

1 **A novel micronemal protein, *Scot1*, is essential for apicoplast biogenesis and
2 liver stage development in *Plasmodium berghei***

3 Ankit Ghosh¹, Akancha Mishra^{1,2}, Raksha Devi^{1,2}, Sunil Kumar Narwal¹, Nirdosh^{1,2},

4 Pratik Narain Srivastava¹, Satish Mishra^{1,2*}

5 ¹Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research

6 Institute, Lucknow 226031, India.

7 ²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

8

9 **Corresponding author:** Satish Mishra

10 **Email:** satish.mishra@cdri.res.in

11

12 **ORCID ID:**

13 Satish Mishra: 0000-0002-8942-6416

14 Ankit Ghosh: 0009-0005-5615-1208

15 Akancha Mishra: 0009-0005-4775-3338

16 Raksha Devi: 0009-0009-6929-766X

17 Sunil Kumar Narwal: 0000-0001-5476-9753

18 Nirdosh: 0009-0005-9930-3865

19 Pratik Narain Srivastava: 0000-0001-9273-675X.

20

21 **Running title:** *Scot1* regulates parasite maturation in the liver.

22

23

24

25

26 **Abstract**

27 *Plasmodium* sporozoites invade hepatocytes, transform into liver stages, and
28 replicate into thousands of merozoites that infect erythrocytes and cause malaria.
29 Proteins secreted from micronemes play an essential role in hepatocyte invasion,
30 and unneeded micronemes are subsequently discarded for replication. The liver-
31 stage parasites are potent immunogens that prevent malarial infection. Late liver-
32 stage-arresting genetically attenuated parasites (GAPs) exhibit greater protective
33 efficacy than early GAP. However, the number of late liver-stage GAPs for
34 generating GAPs with multiple gene deletions is limited. Here, we identified *Scot1*
35 (Sporozoite Conserved Orthologous Transcript 1), which was previously shown to be
36 upregulated in sporozoites, and by endogenous tagging with mCherry, we
37 demonstrated that it is expressed in the sporozoite and liver stages in micronemes.
38 Using targeted gene deletion in *Plasmodium berghei*, we showed that *Scot1* is
39 essential for late liver-stage development. *Scot1* KO sporozoites grew normally into
40 liver stages but failed to initiate blood-stage infection in mice due to impaired
41 apicoplast biogenesis and merozoite formation. Bioinformatic studies suggested that
42 *Scot1* is a metal/small molecule carrier protein. Remarkably, supplementation with
43 metals in the culture of infected *Scot1* KO cells did not rescue their phenotype.
44 Immunization with *Scot1* KO sporozoites in C57BL/6 mice confers protection against
45 a malaria challenge via infection. These proof-of-concept studies will enable the
46 generation of *P. falciparum* *Scot1* mutants that could be exploited to generate GAP
47 malaria vaccines.

48

49

50

51 **Importance**

52 Malaria parasites experience significant bottlenecks as transmitted to the
53 mammalian host during a mosquito bite. Sporozoites invade liver cells, reproducing
54 into thousands of merozoites, which are released after liver cell ruptures. The
55 specific arrest of sporozoites during liver stage development acts as a powerful
56 immunogen and provides sterile protection against sporozoite infection. GAP leading
57 to an arrest in late liver stage development offers superior protection. Here, we
58 report that a micronemal protein, Scot1, is essential for parasite maturation in the
59 liver. Deletion of Scot1 resulted in impaired apicoplast biogenesis and merozoite
60 formation. Vaccination with *Scot1* KO sporozoites protects against malaria
61 challenge. We have identified a late arresting GAP that will aid in developing new as
62 well as safeguarding existing whole parasite vaccines.

63

64

65 **Keywords:** GAP; *Plasmodium*; microneme; liver stage; malaria; preerythrocytic;
66 protection; sporozoite; vaccine.

67

68

69

70

71

72

73

74

75

76 **Introduction**

77 Malaria has a tremendous negative impact on human health and the economy, a
78 trend that unfortunately continues even today. Malaria-causing *Plasmodium*
79 parasites are responsible for more than 249 million cases and 0.61 million deaths in
80 2022 (1). *Plasmodium* sporozoites are transmitted via the bite of an infected
81 *Anopheles* mosquito, which invades the liver and transforms into exoerythrocytic
82 forms (EEFs). Within hepatocytes, the parasite undergoes intracellular replication
83 and forms thousands of merozoites, which initiate pathogenic erythrocytic stages (2).
84 The parasite must eliminate unnecessary micronemes throughout this development
85 process to create room for newly synthesized stage-specific organelles and proteins
86 (3). It was recently demonstrated that the *Plasmodium* autophagy pathway is
87 essential for eliminating unneeded micronemes during the development of the
88 parasite liver stages (4). However, the contributions of micronemal resident proteins
89 to eliminating micronemes remain unknown. To date, micronemal proteins are
90 secreted during invasion and play a crucial role in the gliding motility and infectivity of
91 *Plasmodium* sporozoites (5).

92

93 The micronemal protein TRAP (Thrombospondin-related anonymous protein) links
94 the sporozoite actin/myosin motor to the extracellular substrate and was shown to be
95 essential for gliding motility (5, 6). Other micronemal proteins, such as SPECT
96 (sporozoite microneme protein essential for cell traversal), MAEBL (merozoite apical
97 erythrocyte-binding ligand), P36, P52, GAMA (GPI-anchored micronemal antigen),
98 CelTOS (cell traversal for ookinetes and sporozoites), TRP1 (Thrombospondin-
99 related protein 1), S6/TREP and AMA1 (Apical Membrane Antigen 1), have been
100 characterized in *Plasmodium* (5). CelTOS, MAEBL, SPECT, and AMA1 are involved

101 in cell traversal (5, 7). In addition to erythrocyte invasion, AMA1 was shown to be
102 secreted from sporozoites and drive their invasion (5, 8). S6/TREP was found to be
103 important for parasite motility and efficient malaria transmission (9). P36 and P52
104 form a complex and play an essential role in the productive invasion of sporozoites
105 (5). Disruption of P52 and P36 leads to the attenuation of parasites in the liver and
106 confers sterile immunity against infection (10). GAMA and TRP1 were found to be
107 important for sporozoite egress from oocysts (11, 12).

108

109 The emergence and spread of artemisinin-resistant *P. falciparum* threatens the
110 control and elimination of malaria. New drugs and a highly effective malaria vaccine
111 are urgently needed. The World Health Organization (WHO) has recommended
112 using the circumsporozoite protein (CSP)-based RTS,S vaccine despite its modest
113 efficacy (13). R21/Matrix-M is the second malaria vaccine recommended by the
114 WHO (14). The major drawback of this recombinant vaccine is the lack of an efficient
115 and durable immune response, which may not be suitable for long-term usage.
116 Occasionally, subunit vaccines do not elicit as strong or long-lasting immune
117 response as whole-organism vaccines. The radiation-attenuated sporozoite (RAS)
118 vaccine has existed for several decades and has been proven to have long-term
119 protective effects (15). Moreover, the induction of sterile immunity by the RAS was
120 very encouraging. Nonetheless, one of the main drawbacks of this approach is that
121 either underirradiation leads to breakthrough infection, or overirradiation of
122 sporozoites leads to failure in initiating optimal preerythrocytic immunity (16).
123 Immunization with live sporozoites attenuated by genetic modification has attracted
124 much attention because they have been shown to produce protective immune
125 responses equal to or even greater than those produced by irradiated sporozoites in

126 rodent models (17). The protection of these attenuated sporozoite vaccines involves
127 antibodies elicited against sporozoite antigens that neutralize their ability to invade
128 hepatocytes (18). Moreover, this protection is mediated through CD8+ T-cell
129 responses that target infected hepatocytes (19).

130

131 The *P. falciparum* RAS vaccine expresses thousands of proteins and elicits superior
132 protection compared to RTS,S; however, it does not confer complete protection in
133 endemic areas (20) and requires improvement. Recent advances in *Plasmodium*
134 genetics have enabled the generation of many GAPs, which have overcome the
135 limitations of using RAS as a whole-organism vaccine. However, except for a few
136 GAPs, most of these GAPs are blocked at the early to mid-liver stage, which limits
137 the antigen breadth and biomass for superior immune protection (21). It was shown
138 that immunization with *P. falciparum* sporozoites under a drug cover allows liver-
139 stage parasites to mature, generating durable protection at lower doses than the *P.*
140 *falciparum* RAS sporozoite vaccine (22). Although arrested parasites are a source of
141 antigen for effective immune system priming, their antigenic repertoire induces
142 cross-stage immunity only when parasites are blocked at the late liver stage (23).
143 Since late liver stages exhibit a subset of antigens common to blood stages,
144 identifying sporozoite genes that can yield a late arrest mutant will have a broader
145 impact on developing an efficacious GAP vaccine. Here, we disrupted the function of
146 the *P. berghei* micronemal protein Scot1 and investigated its role during late liver
147 stage development. Immunization with late arresting GAP confers protection against
148 infectious sporozoites.

149

150 **Results**

151 **Scot1 is a highly conserved *Plasmodium*-specific protein**

152 Phylogenetic analysis revealed that Scot1 is a *Plasmodium*-specific protein that is
153 absent in other organisms (Figure S1). Scot1 was found to be highly conserved
154 among *Plasmodium* species (Figure S2A). The identity matrix showed 100%
155 sequence similarity between *P. berghei*, *P. yoelii* and *P. vinckeii* and 92.1% similarity
156 between *P. berghei* and *P. falciparum* and 90.9% similarity with *P. knowlesi* (Figure
157 S2B). The Scot1 protein lacks a signal sequence and transmembrane domain.

158

159 **Scot1 is expressed during the sporozoite and liver stages and is localized to
160 the microneme**

161 To study the expression and localization of Scot1, the gene was endogenously
162 tagged with 3XHA-mCherry using double crossover homologous recombination
163 (Figure S3A). Correct integration of the *Scot1* gene was confirmed by diagnostic
164 PCR (Figure S3B). The development of transgenic parasites was analysed in
165 mosquito and mammalian hosts. We found that the C-terminal tag did not affect
166 parasite development throughout the life cycle (Figure S3C and S3D). The *Scot1*
167 promoter expressed the *Scot1*-mCherry protein in oocyst and salivary gland
168 sporozoites and liver stages at 12, 24, and 62 hpi (Figure 1A, B and S3E). mCherry
169 expression was not detected in the blood, gamete, ookinete, or liver stages at 36 or
170 48 hpi. The expression of the *Scot1*-3XHA-mCherry fusion protein was also
171 confirmed by immunoblotting using an anti-mCherry antibody (Figure 1C). We then
172 analysed the localization of *Scot1*-3XHA-mCherry in sporozoites and liver stages.
173 Sporozoites were stained with anti-mCherry and anti-TRAP antibodies. We observed
174 a granular localization pattern of *Scot1*-3XHA-mCherry, which colocalized with the
175 TRAP signal in sporozoites, indicating that *Scot1* is a micronemal protein (Figure

176 1D). These results indicate that *Scot1* is expressed in sporozoites and liver stages
177 and is localized to the microneme.

