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Abstract 9 

 10 

Spatiotemporal regulation of gene expression is controlled by transcription factor (TF) 11 

binding to regulatory elements, resulting in a plethora of cell types and cell states from the 12 

same genetic information.  Due to the importance of regulatory elements, various 13 

sequencing methods have been developed to localise them in genomes, for example using 14 

ChIP-seq profiling of the histone mark H3K27ac that marks active regulatory regions. 15 

Moreover, multiple tools have been developed to predict TF binding to these regulatory 16 

elements based on DNA sequence. As altered gene expression is a hallmark of disease 17 

phenotypes, identifying TFs driving such gene expression programs is critical for the 18 

identification of novel drug targets. 19 

In this study, we curated 84 chromatin profiling experiments (H3K27ac ChIP-seq) where TFs 20 

were perturbed through e.g., genetic knockout or overexpression. We ran nine published 21 

tools to prioritize TFs using these real-world data sets and evaluated the performance of the 22 

methods in identifying the perturbed TFs. This allowed the nomination of three frontrunner 23 

tools, namely RcisTarget, MEIRLOP and monaLisa. Our analyses revealed opportunities 24 

and commonalities of tools that will help to guide further improvements and developments in 25 

the field. 26 

   27 

Introduction 28 

 29 

Spatiotemporal gene expression levels are regulated by binding of transcription factors (TFs) 30 

to regulatory elements [1]. TF binding is regulated by various factors such as DNA 31 

accessibility, epigenetic factors (e.g., DNA methylation) and co-factor binding [2–4]. Further, 32 

TFs link cellular signalling pathways to gene expression programs which in turn regulate 33 

specific cellular actions (e.g., differentiation, apoptosis) [5]. Hence, gene regulation is 34 

fundamental for the plethora of cell types in complex organisms, and regulatory alterations 35 

are a common denominator for various diseases [6]. 36 
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Several high-throughput sequencing methods have been developed to interrogate the 37 

different layers of transcriptional regulation including gene expression (e.g., RNA-seq) and 38 

regulatory elements (e.g., Assay for Transposase-Accessible Chromatin using sequencing 39 

(ATAC-seq) or chromatin immunoprecipitation followed by sequencing (ChIP-seq)) [1]. 40 

Genome-wide mapping of the acetylation of lysin 27 in the H3 histone (H3K27ac) is 41 

commonly used to identify active regulatory elements, such as enhancers and promoters [7]. 42 

Moreover, wide-spread enrichments of H3K27ac along large consecutive genomic locations 43 

have been used to define super-enhancers (SEs), which are postulated to be important 44 

regulators of cell identity genes [8]. However, it remains controversial if SE are different from 45 

other regulatory elements such as enhancer clusters or holo-enhancers [9,10]. 46 

Many studies have used H3K27ac to investigate differences in regulatory element activity 47 

between experimental conditions (e.g., healthy vs disease phenotype or control vs 48 

compound treatment) [11–15]. A common downstream analysis based on differential 49 

regulatory elements is the identification of TFs which bind to these elements and therefore 50 

might play an important role in the observed phenotypes. Usually, the top-raking TFs in such 51 

analyses are used to formulate hypotheses that are further validated experimentally (e.g., by 52 

RNAi knockdown, knockout, compound modulation).   53 

To this end, computational tools have been developed to perform TF prioritization based on 54 

different assumptions and implementations [16–24]. Among these, we could broadly identify 55 

two types, depending on their underlying reference: 1) tools leveraging DNA sequence 56 

information using position weight matrices (PWMs) to predict TF binding (PWM based tools), 57 

and 2) sequence-independent tools using previously identified TF binding sites in the 58 

genome (ChIP-seq peak based tools). Independently of their reference, both types of tools 59 

are prioritizing TFs based on statistical methods such as Fisher’s exact test, rank based 60 

enrichment, and LASSO regression, among others [16–24]. 61 

Although these tools play an important role for hypothesis generation in the scientific 62 

community, to our knowledge they have not been benchmarked for their ability to prioritize 63 

TFs. 64 

In this study, we set out to identify the TF prioritization tools that yield the most accurate 65 

results, thus helping to formulate hypotheses for experimental validation with a higher 66 

probability of success. For this purpose, we are introducing a benchmarking framework 67 

based on the combination of 84 published H3K27ac ChIP-seq data sets with nine different 68 

TF prioritization tools. All selected H3K27ac ChIP-seq data sets included at least one TF 69 

perturbation (e.g., overexpression (OE), knockdown (KD)) providing us with a ground truth 70 

for each data set (TF labels). We ran each tool on all selected data sets, converted the tool 71 

outputs into TF priority rankings, and examined the tool performance using these TF labels 72 
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against eight performance metrics. Finally, we investigated the importance of experimental 73 

variables on tool performance using random forest classifiers to model the tool results.  74 

In summary, we present a benchmark study of TF prioritization tools based on real world 75 

data sets and give recommendations about tool selection highlighting potential 76 

improvements for new ones. 77 

 78 

 79 

Results 80 

 81 

A benchmarking framework to access the performance of TF prioritization tools. 82 

 83 

We designed a benchmarking framework for TF prioritization tools based on 84 publicly 84 

available H3K27ac ChIP-seq experiments from 53 different studies (Fig. 1 and Table S1).  85 

These data sets were selected based on the following criteria: 1) the raw data were available 86 

in the Gene Expression Omnibus (GEO), 2) the H3K27ac ChIP-seq assay was performed in 87 

human or mouse samples, and 3) the experimental design included at least one TF 88 

perturbation with corresponding control condition. 89 

Using these criteria, we identified 40 mouse and 44 human experiments from tissues (n=17), 90 

primary cells (n=12), or immortalized cell lines (n=55), in which a TF was perturbed either by 91 

a knockout (KO, n=33), knockdown (KD, n=15), overexpression (OE, n=21) or compound 92 

treatment (either agonist or antagonist, n=15; Fig. S1A). Together, these experiments 93 

covered diverse characteristics reflecting standard experimental settings (Fig. S1). For 94 

example, the underlying ChIP-seq experiments were performed using three common 95 

commercially available H3K27ac antibodies and were sequenced from one to up to five 96 

replicates (Fig. S1B, C and Table S1).   97 

Overall, our perturbed TF data sets cover 18 TF families out of the 66 defined by Lambert et 98 

al. (Fig. S1D) [2]. Notably, the most prominent TFs profiled were nuclear receptors (e.g., 99 

