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Abstract 16 

Representation of the environment by hippocampal populations is known to drift even within a 17 

familiar environment, which could reflect gradual changes in single cell activity or result from 18 

averaging across discrete switches of single neurons. Disambiguating these possibilities is 19 

crucial, as they each imply distinct mechanisms. Leveraging change point detection and model 20 

comparison, we found that CA1 population vectors decorrelated gradually within a session. In 21 

contrast, individual neurons exhibited predominantly step-like emergence and disappearance of 22 

place fields or sustained change in within-field firing. The changes were not restricted to 23 

particular parts of the maze or trials and did not require apparent behavioral changes. The same 24 

place fields emerged, disappeared, and reappeared across days, suggesting that the hippocampus 25 

reuses pre-existing assemblies, rather than forming new fields de novo. Our results suggest an 26 

internally-driven perpetual step-like reorganization of the neuronal assemblies. 27 
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 35 

Introduction 36 

Balance between stability and flexibility is crucial for hippocampal function. Although 37 

hippocampal place cells have long been assumed to be stable within the same environment1,2, 38 

recent studies have found that population-wide representations become progressively dissimilar 39 

as time lapses, without external perturbations3–5. These gradual changes, termed 40 

“representational drift”, have timescales ranging from minutes to weeks. They have also been 41 

reported in the piriform cortex6 and several neocortical areas7, although Jensen8 reported the lack 42 

of drift in single neurons in the motor system. 43 

 44 

While representational drift is often described as “gradual,” it is not yet clear whether the 45 

underlying mechanism is “gradual” or “discrete”. This distinction is crucial for a mechanistic 46 

understanding of the phenomenon. Hebbian spike-timing-dependent plasticity9,10 is expected to 47 

change synaptic strength over many repetitions, thus gradually. On the other hand, behavioral 48 

time scale synaptic plasticity11–15 (BTSP) provides a mechanism for abrupt changes in neural 49 

firing rate. Intracellular and imaging experiments in vivo have demonstrated that spontaneously 50 

emerging ON fields often coincide with dendritic “plateau potentials” in CA1 pyramidal 51 

neurons, attributed to the temporal coordination of their entorhinal and CA3 inputs12,16. Thus, 52 

representational drift in the hippocampus could conceivably consist of either gradual or discrete 53 

changes in single-neuron activity patterns. 54 

 55 

Studies of BTSP focus on the emergence of place fields (also translocation, i.e. emergence in one 56 

and abolishment in another field, see Milstein et al.14) but not disappearance. Furthermore, it is 57 

unclear whether neurons exhibit other forms of spontaneous abrupt changes, such as up or down-58 

modulation of firing rate (or “rate remapping”17,18). The apparent lack of evidence could be due 59 

to difficulties in detecting abrupt changes. The emergence of place fields is relatively well-60 

defined and can be detected by looking at when the within-field activity goes above 61 

thresholds15,19. Similarly, rate remapping is often induced by changing some experimental 62 

condition (e.g., the wall color of the maze) and studied in a trial-averaged fashion17,18. On the 63 

other hand, spontaneous rate remapping is difficult to study without an unsupervised method for 64 

detecting abrupt and sustained changes on a single trial level. 65 

 66 

We developed a statistical framework that allows us to detect, determine, and link the type of 67 

changes occurring on the single cell and population level. By analyzing datasets of large 68 

simultaneous recordings of the CA1 pyramidal neurons, we show that population vectors of the 69 

CA1 pyramidal cells are decorrelated as a function of elapsed trials gradually, akin to the gradual 70 

drift view. In contrast, changes at the individual place cell level are better characterized by step-71 

like emergence and disappearance of place fields or steep changes in within-field firing, which 72 

we call “switching.” We found that although spatial position, trial number, and novelty may 73 

modulate the probability of place field turnover, switching can happen on every trial and in all 74 

parts of the test environment without apparent behavioral changes. Switching is not a single-cell 75 

property: neurons with multiple place fields can sustain stability in one field and change in 76 

another field, and neurons with switching fields in one environment may remain stable in 77 

another. Instead, switching appears to be driven by circuit dynamics, as place fields co-switch 78 

together on the same trial more than expected by chance. Finally, the spontaneous emergence of 79 

place fields on one day does not mean a de novo formation of a place field, but rather a “reuse” 80 
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of preexisting assemblies, as emerging and disappearing fields on one day could 81 

preexist/reappear on the previous/next day. These findings bridge together single cell and 82 

population features--the step-like and gradual views—and illustrate that preexisting cell 83 

assembly blocks continuously reorganize themselves without external perturbations. 84 

 85 

 86 

 87 

Results 88 

We examined the stability of single units and populations of hippocampal CA1 pyramidal cells 89 

while mice performed a spontaneous alternation task in a figure-8 maze either in a familiar or 90 

novel environment20 (schematics in Fig. 4K; see Method details). For multiple-day comparisons, 91 

CA1 neurons detected by two-photon imaging were used as mice traversed a 1D virtual 92 

hallway21. 93 

Within-session representational drift is driven by discrete switching of place fields 94 

As animals traversed the figure-8 maze, the dorsal CA1 population activity exhibited largely 95 

similar sequential firing over the entire session (Fig. 1A; place cells with place fields1). Yet, a 96 

subset of neurons changed their firing rates substantially from the beginning to the end of the 97 

session (Fig. 1B). To relate our initial observations to previous reports, we first analyzed the 98 

correlation between population vectors (PVs) as a function of trial lag. The PVs are constructed 99 

by concatenating the rate map of all place cells on a given trial (Fig. 1C). The correlation 100 

decreased as a function of the lag between trials, suggesting drift within both the familiar and 101 

novel environment (Fig. 1D). Linear regression analysis revealed that drift was significantly 102 

faster in novel environments (larger negative slope) within the first 1-10 trial lags, but we failed 103 

to detect any significant difference between novel and familiar environments over a range of 11-104 

20 or 21-30 trial lags (Fig. 1E). Thus, our analysis supports the idea that novelty destabilizes the 105 

network15,22,23, but also highlights a surprising degree of spontaneous drift that persists in 106 

familiar environments. 107 

 108 
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 109 

 110 

  111 
Figure 1. Stability and change of single units and population activity. A) Population ratemaps of 

hippocampal place cells during early and late trials. Place cells were sorted by the peak of the place fields on 

trial 0 (when there were multiple fields, we used the fields with the largest within-field peak firing rates. Only 

place cells with spatial information larger than 1 bit/spike are displayed here for the ease of visualization; n 

=114 out of 264 place cells for one direction of turn in the figure-8 maze). Color represents normalized firing 

rate. B) Ratemaps of 3 example neurons, marked by red arrowheads in A, showing place field emergence 

(left), stable firing (middle), and place field disappearance (right). C) Schematic for constructing the 

population vectors (PV) in D. The ratemaps for all neurons were concatenated on a given trial to form a PV. 

