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Abstract

Keyboard typing with finger movements is a versatile digital interface for users with diverse
skills, needs, and preferences. Currently, such an interface does not exist for people with
paralysis. We developed an intracortical brain-computer interface (BCI) for typing with attempted
flexion/extension movements of three finger groups on the right hand, or both hands, and
demonstrated its flexibility in two dominant typing paradigms. The first paradigm is
“point-and-click” typing, where a BCI user selects one key at a time using continuous real-time
control, allowing selection of arbitrary sequences of symbols. During cued character selection
with this paradigm, a human research participant with paralysis achieved 30-40 selections per
minute with nearly 90% accuracy. The second paradigm is “keystroke” typing, where the BCI
user selects each character by a discrete movement without real-time feedback, often giving a
faster speed for natural language sentences. With 90 cued characters per minute, decoding
attempted finger movements and correcting errors using a language model resulted in more
than 90% accuracy. Notably, both paradigms matched the state-of-the-art for BCI performance
and enabled further flexibility by the simultaneous selection of multiple characters as well as
efficient decoder estimation across paradigms. Overall, the high-performance interface is a step
towards the wider accessibility of BCI technology by addressing unmet user needs for flexibility.
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Introduction

Brain-computer interfaces (BCIs) show great promise for restoring communication in people with
paralysis (Mugler et al. 2014; Bacher et al. 2015; Herff et al. 2015; Gilja et al. 2015; Jarosiewicz
et al. 2015; Pandarinath et al. 2017; Nuyujukian et al. 2018; Herff et al. 2019; Anumanchipalli,
Chartier, and Chang 2019; Moses et al. 2021; Willett et al. 2021, 2023; Metzger et al. 2023;
Card et al. 2023). User surveys for assistive devices have highlighted the need for multiple
interface options that users can choose from based on their personal needs and capabilities
(Scherer et al. 2005; Blabe et al. 2015; Fried-Oken, Mooney, and Peters 2015; Pitt and
Brumberg 2018), encouraging new, previously unexplored directions for BCI research for
communication. We introduce a typing BCI that can be used flexibly, allowing multiple
high-performance options for communication.

The flexibility of finger movements in able-bodied people (Ingram et al. 2008; Xu, Mawase, and
Schieber 2024) has contributed to the ubiquity of keyboards for typing on computers, driven in
part by the different ways in which people can use them. For example, while trained
touch-typists can achieve speeds of up to 200 words per minute, novice typists can still use the
full capability of a QWERTY keyboard with one finger. Motivated by the recent demonstrations
of decoding dexterous finger movements from intracortical recordings in monkeys (Nason et al.
2021; Willsey et al. 2022; Costello et al. 2023) and human participants (Wodlinger et al. 2015;
Jorge et al. 2020; Vargas-Irwin et al. 2022; Guan et al. 2023; Shah et al. 2023; Willsey et al.
2024), we designed an intracortical BCI keyboard for typing based on flexion/extension
movements of fingers. Focusing on finger movements simplifies the decoder algorithm
compared with a QWERTY keyboard design, which would require decoding wrist movements in
addition to finger movements.

Two distinct paradigms have emerged for BCI communication. The first paradigm, which we call
“point-and-select” (Gilja et al. 2012; Bacher et al. 2015; Gilja et al. 2015; Kao et al. 2017;
Pandarinath et al. 2017), involves real-time continuous control of a cursor with visual feedback
(i.e., in closed-loop) to move it over a key before selecting it (e.g., with a discrete ‘click’
movement). By accurately selecting one character at a time, this provides a general-purpose
typing paradigm that can be adapted to different languages, or even non-linguistic
communication such as math equations, emojis, or musical notes without retraining the
decoding algorithm.

The second paradigm involves decoding a rapid sequence of discrete movements with no
immediate visual feedback (i.e., in open-loop), such as handwriting (Willett et al. 2021) or
speech (Willett et al. 2023; Metzger et al. 2023). This enables high-speed handwriting and
speech BCIs but relies on accurate movement decoding or error correction using the statistics
of natural language.

We developed an intracortical BCI keyboard interface for selecting characters using
flexion/extension finger movements and tested it in a BrainGate2 clinical trial participant (‘T5’)
with two 96-channel silicon microelectrode arrays placed in the hand knob area (Yousry et al.
1997) of the left precentral gyrus (Fig. 1A). This interface simultaneously enabled high typing
performance for both paradigms, simultaneous selection of multiple characters, bimanual finger
movements from the unilateral implant and efficient decoder parameter estimation by exploiting
the shared finger movements across tasks. This work presents a step towards personalized
BCIs that can be adapted to individuals with different preferences, needs, and capabilities.
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An optimized BCI keyboard layout for typing with multiple fingers

Fig. 1. BCI keyboard design for typing with finger movements. (A) Neural activity was
recorded using two ‘Utah’ arrays placed in the hand knob area of the left precentral gyrus as the
research participant T5 attempted cued finger movements. (B) Confusion matrix (rows indicate
cued movements and columns indicate decoded movements) for discriminating between single
finger flexion/extension movements using a naive Bayes classifier. Trials were open-loop, with
the participant instructed to attempt to follow an animated hand. Following the instructed delay
paradigm, each trial had 1s preparatory time, 1s movement time, and 0.5s hold time. (C)
Confusion matrix for a reduced set of movements with three finger groups corresponding to the
thumb, index-middle tied together, and ring-little tied together. Each trial had 1s preparatory
time, 0.5s movement time and 1s hold time. Reducing the movements to three degrees of
freedom improved classification accuracy. (D) The relative frequency of the 31 symbols (26
English letters, space indicated by ‘>’, and four symbols) used in this paper was estimated from
57,340 sentences of the Brown corpus (Francis and Kucera 1979). (E, F) Distribution of mean
distance traveled per character for sentences from the Brown corpus comparing the optimized
keyboard layout (black) to random layouts (red) for the right hand (E) and bimanual keyboard
(F). Distance normalized such that going from complete flexion to extension is equal to 1. (G)
Right-hand keyboard layout with three degrees of freedom. Colors indicate finger groups.
Index-middle fingers (green) are constrained to move together. Similarly, ring-little fingers
(yellow) are constrained to move together. Keys are laid out along the flexion-extension axis for
each finger group. Keys along the two fingers belonging to a finger group are staggered to
enable the selection of a unique key with constrained movements. (H) Bimanual keyboard
layout with six degrees of freedom and three finger groups per hand.
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Ideally, a typing keyboard would be based on isolated movements of all 5 individual fingers.
While the attempted movements of single fingers can be decoded from neural recordings in T5,
(71% accuracy, Fig. 1B), constraining nearby fingers to move together (thumb, index-middle tied
together, and ring-little tied together) resulted in greater accuracy (95%, Figure 1C). Next, we
designed a keyboard for selecting characters using the movement of three finger groups.

To construct our keyboard, we considered 26 letters, a symbol for space (>), and punctuation
(question mark, comma, period, and apostrophe), resulting in a total of 31 symbols (Willett et al.
2021). Keys were arranged along the flexion/extension direction of each finger group and
roughly equal numbers of keys were assigned to each of the six directions on the right hand
(three finger groups x 2 movements per finger group). More frequent symbols in the English
language were assigned to keys at a smaller distance from rest (Fig. 1D). For keys that were
equidistant from rest but on different fingers, the symbols were first assigned to the thumb,
followed by index-middle and ring-little finger groups. As a result, high-frequency symbols such
as “E”, “T”, “A”, and space (“>”) are only a small movement away from the rest position of the
corresponding finger.

