

## 1 Specific oncogene activation of the cell of origin in mucosal melanoma

2 Swathy Babu<sup>1</sup>, Jiajia Chen<sup>1</sup>, Emily Robitschek<sup>1</sup>, Chloé S. Baron<sup>2</sup>, Alicia McConnell<sup>2</sup>, Constance  
3 Wu<sup>2</sup>, Aikaterini Dedeilia<sup>3</sup>, Moshe Sade-Feldman<sup>3</sup>, Rodsy Modhurima<sup>2</sup>, Michael P. Manos<sup>1</sup>, Kevin  
4 Y. Chen<sup>2</sup>, Anna M. Cox<sup>1</sup>, Calvin G. Ludwig<sup>2</sup>, Jiekun Yang<sup>4,5</sup>, Manolis Kellis<sup>4,5</sup>, Elizabeth I.  
5 Buchbinder<sup>1</sup>, Nir Hacohen<sup>3,4,6</sup>, Genevieve M. Boland<sup>3</sup>, Brian J. Abraham<sup>7</sup>, David Liu<sup>1</sup>, Leonard I.  
6 Zon<sup>2\*</sup>, Megan L. Insco<sup>1\*</sup>

7 <sup>1</sup> Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.

8 <sup>2</sup> Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Howard  
9 Hughes Medical Institute, Boston, MA, 02115, USA.

10 <sup>3</sup> Massachusetts General Hospital (MGH) Cancer Center, Boston, MA, 02114, USA

11 <sup>4</sup> Broad Institute of Massachusetts Institute of Technology (MIT), Cambridge, MA, 02142, USA.

12 <sup>5</sup> MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, 02139, USA.

13 <sup>6</sup> Harvard Medical School (HMS), Boston, MA, USA; Department of Immunology, HMS, Boston,  
14 MA, 02115, USA.

15 <sup>7</sup> Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN,  
16 38105, USA.

17 Corresponding authors:

18 Megan\_Insco@dfci.harvard.edu and leonard.zon@enders.tch.harvard.edu

## 20 Abstract

21 Mucosal melanoma (MM) is a deadly cancer derived from mucosal melanocytes. To test the  
22 consequences of MM genetics, we developed a zebrafish model in which all melanocytes  
23 experienced CCND1 expression and loss of PTEN and TP53. Surprisingly, melanoma only  
24 developed from melanocytes lining internal organs, analogous to the location of patient MM. We  
25 found that zebrafish MMs had a unique chromatin landscape from cutaneous melanoma. Internal  
26 melanocytes could be labeled using a MM-specific transcriptional enhancer. Normal zebrafish  
27 internal melanocytes shared a gene expression signature with MMs. Patient and zebrafish MMs  
28 have increased migratory neural crest gene and decreased antigen presentation gene expression,  
29 consistent with the increased metastatic behavior and decreased immunotherapy sensitivity of  
30 MM. Our work suggests the cell state of the originating melanocyte influences the behavior of

31 derived melanomas. Our animal model phenotypically and transcriptionally mimics patient  
32 tumors, allowing this model to be used for MM therapeutic discovery.

33

34

## Main Text:

35                   Mucosal melanoma (MM) is a cancer of pigment-producing melanocytes that arises in  
36                   mucosal surfaces and has a poor prognosis with a 5-year survival rate of 27%, largely due to its  
37                   increased metastatic behavior as compared to stage-matched cutaneous melanomas (CMs)<sup>1</sup>. MMs  
38                   typically occur in sun-protected sites and thus have a lower UV mutational burden, which is  
39                   thought to contribute to the low patient responses to immune checkpoint blockade<sup>2</sup>. In contrast,  
40                   MMs have abundant large-scale genomic rearrangements, which result in oncogene amplifications  
41                   and tumor suppressor deletions<sup>3, 4, 5, 6</sup>, whose molecular, phenotypic, and therapeutic consequences  
42                   remain mysterious. Genomic studies have revealed that MM genomes rarely harbor activating  
43                   BRAF<sup>V600E</sup> mutations, making them ineligible for BRAF inhibitors. Activating KIT mutations are  
44                   enriched in MM (15%) as compared to CM (2%), however responses to KIT small molecule  
45                   inhibitors have been disappointing<sup>4, 6, 7</sup>. The discovery of therapeutics for MM will also likely  
46                   benefit a subset of CM patients as demonstrated by the approval of tebentafusp for uveal  
47                   melanoma, another rare subtype<sup>8, 9</sup>.

48

49                   Though mutational and certain phenotypic differences between MM and CM have been  
50                   identified, MM basic biology and therapeutic discoveries have been hampered by the lack of an  
51                   animal model. Rapid genetic tumor modeling in zebrafish has contributed to major discoveries in  
52                   CM biology<sup>10, 11, 12</sup>, the functional role of CRKL in acral melanoma<sup>13</sup>, as well as the role of  
53                   SPRED1 deletion in KIT inhibitor resistance in MM<sup>5</sup>. Studies of spontaneously occurring MM in  
54                   canines have been fruitful<sup>14</sup>, but there remains a need to develop genetically engineered animal  
models to determine functional drivers of MM in patients.

55

56                   By modeling a combination of genetic changes that occur in MM patients including  
CCND1 amplification and PTEN and TP53 deletion, we have developed the first *bona fide*

57 genetically engineered animal model of human MM. These CCND1-amp; *pten a/b-/-; tp53-/-* fish  
58 develop melanoma only *inside* the animal. Zebrafish MMs have a distinct epigenetic state  
59 compared to CM. A MM-specific transcriptional enhancer specifically labels a normal internal  
60 zebrafish melanocyte population, nominating a cell of origin. Single-cell RNA sequencing of adult  
61 internal and cutaneous melanocytes identifies *internal* melanocytes as the cell of origin for  
62 zebrafish MMs. Patient MMs share several key gene expression signatures with the zebrafish  
63 model including increased migratory neural crest expression profiles and decreased antigen  
64 presentation. Our data are consistent with MM originating from a unique melanocyte population  
65 whose epigenetic cell state contributes to lethality of this disease.

66 **Results:**

67 **Zebrafish model recapitulates localization of human MM.**

68 *CCND1* and *CDK4* are among the most significantly amplified genes in MM<sup>3,4,5,6</sup>. *CCND1*  
69 is amplified in a mutually exclusive pattern with *CDK4*<sup>3</sup> with amplification of either *CCND1* or  
70 *CDK4* present in 40% of MMs (27/63)<sup>6</sup> as compared to 9.6% of CM patients (n=35/363)<sup>15</sup>.  
71 Amplifications of either *CCND1* or *CDK4* occur at a significantly higher frequency in tumors that  
72 are wild type for BRAF or NRAS, suggesting that *CCND1* could be an independent melanoma  
73 driver<sup>3</sup>.

