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Abstract

Spatiotemporal regulation of gene expression is controlled by transcription factor (TF)
binding to regulatory elements, resulting in a plethora of cell types and cell states from the
same genetic information. Due to the importance of regulatory elements, various
sequencing methods have been developed to localise them in genomes, for example using
ChIP-seq profiling of the histone mark H3K27ac that marks active regulatory regions.
Moreover, multiple tools have been developed to predict TF binding to these regulatory
elements based on DNA sequence. As altered gene expression is a hallmark of disease
phenotypes, identifying TFs driving such gene expression programs is critical for the
identification of novel drug targets.

In this study, we curated 84 chromatin profiling experiments (H3K27ac ChlP-seq) where TFs
were perturbed through e.g., genetic knockout or overexpression. We ran nine published
tools to prioritize TFs using these real-world data sets and evaluated the performance of the
methods in identifying the perturbed TFs. This allowed the nomination of three frontrunner
tools, namely RcisTarget, MEIRLOP and monaLisa. Our analyses revealed opportunities
and commonalities of tools that will help to guide further improvements and developments in
the field.

Introduction

Spatiotemporal gene expression levels are regulated by binding of transcription factors (TFs)
to regulatory elements [1]. TF binding is regulated by various factors such as DNA
accessibility, epigenetic factors (e.g., DNA methylation) and co-factor binding [2—4]. Further,
TFs link cellular signalling pathways to gene expression programs which in turn regulate
specific cellular actions (e.qg., differentiation, apoptosis) [5]. Hence, gene regulation is
fundamental for the plethora of cell types in complex organisms, and regulatory alterations

are a common denominator for various diseases [6].
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Several high-throughput sequencing methods have been developed to interrogate the
different layers of transcriptional regulation including gene expression (e.g., RNA-seq) and
regulatory elements (e.g., Assay for Transposase-Accessible Chromatin using sequencing
(ATAC-seq) or chromatin immunoprecipitation followed by sequencing (ChlP-seq)) [1].
Genome-wide mapping of the acetylation of lysin 27 in the H3 histone (H3K27ac) is
commonly used to identify active regulatory elements, such as enhancers and promoters [7].
Moreover, wide-spread enrichments of H3K27ac along large consecutive genomic locations
have been used to define super-enhancers (SEs), which are postulated to be important
regulators of cell identity genes [8]. However, it remains controversial if SE are different from
other regulatory elements such as enhancer clusters or holo-enhancers [9,10].

Many studies have used H3K27ac to investigate differences in regulatory element activity
between experimental conditions (e.g., healthy vs disease phenotype or control vs
compound treatment) [11-15]. A common downstream analysis based on differential
regulatory elements is the identification of TFs which bind to these elements and therefore
might play an important role in the observed phenotypes. Usually, the top-raking TFs in such
analyses are used to formulate hypotheses that are further validated experimentally (e.g., by
RNAI knockdown, knockout, compound modulation).

To this end, computational tools have been developed to perform TF prioritization based on
different assumptions and implementations [16—24]. Among these, we could broadly identify
two types, depending on their underlying reference: 1) tools leveraging DNA sequence
information using position weight matrices (PWMs) to predict TF binding (PWM based tools),
and 2) sequence-independent tools using previously identified TF binding sites in the
genome (ChiIP-seq peak based tools). Independently of their reference, both types of tools
are prioritizing TFs based on statistical methods such as Fisher’s exact test, rank based
enrichment, and LASSO regression, among others [16-24].

Although these tools play an important role for hypothesis generation in the scientific
community, to our knowledge they have not been benchmarked for their ability to prioritize
TFs.

In this study, we set out to identify the TF prioritization tools that yield the most accurate
results, thus helping to formulate hypotheses for experimental validation with a higher
probability of success. For this purpose, we are introducing a benchmarking framework
based on the combination of 84 published H3K27ac ChlP-seq data sets with nine different
TF prioritization tools. All selected H3K27ac ChlP-seq data sets included at least one TF
perturbation (e.g., overexpression (OE), knockdown (KD)) providing us with a ground truth
for each data set (TF labels). We ran each tool on all selected data sets, converted the tool

outputs into TF priority rankings, and examined the tool performance using these TF labels
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73  against eight performance metrics. Finally, we investigated the importance of experimental

74  variables on tool performance using random forest classifiers to model the tool results.

75 In summary, we present a benchmark study of TF prioritization tools based on real world

76  data sets and give recommendations about tool selection highlighting potential

77  improvements for new ones.

78

79

80 Results

81

82 A benchmarking framework to access the performance of TF prioritization tools.

83

84  We designed a benchmarking framework for TF prioritization tools based on 84 publicly

85 available H3K27ac ChlIP-seq experiments from 53 different studies (Fig. 1 and Table S1).

86  These data sets were selected based on the following criteria: 1) the raw data were available

87 inthe Gene Expression Omnibus (GEO), 2) the H3K27ac ChlIP-seq assay was performed in

88  human or mouse samples, and 3) the experimental design included at least one TF

89  perturbation with corresponding control condition.

90 Using these criteria, we identified 40 mouse and 44 human experiments from tissues (n=17),

91 primary cells (h=12), or immortalized cell lines (h=55), in which a TF was perturbed either by

92  aknockout (KO, n=33), knockdown (KD, n=15), overexpression (OE, n=21) or compound

93 treatment (either agonist or antagonist, n=15; Fig. S1A). Together, these experiments

94  covered diverse characteristics reflecting standard experimental settings (Fig. S1). For

95 example, the underlying ChiP-seq experiments were performed using three common

96 commercially available H3K27ac antibodies and were sequenced from one to up to five

97 replicates (Fig. S1B, C and Table S1).

