

1 SARS-CoV-2 Omicron Envelope T9I adaptation

2 confers resistance to autophagy

3 Susanne Klute¹, Rayhane Nchioua¹, Arne Cordsmeier², Jyoti Vishwakarma³, Lennart Koepke¹,
4 Hala Alshammary^{1,4,5}, Christoph Jung^{6,7,8}, Maximilian Hirschenberger¹, Helene Hoenigsperger¹,
5 Jana-Romana Fischer¹, Fabian Zech¹, Steffen Stenger⁹, Ruth Serra-Moreno¹⁰, Ana S. Gonzalez-
6 Reiche¹¹, Emilia Mia Sordillo¹², Harm van Bakel^{4,11,13}, Viviana Simon^{4,5,12,14,15}, Frank Kirchhoff¹,
7 Timo Jacob⁶, Dorota Kmiec¹, Andreas Pichlmair³, Armin Ensser², Konstantin MJ Sparrer^{1,*}

8

9 ¹ Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.

10 ² Institute for Clinical and Molecular Virology, University Hospital, Friedrich-Alexander-
11 Universität Erlangen-Nürnberg, Erlangen, Germany.

12 ³ Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany.

13 ⁴ Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

14 ⁵ Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of
15 Medicine at Mount Sinai, New York, NY, USA.

16 ⁶ Institute of Electrochemistry, Ulm University, Ulm, Germany.

17 ⁷ Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Ulm, Germany.

18 ⁸ Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

19 ⁹ Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm,
20 Germany.

21 ¹⁰ Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.

22 ¹¹ Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai,
23 New York, NY, USA.

24 ¹² Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at
25 Mount Sinai, New York, NY, USA.

26 ¹³ Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

27 ¹⁴ Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount
28 Sinai, New York, NY, USA.

29 ¹⁵ The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount
30 Sinai, New York, NY, USA.

31

32 ***Correspondence:** Konstantin.Sparrer@uni-ulm.de

33 **Keywords:** SARS-CoV-2, Variants of concern, COVID-19, Autophagy, Innate Immunity

34 **Running title:** E T9I confers SARS-CoV-2 Omicron autophagy resistance

35 ABSTRACT

36 To date, five variants of concern (VOCs) of SARS-CoV-2 have emerged that show increased
37 fitness and/or immune evasion. While the continuously evolving escape from humoral immune
38 responses has been analyzed in detail, adaptation of SARS-CoV-2 to human innate immune
39 defenses such as autophagy is less understood. Here, we demonstrate that mutation T9I in the
40 structural envelope (E) protein confers autophagy resistance of Omicron VOCs (BA.1, BA.5 and
41 XBB.1.5) compared to 2020 SARS-CoV-2 or the Delta VOC. Mechanistic analyses revealed that
42 Omicron-associated E T9I shows increased inhibition of autophagic flux and
43 colocalization/interaction with autophagosomes, thus shielding incoming SARS-CoV-2 S
44 pseudotyped virions from autophagy. Rare Omicron isolates carrying ancestral E T9 remain
45 sensitive towards autophagy whereas recombinant early 2020 SARS-CoV-2 expressing E T9I
46 shows increases resistance against autophagy. Our data indicate that the E T9I mutation drives
47 autophagy resistance of the Omicron variants and thus may have contributed to their effective
48 spread.

49 INTRODUCTION

50 The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the
51 COVID-19 pandemic^{1,2}. After crossing the species barrier from bats to humans most likely via a
52 yet unidentified intermediate host at the end of 2019¹, SARS-CoV-2 continues to adapt as it
53 circulates within its new human host³. Thus, several variants of SARS-CoV-2 with increased
54 transmission efficiency and immune evasion, termed variants of concern (VOC) emerged within
55 the past three years, including Alpha, Beta, Gamma, Delta and since late 2021 Omicron³. Currently
56 (April 2024), various subvariants of Omicron dominate the pandemic including XBB,EG.5.1,
57 HK.3 and most recently JN.1⁴⁻⁸. All Omicron variants are characterized by a large number of
58 mutations in the genome (~50-100), compared to earlier SARS-CoV-2 strains⁹. These mainly
59 cluster in the gene encoding the surface protein Spike (S)⁹. Most amino acid changes in Omicron
60 S contribute to evasion from humoral immune responses, such as neutralizing antibodies induced
61 by vaccines or previous SARS-CoV-2 infections. This has allowed the Omicron variant to infect
62 and replicate in hosts with pre-existing immunity against prior SARS-CoV-2 variants¹⁰⁻¹². Thus,
63 escaping from adaptive immunity by altering the surface glycoprotein is a major driver of
64 manifestation of mutations in the genome of successful SARS-CoV-2 variants^{3,4}. However, an
65 analysis of 6.4 million SARS-CoV-2 genomes identified four non-Spike mutations within the top
66 10 mutations in SARS-CoV-2 that are associated with increased viral fitness (ORF1a P3395H,
67 ORF1a K856R, E T9I and ORF9b P10S)¹³. The impact of these mutations is currently not fully
68 understood.
69 In addition to the adaptive immune system, activation of innate immune defense mechanisms, such
70 as autophagy, was reported to restrict SARS-CoV-2¹⁴⁻¹⁸. Autophagy is an evolutionary conserved
71 catabolic pathway that has emerged as an integral part of the innate immune system¹⁹. During

72 selective autophagy, cytoplasmic cargo, including viruses or viral components, is recognized by
73 autophagy receptors such as p62/SQSTM1 and engulfed in LC3B-II-positive double-membrane
74 vesicles called autophagosomes^{20,21}. Subsequently, autophagosomes fuse with lysosomes and the
75 cargo along with the receptor is degraded²⁵. As such, autophagic flux, i.e. the turnover of
76 autophagosomes, targets incoming virions, viral proteins or budding viral particles for lysosomal
77 degradation^{22–26}. To avoid lysosomal degradation, SARS-CoV-2 perturbs autophagy. Infection
78 with SARS-CoV-2 leads to accumulation of p62/SQSTM1 and LC3B-II *in vitro* and *in vivo*,
79 indicating impaired autophagic turnover^{15,16}. In depth analyses revealed that at least five of the ~30
80 proteins encoded by SARS-CoV-2, including the non-structural proteins Nsp15 and Nsp6, as well
81 as ORF3a, ORF7a and the structural protein Envelope (E), antagonize autophagy^{16,27,28}. Whereas
82 Nsp15 reduces autophagic flux, Nsp6 exploits autophagy to promote degradation of immune
83 sensors^{16,29}. Expression of the accessory proteins ORF3a and ORF7a resulted in the accumulation
84 of non-acidified autophagosomes in the cytoplasm indicating that they prevent autophagosome
85 turnover¹⁶. Mechanistically, ORF3a decreases fusion of lysosomes with autophagosomes by
86 interfering with the assembly of the fusion machinery^{16,30–32}, whereas ORF7a reduces the acidity
87 of autophago-/lysosomes^{16,33}. It was suggested that ORF3a also mediates exploitation of the
88 autophagic machinery to promote SARS-CoV-2 budding³¹. Interestingly, the E protein, one of the
89 four structural proteins of SARS-CoV-2, was shown to inhibit autophagic flux¹⁶. The 75 amino
90 acid long E protein was reported to assemble into a viroporin consisting of five membrane
91 spanning E proteins and enabling ion channel activity^{34,35}. Intracellularly, E was reported to
92 localize to endosomes and lysosomes, trigger ER stress responses and eventually affect host cell
93 survival^{36,37}. However, the impact and cellular targets of E in autophagy antagonism are currently
94 unknown.

95 Here, we show that the mutation T9I in E that emerged with the Omicron lineage of SARS-CoV-
96 2 confers increased resistance against autophagy and protects the incoming virion from autophagy.
97 Mechanistic analyses revealed that T9I increases E localization to autophagosomes as well as
98 interaction with autophagosome-associated SNX12, ST12, TMEM87b and ABCG2. Furthermore,
99 our data shows that entry of viral particles carrying E T9I is less restricted by autophagy. Rare
100 Omicron patient isolates lacking T9I are sensitive towards pharmaceutical autophagy induction,
101 whereas recombinant early 2020 SARS-CoV-2 carrying E T9I gains autophagy resistance. Thus,
102 our results identify escape from autophagy as an evolutionary trajectory of SARS-CoV-2 and
103 reveal E T9I as the mutation allowing Omicron to escape autophagy.

104 **RESULTS**

105 **The Omicron variant of SARS-CoV-2 is resistant to autophagy**

106 The emergence of the Omicron variant marked a significant shift in SARS-CoV-2 evolution.
107 Earlier strains and VOCs were rapidly outcompeted in late 2021 by successive subvariants of
108 Omicron, such as BA.1, BA.2, BA.5 and XBB, that dominate until today (Fig. 1a). We aimed to
109 understand whether SARS-CoV-2 Omicron adapted to escape not only adaptive immunity, but
110 also innate immunity, in particular autophagy. Therefore, we analyzed the impact of Torin-1,
111 which targets the mTOR complex and activates autophagy^{34,35}, on the replication of various VOCs
112 in Calu-3 cells. Our data shows that Torin-1 treatment reduced replication of an early 2020 SARS-
113 CoV-2 isolate (NL-02-2020, here after NL) as well as the Delta variant in a dose-dependent manner
114 by up to 50-fold (Fig. 1b, Extended Data Fig. 1a). In contrast, all tested Omicron variants were
115 largely (BA.1, BA.5) or even fully (XBB.1.5.) resistant to autophagy induction (Fig. 1b). It was
116 previously suggested that inhibition of mTOR promotes SARS-CoV-2 by modulation of the
117 expression of interferon-induced transmembrane proteins (IFITMs)³⁸. However, endogenous

118 IFITM levels were unaffected by Torin-1 in Calu-3 cells despite robust autophagy induction as
119 indicated by decreased endogenous SQSTM1/p62 levels and LC3B-I to II conversion (Extended
120 Data Fig. 1b). As revealed by area under the curve analyses, accumulated viral RNA production
121 by BA.1, BA.5 or XBB.1.5. was 8.2-, 5.2- or 13.6-fold less affected by Torin-1 compared to NL
122 (Fig. 1c). Autophagy resistance of Omicron variants was confirmed by determining viral titers 48
123 h post infection (Fig. 1d, Extended Data Fig. 1c). While infectious viral yields of NL were
124 decreased by almost 4000-fold upon 250 nM Torin-1 treatment, the Omicron subvariants BA.1,
125 BA.5 and XBB.1.5. were restricted by autophagy induction only 20-, 300- or 11-fold (Fig. 1d).
126 These results indicate a pronounced decrease in autophagy sensitivity among Omicron variants
127 compared to ancestral SARS-CoV-2 strains and previous VOCs, indicating acquisition of
128 increased resistance to host cell intrinsic defenses.

129 **The Omicron-specific T9I mutation in E leads to increased autophagosome accumulation**

130 To investigate the molecular mechanism underlying autophagy evasion by Omicron, we focused
131 on three proteins: ORF3a, ORF7a and E, that were identified by previous studies as key factors
132 encoded by SARS-CoV-2 that antagonize autophagic flux^{13,14}. The Delta and the Omicron VOCs
133 harbor distinct consensus mutations (Covariants) in these three genes compared to NL/HU-1: Delta
134 (ORF3a S26L, ORF7a V82A, T120I), BA.1 (E T9I), BA.5 (ORF3a T223I; E T9I), XBB (ORF3a
135 T223I; E T9I, T11A) (Fig. 2a). To determine which of the VOC-specific mutations may alter the
136 sensitivity to autophagy, we introduced single point mutations in NL-derived ORF3a, ORF7a and
137 E by site-directed mutagenesis (Fig. 2b). To analyze the impact of the mutated proteins on
138 autophagy, we employed a flow cytometry-based system^{39,40}. In brief, HEK293T cells stably
139 expressing the autophagy marker protein GFP-LC3B stably are mild permeabilized by saponin.
140 Membrane-bound GFP-LC3B, which decorates autophagosomes, remains associated to the cells.

141 Thus, the remaining GFP fluorescence can serve as a proxy for autophagosome content of a cell.

142 Expression of VOC associated SARS-CoV-2 constructs in our autophagy reporter HEK293T cells

143 revealed that all NL-derived and VOC-associated mutant forms of ORF3a and ORF7a caused

144 accumulation of similar levels of autophagosomes (Fig. 2b). However, expression of Omicron-

145 derived E T9I resulted in significantly increased autophagosome accumulation compared to NL-

146 derived E (E WT) or Omicron T11A E (Fig. 2b, right panel). To discern whether autophagosomes

147 levels are increased in the presence of E due to increased autophagic flux or impaired

148 autophagosome turnover, we monitored endogenous LC3B-I to LC3B-II conversion as well as

149 SQSTM1/p62 levels, two hallmarks of autophagy⁴⁰. In the presence of SARS-CoV-2 E LC3B-II

150 and p62 accumulate, suggesting that E inhibits autophagic flux (Fig. 2c). In line with the flow

151 cytometry assay, accumulation of endogenous LC3B-II was increased in the presence of E T9I

152 compared to E WT. Dose-dependency assays revealed that E T9I outperforms accumulation of

153 autophagosomes by E T9 over a broad range of the expression levels (Fig. 2d). To corroborate that

154 E inhibits autophagosome turnover, we impaired autophagosome-lysosome fusion using saturating

155 concentrations of Bafilomycin A1⁴⁰. The impact of both E variants on cellular autophagosome

156 levels as assed by GFP-LC3B flow cytometry is decreased in the presence of Bafilomycin A1,

157 further confirming that E inhibits flux⁴⁰ (Fig. 2e). Finally, accumulation of autophagosomes in the

158 presence of E T9I compared to E T9 was confirmed by quantifying GFP-LC3B-positive puncta

159 (=autophagosomes) in HeLa cells transiently expressing WT E or E T9I (Fig. 2f).

160 In summary, these results indicate that the mutation T9I increases the ability of SARS-CoV-2 E to

161 antagonize autophagic flux. Notably, E T9I is the only mutation common to all Omicron

162 subvariants but absent in previous SARS-CoV-2.

163

164 **Impact of T9I mutation on E pore and intracellular localization**

165 The E protein of SARS-CoV-2 assembles as a pentameric alpha-helical complex in lipid bilayers,
166 forming an ion channel permissive for Ca^{2+} that can also transport K^+ , Na^+ in a pH-dependent
167 manner⁴¹. While T9 is not directly part of the pore-forming core transmembrane helix it is located
168 at the beginning (mouth) of the transmembrane helix (Fig. 3a)³⁵. To examine the impact of T9I on
169 pore opening, we performed molecular dynamics modeling leveraging a previously published
170 NMR structure of E (PDB: 7K3G)⁴⁰. This approach allowed us to stimulate the dynamic behavior
171 of the protein upon introducing T9I and evaluate any changes in pore size or conformation.
172 However, this analysis suggests that the T9I mutation has a minimal impact on pore size, with the
173 wild-type E T9 exhibiting a pore size of 14.17 \AA , whereas the mutant E T9I shows only a slight
174 reduction to 13.61 \AA (Figs. 3b, c, Extended Data Fig. 2a). To assess whether the viroporin function
175 of E affects its role in autophagy, we employed a E viroporin inhibitor (BIT225)⁴³. Treatment with
176 non-cytotoxic concentrations of BIT225 had no impact on autophagosome accumulation levels in
177 the presence of E in HEK293T GFP-LC3B autophagy reporter cells (Extended Data Fig. 2b, c).
178 Previous data showed that E mainly localizes to intracellular vesicles such as lysosomes, late
179 endosomes and autophagosomes^{16,37}. Confocal microscopy of HeLa-GFP-LC3B cells transiently
180 expressing either the T9 or T9I E, co-stained with antibodies against endogenous LAMP1, Rab7a
181 and LC3B, showed that both variants co-localize with LAMP1-positive lysosomes, Rab7a-positive
182 late endosomes, and LC3B-positive autophagosomes (Fig. 3d-f). However, while E T9I showed a
183 similar localization to lysosomes as E T9 (Fig. 3d), it was significantly less present on late
184 endosomes, but increasingly co-localized with autophagosomes (Figs. 3e, f).
185 Taken together, these data suggest that the T9I mutation in E does not affect its viroporin assembly,
186 but may shift its localization towards autophagosomes.