Under the assumption of constant velocity throughout a trial and independent control of
individual finger groups, the typing rate is proportional to the average distance traveled per
character. For a particular keyboard layout, the average distance per character was computed
for all characters in a sentence, and the distribution across all sentences was evaluated using
the Brown corpus (Francis and Kucera 1979). The distribution for the optimized keyboard
(black, Fig. 1E) was substantially smaller than the distribution for different random letter layouts
(red, Fig. 1E). This optimization was repeated for the bimanual keyboard with the keys laid out
across 12 directions on both the hands, resulting in an even smaller average distance traveled
(Fig. 1F) and fewer keys per finger group (Fig. 1H).

“Point-and-click” character selection with closed-loop finger movements

Point-and-click typing consists of moving a pointer to a target key using closed-loop control and
then selecting the character with a discrete click signal. In our case, the pointer corresponds to
the position of a virtual fingertip and clicking corresponds to an elbow or ankle flexion
movement, depending on the task (see below for details).

Point-and-click typing involves the use of two distinct decoders: a decoder for guiding virtual
finger movements and a click decoder for initiating discrete clicks. The click decoder, based on
logistic regression, was trained using open-loop trials performed without visual feedback. During
these trials, participant T5 performed finger movements followed by the click movement.
Concurrently, a finger movement decoder was trained on closed-loop point-and-hold trials. In
these trials, T5's task was to maneuver a finger over a designated key ('point') and then
maintain its position over the key for two seconds ('hold').
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Fig. 2. A streamlined recipe for neural network decoding for movements with multiple
degrees of freedom. (A) (Left) Differences in the neural activity between open-loop (without
visual feedback) and closed-loop (with real-time visual feedback) tasks. Lines indicate the mean
number of threshold crossings across channels for a single block. Channels with a large
difference in activity between open-loop and closed-loop blocks are highlighted with the black
arrow. (Right) Training data collection using point-and-hover task, involving closed-loop control
to point a finger over a key and hovering over a key for 2 seconds to select it. At each time step,
a logistic regression-based decoder was updated using new data and immediately used to
control finger movements. (B) Decoder architecture. Neural activity (concatenation of spike
power and binned threshold crossings) from the previous five time steps (20ms bins) predicts
finger velocities after passing through multiple stages of a linear layer, dropout, batch
normalization, and rectified non-linearity. (C) Pretraining the decoding algorithm using data from
the previous session improved decoder performance. Prediction mean-squared error on 5.4 to
9.4 min of held-out data (y-axis) with the amount of data used for training (x-axis). The decoder
is either trained from scratch (i.e. random initialization) using data from the target session
(black) or pre-trained using blocks from other sessions and then fine-tuned using data from the
target session (other lines). Pretraining using either 1 previous session (orange) or 16 previous
sessions (red). Performance was averaged over 5 partitions of data, with one randomly selected
block used for testing, and either one or 16 other blocks were used for pretraining. (D) Predicted
velocities for the index-middle and ring-little groups (each dot is a sample). Raw velocities
indicated on left and post-processed (with gain, smoothness, and soft-thresholding f(x) =
max(x-t, 0) - max(-x-t, 0), with threshold t) velocities indicated on right. More points are along the
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x-axis or the y-axis with soft-thresholding, as required by the task where only one finger group
should be moving at a time.

The velocity decoder was developed using a recipe that addresses some of the fundamental
challenges behind high degree of freedom motor decoding. First, as the distributions of neural
activity between open-loop (without feedback) and closed-loop (with real-time visual feedback)
differ significantly (Fig. 2A, left), we collected training data in closed-loop using a simple logistic
regression-based decoder which was updated in real-time (Fig. 2A, right). Second, as the finger
movements are represented non-linearly in the motor cortical neural activity (Willsey et al. 2022;
Shah et al. 2023), we used a multi-layered feedforward neural network to decode instantaneous
finger velocities from the recorded neural activity (architecture shown in Fig. 2B, adapted from
(Willsey et al. 2024)). While real-time continuous control was also achievable by directly
decoding finger positions, velocity decoding was faster (Fig. S1, Videos S1, S2). Third, as
neural network models with a large number of parameters (like those considered here) require a
large training dataset, in an effort to reduce in-session calibration times, the network was
pretrained using the training data from previous sessions and fine-tuned using training data from
the target session (Fig. 2C). Fourth, as the integration of noisy velocity predictions for a
non-target finger results in position drift and requires corrective movements resulting in longer
trials, soft-thresholding (which makes all velocity predictions less than a certain value exactly
zero) provides improved ability to keep the non-target fingers at rest (Fig. 2D, Fig. S2).

Fig. 3 Point-and-click character selection on right-hand and bimanual keyboards. (A, B)
Finger position trajectories for an example block for typing on the right hand with three finger
groups. Finger groups are moved to the target positions (squares) and selected with a click
corresponding to flexing the left elbow for selecting the character (click probabilities indicated at
bottom, click threshold indicated with dashed line). Finger groups are denoted by T (thumb), I-M
(index-middle), and R-L (ring-little). Correctly (incorrectly) selected characters indicated green
(red). (C) Distribution of target distances for selecting English sentences with right-hand
keyboard and 1 character selection per trial. Data was combined across 14 blocks of 100 trials
each, collected on four different session days. Note that the number of trials decreases with
increasing distance (as intended by the keyboard design). (D) Completion times for trials in (C).
Total trial times, time to first reach the target, and the selection time (measured as the difference
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between total trial time and first reaching the target) are separated. Note that the total trial time
and time to target increases with the distance of the target key and selection time does not
change with the distance of the target key. Individual trials are shown in Fig. S3. (E, F) Correct
characters per minute (E) and success rate (F) for point-and-click typing with the three-finger
groups on the right hand (black), six-finger groups on both hands (three-finger groups on each
hand, red) and simultaneous selection of up to two characters with a single click on the right
hand (blue). Dots indicate performance computed from a block of 100 trials. X-labels indicate
sessions.

Typing performance was evaluated using a cued character selection task, where the target
characters were visually cued for every trial. Target characters for successive trials correspond
to English sentences from (Willett et al. 2021). The task is designed to estimate an upper bound
for 'free typing speed' by removing the requirement for the user to locate the desired key (in
addition to controlling finger movement). True free typing speed would thus necessarily be
slower than this upper bound due to the increased cognitive load of deciding on responses and
locating each symbol on the keyboard.

When pointing with the right-hand keyboard and clicking with the left elbow, T5 achieved 31.7
(SD: 2.4) correct characters per minute (CCPM) and 89.1% (SD: 3.2%) success on average
(Fig. 3D, E, F, Fig. S3, Video S3, See Table S1 for all blocks). Time per trial ranged between
1.19s for the nearest keys (comprising 51% of the targets) and 2.67s for the farthest keys (3%
of the targets), resulting in an average trial time of 1.49s (Fig. 3F). To identify avenues for further
improvement in speed, the total trial duration was decomposed into (1) the time taken to first
reach the target and (2) selection time, which includes the time spent ‘orbiting’ the target and
completing a click. While the time to first reach the target increased with distance as expected, a
constant amount of time (~0.5s) was spent orbiting and selecting the target key for each trial
(Fig. 3F). Motivated by this observation, we explored two avenues for increasing the
point-and-click typing speed.