178

179 **Scot1 is dispensable in the *P. berghei* blood and mosquito stages**

180 To investigate the role of *Scot1* in the parasite life cycle, we disrupted the gene in *P.*
181 *berghei* using double crossover homologous recombination (Figure S4A). Resistant
182 GFP (green fluorescent protein)-expressing parasites were confirmed by
183 fluorescence microscopy (Figure S4B), and correct genomic integration was
184 confirmed by diagnostic PCR (Figure S4C). A *Scot1*-complemented parasite line was
185 generated by transfecting the *Scot1* expression cassette into *Scot1* KO schizonts
186 (Figure S4D). Restoration of the *Scot1* locus was confirmed by diagnostic PCR
187 (Figure S4E). To determine whether the deletion of *Scot1* affected the dynamics of
188 blood growth, two groups of mice were intravenously inoculated with WT GFP and
189 *Scot1* KO parasites. Parasite growth was monitored by making Giemsa-stained
190 blood smears. No difference was observed between WT GFP and *Scot1* KO
191 parasites (Figure S4F). For the phenotypic characterization of the *Scot1* KO
192 parasites, the mosquito cycle was initiated by infecting *A. stephensi* mosquitos with
193 *Scot1* KO or WT GFP parasites. On day 14 postinfection, the mosquito midgut was
194 dissected to check for the presence of oocysts, which was comparable in both WT
195 GFP and *Scot1* KO parasites (Figure S5A and B). The sporogony in oocyst and
196 sporozoite numbers were also normal (Figure S5C and D). Furthermore, on days 18-
197 22 after a blood meal, the salivary glands were observed under a fluorescence
198 microscope, and the sporozoite numbers were counted, which revealed a normal
199 sporozoite load and number (Figure S5E and F). These results demonstrate that the

200 deletion of *Scot1* does not affect parasite development in the blood or mosquito
201 stages.

202

203 ***Scot1* KO sporozoites infect the liver but fail to initiate blood-stage infection in**
204 **mice**

205 To assess the in vivo infectivity of the *Scot1* KO parasites, salivary gland sporozoites
206 were injected intravenously into C57BL/6 mice or infected by mosquito bites, and the
207 appearance of the parasites in the blood was monitored by making Giemsa-stained
208 blood smears. The WT GFP-inoculated mice were positive on day 3 post infection,
209 whereas *Scot1* KO sporozoites failed to initiate blood-stage infection (Table 1). *Scot1*
210 gene complementation restored the KO phenotype (Table 1), indicating the
211 specificity of the gene function. Micronemal proteins were previously shown to be
212 required for the invasion of hepatocytes (24, 25). Therefore, we checked the invasion
213 ability of the *Scot1* KO sporozoites and found that they were normal (Figure S6). To
214 analyse the progression of the parasites in vivo, the livers of infected mice were
215 harvested at 40 and 55 hpi, and the parasite burden was quantified by amplifying
216 18S rRNA using real-time PCR. We found no difference in the 18S rRNA copy
217 number at 40 hpi, but it was significantly lower at 55 hpi in the *Scot1* KO parasites
218 than in the WT GFP parasites (Figure 2). These results provide evidence that *Scot1*
219 KO parasites grow normally until the mid- to late-liver stage but do not mature and
220 fail to initiate blood-stage infection in mice.

221

222

223 ***Scot1* KO EEFs grow normally in size**

224 The normal invasion and failure of *Scot1* KO sporozoites to initiate blood-stage
225 infection in mice suggest that either they failed to develop into EEFs or egress from
226 hepatocytes. To further investigate the liver stage development of the *Scot1* KO
227 parasites, HepG2 cells were infected with sporozoites and fixed at different time
228 points. The liver stages of the WT GFP and *Scot1* KO parasites showed similar
229 growth, EEF numbers, and sizes (Figure 3A-C). *Scot1* KO EEF growth, number, and
230 size analysis revealed no apparent aberrant phenotype; however, there was
231 evidence of reduced nuclear division at 62 hpi. Next, we observed the culture for the
232 formation of detached cells at 62 hpi. We found detached cells in the WT GFP
233 culture but not in the *Scot1* KO-infected culture (Figure 3D). Next, we checked the
234 infectivity of detached cells from WT GFP and culture supernatant from *Scot1* KO
235 parasites in Swiss mice. We found infection in mice injected with WT GFP-detached
236 cells; no infection was observed in the KO-injected group (Table 2).

237

238 ***Scot1* KO parasites exhibit impaired apicoplast biogenesis and fail to mature
239 into hepatic merozoites**

240 Next, we analysed late liver-stage parasites by immunostaining with ACP (Acyl
241 Carrier Protein) and MSP1 (Merozoite Surface Protein 1) antibodies. Loss of *Scot1*
242 severely compromised apicoplast biogenesis, resulting in a consequent loss of
243 MSP1 staining and no merozoite formation (Figure 4A and B). We found impaired
244 nuclear division and a significant decrease in the number of nuclei in the *Scot1* KO
245 parasites compared to those in the WT GFP parasites (Figure 4C). These results
246 indicated the role of *Scot1* during late liver-stage development.

247

248 ***Scot1* is not required for the elimination of micronemes**

249 After sporozoite invasion, unneeded micronemes are expelled into the PV during
250 liver stage development (3, 26). To determine whether the microneme-localized
251 protein Scot1 is involved in eliminating micronemes, we monitored its distribution
252 pattern during liver stage development using an anti-TRAP antibody. We found that
253 by 24 hpi, the micronemes were directed toward the PV membrane of the parasite,
254 and by 40-55 hpi, all the micronemes were expelled into the PV membrane,
255 indicating normal elimination of the micronemes from the *Scot1* KO and WT GFP
256 parasites (Figure 5). These data indicate that Scot1 is dispensable for the elimination
257 of micronemes.

258

259 **Bioinformatic studies suggest that Scot1 is a metal/small molecule carrier
260 protein**

261 Structural modelling of PfScot1 revealed a beta-pleated sheet structure twisted in
262 itself, forming an open barrel shape (Figure 6A). Structural superposition with the
263 SCOP and PDB databases using the FATCAT and DALI web services and
264 subsequent superposition of the results in UCSF Chimera showed that the model
265 aligns with the haemoglobin linker chain L1 (chain M of PDB ID 2GTL (red)) with a
266 0.9 Angstrom RMSD value (Figure 6B) and chain A of the crystal structure of the
267 vaccine antigen Transferrin Binding Protein B (TbpB) (PDB ID: 4O4X (red)), a metal
268 transport protein with a 0.8 Angstrom RMSD value (Figure 6C). The top hits from the
269 structure-based phylogenetic analysis further emphasize the possible function of
270 PfScot1 as a carrier of metal ions or small molecules (Figure 6D). Proteins with the
271 closest structural similarity to that of Scot1 are listed in Table S1. A protein of
272 unknown function from *Bacteroides eggerthii* DSM 20697 with a lipocalin-like domain
273 was revealed to be most phylogenetically similar to Scot1. One of the most common

274 functions of the lipocalin-like domain is the transport of small molecules. An *E. coli*
275 protein, YodA, with a lipocalin-like architecture is also known to bind metal ions to its
276 barrel core. These results support the predicted structure-based annotation of *Scot1*
277 as a possible metal/small molecule carrier protein.

278

279 **The *Scot1* KO phenotype is not reversed by iron, zinc or cadmium**

280 To determine whether *Scot1* is a carrier of metal ions and whether supplementation
281 with metals can rescue the KO phenotype. WT GFP and *Scot1* KO liver-stage
282 cultures were grown in media supplemented with 50 µg /ml ferric ammonium citrate
283 (FAC), 20 µM zinc chloride (ZnCl₂) or 1µg/ml cadmium chloride (CdCl₂). We
284 observed the culture for the formation of detached cells at 65 hpi. We found
285 detached cells in the WT GFP culture but not in the *Scot1* KO infected culture
286 supplemented with metal ions (Figure 7A). Next, we checked the infectivity of
287 detached cells from WT GFP and culture supernatant from *Scot1* KO parasites in
288 Swiss mice. We found that culture treatment with metal ions did not affect detached
289 cell formation or infection in mice (Table 3). This treatment also did not affect the
290 maturation of EEFs or nuclear division (Figure 7B, and C). These data show that
291 *Scot1* is not a carrier of iron, zinc, or cadmium and can possibly act as a carrier for
292 other small molecules. Another possibility is that *Scot1* may detoxify metal/small
293 molecules. However, this requires further investigation.

294

295 **Immunization with *Scot1* KO sporozoites protects against malaria**

296 Immunizations with sporozoites that arrest in the liver elicit a long-term protective
297 host response and protect against infectious sporozoite challenge (27). We tested
298 whether immunization with *Scot1* KO sporozoites confers protection from WT

299 sporozoite infection. We observed that while all salivary gland debris-immunized
300 mice developed blood-stage infection, the *Scot1* KO-immunized mice remained
301 negative for the duration of the experiment (Table 4). These results are especially
302 impressive since immunization of C57BL/6 mice with irradiated sporozoites rarely
303 results in the immunity observed with *Scot1* KO sporozoites (28). Preerythrocytic
304 protection after sporozoite immunization has revealed the induction of antibodies
305 against CSP, suggesting the importance of humoral immunity (29, 30). We used IFA
306 (Immunofluorescence assay), which recognizes both stages, to determine the serum
307 reactivity against sporozoites and EEFs (Figure S7).

308

309 **Discussion**

310 Sporozoites infect liver cells, where they mature into hepatic merozoites that invade
311 red blood cells. Several sporozoite and liver stage-specific proteins have been
312 implicated during liver stage development (5, 10, 31–35). Among them, P36 and P52
313 are microneme-localized proteins. Disruption of these genes led to growth arrest of
314 the parasite in the liver and yielded GAP. Immunization with GAP parasites elicits
315 immune responses that protect rodents and humans from an infectious sporozoite
316 challenge (Dijk et al., 2005; Kublin et al., 2017; Labaied et al., 2007; A.-K. Mueller et
317 al., 2005; Vaughan et al., 2009). In this study, we investigated the role of a
318 sporozoite and liver stage-specific protein and showed that the expression of *Scot1*
319 is similar to the distribution pattern of micronemes. Our analysis of the subcellular
320 localization of *Scot1* and TRAP confirmed that *Scot1* is a micronemal protein. After
321 establishing the EEF, the micronemes are completely discarded into the PV (3).
322 Parasites lacking the *Plasmodium* autophagy pathway protein Atg7 fail to expel the
323 microneme into the PV (4). We found that *Scot1* does not play a role in eliminating

324 unneeded micronemes during liver stage development. This result indicated that the
325 elimination of micronemes is regulated by the *Plasmodium* autophagy pathway (4)
326 and that microneme-resident proteins are not involved in this process. Several
327 micronemal proteins are involved in the hepatocyte invasion of sporozoites (5, 6, 8),
328 whereas *Scot1* KO sporozoites invade hepatocytes normally, suggesting that *Scot1*
329 does not perform multiple essential functions and only plays a role in the
330 development of the EEF. Like P52 and P36 mutants, *Scot1* KO parasites are
331 arrested in the liver. However, compared with early-attenuating P52 and P36
332 mutants, *Scot1* KO parasites attenuate during late liver stage development (10).

333

334 A lack of *Scot1* had no effect on blood or mosquito stage development. *Scot1* was
335 also found to be dispensable in a *P. falciparum* genetic screen (39). Micronemal
336 proteins have been implicated in the gliding motility and invasion of sporozoites (5, 6,
337 8). Next, we analysed the invasion ability of *Scot1* KO sporozoites and found it to be
338 normal. Furthermore, the early- to mid-liver-stage development of the *Scot1* KO
339 parasites was normal, and the number and size of the EEFs were comparable to
340 those of the WT GFP. In contrast, *Scot1* deletion affected late liver stage
341 development. Earlier known GAPs, such as UIS3, UIS4 (upregulated in infectious
342 sporozoites) and SPELD mutants, are arrested early before extensive DNA
343 replication (31, 32, 34), while the type II fatty acid synthesis (FASII) pathway and
344 RNA-binding protein *PlasMei2*, liver-stage antigen-1, and liver-specific protein 2
345 mutants are arrested late in liver stage development (36, 40–43).