187 **T9I increases E interactions with autophagy-associated proteins**

188 To investigate the impact of T9I of the cellular interactome of E, we performed a differential
189 interactome analysis via large-scale pulldowns of E. To this end, we constructed A549 cells stably
190 expressing either T9 or T9I E and purified the proteins along with their cellular interaction partners.
191 Subsequently, the co-purifying proteins were identified by mass spectrometry (Supplementary
192 Table 1). Principal component analysis revealed that the interactomes of E T9 and E T9I cluster
193 differentially indicating altered primary interaction partners (Fig. 4a). Next, we used Gene
194 ontology (GO) analysis to determine the biological processes associated with the proteins
195 interacting with E T9I. Our results indicate that proteins enriched in E T9I (fold change >2 and
196 $p < 0.005$) are associated with biological processes like Endosomal Transport (GO:0016197)
197 Endocytic Recycling (GO:0032456), Vesicle-Mediated Transport To The Plasma Membrane
198 (GO:0098876) Retrograde Transport, Endosome To Golgi (GO:0042147) (Extended Data Fig. 3a,
199 Supplementary Data 2). Vulcan plot analyses of the aggregated replicates showed that five proteins
200 (STX12, SNX12, TMEM87b, ABCG2 and TAB1) were among the most significantly enriched
201 candidates in the E T9I fraction (Fig. 4b, Extended Data Fig. 3a, b). The SNARE protein STX12
202 regulates protein transport between late endosomes and the trans-Golgi network but was also
203 reported to be required for autophagosome formation⁴⁴. SNX12 regulates cargo sorting in
204 endosomes, but also locates to sites enriched in phosphatidylinositol 3-phosphate that plays a key
205 role in autophagosome assembly⁴⁵. TMEM87b was predicted to be involved in endosome to Golgi
206 retrograde transport⁴⁶. ABCG2 belongs to the superfamily of ATP-binding cassette (ABC)
207 transporters, and was shown to enhance autophagy⁴⁷. Members of the family of TAB proteins,
208 such as TAB2 and TAB3, were reported to inhibit autophagy, however, not TAB1⁴⁸. To determine
209 whether the mutation T9I increases the spatial interaction of E with the five interaction partners

210 we performed proximity ligation assays (PLA) in HeLa cells (Figs. 4c-g, Extended Data Fig. 3c).
211 These data revealed that mutation T9I in E increased localization/recruitment to SNX12, STX12,
212 TMEM87B, and ABCG2, whereas proximity to TAB1 was not affected. To understand whether
213 these interactions are required for the function of E in autophagy, we depleted HEK293T
214 autophagy reporter cells of STX12, SNX12, TMEM87b, ABCG2, or TAB1 using siRNAs.
215 Knockdown efficiency was >90% (Extended Data Fig. 3d). Analysis of the autophagosome levels
216 using flow cytometry showed that depletion of SNX12, STX12, TMEM87b and ABCG2, but not
217 TAB1 nearly fully abrogated autophagosome accumulation induced by expression of E (Fig. 4h).
218 Of note, in most cases E T9I showed slightly enhanced autophagy antagonistic activity even upon
219 depletion of the respective interaction partner indicating more efficient utilization of the cellular
220 binding partners.

221 Taken together, these results suggest that E T9I interacts more strongly with components of
222 autophagosome assembly machinery (SNX12, STX12, TMEM87b and ABCG2) and that the
223 presence of these interaction partners is required for E-mediated autophagosome accumulation.

224 **E T9I does not impact virion composition or production but increases autophagy resistance**

225 Autophagy may target incoming virions for lysosomal degradation and thus restrict viral entry^{22,25}.
226 Thus, only structural proteins, unlike non-structural proteins, may promote autophagy evasion
227 upon entry. To examine the impact of E on virion entry separately from replication, we used a
228 Vesicular Stomatitis Virus (VSV)-based pseudoparticles (VSVpp), that is well-established to
229 recapitulate major steps of SARS-CoV-2 entry^{12,49,50}. To this end, we pseudotyped VSV that
230 expressed GFP instead of G with SARS-CoV-2 S and either T9 E or T9I E (Extended Data Fig.
231 4a). Expression of SARS-CoV-2 E and S in producer HEK293T cells infected with VSVΔG
232 resulted in the production of virions that contain the VSV proteins and both SARS-CoV-2 E and

233 S (Fig. 5a). E T9 and E I9 were incorporated with similar efficiency into VSV particles (Extended
234 Data Fig. 4c). The presence or absence of E had no significant effect on SARS-CoV-2 S and VSV
235 M levels in the supernatants indicating similar efficiency of particle production in the presence or
236 absence of autophagy (ATG5 KO cells) (Figs. 5a, Extended Data Fig. 4b-d). Similar S
237 incorporation levels into VSV were confirmed by SARS-CoV-2 S ELISA (Fig. 5b). Previous
238 studies suggested that E may affect functionality and processing of virion-associated S³⁴. However,
239 western blot analyses showed that S in the supernatant was processed similarly in the presence of
240 both E T9 or T9I (Fig. 5a). This was confirmed by assessing the ACE2-S interaction *in vitro* using
241 ELISA. S-containing VSV pseudoparticles produced in the presence of E T9 and T9I interacted
242 with recombinant ACE2 at a similar efficiency (Fig. 5c). To assess the impact of autophagy on
243 incoming virions, we treated Caco-2 cells with Torin-1 before the infection. As expected,
244 autophagy induction reduced infection with single-round VSVpp-Spike by about 50% (Fig. 5d,
245 Extended Data Fig. 4e). Inclusion of E T9 into the particle only marginally altered autophagy
246 resistance of the pseudoparticles. In contrast, VSV pseudoparticles carrying E T9I were almost
247 completely resistant towards Torin-1 treatment (Fig. 5d). In line with this, infection with S-
248 pseudotyped particles carrying E T9I was most efficient in WT MRC5 cells compared to particles
249 carrying E T9 particles. However, the advantage of having E T9I in the virion was lost in
250 autophagy-negative MRC5 cells (ATG5KO) (Fig. 5e).

251 Collectively, these results suggest that the incorporation of E T9I in VSV pseudotyped with SARS-
252 CoV-2 S does not alter particle assembly or intrinsic infectivity but promotes autophagy resistance.

253 **Rare naturally-occurring Omicron variants with E T9 are autophagy sensitive**

254 Coinciding with the emergence of the Omicron VOC in late November 2021, E T9I rapidly became
255 predominant in the circulating SARS-CoV-2 strains (Figs. 6a, b). Of note, E T9I was only

256 sporadically (<1%) present in previous variants circulating in the pre-Omicron era (Fig. 6b, data
257 from Nextstrain, January 2024). In 2023, 97.28% of the sequences available of circulating SARS-
258 CoV-2 encoded the E I9 substitution, while only 0.76% retained the T at position 9, with 1.95%
259 of the sequences showing undefined amino acid at position 9 (Fig. 6c, data from CovSpectrum,
260 January 2024⁵¹). The Mount Sinai Health System (MSHS) is one of the largest health care
261 providers in the New York City metropolitan area. This health system supports a well-integrated
262 pathogen surveillance infrastructure enabling real time monitoring of pathogens detected in people
263 receiving care at one of the eight hospitals as well as at any of the many outpatient clinics. We
264 utilized the ongoing surveillance of circulating SARS-CoV-2⁵²⁻⁵⁴ to validate the data from
265 Nextstrain, findings from the Mount Sinai Pathogen Surveillance (PSP-MS) database, which
266 contains over 10,000 SARS-CoV-2 genomes generated between March 2020 and December 2023,
267 revealed that prior to the emergence of the Omicron variant, the predominant variant across all
268 lineages was the wild-type E T9. Only rare SARS-CoV-2 genomes encoded the E T9I mutation,
269 observed in early B.1.* lineages (Supplementary Data 3). However, with the advent of the
270 Omicron variant, a notable shift occurred: the majority of Omicron lineages encode E T9I mutation
271 (Fig. 6b, Extended Data Fig. 5a). Only eight SARS-CoV-2 Omicron isolates retain the ancestral
272 E9T (Supplementary Data 4). To explore the phenotype of this substitution in the context of
273 replication competent authentic SARS-CoV-2 viruses, we cultured two closely related isolates
274 Omicron BA.2 with E T9I (USA/NY-MSHSPSP-PV58179/2023, EPI_ISL_12711111) (Fig. 6d,
275 Extended Data Fig. 5a) and with E T9 (USA/NY-MSHSPSP-PV58079/2023, EPI_ISL_12711042)
276 (Fig. 6d, Extended Data Fig. 5a). Comparison of the replication of these two viruses on Calu-3
277 cells, infected at the same MOI, showed that PV58179 (E T9) grew to approximately 10-fold
278 higher titers than the PV58079 (E T9I) isolate (Fig. 6e). Consistent with the pseudotyping

279 experiments, treatment with Torin-1 during the infection reduced the replication of T9 E PV58179
280 more than 4-fold whereas autophagy activation did not impact T9I E PV58079.
281 These data with authentic viruses suggest that the mutation T9I in E limits replication but augments
282 resistance to autophagy.

283 **T9I in E increases 2020 SARS-CoV-2 resistance against autophagy**

284 To confirm that E T9I confers resistance against autophagy, we generated recombinant SARS-
285 CoV-2 harboring E T9I in an ancestral 2020 SARS-CoV-2 background (Extended Data Fig. 5b).
286 Both viruses (rSARS2-E-T9 and rSARS2-E-T9I) were rescued on Caco-2 cells⁵⁵. Growth analyses
287 revealed that rSARS2-E-I9 replicated to ~10-50-fold lower titers than rSARS2-E-T9 (Fig. 6f).
288 rSARS2-E-T9 was highly sensitive towards autophagy induction by Torin-1, reducing replication
289 after 24 h by more than 10-fold (Fig. 6g). In contrast, despite replicating much slower rSARS2-E-
290 I9 was almost completely resistant against autophagy (Fig. 6g). Compared to autophagy
291 incompetent MRC5 cells (ATG5KO MRC5), replication of rSARS2-E-T9 was reduced
292 significantly in WT MRC5 cells (Fig. 6h). rSARS2-E-T9I replicated to comparable levels in both
293 WT and ATG5KO MRC5 cells as indicated by similar intracellular viral RNA expression (Fig.
294 6h). This suggests that lack of autophagy does not convey an advantage for rSARS2-E-T9I.
295 In summary, the E T9I mutation confers resistance against autophagy to recombinant SARS-CoV-
296 2 at the price of reduced replication capacity.

297

298 **DISCUSSION**

299 Within the last three years SARS-CoV-2 adapted to its new human host giving rise to variants
300 characterized by increased infectivity and immune escape^{1,3,9,56,57}. Here, we show that a single
301 point mutation in the E protein (T9I) of the Omicron VOCs conveys autophagy resistance.

302 While our analyses show that E T9I promotes autophagy resistance of the virions, it may come at
303 a cost - reduced replication fitness *in vitro* (Fig. 6). This translates to ~10-fold lower replication
304 rates of recombinant SARS-CoV-2 carrying E T9I in a Hu-1 background but it is also apparent by
305 increased replication fitness of rare patient-derived isolates of Omicron BA.2 carrying the original
306 T9 residue in E. This could be a contributing factor to the delayed emergence of the E T9I mutation,
307 despite its sporadic presence in pre-Omicron SARS-CoV-2 isolates^{53,54}. It is tempting to speculate
308 that acquiring E T9I contributed to the slower replication of early Omicron strains^{18,56,58}. Of note,
309 more recent Omicron subvariants show increased replication competence; thus, it is likely that
310 they evolved compensatory mutants that promote replication^{6,58,59}. The identity of these
311 compensatory mutations is, however, unknown.

312 Why would a VOC with mutations reducing replication speed *in vitro* emerge? Superior immune
313 escape, not replication speed, was suggested to be a defining factor in the success of early Omicron
314 subvariants^{11,18,60}. A previous study analyzing 6.4 million SARS-CoV-2 genomes shows that E
315 T9I - as one of the few non-Spike mutations - conveyed a fitness advantage in the population¹³.
316 This suggests that on a population level E T9 had an advantage *in vivo* despite its attenuated
317 replication in *in vitro* experiments. It is remarkable that evasion of autophagy may be more
318 important than a 10-fold reduction in replication fitness, and contributes to the evidence that
319 immune escape may be more important for coronaviruses *in vivo* than fast replication.

320 Mechanistically, E T9I increasingly localizes to autophagosomes (Fig. 3f) and interacts more
321 strongly with autophagosome-associated factors STX12, SNX12, TMEM87b, ABCG2 than E T9
322 (Fig. 4b). Our data further reveals that these factors are required for the impact of E on autophagy
323 (Fig. 4h). Of note, all four targets are endosome/lysosome associated proteins^{46,61}. STX12 and
324 SNX12 are part of the SNARE complex and together with SNAP29 mediate fusion of
325 autophagosomes with lysosomes^{44,62}. It thus seems likely that E may impair the function of the
326 fusion machinery, resulting in impaired autophagic flux⁶³. However, future studies are required to
327 clarify the precise impact of E on these four proteins. In addition, it needs to be clarified, whether
328 counteraction of autophagy is the only function of E that has been altered by mutation T9I.
329 Our data suggests that the pore function of E is not required for its function in autophagy and the
330 pore size is not affected by mutation T9I. This was a bit surprising since viroporins frequently
331 affect autophagy due to their impact on the pH of intracellular vesicles or via ER stress^{64,65}. E was
332 shown to be capable of transporting K⁺, Na⁺, and Ca²⁺ ions across membranes^{37,41,66}. Of note,
333 while not impacting autophagy, the pore of E activates other parts of innate immunity, such as the
334 inflammasome^{28,67}. Blockage of the E channel activity reduces the inflammatory response towards
335 SARS-CoV-2 infection, but also reduces viral replication^{28,43,66,67}. Thus, it had been suggested that
336 E may prevent the premature activation of S, by alkalinizing the ERGIC³⁷. However, the precise pro-
337 viral roles of the ion channel function of E remain to be determined.
338 Our data shows that T9I in E may enhance escape from autophagy upon cell entry. SARS-CoV-2,
339 in addition to fusing at the plasma membrane, may enter cells through the endosomal route^{50,68,69}.
340 Thus, incoming virions may be redirected to autophagy for lysosomal degradation^{22,24,70}. In
341 addition, E may facilitate endosomal escape of virions to ensure the genomic information makes it
342 unscathed to the cytoplasm to establish the infection. Interestingly, it was suggested the Omicron

343 variants, depending on the tissue and cell type show increased entry via the endosomal route⁷¹⁻⁷³.
344 It is thus tempting to speculate that E T9I promotes evasion of incoming virions by autophagy,
345 enabling increased entry via the endosomal route. Unfortunately, it is currently little understood
346 how incoming virions are targeted by autophagy, and our understanding of how this mechanism
347 contributes to the induction of immune defenses by increasing abortive infections remains limited.
348 The COVID-19 pandemic allowed unprecedented insights into the adaptation of zoonotic viruses
349 to their new human host^{28,57}. Thus, one may ask whether E T9I is an evolutionary adaptation to
350 human autophagy? Notably, autophagy is highly evolutionarily conserved across all eukaryotes
351 from yeast to humans^{19,22,23,74}. The immune system of the reservoir species of SARS-CoV-2, bats,
352 is well-known to be highly tolerant of viruses without developing significant diseases⁷⁵. Of note,
353 it was shown that, as opposed to other mammals, ageing bats show increased levels of homeostatic
354 autophagy⁷⁶. However, it remains unknown whether autophagy in bats is also uniquely regulated,
355 despite high sequence similarity of core components of the autophagic machinery. Bat
356 Coronaviruses closely related to SARS-CoV-2 all share a T in position 9 in E. Future analysis of
357 autophagy escape by bat coronaviruses may yield important insight on differences between bat
358 and human autophagy and thus may both enhance our understanding of the evolution of autophagy
359 and bats as a unique virus reservoir species.
360 In addition to the evolving escape from adaptive immunity, adaptation to innate immune defenses
361 such as autophagy, may be a major contributing factor in the current transition of SARS-CoV-2 to
362 endemic status^{1,77,78}. Infections with Omicron can overcome adaptive immunity induced by
363 infection with previous variants or early vaccines^{59,73}. Adjusted Omicron-specific vaccines as well
364 as surviving an Omicron infection again confer a protective adaptive response. However, unlike
365 adaptive immune responses, our innate defenses are a rigid defense system allowing for little

366 adaptation to changing viruses. Thus, gaining innate immune resistance may represent a more
367 permanent advantageous evolutionary step for SARS-CoV-2.

