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Abstract

This study showcases 121 new genomes of spore-forming Bacillales from strains collected globally from a
variety of habitats, assembled using Oxford Nanopore long-read and MGI short-read sequences. Bacilli are
renowned for their capacity to produce diverse secondary metabolites with use in agriculture, biotechnology,
and medicine. These secondary metabolites are encoded within biosynthetic gene clusters (smBGCs).
smBGCs have significant research interest due to their potential for the discovery of new bioactivate
compounds. Our dataset includes 62 complete genomes, 2 at chromosome level, and 57 at contig level,
covering a genomic size range from 3.50 Mb to 7.15 Mb. Phylotaxonomic analysis revealed that these
genomes span 16 genera, with 69 of them belonging to Bacillus. A total of 1,176 predicted BGCs were
identified by in silico genome mining. We anticipate that the open-access data presented here will expand the
reported genomic information of spore-forming Bacillales and facilitate a deeper understanding of the genetic

basis of Bacillales’ potential for secondary metabolite production.
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Background & Summary

Bacillus is a genus of Gram-positive, rod-shaped bacteria that are widely distributed in soil, water, and
other diverse environments. Bacillus species have been extensively studied for their potential to produce
secondary metabolites (SMs), which have a wide range of functions and activities, and are being harnessed
in various fields, such as agriculture, biotechnology, and medicine'?. Several studies have reported that
Bacillus and related genera produce secondary metabolites, an ability conferred by the presence of biosynthetic

gene clusters®™>.

Secondary metabolite biosynthetic gene clusters (smBGCs) are genomic regions containing two or more
genes involved in the biosynthetic pathway of secondary metabolites. These genes encode enzymes, transport
proteins, regulatory factors, and other accessory proteins that contribute to the secondary metabolite
biosynthetic process®. The composition and structures of smBGCs can vary widely across and even within
the same species. The importance and feasibility of exploring species-specific BGCs have been recently
highlighted”. Many bioinformatics tools have been developed to predict, identify, and characterize smBGCs’,
which require high quality genome sequences'’. The development of sequencing technologies has made
whole genome sequencing simpler and faster. In particular, the integration of high throughput sequencing
(short-read) and long-read sequencing data, can lead to high quality assemblies of genomes, including

complete genomes'".

In this study, we performed whole genome sequencing for strains collected from different countries and
regions spanning four different continents (Online-only Figure 1), based on an integrated approach, including
Oxford Nanopore long-read sequencing and MGI short-read sequencing. Here, we sequenced and assembled
121 genomes using this approach. An outline of the study's experimental and analysis design is presented in
Figure 1, and detailed descriptions of the workflow are provided in the methodology sections. According to
the completeness criteria of the National Center for Biotechnology Information (NCBI), we produced, in
total, 62 assemblies at a complete genome level, 2 at chromosome level, and a remaining 57 at contig level
(Online-only Table 1 for details). Overall, the genome sizes range from 3.50 Mb to 7.15 Mb (5.09 Mb on
average), with a GC content ranging from 34.50% to 54.00% (40.19% on average). Based on NCBI PGAP'?,

an average of 5,119 genes, including 4,851 protein-coding genes were annotated in the genomes (Table 1).
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Taxonomic analysis showed that these 121 genomes could be classified into 16 genera within the Bacillales

order, most of which were species from the Bacillus genus (Figure 2). (Online-only Table 2).

To assess the potential for secondary metabolite production in these isolates, the genome mining tool
BGCFlow'? was applied for BGC identification and annotation, resulting in a total of 1,176 BGCs predicted.
The BGCs were categorized into seven classes through BiG-SCAPE', part of the BGCFlow executable,
which showed that RiPPs have the greatest count of 381 and comprise the highest percentage at 32.4%
(Online-only Table 3). The distribution of BGC counts per genus highlights the uneven abundance of BGCs
between the distinct genera (Figure 3). Notably, the genera Bacillus and Paenibacillus harbor the highest

number of BGCs among the genomes presented here.