346

347 The structural superposition with the SCOP and PDB databases using the FATCAT
348 and DALI web services and subsequent superposition of the results in UCSF

349 Chimera show that the model aligns with the haemoglobin linker chain L1 (chain M of
350 PDB ID 2GTL (red)) with a 0.9 Å RMSD value and chain A of the crystal structure of
351 the vaccine antigen Transferrin Binding Protein B (TbpB) (PDB ID: 4O4X (red)), a
352 metal transport protein with a 0.8 Å RMSD value. The metal transport function
353 prediction of *Scot1* suggested that this could be another factor for its phenotype in
354 the liver. The role of metals during liver stage development has been reported
355 previously, and the role of a metal ion transporter, ZIPCO, was found to be critical for
356 EEF development (44). Metals are associated with several processes in mammals
357 and are implicated in oxygen transport in hemoglobin. Iron has been reported to play
358 an essential role in DNA replication as a cofactor for ribonucleotide reductases (45)
359 and metalloproteins. Iron is also essential for DNA replication as a cofactor of
360 ribonucleotide reductases (45) and metalloproteins that contain an iron-sulfur (Fe-S)
361 cluster (46). A study demonstrated that the ZIP protein Leishmania iron transporter 1
362 is essential for parasite replication in macrophage phagolysosomes (47, 48). The
363 *Scot1* KO phenotype could not be reversed by supplementation with exogenously
364 provided metal ions. A likely explanation for the developmental arrest of *Scot1* in the
365 liver stages may be that *Scot1* is not a carrier of iron, zinc, or cadmium and can
366 possibly act as a carrier for other small molecules. Another possibility is that *Scot1*
367 may detoxify metal/small molecules. In fact, a vacuolar iron transporter (VIT) has
368 been described in *P. berghei* and is involved in detoxifying excess iron (49). Whether
369 *Scot1* plays a role in detoxifying excess metal ions requires further investigation.
370
371 Immunizations with genetically attenuated sporozoites that arrest in the liver elicit a
372 long-term protective host response (50). We found that vaccination of C57BL/6 mice
373 with *Scot1* KO sporozoites conferred complete protection against WT sporozoite

374 challenge. Interestingly, late liver-arresting parasites provide superior protection
375 compared to early-arresting parasites (51). Late liver-arresting parasites express
376 late-stage antigens and a subset of antigens that are common to blood stages;
377 however, whether Scot1 GAP exhibits superior protection needs further
378 investigation. Despite the discovery of a growing list of GAPs, there have been some
379 occasional breakthrough infections in a few GAPs. To overcome these limitations,
380 double- or triple-attenuated GAPs can be generated by combination with known late-
381 arresting GAPs (36, 40, 41), which increase the degree of attenuation of these
382 parasites to prevent any possible breakthrough infection. Our investigations
383 demonstrated that Scot1 is essential for late liver-stage development and could be
384 used as a GAP vaccine.

385

386 **Materials and methods**

387 **Parasites and mice**

388 *P. berghei* ANKA (MRA 311) and *P. berghei* ANKA GFP (MRA 867 507 m6cl1) were
389 obtained from BEI Resources, USA. Swiss albino and C57BL/6 mice were used for
390 parasite infections. All animal procedures were approved by the Institutional Animal
391 Ethics Committee at CSIR-Central Drug Research Institute, India (approval no:
392 IAEC/2018/49).

393

394 **Amino acid sequence analysis**

395 Interestingly, a study investigating the transcriptional landscape of *Plasmodium vivax*
396 sporozoites revealed several upregulated transcripts with strong orthologues in the
397 sporozoite stages of other species (52). We selected Scot1, which was the top-
398 ranked gene in the transcriptome analysis. The *P. berghei* Scot1

399 (PBANKA_1411000) sequence was obtained from PlasmoDB
400 (<https://plasmodb.org/plasmo/app>), and NCBI BLAST
401 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) was used to search for similar sequences in
402 different organisms. Multiple sequence alignment (MSA) was performed using
403 ClustalW. A sequence similarity matrix was prepared using the smith-waterman
404 algorithm implemented in EMBOSS Water
405 (https://www.ebi.ac.uk/jdispatcher/psa/emboss_water). The presence of the signal
406 peptide and transmembrane domain was predicted using SignalP
407 (<https://services.healthtech.dtu.dk/services/SignalP-6.0>) and TMHMM
408 (<https://services.healthtech.dtu.dk/services/TMHMM-2.0/>) (53). A phylogenetic tree
409 was constructed using MEGA11 software and the EMBL Interactive Tree Of Life
410 (iTOL) service (<https://itol.embl.de>) (54).

411

412

413 **Generation of transgenic Scot1-3XHA-mCherry parasites to study their
414 expression and localization**

415 For the endogenous tagging of *Scot1* (PBANKA_1411000) with 3XHA-mCherry, two
416 fragments, F1 (0.84 kb) and F2 (0.52 kb), were amplified using primers 1165/1171
417 and 1167/1168 and cloned into the pBC-3XHA-mCherry-hDHFR vector at *Xhol/Bg*II
418 and *Not*l/*Ascl*, respectively, as previously described (55). The targeting cassette was
419 transfected into *P. berghei* ANKA schizonts (56), clonal lines were obtained by
420 limiting dilution of the parasites, and correct integration was confirmed by diagnostic
421 PCR using primers 1169/1218 and 1215/1170 (Table S2). Next, the mosquito cycle
422 was initiated to observe the expression of mCherry in sporozoites and liver stages as
423 previously described (55).

424

425 **Generation of *Scot1* knockout and complemented *P. berghei* lines**

426 To delete *Scot1*, two fragments, F3 (0.63 kb) and F4 (0.52 bp), were amplified using
427 the primer sets 1172/1173 and 1167/1168 and cloned into *Sa*I and *Not*I/*Ascl* in the
428 pBC-GFP-hDHFR:yFCU vector. The targeting cassette was transfected into *P.*
429 *berghei* schizonts, and clonal lines were obtained as described above. Site-specific
430 5' and 3' integrations were confirmed by diagnostic PCR using primers 2222/1225
431 and 1215/1170, respectively (Table S2). For complementation, fragment F5 was
432 amplified from *P. berghei* genomic DNA using primers 1172/1168, transfected into
433 *Scot1* KO schizonts, and selected using 5-fluorocytosine (MP Biomedicals,
434 219979201) as previously described (55). Restoration of the *Scot1* gene was
435 confirmed using primers 1593/1594.

436

437 **Western blot analysis**

438 Purified sporozoites were resuspended in Laemmli buffer (Bio-Rad, 1610747),
439 analysed by SDS-PAGE and transferred onto nitrocellulose membranes (Bio-Rad,
440 1620112), and the remaining procedures were performed as previously described
441 (57). Briefly, the membrane was blocked with 1% BSA/PBS, followed by incubation
442 with an anti-mCherry antibody developed in rabbits (diluted 1:500, Novus, NBP 2-
443 25157) and an HRP-conjugated anti-rabbit secondary antibody (Amersham, NA934).
444 The blot was developed using ECL Chemiluminescent Substrate (Bio-Rad,
445 1705060), and signals were detected using a ChemiDoc XRS+ System (Bio-Rad,
446 USA). As a loading control, the blot was stripped and reprobed with an anti-TRAP
447 antibody (diluted 1:200) (26).

448

449 **Sporozoite infectivity**

450 To determine the *in vivo* infectivity of the *Scot1* KO sporozoites, C57BL/6 mice were
451 either intravenously inoculated with salivary gland sporozoites or infected by
452 mosquito bite, and the appearance of the parasite in the blood was observed by
453 performing a Giemsa-stained blood smear. Another group of mice injected with
454 5,000 sporozoites was sacrificed at 40 and 55 hpi (hours post-infection), and the
455 livers were harvested and homogenized in TRIzol reagent (Invitrogen, USA). To
456 assess the invasion of the *Scot1* KO parasites, HepG2 cells were infected with
457 sporozoites, and the culture was fixed at 1 hpi and immunostained before and after
458 permeabilization with an anti-CSP monoclonal antibody (3D11) (30) as previously
459 described (58). To observe EEF development, HepG2 cells were infected with
460 salivary gland sporozoites and fixed at different time points using 4%
461 paraformaldehyde as previously described (55). For the EEF and detached cell
462 development assays, 5,000 and 40,000 sporozoites/well were added to 48-well and
463 24-well plates, respectively.

464

465 **Real-time PCR**

466 Total RNA was isolated using TRIzol reagent, and cDNA was synthesized as
467 previously described (59). The 18S rRNA copy number was determined by absolute
468 quantification of gene-specific standards (60) using primers 1195/1196. The 18S
469 rRNA copy number was normalized to that of mouse glyceraldehyde-3-phosphate
470 dehydrogenase (GAPDH) using primers 1193/1194.

471

472 **Immunofluorescence assay**

473 For the localization of Scot1 in sporozoites, purified salivary gland sporozoites were
474 allowed to settle and dry on 12-well slides (Thermo Fisher Scientific, USA).
475 Sporozoites were fixed using 4% paraformaldehyde (Sigma–Aldrich, HT5012),
476 permeabilized with 0.1% Triton-X-100 (Sigma–Aldrich, T8787) for 10 min at RT and
477 incubated with anti-mCherry developed in mouse (diluted 1:1000, Biolegend,
478 677702) and anti-TRAP (diluted 1:200, rabbit polyclonal) (26) antibodies for 2 h at
479 RT. The mCherry and TRAP signals were revealed using Alexa Fluor 594-
480 conjugated anti-mouse IgG and Alexa Fluor 488-conjugated anti-rabbit IgG,
481 respectively (diluted 1:500; Invitrogen). The EEFs fixed at different time points were
482 permeabilized using methanol, blocked using 1% BSA/PBS and incubated with
483 primary antibodies as previously described (57). To visualize the microneme
484 elimination pattern, infected cultures fixed at different time points were
485 immunostained with an anti-TRAP antibody (diluted 1:200) (26). The primary
486 antibodies used were anti-mCherry (diluted 1:500), anti-UIS4 (diluted 1:1,000, rabbit
487 polyclonal) (31), anti-TRAP, anti-MSP1 (diluted 1:5000, mouse monoclonal) (61),
488 and anti-ACP (diluted 1:1,000, rabbit polyclonal) (62). The signals were revealed
489 using Alexa Fluor 488-conjugated or Alexa Fluor 594-conjugated secondary
490 antibodies (diluted 1:500; Invitrogen). Nuclei were stained with Hoechst 33342
491 (Sigma–Aldrich, 41399), and the coverslips were mounted using Prolong Diamond
492 antifade reagent (Invitrogen, P36970). Representative images were acquired using
493 FV1000 software on a confocal laser scanning microscope (Olympus BX61WI) using
494 UPlanSAPO 100x (NA 1.4, oil) or 63x (NA 0.25, oil).

495

496 **Bioinformatic analysis of Scot1 proteins**

497 The 3D structure of PfScot1 was predicted using the Quark
498 (<https://zhanggroup.org/QUARK>) ab initio structure prediction web service. Structure-
499 based phylogenetic analysis was performed using the predicted structure of PfScot1.
500 3D Phylofold is a recently developed method used to repurpose existing antivirals for
501 COVID-19 treatment (63). The DALI webserver was used to identify structural
502 matches of PfScot1 in the PDB database (64). The top hits from the results were
503 analysed using 3Dphylofold to generate a structure-based similarity matrix. The
504 matrix was further analysed using Mega to generate a nearest-neighbor dendrogram
505 (<https://www.megasoftware.net>).