The Pearson correlation between PVs from a pair of trials was computed. All trial pairs with lag k were 

averaged to produce the mean PV correlation per trial lag. D) Population ratemap correlations as a function of 

trial lag (only place cells are included). Blue and orange correspond to familiar and novel sessions, 

respectively. Shaded area corresponds to 95 confidence interval, where each data point is the correlation 
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 126 

In principle, representational drift could be driven by a change in place field location or by a 127 

change in the firing rate within the field, among other possibilities (Fig. 1F). We found the vector 128 

of the peak firing rate of all place fields decorrelated as a function of trial lag, whereas the vector 129 

of the place field locations remained stable (Fig. 1G-H). We emphasize though that the lack of 130 

decorrelation does not mean the field locations do not change as a function of trial. In fact, the 131 

average squared Euclidean distance as a function of trial lag increased significantly (Fig. 1I). We 132 

focused on the decorrelation due to changes in firing rate for the rest of this paper. 133 

 134 

The decorrelation of the population vectors could arise from either a gradual change (as implied 135 

by the term “drift”3,4) or a relatively sudden (“quantal”) jump11 at the single cell level. By 136 

qualitative inspection, we observed discrete and sustained changes in the within-field firing rates 137 

(“quantal” change; Fig 2A,B). We refer to such step-like increases/decreases in firing rates, as 138 

“switching ON/OFF” fields. To investigate switching quantitatively, we leveraged a change-139 

point detection model to fit a piecewise constant function to the peak within-field firing rates 140 

across trials. The trials at which these step functions change values are determined to be change 141 

points24 (see Methods). To select the numbers of change points objectively, we compared the 142 

observed fit to models fit on shuffled data where trial order was randomly permuted (Fig. 2C). 143 

To rule out changes that were too small, we required change points to result in at least a 40% 144 

change in firing rate (relative to the maximum). This restriction only ruled out 7% of the putative 145 

switching fields (n = 212/3184).  146 

 147 

Fig. 2A,B shows examples of switching ON and switching OFF fields. Importantly, the 148 

switching does not only include a sudden appearance or disappearance of place fields, but also 149 

drastic changes in firing rates of existing fields (see examples in Suppl. Fig. 7C). Overall, 19% 150 

(2310/12311) of the place fields showed significant switching (14% ON, 9% OFF) in the 151 

between two trials within one session. The number of included sessions for blocks of trials are indicated in 

parentheses. E) Comparing the slope of PV correlation decay between familiar and novel environment in 

three ranges of trial lags. Trial lag 1-10, N=106, Wilcoxon rank sum test, p=0.02, Cohen’d = 0.58; trial lag 

11-20, N=26, p=0.3, Cohen’s d = 0.54; trial lag 21-30, N=8, p=0.68, Cohen’s d=-0.35. Stars indicating the 

significance level for all figures (*, 0.01<p<=0.05; **, 0.001<p<=0.01, ***, 0.0001<p<=0.001; ****, 

p<=0.0001). F) Schematics of different hypothetical mechanisms inducing a population level decorrelation. 

Each Gaussian bump represents the tuning curve of one place cell. The Pearson correlation r is taken 

between the black (current trial) and red (next trial) curves. G) Schematics for how the within-field peak 

firing rate vector and place field location vector were constructed in H and I. H) Correlation of within-field 

peak population firing rate (left) and peak location (right) of place cells as a function of trial lag. I) Similar 

to E, but instead of correlation, the normalized squared Euclidean distance (equivalent to mean squared 

error, MSE) is shown as a function of trial lags.  
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familiar environment (Fig. 2D) and 31% (662/2127, 25% ON, 18% OFF) in the novel 152 

environment (Fig 2D), echoing the finding of higher rate of BTSP in novel environments 15. 153 

Furthermore, a subgroup of animals exposed to both familiar and novel environments had less 154 

training than the animals exposed to only the familiar environment. These animals had higher 155 

fractions of switching fields (“Familiar” in Fig. 2E) than the “Familiar only” animals. Thus, 156 

novelty seemed to destabilize the network in a graded way.  157 

 158 

A potential artifactual source of these observations is a gradual or abrupt electrode drift in the 159 

tissue, resulting in the spurious appearance/disappearance or changing firing rates of the 160 

recorded neurons. Several observations and control analyses mitigate against such an 161 

explanation. First, the majority of place fields were stable across the entire session and the 162 

switching neurons were embedded among them (Fig. 1A). Second, comparison of the spike 163 

amplitudes during pre-experience and post-experience sleep demonstrated that the firing 164 

waveforms across the two sleep sessions did not vary differentially between switching and stable 165 

neurons (Fig. S1A). Finally, neurons with multiple place fields simultaneously showed stable 166 

and switching place fields (see examples in Fig. 5E; Fig. S1C), a strong support for the recording 167 

stability despite switching fields. 168 

 169 

 170 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2024. ; https://doi.org/10.1101/2024.04.22.590576doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.22.590576
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

Figure 2. Place cells exhibit discrete switching of firing rate. A- B) Examples of place cells with place 

fields that switched ON (A) or OFF (B). Bottom right is the ratemap, i.e., firing rate (color) as a function of 

position (X axis) and trial (Y axis). Vertical lines mark the boundary of the place fields. The horizontal line 

marks the switch trial. Bottom left is the peak within-field firing rate across trials. The red arrow in A 

highlights the reconstruction error. Blue line is the fitted step function. Top right is the trial-averaged 

ratemap. C) Peak within-field firing rate from A, with the trial label shuffled. D) Explained variance ratio 

from the best change point model, data vs shuffle. Each dot is a place field, colored by whether the field had 

significant switching. E) Each dot is the fraction of switching fields from one session, grouped by whether 

the session came from an animal that only experienced the familiar environment (‘Familiar only’, n=34, 

median=0.15), was a familiar session but came from an animal that also experienced the novel environment 

(‘Familiar’, n=12, median=0.22), or was a novel environment (‘Novel’, n=8, median=0.3). Horizontal bars 

are the medians. Two-sided Wilcoxon rank-sum test: Familiar only vs Familiar, p= 4 x 10^-5; Familiar vs 

Novel, p= 0.01; Familiar only vs Novel, p=1.7 x 10^-5. Stars indicating the significance level (*, 

0.01<p<=0.05; **, 0.001<p<=0.01, ***, 0.0001<p<=0.001; ****, p<=0.0001). 

Figure 2. Place cells exhibit discrete switching of firing rate. A- B) Examples of place cells with place 

fields that switched ON (A) or OFF (B). Bottom right is the ratemap, i.e., firing rate (color) as a function of 

position (X axis) and trial (Y axis). Vertical lines mark the boundary of the place fields. The horizontal line 

marks the switch trial. Bottom left is the peak within-field firing rate across trials. The red arrow in A 

highlights the reconstruction error. Blue line is the fitted step function. Top right is the trial-averaged 

ratemap. C) Peak within-field firing rate from A, with the trial label shuffled. D) Explained variance ratio 

from the best change point model, data vs shuffle. Each dot is a place field, colored by whether the field 

had significant switching. E) Each dot is the fraction of switching fields from one session, grouped by 

whether the session came from an animal that only experienced the familiar environment (‘Familiar only’, 

n=34, median=0.15), was a familiar environment session but came from an animal that also experienced 

the novel environment on that day (‘Familiar’, n=12, median=0.22), or was a novel environment (‘Novel’, 

n=8, median=0.3). Horizontal bars are the medians. Two-sided Wilcoxon rank-sum test: Familiar only vs 