The first approach aimed to reduce the average distance traveled by using a keyboard
developed for both hands, resulting in six finger groups (three on each hand). Compared to the
right-hand keyboard, the bimanual keyboard had fewer characters per finger (Fig. 1H). When T5
attempted to click with the left hand while using the bimanual keyboard, the click times were
high, due to a lag in switching between the attempted movement of the fingers on the left hand
and the movement of the left elbow (self-reported by T5). In contrast, clicking with an attempted
“gas pedal” movement on both ankles was faster. However, compared to the right-hand
keyboard, this strategy did not result in an improved overall typing performance (CCPM: 26.5
with SD 2.41, Accuracy: 86.8% with SD 2.5%), presumably because of greater noise in
decoding the ipsilateral movements and larger number of degrees of freedom (Fig. 3E, F, Video
S4).

The second approach aimed to reduce the total time spent clicking by enabling the selection of
two successive characters at once. Specifically, if successive characters in a sentence are on
different finger groups, they can be simultaneously pointed to by corresponding fingers and then
selected with a single click. This approach has recently shown high throughput in a center-out
target acquisition task using virtual fingers (Willsey et al. 2024). For the right-hand keyboard with
three finger groups, 63% of trials had two successive characters on different finger groups for
typing English sentences. While this approach exploits the participant’s ability to attempt
movements of multiple fingers simultaneously, a language model is required to identify the
correct order of the two simultaneously selected characters. Using this method, T5 was able to
select characters at 33.2 (SD 5.48) characters per minute, a modest improvement from single
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character selection per trial (Fig. 3E, F, Video S5). Notably, a language model from (Fan et al.
2023) was able to identify the correct order of characters resulting in an overall 9% character
error rate. Although this method allowed for slightly faster typing, it would likely require
extensive practice given the much higher cognitive load required to select two consecutive
characters at once. Regardless, throughput in this range is consistent with previous reports of
point-and-click typing ranging from 31-40 correct cpm (Pandarinath et al. 2017).

“Keystroke” character selection with open-loop finger movements

Fig. 4: Character selection with rapid keystroke movements on the bimanual keyboard.
(A) The bimanual keyboard reproduced from Fig. 1H. (B) Table shows the characters and
corresponding finger group movement used for encoding them. Multiple characters map to the
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same finger movement, resulting in lossy encoding. (C) Decoding using a language model.
First, finger movements are decoded from recorded neural activity (top row). Finger movements
are indicated by a tuple of laterality (L/R), finger group (thumb: T, Index-Middle: I-M, Ring-Little:
R-L), and movement (Extension: Ex, Flexion: Fx). Next, the subset of characters encoded by
each finger movement is identified (second row, characters along a column sorted according to
the decreasing probability in the English language). Third, a tri-gram language model (from (Fan
et al. 2023)) is used to identify plausible English sentences from the decoded characters (the
decoded sentence is indicated by the red line and the third row). Detailed formulation in
Methods and Fig. S4. (D) Mean probability over fingers for different target fingers using a logistic
regression-based decoder, averaged over 28 sentences presented at 1 second/character. (E)
Character error rate after decoding finger movement and applying the language model (black)
for sentences cued at different speeds (60, 75, or 90 characters per minute). Each dot
represents a session. A lag of 0.25 sec was added to neural activity compared to cue onset for
the fastest speed (0.67 sec/char). Lower bounds (gray) measured the best possible character
error rates assuming that the target fingers are perfectly decoded. Specifically, all keys along a
target finger direction are assigned a uniform probability and processed by a language model to
identify the most likely sentence. Error bars indicate the standard deviation of the error rate,
computed by bootstrapping the sentences.

The second paradigm we considered is “keystroke typing”, which allows the selection of a
sequence of characters with discrete finger movements performed in an open-loop (without
feedback). In this approach, the magnitude of finger movement is ignored and only flexion
versus extension is decoded. Ideally, the number of symbols must be matched to the number of
discrete movements, so that the information transmission is lossless if the movements can be
perfectly decoded. However, this is not possible given the need to encode 31 symbols with six
discrete movements for the right-hand keyboard (with three finger groups and two
flexion/extension movements each), resulting in confusion between 4-6 characters per
movement, or 12 discrete movements for the bimanual keyboard (with three finger groups of
each hand), resulting in a confusion between 2-3 characters per movement.

Even though perfectly lossless communication is infeasible, one could leverage the fact that
most finger movement sequences likely correspond to a single realistic English sentence.
Assuming a perfect ability to decode finger movements, the capability of such an error
correction method was determined using the following analysis (Fig. 4A, B, C, D). First,
sentences were encoded into a sequence of finger movement directions. Then, uniform
probability was assigned to all characters along a finger movement direction. Finally, a language
model (Fan et al. 2023) used the sequence of probabilities to identify the most likely English
sentence. This procedure resulted in a 5% error for the right-hand keyboard and less than 1.5%
error for the bimanual keyboard. Since the error rate was lower, we evaluated the performance
of keystroke typing using the bimanual keyboard in participant T5.

Neural activity was recorded as T5 attempted a sequence of finger movements toward a target
character, with a different cued character shown at regular intervals of 0.67 seconds, 0.8
seconds, or 1 second across tasks. For each movement, a logistic regression classifier
predicted a probability distribution over finger movements. This probability distribution was then
fed as input to the error correction procedure described above. For 1 second per character (two
sessions), 0.8 second per character (one session) and 0.67 second per character (one session)
speeds, the final character error rate was <10%, resulting in typing speeds of 60, 75, and 90
characters per minute respectively. These error rates were close to the best possible error rates
assuming perfect finger decoding (Fig. 4E), suggesting a minimal impact of finger decoding
error on final performance. Overall, the peak performance of “keystroke” typing is comparable to
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the high communication throughput seen in classifying handwritten characters at 90 characters
per minute with error rates of <1% (Willett et al. 2021).

Leveraging shared finger movements for efficient decoder estimation

Fig. 5: Leveraging shared finger movements across tasks enables efficient decoder
estimation. (A) Performance (y-axis) of three decoders on the closed-loop point-and-hold task
with the right hand with different amounts of training data (x-axis). Decoders were either
pre-trained on other sessions and fine-tuned on the target session (purple and blue) or
fine-tuned on the target session from scratch (red, random initialization of decoder parameters).
Performance was evaluated using the directional signal-to-noise ratio (dSNR, (Willsey et al.
2024)) of predictions on testing data. The solid line indicates the average dSNR across ten
blocks and transparent lines indicate the standard error across blocks. While the dSNR
increased with the amount of fine-tuning data for all decoders, the pre-trained decoders (purple
and blue) outperformed the decoder fine-tuned from scratch (red). Pretraining on the
closed-loop point-and-hold as well as the open-loop keystroke typing task (blue) outperformed a
decoder pre-trained only on the closed-loop point-and-hold task (purple). See the methods
section for details. (B) Same as (A) but for bimanual typing. Performance averaged over four
testing blocks.