506

507 **Effects of metal supplementation on EEF maturation**

508 HepG2 cells were infected with WT GFP or *Scot1* KO sporozoites as described
509 above. Two hpi, fresh media containing 50 µg /ml ferric ammonium citrate (FAC), 20
510 µM zinc chloride (ZnCl₂) or 1µg/ml cadmium chloride (CdCl₂) were added. The
511 media was changed every 12 hours, supplemented with metals. At 65 hpi, culture
512 was observed for the formation of detached cells and then fixed with 4%
513 paraformaldehyde (Sigma–Aldrich, HT5012). The EEFs were stained with an anti-
514 MSP1 antibody, and the nuclei were stained with Hoechst 33342 (Sigma–Aldrich,
515 41399) as described above. Coverslips were mounted using Prolong Diamond
516 antifade reagent (Invitrogen, P36970). Images were acquired using FV1000 software
517 on a confocal laser scanning microscope (Olympus BX61WI) using UPlanSAPO
518 100x (NA 1.4, oil) or 63x (NA 0.25, oil).

519

520 **Immunization and challenge experiments**

521 Six- to eight-week-old female C57BL/6 mice were primed intravenously with 50,000
522 salivary gland sporozoites and boosted twice with 25,000 at an interval of two weeks.
523 The salivary gland debris of uninfected mosquitoes was injected into the control
524 group. Another group was immunized thrice with 20,000 sporozoites. The control
525 and immunized groups were challenged with 5,000 infectious WT sporozoites 10
526 days after the last immunization. Parasitemia was monitored daily by making
527 Giemsa-stained blood smears.

528

529 **Immunized mouse serum reactivity**

530 To visualize the reactivity of sera obtained from the immunized mice, sporozoites
531 and EEFs were stained with pooled serum (diluted 1:50), and signals were revealed
532 using Alexa Fluor 594-conjugated anti-mouse IgG (diluted 1:500; Invitrogen). To
533 identify the sporozoites and EEFs, anti-TRAP (26) and anti-UIS4 antibodies (31),
534 respectively, were used. Nuclei were stained with Hoechst 33342.

535

536 **Statistical analysis**

537 The data are presented as the mean \pm SEM or mean \pm SD. Statistical analysis was
538 performed using GraphPad Prism 9 software. As indicated, two-tailed, unpaired
539 Student's t test and one-way ANOVA were used to determine the statistical
540 significance.

541

542 **Availability of data and material**

543 All the data are available within this manuscript, and the raw data are available from
544 the corresponding author upon reasonable request. Materials generated in this study
545 are available from the corresponding author upon request.

546

547 **Acknowledgments**

548 We thank Dr. Robert Menard (Institute Pasteur, France) for the pBC-GFP-hDHFR
549 vector, which was modified by Dr. P.N. Srivastava. We thank Dr. Kota Arun Kumar
550 (University of Hyderabad, India) for the pBC-3XHA-mCherry-hDHFR vector. We
551 thank Dr. Anthony A. Holder (The Francis Crick Institute, UK), Drs. Photini Sinnis
552 and Sean Prigge (Johns Hopkins University, USA) for anti-MSP1, anti-UIS4, and
553 anti-ACP antibodies, respectively. AG, Nirdosh, RD, AM, SKN and PNS were
554 supported by CSIR, UGC ICMR and DBT Research Fellowships. We acknowledge
555 the THUNDER (BSC0102) and MOES (GAP0118) Intravital and Confocal
556 Microscopy Facilities of CSIR-CDRI. The graphics were created with Biorender.com.
557 This work was supported by a Science and Engineering Research Board grant
558 (EMR/2016/006487).

559

560 **Author contributions**

561 SM conceived the idea, designed the experiments, analysed the data and wrote the
562 manuscript. AG, RD, AM, SKN, N and PNS performed the experiments. All the
563 authors have read and approved the manuscript.

564

565 **Declaration of interests**

566 The authors declare no competing financial interests.

567

568 **References**

- 569 1. World Malaria Report, 2023.
- 570 2. LH M, DI B, K M, OK D, Miller LH, Baruch DI, Marsh K, Doumbo OK. 2002. The
571 pathogenic basis of malaria. *Nature* 415:673–679.
- 572 3. Jayabalasingham B, Bano N, Coppens I. 2010. Metamorphosis of the malaria parasite

573 in the liver is associated with organelle clearance. *Cell Res* 20:1043–1059.

574 4. Mishra A, Srivastava PN, H SA, Mishra S. 2023. Autophagy protein Atg7 is essential
575 and druggable for maintaining malaria parasite cellular homeostasis and organelle
576 biogenesis. *bioRxiv* 2023.08.16.553492.

577 5. Arredondo SA, Schepis A, Reynolds L, Kappe SHI. 2021. Secretory Organelle
578 Function in the Plasmodium Sporozoite. *Trends Parasitol* 37:651–663.

579 6. Sultan AA, Thaty V, Frevert U, Robson KJH, Crisanti A, Nussenzweig V,
580 Nussenzweig RS, Ménard R. 1997. TRAP is necessary for gliding motility and
581 infectivity of plasmodium sporozoites. *Cell* 90:511–522.

582 7. Yang ASP, O'Neill MT, Jennison C, Lopaticki S, Allison CC, Armistead JS, Erickson
583 SM, Rogers KL, Elliston AM, Whisstock JC, Tweedell RE, Dinglasan RR, Douglas
584 DN, Kneteman NM, Boddey JA. 2017. Cell Traversal Activity Is Important for
585 Plasmodium falciparum Liver Infection in Humanized Mice. *Cell Rep* 18:3105–3116.

586 8. Fernandes P, Loubens M, Le Borgne R, Marinach C, Ardin B, Briquet S, Vincensini L,
587 Hamada S, Hoareau-Coudert B, Verbavatz J-M, Weiner A, Silvie O. 2022. The
588 AMA1-RON complex drives Plasmodium sporozoite invasion in the mosquito and
589 mammalian hosts. *PLoS Pathog* 18:e1010643.

590 9. Steinbuechel M, Matuschewski K. 2009. Role for the Plasmodium sporozoite-specific
591 transmembrane protein S6 in parasite motility and efficient malaria transmission. *Cell*
592 *Microbiol* 11:279–288.

593 10. Labaied M, Harupa A, Dumpit RF, Coppens I, Mikolajczak SA, Kappe SHI. 2007.
594 Plasmodium yoelii sporozoites with simultaneous deletion of P52 and P36 are
595 completely attenuated and confer sterile immunity against infection. *Infect Immun*
596 75:3758–3768.

597 11. Klug D, Frischknecht F. 2017. Motility precedes egress of malaria parasites from
598 oocysts. *Elife* 6:1–32.

599 12. Ecker A, Bushell ESC, Tewari R, Sinden RE. 2008. Reverse genetics screen identifies
600 six proteins important for malaria development in the mosquito. *Mol Microbiol*
601 70:209–220.

602 13. Zavala F. 2022. RTS,S: the first malaria vaccine. *J Clin Invest* 132.

603 14. Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, Yameogo P,
604 Valia D, Tegneri M, Ouedraogo F, Soma R, Sawadogo S, Sorgho F, Derra K,
605 Rouamba E, Orindi B, Ramos Lopez F, Flaxman A, Cappuccini F, Kailath R, Elias S,
606 Mukhopadhyay E, Noe A, Cairns M, Lawrie A, Roberts R, Valéa I, Sorgho H,
607 Williams N, Glenn G, Fries L, Reimer J, Ewer KJ, Shaligram U, Hill AVS, Tinto H.
608 2021. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M,
609 with seasonal administration to children in Burkina Faso: a randomised controlled
610 trial. *Lancet* (London, England) 397:1809–1818.

611 15. Nussenzweig RS, Vanderberg J, Most H, Orton C. 1967. Protective immunity
612 produced by the injection of x-irradiated sporozoites of plasmodium berghei. *Nature*
613 216:160–162.

614 16. Friesen J, Matuschewski K. 2011. Comparative efficacy of pre-erythrocytic whole
615 organism vaccine strategies against the malaria parasite. *Vaccine* 29:7002–7008.

616 17. Khan SM, Janse CJ, Kappe SHI, Mikolajczak SA. 2012. Genetic engineering of
617 attenuated malaria parasites for vaccination. *Curr Opin Biotechnol* 23:908–916.

618 18. Seder RA, Chang L-JJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, Holman LSA,
619 James ER, Billingsley PF, Gunasekera A, Richman A, Chakravarty S, Manoj A,
620 Velmurugan S, Li ML, Ruben AJ, Li T, Eappen AG, Stafford RE, Plummer SH,
621 Hendel CS, Novik L, Costner PJMM, Mendoza FH, Saunders JG, Nason MC,
622 Richardson JH, Murphy J, Davidson SA, Richie TL, Sedegah M, Sutamihardja A,

623 Fahle GA, Lyke KE, Laurens MB, Roederer M, Tewari K, Epstein JE, Sim BKL,
624 Ledgerwood JE, Graham BS, Hoffman SL. 2013. Protection against malaria by
625 intravenous immunization with a nonreplicating sporozoite vaccine. *Science* (80-)
626 341:1359–1365.

627 19. Epstein JE, Tewari K, Lyke KE, Sim BKL, Billingsley PF, Laurens MB, Gunasekera
628 A, Chakravarty S, James ER, Sedegah M, Richman A, Velmurugan S, Reyes S, Li M,
629 Tucker K, Ahumada A, Ruben AJ, Li T, Stafford R, Eappen AG, Tamminga C,
630 Bennett JW, Ockenhouse CF, Murphy JR, Komisar J, Thomas N, Loyevsky M, Birkett
631 A, Plowe C V, Loucq C, Edelman R, Richie TL, Seder RA, Hoffman SL. 2011. Live
632 attenuated malaria vaccine designed to protect through hepatic CD8⁺ T cell immunity.
633 *Science* 334:475–480.

634 20. Sissoko MS, Healy SA, Katile A, Omaswa F, Zaidi I, Gabriel EE, Kamate B, Samake
635 Y, Guindo MA, Dolo A, Niangaly A, Niaré K, Zeguime A, Sissoko K, Diallo H, Thera
636 I, Ding K, Fay MP, O'Connell EM, Nutman TB, Wong-Madden S, Murshedkar T,
637 Ruben AJ, Li M, Abebe Y, Manoj A, Gunasekera A, Chakravarty S, Sim BKL,
638 Billingsley PF, James ER, Walther M, Richie TL, Hoffman SL, Doumbo O, Duffy PE.
639 2017. Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct
640 venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-
641 blind phase 1 trial. *Lancet Infect Dis* 17:498–509.

642 21. Goswami D, Minkah NK, Kappe SHI. 2019. Designer Parasites: Genetically
643 Engineered Plasmodium as Vaccines To Prevent Malaria Infection. *J Immunol*
644 202:20–28.

645 22. Mordmüller B, Surat G, Lagler H, Chakravarty S, Ishizuka AS, Lalremruata A,
646 Gmeiner M, Campo JJ, Esen M, Ruben AJ, Held J, Calle CL, Mengue JB, Gebru T,
647 Ibáñez J, Sulyok M, James ER, Billingsley PF, Natasha KC, Manoj A, Murshedkar T,
648 Gunasekera A, Eappen AG, Li T, Stafford RE, Li M, Felgner PL, Seder RA, Richie
649 TL, Sim BKL, Hoffman SL, Kremsner PG. 2017. Sterile protection against human
650 malaria by chemoattenuated PfSPZ vaccine. *Nature* 542:445–449.