Familiar, p= 4 x 10^-5; Familiar vs Novel, p= 0.01; Familiar only vs Novel, p=1.7 x 10^-5.  
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To illustrate the robustness of the change-point model, we compared it to an alternative model, 188 

which poorly captures abrupt, step-like changes in firing rate, but which can accurately describe 189 

the gradual emergence or disappearance of place fields. Specifically, we ran a polynomial 190 

regression on each place field’s firing rate with the trial number as the independent variable. 191 

Importantly, we matched the number of free parameters between the change point and 192 

polynomial regression models. For instance, a one-change point model has two parameters 193 

specifying the means of the two segments and was compared with a linear regression model 194 

(which also has two parameters: slope and intercept). An N-change point model has N+1 195 

parameters and was compared with a regression model with Nth order polynomial (Fig. 3A-C). 196 

The change point models explained more variance for more than 96% of the place fields across 197 

all model complexities (Fig. 3D-F, left column). In contrast, polynomial regression explained 198 

more variance than the change point model for the population vector decorrelation (Fig. 3D-F, 199 

right column). Altogether, these analyses revealed that individual place fields tend to exhibit 200 

discrete and step-like changes, in contrast to gradual and continuous changes in the population-201 

level representation.  202 

 203 

One might object that by averaging across trial pairs with the same trial lag, our analysis on the 204 

population vectors smoothed out potential “jumps” in the population vector. We therefore 205 

applied the model comparison to the population vectors themselves (instead of the correlations 206 

previously) (see Methods). We found the two models were largely comparable at explaining the 207 

data, with more sessions (60-70%) better explained by the gradual model, and the distribution of 208 

R2 significantly biased towards continuous models (Fig. S2G). These analyses confirmed that 209 

overall, the change in population was relatively gradual, but did not rule out the possibility of 210 

occasional jumps that were difficult to distinguish from gradual (e.g. Fig. S2A-C).    211 

   212 

A change point model stipulates an instantaneous "step-like" change in firing rate. Are these 213 

changes really abrupt, or do they emerge over a small number of trials? Is the change a "step" or 214 

a "ramp?" We reasoned that if the firing rate were slowly ramping up (resp. down), it would take 215 

multiple trials to move above (resp. below) the model's predicted firing rate after a change point 216 

(Fig. 3H, left). Alternatively, if the firing rate were an abrupt step, the first passage time above or 217 

below the predicted firing rate would be quicker (Fig. 3H, right). Indeed, assuming that trial-to-218 

trial firing rate fluctuations following an instantaneous step up/down are symmetric around the 219 

mean, the distribution of first passage times follows a negative binomial distribution (see 220 

Methods). Empirically, we found that 75-77% of first passage times happened in fewer than two 221 

trials and the distribution of passage times resembled the expected negative binomial distribution 222 

(Fig. 3I-K). Therefore, calling the changes “discrete” or “step-like” is warranted. 223 

  224 
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 226 

We have so far shown that a continuous drift model better characterizes the population change 227 

within a session, whereas a discrete step model better describes the changes of the individual 228 

place cells. We next sought to establish a relationship between the two. In other words, how 229 

much does switching contribute to the drift of the population vector? To answer this question, we 230 

grouped the place cell population into the “switchers” (cells with at least one switching field) and 231 

“non-switchers” (cells with no switching fields). The population vector of the switching 232 

population decorrelated faster than that of the non-switching population in both familiar and 233 

novel environments (Fig. S3). 234 

 235 

 236 

Factors that affect the rate of switching 237 

Are “switches” in place field activity affected by sensory, cognitive, or behavioral factors? To 238 

investigate, we used a Poisson generalized linear model to predict the number place field 239 

switches per trial within five distinct segments of the maze (delay zone, central arm, left/right 240 

choice arm, return side arm, and pre-delay zone; Fig. 4K). The number of switches was predicted 241 

from four categorical variables—animal identifier, maze segment (“position”), current trial 242 

Figure 3: Discrete and continuous models of the trial-to-trial changes of within-field firing 

rates and population vectors. A-C) Example neurons illustrate the comparison between change 

point model versus a continuous polynomial regression model. Left panel, gray: within-field 

peak firing rate as a function of trial, blue: fitted change point model (i.e., a step function), 

orange: fitted polynomial regression. Right panel: ratemaps of the selected neuron. The vertical 

lines mark the boundary of the place field, while the horizontal line marks the detected change 

points. Neurons A,B and C have one, two and three change points/polynomial order, 

respectively. D-F) Explained variance ratio of the change point model versus that of the 

polynomial regression for each place field (left) and the population vector from each session 

(right, different turns of the T maze and different directions of the linear maze were treated 

separately). For individual place fields, the models are fitted to the within-field firing rate across 

trials. For population vectors, the models are fitted to predict population vector correlation 

(averaged across trial pairs) using trial lag. G) Example of the comparison between a discrete 

change point model and a continuous polynomial regression model (CPM) for the population 

vector correlation as a function of trial lag. H) Schematics demonstrating the differences in first 

passage time (FPT) of threshold crossing in a “ramp” (left) vs “step” model (right). Threshold 

crossing is defined as above the predicted firing rate by the step model post-switch-ON and 

below the predicted pre-switch-ON firing rate. Vice versa for OFF. Post-switch trial is the 

change point given by the change point detection, and pre-switch trial is one trial before. I-J) 

Examples demonstrating switching with different switch durations, measured by the number of 

trials between the first pre-switch and post-switch threshold crossing trial (red circle), minus one. 

K) Distributions of the switch durations for switch-ON and OFF (blue), compared with a 

negative binomial (p=0.5) with two successes (grey).  
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correct/incorrect, and previous trial correct/incorrect, and three numeric variables: trial number, 243 

average speed, and number of active place fields. The model explained 20% of the deviance for 244 

switching ON and 14% for switching OFF. We examined the importance of each predictor by 245 

leaving it out and computing the decrease in cross-validated explained deviance, compared to the 246 

full model. We found that the variables that explained most of the variance were the animal 247 

labels (i.e., individual differences), the maze corridors, and the number of place fields, for both 248 

switching ON and OFF fields (Fig. 4A, C, F, G). Trial numbers (z-scored within a session) 249 

contributed less to switching ON but more to switching OFF. The contribution from position and 250 

trial suggested the occurrence of switching was not homogeneous across space and time. 251 

Although the distribution of switching across arms was variable across sessions and 252 

animals (Fig. S4), consistently more ON/OFF switching occurred in the delay zone (Fig. 4B, G, 253 

E, J). However, we did not find any reliable behavioral signature (average speed, variability of 254 

speed, fraction of time spent locomoting; see Methods) or neural signature (average pyramidal 255 

cell or interneuron activities, E/I ratio) that separated the delay zone from other parts of the maze 256 

(Fig. S5). As expected, switching probability decreased as a function of the trial number, 257 

reflecting the graded influence of novelty discussed above15 (Fig. 4D, I). By contrast, average 258 

locomotion speed did not change as a function of trials (Fig. S6C). Correct or incorrect arm 259 

choice on the current or previous trial did not predict the occurrence of switching (Fig. 4C, H). 260 