368 In summary, our data shows that the Omicron associated T9I mutation in E confers increased
369 resistance towards autophagy, suggesting an evolutionary adaptation to autophagy of SARS-CoV-
370 2. Reduced sensitivity to autophagy in combination with reduced sensitivity to IFN as well as
371 neutralizing antibodies from prior infections and vaccinations may have contributed to the rapid
372 spread of the Omicron variant.

373

374 MATERIALS AND METHODS

375 **Cell culture and viruses.** All cells were cultured at 37 °C under a 5% CO₂ atmosphere and 95%
376 relative humidity. HEK293T (ATCC, #CRL3216), Vero E6 (ATCC, #CRL-1586), and ATG5 KO
377 HEK293T⁶² were cultivated in Dulbecco's Modified Eagle Medium (DMEM) (Gibco, #41965039)
378 containing 10% (v/v) heat-inactivated fetal bovine serum (FBS) (Gibco, #A5256701), 10 mg/ml
379 gentamicin (PAN-Biotech, #15710-049), and 2 mM L-glutamine (PAN-Biotech, #P04-80100).

380 The construction of autophagy reporter HEK293T and HeLa cells stably expressing GFP-LC3B
381 (GL) was reported previously⁶³. HEK293T-GL and HeLa-GL cells were cultivated in DMEM

382 supplemented with 10% (v/v) heat-inactivated FBS, 10 mg/ml gentamicin, and 2 mM L-glutamine.

383 Caco-2 cells (kindly provided by Prof. Holger Barth, Ulm University, Ulm, Germany) were
384 maintained in DMEM supplemented with 20% (v/v) heat-inactivated FBS, 10 mg/ml gentamicin,

385 and 2 mM L-glutamine. Calu-3 cells (kindly provided by Prof. Manfred Frick, Ulm University,
386 Ulm Germany) were cultivated Minimum Essential Medium Eagle supplemented (MEM, Sigma-

387 Aldrich, #M4655) with 10% (v/v) heat-inactivated FBS (during viral infection) or 20% (v/v) FBS
388 (during all other times), 100 mg/ml streptomycin, 100 U/ml penicillin (PAN-Biotech, #P06-07100)

389 and 2 mM L-glutamine. Vero E6 cells (BEI Resources, #NR-54970) overexpressing ACE2 and
390 TMPRSS2 were maintained in DMEM supplemented with 10% (v/v) heat-inactivated FBS, 1%
391 (v/v) of 100x MEM Non-Essential Amino Acids (NEAA) (Gibco, #11140050), 100 mg/ml
392 streptomycin, 100 U/ml penicillin, 2 mM L-glutamine and 1 mM sodium pyruvate (Thermo Fisher,
393 #11360039), 100 µg/ml of Normocin (InvivoGen, #ant-nr-1) and 3 µg/ml of Puromycin
394 (Invivogen, #ant-pr-1). ACE2 overexpressing MRC5 cells were cultivated in DMEM
395 supplemented with 20% (v/v) heat-inactivated FBS, 10 mg/ml gentamicin, and 2 mM L-glutamine.
396 For ATG5 KO MRC5-ACE2 cells 1 µg/mL Puromycin was additionally added to the medium.
397 Mouse I1-Hybridoma cells (ATCC, #CRL-2700) were cultured in Roswell Park Memorial
398 Institute (RPMI) Medium 1640 (Gibco, #21875-034) with 10% (v/v) heat-inactivated FBS, 100
399 mg/ml streptomycin, 100 U/ml penicillin, 2 mM L-glutamine. HEK293T cells expressing a T7
400 polymerase and SARS-CoV-2 N protein⁴³ for virus reconstitution were cultivated in DMEM
401 supplemented with 10% (v/v) heat-inactivated FBS, 2 mM Gluta-MAXTM (Thermo Fisher
402 Scientific, #35050061), 25 mM HEPES (Thermo Fisher Scientific, #15630080), 5 µg/mL
403 blasticidin (InvivoGen, #asnt-bl-1), and 2 µg/mL puromycin. HEK293T (ATCC, #CRL-11268)
404 and A549 cell lines for mass spectrometry experiments were cultured in DMEM supplemented
405 with 10% (v/v) heat-inactivated FBS and 1% Penicillin-streptomycin. All cell lines were tested to
406 be mycoplasma free.
407 The SARS-CoV-2 variants, B.1.617.2 (Delta) and B.1.1.529 (Omicron BA.5), were kindly
408 provided by Prof. Dr. Florian Schmidt and Dr. Bianca Schulte (University of Bonn, Bonn,
409 Germany). The BetaCoV/Netherlands/01/NL/2020 (NL-02-2020) lineage and hCoV-
410 19/Netherlands/NH-EMC-1720/2021, lineage B.1.1.529 (Omicron BA.1), were obtained from the
411 European Virus Archive. SARS-CoV-2 XBB1.5 and BA.2 variants (USA/NY-MSHSPSP-

412 PV58179/2023, EPI_ISL_12711111) and (USA/NY-MSHSPSP- PV58079/2023,
413 EPI_ISL_12711042) were banked, sequenced and cultured by the Mount Sinai Pathogen
414 Surveillance Program (Mount Sinai Hospital, New York, USA).
415 The VSV(GFP) Δ G*VSV-G stock was kindly provided by Prof. Karl-Klaus Conzelmann (LMU
416 Munich, Munich, Germany).

417 **Propagation of WT SARS-CoV-2.** SARS-CoV-2 was propagated on different cell lines
418 depending on the viral variant: Vero E6 (NL-02-2020, Delta), Calu-3 cells (Omicron BA.1), or
419 Vero E6 cells overexpressing ACE2 and TMPRSS2 (XBB 1.5 and BA.2 variants). To this end,
420 70-90% confluent cells in 75 cm² cell culture flasks were inoculated with the SARS-CoV-2 isolate
421 (multiplicity of infection (MOI) of 0.03-0.1) in 3.5 ml serum-free medium (MEM, Sigma,
422 #M4655). The cells were incubated for 2 h at 37 °C, before adding 20 ml medium containing 15
423 mM HEPES (Carl Roth, #6763.1). Virus stocks were harvested as soon as strong cytopathic effect
424 (CPE) became apparent. The virus stocks were centrifuged for 5 min at 1,000 g to remove cellular
425 debris, aliquoted, and stored at -80 °C until further use.

426 **Replication competent authentic SARS-CoV-2 isolates.** Residual nasopharyngeal swab
427 specimens from patients with COVID-19 were banked by the Mount Sinai Pathogen Surveillance
428 Program after the completion of the diagnostic process as reported previously^{48,49}. Replication-
429 competent SARS-CoV-2 viruses were cultured by inoculating Vero-E6-TMPRSS2-ACE2 cells
430 with 200 μ l of viral transport media from the nasopharyngeal swab specimen. The culture media
431 were supplemented with 2% heat-inactivated FBS, 100 μ g/ml normocin (Invivogen, #ANT-NR-
432 2), and 0.5 μ g/ml amphotericin B (Gibco, #15290026), and maintained for a maximum of 10 days.
433 Upon the appearance of cytopathic effects, culture supernatants were collected, clarified by

434 centrifugation (3,739g for 5 min) and sequence verified. These experiments were performed in a
435 BSL-3 biosafety laboratory at the Icahn School of Medicine at Mount Sinai.

436 **Generation and propagation of a rSARS-CoV-2.** Recombinant SARS-CoV-2 were generated
437 based on the bacmid⁶⁴. In brief, the area encoding for E was replaced via homologous
438 recombination by a kanamycin resistance cassette with *AscI* restriction enzyme sites at each end
439 (Primers dE-Asc-KanS-FP: Aat taa agt tcc aaa cag aaa aac taa tat aat att tag ttc gtg gcg cgc cat gac
440 gac gat aag tag gg and dE-Asc-KanS-RP: Tag cgt gcc ttt gta agc aca agc tga tga gta cga act tgg cgc
441 gcc aac caa tta acc aat tct gat tag; IDT Ultramers, Coralville, ID, USA). Subsequently, the
442 kanamycin resistance cassette could be removed by restriction digestion and a respective PCR
443 fragment containing the E T9I mutation and with overlapping ends was introduced by Gibson
444 assembly using the NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs, #E2621).
445 This PCR fragment was amplified using cDNA from a patient sample containing the E T9I
446 mutation with the primers Efwd gcacaagctgatgagtacgaacct and Erev gaaaaactaatataattttagttcg. The
447 resulting bacmid was transformed in *E. coli* and recovered by DNA isolation. The correct assembly
448 was verified by Next Generation Sequencing of the full bacmid. The recovery of infectious virus
449 was performed by transfection of HEK293T T7/N cells and passaging on Caco-2 cells. The method
450 has been described previously⁶⁵.

451 **Analyzing growth and autophagy sensitivity of rSARS-CoV-2.** Calu-3 cells were seeded 24 h
452 prior to infection (3×10^4 per well of a 96-well plate). The cells were treated with 250 nM Torin-
453 1 (EZSolution, #2353) 2 h before infection. After infection with an MOI of 0.05, 6 h post infection
454 the medium was replaced by medium containing 250 nM fresh Torin-1. Viral supernatant was
455 collected at 0 h, 24 h and 48 h post infection and heat inactivated. The supernatants were digested

456 with proteinase K (Sigma-Aldrich, #3115828001) and the relative viral load was determined by
457 qRT-PCR as described previously⁶⁴.

458 **Impact of autophagy induction on the replication of SARS-CoV-2 strains.** 1.5×10^5 Calu-3
459 cells/well were seeded in 24-well plates. For autophagy induction, 24 h post-seeding cells were
460 either left untreated or were stimulated with increasing amounts of Torin-1 (0.016, 0.063, 0.25 or
461 1 μ M). Two hours post-treatment, Calu-3 cells were infected with the indicated SARS-CoV-2
462 strains using a MOI of 0.05. Six hours post-infection, the cells were washed once with Dulbecco's
463 Phosphate Buffered Saline (DPBS) (Gibco, #14190-094) and supplemented with fresh medium
464 only or medium containing increasing amounts of Torin-1 (0.016, 0.063, 0.25, 1 μ M) as indicated
465 in the figures. Supernatants were harvested at 6 h (for wash control) and 48 h post-infection for
466 qRT-PCR and Tissue culture infectious dose 50 (TCID₅₀) analysis.

467 **TCID₅₀ titration.** 1.5×10^4 Vero E6 cells/well were seeded in 96-well F-bottom plates in 100 μ l
468 medium and incubated overnight. SARS-CoV-2 stocks or infectious supernatants were serially
469 diluted and 100 μ l of the dilution were added to the cells (final dilutions 1:10¹ to 1:10¹⁰). The cells
470 were incubated for at least 5 days and monitored for cytopathic effects (CPE). TCID₅₀/mL was
471 calculated according to the Reed-Muench method.

472 **qRT-PCR.** Total RNA of the supernatants collected from SARS-CoV-2 infected Calu-3 cells 48
473 h post-infection were isolated using the QIAamp Viral RNA Mini Kit (Qiagen; #52906) according
474 to the manufacturer's instructions. To determine the SARS-CoV-2 N (nucleocapsid) levels
475 quantitative real-time PCR (RT-qPCR) was performed as previously described²² using TaqMan
476 Fast Virus 1-Step Master Mix (Thermo Fisher, #4444436) and an OneStepPlus Real-Time PCR
477 System (96-well format, fast mode). The Primers as well as the N primer probe for RT-qPCR were
478 from Biomers (Ulm, Germany) and had the following sequence: Forward primer (HKU-NF): 5'-

479 TAA TCA GAC AAG GAA CTG ATT A-3'; reverse primer (HKU-NR): 5'-CGA AGG TGT
480 GAC TTC CAT G-3'; primer probe (HKU-NP): 5'-FAM (6-carboxyfluorescein)-GCA AAT TGT
481 GCA ATT TGC GG-TAMRA (6- carboxytetramethylrhodamine)-3'. Synthetic SARS-CoV-2
482 RNA (Twist Bioscience, #102024) was used as a quantitative standard to determine viral copy
483 numbers. All PCR reactions were prepared in duplicates.

484 RNA of siRNA transfected cells were isolated using the Quick-RNA Miniprep Kit (Zymo
485 Research, #R1055) according to the manufacturer's instructions. To determine the KD efficiency,
486 reverse transcription and qRT-PCR was performed in one step using the SuperScript III Platinum
487 Kit (Thermo Fisher Scientific, #11732088) on a StepOnePlus Real-Time PCR System (Applied
488 Biosystems) according to the manufacturer's instructions. TaqMan probes for each individual KD
489 gene and for GAPDH were acquired as premixed TaqMan Gene Expression Assays (Thermo
490 Fisher Scientific) and added to the reaction. The following TaqMan primer probes were used:
491 Snx12-FAM-MGB (Thermo Fisher Scientific, #Hs04999580_s1), Stx12-FAM-MGB (Thermo
492 Fisher Scientific, #Hs00295291_m1), Tab1-FAM-MGB (Thermo Fisher Scientific,
493 #Hs00196143_m1), Tmem87b-FAM-MGB (Thermo Fisher Scientific, #Hs00262432_m1),
494 Abcg2-FAM-MGB (Thermo Fisher Scientific, #Hs01053790_m1) and GAPDH-VIC-TAMRA
495 (Applied Biosystems, #4310884E). Expression level for each target gene was calculated by
496 normalizing against GAPDH using the $\Delta\Delta CT$ method.