651 23. Vaughan AM, Sack BK, Dankwa D, Minkah N, Nguyen T, Cardamone H, Kappe
652 SHI. 2018. A Plasmodium parasite with complete late liver stage arrest protects
653 against preerythrocytic and erythrocytic stage infection in mice. *Infect Immun* 86:1–
654 18.

655 24. Manzoni G, Marinach C, Topçu S, Briquet S, Grand M, Tolle M, Gransagne M, Lescar
656 J, Andolina C, Franetich JF, Zeisel MB, Huby T, Rubinstein E, Snounou G, Mazier D,
657 Nosten F, Baumert TF, Silvie O. 2017. Plasmodium P36 determines host cell receptor
658 usage during sporozoite invasion. *Elife* 6:1–24.

659 25. Loubens M, Vincensini L, Fernandes P, Briquet S, Marinach C, Silvie O. 2021.
660 Plasmodium sporozoites on the move: Switching from cell traversal to productive
661 invasion of hepatocytes. *Mol Microbiol* 115:870–881.

662 26. Mishra A, Varshney A, Mishra S. 2023. Regulation of Atg8 membrane deconjugation
663 by cysteine proteases in the malaria parasite Plasmodium berghei. *Cell Mol Life Sci*
664 80:344.

665 27. Duffy PE. 2022. Current approaches to malaria vaccines. *Curr Opin Microbiol*
666 70:102227.

667 28. Doolan DL, Southwood S, Chesnut R, Appella E, Gomez E, Richards A, Higashimoto
668 YI, Maewal A, Sidney J, Gramzinski RA, Mason C, Koech D, Hoffman SL, Sette A.
669 2000. HLA-DR-promiscuous T cell epitopes from Plasmodium falciparum pre-
670 erythrocytic-stage antigens restricted by multiple HLA class II alleles. *J Immunol*
671 165:1123–1137.

672 29. Dups JN, Pepper M, Cockburn IA. 2014. Antibody and B cell responses to

673 Plasmodium sporozoites. *Front Microbiol* 5:625.

674 30. Yoshida N, Nussenzweig RS, Potocnjak P, Nussenzweig V, Aikawa M. 1980.

675 Hybridoma Produces Protective Antibodies Directed against the Sporozoite Stage of

676 Malaria Parasite. *Science* (80-) 207:71–73.

677 31. Mueller AK, Camargo N, Kaiser K, Andorfer C, Frevert U, Matuschewski K, Kappe

678 SH. 2005. Plasmodium liver stage developmental arrest by depletion of a protein at the

679 parasite-host interface. *Proc Natl Acad Sci U S A* 102:3022–3027.

680 32. Mueller A-K, Labaied M, Kappe SHI, Matuschewski K. 2005. Genetically modified

681 Plasmodium parasites as a protective experimental malaria vaccine. *Nature* 433:164–

682 167.

683 33. Aly ASI, Lindner SE, MacKellar DC, Peng X, Kappe SHI. 2011. SAP1 is a critical

684 post-transcriptional regulator of infectivity in malaria parasite sporozoite stages. *Mol*

685 *Microbiol* 79:929–939.

686 34. Al-Nihmi FMA, Kolli SK, Reddy SR, Mastan BS, Togiri J, Maruthi M, Gupta R,

687 Sijwali PS, Mishra S, Kumar KA. 2017. A Novel and Conserved Plasmodium

688 Sporozoite Membrane Protein SPELD is Required for Maturation of Exo-erythrocytic

689 Forms. *Sci Rep* 7:40407.

690 35. van Schaijk BCL, Ploemen IHJ, Annoura T, Vos MW, Foquet L, van Gemert G-J,

691 Chevalley-Maurel S, van de Vegte-Bolmer M, Sajid M, Franetich J-F, Lorthiois A,

692 Leroux-Roels G, Meuleman P, Hermsen CC, Mazier D, Hoffman SL, Janse CJ, Khan

693 SM, Sauerwein RW. 2014. A genetically attenuated malaria vaccine candidate based

694 on *P. falciparum* b9/slarp gene-deficient sporozoites. *Elife* 3.

695 36. Vaughan AM, O'Neill MT, Tarun AS, Camargo N, Phuong TM, Aly ASII, Cowman

696 AF, Kappe SHII. 2009. Type II fatty acid synthesis is essential only for malaria

697 parasite late liver stage development. *Cell Microbiol* 11:506–520.

698 37. Dijk MR Van, Douradinha B, Franke-fayard B, Heussler V, Dooren MW Van, Schaijk

699 B Van, Gemert G Van, Sauerwein RW, Mota MM, Waters AP, Janse CJ. 2005.

700 Genetically attenuated, P36p-deficient malarial sporozoites induce protective

701 immunity and apoptosis of infected liver cells 102.

702 38. Kublin JG, Mikolajczak SA, Sack BK, Fishbaugher ME, Seilie A, Shelton L,

703 VonGoedert T, Firat M, Magee S, Fritzen E, Betz W, Kain HS, Dankwa DA, Steel

704 RWJJ, Vaughan AM, Sather DN, Murphy SC, Kappe SHII, Noah Sather D, Murphy

705 SC, Kappe SHII. 2017. Complete attenuation of genetically engineered Plasmodium

706 falciparum sporozoites in human subjects. *Sci Transl Med* 9:1–12.

707 39. Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR, Udenze K, Bronner IF,

708 Casandra D, Mayho M, Brown J, Li S, Swanson J, Rayner JC, Jiang RHYY, Adams

709 JH. 2018. Uncovering the essential genes of the human malaria parasite Plasmodium

710 falciparum by saturation mutagenesis. *Science* (80-) 360.

711 40. Yu M, Kumar TRS, Nkrumah LJ, Coppi A, Retzlaff S, Li CD, Kelly BJ, Moura PA,

712 Lakshmanan V, Freundlich JS, Valderramos J-C, Vilchez C, Siedner M, Tsai JH-C,

713 Falkard B, Sidhu ABS, Purcell LA, Grataud P, Kremer L, Waters AP, Schiehser G,

714 Jacobus DP, Janse CJ, Ager A, Jacobs WRJ, Sacchettini JC, Heussler V, Sinnis P,

715 Fidock DA. 2008. The fatty acid biosynthesis enzyme FabI plays a key role in the

716 development of liver-stage malarial parasites. *Cell Host Microbe* 4:567–578.

717 41. Dankwa DA, Davis MJ, Kappe SHI, Vaughan AM. 2016. A Plasmodium yoelii Mei2-

718 like RNA binding protein is essential for completion of liver stage schizogony. *Infect*

719 *Immun* 84:1336–1345.

720 42. Mikolajczak SA, Sacci JB, De La Vega P, Camargo N, Vanbuskirk K, Krzych U, Cao

721 J, Jacobs-Lorena M, Cowman AF, Kappe SHI. 2011. Disruption of the plasmodium

722 falciparum liver-stage antigen-1 locus causes a differentiation defect in late liver-stage

723 parasites. *Cell Microbiol* 13:1250–1260.

724 43. Orito Y, Ishino T, Iwanaga S, Kaneko I, Kato T, Menard R, Chinzei Y, Yuda M. 2013.

725 Liver-specific protein 2: A Plasmodium protein exported to the hepatocyte cytoplasm

726 and required for merozoite formation. *Mol Microbiol* 87:66–79.

727 44. Sahu T, Boisson B, Lacroix C, Bischoff E, Richier Q, Formaglio P, Thibierge S,

728 Dobrescu I, Ménard R, Baldacci P. 2014. ZIPCO, a putative metal ion transporter, is

729 crucial for Plasmodium liver-stage development. *EMBO Mol Med* 6:1387–1397.

730 45. Sanvisens N, Baño MC, Huang M, Puig S. 2011. Regulation of ribonucleotide

731 reductase in response to iron deficiency. *Mol Cell* 44:759–769.

732 46. Wu Y, Brosh RMJ. 2012. DNA helicase and helicase-nuclease enzymes with a

733 conserved iron-sulfur cluster. *Nucleic Acids Res* 40:4247–4260.

734 47. Huynh C, Sacks DL, Andrews NW. 2006. A *Leishmania amazonensis* ZIP family iron

735 transporter is essential for parasite replication within macrophage phagolysosomes. *J*

736 *Exp Med* 203:2363–2375.

737 48. Huynh C, Andrews NW. 2008. Iron acquisition within host cells and the pathogenicity

738 of *Leishmania*. *Cell Microbiol* 10:293–300.

739 49. Slavic K, Krishna S, Lahree A, Bouyer G, Hanson KK, Vera I, Pittman JK, Staines

740 HM, Mota MM. 2016. A vacuolar iron-transporter homologue acts as a detoxifier in

741 Plasmodium. *Nat Commun* 7:1–10.

742 50. Overstreet MG, Cockburn IA, Chen YC, Zavala F. 2008. Protective CD8+ T cells

743 against Plasmodium liver stages: Immunobiology of an “unnatural” immune response.

744 *Immunol Rev* 225:272–283.

745 51. Butler NS, Schmidt NW, Vaughan AM, Aly AS, Kappe SHII, Harty JT. 2011.

746 Superior antimalarial immunity after vaccination with late liver stage-arresting

747 genetically attenuated parasites. *Cell Host Microbe* 9:451–462.

748 52. Westenberger SJ, McClean CM, Chattopadhyay R, Dharia N V., Carlton JM, Barnwell

749 JW, Collins WE, Hoffman SL, Zhou Y, Vinetz JM, Winzeler EA. 2010. A systems-

750 based analysis of Plasmodium vivax lifecycle transcription from human to mosquito.

751 *PLoS Negl Trop Dis* 4.

752 53. Sonnhammer EL, von Heijne G, Krogh A. 1998. A hidden Markov model for

753 predicting transmembrane helices in protein sequences. *Proceedings Int Conf Intell*

754 *Syst Mol Biol* 6:175–182.

755 54. Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the

756 display and annotation of phylogenetic and other trees. *Nucleic Acids Res* 44:W242–

757 5.

758 55. Srivastava PN, Mishra S. 2022. Disrupting a Plasmodium berghei putative

759 phospholipase impairs efficient egress of merosomes. *Int J Parasitol* 52:547–558.

760 56. Janse CJ, Ramesar J, Waters AP. 2006. High-efficiency transfection and drug selection

761 of genetically transformed blood stages of the rodent malaria parasite Plasmodium

762 berghei. *Nat Protoc* 1:346–356.

763 57. Narwal SK, Nayak B, Mehra P, Mishra S. 2022. Protein kinase 9 is not required for

764 completion of the Plasmodium berghei life cycle. *Microbiol Res* 260:127051.

765 58. Rénia L, Miltgen F, Charoenvit Y, Ponnudurai T, Verhave JP, Collins WE, Mazier D.

766 1988. Malaria sporozoite penetration A new approach by double staining. *J Immunol*

767 *Methods* 112:201–205.

768 59. Choudhary HH, Gupta R, Mishra S. 2019. PKAc is not required for the preerythrocytic

769 stages of Plasmodium berghei 2:1–11.

770 60. Bruña-Romero O, Hafalla JC, González-Aseguinolaza G, Sano G, Tsuji M, Zavala F.