The ability to use finger movements across two distinct typing paradigms (continuous and
discrete) makes it possible to build a shared decoder across them. Foundation models, which
have recently become popular in machine learning, are pretrained on a diverse collection of
tasks and can be efficiently adapted (fine-tuned) on various downstream tasks to provide high
accuracy (Bommasani et al. 2021). The possibility of such a foundation model for finger
movements was tested in different ways.

First, we tested if a neural network decoder pre-trained on data from multiple sessions of
point-and-hold typing with the right-hand keyboard improved decoding in a new session of the
same task (Fig. 3D). While the performance of both a pre-trained decoder and a decoder trained
from scratch increased with the amount of fine-tuning data from the target session, the
performance of the pretrained decoder was consistently superior. Moreover, the performance
gap increased with more data used for pretraining, suggesting that the neural network decoder
identified useful features by combining data across multiple sessions.

Next, we tested if similar improvements were observed by combining data across related tasks.
A logistic regression decoder already performed well for keystroke typing, so we only tested this
approach for learning the neural network decoder for point-and-hold tasks. For the
point-and-hold tasks with either the right hand or both hands, fine-tuning a decoder that was
pre-trained on all the tasks (11 sessions of closed-loop right-hand point-and-hold, 7 sessions of
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closed-loop bimanual point-and-hold and 17 sessions of open-loop bimanual keystroke
sequences) performed better compared to a decoder trained from scratch (i.e., randomly
initialized parameters; Fig. 5A, B). For both open-loop and closed-loop tasks, the decoder
training assumed that the participant was moving towards the cued keys at each point of time
and the decoder architecture was modified to predict both the continuous-valued finger
velocities and discrete finger groups (see Methods). Notably, combining data from the keystroke
character selection task improved decoder performance compared to a decoder pre-trained only
for the point-and-hold task. This suggests that combining data from multiple related tasks with
shared underlying finger movements is beneficial.

Discussion

In today's digital age, the ability to interact with devices such as computers and smartphones
plays a crucial role in staying connected with friends and loved ones, as well as enabling access
to the vast array of information available online. Unfortunately, individuals with tetraplegia,
including those with locked-in syndrome (paralysis of almost all voluntary muscles), often find
themselves cut off from these essential digital interactions. To bridge this gap, a variety of
assistive communication technologies have been developed, from eye-tracking systems to
advanced neural interfaces. These technologies have made significant strides, enabling control
over 2D cursors (Bacher et al. 2015; Jarosiewicz et al. 2015; Gilja et al. 2015; Pandarinath et al.
2017), facilitating handwriting (Willett et al. 2021), and even supporting speech (Willett et al.
2023; Metzger et al. 2023; Card et al. 2023). Despite advancements in voice-to-text
transcription, there is a lack of technology that enables users to type directly through finger
movements. This technology would replicate the functionality of the widely used QWERTY
keyboard, a tool that remains essential for computer use. We focused on developing a neural
interface that enables typewriting by interpreting attempted finger movements. This approach
aims to offer the same speed and flexibility that individuals experience when using a traditional
computer keyboard.

In our study, we explored the adaptability of the typing interface through two distinct BCI
paradigms. The first paradigm, point-and-click typing, utilizes real-time virtual finger movements
to create a versatile interface. This method achieved a typing speed of 30-40 correct characters
per minute for English sentences, matching the typing speed observed in traditional
point-and-click methods using a 2D cursor (Pandarinath et al. 2017). The second paradigm,
keystroke typing, involves a series of discrete finger movements without real-time feedback,
resulting in notably higher speeds. When combined with effective error correction techniques to
account for the uncertainty in character decoding, this approach allows for a balance between
speed and accuracy, echoing the recent advancements in neural interface speeds for both
handwriting and speech. Remarkably, typing English sentences via keystrokes more than
doubled the speed achievable with point-and-click typing, matching the 90 characters per
minute reported for handwriting decoding (Willett et al. 2021). While our evaluation primarily
focused on cued character selection, with practice and familiarization with the keyboard layout,
users could potentially approach these maximum performance levels.

Beyond these two paradigms, the flexibility of finger movements enables further adaptability and
generalization of the interface. First, the interface can be used with one or two hands (with the
current study being the first to enable closed-loop movements of bimanual fingers from a
unilateral implant). Second, either one character can be selected at a time or multiple characters
can be selected simultaneously with different fingers. Third, a shared decoder can be deployed
across these typing strategies allowing users to quickly switch between them. Fourth, a hybrid
of the point-and-click and keystroke paradigm is possible in the future – the likely sequence of
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characters can be identified by classifying finger trajectories produced using closed-loop control.
By removing the slower aspects of closed-loop control such as the time spent clicking at the end
of each trial, this approach could potentially improve the typing speed. Finally, the continuous
velocity decoder for finger movements could be adapted to other tasks such as enabling a
virtual joystick for video game control (Willsey et al. 2024). This level of adaptability empowers
BCI users to customize the interface to their unique needs, potentially enhancing the likelihood
of widespread adoption of this technology (Scherer et al. 2005; Blabe et al. 2015; Fried-Oken,
Mooney, and Peters 2015; Pitt and Brumberg 2018).

The balance between flexibility and high performance is achieved through several key factors.
First, finger movements offer multiple, largely independent degrees of freedom, unified under a
shared structure of kinematics and neural representation. In able-bodied individuals, these
distinctive properties of finger movements enable astonishing feats of precision and dexterity,
such as intricate musical instrument performance, detailed artistry, and sophisticated sign
language communication. For BCI users, finger movements provide an opportunity for a high
degree of freedom control with reduced cognitive load.

Second, we use the statistics of the English language to simplify the finger movements required
for typing. For the point-and-click mode, the high-frequency letters were placed closer to the
starting position, thereby minimizing the average travel distance. For the keystroke sequences,
the vocabulary of 31 characters was compressed into 12 distinct finger movements. While this
compression is lossy, a language model was able to effectively reconstruct sentences with low
errors.

Finally, we optimized the interface to improve performance with the limited SNR provided by
existing neural interfaces. To this end, we limited each finger to one axis of motion
(flexion-extension) and confined the movement to three finger groups per hand. We did not
employ the standard QWERTY keyboard layout in this study, as it requires complex wrist and
finger movements. Additionally, frequently used letters like E, T, and A are positioned on the
side of the hand with lower SNR in our participant. However, we anticipate that future
intracortical BCIs, perhaps incorporating increased channel counts, inputs from both brain
hemispheres, and an advanced language model could potentially enable QWERTY typing.

Overall, this work introduces a high-performance typing intracortical BCI system that utilizes
finger movements and offers customizable configurations spanning continuous and discrete
movements, one or more fingers, and one or both hands. This work lays the foundation for
future BCI designs that use a high degree of freedom movements to provide flexibility and
prioritize end-user needs.
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Methods

Clinical trial and participant
The participant, T5, was enrolled in the BrainGate2 Neural Interface System clinical trial
(NCT00912041, registered June 3, 2009) with an investigational device exemption (IDE
#G090003). This study was approved by the Institutional Review Board (IRB) of Stanford
University (protocol #20804) and the Mass General Brigham IRB (protocol #2009P000505).
The participant, T5, was a 69-year-old right-handed man with a C4 AIS C spinal cord injury. In
August 2016, two 96-channel microelectrode arrays (Neuroport arrays with 1.5-mm electrode
length; Blackrock Microsystems, Salt Lake City, UT) were placed in the anatomically identified
hand ‘knob’ area of the left precentral gyrus. Detailed array locations are depicted on an
MRI-reconstructed graphic in (Deo et al. 2023) in Extended Data Fig. 1a. Below the level of
injury, T5 had very low amplitude movements of his limbs that consisted primarily of muscle
twitching (Willett et al. 2020) for neurologic exam details.