497 **Impact of autophagy induction on endogenous IFITM levels.** 0.7×10^6 Calu-3 cells/well were
498 seeded in 6-well plates. For autophagy induction, 24 h post-seeding cells were left untreated or
499 were stimulated with increasing amounts of Torin-1 (0.016, 0.063, 0.25 or 1 μ M). As positive
500 control for upregulation of IFITM expression, further cells were treated with 1000 U IFN- β (R&D

501 Systems, #8499-IF-010/CF). 24 h post-treatment whole-cell lysates for SDS-PAGE and
502 immunoblotting were prepared.

503 **Cloning and origin of expression constructs.** Plasmids coding for SARS-CoV-2 E-StrepII
504 (pLVX-EF1alpha-SARS-CoV-2-E-2xStrep-IRES-Puro), SARS-CoV-2 M-StrepII (pLVX-
505 EF1alpha-SARS-CoV-2-M-2xStrep-IRES-Puro), SARS-CoV-2 ORF7a-StrepII (pLVX-
506 EF1alpha-SARS-CoV-2-ORF7a-2xStrep-IRES-Puro) and ORF8-StrepII (pLVX-EF1alpha-
507 SARS-CoV-2-ORF8-2xStrep-IRES-Puro) were a kind gift from Nevan Krogan⁶⁶. A plasmid
508 coding for SARS-CoV-2 E 9I-StrepII was generated using pLVX-EF1alpha-SARS-CoV-2-E-
509 2xStrep-IRES-Puro. To this end, the template vector was linearized with the restriction enzymes
510 EcoRI-HF (NEB, #R3101L) and BamHI-HF (NEB, #R3136L). All site directed mutagenesis was
511 performed using the NEBuilder HiFi DNA Assembly Master Mix according to the manufacturer's
512 instructions. For T9I in E the primers E-T9I_F (GTG TCG TGA GGA TCT ATT TCC GGT GAA
513 TTC GCC GCC ACC ATG TAC AGC TTC GTA TCA GAA GAA ATT GGG ACA CTG ATCG;
514 Biomers) and E-T9I_R (CGA TCA GTG TCC CAA TTT CTT CTG ATA CGA AGC TGT ACA
515 TGG TGG CGG CGA ATT CAC CGG AAA TAG ATC CTC ACG ACA C; Biomers) were used.
516 SARS-CoV-2 E 11A-StrepII was generated using the template pLVX-EF1alpha-SARS-CoV-2-E-
517 2xStrep-IRES-Puro and the primers E-T11A_F (AGA AAC CGG GGC TCT GAT CGT AA;
518 Biomers) and E-T11A_R (TCT GAT ACG AAG CTG TAC; Biomers). SARS-CoV-2 E 9I 11A-
519 StrepII was generated using pLVX-EF1alpha-SARS-CoV-2-E 9I-2xStrep-IRES-Puro as template
520 and the primers E-T9I+T11A_F (AGA AAT TGG GGC TCT GAT CGT AAA TTC; Biomers)
521 and E-T9I+T11A_R (TCT GAT ACG AAG CTG TAC; Biomers). ORF7a 120I-StrepII or ORF7a
522 82A-StrepII were generated by using pLVX-EF1alpha-SARS-CoV-2-ORF7a-2xStrep-IRES-Puro
523 as a template and primers ORF7a-T120I_F (AAA AGA AAG Atc GAG CTC GAA GGC G;

524 Biomers) and ORF7a-T120I_R (CAG TGT AAA GCA CAA TGT G; Biomers) or primers ORF7a-
525 V82A_F (GCT CGA TCT GCC TCC CCC AAA CTG TTC ATA C; Biomers) and ORF7a-
526 V82A_R (CCT GAG CTG GTA CAC GTG; Biomers). pLVX-EF1alpha was constructed using
527 Q5 Site-Directed Mutagenesis (NEB, #E0554S) according to the manufacturer's instructions with
528 pLVX-EF1alpha-SARS-CoV-2-ORF8-2xStrep-IRES-Puro (codon-opt.HUM) as template and
529 pLVX-EF1alpha-empty-F (ACG CGT CTC GAG GGA TCC CGC CCC TCT CCC TC; Biomers)
530 and pLVX-EF1alpha-empty-R (GCT AGC GCG GCC GCG AAT TCA CCG GAA ATA GAT
531 CCT CAC) as primers. ORF3a 26L-StrepII and 223I-StrepII were cloned by Q5 Site-Directed
532 Mutagenesis with pTWIST_SARS-CoV-2-ORF3a-2xStrep as template and the primers ORF3a-
533 S26L_F (TGC TAC ACC TCT CGA CTT CGT CAG; Biomers) and ORF3a-S26L_R (TCC TTG
534 ATC TCG CCC TGC) or primers ORF3a-T223I_F (AGC ACC GAC ATC GGC GTC GAG;
535 Biomers) and ORF3a-T223I_R (CAGCTGTGCTATACAGCTGGTAGTAA; Biomers).
536 pTwist-Empty Vector was constructed using Q5 Site-Directed Mutagenesis,
537 pTwist_EF1a_3xFLAG_opt TRIM3⁴⁵ as template and the primers pTwist-empty-F (GCT TCC
538 GCC TCC GCC GCT T; Biomers) and pTwist-empty-R (GCT AGC TTG ACT GAC TGA GAT
539 ACA GCG TAC CTT; Biomers). pCG_SARS-CoV-2-Spike-Wuhan-1 was previously described¹¹.
540 pTWIST_SARS-CoV-2-ORF3a-2xStrep (codon-opt.HUM) was purchased from Twist
541 Bioscience.
542 **Generation of S and E containing VSV-pseudoparticles.** To produce pseudotyped
543 VSV(GFP)ΔG particles, HEK293T WT and ATG5 KO cells were transfected with Spike (HU-1),
544 Envelope (Hu-1) or Envelope T9I expression constructs (in total 3 μg DNA/well) in 6-well format
545 by using per well 10 μL 1x polyethyleneimine-hydrochlorid (PEI) (Sigma-Aldrich, #764965-1G,
546 1 mg/mL in H₂O) and 500 μL Opti-MEM reduced serum media (Gibco, #31985047). In brief, 250

547 μ L Opti-MEM were mixed with 10 μ L 1x PEI and incubated for 5 min. Secondly, 250 μ L Opti-
548 MEM were mixed with 3 μ g DNA. Subsequently, both mixes were combined and incubated for
549 20 min at RT, then added to the cells. 24h post-transfection the cells were infected with
550 VSV(GFP) Δ G*VSV-G at MOI of 3. 24 h post infection, cells and supernatants containing
551 pseudotyped VSV(GFP) Δ G particles were harvested. Cell debris were removed by centrifugation
552 for 4 min at 500 x g.

553 **VSV-pseudoparticle assays.** 6×10^3 Caco-2 cells or MRC5-ACE2 (WT and ATG5 KO) cells
554 were seeded in 384-well plates in 25 μ L medium. On the next day, the cells were treated with 10
555 μ L Torin-1 (final concentration on cells 0.5 μ M) or medium for 4 h and afterwards infected with
556 35 μ L of supernatant containing VSV(GFP) Δ G particles with S and E. Residual particles carrying
557 VSV-G were blocked before by adding 10% (v/v) of I1 hybridoma supernatant (I1 mouse
558 hybridoma supernatant from CRL-2700, ATCC) to the supernatant. GFP-positive cells were
559 automatically counted 22 h post-infection by using Cytation 3 microplate reader (BioTek
560 Instruments).

561 **Spike ELISA.** Supernatants containing VSV(GFP) Δ G particles with S and E were analyzed for
562 their Spike content by using a SARS-CoV-2 (2019-nCoV) Spike Detection ELISA Kit
563 (SinoBiological, #KIT40591). Samples were diluted 1:200 in 1x dilution buffer provided by the
564 Kit. The ELISA was performed according to the manufacturer's recommendations. Absorbance at
565 450 nm was detected using the Vmax kinetic microplate reader (Molecular Devices LLC) and the
566 software SoftMax Pro 7.0.3.

567 **Spike-ACE2 interaction assay.** Supernatants containing VSV(GFP) Δ G particles with S and E
568 were layered on a cushion of 20% sucrose (Sigma-Aldrich, #S9378-1KG) in PBS and centrifuged
569 for 90 min at 4°C and 20,817 x g. The pellet was lysed in 12 μ L transmembrane lysis buffer (50mM

570 HEPES pH 7.4 (Sigma-Aldrich, #H3375), 150 mM NaCl (Merck, #106404), 1% Triton X-100
571 (Sigma-Aldrich, #T8787), 5 mM ethylenediaminetetraacetic acid (EDTA) (Sigma-Aldrich,
572 #E9884) supplemented with 1:500 protease inhibitor (Sigma-Aldrich, #P2714) and heated up for
573 10 min at 95 °C. For analyzing the interaction between Spike of the samples and ACE2 a COVID-
574 19 Spike-ACE2 Binding Assay Kit (RayBioTech, #CoV-ACE2S2-1) was used. In brief, 10 µL of
575 the lysates were mixed with 40 µL of 1x assay diluent buffer (RayBioTech, #CoV-ACE2S2-1)
576 and added to the ACE2 coated wells (RayBioTech, #CoV-ACE2S2-1). After 2 h incubation time
577 with shaking at RT, the wells were washed 3 times with 200 µL 1x wash buffer (RayBioTech,
578 #CoV-ACE2S2-1) and subsequently incubated with 100 µL monoclonal mouse anti-V5 antibody
579 (1:1000, Cell Signaling Technology, #80076) for 1 h at RT under shaking. After washing, wells
580 were incubated with 100 µL HRP-conjugated anti-IgG mouse (1:1000, RayBioTech, #CoV-
581 ACE2S2-1) for 1h under shaking. After subsequent washing, the wells were incubated with 50 µL
582 TMB one-step substrate reagent (RayBioTech, #CoV-ACE2S2-1) for 30 min under shaking in the
583 dark. The reaction was stopped by adding 50 µL stop solution (RayBioTech, #CoV-ACE2S2-1)
584 and the absorbance was detected at 450 nm with a baseline correction of 650 nm by using the
585 Vmax kinetic microplate reader (Molecular Devices LLC) and the software SoftMax Pro 7.0.3.
586 **Autophagosome measurement by flow cytometry.** For autophagosome quantification
587 HEK293T cells stably expressing GFP-LC3B (GL) were used. 4.5×10^4 HEK293T-GL cells were
588 transiently reverse transfected with 200 ng expression vector in 96-well F-bottom plates by using
589 2 µL 1x PEI/ µg DNA and 17 µL Opti-MEM reduced serum media⁶³. The next day, the medium
590 was replaced with 100 µL fresh medium. 48 h post-transfection, the supernatant was removed and
591 the cells were detached using Trypsin/ EDTA 0.05% / 0.02% (PAN-Biotech; #P10-023100). After
592 adding medium, the harvested cells were washed with DPBS. Autophagosome levels were

593 quantified as previously described⁶³ in basal state or after stimulation with 0.2-25 μ M BIT225
594 (kindly provided by Biotron Limited) for 24 h or stimulation with 0.25 μ M Bafilomycin A1 (Santa
595 Cruz Biotechnology, #sc-201550) for 4 h. In brief, cells were treated with DPBS containing 0.05%
596 Saponin (Sigma-Aldrich, #47036) for 20 min at 4°C for permeabilization. Subsequently, the cells
597 were washed twice with DPBS to wash out the non-membrane bound GFP-LC3B out of the
598 permeabilized cells and fixated with 4% paraformaldehyde (PFA) (Santa Cruz Biotechnology, #sc-
599 281692). The mean fluorescence intensity (MFI) of membrane-bound GFP-LC3B was then
600 detected by flow cytometry (FACS-Canto II, BD Biosciences). The MFI value of the control was
601 used as baseline and subtracted.

602 **Immunofluorescence.** 1x 10⁵ HeLa-GL cells/well were grown on coverslips with 500 μ L medium
603 in 24-well plates and one day later transfected with a control vector or expression vectors of SARS-
604 CoV-2 E (Hu-1) or E T9I by using Opti-MEM reduced serum media and TransIT-LT1
605 Transfection Reagent (Mirus, #MIR2306) according to the manufacturer's instructions. The
606 supernatant was removed 6 h post-transfection and 500 μ L fresh medium was added to the cells.
607 As a positive control, cells were treated with 100 nM Bafilomycin A1 or 1 μ M Rapamycin (Merck,
608 #553211-500UG) 24 h before harvesting. 48 h post-transfection the cells were washed twice with
609 DPBS, fixed with 4% PFA for 20 min at RT and blocking and permeabilization was performed by
610 using DPBS with 0.5% Triton-X-100 and 5% FBS for 1 h at RT. After washing with DPBS, the
611 cells were stained with the following primary antibodies diluted in DPBS with 1% FBS for 2 h at
612 4 °C: Monoclonal mouse anti-StrepII-tag (1:200; Novus Biologicals, #NBP2-43735), monoclonal
613 rabbit anti-LAMP1 (1:200; Cell Signaling, #9091S) and monoclonal rabbit anti-Rab7 antibody
614 (1:500; Abcam, #ab137029). Subsequently, the cells were washed three times with DPBS
615 supplemented with 0.1 % Tween 20 (Sigma-Aldrich, #P7949). In the next staining step,

616 fluorescently labeled secondary antibodies Goat anti-Mouse IgG (H+L) AF568 (1:400; Thermo
617 Scientific, #A21245), Goat anti-Rabbit IgG (H+L) AF647 (1:400; Thermo Scientific, #A11004)
618 as well as DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) (1:1000; Invitrogen, #D1306)
619 were diluted in DPBS with 1% FBS and incubated for 2 h at 4 °C. Afterwards, the cells were
620 washed three times with DPBS supplemented with 0.1 % Tween 20 and additionally once with
621 deionized water. The coverslips were mounted on microscope slides by using mowiol mounting
622 medium (10% (w/v) Mowiol 4-88 (Carl Roth, #0713), 25% (w/v) Glycerol (Sigma-Aldrich,
623 #G5516), 50% (v/v) Tris-Cl at 0.2 M pre-adjusted to pH 8.5 (AppliChem GmbH, #A2264) and
624 2.5% (w/v) DABCO (Carl Roth, #0718)) and then allowed to dry overnight at 4 °C. Images were
625 captured using a Zeiss LSM 710 confocal laser scanning microscope with the ZEN imaging
626 software or Leica DMi8 confocal microscope with the LAS X imaging software. Co-localization
627 analysis was performed using the Huygens Professional 19.04 software, and the Pearson
628 coefficients were calculated via the “Huygens Colocalization Analyzer”. Autophagosome counts
629 (GFP-LC3B puncta) per cell were determined using Fiji ImageJ⁶³. In brief, the channels were
630 separated and the GFP-channel was used for quantification. Thus, background removal and
631 smoothing were performed, a threshold was applied and the total area of the particles was
632 determined.

633 **Cell viability analysis.** The supernatant of treated cells was removed and cells were then lysed in
634 1x passive lysis buffer (5x passive lysis buffer diluted in deionized water; Promega, #E194A). For
635 measuring metabolic activity, the CellTiter-Glo luminescent cell viability assay (Promega,
636 #G7571) according to the manufacturer's instructions was performed and the luminescent was
637 measured by using an Orion II microplate Luminometer (Berthold) and the software Simplicity
638 4.2.

639 **Whole-cell and supernatant lysates.** For preparing whole-cell lysates (WCL) collected cells were
640 washed with DPBS, centrifuged for 4 min at 300 x g and the cell pellets were lysed in
641 transmembrane lysis buffer supplemented with 1:500 protease inhibitor for 10 min on ice. Cell
642 debris were pelleted by centrifugation for 20 min at 4 °C and 20,000 x g and the total protein
643 concentration of the cleared lysate was determined using the Pierce Rapid Gold BCA Protein
644 Assay Kit (Thermo Scientific, #A53225) according to the manufacturer's protocol. The samples
645 were adjusted to the same protein concentration with a transmembrane lysis buffer containing
646 1:500 protease inhibitor. For preparing cell-free lysates (CFL) cell debris of supernatants were
647 removed by centrifugation for 4 min at 500 x g and the supernatants were transferred to fresh
648 reaction tubes. After layering the supernatant on a cushion of 20% sucrose in PBS, samples were
649 centrifuged for 90 min at 4 °C and 20,817 x g and the pellet was resuspended in transmembrane
650 lysis buffer containing 1:500 protease inhibitor.