Leaving out locomotion speed or coefficient of variation (CV) of speed did not reduce the 261 

model’s ability to predict held-out data (Fig. 4A, F). Nor did we find a clear linear relationship 262 

between speed and the normalized (i.e., divided by the number of fields) switching count (Fig. 263 

S6A-B).  264 

 265 
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 267 

Although we failed to find behavioral correlates of place field switching, it is possible that some 268 

specific behaviors could induce novel place fields or make them disappear. Indeed, it has been 269 

reported that exploratory head scanning in rats was predictive of the emergence of novel place 270 

fields25. In our experiments, most head scans were detected in the reward area (position 50, 271 

between green and red sections) while head scans in the central arm were rare (Fig. 4N, O). We 272 

found no reliable relationship between field switching and incidence of head scanning (Fig. 4O, 273 

P).  274 

 275 

Field switching was not restricted to spatial tuning. The firing rates within place fields can vary 276 

substantially in the central arm of the maze, depending on the animal’s future choice in the 277 

coming turn, known as “splitter fields” 26,27. We found that the splitter feature of hippocampal 278 

neurons could also switch ON and OFF at any trial of the session, similar to place fields (Fig. 279 

S7). Thus, field switching is not confined to space but appears to be a generic property of 280 

hippocampal neurons. 281 

Switching: neuron or circuit property? 282 

Is switching an intrinsic property of the neuron or is it controlled by the circuit in which the 283 

neuron is embedded? If switching were an intrinsic property, we would expect each neuron to 284 

exhibit the property consistently (i.e., switch or not switch) in different environments. We 285 

observed individual neurons with a switching field in a familiar context and a stable field in a 286 

novel context and vice versa, suggesting switching might not be intrinsic to the neuron (e.g., Fig. 287 

5A, B). To quantify this observation, we developed a continuous metric to measure the extent to 288 

Figure 4. Spatial-temporal and behavioral modulation of switching.  

A-C) Poisson generalized linear model (GLM) predicting the number of switch-ON occurrences per arm and 

trial within one session (n=5131). A) Drop in explained deviance relative to the full model when one predictor 

is removed in the GLM. Each dot is one random split in the five-fold cross-validation. B) Spatial regression 

coefficients, in standardized unit: each variable represents the gain in the probability of switching when the 

animal is in one arm relative to the delay zone. Error bars reflect 95% confidence intervals (CI). C) The rest of 

the regression coefficients. D) The number of switch-ON occurrences normalized by the number of fields as a 

function of trial (z-scored within each session for comparison across sessions with different number of trials). 

Blue, familiar; orange, novel (Familiar: n = 1029, Pearson r = –0.15, p=1.3 x 10–6; Novel: n = 281; Pearson 

correlation r = –0.23, p = 1.3 x 10–4). E) The number of switch-ON occurrences normalized by the number of 

fields as a function of the arms. Each data point is one session. Shaded region reflects the 95% CI.  

F-J) Similar to A-E), but for switching OFF occurrences. I) (Familiar: Pearson r= –0.2, p = 3.3 x 10–11; novel: 

Pearson  r = –0.18, p = 2.7 x 10–3). K) Schematic of the maze, with each arm colored differently. L) Detected 

head scanning events projected onto the maze. M) Distribution of the headscans and switches on the maze for 

one example session. N-O) Top: the ratio as a function of position between the number of trials when switch-

ON (O) / OFF (P) occurs and the number of trials when headscans occurs. Bottom: the number of trials when 

switches (green or purple / headscans (pink) occur as a function of position. 
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which the trial-to-trial variability of the neuron is dominated by discrete switching (see 289 

Methods). We found no correlation of the switchiness across the two contexts (i.e. familiar and 290 

novel; Fig. 5C, left). In contrast, two other measures of variability were correlated across 291 

environments (Fig. 5C, right two columns): (a) the CV of the mean within-field firing rate across 292 

trials, which measures how noisy the within-field firing is and (b) the lap-to-lap correlation of the 293 

firing ratemaps, which measures how jittery the spatial tuning is (examples in Fig. S8). To be 294 

sure that the results are not affected by the conservation of firing rates across contexts28, the 295 

correlations were performed on the residual of the metrics, after the mean firing rate during non-296 

REM sleep was regressed out (Fig. 5C-D). Overall, these findings suggest that some forms of 297 

firing variability, but not switchiness, are intrinsic to individual neurons.   298 

 299 

Switching appeared to stabilize within-field firing rates for the new place fields. Specifically, 300 

switch-ON fields had lower CV of firing rates within the five trials after the switch, relative to 301 

trial-to-trial variability in non-switching fields over five trials taken either from the beginning or 302 

middle of the session (Fig. S10A, D). Further, we observed neurons with two or more place 303 

fields whose individual fields switched ON/OFF independently from one another. In some cases, 304 

one field was stable while the other field switched (Fig. 5E, left and middle; quantifications in 305 

Fig. S9A-D). In other cases, switching in one field occurred on different trials than switching in 306 

another field (Fig. 5E, right). Out of 781 place field pairs that belonged to the same place cell 307 

and both switched, only 41 (5%) switched on the same trial. Together, these results suggest that 308 

switchiness is not an intrinsic property of individual neurons.  309 
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 310 

Figure 5. Switching is not a single-neuron property. A) Example neuron with no switch-ON 

field in the familiar and with switch-ON field in the novel maze. R2: explained variance ratio of 

the one-change point model. Vertical lines mark the field boundary and the horizontal line marks 

the switch trial. B) Example neuron with switch-ON field in the familiar but no switch-ON field 

in the novel maze. C) For each neuron (per dot, n = 955), the relationship between familiar and 

novel maze for each metric of variability (per column) is shown, after regressing out the effect of 

firing rate during NREM sleep. The firing rates were first log-transformed. The residuals are 

significantly correlated across environments for CV of within-field peak firing rate (left, t = 4.8, 

R2 = 0.02, p < 10–5) and lap-lap ratemap correlation (middle, t = 7.9, R2 = 0.06; p<10–14), but not 

for the explained variance ratio from the change point model (right, t = 0.9, R2 = 0.0008, p = 

0.37). The errorbands show 95% CI for the regressions. D) For each neuron (per dot), the 

relationship between each metric of variability (per column) and its log-firing rate during NREM 

sleep. Blue and orange: familiar and novel environments, respectively. (Standardized linear 

regression coefficients and p values: noisy: familiar: t = –11.1, p = 3.6x10–27, novel: t = –12.6, p 

= 1.5x10–33; shifty: familiar: t =  –0.8,  p = 0.4, novel: t = –3.6,  p = 0.000326; switchy: familiar: 

t = 0.9,  p = 0.4; novel: t = –0.6,  p = 0.5). E) Examples of subfields of a neuron showing 

different switching behavior.  
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 311 

If switching is not a cell intrinsic property, it may be driven by a circuit-level mechanism. For 312 

example, BTSP-induced plateau potentials may co-occur in multiple neurons in the same trial, 313 

suggesting the possibility that groups of neurons “co-switch” ON. We found that in each trial, a 314 

small subset of the place fields (up to 5%) switched ON/OFF and sometimes tiled the track (see 315 

example in Fig. 6A-C). We examined whether these fields switched together in the same trial 316 