Neural recordings
The BCI rig was set up in two distinct configurations as our lab transitioned from an older analog
setup to a newer digital setup. In the first setup used until 7/10/2023, the BCI rig was set up with
2 patient cables connected to transcutaneous pedestals, which were routed to the Neural Signal
Front End Amplifier (Blackrock Neurotech, Salt Lake City, Utah) where the raw voltage was
bandpass filtered (0.3 Hz first-order high-pass and 7.5 kHz third-order low-pass), sampled at 30
kHz with 250 nV resolution, converted to an optical signal, and then sent to the Neural Signal
Processor (Microsystems 2023). From 7/26/2023 and later, 2 Neuroplex E headstages were
connected to 2 transcutaneous pedestals, and the signal was analog filtered and sampled at the
headstage and then sent to the digital hub via a micro-HDMI cable. At the digital hub, the signal
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was converted to an optical signal transmitted via optical cable to the Neural Signal Processor.
The Neural Signal Processor sent the digital signal to a SuperLogics machine running Simulink
Real-Time (v2019, Mathworks, Natick, MA). Common average referencing (CAR) was used to
reduce the electrical noise on the input channels for ‘point-and-click’ sessions, which were
performed before June 2023. Due to additional noise in recordings after June 2023, linear
regression referencing (Young et al. 2018) was used for ‘keystroke’ typing sessions.

For threshold crossing detection, we used a −4.5 x RMS threshold applied to each electrode,
where RMS is the electrode-specific root mean square (standard deviation) of the voltage-time
series recorded on that electrode. Threshold crossing counts were computed in 20 ms bins for
analysis and decoding. To compute spike-band power (SBP), the signals then passed through a
250-Hz digital high-pass filter, squared and summed in 20-ms windows.

Every 20 ms, UDP packets of neural features were communicated to a Linux computer running
Ubuntu with Python (v3.7.11), Tensorflow 2.7 (https://www.tensorflow.org/), and Redis (v7.02),
which implemented the decoding algorithm. The entire system was interfaced with an additional
Windows computer running Matlab (v2019, Mathworks, Natick, MA) that was used to stop and
start experimental runs during sessions.

Keyboard design
A virtual keyboard with a finger and hand visualization was developed in Unity Software (Unity
Technologies, San Francisco) using a pre-made hand model (Barnett, n.d.). The fingers and
hand were animated by specifying the trajectory of joint positions and rotations directly from an
external program using Redis. Finger motion involved only the flexion-extension movements of
individual fingers and joint positions and angles were interpolated between a complete flexion
and extension position.

Keys were evenly spaced between complete flexion (=0) and complete extension (=1, spacing =
0.15 units), with the neutral rest corresponding to 0.5. Keys on nearby fingers were staggered
with respect to each other so that unique characters could still be selected when fingers were
constrained to move together as a single finger group (e.g. index/middle and ring/little).

Variants of the keyboard were developed for either using the right hand only or using both hands
(bimanual keyboard). Characters were assigned to keys based on the unigram frequencies of
characters in the English language. Thirty-one characters (26 letters + four symbols) were
considered, matching the character set used in (Willett et al. 2021). Unigram frequencies were
estimated using 57340 sentences in the Brown Corpus (Francis and Kucera 1979).
High-frequency symbols were placed closer to rest and evenly distributed across finger groups.
Characters were assigned to keys greedily in order of decreasing frequency, with a preference
for flexion over extension, right hand over left hand (for the bimanual keyboard), and thumb over
index-middle and index-middle over ring-little finger groups.

Point-and-click character selection
Point-and-click typing consists of moving a virtual finger over a key followed by selecting it with
a ‘click’, triggered by a rapid attempted movement of another (non-finger) effector. Typing was
evaluated with cued character selection since free typing would require memorizing the location
of all symbols, requiring substantial practice. Character sequences forming sentences from
(Willett et al. 2021) were cued.

The target characters were cued (in red) at the beginning of each trial and started with fingers at
rest (midway between complete flexion and extension). As the participant attempted to move
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the virtual fingers, the selected character was highlighted in blue. The participant initiates a click
to finalize the selection. Trials finish as soon as a click is administered, and the character
indicated by the fingers is selected. Finger positions were then reset to the rest position before
the beginning of the next trial.

Clicks were decoded using a logistic regression-based classifier. The click-classifier was learned
using an open-loop finger movement task, where each trial ended in an attempted click. A click
was administered if the click probability was above a threshold of 0.5 continuously for a hold
period (30-80ms). A refractory period (450ms) was administered after the click, where clicks
could not be re-administered.

A neural-network-based decoder estimated finger velocities from neural activity recordings (see
below for details). The finger velocities were used to update finger position only if the click
probability was below a threshold of 0.5.

Three configurations of the point-and-click character selection were tested: (1) selecting one
character in a sentence per trial; using the right-hand keyboard with three finger groups; clicking
using the ‘jerking’ movement of the left-hand elbow, (2) selecting one character per trial; using
the bimanual keyboard with three finger groups each; clicking using the movement of both feet
and (3) selecting up to two characters per trial if successive characters in a sentence are on
different finger groups; using the right-hand keyboard with three finger groups; clicking using the
movement of the left-hand elbow (same as 1).

For selecting characters after a click, the fingers sufficiently far from their rest position are first
identified and the closest one (or two, depending on the task) character(s) to the corresponding
non-rest finger are selected.

Note that, when multiple characters are cued per trial, a language model is necessary to identify
the order of selected characters. The details of language model usage are described below.

Continuous velocity decoding for point-and-click typing.
We developed a recipe for estimating the parameters of a non-linear decoder for continuous
control of multiple degrees of freedom movements. We describe four steps for building the
decoder pipeline, each designed to solve a unique challenge associated with a high degree of
freedom motor decoding. These steps consist of (1) collecting training data (addresses
distribution shift in neural activity between open-loop and closed-loop movements), (2) deciding
decoder architecture (addresses non-linear representation of movements), (3) training the
decoder (reduces data required for training neural network decoders) and (4) postprocessing of
predicted velocities (incorporates task-related priors).

1. Training data gathered during closed-loop movements. The first problem is the difference in
the neural activity between open-loop movements (i.e., without instantaneous visual feedback),
which is typically used to build the initial decoder, and closed-loop movements (i.e., with
instantaneous visual feedback), which is needed for typing (Koyama et al. 2010; Jarosiewicz et
al. 2013). As shown in Fig. S2a, mean activity across channels was different between nearby
blocks of open-loop and closed-loop movements. Since the eventual decoder usage will be
during closed-loop movements, we aim to maximize the amount of closed-loop data used for
training. One way is to deploy the decoder in closed-loop and continuously update the decoder
as more training data is collected (Fig. 2C, (Brandman et al. 2018)).
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For the finger movement decoding considered in this paper, training data was collected during a
point-and-hold task that cues a single finger group movement in each trial. Target keys were
randomly cued with uniform probability across finger directions. The participant attempts to
move the finger corresponding to the target key with a logistic regression-based classifier. The
classifier either predicts no movement or the movement of one finger group. For the predicted
finger group, the position is updated with a constant velocity. When the total time spent over a
key exceeds 2 seconds during a trial, the key is selected and the next trial begins.