NR1H2, AR, PPARA), zinc finger TFs (e.g., KLF4, BCL6, EGR1) and GATA factors (TRPS1, 100 

GATA3, GATA4). The most common experimental design was the perturbation of nuclear 101 

receptors in mouse profiled with the Abcam ab4729 antibody (Fig. S1E).  102 

We performed a literature search to identify candidate tools for TF binding prediction using 103 

the following inclusion criteria: 1) H3K27ac ChIP-seq data could be used as input, 2) the 104 

underlying code was available and useable either as command line tool, R, or Python 105 

package, 3) the code was published using a free and open-source licence. This led us to 106 

nine tools which can be categorized by basic principle into PWM- (n=7) and ChIP-seq peak-107 

based (n=2). Moreover, the tools can be classified by the prioritization strategy into 108 

enrichment- (n=5), regression- (n=2), graph- (n=1) and ensemble-based (n=1; Fig. S2, Table 109 
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S2) [16–24]. [16–24]In addition, some tools make specific biological assumptions; for 110 

example, CRCmapper is aiming to map core regulatory circuits (CRCs), which in turn are 111 

based on the existence of super-enhancers [8,20]. 112 

We applied all nine tools (where possible with multiple PWM libraries and backgrounds) to 113 

perform TF prioritization using the 84 H3K27ac ChIP-seq data sets as input. This resulted in 114 

13 different TF prioritization approaches.  115 

To compare the performance of the different approaches, we converted the metric of each 116 

approach (e.g., p-value, AUC, or z-score) into scaled ranks (Fig. 1). For tools outputting 117 

multiple ranking metrics, we chose the best performing metric for each of the tools (see 118 

Methods, Fig. S5A, B).  119 

We examined the two most common parameters, the PWM motif library and the set of 120 

background sequences used by a tool. These parameters were only explored where 121 

accessible via command line arguments. For the PWM motif library, we compared the 122 

default motif libraries of a given tool with a recently published consensus library containing 123 

5,594 PWMs covering 1,210 TFs (referred to as “+Lambert”) [2]. For the tools that enabled 124 

to change the background sets, we reported the tools background default and a background 125 

based on genomic regions where H3K27ac was enriched in the control conditions compared 126 

to the perturbed condition (referred to as “+bg”, for background). However, we made a 127 

comparative analysis of different backgrounds and found that the influence of the 128 

background set is neglectable compared to the TF tool, the ranking metrics of the different 129 

tools and the TF library (Fig. S5). 130 

 Throughout the manuscript, we refer to the perturbed TF in an experiment as the 131 

experiment label. We considered two criteria to assess whether the perturbed TF could be 132 

recovered from the data. For the stringent criterion, we required the TF name associated 133 

with a particular PWM/peak set to be the same as the TF perturbed in the experiment. For 134 

the relaxed criterion, we required the ranked PWMs/peak sets to be associated with a TF 135 

homologous to the perturbed TF (e.g., GATA1 PWM for GATA2 as label). The main 136 

rationale for the relaxed criterion was to allow for a fair comparison of approaches using 137 

different PWM/ChIP-seq peak collections and to address PWM redundancy between 138 

homologous TFs. The recovered TF labels in combination with the scaled rankings were 139 

used to compute eight different metrics (Fig. 1, Methods, and next Results section).  140 

In summary, we assembled a diverse set of TF prioritization tools and combined with a 141 

representative set of TF perturbation H3K27ac ChIP-seq experiments into a benchmarking 142 

framework to examine their performance on real world experimental data. 143 

 144 

 145 

Benchmark comparison of TF prioritization tools based on recovering perturbed TFs. 146 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2024. ; https://doi.org/10.1101/2024.04.23.590206doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.23.590206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 147 

To exclude the possibility of systematic bias introduced by the data sets, we investigated the 148 

number of tools that returned the perturbed TF in the results. For clarity, we named a label 149 

recovered if the perturbed TF is shown at all in the output of a tool. We observed that for all 150 

84 data sets, at least two tools returned the expected TF label (Fig. S3A, B). For 72 of them, 151 

the TF label ranked among the top 30 for at least one tool using the relaxed label recovery 152 

criterion (Fig. S3B). 153 

Next, we benchmarked the TF prioritization tools using eight different metrics (see Methods). 154 

The first metric we computed for each tool was the number of data sets processed without 155 

errors and the number of TF labels recovered using both the stringent and relaxed criteria. 156 

Only four of the TF prioritization approaches did not complete for all 84 experiments using 157 

default parameters (Fig. 2A, B, white bars). TFEA, GimmeMotifs, HOMER + Lambert + bg 158 

and HOMER + bg failed to run for 26% (22), 21% (18), 7% (6) and 1% (1) of the 159 

experiments, respectively. Frontrunners using this metric were RcisTarget with and without 160 

background, which recovered 82 labels, and HOMER + Lambert, MEIRLOP and monaLisa 161 

with 81 labels recovered (Fig. 2B).  The tools with the least recovered labels were 162 

CRCmapper (n=54) and LOLA (n=49). The stringent label recovery strategy gave a similar 163 

ranking on performance with fewer labels recovered overall (Fig. 2A, median number of TFs 164 

recovered, stringent n=73 and relaxed n=75).  Only RcisTarget + bg (n=82) performed the 165 

same as in the relaxed strategy. The second-best approaches were HOMER + Lambert 166 

(n=80) and monaLisa (n=80), both recovering one fewer TF label than using the relaxed 167 

strategy. The tools with the lowest recovery were again CRCmapper and LOLA which only 168 

reported 37 and 42 labels in their results, respectively. Overall, none of the tools recovered 169 

all 84 TF labels and each label was recovered by at least two tools, suggesting that the label 170 

recovery failures were not driven by specific datasets but rather were tool-specific (Fig. 2A, 171 

B and Fig. S3A, B).  172 

The second metric we considered was the number of labels recovered as one of the top 5, 173 