771 2001. Detection of malaria liver-stages in mice infected through the bite of a single

772 Anopheles mosquito using a highly sensitive real-time PCR. *Int J Parasitol* 31:1499–

773 1502.

774 61. Holder AA, Freeman RR. 1981. Immunization against blood-stage rodent malaria
775 using purified parasite antigens. *Nature* 294:361–364.

776 62. Gallagher JR, Prigge ST. 2010. Plasmodium falciparum acyl carrier protein crystal
777 structures in disulfide-linked and reduced states and their prevalence during blood
778 stage growth. *Proteins* 78:575–588.

779 63. Sun YJ, Velez G, Parsons DE, Li K, Ortiz ME, Sharma S, McCray PBJ, Bassuk AG,
780 Mahajan VB. 2021. Structure-based phylogeny identifies avoralstat as a TMPRSS2
781 inhibitor that prevents SARS-CoV-2 infection in mice. *J Clin Invest* 131.

782 64. Holm L. 2022. Dali server: structural unification of protein families. *Nucleic Acids
783 Res* 50:W210–W215.

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807 **Table 1.** Infectivity of salivary gland sporozoites in C57BL/6 mice. Blood smears were
808 examined daily from day 3 onwards, and the mice were considered negative if
809 parasites were not detected by day 20. NA, not applicable.

810

Experi- ments	Parasites	Sporozoites inoculated	Mice positive/mice inoculated	Prepatent period (day)
1	WT	5,000	10/10	3
	<i>Scot1</i> KO	5,000	0/15	NA
	<i>Scot1</i> comp	5,000	5/5	3
	WT	Via 20 mosquitos bite	5/5	3
	<i>Scot1</i> KO	Via 20 mosquitos bite	0/5	NA
2	WT	10,000	10/10	3
	<i>Scot1</i> KO	10,000	0/20	NA
	<i>Scot1</i> comp	5,000	5/5	3
3	WT	50,000	5/5	3
	<i>Scot1</i> KO	50,000	0/10	NA

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838 **Table 2.** Infectivity of the merosomes in Swiss mice. Blood smears were examined
839 daily from day 1 onwards, and the mice were considered negative if parasites were not
840 detected by day 20. NA, not applicable.

841

Experiment	Parasite	Number of detached cells injected	Mice positive/mice inoculated	Prepatent period (day)
1	WT	10	5/5	2.4
	<i>Scot1</i> KO	Supernatant	0/5	NA
2	WT	100	5/5	1.2
	<i>Scot1</i> KO	Supernatant	0/5	NA

842
843
844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861 **Table 3.** Infectivity of the merosomes in Swiss mice. Metal ion supplementation did not
862 affect the *Scot1* KO phenotype. Blood smears were examined daily from day 1
863 onwards, and the mice were considered negative if parasites were not detected by day
864 20. NA, not applicable.

865

Parasite	Number of detached cells injected	Mice positive/mice inoculated	Prepatent period (day)
WT	10	10/10	2.5
WT+ FAC	10	10/10	2.6
WT+ ZnCl ₂	10	10/10	2.7
WT+ CdCl ₂	10	10/10	2.7
<i>Scot1</i> KO	Supernatant	0/10	NA
<i>Scot1</i> KO + FAC	Supernatant	0/10	NA
<i>Scot1</i> KO + ZnCl ₂	Supernatant	0/10	NA
<i>Scot1</i> KO + CdCl ₂	Supernatant	0/10	NA

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893

894 **Table 4. Immunization of C57BL/6 mice with *Scot1*-KO sporozoites protects**
895 **against infection.** Mice were immunized with the indicated number of *Scot1* KO
896 sporozoites and challenged on day 10 after the last immunization with *P. berghei* WT
897 sporozoites. All immunized mice were protected from WT *P. berghei* sporozoite
898 challenge. NA, not applicable.

899

Experiment	Group	Immunization dose	Challenge day	Challenge dose	No. of patent/no. of challenged	Prepatent period (day)
1	Control	(3x) SG debris	10	5,000	5/5	3
	Scot1 KO	1x) 5×10^4 and (2x) 2.5×10^4	10	5,000	0/5	NA
2	Control	(3x) SG debris	10	5,000	5/5	3
	Scot1 KO	1x) 5×10^4 and (2x) 2.5×10^4	10	5,000	0/5	NA
3	Control	(3x) SG debris	10	5,000	5/5	3
	Scot1 KO	(3x) 2×10^4	10	5,000	0/5	NA

900
901
902
903
904
905
906
907
908
909
910
911
912
913

914 **Figure legends**

915
916 **Figure 1. Expression and localization of Scot1 in *P. berghei*. (A)** Scot1-3XHA-
917 mCherry salivary gland sporozoites showing mCherry expression pattern. **(B)** HepG2
918 cells infected with Scot1-3XHA-mCherry sporozoites were harvested at different time
919 points. Cultures harvested at 12, 24, 36, 48, and 62 hpi were stained with mCherry
920 and UIS4 antibodies, and nuclei were stained with Hoechst. mCherry expression
921 was observed at 12, 24, and 62 hpi but at 36 and 48 hpi. **(C)** Confirmation of the
922 expression of the Scot1 fusion protein in the Scot1-3XHA-mCherry transgenic
923 parasites using an anti-mCherry antibody. A 39 kDa band was detected in the lysate
924 of the Scot1 transgenic sporozoites but not in the lysate of the WT parasites. The
925 blot was stripped and reprobed with an anti-TRAP antibody as a loading control. **(D)**
926 IFA of Scot1-3XHA-mCherry transgenic sporozoites using anti-TRAP and anti-
927 mCherry antibodies. TRAP and mCherry were colocalized (PCC=0.9 of 10
928 sporozoites).

929
930 **Figure 2. *Scot1* KO parasites exhibit major defects during late liver stage**
931 **development. (A)** To quantify the parasite burden, infected mouse livers were
932 harvested at 40 and 55 hpi, RNA was isolated, and transcripts were quantified using
933 real-time PCR. The *P. berghei* 18S rRNA copy number was comparable in the WT
934 GFP and *Scot1* KO parasites at 40 hpi ($P=0.5233$, Student's t test) but decreased in
935 the *Scot1* KO parasites compared to the WT GFP parasites at 55 hpi ($*P=0.0248$,
936 Student's t test). The data are presented as the means \pm SDs; $n = 5$ mice per group.

937
938 **Figure 3. *Scot1* KO EEFs exhibit normal growth but fail to mature into hepatic**
939 **merozoites. (A)** HepG2 cells infected with the *Scot1* KO or WT GFP sporozoites

940 were harvested at different time points. Cultures harvested at 24, 36, 48, and 62 hpi
941 were stained with anti-UIS4 antibody, and host and parasite nuclei were stained with
942 Hoechst. The EEFs grew normally until 48 hpi and showed impaired nuclear division
943 at 62 hpi. **(B)** The number of EEFs in the *Scot1* KO parasites at 36 ($P=0.1426$), 48
944 ($P=0.7006$) and 62 hpi ($P=0.2518$) was not significantly different from that in the WT
945 GFP. The data were obtained from three independent experiments performed in
946 duplicate and are presented as the mean \pm SEM. **(C)** The EEF area at 36
947 ($P=0.2064$), 48 ($P=0.2084$) and 62 hpi ($P=0.0908$) was comparable between the WT
948 GFP and *Scot1* KO parasites. The data were obtained from three independent
949 experiments performed in duplicate and are presented as the mean \pm SEM. **(D)** The
950 number of EEFs from the *Scot1* KO and WT GFP parasites. Despite a comparable
951 number of EEFs, *Scot1* KO parasites failed to release detached cells into the culture
952 supernatant ($***P<0.0003$). The data were obtained from a single experiment
953 performed in duplicate and are presented as the mean \pm SD. Student's t test was
954 used to determine the statistical significance.

955

956 **Figure 4. *Scot1* KO EEFs exhibit impaired late liver stage development. (A)**
957 Culture fixed at 62 hpi was immunostained with the apicoplast marker anti-ACP
958 antibody. WT GFP and *Scot1* KO parasites showing apicoplast branching patterns.
959 **(A)** Infected cultures harvested at 62 hpi were immunostained with an anti-MSP1
960 antibody to visualize the development of hepatic merozoites, and DNA was stained
961 with Hoechst. No merozoites were observed in the *Scot1* KO parasites. We found
962 normal segregation of nuclei and the formation of merozoites in the WT GFP
963 parasites but not in the *Scot1* KO parasites. **(B)** Nuclei were counted in WT GFP,
964 *Scot1* KO and *Scot1* comp EEFs at 62 hpi, and a significant decrease in nuclear

965 count was observed in *Scot1* KO parasites (****P<0.0001, Student's t test). No
966 significant difference was observed between WT GFP and *Scot1* comp parasites (P=0.5166, Student's t test).

968

969 **Figure 5. The *Scot1* KO parasites expel micronemes normally.** HepG2 cultures
970 infected with the *Scot1* KO or WT GFP parasites were fixed at 24, 40, and 55 hpi
971 and immunostained with anti-TRAP antibodies. During the liver stage of *Plasmodium*
972 development, micronemes were expelled into the PV in both the *Scot1* KO and WT
973 GFP parasites. Nuclei were stained with Hoechst.

974

975 **Figure 6. Bioinformatic analysis indicated that *Scot1* is a metal/small molecule
976 carrier protein.** (A) The structure of PfScot1, as predicted using the Quark ab initio
977 structure prediction web service, shows an open beta-barrel configuration. (B)
978 Superposition of PfScot1 (gold) with chain M of PDB ID 2GTL (red) with a 0.9 Å
979 RMSD value and (C) chain A of PDB ID 4O4X (red) with a 0.8 Å RMSD value. (D)
980 Structure-based phylogenetic tree depicting the relative position of PfScot1
981 (highlighted) among its closest matching PDB counterparts listed in Table S1.

982

983 **Figure 7. Metal ion supplementation does not rescue the *Scot1* KO phenotype.**
984 HepG2 cells were infected with either *Scot1* KO or WT GFP sporozoites and cultured
985 in media supplemented with different concentrations of metal ions. The culture was
986 observed at 65 hpi for the formation of detached cells and then fixed for IFA. (A) No
987 detached cells were observed in the *Scot1* KO parasites supplemented with metal
988 ions (****P<0.0001, one-way ANOVA). (B) Merozoites were not observed in the
989 *Scot1* KO parasites supplemented with metal ions (**P= 0.0002, one-way ANOVA).

990 (C) Impaired nuclear division in *Scot1* KO parasites supplemented with metal ions
991 (****P<0.0001, one-way ANOVA). The data were obtained from two independent
992 experiments performed in duplicate and are presented as the mean \pm SEM.
993

994 **Supplemental Material**

995 **Figure S1.** Phylogenetic tree.

996 **Figure S2.** *Scot1* amino acid sequence analysis.

997 **Figure S3.** Generation of *Scot1*-3XHA-mCherry parasites and their development in
998 the mosquito and liver stages.

999 **Figure S4.** Generation of *Scot1* KO and complemented parasites.

1000 **Figure S5.** The development of *Scot1* KO parasites in mosquitoes.

1001 **Figure S6.** *Scot1* KO sporozoites invade hepatocytes normally.