At each time step, the training data is augmented by logging the neural activity and
corresponding attempted movements (assuming that only the target finger is moving towards
the target key and the other fingers are at rest), and the logistic-regression-based classifier is
learned from scratch (implemented in sklearn; Pedregosa et al. 2011) continuously.

Note that the decoder is not available until all movements have been attempted at least once,
necessitating that a small (~10) number of initial trials are open-loop. At the end of a five-minute
long block with nearly 100 trials, the training set consists of mostly closed-loop data.

2. Movement decoding using a neural network model. The second problem is the non-linear
representation of finger movements - the magnitude of neural activity is non-linearly related to
the finger velocities (Willsey et al. 2022; Temmar et al. 2024), and the activities of individual
fingers sum pseudo-linearly during simultaneous finger movements (Shah et al. 2023). This
calls for using a non-linear model to decode attempted finger velocities from neural activity. We
use a fully connected, feed-forward neural network that relates the instantaneous neural activity
across multiple-time steps (5 steps of 20ms bins resulting in 100 total ms of neural activity) to
the attempted velocities (Fig. 2A). The input is a concatenation of neural activity (threshold
crossings, with SBP included for later sessions, see Table S1, S2, and S3). The decoder
architecture has a concatenation of four modules, with each module consisting of a fully
connected neural network, or dense layer (256 units), dropout (with rate 0.1), batch
normalization and rectifying nonlinearity (f(x) = max(x, 0)). The architecture is similar to those
previously reported (Willsey et al. 2022, 2024) although without the initial convolutional layer,
which reduces the number of learnable parameters; using five 20ms time-bins of threshold
crossing and SBP instead of three 50ms time-bins of SBP. The output of the decoder was
velocities for each finger group (three outputs for the right-hand keyboard and six outputs for the
bimanual keyboard). The attempted movements were used as output labels for training and
were labeled based on the relative location of each finger compared to the target, either as +1
(extension), 0 (rest), or -1 (flexion). The decoder was trained with mean-squared error loss.

The decoder was implemented in Tensorflow 2.7 and trained with Adam optimizer (step size
0.0001, batch size 200). Data was partitioned into training (80%) and evaluation data (20%),
and training was stopped when the loss on evaluation data (calculated every 20 training steps)
did not decrease in the last 200 evaluation steps.

3. Pre-training and fine-tuning to reduce in-session calibration time. The third problem is that
neural network decoders with a large number of learned parameters typically require a large
amount of training data, which may be more than the amount that can be recorded in a single
5-minute block. To reduce the calibration times, the decoder was pretrained on the data
collected from previous sessions and fine-tuned on the data collected on a target session day.
Both pretraining and fine-tuning used the closed-loop data collected with a logistic-regression
classifier-based decoder updating in real-time, as described in the ‘Training data’ section above.
The pre-training and fine-tuning approach improved performance compared to training the
model from scratch (i.e., random initialization of decoder parameters, Fig. 2D).
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4. Post-processing to reduce finger drift. The fourth problem is that the errors in finger velocity
predictions can accumulate over timesteps, resulting in drifting finger positions. Specifically,
when the target velocities are zero (i.e., fingers are not supposed to move), the trained decoder
typically predicts low amplitude values dispersed around zero, and this velocity is integrated
over multiple time steps to result in a drift for the finger. The drift needs a participant-initiated
corrective movement back to rest, making the fingers less controllable. This issue was
minimized with soft-thresholding, which makes all predictions less than a certain threshold
around rest exactly zero and thus removing drift (Fig. 2E). In A-B-A-B testing, incorporating
soft-thresholding was shown to improve performance (Supp. Fig. 3). In addition to
soft-thresholding, other post-processing steps including applying a hand-tuned scalar gain to the
decoded velocities (identical across fingers), smoothening the velocities across successive time
steps, and applying a power function (f(x) = xp, p>1) to account for a non-linear relationship
between attempted movement strength and neural activity magnitude as shown in (Willsey et al.
2022)). The hyperparameters were selected by manual quasi-optimization and are detailed in
Tables S1, S2, and S3.

Keystroke character selection
Keystroke character selection was evaluated using the bimanual keyboard with three finger
groups on each hand. A letter was cued at regular intervals (1sec, 0.8, or 0.67 sec) and the
participant was instructed to attempt movement of the corresponding finger in the corresponding
direction. No closed-loop feedback was given during the attempted movements.

Selected character sequences were estimated by first decoding finger-group movements from
neural recordings and followed by error correction using a language model. A logistic regression
classifier decoded the summed neural activity (both threshold crossings and Spike Band Power
after Z-scoring within each block) within a trial into one of 12 different finger movement
directions (finger movement classes correspond to all combinations of flexion/extension,
thumb/index-middle/ring-little finger groups, and left/right hands). The classifier was tested on all
trials of a sentence after training it on all other sentences. Hence, the classifier gives an array of
finger movement probabilities for each trial. For faster speeds (0.67sec / trial), the analyzed
window of neural activity was delayed by 0.25 seconds from cue onset.

This array was converted into an array of character probabilities, by applying a uniform
distribution to all characters along a finger movement direction in the bimanual keyboard. For
example, as ‘T’, ‘M’, and ‘X’ all correspond to left-hand thumb extension, p(character ‘T’) = (1/3)
x p (left thumb extension) for the trial.

Language model
The details of the language model (LM) are described in (Fan et al. 2023). Briefly, a 3-gram LM,
along with a beam search algorithm, processed a character probability output and translated it
into words. The 3-gram LM was trained on the OpenWebText2 (Gao et al. 2020) corpus using
Kaldi (Povey, Ghoshal, and Boulianne 2011). It uses a 130,000-word vocabulary taken from the
CMU Pronouncing Dictionary (“The CMU Pronouncing Dictionary,” n.d.). Below, we describe
how the character probability output was constructed for (i) point-and-click typing with two
character selections per trial and (ii) keystroke typing.

Bimanual Keystroke character selection. For each keystroke trial, a sequence of two probability
vectors was constructed to use as input to the language model, each of length N+1, where N is
the size of the character set (N=31 in this work). The extra symbol encodes a ‘blank’ symbol
used for Connectionist Temporal Classification (CTC) loss (Graves et al. 2006) and indicates the
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beginning of a new character in the sequence. The first vector corresponds to the probability of
different characters described above (with 0 probability for the blank symbol). The second vector
corresponds to zero probability for all symbols other than the blank symbol. Hence, a character
sequence with L characters and character set size N (=31 in this work) is converted to an array
of probabilities of size 2L x (N + 1). The LM evaluates this array to give the most likely English
sentence.

Point-and-click character selection, up to two characters per trial, right-hand keyboard. In this
case, the primary role of the LM is to identify the order of characters that are selected
simultaneously in each trial. Additionally, it could also reduce the error from incorrect character
selections - namely, in cases where the wrong number of characters is selected (one character
selected instead of two target characters, or two characters instead of one); or the wrong set of
characters is selected even if the number of selected characters is correct. To account for all
these possibilities, the selected characters were converted to an array of probability vectors with
each trial corresponding to six probability vectors. The first and third vectors encode the
selected characters, with the log probability of selected characters being 0, other characters
being -5, and blank symbols being -5. The second and fourth vectors allow for an additional
character with the log probability of all characters being -3 and the blank symbol being 0. The
third and sixth vectors allow for the blank symbol with the log probability of all characters being
-5 and the blank symbol being 0.