74 To test whether *CCND1* could be an independent melanoma driver, we utilized the  
75 MAZERATI<sup>5</sup> zebrafish rapid modeling system, which allows melanocyte-specific expression or  
76 loss-of-function of any gene. The MAZERATI system was utilized in zebrafish that lack *mitfa*, the  
77 master transcriptional regulator of melanocyte development, and thereby lack melanocytes.  
78 Melanocytes are rescued with vectors that express Mitfa and in a cell-autonomous melanocyte-  
79 specific manner, express or CRISPR-delete genes of interest under the control of an exogenous

80 *mitfa* promoter. Transparent *mitfa*<sup>-/-</sup>; *roy*<sup>-/-</sup> fish (hereafter referred to as Casper zebrafish) were  
81 utilized so that the location of melanoma onset could be visually discerned. Using the MAZERATI  
82 system in Casper zebrafish, we engineered melanocyte-specific expression of human *BRAF*<sup>V600E</sup>  
83 and CRISPR-deletion of *tp53*, which led to cutaneous melanomas as expected<sup>5</sup> (Fig. 1A, top).  
84 Melanocyte-specific expression of *CCND1* with CRISPR-deletion of both *pten a/b* and *tp53* led to  
85 pigmented tumors consistent with melanoma, however these tumors only arose *inside* the fish,  
86 which we have not previously observed (n=22/205) (Fig. 1A, bottom; Fig. 1B). These fish also  
87 developed tumors that were pigment free (95/205), but these were not further studied. Rare fin  
88 (fish acral) and eye (fish uveal) melanomas were also observed. This was the first time we observed  
89 melanoma being driven in the MAZERATI model in the absence of an activating MAPK pathway  
90 driver (e.g. *BRAF*<sup>V600</sup> or *NRAS*<sup>Q61</sup>). To determine the rate that this combination of drivers occurs  
91 in patients, we analyzed targeted sequencing data from 57 MM samples previously published<sup>16</sup> in  
92 addition to 27 newly sequenced patients. Out of 86 MM, 45% of patients had deleterious alterations  
93 in *PTEN* (39/86), 36% in *TP53* (31/86), 12 had amplifications in *CCND1*, and three patients had  
94 all three (Fig. S1A, Data S1). These data show that amplification of *CCND1* and loss of *PTEN*  
95 and *TP53* occur in MM patients. Together these data indicate that a population of internal  
96 melanocytes in zebrafish is susceptible to melanoma transformation upon melanocyte-specific  
97 expression of *CCND1* and loss of *pten a/b* and *tp53*.

98 Histology of the engineered internal tumors demonstrated that the dominant mass was  
99 located in or just anterior to the abdominal cavity, indicating that the tumor likely initiated from  
100 melanocytes that normally reside near this location (Fig. 1C vs. 1D). Histologic examination  
101 demonstrated that these tumors contained pigment, supporting that they are melanomas (Fig. 1C,  
102 inset). Next generation sequencing of PCR products that span the CRISPR cut sites of *ptena*, *ptenb*  
103 and *tp53* demonstrated that all three genes were targeted, and every detected allele was out-of-

104 frame (predicted to cause loss-of-function) as is expected with tumor suppressors (Fig. S1B-C).  
105 CCND1 immunohistochemistry (IHC) confirmed that all MMs checked expressed human CCND1  
106 (n=5) while the CMs lacked CCND1 (n=4) (Fig. S1D-F). As the MAPK pathway is almost  
107 universally activated in CMs, and the zebrafish internal melanomas lack an obvious MAPK  
108 pathway driver mutation, we asked whether CCND1 expression activates MAPK. IHC for pERK,  
109 a strong and specific marker of MAPK signaling, showed that all CMs (n=4) and no MMs (n=5)  
110 were positive for pERK staining (Fig. 1E vs. 1F, quantification in Fig. 1G), while control pERK  
111 staining was observed in the brains of all animals (red arrow, Fig. 1E and F). These data  
112 demonstrate that CCND1 expression along with loss of *pten a/b* and *tp53* is sufficient to cause  
113 internal melanoma in zebrafish.

114 To determine which genetic changes were required, we took a ‘minus 1’ approach for each  
115 of the three drivers using the MAZERATI model in Casper zebrafish. Expression of CCND1 with  
116 CRISPR-deletion of *pten a/b* or *tp53* did not lead to internal melanoma development, while  
117 CRISPR-deletion of *pten a/b* and *tp53* without CCND1 expression resulted in a small number of  
118 internal melanomas (Table 1, Fig 1H). These data indicate that both *pten a/b* and *tp53* loss are  
119 required for the onset of internal melanomas, while CCND1 expression amplifies the penetrance  
120 of *pten a/b* and *tp53* loss. These data show that melanocytes inside the fish, analogous to human  
121 mucosal melanocytes, are susceptible to melanoma transformation in the absence of a strong  
122 MAPK driver mutation. These data suggest that this model represents a genetically engineered  
123 model of human MM and that MM derives from a conserved cell of origin distinct from that of  
124 CM.

125 **Zebrafish MM has a distinct cellular state from CM.**

126 To determine whether zebrafish MM and CM have distinct gene expression patterns, we  
127 sequenced polyA-selected bulk RNA from zebrafish MM (n=5) and CM (n=3). 742 genes were  
128 significantly differentially expressed between MM and CM, with 320 genes upregulated and 422  
129 genes downregulated in MM (Fig. 2A). *sox10* and *mitfa* were both highly expressed and not  
130 significantly different between MM and CM, confirming that these tumors are melanomas (*sox10*,  
131  $q= 0.68$ ; *mitfa*,  $q=0.24$ ), although both were expressed at higher levels in the MM model (Fig.  
132 S2A). In the MMs, the most significant downregulated pathway by GO-term analysis was  
133 “negative regulation of MAPK activity”, including many direct targets of MAPK signaling. Less  
134 activation of MAPK target genes was expected since these animals lack an activating MAPK  
135 driver mutation. Surprisingly, *tfap2a*, a gene typically highly expressed in both patient and  
136 zebrafish CMs<sup>17</sup> was significantly downregulated in the internal melanomas (Fig 2A). Instead the  
137 ortholog, *tfap2b*, was significantly upregulated. These data show that CM and MM models have a  
138 distinct gene expression signature including an AP-2 transcription factor switch and decreased  
139 MAPK activation as shown by pERK staining and MAPK target gene expression.

140 To determine whether the internal melanomas had a distinct epigenetic state, we performed  
141 the assay for transposase-accessible chromatin using sequencing (ATAC-seq) on MM (n=3) vs.  
142 CM (n=3). MM had 4901 significantly more accessible peaks and 4719 less accessible peaks  
143 compared to CM ( $q<0.01$ ) (Fig. 2B). As we previously observed a switch in AP-2 transcription  
144 factor gene expression, we asked whether there was also a change in chromatin accessibility at the  
145 loci near these genes. The chromatin surrounding *tfap2a* was open in CMs but closed in the MMs,  
146 while the chromatin surrounding the related transcription factor *tfap2b* was closed in CMs but  
147 open in MMs (Fig. 2C). *tfap2b* was recently shown to be a marker of melanocyte stem cells in  
148 zebrafish<sup>18</sup>, suggesting that MM may derive from a less-differentiated melanocyte population. We  
149 also found that the early neural crest transcription factor *pax3b*, which has been shown to maintain

150 melanocytes in mice in an undifferentiated state<sup>19</sup>, had proximal loci that were significantly more  
151 accessible in MM than in CM (Fig. S2B).

152 As the *tfap2b*-proximal loci were consistently open in MM model and closed in CM, we  
153 wondered if we could use the *tfap2b*-proximal sequences to drive GFP to label internal  
154 melanocytes. The two most statistically enriched *tfap2b*-proximal sequences (boxes in Fig. 2C)  
155 that were present in all MM samples and absent from all CM samples were cloned preceding a  
156 *beta-globin* minimal promoter and GFP. To test whether *tfap2b*-proximal sequences could label  
157 internal melanocytes, we expressed the *tfap2b* reporter in zebrafish embryos. The *tfap2b* reporter  
158 was injected into Casper zebrafish with a vector that labels all melanocytes red (*mitfa*-mCherry)  
159 and reagents to CRISPR-delete *tyrosinase* to remove pigment to allow fluorescent imaging  
160 (schematic Fig. S2C). Injected fish were imaged at 6 days post fertilization (dpf) and the *tfap2b*-  
161 GFP reporter labeled a subset of internal and external melanocytes (Fig. 2D). Significantly more  
162 double labeled (*tfap2b*-GFP; *mitfa*-mCherry) melanocytes were identified inside the zebrafish  
163 (Fig. 2E). These data show that zebrafish MM has a unique epigenetic state and that a MM  
164 enhancer can be used to label a subset of normal internal melanocytes that are amenable to  
165 developing MM.