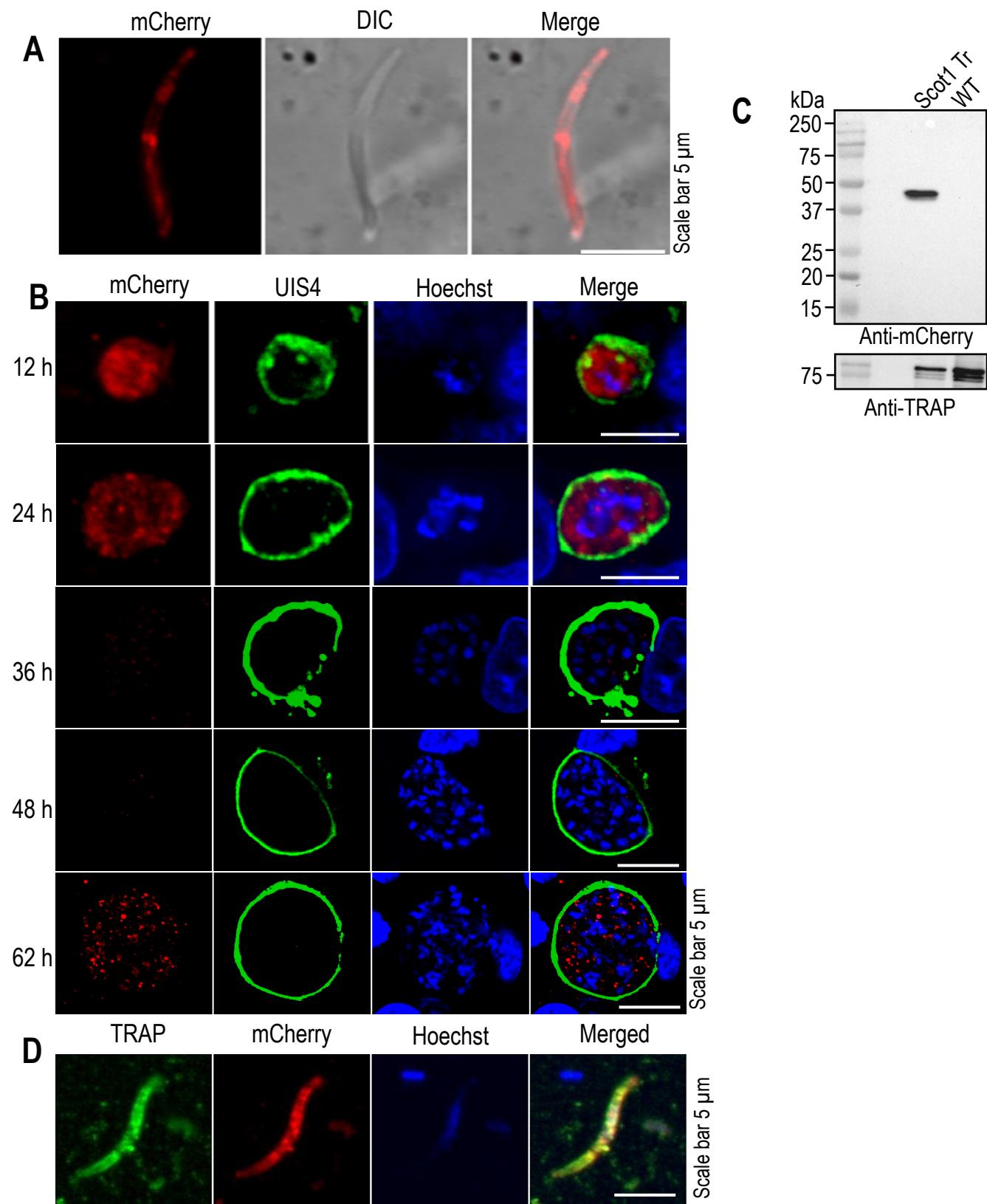
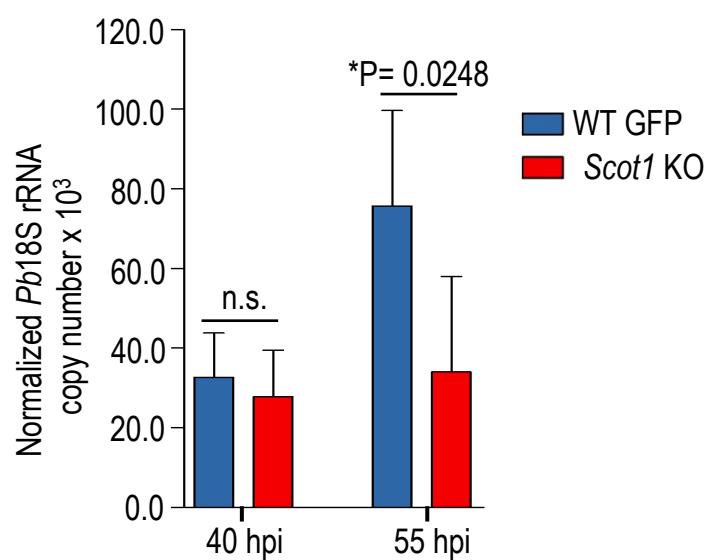
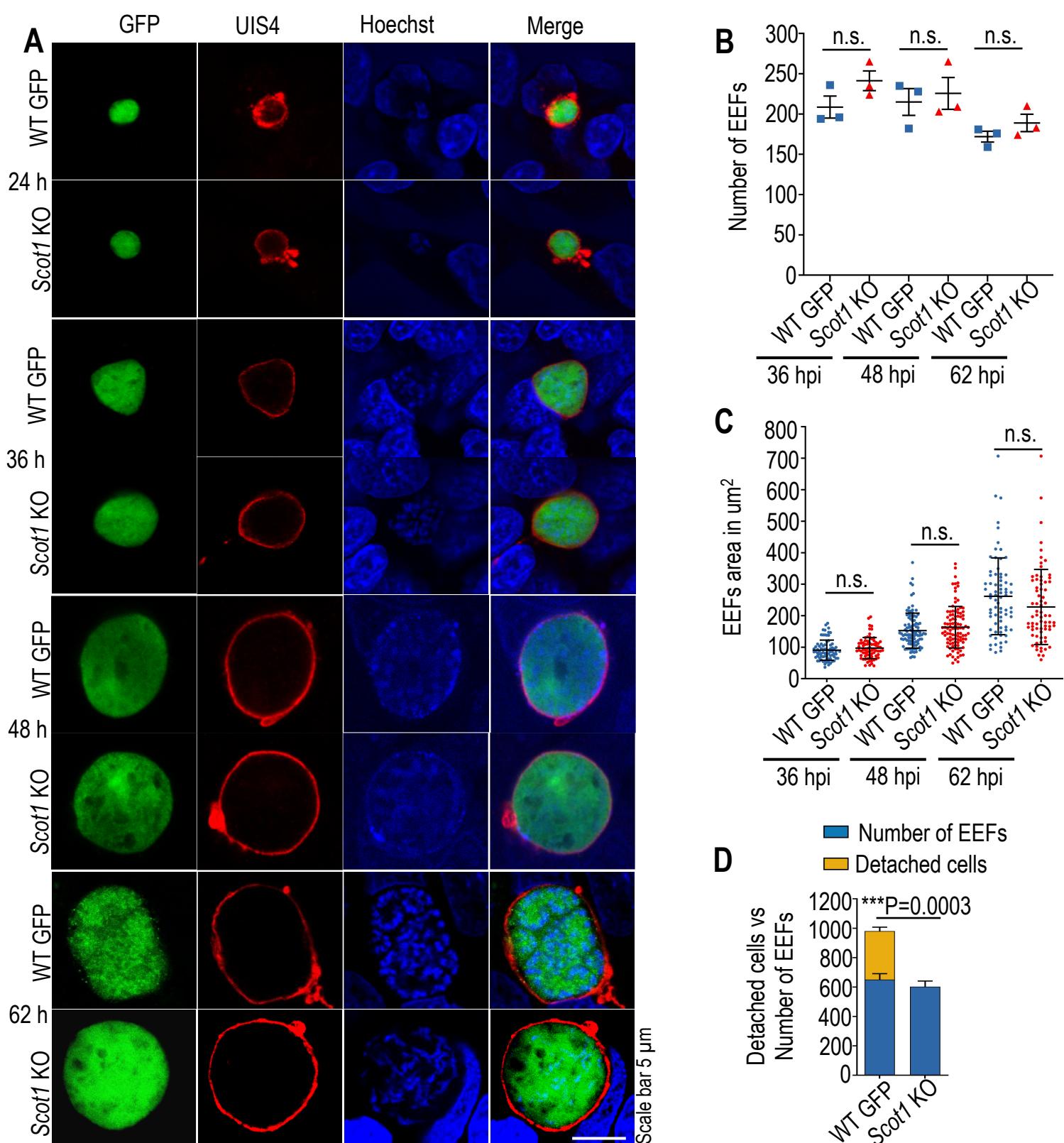
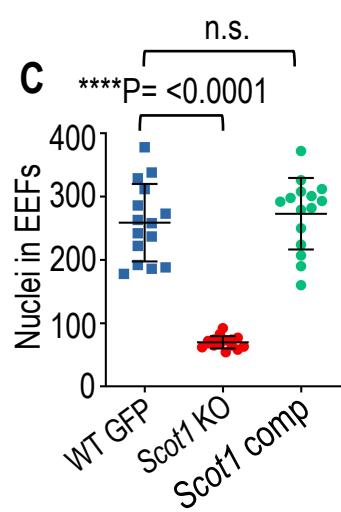
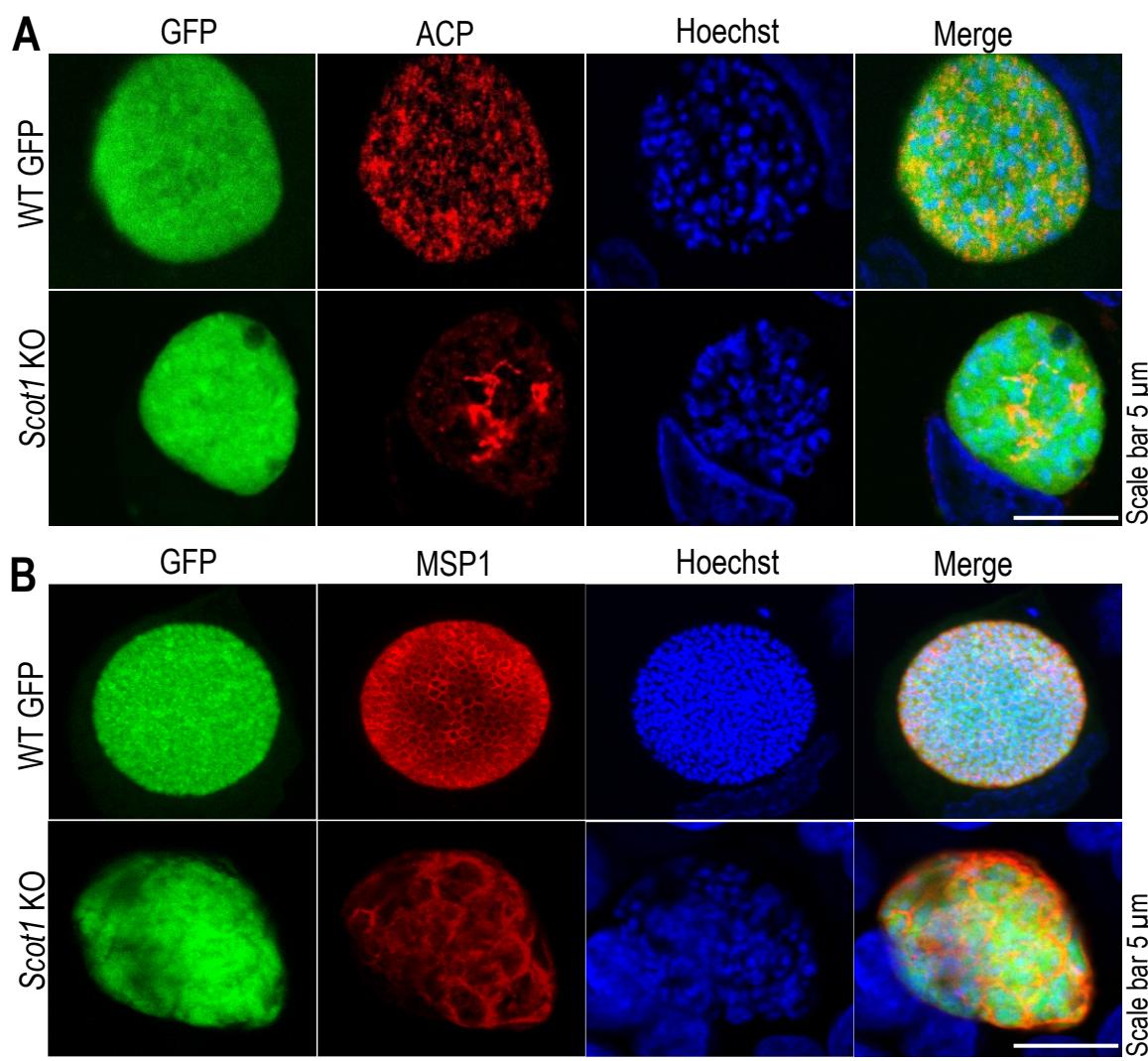

1002 **Figure S7.** Immune sera recognize sporozoites and the EEF.