10, or 30 TFs reported in the results (Fig. 2A, B). The rationale behind this metric was based 174 

on a plausible real-world scenario that top TFs would often be selected for follow-up 175 

experiments. This revealed that RcisTarget, RcisTarget + bg, monaLisa and MEIRLOP were 176 

performing best independently of the rank thresholds and label recovery criteria (Fig. 2A, B). 177 

In contrast, the bottom ranking tools included GimmeMotifs (stringent), BART (relaxed), 178 

CRCmapper and TFEA (both). Nevertheless, even the best performing tools predicted TF 179 

labels among the top 30 ranks for only about half of all data sets (e.g., RcisTarget + bg n=43 180 

for relaxed, n=38 for stringent and monaLisa n=43 for relaxed and n=30 for stringent).  181 

We evaluated the tools using the area under the curve (AUC) for the precision-recall curve 182 

(PR), receiver operator characteristic curve (ROC), and the cumulative distribution of label 183 
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ranks. Using these metrics, the best performing tools were again RcisTarget +/- bg, 184 

monaLisa and MEIRLOP, independently of the label recovery criteria (Fig. 2C, D and Fig. 185 

S4B, C). In the stringent case, the highest AUC of the PR or ROC curves was achieved by 186 

RcisTarget + bg (0.90/0.87) and for relaxed by MEIRLOP (0.94/0.92). In contrast, the lowest 187 

PR/ROC AUC had BART (0.64/0.51) for stringent label recovery and LOLA (0.70/0.52) for 188 

relaxed label recovery. Moreover, the relaxed label recovery criteria led to a slight increase 189 

in both metrics for most tools (Fig. S4D, E). CRCmapper and LOLA were the exceptions, 190 

showing a decrease in both PR/ROC AUCs.  191 

Finally, the AUC of the cumulative distribution of label ranks confirmed the frontrunner tools 192 

mentioned above (Fig. 2C, D and Fig. S4A). CRCmapper was at the bottom of the ranking 193 

(0.05/0.14) and BART second last in the stringent evaluation (0.13), while HOMER + bg was 194 

second last in the relaxed evaluation (0.27). 195 

In conclusion, the tested tools were able to recover known TF labels with variable 196 

accuracies, and monaLisa, RcisTarget and MEIRLOP performed best across several of our 197 

benchmark metrics.  198 

 199 

Effects of parameter tweaking on the performance of TF prioritization tools 200 

 201 

We next evaluated how modifying the default parameters influenced the performance of the 202 

TF prioritization tools. To maintain the number of computational jobs tractable, we selected 203 

two or three parameters of each tool based on the emphasis that these parameters were 204 

given in the documentation of the tools (see Supplementary Material). We varied the 205 

parameters to different degrees, resulting in more than 18,500 computational jobs. For most 206 

tools, changing the default parameters had little effect on their overall performance (Fig. S7). 207 

For MEIRLOP, however, we observed a drop in performance when varying the default 208 

parameters. Importantly, the ranking of TF tools when ran with the default parameters was 209 

almost identical to the ranking of TF tools when selecting the runs with the best performing 210 

parameters values. Based on these data, we conclude that compared to the choice of the TF 211 

tool, varying parameters of an individual tool has a minimal effect in their performance. 212 

 213 

Performance of TF prioritization tools using ATAC-seq data  214 

 215 

In addition to H3K27ac maps, 11 of the 84 curated datasets in this study included ATAC-seq 216 

maps for 14 TF perturbations and their corresponding controls (Table S1). Using these data, 217 

we evaluated how the TF prioritization tool rankings differed when using ATAC-seq instead 218 

of H3K27ac maps as inputs. When using ATAC-seq data, the best 3 performing tools to 219 
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recover the labels among the top 30 hits were monaLisa, MEIRLOP and HOMER, 220 

recovering 9, 8, and 8 TF labels, respectively (Fig. S6B). 221 

 222 

For most tools, we found that TF labels that were recovered among the top hits using 223 

H3K27ac data also ranked among the top hits using the matching ATAC-seq data. For 224 

example, out of the 14 TF experiments with both H3K27ac and ATAC-seq, 7 TF labels were 225 

recovered by monaLisa among the top 30 hits using H3K27ac data (Fig. S6B, D). Of these, 226 

6 TF labels were also recovered among the top 30 hits using ATAC-seq data. This statistic 227 

varied slightly among the different tools (7 out of 7 for BART, 5 out of 5 for HOMER, 5 out of 228 

5 for GimmeMotifs, and 5 out of 6 for LOLA).  For BART, the rankings based on ATAC-seq 229 

data were identical to the rankings of H3K27ac data. This similarity in the rankings is 230 

explained by how BART maps input data into their resource of cis-regulatory elements.  231 

 232 

Overall, the best performing tools at identifying TF master regulators from H3K27ac data 233 

were also the best tools for ATAC-seq data.  234 

 235 

Influence of experimental and data set features on tool performance. 236 

 237 

Having established the performance of each tool, we next asked what features could best 238 

explain the observed tool performance. To address this question, 16 features were chosen 239 

based on the experimental design (e.g., H3K27ac ChIP antibody, perturbation type, etc.), 240 

the quality of ChIP-seq (e.g., sequencing depth, fraction of reads in peaks (FRIP), etc.), the 241 

effect of the TF perturbation on gene expression as measured by RNA-seq (n=53; e.g., 242 

expression of the perturbed TF, etc.; see Methods) and the information content (IC) of the 243 

PWM. We trained a random forest classifier using these features to predict the combined 244 

stringent and relaxed TF label ranks. Resulting models were able to fit these ranks with a 245 

median Pearson correlation coefficient (PCC) between 0.78 (LOLA) and 0.38 (CRCmapper, 246 

Fig. 3A).  247 

Next, we computed the scaled importance for each feature to gain insights into their 248 

influence on resulting rankings (see Methods). This revealed that the most important 249 

features were the TF family, the information content of the motif, the number of uniquely 250 

mapped reads, FRIP and the type of TF perturbation (Fig. 3A). In contrast, the least 251 

important features were the association with a super-enhancer (is SE), RNA-seq log2(FC) of 252 

the perturbed TF, biological sample type (tissue vs. cell line) and PCR bottle neck coefficient 253 