## 166 **Zebrafish internal melanocytes have properties consistent with MM initiating cells.**

167 To identify the location of the melanocytes that could be initiating MM in zebrafish, Casper  
168 zebrafish with melanocyte-specific GFP expression were generated and grown to adulthood. The  
169 abdominal organs were removed to visualize melanocytes in the abdominal cavity. Brightfield and  
170 fluorescent microscopy demonstrated that there were three different morphologic populations of  
171 pigmented cells on the inside of the zebrafish including those with a dendritic morphology in the  
172 anterior abdomen near the head, many that lined the superior aspect of the kidney marrow as

173 previously reported<sup>20</sup>, and those lining the abdominal cavity (Fig. 3A). Melanocyte-containing  
174 zebrafish skin or internal tissues were dissected, mechanically dissociated, digested into a single  
175 cell suspension, and fluorescence activated cell sorted (FACS) for GFP. The internal or cutaneous  
176 melanocytes were sorted and subjected to single-cell RNA sequencing (scRNA-seq) using the  
177 SORT-seq platform<sup>21</sup>, which allows matching of gene expression with FACS data and enhanced  
178 transcript detection (Fig. 3B). Sorted cells from *mitfa*:GFP zebrafish had GFP expression vs.  
179 negative controls (Fig. S3A-B). Gene expression was normalized, and cells were clustered using  
180 Seurat<sup>22</sup> (Fig. 3C and Fig. S3C). Cells expressing *mitfa*, the master transcriptional regulator of the  
181 melanocyte lineage, were hypothesized to represent true melanocytes, and informatically isolated  
182 (Fig. 3D) and re-clustered (Fig. 3E). Three distinct melanocyte populations were observed. One  
183 melanocyte population derived from only inside the zebrafish (labeled “internal”). Two other  
184 groups of melanocytes were observed, one almost entirely from zebrafish skin (labeled “external”)  
185 and another that contained cells from both locations (labeled “both”). We asked whether any of  
186 the melanocytes in Fig. 2E expressed *tfap2b* vs. *tfap2a*. The “external” and “both” melanocyte  
187 groups expressed *tfap2a* (Fig 3F, first panel); whereas a subset of the “internal” melanocytes  
188 expressed *tfap2b*, consistent with the *tfap2b* reporter identifying a subset of internal melanocytes  
189 as in Fig. 2C-D (Fig. 3F second panel). To determine which melanocyte population likely was the  
190 cell of origin for MM, we asked which normal melanocyte population had the most similar gene  
191 expression to zebrafish MM tumors. “Internal” melanocytes alone expressed all 12 genes that were  
192 upregulated in zebrafish MM from Fig. 2A, many at high levels and in a large percentage of cells  
193 (Fig. 3G, left). “Internal” melanocytes also expressed high levels of cell cycles genes including  
194 those that are typically expressed in actively dividing cells (S or G2/M phase), indicating that these  
195 cells may represent a transit amplifying melanocyte population in adult zebrafish (Fig. 3G, see  
196 Cell Cycle Genes, Fig. S3D). These data show that internal adult zebrafish mucosal melanocytes

197 have a distinct cell state and that internal melanocytes have gene expression profiles consistent  
198 with being the cell of origin for zebrafish MM.

199 **MM cell state is conserved in patients.**

200 To determine whether the zebrafish model accurately reflects the expression programs and  
201 heterogeneity of human MM, we completed single-cell RNA-seq (scRNA-seq) of patient MM  
202 (n=10) and compared to published scRNA-seq from patient CM (n=23)<sup>23</sup> (Fig. 4A, S4A, clinical  
203 data in Data S2:Tab 1-2). Patients had a similar average age (median age 68yrs, MM and CM)  
204 (Fig. S4B). A higher proportion of MM patients were female (60% MM vs. 35% CM) (Fig. S4C)  
205 and a similar percentage were from metastatic vs. primary lesions (87% CM vs. 80% MM) (Fig.  
206 S4D). Of the MM patients, four were sinonasal, four anal, and two vulvovaginal. Targeting  
207 sequencing panels from two different institutions were consistent with published MM genomics  
208 reports<sup>3, 4, 5, 6</sup>. For example, two of four nasal MM patients had activating NRAS mutations (Q61K  
209 and G12A)<sup>6</sup>, two of the anal MM patients harbored SF3B1 hotspot mutations (R625C and  
210 R625C)<sup>24</sup>, and two patients had activating KIT mutations and gain of the KIT locus (N822K and  
211 L576P)<sup>25</sup> (Fig. S4E, Data S2:Tab 3). As our zebrafish MM model was built using tumor-cell  
212 specific genetic changes, we focused on tumor cell intrinsic cell states in patient MM by  
213 informatically isolating tumor cells. Consistent with MM having distinct chromatin state from CM,  
214 a UMAP-plot showed that MMs clustered separately from CMs (Fig. 4A). We also observed that  
215 MMs were spread more broadly on this UMAP than CMs, suggesting that gene expression in MM  
216 was more heterogenous than in CM as expected. These data show gene expression characteristics  
217 of MM are distinct from CM.

218 As the zebrafish MMs had downregulation of MAPK gene expression, we hypothesized  
219 that MAPK target gene expression would also be lower in patient MMs vs. CMs. Expressed MAPK

220 target genes<sup>26</sup> (*SPRY2*, *SPRY4*, *ETV4*, *ETV5*, *DUSP4*, and *DUSP6*) were assessed in MM vs. CM.  
221 As expected, MAPK target gene expression was significantly lower in MM ( $p = 0.0036$ , two-sided  
222 t test) (Fig. 4B and Fig. S4F). Lower MAPK target gene expression is concordant with MM patients  
223 harboring fewer and less potent MAPK activating mutations as published<sup>6, 27</sup>. We also observed  
224 fewer and less potent MAPK activating mutations in our data (scRNA-seq patients, 0/10 had  
225 *BRAF* mutations and 2/10 had *NRAS* mutations) (Data S2:Tab 3). In our larger cohort, 8% (7/86)  
226 had *BRAF* mutations with 71% of those being non-V600 (Fig. S4G-H, Table S3, Data S1); while  
227 16% had *NRAS* mutation ( $n=14/86$ , Data S1). These data show that MM patients, like MM  
228 zebrafish, have lower MAPK pathway target gene expression. This illustrates that MM exists in a  
229 cellular state that is less reliant on MAPK pathway activation.