651 **SDS-PAGE and immunoblotting.** SDS-PAGE and immunoblotting was performed as previously
652 described⁶³. In brief, whole-cell and supernatant lysates were mixed with 6x protein sample
653 loading buffer (187.5 mM Tris-HCl preadjusted to pH 6.8 (AppliChem GmbH, #A2264), 75% (v/v)
654 glycerol (Sigma-Aldrich, #G5516), 6 % (w/v) SDS (Sigma-Aldrich, #8.22050), 0.3 % (w/v)
655 Orange G (Sigma-Aldrich, #O3756), 15% (v/v) β-mercaptoethanol (Sigma-Aldrich, #444203)
656 dissolved in deionized water) to a final concentration of 1x and heated up to 95 °C for 10 min
657 before use. For protein separating, the samples were loaded on NuPAGE 4-12% Bis-Tris Gels
658 (Invitrogen, #NP0321BOX) and the gels were running in 1x MES-SDS running buffer (20x MES-
659 SDS running buffer diluted in deionized water; thermo scientific, #J62138.K2) for 90 min at 90
660 V. Next, the separated proteins were semi-dry blotted onto an Immobilon-FL PVDF-Membrane
661 (Merck, #IPFL00010) at a constant voltage of 30 V for 30 min. After blocking in Blocker Casein

662 in PBS (Thermo Scientific, #37528) for 1 h, the proteins on the membrane were stained with
663 primary antibodies diluted in PBS-T (1x PBS with 0.2% (v/v) Tween 20 (Sigma-Aldrich, #P9416)
664 and 0.1% (v/v) Blocker Casein in PBS) for 2 h at RT or overnight at 4 °C. Primary antibodies used
665 in this study: Polyclonal rabbit anti-StrepII (1:2000; Abcam, #ab76949), monoclonal mouse anti-
666 V5 (1:3000; Cell Signalling, #80076), monoclonal mouse anti-VSV-M (1:5000; Kerafast,
667 #EB0011), polyclonal rabbit anti-LC3 (1:200; Sigma-Aldrich, #L8918), monoclonal mouse anti-
668 p62 (1:1000; Abcam, ab56416), polyclonal rabbit anti-IFITM1 (1:500; Cell Signaling, #13126),
669 polyclonal rabbit anti-IFITM2 (1:500; Abcam, #ab236735), monoclonal rabbit anti-IFITM3
670 (1:500; Cell Signaling, #59212), monoclonal rat anti-GAPDH (1:1000; Biolegend, #607902) and
671 monoclonal mouse anti-β-actin (1:10,000; Sigma-Aldrich, #A5441). After incubation with the
672 primary antibodies, the membrane was washed three times with PBS-T for 5 min at RT.
673 Subsequently, the membrane was incubated in IRDye secondary antibodies diluted 1:20,000 in
674 PBS-T. The following IRDye secondary antibodies were used in this study: IRDye 680RD Goat
675 anti-Rabbit (LI-COR, #926-68071), IRDye 800CW Goat anti-Mouse (LI-COR, #926-32210),
676 IRDye 680RD Goat anti-Rat (LI-COR, #926-68076) and IRDye 800CW Goat anti-Rat (LI-COR,
677 #926-32219). After three times washing with PBS-T, the fluorescent signal of the secondary
678 antibodies was detected using a LI-COR Odyssey (LI-COR) and the Image Studio Version 5.2
679 software. Image processing and quantification of band intensities were analyzed by using the
680 software Image Studio Lite Version 5.0.21.

681 **siRNA-mediated knock down.** 1x 10⁵ HeLa-GL cells/well were grown in 500 μL medium in 24-
682 well plates and one day later transfected with siRNA using Lipofectamine RNAiMax Transfection
683 Reagent (Invitrogen, #13778150) and Opti-MEM reduced serum media according to the
684 manufacturer's instructions. For transfection the following siRNAs from Horizon Discovery

685 ordered as SMARTPool were used: SNX12 (#M-013648-00-0005), STX12 (#M-018246-01-
686 0005), TAB1 (#M-004770-02-0005), TMEM87b (#M-015008-00-0005) and ABCG2 (#M-
687 009924-01-0005). As negative control Non-targeting Control siRNA#1 (Horizon Discovery, #D-
688 001210-01-05) was used. Two days post transfection with siRNA, cells were either harvested for
689 qRT-PCR analysis or transfected with plasmids encoding for E or E T9I harboring a StrepII tag (1
690 µg DNA/well) by using 2 µL 1x PEI and 100 µL Opti-MEM reduced serum media per well. In
691 brief, 50 µL Opti-MEM were mixed with 2 µL 1x PEI and incubated for 5 min. Secondly, 50 µL
692 Opti-MEM were mixed with 1 µg DNA. Afterwards both mixes were combined and after
693 incubation (20 min, RT), the transfection mix was added to the cells. One day later the cells were
694 further processed for Western Blot and autophagosome measurement by flow cytometry.

695 **Proximity Ligation Assay (PLA).** 6x 10⁴ HeLa cells were seeded on glass cover slips in 24-well
696 plates one day prior transient transfection using Lipofectamine3000 (Invitrogen, #L3000008) with
697 plasmids coding for E or E T9I harboring a StrepII tag according to the manufacturer's instructions.
698 Cells were fixed 30 h post transfection with 3.7% PFA. Cell membranes were permeabilized with
699 0.5% Triton and blocked with 5% BSA (KPL, #5140-0006). PLA staining was performed as
700 previously described^{62,67}. Primary antibodies used: SNX12 Polyclonal Antibody (1:100;
701 Invitrogen, #PA5-99046), STX12 Polyclonal antibody (1:100; Proteintech, #14259-1-AP), anti-
702 TAB1 (1:100; abcam, #ab151408), TMEM87B Polyclonal antibody (1:100; Invitrogen, #PA5-
703 57188), ABCG2 antibody (1:100; Santa Cruz Biotechnology, #sc-58222), rabbit anti-Strep-tag II
704 antibody (1:450; abcam, #ab76949), mouse StrepII Tag Antibody (1:450; Novus Biologicals,
705 #NBP2-43735). PLA probes and reagents used: Duolink In Situ PLA Probe Anti-Rabbit PLUS
706 (Sigma-Aldrich, #DUO92002), Duolink In Situ PLA Probe Anti-Mouse MINUS (Sigma-Aldrich,
707 #DUO92004), Duolink In Situ Detection Reagents FarRed (Sigma-Aldrich, #DUO92013).

708 **Molecular Modelling of SARS-CoV-2 E.** The initial atomic positions were derived from the
709 SARS-CoV-2 Envelope Protein Transmembrane Domain as reported in the 7k3g entry of the
710 Protein Data Bank⁶⁸. Equilibration at 300 K for 0.5 ns was performed by ReaxFF⁶⁸ (reactive
711 molecular dynamics) simulations using the Amsterdam Modeling Suite 2020
712 (<http://www.scm.com>). After equilibration, the amino acids of the Envelope Protein were replaced
713 by the corresponding amino acids, together with the necessary modifications. Subsequently, an
714 additional equilibration step (300 K for 0.5 ns) was performed by ReaxFF simulations in the NVT
715 ensemble over 25 ps, with the system coupled to a Berendsen heat bath (held at T = 300 K with a
716 coupling constant of 100 fs). Distances were calculated by averaging over these simulations. The
717 program Visual Molecular Dynamics (VMD 1.9.3) was used for all visualizations⁷⁰. The HOLE
718 program was used to visualize the ion channel⁷¹.

719 **Phylogenetic and mutation abundance analyses.** The phylogenetic trees were derived from
720 Nextstrain⁷² at indicated timepoints. Abundance of the mutations in sequenced strains in the
721 population was derived from data on Cov-spectrum⁴⁷.

722 **Affinity purification and mass spectrometric analyses of A549 cells expressing E protein of
723 SARS-CoV-2 strains.** To determine the interactomes of E protein of SARS-CoV-2 strains, Strep-
724 II tagged E proteins were used in four replicates each with eGFP as control. HEK293T cells were
725 used to generate lentivirus for the Strep-II tagged E proteins. A549 cells (15×10^6 cells per 15 cm
726 dish) were transduced with lentiviral vectors encoding E proteins with 2.5 μ g/ml puromycin
727 selection. Cell pellets from two 15-cm dishes were used and lysed in lysis buffer (50 mM Tris-
728 HCl pH 7.5 (Trizma, Sigma Aldrich, #T1503), 100 mM NaCl (Sigma Aldrich, #S9888), 1.5 mM
729 MgCl₂ (Sigma Aldrich, #M8266), 0.2% (v/v) NP-40 (Sigma Aldrich, #I3021), , 5% (v/v) glycerol
730 (Sigma Aldrich, #49782), complete protease inhibitor cocktail (Roche), 0.5% (v/v) 750 U/ μ l Sm

731 DNase). Further they were sonicated (15 min, 30 s on, 30 s off, high settings; Bioruptor,
732 Diagenode). The protein lysates were normalized to 1 mg/ml for their concentration and subjected
733 to affinity precipitation using 15 µl Strep-II tagged beads (IBA Lifesciences GmbH) with a
734 constant agitation at 4 °C overnight. Subsequent washes with lysis buffer and washing buffer (50
735 mM Tris-HCl pH 7.5 (Trizma, Sigma Aldrich, #T1503), 100 mM NaCl (Sigma Aldrich, #S9888),
736 1.5 mM MgCl₂(Sigma Aldrich, #M8266), 5% (v/v) glycerol (Sigma Aldrich, #49782)) were
737 performed to remove non-specifically bound proteins. The enriched proteins were denatured,
738 reduced, alkylated and digested by addition of 180 µl digestion buffer (0.6 M guanidinium chloride
739 (Sigma Aldrich, #G3272)), 1 mM tris(2-carboxyethyl)phosphine (TCEP), 4 mM chloroacetamide
740 (CAA) (Sigma Aldrich, #75259), 100 mM Tris-HCl pH 8, 0.5 µg LysC (WAKO Chemicals) and
741 0.5 µg trypsin (Promega) at 30 °C overnight at 300 rpm shaking. Three layers of C18 Empore filter
742 discs (3M) were used to prepare the stage tips and peptide purification was performed. The purified
743 peptides were subjected to LC-MS/MS. Peptides were loaded on a 20-cm reverse-phase analytical
744 column (75 µm diameter; ReproSil-Pur C18-AQ 1.9 µm resin; Dr Maisch) and separated using an
745 EASY-nLC 1200 system (Thermo Fisher Scientific). A binary buffer system consisting of buffer
746 A (0.1% formic acid (FA) in H₂O, Sigma Aldrich) and buffer B (80% acetonitrile (ACN#VWR),
747 0.1% FA (Sigma Aldrich) in H₂O) with a 90-min gradient (5–30% buffer B (65 min), 30–95%
748 buffer B (10 min), wash out at 95% buffer B (5 min), decreased to 5% buffer B (5 min), and 5%
749 buffer B (5 min)) was used at a flow rate of 300 nl per min. Eluting peptides were directly analyzed
750 on a Q-Exactive HF mass spectrometer in data-dependent acquisition (DDA) mode (Thermo
751 Fisher Scientific)¹⁵. Data-dependent acquisition included repeating cycles of one MS1 full scan
752 (300–1650 m/z, R = 60 000 at 200 m/z) at an ion target of 3×10^6 with injection time of 20 ms.
753 For MS2 scans the top 15 intense isolated and fragmented peptide precursors (R = 15 000 at

754 200 m/z, ion target value of 1×10^5 , and maximum injection time of 25 ms) were recorded.
755 Dynamic exclusion, isolation window of the quadrupole, and HCD normalized collision energy
756 were set to 20 s, 1.4 m/z, and 27 %, respectively.

757 **Data processing and analysis.** Raw MS data files of AP-MS experiments conducted in DDA
758 mode were processed with MaxQuant (version 1.6.14) using the standard settings and label-free
759 quantification (LFQ) enabled (LFQ min ratio count 1, normalization type none, stabilize large LFQ
760 ratios disabled). Spectra were searched against forward and reverse sequences of the reviewed
761 human proteome including isoforms (UniprotKB, release 2019.10) and Strep-II tagged E proteins
762 of SARS-CoV-2 strains and Strep-II tagged eGFP protein by the built-in Andromeda search
763 engine⁷³. Peptide and protein identification was controlled by a False Discovery Rate (FDR) of
764 0.01. Perseus was used to analyze the output of MaxQuant⁷⁴. Protein groups identified as known
765 contaminants or reverse sequence matches were excluded from the analysis. Only proteins with a
766 minimum of two LFQ quantifications in at least one group of replicate experiments ($n=4$) for a
767 specific bait were considered for the analysis. Missing values were imputed using normal
768 distribution, whose standard deviation was defined as 30% and the mean was offset by -1.8 s.d.
769 of the data distribution of the real intensities observed in the corresponding mass-spectrometry
770 run, respectively.

771 **Ethics.** Approval for the Mount Sinai Pathogen Surveillance Program (MS-PSP) was obtained
772 from the Mount Sinai Hospital (MSH) Institutional Review Board (IRB-13-00981)

773 **Statistical analyses.** Statistical analyses were performed using GraphPad Prism 10. P-values were
774 determined using a two-tailed Student's t test with Welch's correction. Unless otherwise stated,
775 data are shown as the mean of at least three biological replicates \pm SEM. Significant differences
776 are indicated as: *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$. Unless otherwise specified, not

777 significant (ns) differences are not indicated. Statistical parameters are further specified in the
778 figure legends.

779

780 **DATA AVAILABILITY STATEMENT**

781 The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
782 via the PRIDE partner repository with the dataset identifier PXD048080. The data can be accessed
783 with the following reviewer login information:

784 Username: reviewer_pxd048080@ebi.ac.uk

785 Password: VMIgi7Zn

786

787

788 **ACKNOWLEDGEMENTS**

789 We thank Daniela Krnavek, Martha Mayer, Kerstin Regensburger, Regina Burger, Jana-Romana
790 Fischer and Birgit Ott for assistance. We thank Prof. Alexander Kühne (Ulm University) for
791 providing access to the Leica SP5 microscope (DFG project ID: 432000323). We thank Dr.
792 Antonio Piras (TUM University) for analyzing proteomics samples. We thank Klaus Klumpp,
793 Gary Ewart and Michelle Miller (Biotron Limited) for providing the SARS-CoV-2 E inhibitor
794 BIT225. The SARS-CoV-2 variants, B.1.617.2 (Delta) and B.1.1.529 (Omicron BA.5), were
795 kindly provided by Prof. Dr. Florian Schmidt and Dr. Bianca Schulte (University of Bonn, Bonn,
796 Germany). K.M.J.S. acknowledges support from the German Ministry for Research and Education
797 (BMBF; IMMUNOMOD-01KI2014). This study was supported by DFG grants to K.M.J.S.
798 (CRC1279-INST 40/623-1, SPP1923, SP 1600/6-1, SP 1600/7-1, SP1600/9-1), F.K. (CRC1279
799 and SPP1923) and A.P. (PI 1084/4, PI 1084/5 and TRR179/TP10, TRR237/A07, TRR353/B04).

800 Work in the A.P.'s laboratory was supported by an ERC Consolidator grant (ERC-CoG ProDAP),
801 the Helmholtz Association's Initiative and Networking Fund (KA1-Co-02 "COVIPA"). D.K. is
802 supported by a Baustein Grant from Ulm University, Else Kröner Fresenius Stiftung
803 (2022_EKEA.47) and European Union's Horizon 2020 Marie Skłodowska-Curie program (No.
804 101062524). S.K., H.H. and M.H. are part of the International Graduate School for Molecular
805 Medicine, Ulm (IGradU). We further acknowledge the Bavarian State Ministry of Health, Bay-
806 VOC (A.E.), IZKF Erlangen (Project A94) (A.E.) and the Bavarian Research Network FOR-
807 COVID (A.P.).