(PBC). 254 

However, some tools showed deviations from these general patterns. For example, the most 255 

important feature for MEIRLOP was the TF perturbation type (Fig. 3A). Other outliers in the 256 
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feature importance ranking included CRCmapper and TFEA with the number of replicates 257 

and BART with the species (reference genome).  258 

Next, we focused on the two most important experimental features and examined whether 259 

tools perform differently for each feature modality by looking again at the TF label recovery 260 

among the top 30 ranks. Firstly, the overall performance differed across TF families with 261 

bZIP and GATA factors being most frequently recovered (e.g., BART bZIP=6/6, RcisTarget 262 

bZIP n=5/6 and RcisTarget + bg GATA n=6/7, Fig. 3B). In contrast, TFs belonging to the 263 

C2H2 ZF and bHLH families were recovered least frequently (e.g., MEIRLOP C2H2 ZF 264 

n=5/14 and CRCmapper bHLH n=2/6).  RcisTarget showed the best performance for four 265 

out of seven categories across TF families (Fig. 3B). Secondly, the other most important 266 

experiment feature was the perturbation type. Overall, we observed a maximum top 30 267 

recovery of 66.7% (Agonist TFs: BART) and a minimum of 0% (Antagonist TFs: 268 

CRCmapper, GimmeMotifs, TFEA; Fig. 3C). When considering the median performance, the 269 

lowest performance was associated with TF KO experiments (21%, 7/33).  RcisTarget 270 

performed best in 3 out of the 5 perturbation type categories. Only BART outperformed 271 

RcisTarget for agonist perturbations and HOMER for KO (Agonist: 66.7% BART compared 272 

with 55.6% RcisTarget; KO: 36.4% HOMER compared with 30.3% RcisTarget + bg). 273 

 274 

In summary, TF rankings of the benchmarked tools overall were mostly influenced by TF 275 

family and perturbation type, with a tendency of more specialized tools being also influenced 276 

by their specific assumptions (e.g., CRCmapper, TFEA).   277 

 278 

Discussion 279 

 280 

In this benchmark study, we examined the performance of nine TF prioritization tools in 281 

combination with the two most common parameters (PWM motif library and the set of 282 

background sequences used), resulting in 13 approaches to rank TFs [16–24]. The ground 283 

truth for this was defined using a collection of published H3K27ac ChIP-seq experiments 284 

which included a TF perturbation in their design (OE, KO, etc.). The major task for all 285 

approaches was to recover these known TF labels.  286 

 287 

Figure 4 summarises our results and illustrates the performance of each tool encoded into 288 

three groups (poor, intermediate and good) across all considered metrics (see Methods).  In 289 

our benchmark, we use the default parameters recommended by the tool authors, which 290 

were likely selected based on a parameter optimization process during their development. 291 

As such, our study also evaluates how generalizable these parameters are across real-world 292 

datasets. Thus, a method that performs well across datasets without fine-tuning each 293 
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parameter is ranked better than a tool that would need dataset-specific fine-tuning of 294 

parameters. Nevertheless, our analyses indicate that the effects of tweaking parameters of a 295 

tool on its performance is minimal compared to the choice of TF tool. 296 

 297 

Overall, most tools perform best for the metrics ‘number of successfully processed data sets’ 298 

and ‘labels recovered’, suggesting that all tools can process the input data. However, tools 299 

showed marked performance differences when considering the other metrics. Based on our 300 

performance metrics, we found that RcisTarget and monaLisa perform best, regardless of 301 

the TF label recovery criteria used. GimmeMotifs and TFEA failed to complete for around 302 

20% of the test datasets, but their label recovery was relatively good when these tools ran 303 

thought successfully. Our analysis thus indicates that these tools could substantially boost 304 

their performance by increasing the robustness of their code implementation. 305 

 306 

We found that all TF prioritization approaches perform better using the relaxed label 307 

recovery criterion (see Results).  Moreover, differences between the stringent and relaxed 308 

label recovery criteria were only observable for tools in the bottom half of the final rankings.  309 

Top ranking approaches like RcisTarget, MEIRLOP and monaLisa already performed well 310 

using the more stringent criteria. In contrast, approaches in the bottom half profited from the 311 

relaxed criterion due to the circumstance that they ranked a homologous TF even better 312 

than the exact TF label. 313 

 314 

Furthermore, we investigated the influence of pre-defined genomic background sequences 315 

(‘+bg’) and/or the use of a more comprehensive consensus motif library (Lambert et al.) if 316 

tools were enabling the user to specify these parameters [2]. This revealed that for example 317 

RcisTarget profited from specifying a custom background, but HOMER worked better using 318 

its default background computation. In contrast, HOMER performed better using the Lambert 319 

et al. motif library instead of the default one. Although the choice of background seemed to 320 

partially influence the performance of the tools, this was neglectable compared to the choice 321 

of TF ranking tool or other parameters such as the motif library.  322 

 323 

The bottom three tools were TFEA, CRCmapper and BART, performing either ‘poor’ or 324 

‘intermediate’ across most metrics. The poor performance of TF ChIP-seq library-based 325 

approaches such as BART might be attributed to a lower complexity of their underlying 326 

databases compared with PWM-based tools. Since the enrichment approaches of BART 327 

and RcisTarget are quite similar, one could speculate that the incorporation of large-scale 328 

TF datasets such as REMAP 2022 or UNIBIND could greatly enhance the performance of 329 

such tools [25,26]. In contrast, the poor performance of CRCmapper could be explained by 330 
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the specific assumptions made by the tool: CRC is optimized for recovering TFs in SEs, and 331 

thus expects that TFs of interest are associated with a SE, which might not broadly apply 332 

across multiple experiments and datasets [20]. Overall, we observed for 25 out of 84 333 

H3K27ac data sets an association of the perturbed TF to a SE. Therefore, CRCmapper’s 334 

very specific assumptions led to an overall poorer performance in our benchmark, which 335 

focused on a more general task.   336 

 337 

We found that the families of the TF substantially influence the recovery of the TFs from the 338 

tools. This observation is in line with previous reports of varying performance of PWMs to 339 

predict TF binding depending on their TF family affiliation (e.g., C2H2 ZFs and bHLH TFs) 340 