230 To determine the unbiased gene expression changes in MM vs. CM, differential expression  
231 analysis of pseudobulked scRNA-seq of MM vs. CM was completed. This analysis identified that  
232 the most downregulated pathway was “Interferon Signaling” (Fig S4I-J), and this gene set included  
233 multiple HLA class I genes. The average pseudobulked expression for four HLA class I genes  
234 (HLA-A, HLA-B, HLA-C, B2M) was compared between MM and CM and identified that HLA  
235 class I gene expression were significantly downregulated in patient MM ( $p = 0.017$ , two-sided t-  
236 test) (Fig. 4C and S4K). We wondered if the decreased expression of MHC class I genes was  
237 conserved between patients and the zebrafish model. All expressed zebrafish *mhc* genes were  
238 plotted (FPKM  $\geq 0.1$  in at least one condition) for the zebrafish MM and CM models. Collectively  
239 *mhc* gene was expressed at lower levels in the zebrafish MM model as compared to the CM model  
240 ( $p=0.007$ , Wilcoxon 2-sided t-test) (Fig. 4D). We hypothesize that the decreased expression of  
241 *mhc* genes is occurring in MM tumor cells because we saw no change in expression in genes that  
242 uniquely identify T-cell genes in zebrafish (Fig. S4L). These results suggest that the MM cell of  
243 origin has a cell state with low MHC class I expression, and that this cell state is maintained in

244 melanomas derived from mucosal melanocytes. Lower MHC class I expression in MM could  
245 contribute to the lower observed immune therapy responses observed in MM patients.

246 To understand what drives the MM cell state, we asked what pathways define MM. The  
247 zebrafish MM model revealed differential expression of genes involved in normal melanocyte  
248 differentiation from their developmental neural crest precursor cells. We asked whether there was  
249 differential expression in MM vs. CM of genes that define premigratory vs. migratory cranial  
250 neural crest cells (CNCC)<sup>28</sup>. Migratory CNCC genes were significantly upregulated in MM vs.  
251 CM (*PAX3*, *SOX9*, *SOX10*, *TFAP2A*) ( $p = 0.036$ , two-sided t-test) (Fig. 4E), while premigratory  
252 CNCC genes were not differentially expressed (*SNAII*, *SNAI2*, *MYC*, *MYCN*, *ETSI*) ( $p = 0.97$ ,  
253 two-sided t test). Zebrafish MM RNA-seq also showed increased zebrafish migratory neural crest  
254 gene expression (Fig. 4F). The specific expression of *tfap2b* or *sox11b* that was observed in  
255 zebrafish MM, was not conserved in patients as both TFAP2B and SOX11 were rarely expressed  
256 in MM or CM. As we observed that *PAX3* was upregulated in patient MM and in zebrafish MM;  
257 and as the ortholog *pax3b* had loci with increased chromatin accessibility from zebrafish MM  
258 ATAC-seq, we investigated whether PAX3 could play a conserved role in contributing to the cell  
259 state of mucosal melanocytes.

260 PAX3 is a gene required for melanocyte development in humans as loss of PAX3 is  
261 associated with a genetic condition that causes hearing loss and changes in the pigmentation of  
262 hair, eyes, and skin<sup>29</sup>. Pax3 expression in mice has been shown to maintain melanocytes in an  
263 undifferentiated state<sup>19</sup> and PAX3 expression in human melanomas is associated with fewer  
264 immune therapy responses and worse overall survival of patients in two cohorts<sup>30</sup>. We asked  
265 whether human PAX3 (hPAX3) expression in zebrafish could enrich for internal melanocytes as  
266 measured by our internal melanocyte reporter built in Fig. 2. hPAX3 or a control vector were  
267 expressed in a melanocyte-specific manner in Casper zebrafish in addition to the reporter

268 constructs. Internal melanocytes (double positive for *tfap2b*:GFP and *mitfa*:mCherry) and external  
269 melanocytes (single positive for *mitfa*:mCherry) were imaged as in Fig. 2. hPAX3 expression  
270 caused significantly more internal melanocytes (Fig. 4G-H) without affecting the total number of  
271 melanocytes observed (Fig S4M), indicating that PAX3 expression is one factor that can  
272 functionally enrich for mucosal melanocytes. As our data suggests that PAX3 is functionally  
273 contributing to the MM cell state, we hypothesized that open chromatin from MM would be  
274 enriched for PAX3 binding sites. The binding sequence for PAX3 was significantly enriched in  
275 ATAC-seq peaks that are more accessible in zebrafish MM than in CM (E value=8.45e-15, SEA).  
276 These data suggest that PAX3 is a conserved contributor to the cell state of MM, which has unique  
277 oncogene susceptibility and that has features predicting for its lethal clinical behavior.

278

279

## Discussion

280 We developed a novel MM model in zebrafish that faithfully recapitulates both the  
281 transcriptional and histological features of human MM. To our knowledge, this is the first  
282 genetically engineered model of this disease. Using this model, we identify a distinct melanocyte  
283 population inside zebrafish that is uniquely susceptible to malignant transformation upon  
284 introduction of oncogenes and loss of tumor suppressors as found in MM patients. The cell of  
285 origin for MM appears to be a developmentally distinct melanocyte population that relies less on  
286 MAPK signaling and has muted antigen presentation programs relative to cutaneous melanocytes.  
287 We find that both the zebrafish MM model and MM patients have increased migratory neural crest  
288 gene expression, which could explain the more metastatic nature of these tumors in patients. We  
289 also find that the zebrafish model and patients have decreased tumor-cell-intrinsic expression of  
290 antigen presentation genes, which could explain why these patients have a lower response rate and  
291 fewer durable responses with immune therapy. Our comparative analyses reveal striking

292 conservation between the genetics and cell states underlying zebrafish and human MM. These  
293 findings establish this zebrafish model as a representative system to uncover drivers and drug  
294 targets for this rare and lethal disease in future work.

295 We have generated the first genetically engineered model of MM. While there are current  
296 efforts to establish MM human cell lines<sup>31, 32</sup> and PDX models and it was previously known that  
297 dogs naturally are at risk for MM<sup>33, 34, 35</sup>; genetically engineered models can offer important  
298 information about causality and are more experimentally tractable. For instance, we observed  
299 decreased tumor-cell-intrinsic MHC class I gene expression in patient MMs, which could be  
300 caused by the cell state of the tumor cells vs. secondary effects from the tumor microenvironment.  
301 Our zebrafish model offers clarity. As we induced MM in zebrafish using melanocyte-specific  
302 genetic changes and observed MMs with decreased MHC class I expression, our data suggest that  
303 cell autonomous genetic changes in mucosal melanocytes drive a cell state that has decreased MHC  
304 class I expression.

305 In MM patients, we observed a significant downregulation of MAPK target and antigen  
306 presentation gene expression as compared to CM. Our observation that MMs have lower MAPK  
307 signaling aligns with the lack of frequent strong activating MAPK mutations found in MM  
308 patients, suggesting less reliance on the MAPK pathway for transformation relative to CM. Lower  
309 MHC class I expression in our study also fits with poorer immunotherapy responses seen clinically  
310 in MM patients. We instead find MMs have a conserved cell state that expresses migratory neural  
311 crest genes. In fish, we were able to label a subset of internal melanocytes using a reporter built  
312 from MM-specific *tfap2b* enhancer sequences. Our reporter is distinct from a prior *tfap2b* reporter  
313 that includes the promoter sequences and labels melanocyte stem cells<sup>18</sup>. As TFAP2B expression  
314 was not conserved in MM patients, we chose instead to test for a functional role of PAX3 in MM.

