multiple decision trees to create a strong prediction
284  mode. It includes the parameter of max_depth, learning_rate and n_estimators. In each iteration
285  of five classifier models, we trained them by performing grid search with repeated 10-fold cross

286  validation to search for the best hyperparameters. Then, the model with the best hyperparameters
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287  was used to generate decision function scores for the independent testing datasets. Subsequently,
288  based on the prediction performance, the classifier demonstrating the highest accuracy will be
289  selected to form the foundational architecture of SAMP.

290

291  Overview of SAMP

292 SAMP is an ensemble-based model that accurately classifies antimicrobial peptides by
293  averaging the prediction scores from a set of base SVM models. Importantly, SAMP introduces
294  the PSAAC feature, in addition to the widely used numeric features for antimicrobial peptide
295 prediction task proposed in [53]. By implementing the ensemble technique and including a novel
296 feature set, SAMP can excel performance of state-of-the-art approaches.

297 SAMP first encoded the peptide sequence into numeric features, such as AAC, PHYC, and
298 PSAAC (Fig. 2). The features were then scaled and projected to a pre-defined lower dimension
299 using random projection technique. Base SVM models were built to generate the prediction
300 scores for each run, which were eventually integrated by an ensemble learning scheme. SAMP
301 was then evaluated on independent test data from four species (including amphibian, bacteria,
302 human, and plant) and compared to other state-of-the-art methods, including iIAMPpred and
303 AMPScanner V2. To make fair comparisons, the same training data and independent test data
304  wereused to compare SAMP and other state-of-the-art methods.

305 Overadl, the PSAAC enables SAMP to capture the peptide sequence information from both
306 the middle region and the N/C-terminus regions, which significantly boosts the model
307 peformance in comparison to dtate-of-the-art methods. In the following sections, we
308 demonstrate the superb performance of SAMP across datasets from different species.

309
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310 Benchmarking with the state-of-the-art methods

311 We compared the performance of our model with two state-of-the-art methods, iAM Ppred
312 and AMPScanner V2. The benchmark test was performed by using the AMP and non-AMP data
313 collected from the dbAMP database. The training data reported in the papers [50,53] for
314 iAMPpred and AMPScanner V2 were obtained to train SAMP separately. To demonstrate the
315 importance of our proposed feature PSAAC and the robustness of our ensemble based SVM
316 model design, we conducted two types of further analyses. First, we trained models both with
317  and without the PSAAC features, evaluating the results to ascertain the importance of PSAAC.
318  Following this, we employed both the ensemble based SVM model design and basic SVYM model
319 with one time RP for training and assessed their respective performances. For performance
320 evauation, we considered four major metrics: accuracy, MCC, G-measure and F1-score. Here,
321 MCC is a measure which produces high score only if the prediction obtained good performance
322 indl four aspects, true and false positives and negatives, of the confusion matrix, making it a
323 reliablerate particularly for imbalanced datasets, asit is not biased toward the majority class [68].
324  The closer the value of MCC is to 1, the better the prediction effect of the classifier is. G-
325 measure is the geometric mean of precision and recall, where the precision is the number of true
326  positive cases divided by the number of all predicted as positive samples, and the recall is the
327  number of true positive results divided by the number of all samples which should be regarded as
328 positive. G-measure effectively balances the extreme ratio of positive to negative instances and
329 thevaueranges from 0 to 1, then a value closer to 1, indicating the classifier is performing well
330 in both predicting the positive cases and maintaining accuracy, conversely, a value closer to O
331 indicates bad performance. Fl-score is the harmonic mean of precison and recall, equally

332  weighting the two values. It differs from G-measure in that, F1-score is more sensitive to the
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333 extreme values, if thereislow precision or recall, the F1-score decreases significantly, however,
334  g-measure will be more tolerant. Similarly, a closer value to 1 means the better prediction ability
335 of theclassfier.