[27]. The tools benchmarked in this manuscript depend on PWMs, and thus their 341 

performance could be compromised when PWMs are not sufficient to accurately predict TF 342 

binding to DNA. As an alternative to PWM-based methods, deep learning approaches have 343 

recently been developed to predict TF binding. For example, DeepBind and BindSpace are 344 

convolutional neural network models developed to predict transcription factor binding 345 

[28,29]. Another recent development is the Enformer model, that was able to predict dozens 346 

of chromatin and gene expression tracks uniquely from DNA sequence [30]. A major 347 

advantage of these models is their capacity to learn not only motifs, but also sequence 348 

features such as DNA sequence composition and complex positional configurations, such as 349 

periodicity of TF motifs or distance requirement between TF motifs. Our benchmark 350 

suggests that tools to prioritize TFs would benefit from incorporating deep leaning-centric 351 

predictions of TF binding (for an in-depth discussion of TF binding prediction models see 352 

[31]). 353 

 354 

Although we compiled a large H3K27ac dataset for our benchmark, this study has some 355 

limitations. First, we benchmarked these tools on H3K27ac ChIP-seq data, assuming that 356 

the TF perturbation will lead to H3K27ac changes. Future work is needed to evaluate their 357 

performance using other high throughput sequencing technologies, such as H3K4me3 358 

(Promoter), H3K4me1 (Enhancer) ChIP-seq, RNA-seq and a more comprehensive ATAC-359 

seq (open chromatin) dataset collection [1]. Second, this benchmark is focused on the 360 

performance of approaches to recover a perturbed TF, mimicking a particular real-world 361 

scenario common, for example, in drug discovery. As such, we do not assess the 362 

performance of the tools in other contexts (e.g., simulation approaches, other definitions of 363 

regulatory elements such as open chromatin, or other histone marks).   364 

 365 

Conclusion 366 

 367 
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In conclusion, our comprehensive benchmark provides recommendations for the scientific 368 

community on which TF prioritization tool perform best (i.e., RcisTarget, MEIRLOP and 369 

monaLisa) for perturbed TF recovery. We believe this will help improve hypothesis 370 

generation from H3K27ac ChIP-seq data, one of the most widely profiled histone marks. In 371 

addition, our study reveals shortcomings of current tools, which we are hoping will influence 372 

further improvement of existing tools as well as the development of novel tools.  373 

 374 

 375 

 376 

Figure legends 377 

 378 

Fig. 1 Schematic of the benchmarking framework to access the performance of TF 379 

prioritization tools. 380 

Data curation step: manual data set curation of H3K27ac experiments with underlying TF 381 

perturbation (e.g., TF knockout or over-expression), yielding 84 ChIP-seq data sets, a 382 

subset of 53 with matched RNA-seq and 13 with matched ATAC-seq. Tool implementation 383 

step: implementation of nine TF prioritization tools and inference of TFs on the 84 data sets.  384 

Ranking step: Resulting outputs are converted to ranked TF lists based on the tool statistic 385 

(e.g., p-value, AUC, or Z-score). Rankings are scaled to values between 0 and 1 (see 386 

Methods) to ensure cross tool comparability. Label recovery step: The scaled rankings are 387 

searched for the first occurrence of the experiment label (= perturbed TF). This analysis was 388 

performed using either a stringent label definition (exact TF match) or a more relaxed 389 

definition (any TF binding a similar motif). Benchmark step: These label recovery strategies 390 

in combination with the resulting rankings were used to compute eight benchmark metrics 391 

for each of the tools. 392 

 393 

Fig. 2 Summary of performance metrics used to evaluate TF prioritization tools. 394 

(A) Number of recovered perturbed TFs among the top 5 (yellow), 10 (green), 30 (red) and 395 

all ranks (blue) using the stringent label definition. Grey indicates number of successfully 396 

processed data sets, but none of the perturbed TF was recovered. White illustrates number 397 

of failed data sets. TF prioritization strategies were sorted according to the number of 398 

recovered TFs among the top 30. (B) Same as (A) using the relaxed label definition for the 399 

recovery of perturbed TFs. (C) Summary of the area under curve (AUC) for precision-recall 400 

(PR) curve, receiver operating characteristics (ROC) curve and cumulative rank distribution. 401 

(D) Same as (C) but using the relaxed label definition. 402 

 403 

Fig. 3 Influence of experiment features on tool performance. 404 
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(A) Scaled feature importance for 15 features used to regress the TF rankings using random 405 

forest models (see Methods). Colour scale encodes the different feature types including 406 

experiment (red), ChIP-seq QC (blue) and RNA-seq (green) features. Outlier tools were 407 

annotated. Abbreviations: FRIP = Fractions of reads in peaks, Motif IC = Motif information 408 

content, NSC = Normalized Strand Cross-correlation coefficient, RSC = Relative Strand 409 

Cross-correlation coefficient, PBC = PCR bottleneck coefficient, Is SE = Is Super-Enhancer.  410 

(B) Tool performance as proportion recovered TF labels in top 30 stratified by TF families. 411 

Selected tools were highlighted. TF families with less than 5 data sets were summarised as 412 

“Other”. (C) Same as in (B) but data sets were stratified by perturbation type. 413 

 414 

Fig. 4 TF prioritization tool benchmark summary.  415 

(A) Dot plot heatmap summarising the benchmark results for the stringent label recovery 416 

strategy. Tool performance for each single metric was encoded according to the respective 417 

rank into one of three categories including poor (blue), intermediate (yellow) and good (red). 418 

Tools were ordered according to their overall performance across all eight metrics. 419 

(B) Same as (A) but for the relaxed label recovery strategy. 420 

 421 

Fig. S1 Overview of the manually curated H3K27ac data sets with underlying TF 422 

perturbation.  423 

(A) Barplot illustrating the number of ChIP-seq data sets across different TF perturbation 424 

categories. (B) Number of data sets stratified by the H3K27ac antibody used for the ChIP.  425 

(C) Number of H3K27ac data sets split by the biological sample type. (D) Number of 426 

H3K27ac data sets stratified by the TF family of the perturbed TF. (E) Circos plot displaying 427 

the cross dependencies of the different categorial variables across all 84 H3K27ac ChIP-seq 428 

data sets. Links were scaled by the frequency of variable co-occurrence.   429 

 430 

Fig. S2 Overview and classification of the selected TF prioritization tools examined in 431 

this benchmark study. For detailed description of tools see Supplementary Methods. 432 