The datasets and genomic analysis results described here greatly expand the reported genomic
information of spore-forming Bacillales and will also strengthen studies advancing our understanding of the

secondary metabolite potential of the Bacillales order.
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Method

Sample collection and isolation

Sample collection was dependent on the isolating laboratory. Using soil samples collected at diverse
locations in Germany, Denmark, China, and Mexico, spore-forming soil bacteria were isolated after heat
treatment at 80°C for 10 minutes and spreading the soil suspension on lysogeny broth (LB) or tryptic soy

broth (TSB) plates with 1.5% agar that were incubated at 37°C for 2 days.

Bacillus altitudinis J6-1 and J6-2 were isolated from a biofilm sample obtained from the pier at Jyllinge
Harbour (55.744923; 12.094888). Biofilm samples were incubated at 80°C for 15 mins and subsequently

plated on LB agar and incubated at 25°C.

Other marine samples were collected from the Cochin estuary and adjacent coastal waters (South-west
coast of India), during pre-monsoon (March), monsoon (August) and post-monsoon (December) periods of
the year 2012 and 2013. Water samples were serially diluted and spread on Norris Glucose Nitrogen free
medium (NGNF medium, HIMEDIA-M712) with 1.5% agar (Himedia GRM 666) and incubated at 28+1 °C
for 7-14 days. Separated colonies with different morphologies were picked using a sterile inoculation loop,
restreaked and maintained on the slants of fresh nitrogen free culture medium at 4 °C. Cell morphology and
presence of endospore was analyzed by light microscopy (Olympus CX211). Rod shaped endospore forming

isolates were selected for this study.

Isolate Mil06 D2 headl chi was obtained from the head of a worker termite from a colony of
Microtermes sp. and Mn106-1 head2 chi was obtained from the head of a worker from a colony of
Macrotermes natalensis in Mookgophong, South Africa (S24 40 30.5 E28 47 50.4) in 2010. In both cases,
the surface of a worker termite was rinsed using phosphate buffer saline (PBS). Subsequently, the head of
the termite was crushed in 200 pl PBS, which was subsequently spread onto chitin medium (4 g chitin, 0.7 g
K>HPO4, 0.3 g KH,PO4, 0.5 g MgSO4 x SH,0, 0.01 g FeSO4 x 7H»0, 0.001 g ZnSO4, 0.001 g MnCl,, and 20
g of agar per liter). Growing colonies on plates were streaked onto Yeast Malt Extract Agar medium (4 g
yeast extract, 10 g malt extract, 4 g D-glucose and 20 g bacteriological agar per liter), and once in pure culture,

stored in 10 % glycerol at —20 °C. Isolate 11B was obtained using the same approach on a fragment from a
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fungus garden of a Macrotermes natalensis colony collected in Rietondale, South Africa (S25 43 45.6 E28

14 09.9) in 2010.

Strains GT4_IS1 and MW2_IS1 were previously isolated from the uropygial glands of Great tits (Parus

major) from Denmark and Czechia respectively'.

In each case, observed colonies were re-streaked to obtain single colonies, and subsequently stored at -
80°C with 28% glycerol added. To obtain primary information about these strains, colony PCR was employed
to amplify the 16S rRNA gene. Strains that exhibited low similarity and distant branches in the 16S rRNA

phylogenetic tree were selected for further study.

Genomic DNA (gDNA) extraction

For genomic DNA (gDNA) extraction, a pure single colony of each isolate was inoculated in 5 ml of
LB and incubated at 37°C for more than 12 hours. Then gDNA was extracted using E.Z.N.A. DNA extraction
kits (OMEGA Bio-Tek Inc., Norcross, GA, USA) following the manufacturer’s instructions. The quality and
quantity of gDNA were assessed using agarose gel electrophoresis and Nanodrop (Thermo Fisher Scientific,
MA, USA), to guarantee that the integrity, concentration, and purity met the requirements for library

construction and sequencing.