98  Overall, our perturbed TF data sets cover 18 TF families out of the 66 defined by Lambert et

99 al (Fig. S1D) [2]. Notably, the most prominent TFs profiled were nuclear receptors (e.g.,
100 NR1H2, AR, PPARA), zinc finger TFs (e.g., KLF4, BCL6, EGR1) and GATA factors (TRPS1,
101  GATA3, GATA4). The most common experimental design was the perturbation of nuclear
102  receptors in mouse profiled with the Abcam ab4729 antibody (Fig. S1E).
103  We performed a literature search to identify candidate tools for TF binding prediction using
104  the following inclusion criteria: 1) H3K27ac ChlP-seq data could be used as input, 2) the
105 underlying code was available and useable either as command line tool, R, or Python
106  package, 3) the code was published using a free and open-source licence. This led us to
107 nine tools which can be categorized by basic principle into PWM- (n=7) and ChIP-seq peak-
108 based (n=2). Moreover, the tools can be classified by the prioritization strategy into

109 enrichment- (n=5), regression- (n=2), graph- (n=1) and ensemble-based (n=1; Fig. S2, Table
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S2) [16-24]. [16—24]In addition, some tools make specific biological assumptions; for
example, CRCmapper is aiming to map core regulatory circuits (CRCs), which in turn are
based on the existence of super-enhancers [8,20].

We applied all nine tools (where possible with multiple PWM libraries and backgrounds) to
perform TF prioritization using the 84 H3K27ac ChIP-seq data sets as input. This resulted in
13 different TF prioritization approaches.

To compare the performance of the different approaches, we converted the metric of each
approach (e.g., p-value, AUC, or z-score) into scaled ranks (Fig. 1). For tools outputting
multiple ranking metrics, we chose the best performing metric for each of the tools (see
Methods, Fig. S5A, B).

We examined the two most common parameters, the PWM motif library and the set of
background sequences used by a tool. These parameters were only explored where
accessible via command line arguments. For the PWM motif library, we compared the
default motif libraries of a given tool with a recently published consensus library containing
5,594 PWMs covering 1,210 TFs (referred to as “+Lambert”) [2]. For the tools that enabled
to change the background sets, we reported the tools background default and a background
based on genomic regions where H3K27ac was enriched in the control conditions compared
to the perturbed condition (referred to as “+bg”, for background). However, we made a
comparative analysis of different backgrounds and found that the influence of the
background set is neglectable compared to the TF tool, the ranking metrics of the different
tools and the TF library (Fig. S5).

Throughout the manuscript, we refer to the perturbed TF in an experiment as the
experiment label. We considered two criteria to assess whether the perturbed TF could be
recovered from the data. For the stringent criterion, we required the TF name associated
with a particular PWM/peak set to be the same as the TF perturbed in the experiment. For
the relaxed criterion, we required the ranked PWMs/peak sets to be associated with a TF
homologous to the perturbed TF (e.g., GATAL1 PWM for GATA2 as label). The main
rationale for the relaxed criterion was to allow for a fair comparison of approaches using
different PWM/ChIP-seq peak collections and to address PWM redundancy between
homologous TFs. The recovered TF labels in combination with the scaled rankings were
used to compute eight different metrics (Fig. 1, Methods, and next Results section).

In summary, we assembled a diverse set of TF prioritization tools and combined with a
representative set of TF perturbation H3K27ac ChlP-seq experiments into a benchmarking

framework to examine their performance on real world experimental data.

Benchmark comparison of TF prioritization tools based on recovering perturbed TFs.
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To exclude the possibility of systematic bias introduced by the data sets, we investigated the
number of tools that returned the perturbed TF in the results. For clarity, we named a label
recovered if the perturbed TF is shown at all in the output of a tool. We observed that for all
84 data sets, at least two tools returned the expected TF label (Fig. S3A, B). For 72 of them,
the TF label ranked among the top 30 for at least one tool using the relaxed label recovery
criterion (Fig. S3B).

Next, we benchmarked the TF prioritization tools using eight different metrics (see Methods).
The first metric we computed for each tool was the number of data sets processed without
errors and the number of TF labels recovered using both the stringent and relaxed criteria.
Only four of the TF prioritization approaches did not complete for all 84 experiments using
default parameters (Fig. 2A, B, white bars). TFEA, GimmeMotifs, HOMER + Lambert + bg
and HOMER + bg failed to run for 26% (22), 21% (18), 7% (6) and 1% (1) of the
experiments, respectively. Frontrunners using this metric were RcisTarget with and without
background, which recovered 82 labels, and HOMER + Lambert, MEIRLOP and monaLisa
with 81 labels recovered (Fig. 2B). The tools with the least recovered labels were
CRCmapper (n=54) and LOLA (n=49). The stringent label recovery strategy gave a similar
ranking on performance with fewer labels recovered overall (Fig. 2A, median number of TFs
recovered, stringent n=73 and relaxed n=75). Only RcisTarget + bg (n=82) performed the
same as in the relaxed strategy. The second-best approaches were HOMER + Lambert
(n=80) and monaLisa (n=80), both recovering one fewer TF label than using the relaxed
strategy. The tools with the lowest recovery were again CRCmapper and LOLA which only
reported 37 and 42 labels in their results, respectively. Overall, none of the tools recovered
all 84 TF labels and each label was recovered by at least two tools, suggesting that the label
recovery failures were not driven by specific datasets but rather were tool-specific (Fig. 2A,
B and Fig. S3A, B).