336

337 Results

338 Modd performance and classifier selection

339 To enhance the prediction capability of SAMP, we initialy selected five ML classifiers,
340 namey SVM, RF, LR, MLP and XGBoost, using the same training and independent test dataset
341 totrain and test, then evaluated their performance. We performed 10-fold cross validation for 10
342  times, each time will get an assessment value, as shown in Fig. 4, SVM had better performance
343 than LR, MLP, RF and XGBoost, and LR always presents the worst result, based on accuracy,
344  MCC, G-measure and F1-score. Then, five trained classfiers were applied to predict |abels for
345  independent test data, as shown in Fig. 5, SVM exhibited the highest accuracy, MCC, G-measure
346  and Fl-score among all four test datasets. In summary, SVM presents a better performance than
347 RF, MLP, XGBoost and LR, which was determined to serve as the basement of SAMP for
348  further analysis.

349

350 Fig. 4 Comparing different classfiers for SAMP. All classifiers were trained on the same
351 dataset collected from iIAMPpred to perform 10 times of 10-fold cross validations. Performance
352  measures based on (A) Accuracy, (B) MCC, (C) G-measure, and (D) F1-score were reported.
353 Classifiers include logistic regression (LR), deep learning like multi-layer perceptron (MLP),
354  random forest (RF), SVM (support vector machine), and XGBoost.

355
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356 Fig. 5 Comparison five machine learning models based on independent tests across
357 multiple species. (A) Accuracy, (B) MCC, (C) G-measure, and (D) F1-score were compared
358 across al species including bacteria, human, amphibian, and plant. All models were trained on
359 thedataset collected from [53] and tested on independent test datasets collected from [60].

360

361 We also measured the performance of SAMP across different dimensions of random
362 projection and al the possible proportions of PSAAC (Table 1). Specifically, we trained SAMP
363 on the data collected from iAMPpred and AMPScanner V2 respectively. Grid-search with
364 repeated 10-fold cross validation was applied to assess the model performance on training
365 datasets. The number of dimensions used in RP was 50, 100, and 150. Importantly, the novel
366 feature PSAAC enables a customized proportion of information to be obtained from a peptide
367  sequence. To thisend, we also evaluated the effect of different proportions of PSAAC on model
368 peaformance. A given peptide sequence was first split into three parts according to the
369 proportions specified. Next, the amino acid composition within each split was calculated,
370 resulting in a total of 60 new features (see Method). The proportions evaluated include 2:2:6,
371  6:2:2, 2.:6:2, and 3:4:3, where, for example, 2:2:6 represents cutting the peptide sequence from
372 the N-terminus for 20% of the total sequence length, another 20% in the middle, and the
373  remaining 60% for the C-terminus.

374

375 Table 1 Comparing different splitting schemes and reduced dimensions for SAMP. The
376  splitting scheme means different ratios of the sequence lengths of the N-terminus region, the
377 middle region, and C-terminus region. For example, 2:2:6 means splitting a peptide into three

378  regions as the N-terminus region accounting for 20% of the total sequences, the middle region
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379  20%, and the C-terminus region 60%. Here we tried four different splitting schemes including
380 2:2:6, 6:2:2, 2:6:2, and 3:4:3. For reduced dimensions of features, we tried three different cases,
381 50, 100, and 150. ACC, accuracy; MCC, Matthews correlation coefficient; Sn, sensitivity; Sp,
382  gpecificity; AUC, area under the recelver operating characteristic curve. Numbers in bold

383  represent the best performance for each splitting scheme.

PSAAC Dimensions Evaluation Metrics
Split ACC MCC Sn Sp AUC
2:2:6 50 93.04 86.04 91.06 94.92 97.58
100 93.29 86.24 91.16 95.02 97.79
150 93.09 86.43 9157 94.82 97.77
6:2:2 50 93.24 86.28  90.65 95.53 97.63
100 93.24 86.70  90.75 95.83 97.68
150 93.29 86.59 90.75 95.73 97.72
2:6:2 50 93.09 86.29 90.55 95.63 97.63
100 93.60 87.24 91.97 95.22 97.87
150 93.65 87.35 91.97 95.33 97.82
3:4:3 50 93.65 87.36 91.77 95.53 97.83
100 93.39 86.85 9157 95.22 97.89
150 93.65 87.34 92.07 95.22 97.93
384
385

