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Abstract 

This study showcases 121 new genomes of spore-forming Bacillales from strains collected globally from a 

variety of habitats, assembled using Oxford Nanopore long-read and MGI short-read sequences. Bacilli are 

renowned for their capacity to produce diverse secondary metabolites with use in agriculture, biotechnology, 

and medicine. These secondary metabolites are encoded within biosynthetic gene clusters (smBGCs). 

smBGCs have significant research interest due to their potential for the discovery of new bioactivate 

compounds. Our dataset includes 62 complete genomes, 2 at chromosome level, and 57 at contig level, 

covering a genomic size range from 3.50 Mb to 7.15 Mb. Phylotaxonomic analysis revealed that these 

genomes span 16 genera, with 69 of them belonging to Bacillus. A total of 1,176 predicted BGCs were 

identified by in silico genome mining. We anticipate that the open-access data presented here will expand the 

reported genomic information of spore-forming Bacillales and facilitate a deeper understanding of the genetic 

basis of Bacillales’ potential for secondary metabolite production. 
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Background & Summary  

Bacillus is a genus of Gram-positive, rod-shaped bacteria that are widely distributed in soil, water, and 

other diverse environments. Bacillus species have been extensively studied for their potential to produce 

secondary metabolites (SMs), which have a wide range of functions and activities, and are being harnessed 

in various fields, such as agriculture, biotechnology, and medicine1,2. Several studies have reported that 

Bacillus and related genera produce secondary metabolites, an ability conferred by the presence of biosynthetic 

gene clusters3–5.  

 

Secondary metabolite biosynthetic gene clusters (smBGCs) are genomic regions containing two or more 

genes involved in the biosynthetic pathway of secondary metabolites. These genes encode enzymes, transport 

proteins, regulatory factors, and other accessory proteins that contribute to the secondary metabolite 

biosynthetic process6. The composition and structures of smBGCs can vary widely across and even within 

the same species. The importance and feasibility of exploring species-specific BGCs have been recently 

highlighted7,8. Many bioinformatics tools have been developed to predict, identify, and characterize smBGCs9, 

which require high quality genome sequences10. The development of sequencing technologies has made 

whole genome sequencing simpler and faster. In particular, the integration of high throughput sequencing 

(short-read) and long-read sequencing data, can lead to high quality assemblies of genomes, including 

complete genomes11. 

 

In this study, we performed whole genome sequencing for strains collected from different countries and 

regions spanning four different continents (Online-only Figure 1), based on an integrated approach, including 

Oxford Nanopore long-read sequencing and MGI short-read sequencing. Here, we sequenced and assembled 

121 genomes using this approach. An outline of the study's experimental and analysis design is presented in 

Figure 1, and detailed descriptions of the workflow are provided in the methodology sections. According to 

the completeness criteria of the National Center for Biotechnology Information (NCBI), we produced, in 

total, 62 assemblies at a complete genome level, 2 at chromosome level, and a remaining 57 at contig level 

(Online-only Table 1 for details). Overall, the genome sizes range from 3.50 Mb to 7.15 Mb (5.09 Mb on 

average), with a GC content ranging from 34.50% to 54.00% (40.19% on average). Based on NCBI PGAP12, 

an average of 5,119 genes, including 4,851 protein-coding genes were annotated in the genomes (Table 1). 
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Taxonomic analysis showed that these 121 genomes could be classified into 16 genera within the Bacillales 

order, most of which were species from the Bacillus genus (Figure 2). (Online-only Table 2).  

 

To assess the potential for secondary metabolite production in these isolates, the genome mining tool 

BGCFlow13 was applied for BGC identification and annotation, resulting in a total of 1,176 BGCs predicted. 

The BGCs were categorized into seven classes through BiG-SCAPE14, part of the BGCFlow executable, 

which showed that RiPPs have the greatest count of 381 and comprise the highest percentage at 32.4% 

(Online-only Table 3). The distribution of BGC counts per genus highlights the uneven abundance of BGCs 

between the distinct genera (Figure 3). Notably, the genera Bacillus and Paenibacillus harbor the highest 

number of BGCs among the genomes presented here. 