 433 

Fig. S3 Overview of TF label recovery for each data set and tool. 434 

(A) Heatmap illustrating the TF label recovery using the stringent label definition, across data 435 

sets and per tool, among the top 5 (yellow), 10 (green), 30 (cyan), in the entire ranking (dark 436 

blue) or not being included/failed run (grey). Row barplot shows the number of recovered TF 437 

labels among the top 30 for each tool. Column barplot shows the number of tools recovering 438 

a particular TF label in their top 30 ranks. (B) Same as (A) but for the relaxed TF label 439 

definition. 440 

 441 
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Fig. S4 Overview and comparison of AUC based performance metrics. 442 

(A) Cumulative distribution of scaled ranks for each TF prioritization tool (stringent label 443 

recovery). (B) Average ROC curves, per TF prioritization tool, over 5,000 bootstraps using 444 

the stringent label recovery. (C) Average PR curve, per TF prioritization tool, over 5,000 445 

bootstraps using the stringent label recovery. (D) Scatterplot comparison of ROC AUCs 446 

between stringent and relaxed label definition. (E) Scatterplot comparison of PR AUCs 447 

between stringent and relaxed label definition. 448 

 449 

Fig. S5 Comparison of ranking metrics and backgrounds for TF prioritization. 450 

(A)  Number of recovered perturbed TFs among the top 5 (yellow), 10 (green) and 30 (red) 451 

using the stringent label definition for each ranking metric outputted by a tool (panels).  (B) 452 

Same as (A) using the relaxed label definition for the recovery of perturbed TFs. (C) 453 

Heatmap of the Pearson correlation coefficients between the rankings of TF labels across 454 

the 84 ChIP-seq data from 8 different HOMER setups. Top annotation illustrates used 455 

parameters: 1) Motif library: HOMER default (grey) or Lamber et al (red) and 2) different 456 

background sets: default (grey), differential (orange), neutral (green) and random (blue; see 457 

Methods “Background comparison”). 458 

 459 

Fig. S6 TF prioritization tool evaluation based on matched ATAC-seq samples. 460 

(A) Number of recovered perturbed TFs among the top 5 (yellow), 10 (green), 30 (red) and 461 

all ranks (blue) using the stringent label definition. TF prioritization strategies were sorted 462 

according to Barplot in Fig. 2.  (B) Same as (A) using the relaxed label definition for the 463 

recovery of perturbed TFs. 464 

 465 

Fig. S7 Comparison of different parameters for TF prioritization. 466 

(A) Number of recovered perturbed TFs among the top 5 (yellow), 10 (green) and 30 (red) 467 

using the default parameter setting and stringent label definition. (B) same as (A) using the 468 

relaxed label definition for the recovery of perturbed TFs. (C) Number of recovered 469 

perturbed TFs among the top 30 for different parameter settings and stringent label 470 

definition. Plot sorted according to (A). (D) same as (C) using the relaxed label definition. 471 

Plot sorted according to (B). (E) same as (A) using the parameter set maximising the 472 

number of TF labels recovered among the top 30. (F) Same as in (E) using the relaxed label 473 

definition. 474 

 475 

 476 

 477 

Table S1 Table summarising 84 H3K27ac ChIP-seq experiments with TF perturbations.  478 
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 479 

Table S2 List of the TF prioritization tools benchmarked in this study. 480 

 481 

Methods  482 

 483 

ChIP-seq pre-processing 484 

Publicly available H3K27ac ChIP-seq data sets with TF perturbations were manually curated 485 

and associated FASTQ files were downloaded using SRAToolkit (V2.11.2; 486 

https://github.com/ncbi/sra-tools). Pre-processing of each experiment was performed using 487 

the ENCODE ChIP-seq pipeline (V1.9.0) [32]. Briefly, reads were aligned to the respective 488 

reference genome (hg38 or mm10) using Bowtie2 (V2.3.4.3) and subsequently filtered for 489 

unmapped reads, not primary alignments as well as duplicates using SAMtools 490 

(V1.12)/Picard (V2.9.2) [33–35]. Peak calling was performed using MACS2 (V2.2.5) with 491 

following parameters: --cap-num-peak 500000 --pval-thresh 0.01 [36]. Consensus peak sets 492 

per condition were computed by performing the overlap reproducibility analysis as 493 

implemented in the ENCODE pipeline. In addition, peaks were filtered for overlap with 494 

blacklist regions. 495 

 496 

ATAC-seq pre-processing 497 

We scanned the publicly available ChIP-seq data (see above) for matched ATAC-seq data 498 

sets with TF perturbations. The associated FASTQ files were downloaded using SRAToolkit 499 

(V2.11.2; https://github.com/ncbi/sra-tools). Pre-processing of each experiment was 500 

performed using the ENCODE ATAC-seq pipeline (V2.0.3) [32]. Briefly, reads were aligned 501 

to the respective reference genome (hg38 or mm10) using Bowtie2 (V2.3.4.3) and 502 

subsequently filtered for unmapped reads, not primary alignments as well as duplicates 503 

using SAMtools (V1.12)/Picard (V2.9.2) [33–35]. Peak calling was performed using MACS2 504 

(V2.2.5) with following parameters: --cap-num-peak 300000 --pval-thresh 0.01 [36]. 505 

Consensus peak sets per condition were computed by performing the overlap reproducibility 506 

analysis as implemented in the ENCODE pipeline. In addition, peaks were filtered for 507 

overlap with blacklist regions. 508 

 509 

 510 

Differential peak analysis 511 

For the differential peak calling, peaks from both conditions (control and TF perturbation) 512 

were merged. H3K27ac as well as open chromatin (ATAC-seq) enrichment was quantified 513 

for these merged peaks, by counting the reads using the featureCount function from the 514 
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Rsubread package (V2.2.6) with parameters countMultiMappingReads = False and 515 

allowMultiOverlap = True [37].   516 

For experiments with more than one replicate per condition, differential peak analysis was 517 

performed using DEseq2 (V1.30.1) with default settings [38]. All peaks were then sorted by -518 

log10(p-value) * log2(fold change) (log2(FC)) and we took the top 1,000 peaks as 519 

foreground and the bottom 1,000 peaks as background set.  520 

For experiments with only one replicate per condition, we normalized the counts using 521 