315 Our results suggest that MM arises from a different melanocyte pool that is localized inside  
316 animals.

317 PAX3 is a transcription factor that plays a role in neural development and is required for  
318 melanocyte differentiation. Mutations in PAX3 in humans cause Waardenburg syndrome type 1  
319 which is associated with pigmentation defects<sup>36, 37, 38, 39</sup>. In mice, PAX3 has been shown to act at a  
320 nodal point in melanocyte stem cell differentiation, where it is required for the melanocyte stem  
321 cell state while also priming these cells for differentiation<sup>19, 37</sup>. We found that PAX3 expression in  
322 zebrafish can contribute to increased numbers of internal melanocytes, suggesting a functional role  
323 for PAX3 in specifying the cellular state of internal melanocytes. As PAX3 is part of the migratory  
324 neural crest program, perhaps MMs derive their innate capacity for metastasis from continued  
325 expression of the migratory neural crest program. While PAX3 is not amplified in melanomas, its  
326 sustained expression is associated with worse survival rates in patients with melanoma<sup>30, 40</sup>. Our  
327 data and the literature nominate PAX3 as one potential functional mediator of the metastatic-like  
328 phenotype of MM.

329 Cell state can predict for oncogene susceptibility. Our data suggest that the MM cell of  
330 origin is an internal melanocyte that is uniquely susceptible to genetic changes that occur in MM,  
331 i.e. expression of CCND1 and loss of *PTEN* and *TP53*. Although all melanocytes in the zebrafish  
332 model have the aforementioned genetic changes, only the internal melanocytes are transformed  
333 into melanoma; while the cutaneous melanocytes are spared. Our work complements the work of  
334 Weiss et. al.<sup>13</sup> that found that zebrafish fin melanocytes, analogous to human acral melanocytes,  
335 are enriched for transformation by an oncogene amplified in acral melanoma. Together our studies  
336 illuminate that there are distinct melanocyte cell states that relate to their anatomic location and  
337 predict their sensitivity to different oncogenic drivers. The cell state of the originating melanocyte  
338 ultimately influences the clinical behavior of derived melanomas, including treatment responses.

339 Our work shows that by modeling genetic changes in MM patients, genetically engineered  
340 MM models can be built. Our work suggests that the cell of origin for MM is distinct from the cell  
341 of origin for CM. MMs exist in a state that is less reliant on MAPK signaling (and thus less  
342 responsive to MAPK pathways inhibitors) and have less MHC class I expression, which could  
343 contribute to the fewer and less durable immune therapy responses observed for MM. In future  
344 work, it will be important to discover agents that are either lethal to this cell state or can rescue  
345 MHC class I expression, with the hope of rescuing durable immune therapy responses in these  
346 patients. We hope that this model and subsequent iterations will help to define the functional  
347 genetic changes in MM to inform the development of mouse models, drive therapeutic discovery,  
348 and ultimately focus future clinical trials for MM patients.

349

## 350 **Supplementary Materials**

351 Materials and Methods

352 Figs. S1 to S4

353 Tables S1 to S3

354 References 1-36

355 Data S1 to S2

356

## 357 **References**

- 358 1. Altieri L, Eguchi M, Peng DH, Cockburn M. Predictors of mucosal melanoma survival in  
359 a population-based setting. *J Am Acad Dermatol* **81**, 136-142 e132 (2019).
- 360 2. D'Angelo SP, *et al.* Efficacy and Safety of Nivolumab Alone or in Combination With  
361 Ipilimumab in Patients With Mucosal Melanoma: A Pooled Analysis. *J Clin Oncol* **35**,  
362 226-235 (2017).
- 363 3. Curtin JA, *et al.* Distinct sets of genetic alterations in melanoma. *N Engl J Med* **353**,  
364 2135-2147 (2005).
- 365 4. Hayward NK, *et al.* Whole-genome landscapes of major melanoma subtypes. *Nature* **545**,  
366 175-180 (2017).

370

371 5. Ablain J, *et al.* Human tumor genomics and zebrafish modeling identify SPRED1 loss as  
372 a driver of mucosal melanoma. *Science* **362**, 1055-1060 (2018).

373

374 6. Newell F, *et al.* Whole-genome landscape of mucosal melanoma reveals diverse drivers  
375 and therapeutic targets. *Nat Commun* **10**, 3163 (2019).

376

377 7. Hodi FS, *et al.* Imatinib for melanomas harboring mutationally activated or amplified  
378 KIT arising on mucosal, acral, and chronically sun-damaged skin. *J Clin Oncol* **31**, 3182-  
379 3190 (2013).

380

381 8. Carvajal RD, *et al.* Clinical and molecular response to tebentafusp in previously treated  
382 patients with metastatic uveal melanoma: a phase 2 trial. *Nat Med* **28**, 2364-2373 (2022).

383

384 9. Hassel JC, *et al.* Three-Year Overall Survival with Tebentafusp in Metastatic Uveal  
385 Melanoma. *N Engl J Med*, (2023).

386

387 10. Patton EE, *et al.* BRAF mutations are sufficient to promote nevi formation and cooperate  
388 with p53 in the genesis of melanoma. *Curr Biol* **15**, 249-254 (2005).

389

390 11. Ceol CJ, *et al.* The histone methyltransferase SETDB1 is recurrently amplified in  
391 melanoma and accelerates its onset. *Nature* **471**, 513-517 (2011).

392

393 12. Kaufman CK, *et al.* A zebrafish melanoma model reveals emergence of neural crest  
394 identity during melanoma initiation. *Science* **351**, aad2197 (2016).

395

396 13. Weiss JM, *et al.* Anatomic position determines oncogenic specificity in melanoma.  
397 *Nature* **604**, 354-361 (2022).

398

399 14. Prouteau A, *et al.* Canine Oral Melanoma Genomic and Transcriptomic Study Defines  
400 Two Molecular Subgroups with Different Therapeutic Targets. *Cancers (Basel)* **14**,  
401 (2022).

402

403 15. Hoadley KA, *et al.* Cell-of-Origin Patterns Dominate the Molecular Classification of  
404 10,000 Tumors from 33 Types of Cancer. *Cell* **173**, 291-304 e296 (2018).

405

406 16. Buchbinder EI, *et al.* Characterization of genetics in patients with mucosal melanoma  
407 treated with immune checkpoint blockade. *Cancer Med* **10**, 2627-2635 (2021).

408

409 17. Campbell NR, *et al.* Cooperation between melanoma cell states promotes metastasis  
410 through heterotypic cluster formation. *Dev Cell* **56**, 2808-2825 e2810 (2021).

411

412 18. Brombin A, *et al.* Tfap2b specifies an embryonic melanocyte stem cell that retains adult  
413 multistate potential. *Cell Rep* **38**, 110234 (2022).

414

415 19. Lang D, *et al.* Pax3 functions at a nodal point in melanocyte stem cell differentiation.  
416 *Nature* **433**, 884-887 (2005).

417

418 20. Kapp FG, *et al.* Protection from UV light is an evolutionarily conserved feature of the  
419 haematopoietic niche. *Nature* **558**, 445-448 (2018).

420 21. Muraro MJ, *et al.* A Single-Cell Transcriptome Atlas of the Human Pancreas. *Cell Syst* **3**,  
421 385-394 e383 (2016).

422 22. Hao Y, *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587  
423 e3529 (2021).

424 23. Jerby-Arnon L, *et al.* A Cancer Cell Program Promotes T Cell Exclusion and Resistance  
425 to Checkpoint Blockade. *Cell* **175**, 984-997 e924 (2018).

426 24. Quek C, *et al.* Recurrent hotspot SF3B1 mutations at codon 625 in vulvovaginal mucosal  
427 melanoma identified in a study of 27 Australian mucosal melanomas. *Oncotarget* **10**,  
428 930-941 (2019).

429 25. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct  
430 subtypes of melanoma. *J Clin Oncol* **24**, 4340-4346 (2006).