808 CONFLICT OF INTERESTS

809 The authors declare no competing interests.

810 REFERENCES

- 811 1. Steiner, S. *et al.* SARS-CoV-2 biology and host interactions. *Nat Rev Microbiol* **1**–20 (2024)
812 doi:10.1038/s41579-023-01003-z.
- 813 2. V'kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and
814 replication: implications for SARS-CoV-2. *Nat Rev Microbiol* **19**, 155–170 (2021).
- 815 3. Carabelli, A. M. *et al.* SARS-CoV-2 variant biology: immune escape, transmission and
816 fitness. *Nat Rev Microbiol* **21**, 162–177 (2023).
- 817 4. Fan, Y. *et al.* SARS-CoV-2 Omicron variant: recent progress and future perspectives. *Sig
818 Transduct Target Ther* **7**, 1–11 (2022).
- 819 5. Cao, Y. *et al.* Omicron escapes the majority of existing SARS-CoV-2 neutralizing
820 antibodies. *Nature* **602**, 657–663 (2022).
- 821 6. Hoffmann, M. *et al.* Omicron subvariant BA.5 efficiently infects lung cells. *Nat Commun* **14**,
822 3500 (2023).

823 7. Willett, B. J. *et al.* SARS-CoV-2 Omicron is an immune escape variant with an altered cell
824 entry pathway. *Nat Microbiol* **7**, 1161–1179 (2022).

825 8. Viana, R. *et al.* Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern
826 Africa. *Nature* **603**, 679–686 (2022).

827 9. Jung, C. *et al.* Omicron: what makes the latest SARS-CoV-2 variant of concern so
828 concerning? *J Virol* jvi0207721 (2022) doi:10.1128/jvi.02077-21.

829 10. Planas, D. *et al.* Reduced sensitivity of SARS-CoV-2 variant Delta to antibody
830 neutralization. *Nature* **596**, 276–280 (2021).

831 11. Planas, D. *et al.* Considerable escape of SARS-CoV-2 Omicron to antibody neutralization.
832 *Nature* **602**, 671–675 (2022).

833 12. Pastorio, C. *et al.* Determinants of Spike infectivity, processing, and neutralization in SARS-
834 CoV-2 Omicron subvariants BA.1 and BA.2. *Cell Host Microbe* S1931-3128(22)00352-3
835 (2022) doi:10.1016/j.chom.2022.07.006.

836 13. Obermeyer, F. *et al.* Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations
837 associated with fitness. *Science* **376**, 1327–1332 (2022).

838 14. Stukalov, A. *et al.* Multilevel proteomics reveals host perturbations by SARS-CoV-2 and
839 SARS-CoV. *Nature* **594**, 246–252 (2021).

840 15. Gassen, N. C. *et al.* SARS-CoV-2-mediated dysregulation of metabolism and autophagy
841 uncovers host-targeting antivirals. *Nat Commun* **12**, 3818 (2021).

842 16. Hayn, M. *et al.* Systematic functional analysis of SARS-CoV-2 proteins uncovers viral
843 innate immune antagonists and remaining vulnerabilities. *Cell Rep* **35**, 109126 (2021).

844 17. Nchioua, R. *et al.* SARS-CoV-2 Is Restricted by Zinc Finger Antiviral Protein despite
845 Preadaptation to the Low-CpG Environment in Humans. *mBio* **11**, (2020).

846 18. Nchioua, R. *et al.* Reduced replication but increased interferon resistance of SARS-CoV-2
847 Omicron BA.1. *Life Sci Alliance* **6**, e202201745 (2023).

848 19. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation.
849 *Nature* **469**, 323–335 (2011).

850 20. Feng, Y., He, D., Yao, Z. & Klionsky, D. J. The machinery of macroautophagy. *Cell Res* **24**,
851 24–41 (2014).

852 21. Gatica, D., Lahiri, V. & Klionsky, D. J. Cargo recognition and degradation by selective
853 autophagy. *Nat Cell Biol* **20**, 233–242 (2018).

854 22. Choi, Y., Bowman, J. W. & Jung, J. U. Autophagy during viral infection - a double-edged
855 sword. *Nat Rev Microbiol* **16**, 341–354 (2018).

856 23. He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy.
857 *Annu Rev Genet* **43**, 67–93 (2009).

858 24. Jassey, A. & Jackson, W. T. Viruses and autophagy: bend, but don't break. *Nat Rev*
859 *Microbiol* 1–13 (2023) doi:10.1038/s41579-023-00995-y.

860 25. Kudchodkar, S. B. & Levine, B. Viruses and autophagy. *Rev Med Virol* **19**, 359–378 (2009).

861 26. Klute, S. & Sparrer, K. M. J. Friends and Foes: The Ambivalent Role of Autophagy in HIV-
862 1 Infection. *Viruses* **16**, 500 (2024).

863 27. Koepke, L., Hirschenberger, M., Hayn, M., Kirchhoff, F. & Sparrer, K. M. Manipulation of
864 autophagy by SARS-CoV-2 proteins. *Autophagy* **17**, 2659–2661 (2021).

865 28. Hoenigsperger, H., Sivarajan, R. & Sparrer, K. M. Differences and similarities between
866 innate immune evasion strategies of human coronaviruses. *Curr Opin Microbiol* **79**, 102466
867 (2024).

868 29. Jiao, P. *et al.* SARS-CoV-2 nonstructural protein 6 triggers endoplasmic reticulum stress-
869 induced autophagy to degrade STING1. *Autophagy* **19**, 3113–3131 (2023).

870 30. Zhang, Y. *et al.* The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with
871 lysosomes. *Cell Discov* **7**, 1–12 (2021).

872 31. Chen, D. *et al.* ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral
873 egress. *Dev Cell* **56**, 3250-3263.e5 (2021).

874 32. Miao, G. *et al.* ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-
875 mediated assembly of the SNARE complex required for autolysosome formation. *Dev Cell*
876 **56**, 427-442.e5 (2021).

877 33. Hou, P. *et al.* The ORF7a protein of SARS-CoV-2 initiates autophagy and limits
878 autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication.
879 *Autophagy* **19**, 551–569 (2023).

880 34. Boson, B. *et al.* The SARS-CoV-2 envelope and membrane proteins modulate maturation
881 and retention of the spike protein, allowing assembly of virus-like particles. *J Biol Chem*
882 **296**, 100111 (2021).

883 35. Chai, J. *et al.* Structural basis for SARS-CoV-2 envelope protein recognition of human cell
884 junction protein PALS1. *Nat Commun* **12**, 3433 (2021).

885 36. Zhou, S. *et al.* SARS-CoV-2 E protein: Pathogenesis and potential therapeutic development.
886 *Biomed Pharmacother* **159**, 114242 (2023).

887 37. Wang, W.-A., Carreras-Sureda, A. & Demaurex, N. SARS-CoV-2 infection alkalinizes the
888 ERGIC and lysosomes through the viroporin activity of the viral envelope protein. *J Cell Sci*
889 **136**, jcs260685 (2023).

890 38. Shi, G. *et al.* Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-
891 CoV-2. *J Clin Invest* **132**, (2022).

892 39. Koepke, L. *et al.* An improved method for high-throughput quantification of autophagy in
893 mammalian cells. *Sci Rep* **10**, 12241 (2020).

894 40. Klionsky, D. J. *et al.* Guidelines for the use and interpretation of assays for monitoring
895 autophagy (4th edition)1. *Autophagy* **17**, 1–382 (2021).

896 41. Medeiros-Silva, J., Dregni, A. J., Somberg, N. H., Duan, P. & Hong, M. Atomic structure of
897 the open SARS-CoV-2 E viroporin. *Sci Adv* **9**, eadi9007 (2023).

898 42. Mandala, V. S. *et al.* Structure and drug binding of the SARS-CoV-2 envelope protein
899 transmembrane domain in lipid bilayers. *Nat Struct Mol Biol* **27**, 1202–1208 (2020).

900 43. Ewart, G. *et al.* Post-infection treatment with the E protein inhibitor BIT225 reduces disease
901 severity and increases survival of K18-hACE2 transgenic mice infected with a lethal dose of
902 SARS-CoV-2. *PLOS Pathogens* **19**, e1011328 (2023).

903 44. Morelli, E. *et al.* Multiple functions of the SNARE protein Snap29 in autophagy, endocytic,
904 and exocytic trafficking during epithelial formation in Drosophila. *Autophagy* **10**, 2251–2268
905 (2015).

906 45. Lenoir, M. *et al.* Phosphorylation of conserved phosphoinositide binding pocket regulates
907 sorting nexin membrane targeting. *Nat Commun* **9**, 993 (2018).

908 46. Hirata, T. *et al.* Post-Golgi anterograde transport requires GARP-dependent endosome-to-
909 TGN retrograde transport. *Mol Biol Cell* **26**, 3071–3084 (2015).

910 47. Yin, W. *et al.* The inhibition of ABCB1/MDR1 or ABCG2/BCRP enables doxorubicin to
911 eliminate liver cancer stem cells. *Sci Rep* **11**, 10791 (2021).

912 48. Criollo, A. *et al.* Inhibition of autophagy by TAB2 and TAB3. *EMBO J* **30**, 4908–4920
913 (2011).

914 49. Zech, F. *et al.* Spike residue 403 affects binding of coronavirus spikes to human ACE2. *Nat
915 Commun* **12**, 6855 (2021).

916 50. Hoffmann, M. *et al.* SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
917 Blocked by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271-280.e8 (2020).

918 51. Chen, C. *et al.* CoV-Spectrum: analysis of globally shared SARS-CoV-2 data to identify and
919 characterize new variants. *Bioinformatics* **38**, 1735–1737 (2022).

920 52. Carreño, J. M. *et al.* Activity of convalescent and vaccine serum against SARS-CoV-2
921 Omicron. *Nature* **602**, 682–688 (2022).

922 53. Gonzalez-Reiche, A. S. *et al.* Introductions and early spread of SARS-CoV-2 in the New
923 York City area. *Science* **369**, 297–301 (2020).

924 54. Gonzalez-Reiche, A. S. *et al.* Sequential intrahost evolution and onward transmission of
925 SARS-CoV-2 variants. *Nat Commun* **14**, 3235 (2023).

926 55. Herrmann, A. *et al.* Cloning of a Passage-Free SARS-CoV-2 Genome and Mutagenesis
927 Using Red Recombination. *International Journal of Molecular Sciences* **22**, 10188 (2021).

928 56. Harvey, W. T. *et al.* SARS-CoV-2 variants, spike mutations and immune escape. *Nat Rev
929 Microbiol* **19**, 409–424 (2021).

930 57. Markov, P. V. *et al.* The evolution of SARS-CoV-2. *Nat Rev Microbiol* **21**, 361–379 (2023).

931 58. Nchioua, R. *et al.* Strong attenuation of SARS-CoV-2 Omicron BA.1 and increased
932 replication of the BA.5 subvariant in human cardiomyocytes. *Signal Transduct Target Ther*
933 **7**, 395 (2022).

934 59. Kimura, I. *et al.* Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants,
935 including BA.4 and BA.5. *Cell* **185**, 3992-4007.e16 (2022).

936 60. Guo, K. *et al.* Interferon resistance of emerging SARS-CoV-2 variants. *Proc Natl Acad Sci U*
937 *SA* **119**, e2203760119 (2022).

938 61. Mózner, O. *et al.* Cellular Processing of the ABCG2 Transporter—Potential Effects on Gout
939 and Drug Metabolism. *Cells* **8**, 1215 (2019).

940 62. Tang, Q. *et al.* Alpha-Synuclein defects autophagy by impairing SNAP29-mediated
941 autophagosome-lysosome fusion. *Cell Death Dis* **12**, 1–16 (2021).

942 63. Lőrincz, P. & Juhász, G. Autophagosome-Lysosome Fusion. *J Mol Biol* **432**, 2462–2482
943 (2020).

944 64. Crawford, S. E. & Estes, M. K. Viroporin-mediated calcium-activated autophagy. *Autophagy*
945 **9**, 797–798 (2013).

946 65. Fung, T. S., Torres, J. & Liu, D. X. The Emerging Roles of Viroporins in ER Stress
947 Response and Autophagy Induction during Virus Infection. *Viruses* **7**, 2834–2857 (2015).

948 66. Nieto-Torres, J. L. *et al.* Severe acute respiratory syndrome coronavirus E protein transports
949 calcium ions and activates the NLRP3 inflammasome. *Virology* **485**, 330–339 (2015).

950 67. Yalcinkaya, M. *et al.* Modulation of the NLRP3 inflammasome by Sars-CoV-2 Envelope
951 protein. *Sci Rep* **11**, 24432 (2021).

952 68. Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into
953 cells. *Nat Rev Mol Cell Biol* **23**, 3–20 (2022).

954 69. Prelli Bozzo, C. *et al.* IFITM proteins promote SARS-CoV-2 infection and are targets for
955 virus inhibition in vitro. *Nat Commun* **12**, 4584 (2021).

956 70. Tooze, S. A., Abada, A. & Elazar, Z. Endocytosis and Autophagy: Exploitation or
957 Cooperation? *Cold Spring Harb Perspect Biol* **6**, a018358 (2014).

958 71. Du, X. *et al.* Omicron adopts a different strategy from Delta and other variants to adapt to
959 host. *Sig Transduct Target Ther* **7**, 1–3 (2022).

960 72. Zhao, H. *et al.* SARS-CoV-2 Omicron variant shows less efficient replication and fusion
961 activity when compared with Delta variant in TMPRSS2-expressed cells. *Emerg Microbes*
962 *Infect* **11**, 277–283 (2022).

963 73. Hoffmann, M. *et al.* The Omicron variant is highly resistant against antibody-mediated
964 neutralization: Implications for control of the COVID-19 pandemic. *Cell* **185**, 447–456.e11
965 (2022).

966 74. Yorimitsu, T. & Klionsky, D. J. Autophagy: molecular machinery for self-eating. *Cell Death*
967 *Differ* **12**, 1542–1552 (2005).

968 75. Irving, A. T., Ahn, M., Goh, G., Anderson, D. E. & Wang, L.-F. Lessons from the host
969 defences of bats, a unique viral reservoir. *Nature* **589**, 363–370 (2021).

970 76. Kacprzyk, J. *et al.* Evolution of mammalian longevity: age-related increase in autophagy in
971 bats compared to other mammals. *Aging (Albany NY)* **13**, 7998–8025 (2021).

972 77. Tao, K. *et al.* The biological and clinical significance of emerging SARS-CoV-2 variants.
973 *Nat Rev Genet* **22**, 757–773 (2021).

974 78. Nesteruk, I. Endemic characteristics of SARS-CoV-2 infection. *Sci Rep* **13**, 14841 (2023).

975

976

977 **FIGURE LEGENDS**

978

979 **Figure 1. The Omicron VOC is less sensitive against autophagy.** **a**, Relative abundance of
980 indicated SARS-CoV-2 strains until 31st December 2023, Data from Nextstrain, retrieved
981 February 2024. **b**, Quantification of SARS-CoV-2 N viral RNA in the supernatant of Calu-3 cells
982 infected with indicated SARS-CoV-2 strains (MOI 0.05) and treated with increasing amounts of
983 Torin-1 (0.016-1 μ M) by qPCR 48 h post infection. N = 3-6+SEM. **c**, Area under the curve analysis
984 of the data in (b). N = 3-6+SEM. **d**, Infectious SARS-CoV-2 in the supernatant of Calu-3 cells
985 treated with 250 nM Torin-1 or left untreated and infected with indicated viruses (MOI 0.05) as
986 assessed by TCID50. N = 3 \pm SEM. Student's t-test with Welch's correction. **, p<0.01; ***,
987 p<0.001.