The second metric we considered was the number of labels recovered as one of the top 5,
10, or 30 TFs reported in the results (Fig. 2A, B). The rationale behind this metric was based
on a plausible real-world scenario that top TFs would often be selected for follow-up
experiments. This revealed that RcisTarget, RcisTarget + bg, monaLisa and MEIRLOP were
performing best independently of the rank thresholds and label recovery criteria (Fig. 2A, B).
In contrast, the bottom ranking tools included GimmeMotifs (stringent), BART (relaxed),
CRCmapper and TFEA (both). Nevertheless, even the best performing tools predicted TF
labels among the top 30 ranks for only about half of all data sets (e.g., RcisTarget + bg n=43
for relaxed, n=38 for stringent and monaLisa n=43 for relaxed and n=30 for stringent).

We evaluated the tools using the area under the curve (AUC) for the precision-recall curve

(PR), receiver operator characteristic curve (ROC), and the cumulative distribution of label
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184  ranks. Using these metrics, the best performing tools were again RcisTarget +/- bg,

185 monaLisa and MEIRLOP, independently of the label recovery criteria (Fig. 2C, D and Fig.
186 S4B, C). In the stringent case, the highest AUC of the PR or ROC curves was achieved by
187 RcisTarget + bg (0.90/0.87) and for relaxed by MEIRLOP (0.94/0.92). In contrast, the lowest
188 PR/ROC AUC had BART (0.64/0.51) for stringent label recovery and LOLA (0.70/0.52) for
189 relaxed label recovery. Moreover, the relaxed label recovery criteria led to a slight increase
190 in both metrics for most tools (Fig. S4D, E). CRCmapper and LOLA were the exceptions,
191 showing a decrease in both PR/ROC AUCs.

192 Finally, the AUC of the cumulative distribution of label ranks confirmed the frontrunner tools
193  mentioned above (Fig. 2C, D and Fig. S4A). CRCmapper was at the bottom of the ranking
194  (0.05/0.14) and BART second last in the stringent evaluation (0.13), while HOMER + bg was
195 second last in the relaxed evaluation (0.27).

196 In conclusion, the tested tools were able to recover known TF labels with variable

197 accuracies, and monalLisa, RcisTarget and MEIRLOP performed best across several of our
198  benchmark metrics.

199

200 Effects of parameter tweaking on the performance of TF prioritization tools

201

202  We next evaluated how modifying the default parameters influenced the performance of the
203  TF prioritization tools. To maintain the number of computational jobs tractable, we selected
204  two or three parameters of each tool based on the emphasis that these parameters were
205 given in the documentation of the tools (see Supplementary Material). We varied the

206  parameters to different degrees, resulting in more than 18,500 computational jobs. For most
207  tools, changing the default parameters had little effect on their overall performance (Fig. S7).
208 For MEIRLOP, however, we observed a drop in performance when varying the default

209 parameters. Importantly, the ranking of TF tools when ran with the default parameters was
210 almost identical to the ranking of TF tools when selecting the runs with the best performing
211  parameters values. Based on these data, we conclude that compared to the choice of the TF
212  tool, varying parameters of an individual tool has a minimal effect in their performance.

213

214  Performance of TF prioritization tools using ATAC-seq data

215

216  In addition to H3K27ac maps, 11 of the 84 curated datasets in this study included ATAC-seq
217  maps for 14 TF perturbations and their corresponding controls (Table S1). Using these data,
218  we evaluated how the TF prioritization tool rankings differed when using ATAC-seq instead

219  of H3K27ac maps as inputs. When using ATAC-seq data, the best 3 performing tools to
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220 recover the labels among the top 30 hits were monaLisa, MEIRLOP and HOMER,

221  recovering 9, 8, and 8 TF labels, respectively (Fig. S6B).

222

223 For most tools, we found that TF labels that were recovered among the top hits using

224  H3K27ac data also ranked among the top hits using the matching ATAC-seq data. For

225 example, out of the 14 TF experiments with both H3K27ac and ATAC-seq, 7 TF labels were
226  recovered by monaLisa among the top 30 hits using H3K27ac data (Fig. S6B, D). Of these,
227 6 TF labels were also recovered among the top 30 hits using ATAC-seq data. This statistic
228  varied slightly among the different tools (7 out of 7 for BART, 5 out of 5 for HOMER, 5 out of
229 5 for GimmeMotifs, and 5 out of 6 for LOLA). For BART, the rankings based on ATAC-seq
230 data were identical to the rankings of H3K27ac data. This similarity in the rankings is

231  explained by how BART maps input data into their resource of cis-regulatory elements.

232

233 Overall, the best performing tools at identifying TF master regulators from H3K27ac data
234 were also the best tools for ATAC-seq data.

235

236 Influence of experimental and data set features on tool performance.

237

238 Having established the performance of each tool, we next asked what features could best
239  explain the observed tool performance. To address this question, 16 features were chosen
240 based on the experimental design (e.g., H3K27ac ChIP antibody, perturbation type, etc.),
241  the quality of ChIP-seq (e.g., sequencing depth, fraction of reads in peaks (FRIP), etc.), the
242  effect of the TF perturbation on gene expression as measured by RNA-seq (n=53; e.g.,

243  expression of the perturbed TF, etc.; see Methods) and the information content (IC) of the
244  PWM. We trained a random forest classifier using these features to predict the combined
245  stringent and relaxed TF label ranks. Resulting models were able to fit these ranks with a
246  median Pearson correlation coefficient (PCC) between 0.78 (LOLA) and 0.38 (CRCmapper,
247  Fig. 3A).

248  Next, we computed the scaled importance for each feature to gain insights into their

249 influence on resulting rankings (see Methods). This revealed that the most important

250 features were the TF family, the information content of the motif, the number of uniquely
251 mapped reads, FRIP and the type of TF perturbation (Fig. 3A). In contrast, the least

252  important features were the association with a super-enhancer (is SE), RNA-seq log2(FC) of
253  the perturbed TF, biological sample type (tissue vs. cell line) and PCR bottle neck coefficient
254  (PBC).