Performance metrics
Typing performance was characterized by measuring the accuracy and speed of character
selection. The success rate measures the fraction of correct character selections across all the
trials in a block. Correct Characters Per Minute (CCPM) for a block is computed as # correct
character selections / total time. Character error rate is calculated by summing the edit
distances between the target sentence and the decoded sentence for all target sentences within
a block, and then dividing by the total length of all target sentences. Edit distance is calculated
as the minimum number of additions, deletions, or substitutions required to transform one string
into the other.

Decoding accuracy is measured using the alignment of the predicted velocity to the target
velocity at each time step. Directional signal-to-noise Ratio (dSNR) is the ratio of the component
of velocity along the target velocity direction (i.e. signal) and the component orthogonal to the
target velocity direction (i.e. noise). Mathematically, for the target velocity unit vector ,𝑡

^

𝑖
predicted velocity at the time step , dSNR is given by (see (Willsey et al. 2024) for further𝑝

𝑖
𝑖

details):
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Multi-task training
For the multi-task training analysis depicted in Fig. 5, the neural network decoder described
above was used, with a modification to allow linearly reading out the continuous output (finger
velocity) and discrete output (finger class) from the last layer. Both discrete and continuous
outputs were used for each task (either point-and-hold or keystroke typing). The continuous
output was trained with mean squared error to velocity output (+1 for extension, -1 for flexion,
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and 0 for no movement). The discrete output was trained with the cross-entropy loss to the
discrete movement classes (13 classes, with 12 classes corresponding to finger movement
combinations of flexion/extension movements on three-finger groups on either hand and one
class for no movement). When applying the decoder on the right-hand tasks, the velocity output
for the left hand was trained to be zero (as the participant was not attempting to move the left
hand).

Only the continuous output was used for evaluation, as it is the only task-relevant output for the
point-and-hold task. For the right-hand keyboard, only the velocity output for the right hand was
used.

For pretraining, 11 training blocks (with one block per session) for right-hand point-and-click
(closed-loop data), 7 blocks for bimanual point-and-click (closed-loop data), and 17 blocks for
keystroke typing (open-loop data) were used. Fine-tuning was performed on increasing amounts
of training data from a block and evaluated on held-out data from the same block. For
fine-tuning and evaluation, ten blocks for right-hand keyboard point-and-hold and 4 blocks for
bimanual keyboard point-and-hold were used. The final performance was averaged across all
blocks.
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Fig. S1. Closed-loop position control of finger movements.

Fig. S2. Soft thresholding of predicted velocities for multiple degrees of freedom decoding.

Fig. S3. Trial times for point-and-click on the right-hand keyboard with one character per trial.

Fig. S4. Details of neural decoding for keystroke typing using the bimanual keyboard.

Video S1. Real-time position control of two finger groups.

Video S2. Real-time position control of isolated movements of individual fingers.

Video S3. Right-hand point-and-click typing using three-finger groups.

Video S4. Bimanual point-and-click typing using three-finger groups.

Video S5. Right-hand point-and-click typing with three finger groups and a selection of up to two
characters per trial.

Table S1. Parameters for point-and-click typing using the right hand, three finger groups, one
target/trial, click with the left hand.
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Table S2. Parameters for point-and-click typing using the right hand, three finger groups, two
chars/trial, moving one finger at a time, and clicking using the left hand.

Table S3. Parameters for point-and-click typing using both hands (bimanual), three finger
groups on each hand, one target/trial, and clicking with both feet.

Fig. S1 Closed-loop position control of finger movements. (A) Decoder architecture: Binned
multi-unit neural activity is passed through a day-specific linear filter, followed by a temporal
convolutional layer and rectification. The two separate linear readouts predict the positions of
individual fingers (continuous output) and movement probability (either flexion or extension) of
individual fingers (discrete output) respectively. For the isolated single-finger movement task,
the continuous finger position output is used only if the discrete finger movement probability is
above a threshold. (B, C, D) Simultaneous movement of two finger groups (thumb, and all other
fingers linked together). (B) Examples of achieved gestures. (C) Decoded finger positions for a
single block. Squares indicate target positions for two finger groups. Each trial consisted of a
preparatory period (where the target was indicated but movement was not required) and a move
period (where T5 attempted to move toward the target). Trials alternated between going from
neutral/rest position to a random target position and going back to neutral/rest. Target positions
were sampled independently between 0-1, with a grid size of 0.1; the rest corresponds to 0.5
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Trials were successful (green squares) if both finger groups were within 10% of the target
position for both fingers for 0.6s continuously, and are declared a failure (red squares) if the
target was not attained after 10s. (D) Target acquisition times, separated for the two types of
trials: going out to a target gesture (neutral → gesture) and going back to the neutral gesture
(gesture → neutral). Each dot is a single trial, successful trials are shown in green, and failed
trials are shown in red. (E, F, G) Same as (B-D) for isolated movements of single fingers, where
one (and only one) finger is required to move in each trial.

Fig. S2. Soft-thresholding of predicted velocities for multiple degrees of freedom
decoding. (A, B) Soft-thresholding function, given by f(x) = max(x-d, 0) - max(-x - d, 0) zeros
out any x between -d and d, and reduces the magnitude by d for any |x| > d. Finger trajectories
in a block with soft-thresholding used (A) or not used (B). Note the jittering positions of
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non-target fingers (indicated by arrows) when soft-thresholding was not used, which is absent
when sof-threshold is used. (C) reproduced from Fig. 3D. (D) similar to (C), without
soft-thresholding. (E, F) A-B-A-B testing of closed-loop finger control with and without
soft-thresholding. Performance was measured by the correct character selections per minute (E)
and accuracy (F). 95% Confidence intervals computed by bootstrapping (10000 resamplings).
For both the measures, the difference between all trials with soft-thresholding and without
soft-thresholding was significant (p<0.001, bootstrapping with 10000 resamplings).

Fig. S3. Trial times for point-and-click on the right-hand keyboard with one character per
trial. Trial completion times for the right-hand keyboard (one character per trial), separated by
the distance of the target key from the rest (x-axis). Total trial times, time to first reach the target,
and the orbit + click time (measured as the difference between total trial time and first reaching
the target) are separated. Successful (failed) trials are indicated by green dots (red). Trials can
fail due to a time-out of 10 seconds or incorrect character selection. For each distance, trials are
grouped by the recording block, with the within-block mean indicated by black dots and the
mean across all blocks indicated by the black line. Note that the number of target keys
decreases with increasing distance (as intended by the keyboard design); total trial time and
time to target increases with the distance of the target key and orbit + click time does not
change with the distance of the target key.

Fig. S4. Details of neural decoding for keystroke typing using the bimanual keyboard. A
decoder uses neural activity recorded concurrently with the finger movements and predicts a
probability distribution over finger movements, which is then converted into a distribution over
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characters assuming the equal probability of different characters along a finger movement
direction (ex. left thumb extension corresponds to a uniform distribution over symbols T, M and
X). The probability distribution associated with each character in a sentence is then passed
through a language model. Finger movements are indicated by a tuple of laterality (L/R), finger
group (thumb: T, Index-Middle: I-M, Ring-Little: R-L), and movement (Extension: Ex, Flexion:
Fx).