386
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387 As shown in Table 1, it presented a comprehensive overview of the SAMP performance
388  under varying ratios of PSAAC with different dimensions. It emphasized how different splitting
389  schemesinfluenced the performance of SAMP, such as ACC, MCC, Sn, Sp, and AUC. The ACC
390 presented minimum variation, ranging from 93.04 to 93.65 which indicated a consistently good
391 peformance across different configurations. The MCC, Sn, Sp and AUC values varied slightly
392 more but still could demondtrate the robust performance of SAMP, with MCC ranging from
393  86.06 to 87.36, Sn from 90.55 to 92.07, Sp from 94.82 to 95.83, and AUC ranging from 97.58 to
394  97.93. Among all the configurations, the 6:2:2 PSAAC ratio reached the highest Sp, while the
395  2:6:2 ratio got the best accuracy and the 3:4:3 ratio outperformed others in terms of ACC, MCC,
396 Sn, and AUC. Analyzing performance based on dimensions, obviously, the dimension of 50 led
397 in ACC and MCC, the dimension of 100 exceeding in Sp, and the dimension of 150 topped in
398 ACC, Sn, and AUC. Therefore, the best modd performance was achieved when the proportion
399 was 2:6:2 with feature dimensions reduced to 150 using RP, which indicated the importance of
400 the peptide sequence information from the middle region of peptides.

401

402 Benchmarking with the state-of-the-art methods

403 To further evaluate the predictive performance of SAMP, we compared it with the
404  performance of two state-of-the-art AMP prediction tools, iAMPpred and AMPScanner V2. We
405  first retrained SAMP with the same training data from the two methods respectively. We
406  compared their performance by using datasets collected from the dbAMP database. In particular,
407 we chose the AMPs and non-AMPs from plants, bacteria, amphibians, and humans. We

408  considered accuracy, MCC, G-measure and F-1 score as our major evaluation metrics.
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409 First, SAMP was trained on 984 AMPs and 984 non-AMPs obtained from the iAM Ppred
410 paper. The trained SAMP was tested on the independent dataset from dbAMP. To assess the
411  peformance of iIAMPpred, we uploaded the independent testing dataset to their web portal

412  (http://cabgrid.res.in:8080/amppred/). Similarly, we trained SAMP using the exact same training

413 dataset from AMPScanner V2 and uploaded the testing data to the web portal provided on

414  https.//www.dveltri.com/ascan/v2/ascan.html. As shown in Fig. 6, SAMP demonstrates better

415  performance compared to both iIAMPpred and AMPScanner across all four metrics. accuracy,
416 MCC, G-measure and F1-score. When specifically comparing SAMP with iAMPpred (Fig. 6A),
417  the most obvious advantage of SAMP is observed in MCC for predicting amphibian labels,
418 where SAMP is 73% more accurate than iAM Ppred. On the other hand, the smallest differenceis
419 noticed in the F1-score for predicting human labels, with SAMP being 11% more effective than
420 iAMPpred. Notably, all MCC values for iAMPpred are negative, indicating this tool may predict
421  adverse results. Comparing SAMP with AMPScanner (Fig. 6B) reveals similar trends. Probably
422  dueto asmaller data set in the APD, the largest disparity is seen in Accuracy for human AMP
423  predictions, where SAMP shows a 29% improvement over AMPScanner, whereas the smallest
424  difference is in the G-measure for human predictions, with a small improvement of 8% by
425  SAMP over AMPScanner.

426

427 Fig. 6 Comparing SAMP with state-of-the-art methods on different species datasets.
428  Comparing SAMP and iIAMPpred across different species in terms of (A) Accuracy, (B) MCC,
429 (C) G-measure and (D) F1-score. SAMP was trained on the same training dataset collected from
430 iAMPpred and tested on independent test dataset collected from dbAMP. Comparing SAMP and

431 AMPScanner V2 across different species in terms of (E) Accuracy, (F) MCC, (G) G-measure
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432 and (H) Fl-score. SAMP was trained on the same training dataset collected from AM PScanner
433 V2 and tested on independent test dataset collected from dbAMP.