(which we call “co-switching”) or by chance. We created a null distribution for the number of 317 

pairs of place fields that co-switched ON/OFF on at least one trial by circularly shifting the 318 

switch trials for each field independently by a random amount (Fig. 6D). We then tested whether 319 

the number of pairs of fields that co-switched exceeded the shuffled pairs and found that 17% 320 

(20%) of the familiar sessions and 57% (29%) of the novel sessions showed at least one trial 321 

with significant co-switching ON (OFF) (Fig. 6E).  Together, these findings suggest that the 322 

switching feature of a field reflects the flexible partnership between the neuron and different 323 

assemblies, rather than intrinsic property of the neuron.  324 
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 325 

 326 

 327 

 328 

 329 

 330 

Figure 6: Network coordination of switching. A) Activities of example neurons whose fields co-

switched ON in the vicinity of the co-switching trial. Each heatmap is the rate map for different neurons 

(row) for one trial. The rows are sorted by the locations of the place fields that switched together. The 

color reflects the normalized firing rate. The x-axis is position. The emerging sequence is highlighted in 

red ellipsoids. B) Similar to A, but for fields that switched OFF together. The fading sequence is 

highlighted in red ellipsoids. C) Within-field peak firing rates per field across trials (normalized across 

all trials), for the same set of neurons as in A. Each row is a field. Above the orange lines are the fields 

that co-switched ON at the trial marked by the green vertical lines, whereas below are the randomly 

selected fields that did not switch ON that trial. Left contains the fields of the neurons shown in A and 

right contains the fields of the neurons shown in B. D) Shuffle test result for the number of pairs of 

fields that co-switched ON on some trials, for the session in A (left) and B (right). E) For each session, 

the number of co-switching pairs vs shuffle median. The error bars mark the 95 CI from shuffle tests. 
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 331 

 332 

 333 

 334 

Pre-existing dynamics constrain switching 335 

Can a spontaneously emerging place field emerge anywhere on the track? BTSP induction 336 

experiments suggested that place field could form anywhere on the track, if enough current is 337 

injected into the cell to form a plateau potential11. Other place field induction experiments 338 

stimulating a larger number of neurons simultaneously failed to induce place fields in a highly 339 

localized manner29,30, highlighting the network constraint on the formation and remapping of 340 

place fields31. We therefore hypothesized that pre-existing dynamics constrain the spontaneous 341 

formation and disappearance of new place fields, such that the formation should be biased by the 342 

subthreshold activities before the formation, and disappearance should not eliminate the spatial 343 

bias in the subthreshold activities post-disappearance.  344 

 345 

To examine the spontaneous emergence and disappearance of place fields, we focused on the 346 

subset of switching fields whose average within-field peak firing rate pre-switch-ON/post-347 

switch-OFF was below the threshold of place field detection (60% of the switching ON, 20% of 348 

the switching OFF). Indeed, we found that even before the emergence the new place field, the 349 

firing rates within the future place fields were already elevated relative to the mean rate recorded 350 

outside of the future place field for the majority of the neurons (Fig. S11A, C, E). Similarly, the 351 

firing rates remained elevated within the previous place field after the field had switched-OFF 352 

(Fig. S11B, D, F). Thus, within-session switching seems to reflect “unmasking”/ “masking” of 353 

preexisting/persisting place fields (Valero et al., 2022; Samsonovich and McNaughton, 1997).  354 

 355 

A natural next question regards the timescale at which place fields preexist/persist. Spatial 356 

representation drifts across days (Rubin et al., 2015) and place fields can form spontaneously via 357 

BTSP (Bittner et al., 2015; Priestley et al., 2022). It is therefore plausible that place fields that 358 

emerge during the experiment are “brand new” and would not have existed on the previous day, 359 

reflecting drift across days. However, we found the opposite. We examined a two-photon 360 

calcium imaging dataset (Hainmueller & Bartos, 2018), where mice ran on a virtual linear track 361 

for multiple days. Every 5-10 trials, the mice were teleported between a familiar environment 362 

and an environment that was novel on the first day of the experiment (Fig. 7A, B). In many 363 

cases, we observed place fields that switched within-session made repeated appearance across 364 

multiple days, suggesting a preexisting constraint on where place fields can be expressed for a 365 

Red dots are sessions with significant co-swithing of neurons. Circles and crosses correspond to co-

switching ON and cross OFF fields, respectively. Top, familiar and bottom, for novel context. 
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given place cell. For example, a place field that switched ON on day 2 could be found stably on 366 

day 1 (Fig. 7C). In another example, a field switched OFF on day 1 and re-emerged on day 2. 367 

Overall, we found that even on the day before the emergence the new place field, the firing rates 368 

within the future place fields were already significantly elevated relative to the mean rate 369 

recorded outside of the future place field (Fig. 7E,G). Similarly, the firing rates remained 370 

elevated on the next day within the previous place field after the field had switched-OFF (Fig. 371 

7F, H). Thus, even when the place fields are silent for an extended period (i.e., before switching 372 

ON or after switching OFF), they are still subject to the constraints imposed by the network. 373 

 374 
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 376 

Discussion 377 

We found that hippocampal place fields can abruptly and spontaneously appear, disappear or  378 

change firing rates over the course of a recording session, resulting in consistent trial-to-trial 379 

turnover and gradual population-level drift in the spatial representation. These “switches” in 380 

individual place fields occurred in any part of the maze without apparent behavioral correlates. 381 

Switching was not exclusive to place fields as choice-predicting (“splitter”) fields also showed 382 

regular turnover. The rate of drift was accelerated by novelty. Switching was not an intrinsic 383 

property carried by single neurons: different place fields belonging to the same neuron could 384 

have independent switching properties. But pairs of place fields from different neurons switched 385 

on the same trial more often than chance, reflecting population-level coordination. Finally, when 386 

place fields formed spontaneously, the locations were constrained by the pre-existing spatial bias 387 

in the subthreshold activities before the formation. The constraint also persisted after the 388 

disappearance. These constraints extended beyond single sessions into multiple days. 389 
 390 

Robustness of the change point model 391 

Representational drift is often studied in a trial-averaged manner and described as “gradual” in 392 

both population activity and single neurons3,4,6,32–36, but see Marks & Goard7. However, these 393 

reports relied on qualitative reports of aggregated statistics and did not explicitly model the drift 394 

dynamics of single neurons. We leveraged change point detection, shuffle tests, and comparison 395 

to polynomial regression to rigorously arbitrate the issue of gradual vs sudden change. 396 

Decorrelations of PV averaged across trial pairs were gradual, while changes in the peak within-397 

field firing rate were sudden, highlighting the necessity of careful model comparison with single-398 

Figure 7:  Switching is constrained by pre-existing fields.  