431 26. Wagle MC, *et al.* A transcriptional MAPK Pathway Activity Score (MPAS) is a  
432 clinically relevant biomarker in multiple cancer types. *NPJ Precis Oncol* **2**, 7 (2018).

433 27. Yao Z, *et al.* Tumours with class 3 BRAF mutants are sensitive to the inhibition of  
434 activated RAS. *Nature* **548**, 234-238 (2017).

435 28. Simoes-Costa M, Bronner ME. Establishing neural crest identity: a gene regulatory  
436 recipe. *Development* **142**, 242-257 (2015).

437 29. Baldwin CT, Lipsky NR, Hoth CF, Cohen T, Mamuya W, Milunsky A. Mutations in  
438 PAX3 associated with Waardenburg syndrome type I. *Hum Mutat* **3**, 205-211 (1994).

439 440 30. Freeman SS, *et al.* Combined tumor and immune signals from genomes or transcriptomes  
441 predict outcomes of checkpoint inhibition in melanoma. *Cell Rep Med* **3**, 100500 (2022).

442 443 31. Lourenco SV, Bologna SB, Hsieh R, Sangueza M, Fernandes JD, Nico MM.  
444 Establishment and characterization of an oral mucosal melanoma cell line (MEMO)  
445 derived from a longstanding primary oral melanoma. *Am J Dermatopathol* **35**, 248-251  
446 (2013).

447 32. Monti M, *et al.* Novel cellular systems unveil mucosal melanoma initiating cells and a  
448 role for PI3K/Akt/mTOR pathway in mucosal melanoma fitness. *J Transl Med* **22**, 35  
449 (2024).

450 33. Hernandez B, Adissu HA, Wei BR, Michael HT, Merlino G, Simpson RM. Naturally  
451 Occurring Canine Melanoma as a Predictive Comparative Oncology Model for Human  
452 Mucosal and Other Triple Wild-Type Melanomas. *Int J Mol Sci* **19**, (2018).

453 454 455 456 457 458 459 460 461 462 463 464

465 34. Touil Y, Segoula Z, Thuru X, Galiegue-Zouitina S, Tierny D, Quesnel B.  
466 Aggressiveness Potential of Spontaneous Canine Mucosal Melanoma Can Dictate  
467 Distinct Cancer Stem Cell Compartment Behaviors in Regard to Their Initial Size and  
468 Expansion Abilities. *Stem Cells Dev* **29**, 919-928 (2020).

469

470 35. Wong K, *et al.* Cross-species genomic landscape comparison of human mucosal  
471 melanoma with canine oral and equine melanoma. *Nat Commun* **10**, 353 (2019).

472

473 36. Koblar SA, Murphy M, Barrett GL, Underhill A, Gros P, Bartlett PF. Pax-3 regulates  
474 neurogenesis in neural crest-derived precursor cells. *J Neurosci Res* **56**, 518-530 (1999).

475

476 37. Kubic JD, Young KP, Plummer RS, Ludvik AE, Lang D. Pigmentation PAX-ways: the  
477 role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. *Pigment*  
478 *Cell Melanoma Res* **21**, 627-645 (2008).

479

480 38. Yoshida Y, Doi R, Adachi K, Nanba E, Kodani I, Ryoke K. A novel PAX3 mutation in a  
481 Japanese boy with Waardenburg syndrome type 1. *Hum Genome Var* **3**, 16005 (2016).

482

483 39. Nord H, Kahsay A, Dennhag N, Pedrosa Domellof F, von Hofsten J. Genetic  
484 compensation between Pax3 and Pax7 in zebrafish appendicular muscle formation. *Dev*  
485 *Dyn* **251**, 1423-1438 (2022).

486

487 40. Liu Y, Cui S, Li W, Zhao Y, Yan X, Xu J. PAX3 is a biomarker and prognostic factor in  
488 melanoma: Database mining. *Oncol Lett* **17**, 4985-4993 (2019).

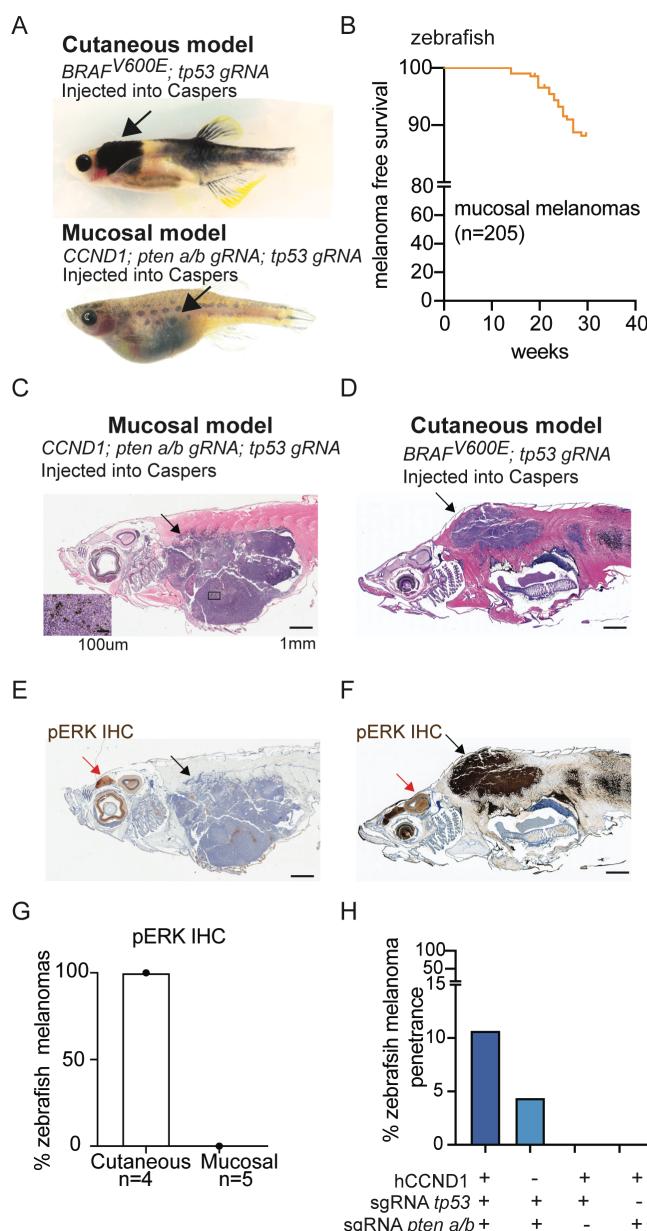
489

490

491

## Tables:

492


**Table 1: Zebrafish MM penetrance.**

| Genotype                          | Melanoma                     |
|-----------------------------------|------------------------------|
| CCND1; pten a/b sgRNA; tp53 sgRNA | 11% (22/205) (internal only) |
| CCND1; tp53 sgRNA                 | 0% (0/100)                   |
| CCND1; pten a/b sgRNA             | 0% (0/100)                   |
| tp53 sgRNA; pten a/b sgRNA        | 5.6% (5/89) (internal only)  |