255  However, some tools showed deviations from these general patterns. For example, the most
256  important feature for MEIRLOP was the TF perturbation type (Fig. 3A). Other outliers in the
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257  feature importance ranking included CRCmapper and TFEA with the number of replicates
258 and BART with the species (reference genome).

259  Next, we focused on the two most important experimental features and examined whether
260 tools perform differently for each feature modality by looking again at the TF label recovery
261 among the top 30 ranks. Firstly, the overall performance differed across TF families with
262  bZIP and GATA factors being most frequently recovered (e.g., BART bZIP=6/6, RcisTarget
263  bZIP n=5/6 and RcisTarget + bg GATA n=6/7, Fig. 3B). In contrast, TFs belonging to the
264  C2H2 ZF and bHLH families were recovered least frequently (e.g., MEIRLOP C2H2 ZF

265 n=5/14 and CRCmapper bHLH n=2/6). RcisTarget showed the best performance for four
266  out of seven categories across TF families (Fig. 3B). Secondly, the other most important
267  experiment feature was the perturbation type. Overall, we observed a maximum top 30

268  recovery of 66.7% (Agonist TFs: BART) and a minimum of 0% (Antagonist TFs:

269  CRCmapper, GimmeMotifs, TFEA; Fig. 3C). When considering the median performance, the
270 lowest performance was associated with TF KO experiments (21%, 7/33). RcisTarget

271  performed best in 3 out of the 5 perturbation type categories. Only BART outperformed

272  RcisTarget for agonist perturbations and HOMER for KO (Agonist: 66.7% BART compared
273  with 55.6% RcisTarget; KO: 36.4% HOMER compared with 30.3% RcisTarget + bg).

274

275 In summary, TF rankings of the benchmarked tools overall were mostly influenced by TF
276  family and perturbation type, with a tendency of more specialized tools being also influenced
277 by their specific assumptions (e.g., CRCmapper, TFEA).

278

279 Discussion

280

281 In this benchmark study, we examined the performance of nine TF prioritization tools in

282  combination with the two most common parameters (PWM maotif library and the set of

283  background sequences used), resulting in 13 approaches to rank TFs [16—24]. The ground
284  truth for this was defined using a collection of published H3K27ac ChlIP-seq experiments
285  which included a TF perturbation in their design (OE, KO, etc.). The major task for all

286  approaches was to recover these known TF labels.

287

288  Figure 4 summarises our results and illustrates the performance of each tool encoded into
289  three groups (poor, intermediate and good) across all considered metrics (see Methods). In
290 our benchmark, we use the default parameters recommended by the tool authors, which
291  were likely selected based on a parameter optimization process during their development.
292  As such, our study also evaluates how generalizable these parameters are across real-world

293  datasets. Thus, a method that performs well across datasets without fine-tuning each
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294  parameter is ranked better than a tool that would need dataset-specific fine-tuning of

295 parameters. Nevertheless, our analyses indicate that the effects of tweaking parameters of a
296  tool on its performance is minimal compared to the choice of TF tool.

297

298  Overall, most tools perform best for the metrics ‘number of successfully processed data sets’
299 and ‘labels recovered’, suggesting that all tools can process the input data. However, tools
300 showed marked performance differences when considering the other metrics. Based on our
301 performance metrics, we found that RcisTarget and monalLisa perform best, regardless of
302 the TF label recovery criteria used. GimmeMotifs and TFEA failed to complete for around
303 20% of the test datasets, but their label recovery was relatively good when these tools ran
304 thought successfully. Our analysis thus indicates that these tools could substantially boost
305 their performance by increasing the robustness of their code implementation.

306

307 We found that all TF prioritization approaches perform better using the relaxed label

308 recovery criterion (see Results). Moreover, differences between the stringent and relaxed
309 label recovery criteria were only observable for tools in the bottom half of the final rankings.
310 Top ranking approaches like RcisTarget, MEIRLOP and monalLisa already performed well
311 using the more stringent criteria. In contrast, approaches in the bottom half profited from the
312  relaxed criterion due to the circumstance that they ranked a homologous TF even better
313  than the exact TF label.

314

315 Furthermore, we investigated the influence of pre-defined genomic background sequences
316  (‘+bg’) and/or the use of a more comprehensive consensus motif library (Lambert et al.) if
317 tools were enabling the user to specify these parameters [2]. This revealed that for example
318 RcisTarget profited from specifying a custom background, but HOMER worked better using
319 its default background computation. In contrast, HOMER performed better using the Lambert
320 et al. motif library instead of the default one. Although the choice of background seemed to
321  partially influence the performance of the tools, this was neglectable compared to the choice
322 of TF ranking tool or other parameters such as the motif library.

323

324  The bottom three tools were TFEA, CRCmapper and BART, performing either ‘poor’ or

325 ‘intermediate’ across most metrics. The poor performance of TF ChIP-seq library-based

326  approaches such as BART might be attributed to a lower complexity of their underlying

327 databases compared with PWM-based tools. Since the enrichment approaches of BART
328 and RcisTarget are quite similar, one could speculate that the incorporation of large-scale
329 TF datasets such as REMAP 2022 or UNIBIND could greatly enhance the performance of

330 such tools [25,26]. In contrast, the poor performance of CRCmapper could be explained by
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the specific assumptions made by the tool: CRC is optimized for recovering TFs in SEs, and
thus expects that TFs of interest are associated with a SE, which might not broadly apply
across multiple experiments and datasets [20]. Overall, we observed for 25 out of 84
H3K27ac data sets an association of the perturbed TF to a SE. Therefore, CRCmapper’s
very specific assumptions led to an overall poorer performance in our benchmark, which

focused on a more general task.