A) Experimental setup of the imaging experiment. B) Behavior timeline. C-D) Example 

neurons that had a place field that switched ON on the second day (day 1) (C) or was OFF on 

the first day (day 0) (D). Top: trial-averaged ratemap in blue, with field mask in dotted red 

line. Bottom left: ratemap; red vertical lines mark the boundary of the fields, while orange 

vertical lines mark the “outside” region for the quantifications in E-H. White horizontal line 

marks the change in the day. Bottom right panel: binary variable of whether the within-field 

activation is above the place field detection threshold at each trial. Arrow in D (top) marks the 

place field of interest among the two fields. Note D (bottom) is an example for both scenarios 

in C and D. E-H) Quantifications of within- versus outside-of-fields activation (n=14). For 

fields that switch ON (E,G) on the second day, the quantification is done on the first day using 

the field detected on the second day. The opposite is true for fields that switch OFF (F, H), 

i.e., detected on the first day and quantified on the second day. Left: median dF/F across trials, 

averaged across all fields within one session, separated into within vs outside of the place 

fields. Right: histogram of within- minus outside of field dF/F of all fields pooled across 

sessions. Wilcoxon rank-sum tests and Cohen’d are used for significance test and effect size. 
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cell and single-trial resolution. Our modeling framework also allowed us to detect changes in 399 

within-field firing rates beyond simple emergence of place fields, which was the focus of studies 400 

of BTSP11,12,15. By expanding our analysis to a broader variety of firing rate changes, we gained 401 

a more complete picture of the persistent and sudden changes of place field features. They also 402 

gave us the power to determine the contribution of the “switchers” to the population level drift 403 

and to examine the coordination of switching in the population. 404 

Interpretations of representational drift 405 

The term “representational drift” refers to the changing relationship between external variables 406 

(image, odor, space etc.) and neuronal activity. One interpretation hypothesized the homeostatic 407 

re-adjustment of synapses and firing rates37,38 as a driver for drift. An implication is that the 408 

longer the elapsed time between retesting, the larger the drift. In support of this hypothesis, 409 

longer testing intervals lead to larger decorrelation4,36. However, recent experiments showed a 410 

greater role of the amount of awake experience in the degree of drift than time per se33,34. The 411 

within-session drift we observed is consistent with these observations. 412 
 413 

Another potential driver for drift could be changing attentional and behavioral states. The 414 

implicit assumption of drift is that spiking patterns correspond to or “represent” some external 415 

physical features1,39. Thus, the spiking patterns can change when the animals attend to different 416 

external features40–42. Consequently, drift could be induced by changes in animal’s behavior or 417 

attentional states43–46. In particular, Monaco et al.25 reported that exploratory head movement can 418 

reliably induce novel place fields in rats. We found though that such “stereotypical” behavior 419 

was not necessary to induce firing rate changes in mice. In addition, switching could occur 420 

everywhere and all the time, suggesting that it is not induced by particular events.   421 

   422 

Here we offer an alternative explanation for the drift, that the neuronal circuits are perpetually 423 

reorganized through their internal dynamics47,48. We propose that particular changes in 424 

attentional behavior or physiological states (like sleep) are not necessary for reorganization, 425 

although they can modulate the rate of reorganization. Fluctuations in the nervous system may 426 

trigger spontaneous plateau potentials that induce BTSP and change the tuning 11, corresponding 427 

to the switch-ONs. Alternatively, Kispersky et al.49 showed in a biophysical model that small 428 

changes in AMPA conductance could lead to an abrupt increase in firing rate due to the dynamic 429 

properties of the ionic currents. Switch-OFFs (which were not explicitly described via BTSP) 430 

might be triggered by the switch-ONs in other pyramidal cells via interneurons to maintain E-I 431 

balance50,51. In support of this interpretation, optogenetic stimulation of hippocampal pyramidal 432 

cells led to the appearance and disappearance of place fields (“remapping”) both inside and 433 

outside the stimulated part of the maze, via affecting monosynaptic drive of interneurons29,31,52. 434 

Similarly, long-term potentiation of the CA3-CA1 connections both induced and abolished place 435 

fields transiently but reverted to their default fields with extended time50.  436 

 437 

Our postulation that perpetual changes of neuronal dynamics are internally organized does not 438 

diminish the role of behavioral effects and external inputs. Indeed, we showed that place fields in 439 

the delay zone had a higher rate of switching ON/OFF, and place fields tended to switch more 440 

frequently in earlier trials, which could be due to different behavioral, attentional, and 441 

motivational states at particular places and times. Head scanning, active exploration, and 442 
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attention to novel and salient cues may effectively trigger instantaneous or slow modification of 443 

firing patterns and/or affect the temporal rate of population vector decorrelations. Thus, STDP-444 

induced slow and BTSP-induced quantal plasticity mechanisms likely co-exist and combine the 445 

advantages offered by each mechanism. 446 

Properties of the preexisting constraint 447 

The presence of subthreshold place fields in “silent” neurons has been shown by unmasking their 448 

spiking fields by sustained or transient depolarization53,54. These subthreshold fields are 449 

hypothesized to reflect preexisting constraints imposed by hippocampal cell assemblies. 450 

Consistent with this hypothesis, we observed persistent place fields that spontaneously formed 451 

and disappeared across multiple days. Given that switching comprises preexisting/persistent 452 

place fields, it is possible that fluctuations of excitation and inhibition could unmask the place 453 

field even without the need for BTSP or other forms of drastic plasticity49,53,54 by moving 454 

population activity from one attractor to the next. 455 
 456 

Given the constraint on place field locations that we observed across two days, how could large 457 

changes in population-level representation happen across many weeks4? We hypothesize that the 458 

pre-existing constraint merely biases the expression of place fields, but does not fully determine 459 

it. On a timescale of two days, place fields exhibit mostly ON and OFF switching in a fixed 460 

range of locations. On a slower time scale, however, the tendency of ON and OFF switching 461 

could change. For instance, a neuron might switch ON less frequently and eventually develop a 462 

new place field in a different location. The constraint itself is a reflection of the population 463 

activity and connectivity, and therefore could also slowly change as the population drifts, making 464 

it easier for cells to develop place fields in new locations. Our findings and explanation are 465 

consistent with work from Geva et al.33, which finds that place field location shifts over days are 466 

not random but become progressively larger over longer time intervals. We find that this 467 

constraint is present even for unstable fields that emerge and disappear on the timescale of trials.  468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

STAR+METHODS 477 

Detailed methods are provided in the online version of this paper and include the following: 478 

KEY RESOURCES TABLE 479 

RESOURCE AVAILABILITY 480 

Lead contact 481 

Further information and requests should be directed to the lead contact, György Buzsáki 482 

(gyorgy.buzsaki@nyulangone.org). 483 

Materials availability 484 

This study did not generate new unique reagents. 485 
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Data and code availability 486 

The electrophysiological dataset analyzed for the present study has been made publicly 487 

available in the Buzsáki lab repository (https://buzsakilab.nyumc.org/datasets). The calcium 488 

imaging dataset that support the findings of this study are available from Marlene Bartos 489 

(bartos@physiologie.uni-freiburg.de) upon reasonable request. The custom analysis code is 490 

available upon request.  491 

 492 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 493 

We refer to Huszár et al.20 and Hainmueller & Bartos21 for details on the mice used for the 494 

electrophysiological dataset and the two-photon calcium imaging dataset, respectively.  495 

 496 

METHOD DETAILS 497 

Datasets 498 

For details on animal surgery, training, recording, data preprocessing, spike sorting and state 499 

scoring, we refer to Huszár et al.20 and Hainmueller & Bartos21 for the electrophysiological 500 

dataset and the two-photon calcium imaging dataset, respectively. In brief, for the 501 

electrophysiological dataset, we used the chronic silicon probe recordings from hippocampal 502 