DESeq2 estimateSizeFactors function and calculated the log2(FC). Peaks were sorted 522 

according to their log2(FC). The top 1,000 peaks were defined as foreground and the bottom 523 

1,000 as background sets.   524 

Resulting foreground were used as input for TF prioritization tools expecting peaks as input 525 

(e.g., HOMER, RcisTarget, etc.). In case of the “+ bg” strategy, we provided the background 526 

peak sets as custom background. 527 

 528 

RNA-seq pre-processing 529 

RNA-seq data associated with the H3K27ac ChIP-seq was downloaded using SRAToolkit.  530 

Expression levels for the respective gene annotation (Ensembl GRCm38.98 or GRCh38.98) 531 

was performed using the PISCES pipeline (V0.1.3.1) with default parameters [39,40]. 532 

 533 

Differential gene expression analysis 534 

The function getBM from the package biomaRt (V2.46.3) was used to assign the 535 

external_gene_name to the ensembl_gene_id from Ensembl [40]. We then used DEseq2 to 536 

normalize the raw gene counts and fit them to a negative binomial distribution. Then a 537 

generalized linear model and Wald test was used to compute differential expression 538 

between the TF perturbation condition compared with the control [38].  539 

 540 

TF prioritization tool settings and parametrizations 541 

 542 

A comprehensive tool overview including versions can be found in Supplementary Table 2. 543 

 544 

1) BART   545 

For this benchmark, BART was run with the positional parameter ‘region’ using the 546 

differentially expressed genomic region sets described in differential peak analysis as input 547 

[17]. The output of BART was ranked according to the p-value column.   548 

 549 

2) CRCmapper 550 
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For this benchmark, we computed potential SEs using ROSE2 separately for condition and 551 

control. We then ran CRCmapper on both sets of .bam files, identified peaks (see ChIP-seq 552 

pre-processing), activity tables, and the default parameters of CRCmapper [20]. To infer 553 

differentially expressed TF’s, we computed the normalized output degrees individually from 554 

condition and control CRCmapper outputs as a summary network statistic. Finally, the 555 

differential network statistics were calculated as the difference between condition and control 556 

betweenness and were subsequently used for ranking. 557 

  558 

3) GimmeMotifs 559 

GimmeMotifs was run using its gimme maelstrom command and its second input option 560 

which contains the merged peaks from control and condition experiment identified in ChIP-561 

seq pre-processing step and their log-transformed read counts [24]. The reference library 562 

used is the Lambert et al. motif library. We also allowed the tool to return redundant motifs, 563 

to report the scores of all motifs and use 12 threads by using the parameters: --no-filter, –564 

filter_cutoff 0 and –N 12. All other parameters were left at their default values. The output of 565 

GimmeMotifs used for ranking was z-scores. 566 

 567 

4) HOMER 568 

We ran HOMER four times for our benchmark: Once using HOMER’s default motif library 569 

and using no background sequences but instead letting HOMER select them from the input, 570 

once using HOMER’s default motif library and using background sequences as computed in 571 

differential peak analysis (HOMER + bg), once using the Lambert et al. motif library as a 572 

reference library and no background sequences (HOMER + Lambert) and finally using the 573 

Lambert et al. motif library as a reference library and using the pre-computed background 574 

sequences (HOMER + Lambert + bg) [2,16]. As input sequences we always used the 575 

differentially expressed peaks as computed in differential peak analysis. HOMER’s script 576 

findMotifsGenome.pl was ran with the above descript parameters and inputs, as well as the 577 

parameter –nomotif to indicate that we are not interested in de novo motif enrichment. All 578 

other parameters were left to their default values. HOMER’s output used for ranking were 579 

the p-values.  580 

  581 

5) LOLA 582 

For our benchmark, we ran LOLA with the query set being the differentially expressed peaks 583 

as discussed in differential peak analysis [18]. The universe or background peaks used are 584 

the combined peaks from the condition and control experiment computed as in ChIP-seq 585 

pre-processing. LOLA was then run with its default parameters and using its default 586 
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reference library of public datasets. For ranking we used LOLA’s mean rank based on p-587 

value, log odds ratio and number of overlapping regions. 588 

 589 

6) MEIRLOP 590 

In our benchmark, we used fasta files containing the merged peaks from control and 591 

condition experiment identified in ChIP-seq pre-processing step and their associated 592 

log2(FC) (see differential peak analysis) as scores for the input of MEIRLOP [21]. The 593 

Lambert et al. motif library was used as the reference library and the –length parameter was 594 

set to incorporate sequence length as a covariate since our input sequences were not of the 595 

same length as is preferred by MEIRLOP. All other parameters were left to their default 596 

values. We ranked the output of MEIRLOP according to the output's adjusted p-value. 597 

 598 

7) monaLisa 599 

To run monaLisa we used its randomized lasso stability selection on our precomputed 600 

differentially expressed regions (see differential peak analysis) with the response vector 601 

corresponding to their log2(FC) [22]. As predictors the Lambert et al. motif library was used. 602 

All other parameters were kept at the same values as indicated in their vignette. MonaLisa’s 603 

output was ranked according to the normalized area under the selection curve. 604 

 605 

8) RcisTarget 606 

We ran RcisTarget twice: Once using the differentially expressed peak regions (see 607 

differential peak analysis) with (RcisTarget + bg) and once without background regions 608 

(RcisTarget) [19]. The background regions are the merged peaks from control and condition 609 

experiment identified in the ChIP-seq pre-processing step. We set the NES threshold 610 

parameter to 0, such that all motifs are returned even if the predicted NES score is very low. 611 

All other parameters were set as suggested by the vignette on ‘RcisTarget - on regions’. The 612 

output of RcisTarget was ranked according to the NES score. 613 

 614 

9) TFEA 615 

To run TFEA, we used the BAM and BED files of the control and condition experiments as 616 

computed in ChIP-seq pre-processing and the Lambert et al. [2,23]. Motif library. TFEA was 617 

then ran in parallel with the parameter –cpus 6 and all other parameters set to the default 618 

values. TFEA’s output was ranked according to the Bonferroni and GC corrected p-values. 619 