We found that the families of the TF substantially influence the recovery of the TFs from the
tools. This observation is in line with previous reports of varying performance of PWMs to
predict TF binding depending on their TF family affiliation (e.g., C2H2 ZFs and bHLH TFs)
[27]. The tools benchmarked in this manuscript depend on PWMs, and thus their
performance could be compromised when PWMs are not sufficient to accurately predict TF
binding to DNA. As an alternative to PWM-based methods, deep learning approaches have
recently been developed to predict TF binding. For example, DeepBind and BindSpace are
convolutional neural network models developed to predict transcription factor binding
[28,29]. Another recent development is the Enformer model, that was able to predict dozens
of chromatin and gene expression tracks uniquely from DNA sequence [30]. A major
advantage of these models is their capacity to learn not only motifs, but also sequence
features such as DNA sequence composition and complex positional configurations, such as
periodicity of TF motifs or distance requirement between TF motifs. Our benchmark
suggests that tools to prioritize TFs would benefit from incorporating deep leaning-centric
predictions of TF binding (for an in-depth discussion of TF binding prediction models see
[31)).

Although we compiled a large H3K27ac dataset for our benchmark, this study has some
limitations. First, we benchmarked these tools on H3K27ac ChlP-seq data, assuming that
the TF perturbation will lead to H3K27ac changes. Future work is needed to evaluate their
performance using other high throughput sequencing technologies, such as H3K4me3
(Promoter), H3K4mel (Enhancer) ChIP-seq, RNA-seq and a more comprehensive ATAC-
seq (open chromatin) dataset collection [1]. Second, this benchmark is focused on the
performance of approaches to recover a perturbed TF, mimicking a particular real-world
scenario common, for example, in drug discovery. As such, we do not assess the
performance of the tools in other contexts (e.g., simulation approaches, other definitions of

regulatory elements such as open chromatin, or other histone marks).

Conclusion
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368 In conclusion, our comprehensive benchmark provides recommendations for the scientific
369 community on which TF prioritization tool perform best (i.e., RcisTarget, MEIRLOP and
370 monalLisa) for perturbed TF recovery. We believe this will help improve hypothesis
371 generation from H3K27ac ChIP-seq data, one of the most widely profiled histone marks. In
372  addition, our study reveals shortcomings of current tools, which we are hoping will influence
373  further improvement of existing tools as well as the development of novel tools.

374

375

376

377  Figure legends

378

379 Fig. 1 Schematic of the benchmarking framework to access the performance of TF
380 prioritization tools.

381 Data curation step: manual data set curation of H3K27ac experiments with underlying TF
382  perturbation (e.g., TF knockout or over-expression), yielding 84 ChlP-seq data sets, a

383  subset of 53 with matched RNA-seq and 13 with matched ATAC-seq. Tool implementation
384  step: implementation of nine TF prioritization tools and inference of TFs on the 84 data sets.
385 Ranking step: Resulting outputs are converted to ranked TF lists based on the tool statistic
386 (e.g., p-value, AUC, or Z-score). Rankings are scaled to values between 0 and 1 (see

387 Methods) to ensure cross tool comparability. Label recovery step: The scaled rankings are
388  searched for the first occurrence of the experiment label (= perturbed TF). This analysis was
389 performed using either a stringent label definition (exact TF match) or a more relaxed

390 definition (any TF binding a similar motif). Benchmark step: These label recovery strategies
391 in combination with the resulting rankings were used to compute eight benchmark metrics
392  for each of the tools.

393

394  Fig. 2 Summary of performance metrics used to evaluate TF prioritization tools.

395  (A) Number of recovered perturbed TFs among the top 5 (yellow), 10 (green), 30 (red) and
396 all ranks (blue) using the stringent label definition. Grey indicates number of successfully
397 processed data sets, but none of the perturbed TF was recovered. White illustrates number
398 of failed data sets. TF prioritization strategies were sorted according to the number of

399 recovered TFs among the top 30. (B) Same as (A) using the relaxed label definition for the
400 recovery of perturbed TFs. (C) Summary of the area under curve (AUC) for precision-recall
401  (PR) curve, receiver operating characteristics (ROC) curve and cumulative rank distribution.
402 (D) Same as (C) but using the relaxed label definition.

403

404  Fig. 3 Influence of experiment features on tool performance.
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405 (A) Scaled feature importance for 15 features used to regress the TF rankings using random
406  forest models (see Methods). Colour scale encodes the different feature types including

407  experiment (red), ChiP-seq QC (blue) and RNA-seq (green) features. Outlier tools were
408  annotated. Abbreviations: FRIP = Fractions of reads in peaks, Motif IC = Motif information
409 content, NSC = Normalized Strand Cross-correlation coefficient, RSC = Relative Strand

410  Cross-correlation coefficient, PBC = PCR bottleneck coefficient, Is SE = Is Super-Enhancer.
411  (B) Tool performance as proportion recovered TF labels in top 30 stratified by TF families.
412  Selected tools were highlighted. TF families with less than 5 data sets were summarised as
413  “Other”. (C) Same as in (B) but data sets were stratified by perturbation type.

414

415  Fig. 4 TF prioritization tool benchmark summary.

416  (A) Dot plot heatmap summarising the benchmark results for the stringent label recovery
417  strategy. Tool performance for each single metric was encoded according to the respective
418 rank into one of three categories including poor (blue), intermediate (yellow) and good (red).
419  Tools were ordered according to their overall performance across all eight metrics.

420  (B) Same as (A) but for the relaxed label recovery strategy.

421

422  Fig. S1 Overview of the manually curated H3K27ac data sets with underlying TF

423  perturbation.