CA1 region in n=11 mice. The animals were trained on a spatial alternation task on a figure-eight 503 

maze. Animals were water restricted before the start of experiments and familiarized to a 504 

customized 79 ×79 cm2 figure-eight maze raised 61 cm above the ground. Over several days after 505 

the start of water deprivation, animals were shaped to visit alternate arms between trials to 506 

receive a water reward. A 5-s delay in the start area (delay area) was introduced between trials. 507 

The position of head-mounted red LEDs (light-emitting diodes) was tracked with an overhead 508 

camera at a frame rate of 30 Hz. Animals were required to run at least ten trials along each arm 509 

(at least twenty trials total) within each session. In all sessions that included maze behavior, 510 

animals spent ~120 min in the homecage before running on the maze and another ~120 min in 511 

the homecage afterward for sleep recordings. All behavioral sessions were performed in the 512 

mornings (start of the dark cycle). A subset of n=3 mice were exposed to novel environments in 513 

addition to the familiar figure-eight maze. After the shaping phase described above, animals 514 

underwent recording sessions consisting of a ~120-min homecage period, running on the figure-515 

eight maze, ~60-min homecage period, running in a never-before experienced environment, 516 

followed by a final ~120-min homecage period. The novel environments included two distinct 517 

linear mazes and a different figure-eight maze. Mazes were placed in distinct recording rooms, or 518 

in different corners of the same recording room, with distinct enclosures to ensure unique visual 519 

cues. We required that the familiar sessions had no fewer than 20 trials in total and 7 trials per 520 

turn, and no fewer than 50 putative pyramidal cells. Overall, we included 46 familiar sessions 521 

and 8 novel sessions. For the co-switching analysis, we further excluded a novel session because 522 

it had too few trials.  523 
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For the calcium imaging dataset, mice were injected with AAV1.Syn.GCaMP6f.WPRE.SV4 to 524 

express the calcium indicator GCaMP6f pan-neuronally in the dorsal CA1. The mice were then 525 

implanted with a 3 mm diameter transcortical window over the external capsule after aspiration 526 

of the overlying cortex and imaged with a resonant-scanning two-photon microscope (for details 527 

see Hainmueller and Bartos21). For imaging experiments, the mice were head-fixed and ran in a 528 

virtual environment resembling a linear track. The track consisted of textured walls, floors and 529 

other 3D rendered objects at the tracks sides as visual cues. Potential reward locations were 530 

marked with visual and acoustic cues, and 4 µl of soy milk was gradually dispensed through a 531 

spout in front of the mouse as long as the mouse waited in a rewarded location. The forward gain 532 

was adjusted so that 4 m of distance travelled along the circumference of the ball equaled one 533 

full traversal along the linear track. When the mouse had reached the end of the track, screens 534 

were blanked for 5–10 s and the mouse was ‘teleported’ back to the start of the linear track. The 535 

virtual environment was displayed on four TFT monitors (19″ screen diagonal, Dell) arranged in 536 

a hexagonal arc around the mouse and placed ~25 cm away from the head, thereby covering 537 

~260° of the horizontal and ~60° of the vertical visual field of the mouse. Mice were first trained 538 

in the familiar virtual environment for 4-5 days. After the window implantation surgery, mice 539 

were re-habituated in the familiar virtual environment until consistent reward licking. From the 540 

first day of the imaging session, mice were introduced to a novel context. which had different 541 

visual cues, floor and wall textures but had the same dimensions as the familiar context including 542 

the four marked reward locations. On the novel track, two of these reward sites were disabled 543 

(that is, the auditory cue was still given, but no reward was dispensed). Mice alternatingly ran on 544 

the two tracks for a total of 15–30 runs on each track and day. The mice made 1–5 runs on one 545 

track and then an equal number of runs on the other. The length of these trial blocks was 546 

randomly varied. Imaging was performed in the same set of contexts for two to five consecutive 547 

days. We only considered the CA1 recording for two days, 14 experiments in 11 animals, with 548 

9828 pyramidal cells (150-1765 per session). 549 

Significant calcium transients were identified, which mainly reflect burst firing of principal cells. 550 

In brief, calcium traces were corrected for slow changes in fluorescence by subtracting the eighth 551 

percentile value of the fluorescence-value distribution in a window of ~8 s around each time 552 

point from the raw fluorescence trace. We obtained an initial estimate on baseline fluorescence 553 

and standard deviation (s.d.) by calculating the mean of all points of the fluorescence signal that 554 

did not exceed 3 s.d. of the total signal and would therefore be likely to be part of a significant 555 

transient. We divided the raw fluorescence trace by this value to obtain a ΔF/F trace. We used 556 

this trace to determine the parameters for transient detection that yielded a false positive rate 557 

(defined as the ratio of negative to positive oriented transients) <5% and extracted all significant 558 

transients from the raw ΔF/F trace. Definitive values for baseline fluorescence and baseline s.d. 559 

were then calculated from all points of this trace that did not contain significant transients. For 560 

further analysis, all values of this ΔF/F trace that did not contain significant calcium transients 561 

were masked and set to zero.       562 
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Behavior segmentation 563 

From the 2D position tracking, we computed the velocity in x and y directions within each time 564 

bin and smoothed it with a gaussian filter (std = 10 bins), and then computed the speed using 𝑣 =565 

√𝑣𝑥
2 + 𝑣𝑦

2. We categorized the animal’s behavior on the maze into forward locomotion, 566 

immobility, and headscan. We first defined immobility as times when the speed was <1cm/s. We 567 

then detected headscan using a simplified version of the method used in Monaco et al25. 568 

Headscan events were detected by first finding times when the distance between the animal's 569 

head position (reflected by the LED tracking) and the track was above a threshold of 3 cm. We 570 

then extended the time both forward and backward till when the head position was “on-track”, 571 

distance < 1 cm. Both thresholds were manually adjusted to minimize type I and type II error. 572 

Among these putative events, those that were shorter than 0.4s in time, and those whose start and 573 

end locations had a distance greater than 20 bins were excluded. The rest of the events were 574 

merged if the end of one and the start of the next were within 0.4s in time. We computed the 575 

distance to the maze from one point by first sampling positions that were on the maze, and then 576 

calculated the smallest Euclidean distance from that point to the position samples. We sampled 577 

positions on the maze by: 1) selecting the time points where the speed was > 10cm/s; 2) using 578 

these points to construct a map from the linearized coordinates back to the 2D coordinates using 579 

linear interpolation; 3) evenly sampling 200 linearized coordinates; and 4) mapping them back to 580 

the 2D coordinates. Excluding the times of immobility and headscan, as well as occasional 581 

backtracking, the rest was considered forward locomotion.    582 

Ratemap calculation 583 

Only time points when animals were moving forward were included. Spikes were binned by bins 584 

of 2.2cm. The spike counts and occupancies within each bin were smoothed by a gaussian filter 585 

with standard deviation of 2.5. We obtained ratemaps per trial by dividing the smoothed spike 586 

counts by smoothed occupancies. We then averaged over trials to obtain a trial-averaged 587 

ratemap. For the imaging dataset, we first mask the dF/F traces and performed the same 588 

operations on the masked traces in place of spikes. 589 

Place field detection 590 

For the electrophysiological dataset, we circularly shuffled animal’s positions in time and 591 