988

989 **Figure 2. Mutation T9I enhances autophagy antagonism of E.** **a**, Schematic depiction of the
990 major autophagy antagonists of SARS-CoV-2, ORF3a, ORF7a and E (Envelope). Specific VOC-
991 associated mutations compared to early 2020 SARS-CoV-2 are annotated. **b**, Quantification of
992 autophagosome levels by flow cytometry in HEK293T autophagy reporter cells (HEK293T-GL)
993 transiently expressing StrepII-tagged SARS-CoV-2 proteins (48 h post transfection). N = 3 \pm SEM.
994 (Top panels). Student's t-test with Welch's correction. ***, p<0.001. Immunoblots stained with
995 anti-StrepII and anti-GAPDH. (Bottom panels) **c**, Immunoblots of HEK293T-GL cells
996 overexpressing Omicron-specific E mutants were stained with anti-p62, anti-LC3B, anti-StrepII
997 and anti-Actin (left panel). Quantification of LC3B-II/Actin band intensities of the immunoblots
998 detecting Omicron-specific E mutants (right panel). N=2. **d**, Quantification of autophagosome
999 levels by flow cytometry in HEK293T autophagy reporter cells (HEK293T-GL) transiently

1000 expressing increasing amounts of StrepII-tagged SARS-CoV-2 E (48 h post transfection). N =
1001 3 \pm SEM. (Left panel). Exemplary immunoblots stained with anti-StrepII and anti-GAPDH. (Right
1002 panels) **e**, Quantification of autophagosome levels by flow cytometry in HEK293T-GL cells
1003 transiently expressing increasing amounts of StrepII-tagged SARS-CoV-2 E (48 h post
1004 transfection) and treated with 250 nM Bafilomycin A1 (empty dots) or medium (filled dots) 4 h
1005 before harvest. N = 4 \pm SEM. **f**, Exemplary confocal immunofluorescence images of HeLa-GFP-
1006 LC3B (green) cells transiently expressing StrepII tagged SARS-CoV-2 E T9 and E T9I (red) or
1007 treated with Rapamycin (Rapa; 1 μ M, 24 h) (scale bar, 10 μ m) (left panel). Quantification of the
1008 number of autophagosomes (=GFP-LC3B positive puncta) in the images in the left panel. N=35-
1009 110 \pm SEM. (right panel). Student's t-test with Welch's correction. **, p<0.01; ***, p<0.001.

1010

1011 **Figure 3. Impact of mutation T9I on E viroporin assembly and intracellular localization. a,**
1012 Schematic depiction of the structure of SARS-CoV-2 E. NTD, N-terminal domain. TMD, Trans-
1013 membrane domain. CTD, C-terminal domain. The position of T9 in E is highlighted in red. **b**,
1014 Schematic representation of the E protein ion channel depicted as a cartoon showing a
1015 transmembrane view. The ninth amino acid is highlighted as a stick, with the colors representing
1016 carbon (grey), oxygen (red) and hydrogen (white). The diameter of E protein ion channels is
1017 depicted in \AA . **c**, Exemplary energy curve of the reactive molecular dynamics
1018 simulation for SARS-CoV-2 E T9 and E T9I. **d-f**, Exemplary confocal scanning microscopy
1019 images of HeLa-GL cells transiently expressing StrepII-tagged SARS-CoV-2 E (red), co-stained
1020 with anti-LAMP1 (white) (d), anti-Rab7 (white) (e), anti-LC3B (green) (f). Scale Bar, 10 μ m.
1021 DAPI, nuclei (blue). Quantification of the co-localization between E variants and indicated co-

1022 stained markers using Pearson's correlation. N=26-73 \pm SEM. Student's t-test with Welch's
1023 correction. ***, p<0.001. ns (non-significant).

1024

1025 **Figure 4. E T9I has increased affinity to autophagosome-associated proteins.** **a**, Principal
1026 component analysis of the differential interactome data (Supplementary Table 1), the individual
1027 replicates are separated (black: GFP controls, Green: E T9 pulldown, Purple: E T9I pulldown) **b**,
1028 Volcano plot of the differential interactome analysis showing enriched proteins in E T9I pulldown
1029 versus the P value (-log P). Five highly significantly enriched proteins are highlighted in red and
1030 via labels. **c-g**, Quantification of proximity ligation assays between transiently expressed SARS-
1031 CoV-2 E variants 48 h post transfection in HeLa cells and endogenous SNX12, STX12,
1032 TMEM87b, ABCG2 and TAB1, as indicated. Exemplary images depicted. PLA signal, red. Scale
1033 Bar, 10 μ m. DAPI, nuclei (blue). N=18-59 \pm SEM. **h**, Quantification of autophagosome levels by
1034 flow cytometry in HEK293T autophagy reporter cells (HEK293T-GL) transiently expressing
1035 StrepII-tagged SARS-CoV-2 E variants (48 h post transfection) and depleted of indicated proteins
1036 by siRNA. N = 3 \pm SEM. Student's t-test with Welch's correction. *, p<0.05; **, p<0.01; ***,
1037 p<0.001.

1038

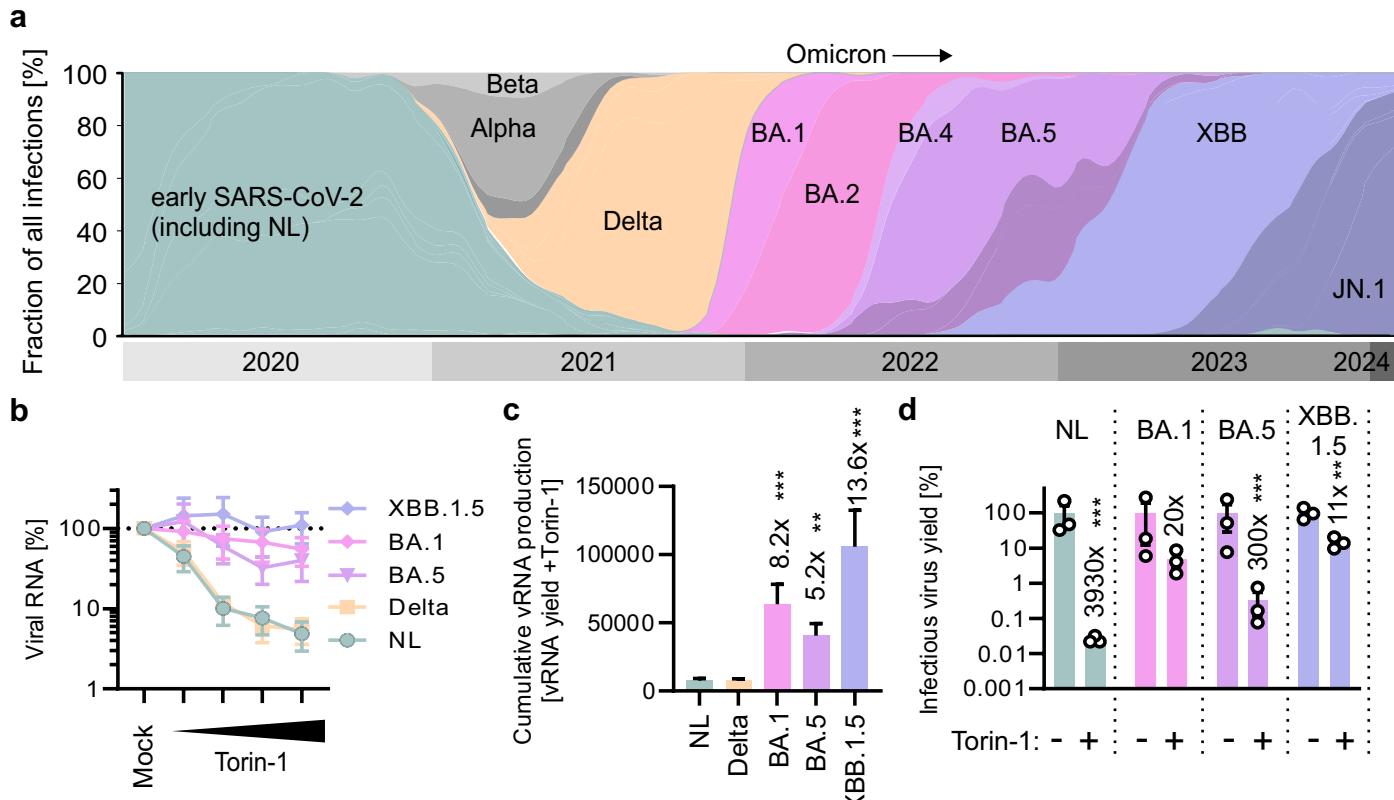
1039 **Figure 5. VSV pseudoparticles carrying E T9I are less sensitive towards autophagy.** **a**,
1040 Exemplary immunoblots of whole cell lysates and supernatants of HEK293T WT (left panel) and
1041 ATG5 KO HEK293T (right panel) cells transiently expressing SARS-CoV-2 S, E T9 or E T9I as
1042 indicated and infected with VSV- Δ G-GFP (MOI 3). Blots were stained with anti-StrepII, anti-V5
1043 (Spike), anti-VSV-M and anti-GAPDH. **b**, Concentration of S in VSVpp containing supernatants
1044 of HEK293T WT and ATG5 KO cells in (a) assessed by Spike-ELISA. N=4 \pm SEM. **c**, ACE2

1045 binding of VSVpp produced on HEK293T WT and ATG5 KO cells as in (a) as assessed by a
1046 Spike-ACE2 interaction ELISA. recS, recombinant Spike. N=3 \pm SEM. **d**, Analysis of the
1047 infectivity of the particles produced in (a) by dividing the number of infected Caco-2 cells, either
1048 mock or Torin-1 (4 h, 0.5 μ M) treated (S4e) with the amount of Spike (b). Infection was
1049 normalized to 100% for mock. **e**, Infection of MRC5-ACE2 WT and ATG5 KO cells with
1050 VSV(GFP) Δ G pseudoparticles produced in (a) containing the indicated proteins. Infected GFP+
1051 cells were automatically quantified after 22 h post infection. N = 3 \pm SEM. Student's t-test with
1052 Welch's correction. *, p<0.05; **, p<0.01. ns (non-significant). n.d. (non detectable).

1053

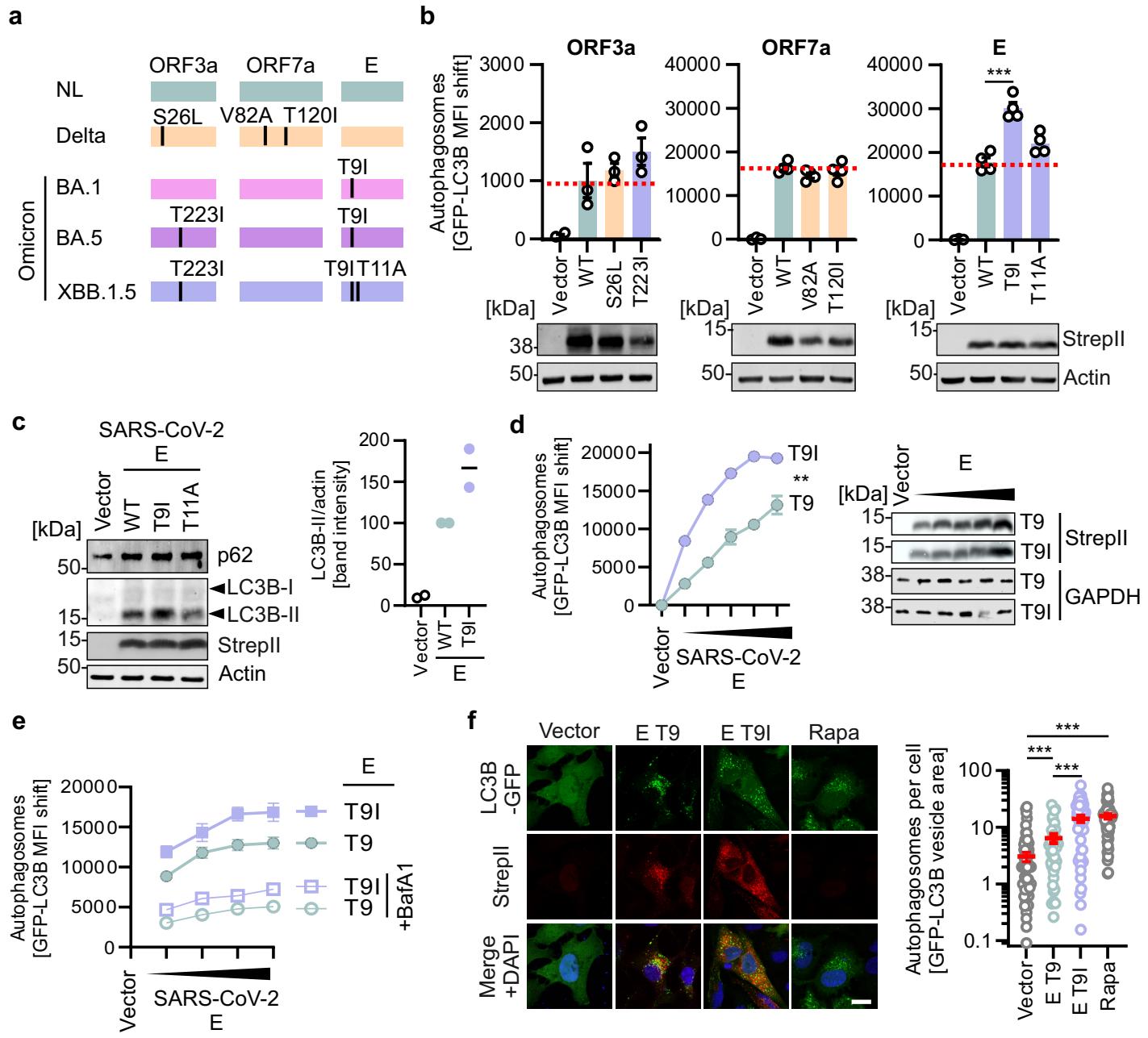
1054 **Figure 6. T9I E promotes autophagy resistance of patient-isolated and recombinant SARS-
1055 CoV-2. a**, Ratio of E T9I mutation in all SARS-CoV-2 strains sampled from 01/2020 to 07/2023.
1056 Nov/Dec 2021 highlighted in red. **b**, Phylogenetic tree of SARS-CoV-2 variants since early 2020,
1057 sourced from Nextstrain, November 2023. Amino acid at position 9 in E is highlighted by colors.
1058 **c**, Percentages of amino acid residues at position 9 in E of 1365370 Omicron strains. **d**, Excerpt of
1059 a phylogenetic tree showing the collection of SARS-CoV-2 isolates from the Mount Sinai
1060 surveillance program. The relation between E T9 coding PV58079 and E T9I coding PV58179
1061 isolates is highlighted. **e**, Absolute quantification of viral RNA in the supernatant of Calu-3 cells
1062 mock treated or treated with Torin-1 (250nM) and infected with SARS-CoV-2 patient isolates
1063 PV58079 or PV58179 (MOI 0.05) as assessed by qPCR 48 h post infection. N=3 \pm SEM. **f**, Relative
1064 quantification of viral RNA in the supernatant of Calu-3 cells infected with rSARS2-E T9 or
1065 rSARS2-E T9I as assessed by qPCR 24h and 48h post infection. 24h rSARS2-E T9 is set to 1.
1066 N=4 \pm SEM. **g**, Relative quantification of viral RNA in the supernatant of Calu-3 cells treated or
1067 non-treated with Torin-1 (250nM) and infected with rSARS2-E T9 or rSARS2-E T9I (MOI 0.05)

1068 as assessed by qPCR 24h post infection. N=4 \pm SEM. 24 h mock treated values are set to 100%.