424  (A) Barplot illustrating the number of ChlP-seq data sets across different TF perturbation
425  categories. (B) Number of data sets stratified by the H3K27ac antibody used for the ChlIP.
426  (C) Number of H3K27ac data sets split by the biological sample type. (D) Number of

427  H3K27ac data sets stratified by the TF family of the perturbed TF. (E) Circos plot displaying
428  the cross dependencies of the different categorial variables across all 84 H3K27ac ChIP-seq
429  data sets. Links were scaled by the frequency of variable co-occurrence.

430

431  Fig. S2 Overview and classification of the selected TF prioritization tools examined in
432 this benchmark study. For detailed description of tools see Supplementary Methods.

433

434  Fig. S3 Overview of TF label recovery for each data set and tool.

435  (A) Heatmap illustrating the TF label recovery using the stringent label definition, across data
436  sets and per tool, among the top 5 (yellow), 10 (green), 30 (cyan), in the entire ranking (dark
437  blue) or not being included/failed run (grey). Row barplot shows the number of recovered TF
438  labels among the top 30 for each tool. Column barplot shows the number of tools recovering
439  a particular TF label in their top 30 ranks. (B) Same as (A) but for the relaxed TF label

440  definition.

441
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442  Fig. S4 Overview and comparison of AUC based performance metrics.

443  (A) Cumulative distribution of scaled ranks for each TF prioritization tool (stringent label
444  recovery). (B) Average ROC curves, per TF prioritization tool, over 5,000 bootstraps using
445  the stringent label recovery. (C) Average PR curve, per TF prioritization tool, over 5,000
446  bootstraps using the stringent label recovery. (D) Scatterplot comparison of ROC AUCs
447  between stringent and relaxed label definition. (E) Scatterplot comparison of PR AUCs
448  between stringent and relaxed label definition.

449

450 Fig. S5 Comparison of ranking metrics and backgrounds for TF prioritization.

451  (A) Number of recovered perturbed TFs among the top 5 (yellow), 10 (green) and 30 (red)
452  using the stringent label definition for each ranking metric outputted by a tool (panels). (B)
453  Same as (A) using the relaxed label definition for the recovery of perturbed TFs. (C)

454  Heatmap of the Pearson correlation coefficients between the rankings of TF labels across
455  the 84 ChiIP-seq data from 8 different HOMER setups. Top annotation illustrates used

456  parameters: 1) Motif library: HOMER default (grey) or Lamber et al (red) and 2) different
457  background sets: default (grey), differential (orange), neutral (green) and random (blue; see
458  Methods “Background comparison”).

459

460  Fig. S6 TF prioritization tool evaluation based on matched ATAC-seq samples.

461  (A) Number of recovered perturbed TFs among the top 5 (yellow), 10 (green), 30 (red) and
462  all ranks (blue) using the stringent label definition. TF prioritization strategies were sorted
463  according to Barplot in Fig. 2. (B) Same as (A) using the relaxed label definition for the
464  recovery of perturbed TFs.

465

466  Fig. S7 Comparison of different parameters for TF prioritization.

467  (A) Number of recovered perturbed TFs among the top 5 (yellow), 10 (green) and 30 (red)
468  using the default parameter setting and stringent label definition. (B) same as (A) using the
469 relaxed label definition for the recovery of perturbed TFs. (C) Number of recovered

470  perturbed TFs among the top 30 for different parameter settings and stringent label

471  definition. Plot sorted according to (A). (D) same as (C) using the relaxed label definition.
472  Plot sorted according to (B). (E) same as (A) using the parameter set maximising the

473  number of TF labels recovered among the top 30. (F) Same as in (E) using the relaxed label
474 definition.

475

476

477

478 Table S1 Table summarising 84 H3K27ac ChlP-seq experiments with TF perturbations.
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Table S2 List of the TF prioritization tools benchmarked in this study.

Methods

ChlIP-seq pre-processing
Publicly available H3K27ac ChIP-seq data sets with TF perturbations were manually curated
and associated FASTQ files were downloaded using SRAToolkit (V2.11.2;

https://github.com/ncbi/sra-tools). Pre-processing of each experiment was performed using

the ENCODE ChlP-seq pipeline (V1.9.0) [32]. Briefly, reads were aligned to the respective
reference genome (hg38 or mm10) using Bowtie2 (V2.3.4.3) and subsequently filtered for
unmapped reads, not primary alignments as well as duplicates using SAMtools
(V1.12)/Picard (V2.9.2) [33-35]. Peak calling was performed using MACS2 (V2.2.5) with
following parameters: --cap-num-peak 500000 --pval-thresh 0.01 [36]. Consensus peak sets
per condition were computed by performing the overlap reproducibility analysis as
implemented in the ENCODE pipeline. In addition, peaks were filtered for overlap with

blacklist regions.

ATAC-seq pre-processing

We scanned the publicly available ChiP-seq data (see above) for matched ATAC-seq data
sets with TF perturbations. The associated FASTQ files were downloaded using SRAToolkit
(V2.11.2; https://github.com/ncbi/sra-tools). Pre-processing of each experiment was
performed using the ENCODE ATAC-seq pipeline (V2.0.3) [32]. Briefly, reads were aligned
to the respective reference genome (hg38 or mm10) using Bowtie2 (V2.3.4.3) and
subsequently filtered for unmapped reads, not primary alignments as well as duplicates
using SAMtools (V1.12)/Picard (V2.9.2) [33-35]. Peak calling was performed using MACS2
(V2.2.5) with following parameters: --cap-num-peak 300000 --pval-thresh 0.01 [36].
Consensus peak sets per condition were computed by performing the overlap reproducibility
analysis as implemented in the ENCODE pipeline. In addition, peaks were filtered for

overlap with blacklist regions.

Differential peak analysis
For the differential peak calling, peaks from both conditions (control and TF perturbation)
were merged. H3K27ac as well as open chromatin (ATAC-seq) enrichment was quantified

for these merged peaks, by counting the reads using the featureCount function from the
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Rsubread package (V2.2.6) with parameters countMultiMappingReads = False and
allowMultiOverlap = True [37].