 620 

Performance benchmark 621 

 622 
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Depending on the approach, the outputs contain either a list of TF or motifs, with associated 623 

scores attached. To account for different types of scores reported by the approaches (e.g., 624 

p-value, z-score, AUC, ...), we ranked the entries in the outputs according to their score, with 625 

lower ranks associated with more important entries. We then compared the ranks of labels 626 

scaled between [0, 1]. 627 

 628 

Two label identification strategies were employed to account for the advantage of 629 

approaches using reference libraries which allow motifs to be associated with multiple TFs 630 

(Figure 2A). The first strategy termed ‘stringent’, forces a one-to-one mapping between 631 

motifs and TFs in all approaches. The second strategy called ‘relaxed’ does the exact 632 

opposite by creating a mapping between each TF and TFs it is sharing a motif with within 633 

the Lambert et al. motif library. The rank of the label is then computed by using the best rank 634 

between the mapped TF of the label. 635 

We adapted part of our benchmark metrics from the ChEA3 paper published by Keenan et 636 

al. in 2019 [41]. Accordingly, we calculated a Receiver Operator Characteristic (ROC) and 637 

Precision Recall (PR) curve by bootstrapping the down sampled negative class from the 638 

rankings as was suggested by Keenan et al. By doing this we account for the fact that our 639 

positive class consisting of our labels is significantly smaller than our negative class 640 

comprised of all other TFs. For both, the ROC and PR curve, we also computed the Area 641 

Under the Curves (AUC).  642 

 643 

The second metric we implemented from the Keenan et al. looks at the deviation of the 644 

cumulative distribution of perturbed TF ranks D(r) from a uniform distribution using the 645 

Anderson-Darling test. We would expect a significant p-value if perturbed TFs would display 646 

preferentially low or high ranks. Additionally, we determined the AUC of D(r)-r since many 647 

labels with low ranks give rise to a high AUC in this case. 648 

 649 

To put all results together we created a summary of all metric outcomes. We stratified all 650 

outcomes into three groups for better readability. For the number of labels recovered and 651 

successfully processed datasets the thresholds are determined by dividing all used datasets 652 

(84) into three equal groups. The same idea was used for the AUC of ROC and PR curve, 653 

where we grouped the results into three groups between 0.5 and 1 and for the cumulative 654 

rank distribution AUC between 0 and 0.5. For the number of labels in Top 5-30, we used the 655 

maximal respective value to create the three groups. 656 

 657 

Ranking metric comparison 658 
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We compared the choice of ranking metric for tools outputting more than two non-correlated 659 

metrics which could be used for ranking the TF motifs. Following tools fulfilled these criteria: 660 

BART, CRCmapper, LOLA, MEIRLOP and TFEA (Table S2). The H3K27ac analysis using 661 

these tools was performed as described above. Resulting outputs were used to create a TF 662 

ranking for each metric and count the number of recovered TF labels in the top 30 (Fig. S5A, 663 

B). The metric maximizing the number of recovered TFs among the top 30 was used for the 664 

benchmark comparison of tools (see Table S2 for list of the best metric per tool).  665 

 666 

Background comparison 667 

To compare the influence of background choice on the TF ranking, we ran HOMER with four 668 

different background sets with either the default HOMER motif library or Lambert et al. The 669 

four different background sets were constructed as following: 670 

• Default – random selection of GC% content matched regions from the genome. 671 

• Diff – Top 1,000 most differential peaks for the control condition (see section 672 

differential peak analysis) 673 

• Neutral – 1,000 non-differential peaks from the comparison TF perturbation vs 674 

control. 675 

• Rmd – random draw of 1,000 GC% content matched non-overlapping regions from 676 

the genome. 677 

HOMER and downstream analysis were performed as described above. 678 

 679 

Parameter tweaking 680 

We conducted a parameter tweaking analysis to ensure the robustness of the final tool ranking. 681 

We selected up to three parameters per tool from a set of available parameters based on their 682 

potential impact on the results (see Supplementary Text for the full list). We explored up to five 683 

different values per parameter in combination with each other.  684 

We performed TF prioritization for each tool with the added parameters, as described in each 685 

tool section. The downstream benchmark analysis was conducted as described above. 686 

 687 

Random forest modelling and feature importance 688 

To study the influence of experimental features and data characteristics on TF rankings, we 689 

looked at three different types of features: ChIP-seq quality measures (Normalized Strand 690 

Cross-correlation coefficient (NSC), uniquely mapped reads, Relative Strand Cross-691 

correlation coefficient (RSC), PBC, Fraction of reads in peaks(FRIP)), experimental features 692 

(perturbation type, number of replicates, TF family, antibody type, reference genome, is 693 

super-enhancer, biological sample type, number of differential peaks) and RNA- seq 694 
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features (TF log2(FC), number of differential genes). All groups with less than five 695 

experiments were grouped together into ‘Others’. 696 

For RNA-seq features, TF log2(FC) were categorized into four groups (log2(FC) <= 2, 2 < 697 

log2(FC) <= 6, log2(FC) > 6 and missing RNA-seq) and the number of differentially 698 

expressed genes into five groups (# differential genes <= 100, 100 < number of differential 699 

genes <= 500, 500 < number of differential genes <= 1000, number of differential genes > 700 

1000 and missing RNA-seq). 701 

In addition, we computed the information content (IC) for each TF as additional feature. 702 

Briefly, the IC per motif was computed using ggseqlogo to compute the IC per bp and then 703 

average over each position [42]. From that we derived an IC per TF by averaging the IC per 704 

motif over multiple motifs as assigned by Lambert et al.  705 

We added all missing experiments with rank=1 to have 84 experiment results for each tool.  706 

We trained a random forest with 10-fold cross validation predicting the rank for the above-707 

described features using the cforest() function from the R package party (V1.3) [43]. The 708 

conditional feature importance was calculated using the varimp() function for each fold. We 709 

scaled resulting feature importance and computed the mean across the 10 folds. 710 

Additionally, we calculated the Pearson’s correlation coefficient between predicted and true 711 

rank in the test sets to assess the fit of the random forest for each tool. 712 
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