1069 N=3 \pm SEM. **h**, Quantification of viral RNA in MRC5 WT or ATG5KO cells by qPCR at 72 h post

1070 infection with SARS2-E T9 or rSARS2-E T9I (MOI 0.05). N=3 \pm SEM. Student's t-test with

1071 Welch's correction. *, p<0.05; ***, p<0.001. ns (non-significant).


Figure 1

Klute et al

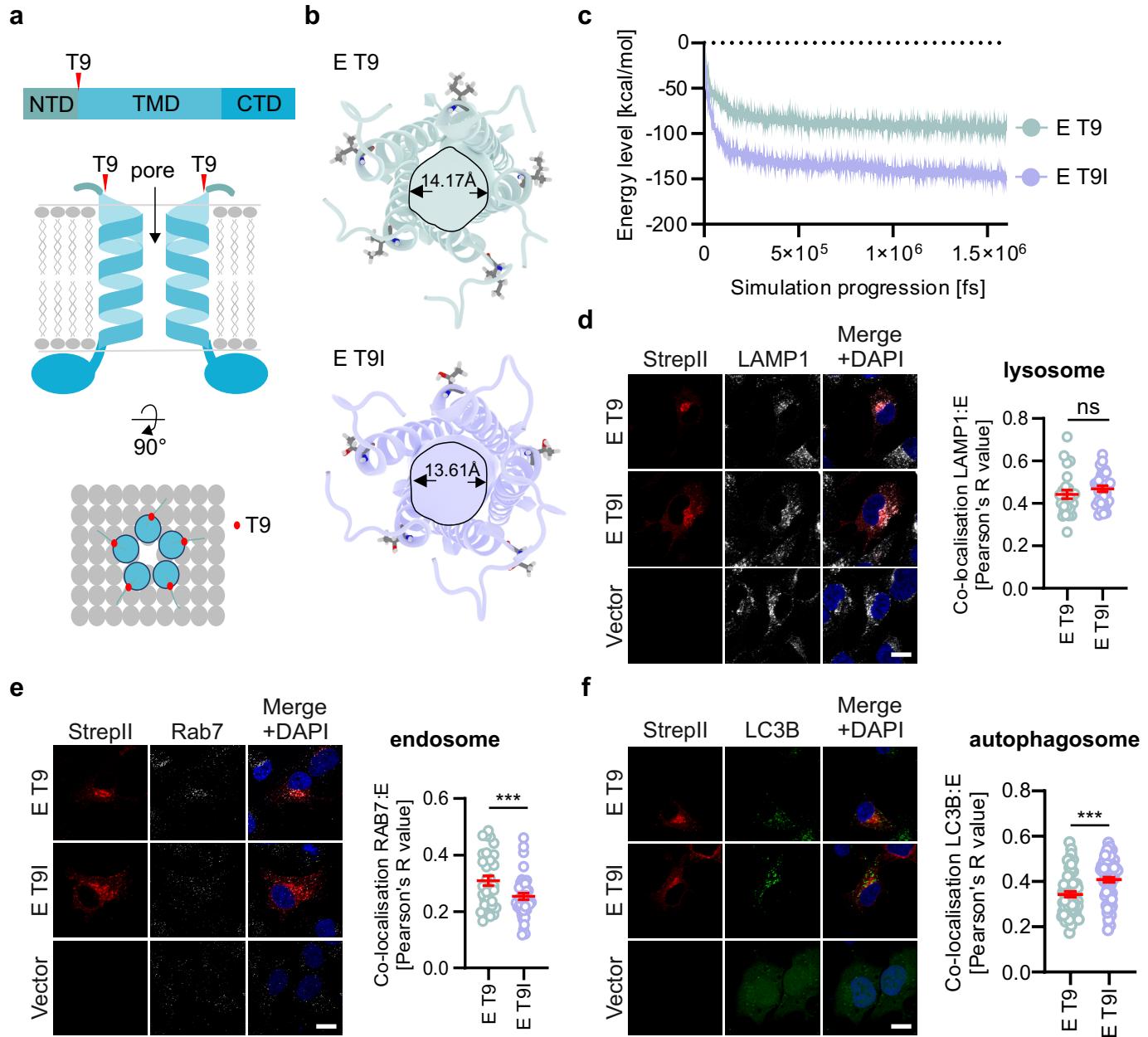


Figure 2

Klute et al

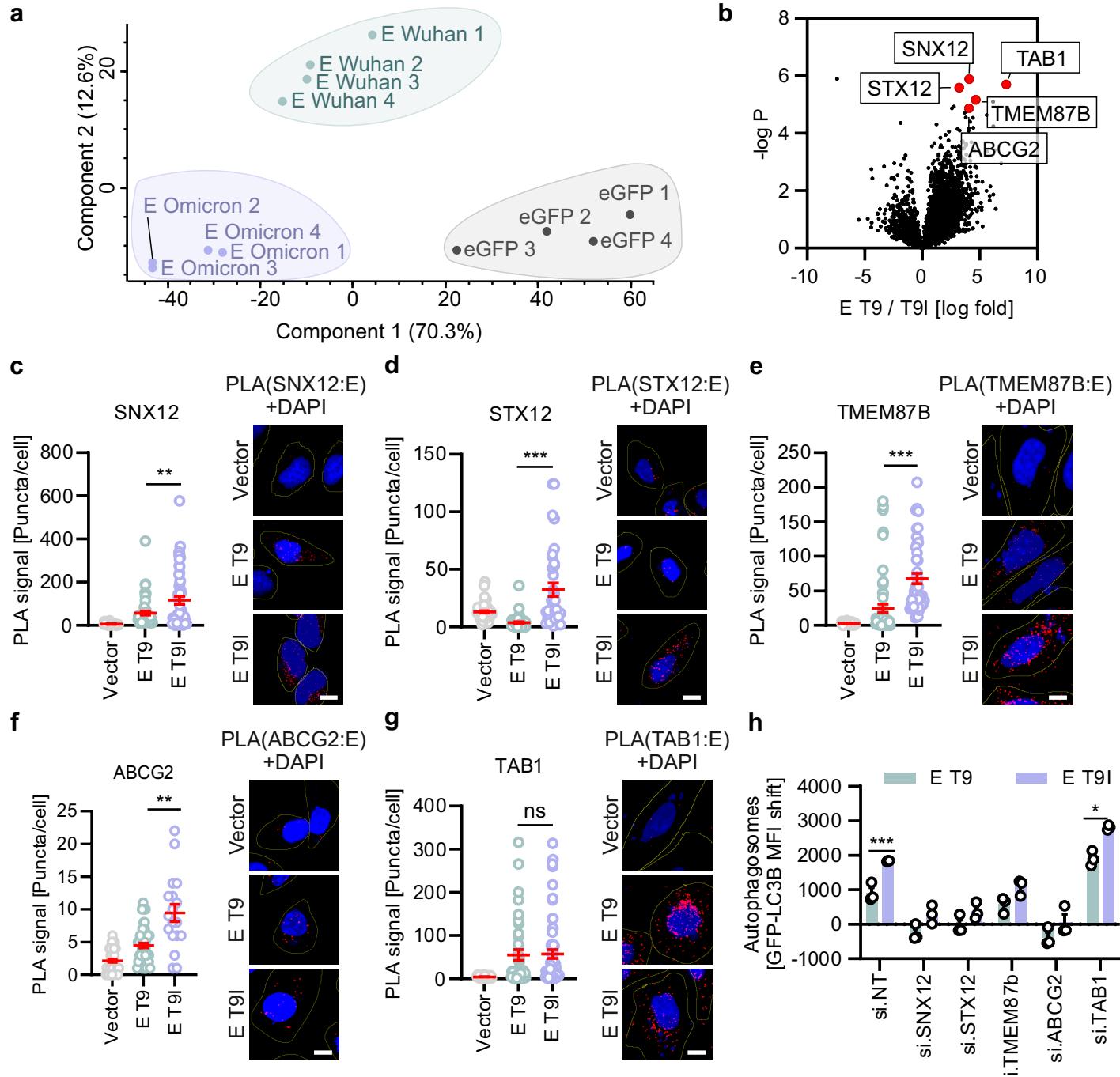
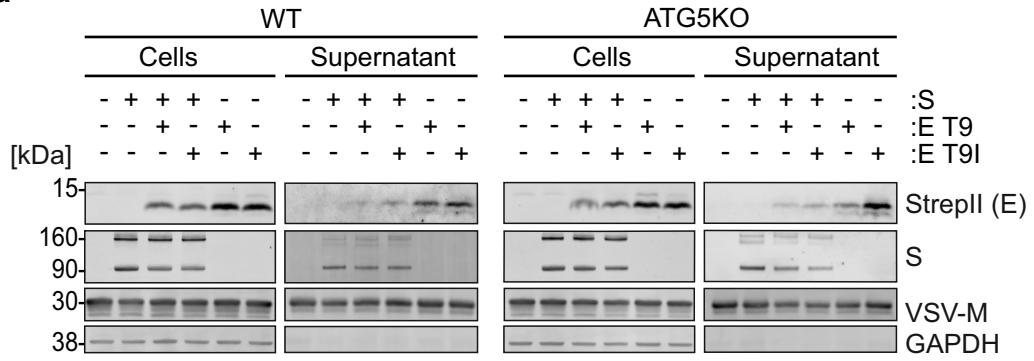


Figure 3


Figure 4

Klute et al

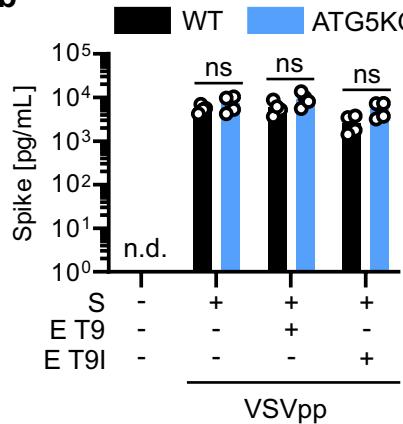
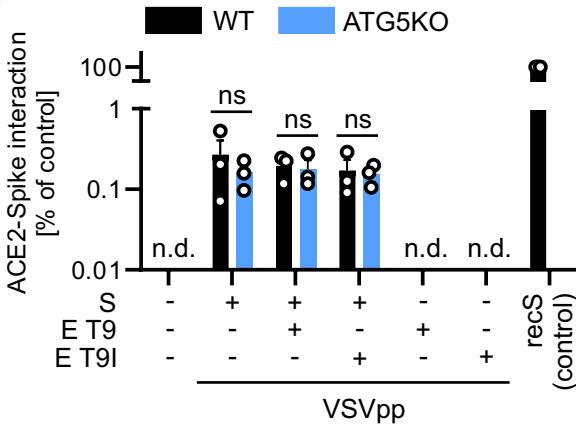
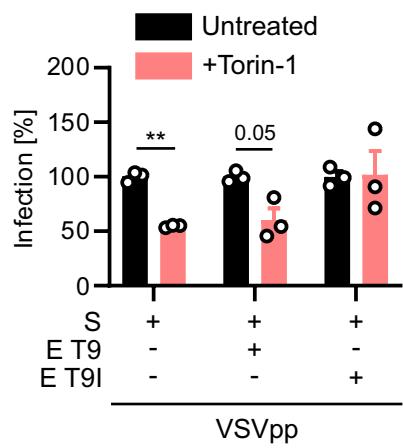
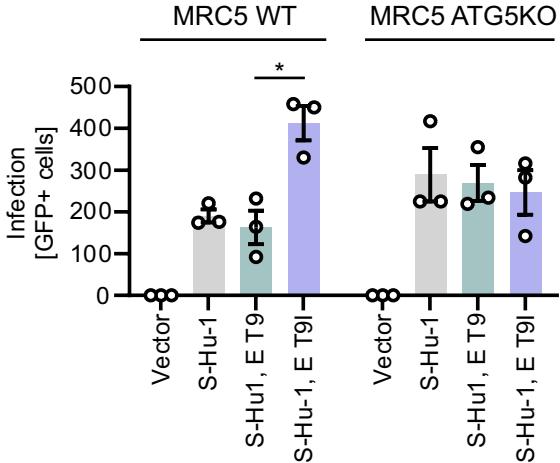


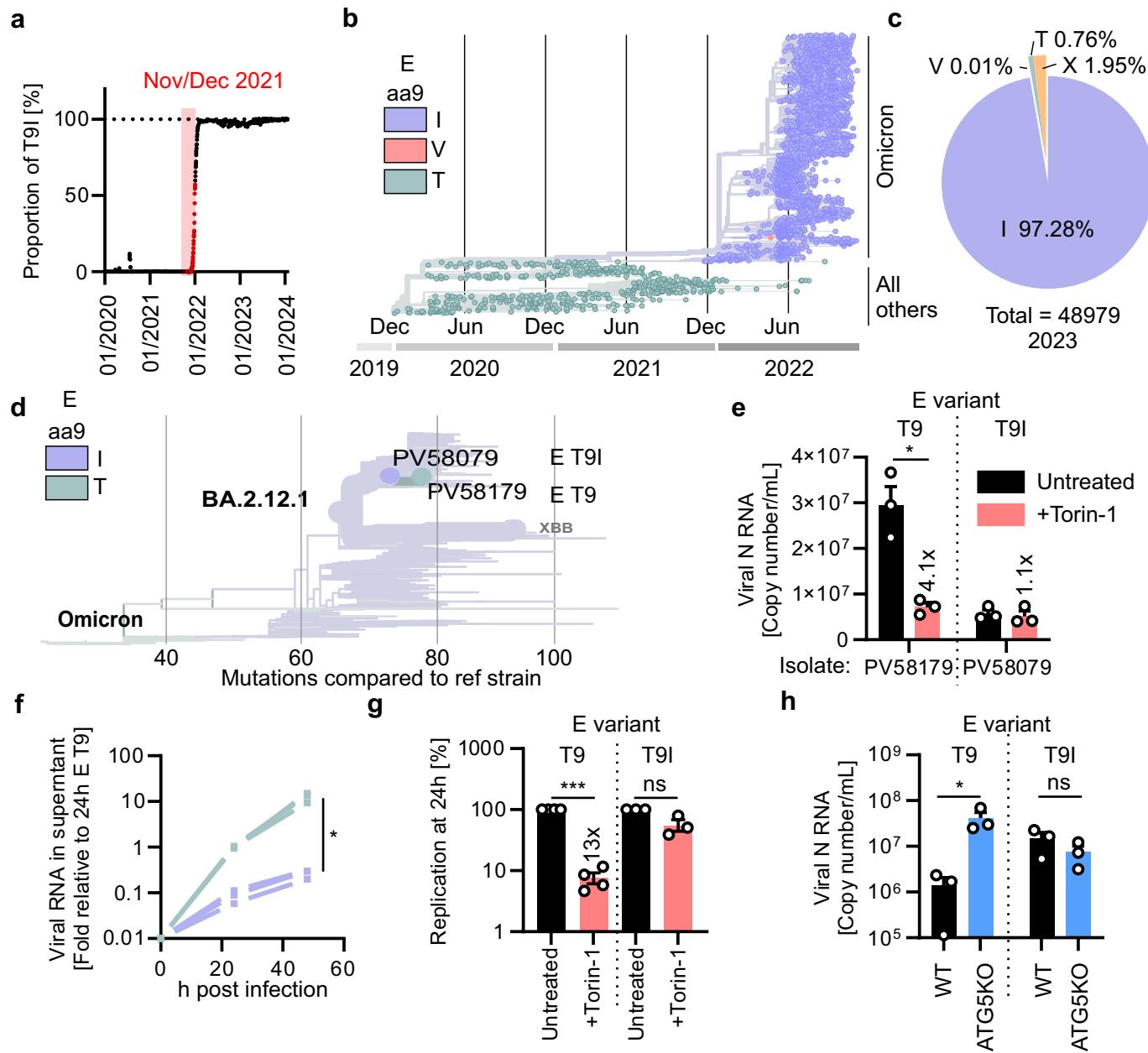
Figure 5


a


b


c

d



e

Figure 6

Klute et al