493

## Figures

Figure 1



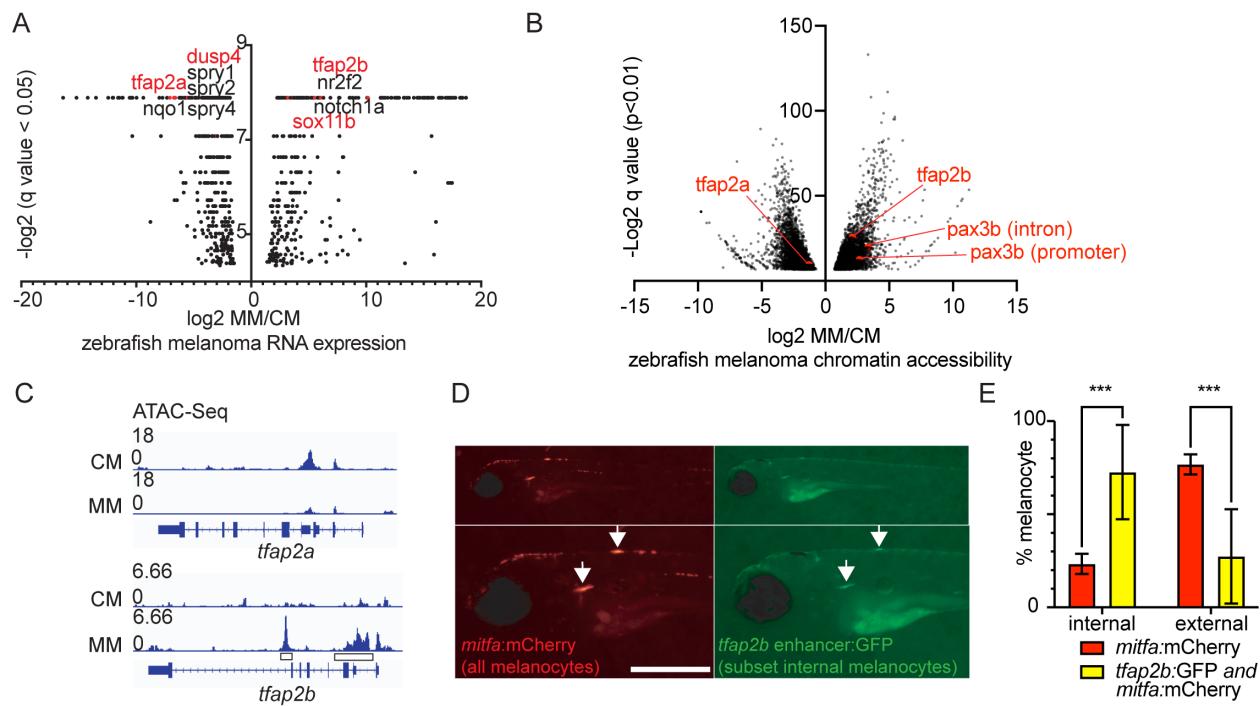
494

495

**Figure 1: Zebrafish model recapitulates localization of human MM.** A) Light micrographs of zebrafish melanoma generated from melanocyte-specific expression or CRISPR-deletion in transparent “Casper” zebrafish. Cutaneous model (upper). Mucosal model (lower). B) MM free survival of zebrafish with melanocyte-specific expression of human *CCND1* and melanocyte-specific CRISPR of *pten a* and *b* and *tp53*. C-F) Zebrafish melanoma histology. C-D) H&E stain

496

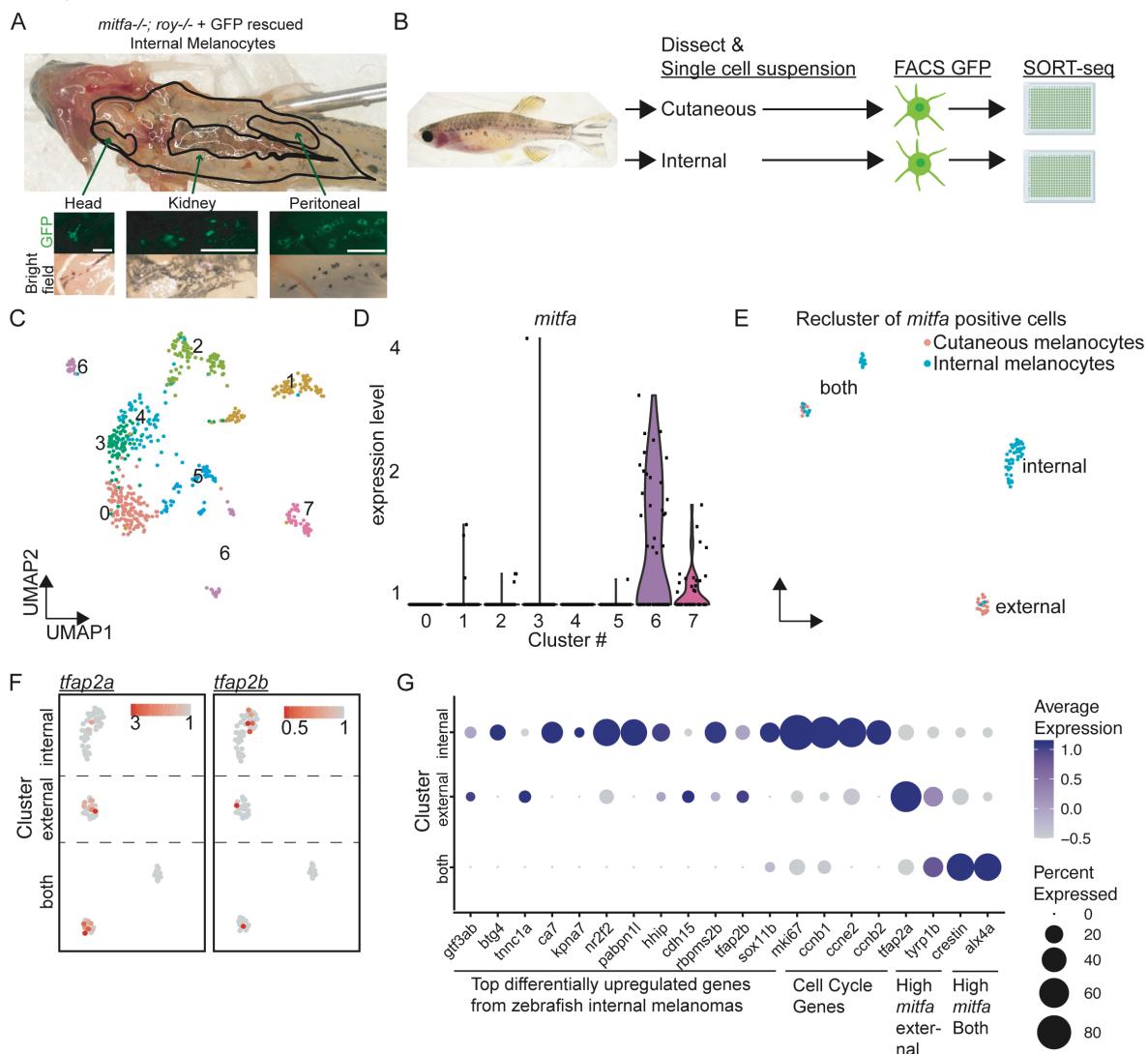
497


498

499

500 of MM (C) and CM (D). E-F) phospho ERK (pERK) immunohistochemistry (IHC) of MM (E)  
501 and CM (F). Scale bar = 1mm; inset scale bar = 100um. Black arrow = tumor, red arrow = brain.  
502 G) % zebrafish melanomas pERK positive. H) % zebrafish MM penetrance.

503


Figure 2



504

505 **Figure 2: Zebrafish MM has a distinct cellular state from CM. A-B)** Volcano plots of A) bulk  
506 RNA-seq and B) ATAC-seq from zebrafish MM vs. CM. C) IGV plot of ATAC-seq showing  
507 chromatin accessibility at *tfap2a* and *tfap2b* in zebrafish MM vs. CM. Boxes = loci used for *tfap2b*  
508 reporter. D-E) *tfap2b* enhancer-driving GFP preferentially labels internal *mitfa*-mCherry labeled  
509 melanocytes in 6-day old Casper zebrafish. D) Fluorescent images. Scale bar = 500um. E) Reporter  
510 expression quantification. p-value = 0.0003, 2-way ANOVA with multiple comparisons.