Short-read sequencing on MGI platform

For each strain, 300 ng gDNA was used for short-read sequencing library construction according to MGI
paired-end libraries construction protocol'®. Briefly, gDNA was fragmented to 200-300 bp using segmentase
followed by fragment selection with VAHTS™ DNA Clean Beads (Vazyme, Nanjing, Jiangsu, China).
Subsequently, end repair, A-tailing reactions and adapter ligation were implemented. After PCR and
purification, the concentration of each library was determined using Qubit® dsDNA HS Assay Kit (Thermo
Fisher Scientific) as quality control. The qualified libraries were sequenced on the DNBSEQ-G400 (MGI
Tech Co., Ltd.) platform according to the manufacturer’s instructions to generate paired end reads (150 bps

at each end).

Long-read sequencing on Oxford Nanopore platform
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For Oxford Nanopore sequencing, the libraries were prepared using the SQK-RBK110.96 barcoding kit
(Oxford Nanopore Technologies, Oxford, UK) starting from 50ng DNA for each strain. In brief, each sample
was fragmented and ligated by a unique rapid barcode with incubation at 30°C for 2 minutes and then at
80 °C for 2 minutes, then all barcoded samples were pooled together in a 1:1 ratio and purified by SPRI
beads. After ligation of 1 pl of Rapid Adapter F (RAP F) to 11 pl of pooled DNA, the final library was
quantified using Nanodrop. The ONT library was loaded into the MinlON spot-on Flow Cell (R9 Version)
and sequenced on a MinlON Mk1B device according to standard protocol. The resulting reads were base

called and demultiplexed with MinKNOW UI v.4.1.22.

Genome assembly
For de novo assembly, the MGISEQ paired end short reads were adapter and quality trimmed using fastp
v.0.22.0 and the Nanopore long reads were adapter trimmed using porechop v.0.2.1, using standard

settings'"!1®

. The trimmed long reads from Nanopore were assembled with flye v.2.9.1-b1780, and
subsequently the trimmed reads from both platforms and the long-read assembly were hybrid assembled with

Unicycler v.0.5.0 using the —existing long read_assembly option'>?°. The completeness and contamination

levels of each strain were assessed using CheckM v.1.2.2%!,

Genome annotation, taxonomic analysis and BGC prediction

The genomes of the 121 isolates were taxonomically classified and gene-annotated in a two-step process.
Initially, we employed GTDB-Tk v2.11, using the ‘classify wf’ command, to preliminarily assign taxonomic
classifications to the FASTA format genomes. Subsequently, these genomes were uploaded to the NCBI
GenBank database, where they were annotated using the NCBI Prokaryotic Genome Annotation Pipeline
(PGAP)'>?2, Following this, we conducted a comprehensive analysis of the annotated genomes using
BGCFlow v0.7.1. This tool integrates multiple genome mining and phylogenetic tools into one pipeline'®. To
set up the analysis, we created a folder containing the project configuration structure as defined by BGCFlow
Portable Encapsulated Project (PEP)* specification. The designated project folder contains a comma
separated sample file which contains the NCBI-assigned GenBank accession numbers of the 121 de novo
assembled genomes and the PEP configuration file for the BGCFlow run. The YAML configuration file for
the project was configured to enable GTDB-Tk and autoMLST wrapper for phylogenetic tree construction,

antiSMASH?* for BGC annotation, and BiG-SCAPE'* for BGC dereplication and generating summary tables.
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BGCFlow was executed using standard settings.

We conducted a non-exhaustive search for plasmids within our de novo assembled genomes by
identifying contiguous sequences (contigs) as plasmids if they were circular and if RFPlasmid* (v.0.0.18),
an open-source software that classifies contigs as plasmid or chromosomal based on the presence of marker
genes and k-mers, classified them as plasmids. Due to the incomplete assembly of several genomes, which
resulted in the presence of linear fragments, the absence of any plasmid identified by this method does not

necessarily indicate their true absence.