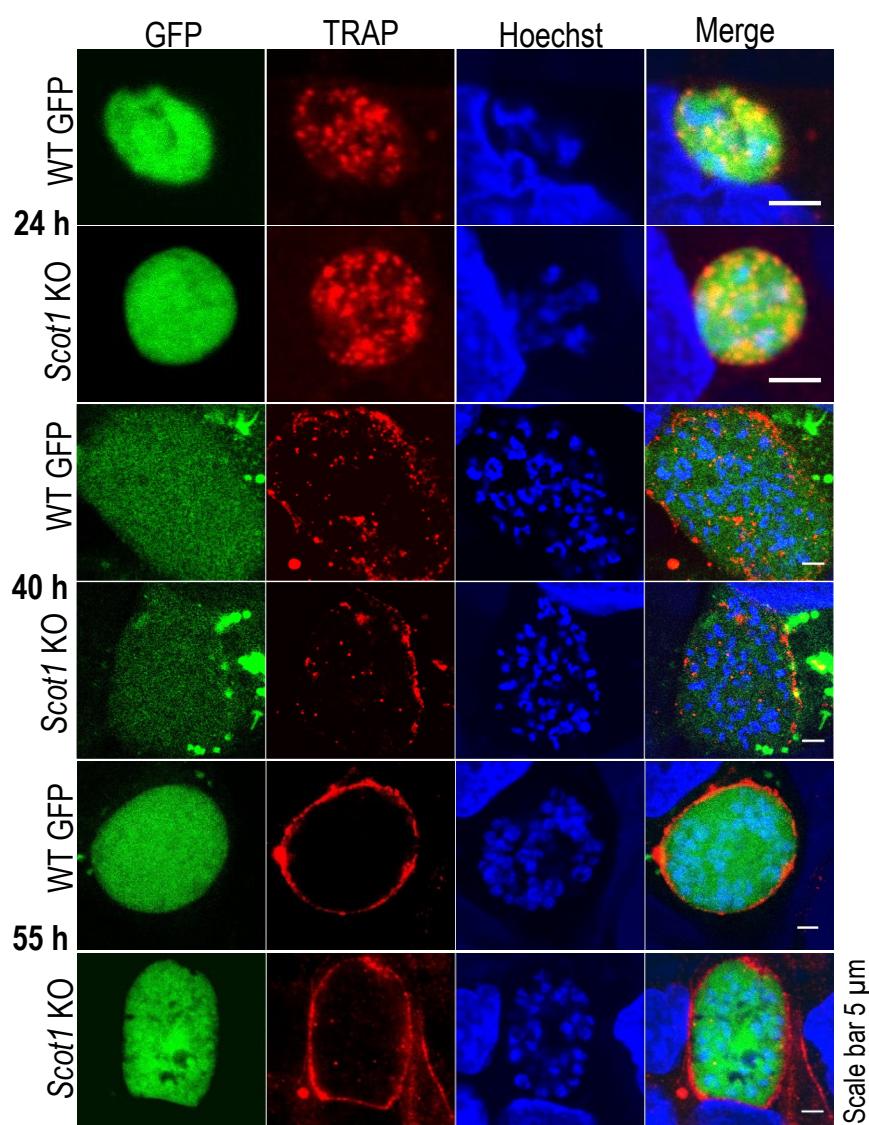
Table S1. Closest structure-based phylogenetic matches of PfSCOT1 from the PDB
database.


1003 **Table S2.** List of primers used in this study.

1004


Figure 1



Figure 2


Figure 3

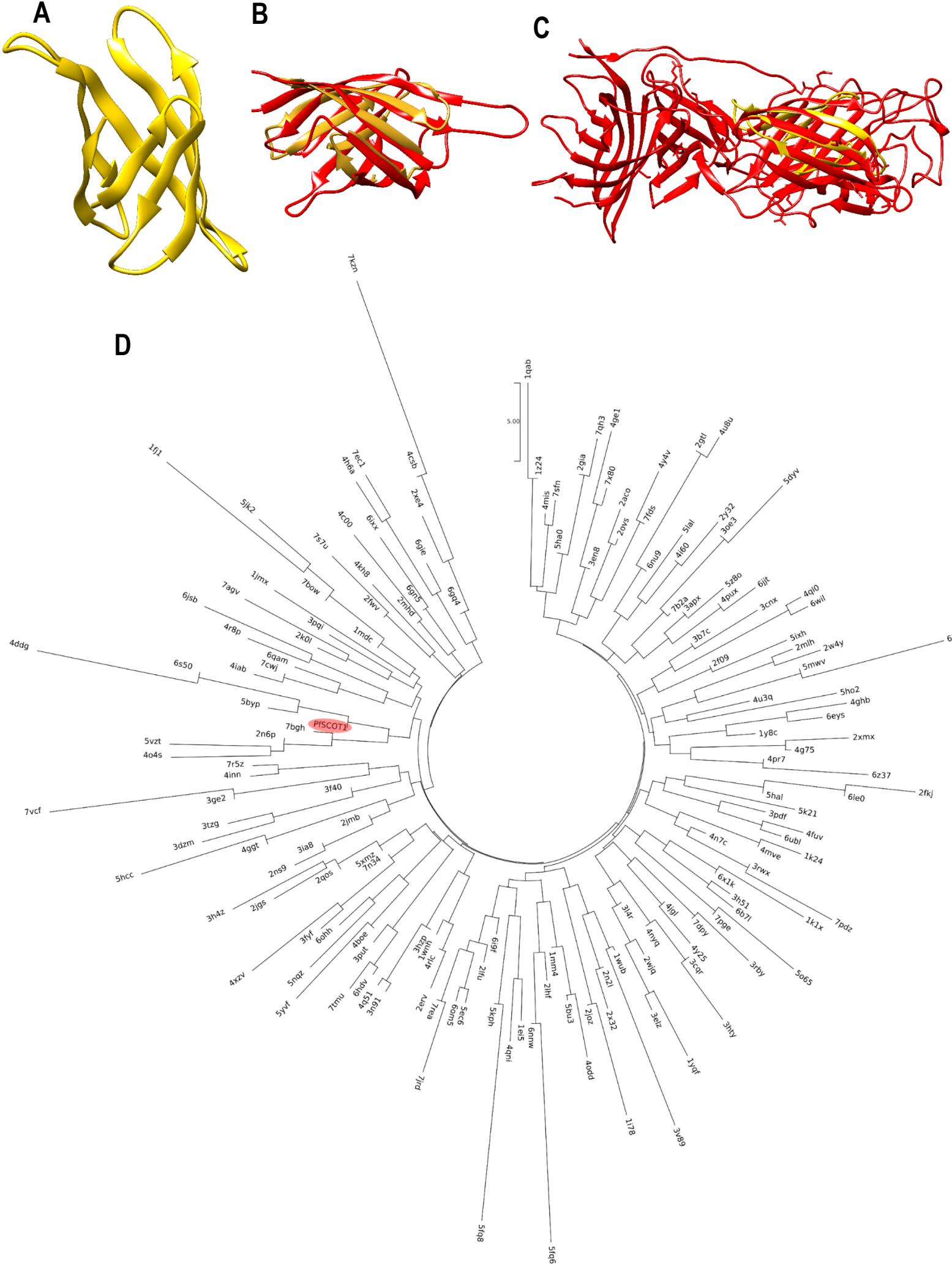


Figure 4

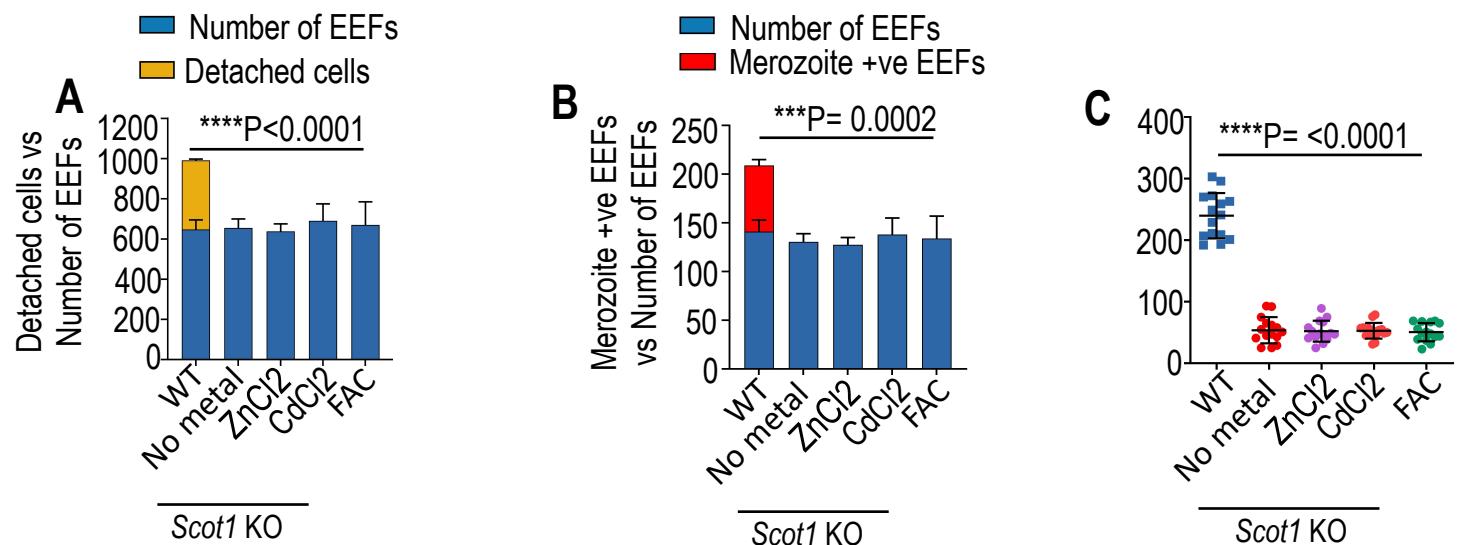


Figure 5

Figure 7