 

The datasets and genomic analysis results described here greatly expand the reported genomic 

information of spore-forming Bacillales and will also strengthen studies advancing our understanding of the 

secondary metabolite potential of the Bacillales order. 
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Method 

Sample collection and isolation  

Sample collection was dependent on the isolating laboratory. Using soil samples collected at diverse 

locations in Germany, Denmark, China, and Mexico, spore-forming soil bacteria were isolated after heat 

treatment at 80°C for 10 minutes and spreading the soil suspension on lysogeny broth (LB) or tryptic soy 

broth (TSB) plates with 1.5% agar that were incubated at 37°C for 2 days.  

 

Bacillus altitudinis J6-1 and J6-2 were isolated from a biofilm sample obtained from the pier at Jyllinge 

Harbour (55.744923; 12.094888). Biofilm samples were incubated at 80°C for 15 mins and subsequently 

plated on LB agar and incubated at 25°C.  

 

Other marine samples were collected from the Cochin estuary and adjacent coastal waters (South-west 

coast of India), during pre-monsoon (March), monsoon (August) and post-monsoon (December) periods of 

the year 2012 and 2013. Water samples were serially diluted and spread on Norris Glucose Nitrogen free 

medium (NGNF medium, HIMEDIA-M712) with 1.5% agar (Himedia GRM 666) and incubated at 28±1 °C 

for 7-14 days. Separated colonies with different morphologies were picked using a sterile inoculation loop, 

restreaked and maintained on the slants of fresh nitrogen free culture medium at 4 °C. Cell morphology and 

presence of endospore was analyzed by light microscopy (Olympus CX21i). Rod shaped endospore forming 

isolates were selected for this study. 

 

Isolate Mi106 D2 head1 chi was obtained from the head of a worker termite from a colony of 

Microtermes sp. and Mn106-1 head2 chi was obtained from the head of a worker from a colony of 

Macrotermes natalensis in Mookgophong, South Africa (S24 40 30.5 E28 47 50.4) in 2010. In both cases, 

the surface of a worker termite was rinsed using phosphate buffer saline (PBS). Subsequently, the head of 

the termite was crushed in 200 µl PBS, which was subsequently spread onto chitin medium (4 g chitin, 0.7 g 

K2HPO4, 0.3 g KH2PO4, 0.5 g MgSO4 × 5H2O, 0.01 g FeSO4 × 7H20, 0.001 g ZnSO4, 0.001 g MnCl2, and 20 

g of agar per liter). Growing colonies on plates were streaked onto Yeast Malt Extract Agar medium (4 g 

yeast extract, 10 g malt extract, 4 g D-glucose and 20 g bacteriological agar per liter), and once in pure culture, 

stored in 10 % glycerol at −20 °C. Isolate 11B was obtained using the same approach on a fragment from a 
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fungus garden of a Macrotermes natalensis colony collected in Rietondale, South Africa (S25 43 45.6 E28 

14 09.9) in 2010. 

 

Strains GT4_IS1 and MW2_IS1 were previously isolated from the uropygial glands of Great tits (Parus 

major) from Denmark and Czechia respectively15. 

 

In each case, observed colonies were re-streaked to obtain single colonies, and subsequently stored at -

80°C with 28% glycerol added. To obtain primary information about these strains, colony PCR was employed 

to amplify the 16S rRNA gene. Strains that exhibited low similarity and distant branches in the 16S rRNA 

phylogenetic tree were selected for further study. 

 

Genomic DNA (gDNA) extraction 

For genomic DNA (gDNA) extraction, a pure single colony of each isolate was inoculated in 5 ml of 

LB and incubated at 37°C for more than 12 hours. Then gDNA was extracted using E.Z.N.A. DNA extraction 

kits (OMEGA Bio-Tek Inc., Norcross, GA, USA) following the manufacturer’s instructions. The quality and 

quantity of gDNA were assessed using agarose gel electrophoresis and Nanodrop (Thermo Fisher Scientific, 

MA, USA), to guarantee that the integrity, concentration, and purity met the requirements for library 

construction and sequencing. 