434

435 Furthermore, we evaluated the impact of proportionalized split amino acid composition
436  (PSAAC) and the ensemble-based SVM mode architecture on the predictive performance (Fig.
437 7). After training with data from iAMPpred, SAMP consstently outperformed both the SAMP
438  without the PSAAC feature and the vanilla SVYM mode without ensemble learning. This
439  improvement was consistent in all label predictions. Specifically, SAMP demonstrated at least a
440  11% increase in accuracy, 9% in MCC, 5% in G-measure, and 7% in F1-score compared to the
441  sSituation of deleting the PSAAC feature, and at least a 2% increase in accuracy, 1% in MCC, 1%
442  in G-measure, 1% in Fl-score compared to the situation of deleting the layer of ensemble
443  learning. Similar outcomes were observed when trained with AMPScanner data, with SAMP
444  outperforming the aforementioned situations across all measures.

445

446  Fig. 7 PSAAC and ensemble learning contribute to improving prediction performance of
447  SAMP for identifying AMPs. Comparing SAMP and SAMP without the PSAAC feature across
448  different species in terms of (A) Accuracy, (B) MCC, (C) G-measure and (D) F1-score. All
449  models were trained on the same training dataset collected from iAMPpred and tested on
450  independent test dataset collected from dbAMP. Comparing SAMP and SAMP without ensemble
451 learning across different speciesin terms of (E) Accuracy, (F) MCC, (G) G-measure and (H) F1-
452  score. All models were trained on the same training dataset collected from AMPScanner V2 and
453  tested on independent test dataset collected from dbAMP.

454
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455  Featurescaling

456 A crucia step in improving the performance of SVM-based models is feature scaling.
457  Intuitively, if the features are measured in different scales, the decision boundary calculation of
458 SVM would be dominated by the features with the largest scales. In our study, we always scaled
459 the features after the feature generation stage using the scale function in R. In particular, the
460 peptide sequence features are calculated in different scales. For example, the amino acid
461  composition is measured as some values between 0 and 1, but certain physio-chemical properties
462  such as hydrophobicity can have various ranges of value. We believe this step is essential for
463 SAMP to make accurate predictions and is worth experimenting. We generated two sets of
464  features from the peptide sequences used to train IAMPpred, in which one set of features was
465 scaled and the other was not. Two separate SAMP models were trained and evaluated on the
466  independent test datasets. Our results indicate that scaling is indeed extremely important for
467 SAMP, consigtently boosting the model performance by a least 50% across datasets (T able 2).
468

469 Table 2 Scaling the features is crucial for SAMP for identifying AMPs. The scaling is
470 peformed by subtracting the mean of each feature and dividing by the feature's standard
471 deviation. Scaling is a crucia step for SAMP. ACC, accuracy; MCC, Matthews correlation

472  coefficient; AUC, area under the receiver operating characteristic curve.

Dataset Metric SAMP (Scaled) SAMP (No Scale)
dbAMP Plant Accuracy 0.668 0.102

AUC 0.744 0.112

MCC 0.332 -0.184

dbAMP Bacteria Accuracy 0.647 0.071
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AUC 0.703 0.088
MCC 0.234 -0.165
dbAMP Amphibian Accuracy 0.779 0.336
AUC 0.844 0.039
MCC 0.624 -0.169
dbAMP Human Accuracy 0.637 0.058
AUC 0.712 0.137
MCC 0.204 -0.2
473
474
475
476  Discussion
477 AMPs have gained greater attention as an alternative to chemical antibiotics. Indeed, some

478 are aready in applications either as antibiotics or as food preservatives [69]. Computational
479  methods are developed as a supplement for wet lab experiments to design and identify AMPs,
480  which reduces the cost and resources required. In this study, we present a novel ensemble-based
481 mode that achieves better AMP prediction performance than existing, state-of-the-art methods.
482  To the best of our knowledge, SAMP is the first method that adopts PSAAC as one of the
483  numeric features for AMP prediction tasks. Amino acid compositional splitting sheds new light
484  on amino acid compositions of natural AMPs, which was initially discovered in 2009 [70Q]. In
485 natural AMPs, alanine, glycine, leucine, and lysine are frequently occurring (or abundant) amino
486  acids, while higtidine, methionine, and tryptophan are least abundant amino acids. Our sequence
487  splitting here reveals that leucine is preferentially dominant at the N-terminus of AMPs, while

488 aanineis mainly located at the middle region. Glycine can appear frequently both at the N and
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489  the middle regions. In contrast, lysine is primarily abundant in the middle and C-terminus of
490 natural AMPs. Interestingly after sequence splitting, the least abundant methionine and
491  tryptophan appear mainly at the middle and the C-terminus regions, whereas histidine occupies
492  the N-terminus. Also of note is that acidic glutamic acid is located at the N-terminus and acidic
493  agpartic acid prefers the C-terminus region.