For experiments with more than one replicate per condition, differential peak analysis was
performed using DEseqg2 (V1.30.1) with default settings [38]. All peaks were then sorted by -
log10(p-value) * log2(fold change) (log2(FC)) and we took the top 1,000 peaks as
foreground and the bottom 1,000 peaks as background set.

For experiments with only one replicate per condition, we normalized the counts using
DESeq2 estimateSizeFactors function and calculated the log2(FC). Peaks were sorted
according to their log2(FC). The top 1,000 peaks were defined as foreground and the bottom
1,000 as background sets.

Resulting foreground were used as input for TF prioritization tools expecting peaks as input
(e.g., HOMER, RcisTarget, etc.). In case of the “+ bg” strategy, we provided the background

peak sets as custom background.

RNA-seq pre-processing

RNA-seq data associated with the H3K27ac ChlP-seq was downloaded using SRAToolkit.
Expression levels for the respective gene annotation (Ensembl GRCm38.98 or GRCh38.98)
was performed using the PISCES pipeline (V0.1.3.1) with default parameters [39,40].

Differential gene expression analysis

The function getBM from the package biomaRt (V2.46.3) was used to assign the
external_gene_name to the ensembl_gene_id from Ensembl [40]. We then used DEseq?2 to
normalize the raw gene counts and fit them to a negative binomial distribution. Then a
generalized linear model and Wald test was used to compute differential expression

between the TF perturbation condition compared with the control [38].

TF prioritization tool settings and parametrizations

A comprehensive tool overview including versions can be found in Supplementary Table 2.
1) BART

For this benchmark, BART was run with the positional parameter ‘region’ using the
differentially expressed genomic region sets described in differential peak analysis as input

[17]. The output of BART was ranked according to the p-value column.

2) CRCmapper
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For this benchmark, we computed potential SEs using ROSE?2 separately for condition and
control. We then ran CRCmapper on both sets of .bam files, identified peaks (see ChlP-seq
pre-processing), activity tables, and the default parameters of CRCmapper [20]. To infer
differentially expressed TF's, we computed the normalized output degrees individually from
condition and control CRCmapper outputs as a summary network statistic. Finally, the
differential network statistics were calculated as the difference between condition and control

betweenness and were subsequently used for ranking.

3) GimmeMotifs

GimmeMotifs was run using its gimme maelstrom command and its second input option
which contains the merged peaks from control and condition experiment identified in ChlP-
seq pre-processing step and their log-transformed read counts [24]. The reference library
used is the Lambert et al. motif library. We also allowed the tool to return redundant motifs,
to report the scores of all motifs and use 12 threads by using the parameters: --no-filter, —
filter_cutoff 0 and —N 12. All other parameters were left at their default values. The output of

GimmeMotifs used for ranking was z-scores.

4) HOMER

We ran HOMER four times for our benchmark: Once using HOMER’s default motif library
and using no background sequences but instead letting HOMER select them from the input,
once using HOMER's default motif library and using background sequences as computed in
differential peak analysis (HOMER + bg), once using the Lambert et al. motif library as a
reference library and no background sequences (HOMER + Lambert) and finally using the
Lambert et al. motif library as a reference library and using the pre-computed background
sequences (HOMER + Lambert + bg) [2,16]. As input sequences we always used the
differentially expressed peaks as computed in differential peak analysis. HOMER’s script
findMotifsGenome.pl was ran with the above descript parameters and inputs, as well as the
parameter —nomotif to indicate that we are not interested in de novo motif enrichment. All
other parameters were left to their default values. HOMER's output used for ranking were

the p-values.

5) LOLA

For our benchmark, we ran LOLA with the query set being the differentially expressed peaks
as discussed in differential peak analysis [18]. The universe or background peaks used are
the combined peaks from the condition and control experiment computed as in ChlP-seq

pre-processing. LOLA was then run with its default parameters and using its default
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reference library of public datasets. For ranking we used LOLA’s mean rank based on p-

value, log odds ratio and number of overlapping regions.

6) MEIRLOP

In our benchmark, we used fasta files containing the merged peaks from control and
condition experiment identified in ChlP-seq pre-processing step and their associated
log2(FC) (see differential peak analysis) as scores for the input of MEIRLOP [21]. The
Lambert et al. motif library was used as the reference library and the —length parameter was
set to incorporate sequence length as a covariate since our input sequences were not of the
same length as is preferred by MEIRLOP. All other parameters were left to their default

values. We ranked the output of MEIRLOP according to the output's adjusted p-value.

7) monalisa

To run monalLisa we used its randomized lasso stability selection on our precomputed
differentially expressed regions (see differential peak analysis) with the response vector
corresponding to their log2(FC) [22]. As predictors the Lambert et al. motif library was used.
All other parameters were kept at the same values as indicated in their vignette. MonalLisa’s

output was ranked according to the normalized area under the selection curve.

8) RcisTarget

We ran RcisTarget twice: Once using the differentially expressed peak regions (see
differential peak analysis) with (RcisTarget + bg) and once without background regions
(RcisTarget) [19]. The background regions are the merged peaks from control and condition
experiment identified in the ChIP-seq pre-processing step. We set the NES threshold
parameter to 0, such that all motifs are returned even if the predicted NES score is very low.
All other parameters were set as suggested by the vignette on ‘RcisTarget - on regions’. The

output of RcisTarget was ranked according to the NES score.

9) TFEA

To run TFEA, we used the BAM and BED files of the control and condition experiments as
computed in ChIP-seq pre-processing and the Lambert et al. [2,23]. Motif library. TFEA was
then ran in parallel with the parameter —cpus 6 and all other parameters set to the default

values. TFEA's output was ranked according to the Bonferroni and GC corrected p-values.