Video S1. Real-time position control of two finger groups. Recording of the closed-loop BCI
control of simultaneous movements of two finger groups. Multiple trials are shown in
succession, with each trial consisting of a preparatory period (red hands) and a move period
(green hands). Target positions at the end of the trial are shown with large markers and small
markers indicate the current finger positions. T5 was instructed to observe and prepare for the
target (but not move) during the preparatory period. Trials are successful if the markers at the
end of each finger are close (turn yellow) to the target positions for the corresponding finger.
Target positions consist of different degrees of flexion and extension of the two finger groups,
sampled independently.

Video S2 Real-time position control of isolated movements of individual fingers. Similar to
Video S1, but for isolated movements of individual fingers.

Video S3. Right Hand ‘Point-and-Click’ Typing Using Three Finger Groups. Recording of
100 trials of closed-loop BCI control for typing. Each trial begins with a cued character, marked
in red, that forms part of an English sentence. As T5 directs the relevant finger toward the cued
key, the key being selected is indicated in blue. Selection is confirmed through ‘clicking’, which
corresponds to a swift left elbow movement. The completion of a trial is marked by either a
successful selection of the cued key or a failure, characterized by the selection of an uncued
key or no selection within a 10-second window; each outcome is audibly distinguished. The
video includes an on-screen display of the target sentence (top row), the sentence decoded
from the participant's selections (second row), and corresponding performance metrics (third
row) for accuracy (percent of successful character selections) and speed (number of correct
characters per minute).

Video S4. Bimanual ‘Point-and-Click Typing’ Using Three Finger Groups. Similar to Video
S3, but with a bimanual keyboard and clicking corresponding to swift gas-pedal movement of
ankles on both feet.

Video S5. Right-hand ‘Point-and-click’ typing with three finger groups and a selection of
up to two characters per trial. If two successive characters in a sentence lie on different finger
groups, they are cued in the same trial. T5 selects both the cued characters before initiating a
click. Trials are successful only if all the cued characters are selected. The video includes an
on-screen display of the target sentence (top row), the sentence decoded from the participant's
selections assuming a perfect language model (second row), and corresponding performance
metrics for number of correct character selections (third row). Note that the results in the main
text do not assume a perfect language model. Other details are the same as in Video S3.

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2024. ; https://doi.org/10.1101/2024.04.22.590630doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.22.590630
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S1. Parameters for “Point-and-Click” typing using the right hand, three finger groups, one
target/trial, click with the left hand. Tx indicated threshold crossings and SBP indicates Spike
Band Power.
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Dataset Neural
feature
s used

Velo
city
Gai
n

Velocity
Smooth
ness

Velocit
y Soft
thresh
olding

Veloci
ty

power

Click
thresh
old

Click
hold
durati
on

Click
blankout

Accur
acy
(%)

CCP
M

t5.2023.
01.03,
block 5

TX 80 5 0 1 0.5 150m
s

450ms 92 30.9

t5.2023.
01.03,
block 6

TX 80 5 0.1 1 0.5 150m
s

450ms 96 33.2

t5.2023.
01.03,
block 7

TX 80 5 0.1 1 0.5 150m
s

450ms 95 30.1

T5.2023.
01.17,
block12

Tx 80 5 0.1 1 0.5 80ms 450ms 90 29.7

T5.2023.
01.17,
block 13

Tx 80 5 0.1 1 0.5 80ms 450ms 87 31.1

T5.2023.
01.17,
block 14

Tx 80 5 0.1 1 0.5 80ms 450ms 85 34.0

T5.2023.
01.17,
block 15

Tx 80 5 0.1 1 0.5 80ms 450ms 87 30.1

T5.2023.
01.19,
block 4

Tx 80 5 0.1 1 0.5 80ms 450ms 87 30.0

T5.2023.
01.19,
block 5

Tx 100 5 0.12 1 0.5 80ms 450ms 87 32.4
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Table S2. Parameters for “Point-and-Click” typing using the right hand, three finger groups, two
chars / trial, moving one finger at a time, click using the left hand.

29

T5.2023.
01.19,
block 6

Tx 100 5 0.12 1 0.5 80ms 450ms 87 30.8

T5.2023.
01.19,
block 19

Tx 100 5 0.12 1 0.5 80ms 450ms 88 33.7

t5.2023.
05.03,
block 20

Tx +
SBP

125 5 0.16 1.3 0.5 40ms 450ms 92 38.4

t5.2023.
05.03,
block 22

Tx +
SBP

125 5 0.16 1.3 0.5 40ms 450ms 88 28.8

t5.2023.
05.03,
block 24

Tx +
SBP

125 5 0.16 1.3 0.5 40ms 450ms 87 30.3

Dataset Feat
ures
used

Velo
city
Gain

Velocit
y

Smoot
hness

Velocity
Soft-thr
esholdin

g

Velocity
power

Click
thres
hold

Clic
k
hol
d

Click
blanko
ut

Succe
ss (%)

CCPM

t5.2023.0
4.17,
block 9

TX +
SBP

60 5 0.2 1 0.5 80
ms

450ms 86 20.3

t5.2023.0
4.17,

block 11

TX +
SBP

80 5 0.2 1 0.5 80
ms

450ms 94 33.8

t5.2023.0
4.17,

block 12

TX +
SBP

100 5 0.15 1 0.5 80
ms

450ms 94 33.9

t5.2023.0
4.17,

block 13

TX +
SBP

100 5 0.15 1 0.5 80
ms

450ms 92 31.2

t5.2023.0
4.17,

block 14

TX +
SBP

125 5 0.152 1 0.5 80
ms

450ms 81 33.9

t5.2023.0 TX + 125 5 0.2 1 0.5 80 450ms 92 36.3
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Table S3. Parameters for “Point-and-Click” typing using both hands (bimanual), three finger
groups on each hand, one target/trial, and click with both feet.

Dataset Featur
es
used

Vel
ocit
y
Gai
n

Velo
city
Smo
othn
ess

Veloci
ty

Soft-t
hresh
olding

Veloci
ty

power

Click
thresh
old

Click
hold
(ms)

Click
blankout
(ms)

Succes
s (%)

CCPM

t5.2023.05
.22 block
17

Tx+S
BP

12
5

5 0.16 1.3 0.5 30ms 450ms 87 24.2

t5.2023.05
.22 block
18

Tx+S
BP

12
5

5 0.16 1.3 0.5 30ms 450ms 87 30.5

t5.2023.05
.22 block
19

Tx+S
BP

12
5

5 0.16 1.3 0.5 30ms 450ms 90 25.4

t5.2023.05
.22 block
21

Tx+S
BP

12
5

5 0.16 1.3 0.5 30ms 450ms 83 25.7

30

4.17,
block 16

SBP ms

t5.2023.0
4.17,

block 17

TX +
SBP

125 5 0.16 1.3 0.5 80
ms

450ms 90 40.3

t5.2023.0
4.17,

block 18

TX +
SBP

125 5 0.16 1.3 0.5 80
ms

450ms 93 35.9
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