 

Short-read sequencing on MGI platform 

For each strain, 300 ng gDNA was used for short-read sequencing library construction according to MGI 

paired-end libraries construction protocol16. Briefly, gDNA was fragmented to 200-300 bp using segmentase 

followed by fragment selection with VAHTS™ DNA Clean Beads (Vazyme, Nanjing, Jiangsu, China). 

Subsequently, end repair, A-tailing reactions and adapter ligation were implemented. After PCR and 

purification, the concentration of each library was determined using Qubit® dsDNA HS Assay Kit (Thermo 

Fisher Scientific) as quality control. The qualified libraries were sequenced on the DNBSEQ-G400 (MGI 

Tech Co., Ltd.) platform according to the manufacturer’s instructions to generate paired end reads (150 bps 

at each end). 

 

Long-read sequencing on Oxford Nanopore platform 
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For Oxford Nanopore sequencing, the libraries were prepared using the SQK-RBK110.96 barcoding kit 

(Oxford Nanopore Technologies, Oxford, UK) starting from 50ng DNA for each strain. In brief, each sample 

was fragmented and ligated by a unique rapid barcode with incubation at 30°C for 2 minutes and then at 

80 °C for 2 minutes, then all barcoded samples were pooled together in a 1:1 ratio and purified by SPRI 

beads. After ligation of 1 µl of Rapid Adapter F (RAP F) to 11 µl of pooled DNA, the final library was 

quantified using Nanodrop. The ONT library was loaded into the MinION spot-on Flow Cell (R9 Version) 

and sequenced on a MinION Mk1B device according to standard protocol. The resulting reads were base 

called and demultiplexed with MinKNOW UI v.4.1.22. 

Genome assembly  

For de novo assembly, the MGISEQ paired end short reads were adapter and quality trimmed using fastp 

v.0.22.0 and the Nanopore long reads were adapter trimmed using porechop v.0.2.1, using standard 

settings17,18. The trimmed long reads from Nanopore were assembled with flye v.2.9.1-b1780, and 

subsequently the trimmed reads from both platforms and the long-read assembly were hybrid assembled with 

Unicycler v.0.5.0 using the –existing_long_read_assembly option19,20. The completeness and contamination 

levels of each strain were assessed using CheckM v.1.2.221. 

 

Genome annotation, taxonomic analysis and BGC prediction 
The genomes of the 121 isolates were taxonomically classified and gene-annotated in a two-step process. 

Initially, we employed GTDB-Tk v2.11, using the ‘classify_wf’ command, to preliminarily assign taxonomic 

classifications to the FASTA format genomes. Subsequently, these genomes were uploaded to the NCBI 

GenBank database, where they were annotated using the NCBI Prokaryotic Genome Annotation Pipeline 

(PGAP)12,22. Following this, we conducted a comprehensive analysis of the annotated genomes using 

BGCFlow v0.7.1. This tool integrates multiple genome mining and phylogenetic tools into one pipeline13. To 

set up the analysis, we created a folder containing the project configuration structure as defined by BGCFlow 

Portable Encapsulated Project (PEP)23 specification. The designated project folder contains a comma 

separated sample file which contains the NCBI-assigned GenBank accession numbers of the 121 de novo 

assembled genomes and the PEP configuration file for the BGCFlow run. The YAML configuration file for 

the project was configured to enable GTDB-Tk and autoMLST wrapper for phylogenetic tree construction, 

antiSMASH24 for BGC annotation, and BiG-SCAPE14 for BGC dereplication and generating summary tables. 
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BGCFlow was executed using standard settings. 

 

We conducted a non-exhaustive search for plasmids within our de novo assembled genomes by 

identifying contiguous sequences (contigs) as plasmids if they were circular and if RFPlasmid25 (v.0.0.18), 

an open-source software that classifies contigs as plasmid or chromosomal based on the presence of marker 

genes and k-mers, classified them as plasmids. Due to the incomplete assembly of several genomes, which 

resulted in the presence of linear fragments, the absence of any plasmid identified by this method does not 

necessarily indicate their true absence.  

 

Data Records 
The sample information, assembled genomes, and raw reads of long-read sequencing on Nanopore and 

short-read sequencing on MGISEQ have been deposited in NCBI at BioProject under PRJNA960711 

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA960711) (Online-only Table 1 and Online-only Table 4 

for accession and other details). 