494 By combining this novel sequence-splitting feature with an ensemble-based SVM model
495  architecture, SAMP is able to maximally extract peptide sequence information and outperform
496  methods that apply either deep learning or traditional machine learning techniques. Additionally,
497  we developed SAMP based on RP, a powerful dimension-reduction algorithm based on the
498  Johnson—Lindenstrauss lemma [66] which can preserve the distances between data points while
499  reducing the dimension [71]. As the number of data points continues to grow, the accuracy of
500 prediction may be influenced due to the low efficiency of computational efficiency. Therefore,
501 RP based models should have better performance compared to those without it. This has been
502 evidenced in a large-scale single-cell RNA-sequencing (sScRNA-seq) data processed algorithm
503  which showed a higher classification efficiency under the contribution of ensemble RP layer [72].
504  As expected, our modd with the ensemble RP layer also has a better performance as shown in
505 Fig. 7. Our prediction also implies that data size influences prediction performance since the
506 human AMPs, with the least data (<150 AMPs in the current APD), behave poorest compared to
507 AMPsfrom bacteria, plants, and animals with more known positive data.

508 We also assessed the performance of SAMP with specific tools, like iAMPpred and
509 AMPScanner V2, which are also designed for AMP prediction based on SYM and DNN
510 respectively. SAMP proved dightly better performance than AMPScanner V2 and obviously

511 higher accuracy than iAMPpred. Possible explanation for this discrepancy should be the
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512 omission of PSAAC and ensemble RP layer. Overal, this newly designed tool, SAMP, is
513  expected to compensate for the existing tools for AMP prediction.

514 For future research directions, we will consider different ensemble methods by including
515 more diverse modd categories to improve the prediction accuracy. With the advance of deep
516 learning, it would be appealing to investigate the performance of DL based models combined
517 with PSAAC features, or whether the deep neural networks are able to capture the PSAAC

518 features within their embedding space.
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519 Key points

520 We propose a novel method called SAMP that develops a new type of features called
521  proportionalized split amino acid composition (PSAAC) to significantly boost the performance
522  of identifying antimicrobial peptides.

523

524  PSAAC can identify residue patterns at both the N-terminus and the C-terminus as well as to
525  retain sequence order information from the middle region of peptide fragments.

526

527 SAMP leverages an ensemble learning framework based on random projection to integrate
528 various classifiersinto a cohesive framework, effectively improving the performance accuracy.
529

530 SAMP outperforms state-of-the-art methods for AMP identification in terms of accuracy, G-
531  measure, MCC and F1-score.

532

533 SAMP is a versatile tool capable of identifying AMPs from a variety of organisms including
534  human, plant, bacteria and amphibian.

535

536 Competing interests

537  Theauthors declare no competing interests.

538

539  Supplementary Data

540 Supplementary Fig. S1


https://doi.org/10.1101/2024.04.25.590553
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.25.590553; this version posted April 26, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

541  Amino acid distribution in AMPs and non-AM Ps datasets based on the dataset collected
542 from AMPScanner V2. Amino acid distribution of al sequences in (A) AMPs and (B) non-
543  AMPs dataset. Distribution of amino acid sequences in the N-terminus region, the middle region
544  and the C-terminus region of (C) AMPs Dataset and (D) non-AM Ps dataset.

545

546  Supplementary Fig. S2

547  Amino acid distribution in AMPs and non-AM Ps datasets based on the dataset collected
548 from dbAMP. Amino acid distribution of all sequencesin (A) AMPs and (B) non-AMPs dataset.
549  Distribution of amino acid sequences in the N-terminus region, the middle region and the C-
550 terminusregion of (C) AMPs Dataset and (D) non-AMPs dataset.
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