Performance benchmark
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Depending on the approach, the outputs contain either a list of TF or motifs, with associated
scores attached. To account for different types of scores reported by the approaches (e.g.,
p-value, z-score, AUC, ...), we ranked the entries in the outputs according to their score, with
lower ranks associated with more important entries. We then compared the ranks of labels

scaled between [0, 1].

Two label identification strategies were employed to account for the advantage of
approaches using reference libraries which allow motifs to be associated with multiple TFs
(Figure 2A). The first strategy termed ‘stringent’, forces a one-to-one mapping between
motifs and TFs in all approaches. The second strategy called ‘relaxed’ does the exact
opposite by creating a mapping between each TF and TFs it is sharing a motif with within
the Lambert et al. motif library. The rank of the label is then computed by using the best rank
between the mapped TF of the label.

We adapted part of our benchmark metrics from the ChEA3 paper published by Keenan et
al. in 2019 [41]. Accordingly, we calculated a Receiver Operator Characteristic (ROC) and
Precision Recall (PR) curve by bootstrapping the down sampled negative class from the
rankings as was suggested by Keenan et al. By doing this we account for the fact that our
positive class consisting of our labels is significantly smaller than our negative class
comprised of all other TFs. For both, the ROC and PR curve, we also computed the Area
Under the Curves (AUC).

The second metric we implemented from the Keenan et al. looks at the deviation of the
cumulative distribution of perturbed TF ranks D(r) from a uniform distribution using the
Anderson-Darling test. We would expect a significant p-value if perturbed TFs would display
preferentially low or high ranks. Additionally, we determined the AUC of D(r)-r since many

labels with low ranks give rise to a high AUC in this case.

To put all results together we created a summary of all metric outcomes. We stratified all
outcomes into three groups for better readability. For the number of labels recovered and
successfully processed datasets the thresholds are determined by dividing all used datasets
(84) into three equal groups. The same idea was used for the AUC of ROC and PR curve,
where we grouped the results into three groups between 0.5 and 1 and for the cumulative
rank distribution AUC between 0 and 0.5. For the number of labels in Top 5-30, we used the

maximal respective value to create the three groups.

Ranking metric comparison
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We compared the choice of ranking metric for tools outputting more than two non-correlated
metrics which could be used for ranking the TF motifs. Following tools fulfilled these criteria:
BART, CRCmapper, LOLA, MEIRLOP and TFEA (Table S2). The H3K27ac analysis using
these tools was performed as described above. Resulting outputs were used to create a TF
ranking for each metric and count the number of recovered TF labels in the top 30 (Fig. S5A,
B). The metric maximizing the number of recovered TFs among the top 30 was used for the

benchmark comparison of tools (see Table S2 for list of the best metric per tool).

Background comparison
To compare the influence of background choice on the TF ranking, we ran HOMER with four
different background sets with either the default HOMER motif library or Lambert et al. The
four different background sets were constructed as following:
e Default — random selection of GC% content matched regions from the genome.
o Diff — Top 1,000 most differential peaks for the control condition (see section
differential peak analysis)
e Neutral — 1,000 non-differential peaks from the comparison TF perturbation vs
control.
e Rmd -random draw of 1,000 GC% content matched non-overlapping regions from
the genome.

HOMER and downstream analysis were performed as described above.

Parameter tweaking

We conducted a parameter tweaking analysis to ensure the robustness of the final tool ranking.
We selected up to three parameters per tool from a set of available parameters based on their

potential impact on the results (see Supplementary Text for the full list). We explored up to five
different values per parameter in combination with each other.

We performed TF prioritization for each tool with the added parameters, as described in each

tool section. The downstream benchmark analysis was conducted as described above.

Random forest modelling and feature importance

To study the influence of experimental features and data characteristics on TF rankings, we
looked at three different types of features: ChlP-seq quality measures (Normalized Strand
Cross-correlation coefficient (NSC), uniquely mapped reads, Relative Strand Cross-
correlation coefficient (RSC), PBC, Fraction of reads in peaks(FRIP)), experimental features
(perturbation type, number of replicates, TF family, antibody type, reference genome, is

super-enhancer, biological sample type, number of differential peaks) and RNA- seq
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features (TF log2(FC), number of differential genes). All groups with less than five
experiments were grouped together into ‘Others’.

For RNA-seq features, TF log2(FC) were categorized into four groups (log2(FC) <=2, 2 <
log2(FC) <= 6, log2(FC) > 6 and missing RNA-seq) and the number of differentially
expressed genes into five groups (# differential genes <= 100, 100 < number of differential
genes <= 500, 500 < number of differential genes <= 1000, number of differential genes >
1000 and missing RNA-seq).

In addition, we computed the information content (IC) for each TF as additional feature.
Briefly, the IC per motif was computed using ggseqlogo to compute the IC per bp and then
average over each position [42]. From that we derived an IC per TF by averaging the IC per
motif over multiple motifs as assigned by Lambert et al.

We added all missing experiments with rank=1 to have 84 experiment results for each tool.
We trained a random forest with 10-fold cross validation predicting the rank for the above-
described features using the cforest() function from the R package party (V1.3) [43]. The
conditional feature importance was calculated using the varimp() function for each fold. We
scaled resulting feature importance and computed the mean across the 10 folds.
Additionally, we calculated the Pearson’s correlation coefficient between predicted and true

rank in the test sets to assess the fit of the random forest for each tool.
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Availability of data and materials
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All intermediate results (peak files, tool outputs and processed outputs) were made available
here https://zenodo.org/records/10990183.

Code to reproduce our findings can be found here
https://github.com/Novartis/TF_Prioritization_Benchmark_GB2023.
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