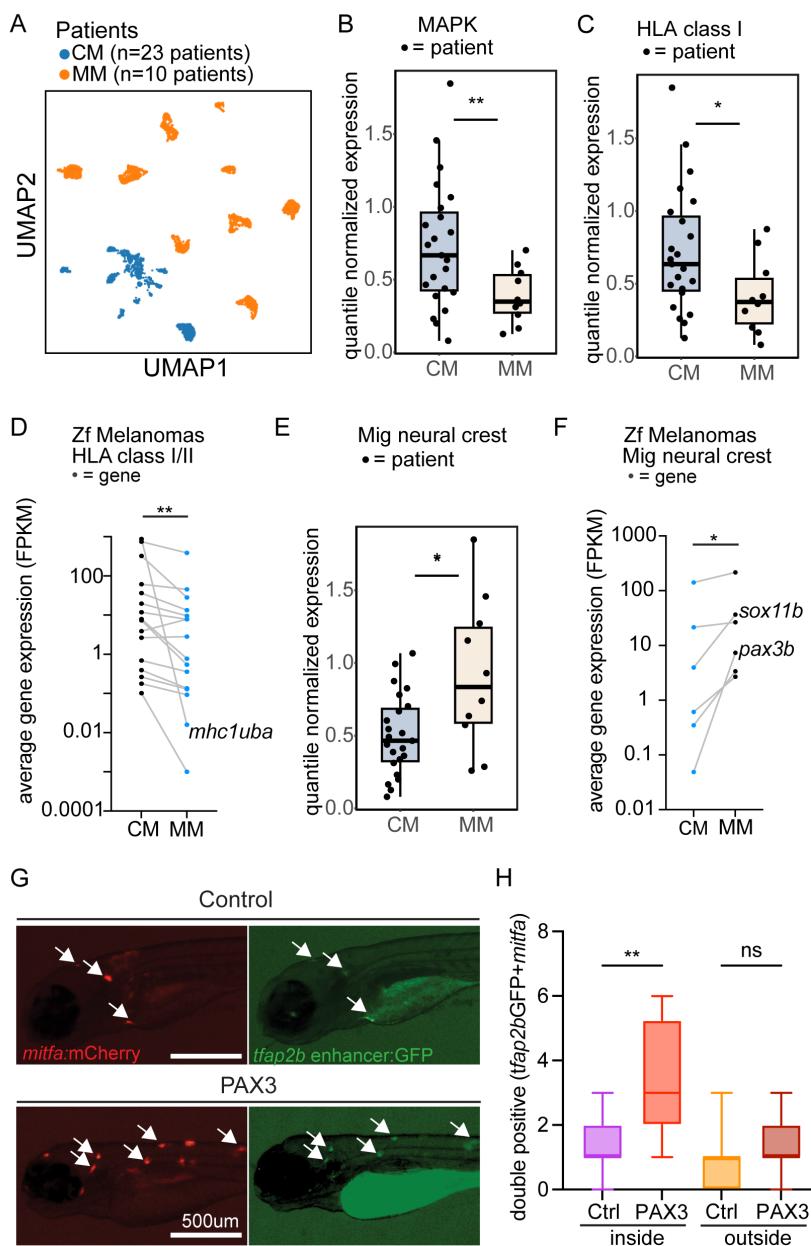
Figure 3



511

512 **Figure 3: Zebrafish internal melanocytes have properties consistent with MM initiating cells.**

513 A) Light micrographs demonstrating internal GFP-expressing melanocytes from adult Casper  
 514 zebrafish. Scale bar = 500um. B) Schematic for single-cell RNA-seq (scRNA-seq) of cutaneous  
 515 and internal adult zebrafish melanocytes. C) UMAP-plot of scRNA-seq from GFP-sorted external  
 516 and internal melanocytes. D) *mitfa*-expressing cells from C). E) UMAP of re-clustered *mitfa*+


517 melanocytes. Blue = internal. Red = external. Labels = cluster names. F) *tfap2a* and *tfap2b*  
 518 expression in “internal”, “external”, and “both” melanocytes. G) Dot plot showing gene expression

519 of top differentially expressed genes from zebrafish MMs for “internal”, “external”, and “both”  
520 melanocytes from E).

521

522

Figure 4



523

524 **Figure 4: MM cell state is conserved in patients.** A) UMAP-plot of single-cell RNA-seq  
525 (scRNA-seq) from patient tumors, CM patients (n=23) and MM patients (n=10). B-C) Mean  
526 normalized gene expression in CM vs. MM cells from scRNA-seq for B) MAPK target genes, p-  
527 value = 0.0036 two-sided t-test and C) HLA Class I antigen presentation genes. p-value = 0.017

528 two-sided t-test. Dots = patients. D) Average gene expression of expressed zebrafish *mhc class I/II*  
529 genes in a zebrafish CM vs. MM. Dots = genes. Lines indicate the same gene in two conditions.  
530 p-value = 0.0017, two-tailed Wilcoxon matched-pairs rank test. E) Mean normalized gene  
531 expression in MM vs. CM cells from scRNA-seq for migratory neural crest genes. p-value = 0.036  
532 two-sided t-test. F) Average gene expression (FPKM) of migratory neural crest genes in zebrafish  
533 CMs compared to the MMs. Dots = genes. Lines indicate the same gene in two conditions. p-  
534 value= 0.031, two-tailed Wilcoxon matched-pairs rank test. G-H) Melanocyte-specific expression  
535 of hPAX3 vs. control in zebrafish with labeled internal melanocytes (double positive *mitfa*-  
536 *mCherry* and *tfap2b-GFP*) and pigment removal at 5dpf. G) Representative immunofluorescent  
537 images. Scale bar = 500 $\mu$ m. H) Quantification of double positive melanocytes inside and outside  
538 zebrafish embryos. p-value = 0.0014, ordinary one-way ANOVA with multiple comparisons.

539

540 **Acknowledgments:**

541 The authors would like to acknowledge the DFCI Oncology Data Retrieval System (OncDRS) for  
542 the aggregation, management, and delivery of genomic research data used in this project.

543

544 **Funding:**

545 This research was supported by Damon Runyon Cancer Foundation Fellowship Award (M.L.I.),  
546 National Cancer Institute grant K08CA248727 (M.L.I.), The American Lebanese Syrian  
547 Associated Charities (ALSAC) (B.J.A.), and funds raised through the Pan-Mass Challenge.

548

549 **Competing interests:** L.I.Z. is a founder and stockholder of Fate Therapeutics, CAMP4  
550 Therapeutics, and Scholar Rock. He is a consultant for Celularity. B.J.A. is a shareholder in Syros  
551 Pharmaceuticals. E.I.B. serves as a consultant/advisory board member for Pfizer, Werewolf  
552 pharma, Merck, Iovance, Sanofi, Xilio, and Novartis.

553

554 **Data and materials availability:**

555 The datasets generated and/or analyzed during the present study have been uploaded to the Gene  
556 Expression Omnibus (GEO pending). All zebrafish strains, and DNA vectors are readily available  
557 through the corresponding author. Where possible, we can share remaining zebrafish tumor  
558 material; however, this material is limited in abundance. All antibodies are commercially available.