Technical Validation 

In this study, the main steps of experimental procedures and data analysis have been validated. For short-

read sequencing on MGI, the libraries were quantified with a minimum of 10 ng/μl. For de novo assembly, 

default parameters were used for quality trimming. In brief, after filtering, an average of 2.69 G MGI reads 

(0.66 G-6.52 G, PE150) and 76,507 Nanopore reads with mean N50 of 6,709 bp (1,777bp-13,698bp) for each 

sample were generated (Online-only Table 5). CheckM was used for validation of the genome completeness 

and contamination. 

 

Usage Notes 

Not used 

 

Code availability 

The software versions and parameters used for sequence filtering, assembly, and genome mining in this 
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work are described in Methods. Custom code for setting up the BGCFlow run, processing the output, and 

producing figures, as well as for downloading the genomes, is available at 

https://github.com/ljdnielsen/bacillales_genomes_figures; https://doi.org/10.5281/zenodo.10907189. 
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Figures legends 

Figure 1 Illustration of Genome assembly and BGC analysis. (a) Strategy for sequencing and genome assembly, (b) the 

BGC analysis pipeline. 

Figure 2 The phylogenetic trees of 121 genomes with plasmid content and BGC class and count indicated. 

Figure 3 The number of BGCs in each genus of the 121 genomes. 

Online-only Figure 1 Distribution of sample collection site coordinates depicted using OpenStreetMap.  

 

Tables legends 

Table 1. Summary of general genome information for each genus 

Online-only Table 1. Summary characteristics of genome assembly and annotation 

Online-only Table 2. Taxonomic placement of the 121 genomes 

Online-only Table 3. Summary statistics of the BGCs in the 121 genomes 

Online-only Table 4. Datasets on the 121 isolates 

Online-only Table 5. Sequencing data quality of the 121 isolates 
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Table 1. Summary of general genome information for each genus 
 

Genus # of 
isolates 

Assembly level Average 
genome size 

(min and max) 
(Mbps) 

Average GC 
(min and max) 

(%) 

Average gene 
number 

(min and max) 
complete 
genome 

chromosome contig 

Bacillus 69 35 2 32 4.86 
(3.50-6.33) 

39.46  
(34.40-46.50) 

4,998  
(3,616-6,554) 

Peribacillus 16 7 0 9 5.59 
(5.35-6.02) 

40.25  
(39.50-40.50) 

5,452 
(5,245-5,817) 

Neobacillus 8 6 0 2 6.05  
(5.59-6.29) 

38.63  
(38.00-40.00) 

5,917 
(5,383-6,233) 

Paenibacillus 5 3 0 2 6.40  
(5.29-7.15) 

46.60  
(44.00-50.00) 

5,724 
(4,881-6,560) 

Lysinibacillus 5 2 0 3 5.17  
(4.56-5.54) 

36.80  
(36.50-37.50) 

5,180 
(4,575-5,605) 

Cytobacillus 4 2 0 2 5.03  
(4.73-5.30) 

40.50  
(37.00-42.00) 

5,034 
(4,752-5,251) 

Fictibacillus 4 1 0 3 5.90  
(3.94-5.40) 

42.88  
(39.50-44.00) 

5,070 
(4,156-5,551) 

Brevibacillus 2 1 0 1 5.68 and 6.08 52.00 and 54.00 5,498 and 5,699 

Mesobacillus 1 1 0 0 4.80 43.00 4,782 

Siminovitchia 1 1 0 0 3.74 44.00 3,727 

Halobacillus 1 1 0 0 3.68 47.00 3,841 

Virgibacillus 1 1 0 0 4.01 37.50 3,880 

Priestia 1 1 0 0 3.82 38.00 3,985 

Rossellomorea 1 0 0 1 4.33 48.00 4,467 

Ureibacillus 1 0 0 1 4.45 36.00 4,240 

Ferdinandcohnia 1 0 0 1 4.77 37.50 4,746 

In total 121 62 2 57 5.09  
(3.50-7.15) 

40.19  
(34.50-54.00) 

5,119 (3,616-6,560) 
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