Data Records

The sample information, assembled genomes, and raw reads of long-read sequencing on Nanopore and
short-read sequencing on MGISEQ have been deposited in NCBI at BioProject under PRINA960711

(https://www.ncbi.nlm.nih.gov/bioproject/PRINA960711) (Online-only Table 1 and Online-only Table 4

for accession and other details).

Technical Validation

In this study, the main steps of experimental procedures and data analysis have been validated. For short-
read sequencing on MGI, the libraries were quantified with a minimum of 10 ng/pl. For de novo assembly,
default parameters were used for quality trimming. In brief, after filtering, an average of 2.69 G MGI reads
(0.66 G-6.52 G, PE150) and 76,507 Nanopore reads with mean N50 of 6,709 bp (1,777bp-13,698bp) for each
sample were generated (Online-only Table 5). CheckM was used for validation of the genome completeness

and contamination.

Usage Notes

Not used

Code availability

The software versions and parameters used for sequence filtering, assembly, and genome mining in this
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work are described in Methods. Custom code for setting up the BGCFlow run, processing the output, and
producing  figures, as well as for downloading the genomes, is available at

https://github.com/ljdnielsen/bacillales_genomes_figures; https://doi.org/10.5281/zenodo.10907189.
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Figures legends

Figure 1 Illustration of Genome assembly and BGC analysis. (a) Strategy for sequencing and genome assembly, (b) the
BGC analysis pipeline.

Figure 2 The phylogenetic trees of 121 genomes with plasmid content and BGC class and count indicated.

Figure 3 The number of BGCs in each genus of the 121 genomes.

Online-only Figure 1 Distribution of sample collection site coordinates depicted using OpenStreetMap.

Tables legends

Table 1. Summary of general genome information for each genus

Online-only Table 1. Summary characteristics of genome assembly and annotation
Online-only Table 2. Taxonomic placement of the 121 genomes

Online-only Table 3. Summary statistics of the BGCs in the 121 genomes
Online-only Table 4. Datasets on the 121 isolates

Online-only Table 5. Sequencing data quality of the 121 isolates
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Table 1. Summary of general genome information for each genus

Genus # of Assembly level Average Average GC Average gene
isolates comp]ete chromosome contig genome size (min and max) number
genome (min and max) (%) (min and max)
(Mbps)
Bacillus 69 35 2 32 4.86 39.46 4,998
(3.50-6.33) (34.40-46.50) (3,616-6,554)
Peribacillus 16 7 0 9 5.59 40.25 5,452
(5.35-6.02) (39.50-40.50) (5,245-5,817)
Neobacillus 8 6 0 2 6.05 38.63 5,917
(5.59-6.29) (38.00-40.00) (5,383-6,233)
Paenibacillus 5 3 0 2 6.40 46.60 5,724
(5.29-7.15) (44.00-50.00) (4,881-6,560)
Lysinibacillus 5 2 0 3 5.17 36.80 5,180
(4.56-5.54) (36.50-37.50) (4,575-5,605)
Cytobacillus 4 2 0 2 5.03 40.50 5,034
(4.73-5.30) (37.00-42.00) (4,752-5,251)
Fictibacillus 4 1 0 3 5.90 42.88 5,070
(3.94-5.40) (39.50-44.00) (4,156-5,551)
Brevibacillus 2 1 0 1 5.68 and 6.08  52.00 and 54.00 5,498 and 5,699
Mesobacillus 1 1 0 0 4.80 43.00 4,782
Siminovitchia 1 1 0 0 3.74 44.00 3,727
Halobacillus 1 1 0 0 3.68 47.00 3,841
Virgibacillus 1 1 0 0 4.01 37.50 3,880
Priestia 1 1 0 0 3.82 38.00 3,985
Rossellomorea 1 0 0 1 4.33 48.00 4,467
Ureibacillus 1 0 0 1 4.45 36.00 4,240
Ferdinandcohnia 1 0 0 1 4.77 37.50 4,746
In total 121 62 2 57 5.09 40.19 5,119 (3,616-6,560)

(3.50-7.15) (34.50-54.00)
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Map of Sampling Locations
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