constructed trial-averaged ratemaps 1000 times to obtain a null distribution of the average 592 

ratemaps per neuron. Place fields were defined as contiguous chunks of positions where: 1) the 593 

empirical average ratemaps were above the 95th percentile of the null distribution; 2) the size 594 

was between 4 and 30 bins; and 3) the peak firing rate within the field was above 1Hz. For the 595 

imaging dataset, we circularly shuffled the animal’s position labels in the ratemaps per trial and 596 

then averaged to obtain a null distribution of the average ratemaps per neuron. Place fields were 597 

defined as contiguous chunks of positions where: 1) the empirical average ratemaps were above 598 

a threshold. The threshold for each neuron was computed as: 0.25 times the difference between 599 
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the peak of the average ratemap and the baseline. The baseline was defined as the 25th percentile 600 

of the activity rate among all the positions and trials. The baseline was either defined using the 601 

current session or all days, giving rise to a threshold and a “pooled” threshold. The final 602 

threshold was the maximum between the threshold and 0.6 * pooled threshold. Including a 603 

pooled threshold ensured that small fluctuations on one day would not be classified as place field 604 

activity if the neuron had high activity on the other day. 2) The in-field gain, measured by the 605 

average within-field activity/average outside activity had to be >3. 3) The peak within-field 606 

activity rate had to be higher than the 80th percentile of the null distribution. After detecting the 607 

place fields, we computed the peak within-field firing rate per trial and the peak locations per 608 

trial. For the analysis of preexisting fields, we obtained the outside region for each place field by 609 

extending the field in both directions, each for 10% of the track length, until it hit the boundary 610 

of the maze or another field. 611 

 612 

For the figure 8-maze data, we separated place fields into fields that were common for both turns 613 

(on the central arm) and fields that were specific for one type of turn (on non-central arms or 614 

splitter cells on the central arm). The field was determined to be common to both turns if the 615 

peaks detected from both turns were less than 5 bins apart and lied on the central arm, and that 616 

the peak firing rates per trial were not significantly different between two turns (using 617 

independent t-test). If they were, then the field was deemed a splitter field. Analysis on the place 618 

field parameters (firing rate, location) were performed using all trials for the turn-common fields, 619 

and only trials for one turn for the turn-specific fields.   620 

Detection of discrete switching 621 

We used a change point detection algorithm called optimal partitioning24. Given the number of 622 

change points (𝐾), it searches for K changes points ({𝜏1, … , 𝜏𝐾:  1 < 𝜏1 < ⋯ < 𝜏𝐾 < 𝜏𝐾+1 = 𝑇}) 623 

that partitions the time series 𝑥1:𝑇 into 𝐾 + 1 segments, where 𝑇 is the length of the signal. Each 624 

segment is associated with a cost. In our case the cost was the sum of squared error of fitting a 625 

constant function within a segment: 𝐶1(𝑢, 𝑣) = ∑ (𝑥𝑖 − 𝑥𝑢:𝑣)
2

𝑣
𝑖=𝑢 , where 𝑥𝑢:𝑣 is the average of 𝑥 626 

within 𝑢 𝑎𝑛𝑑 𝑣. The objective is to find change points that minimize the total cost: 𝐶𝐾+1(1, 𝑇) =627 

∑ 𝐶1(𝑥(τ𝑖+1):τ𝑖+1
)𝐾+1

𝑖=1  , where the left hand side denotes the minimal cost from 1 till T given 𝐾 628 

change points (𝐾 + 1 segments). At its core, the search utilizes a recursive relation that relates 629 

the optimal value of the cost function within a segment given 𝑚 change points to the optimal 630 

cost within a subsection from the start of the segment to the last change point (given 𝑚 − 1 631 

change points): 𝐶𝑚+1(𝑢, 𝑣) = 𝐶𝑚  (𝑢, 𝑡) + 𝐶1(𝑡 + 1, 𝑣). Starting from 𝐶1(𝑢, 𝑣) for all pairs of 632 

𝑢, 𝑣, it recursively computes 𝐶𝑚(𝑢, 𝑣) for 𝐾 + 1 ≥ 𝑚 ≥ 2. Finally, it backtracks to find the set 633 

of change points: starting from 𝜏𝐾+1 = 𝑇, given 𝜏𝑚+1, 𝜏𝑚 =𝑎𝑟𝑔 𝑎𝑟𝑔 𝐶𝑚−1  (1, 𝜏𝑚) +634 

𝐶1(𝜏𝑚 , 𝜏𝑚+1). The time complexity is 𝑂(𝐾𝑇2), compared to 𝑂(𝑇𝐾) in the naïve way. For a more 635 

detailed description we refer to Truong et al.55 for a review. We used the Python package 636 
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ruptures55 to perform change point detection on the time series of within-field peak firing rate 637 

over trials. We set the parameter of the minimal segment length to be two. 638 

 639 

To determine the significance of the change points and further determine the number of change 640 

points that suited the data the best, we noticed that if a step-function like structure existed in the 641 

data, shuffling the data would break the structure and incur a higher cost from the change point 642 

model than in the original data. This observation allowed us to determine whether there was any 643 

significant discrete jump in the data. We could further determine the optimal number of change 644 

points by selecting the number that led to the highest increase in cost in shuffle compared to data. 645 

This way, overfitting with many change points was avoided, because increasing the number of 646 

change points would also decrease the cost in the shuffle, counterbalancing the decrease in the 647 

cost of the data. In practice, for each place field, we shuffled the within-field peak firing rate 648 

over trials 1000 times and fit each shuffle with change point models from one change point up to 649 

min(5, ⌊num. trials / 4⌋) and obtained the costs. The empirical costs were compared against the 650 

shuffle to compute the P-values. We then performed a Bonferroni corrected test (with a P-value 651 

threshold of 5%) to determine whether a field had any significant change points. Next, the 652 

optimal number of change points to each field that had significant change points was determined 653 

to be the one whose empirical cost had the lowest percentile in shuffle. Finally, we filtered 654 

change points whose step sizes were < 40% of the max firing rate across trials to include only 655 

relatively large changes. Although the shuffle test already tended to favor large and sustained 656 

changes, the final filter filtered out only a small fraction of events. 657 

 658 

Metrics of variability  659 

We used two traditional metrics of variability: CV of the firing rate (“noisy”) and the lap-to-lap 660 

ratemap correlations (“shifty”), plus one new metric based on the change point detection 661 

(“switchy”), to measure the variability of the space-related activities of the place cells. The 662 

“noisiness” measured the total amount of fluctuations of the within-field peak firing rate and was 663 

computed as the standard deviation divided by the mean of the within-field peak firing rate 664 

across trials. We then averaged them across fields to get one measure for one neuron. The 665 

shiftiness was the Pearson correlation between the ratemaps from a pair of trials, averaged over 666 

all pairs of trials, and primarily measured the shift in the location or distribution of the ratemap. 667 

Neither of these metrics captured the degree of step-function like switching, which we called 668 

switchiness and defined to be the fraction of variance of the within-field peak firing rate 669 

explained by the change point model with one change point. (Fixing one change point is to make 670 

place fields that have different optimal numbers of change points comparable). We then average 671 

the switchiness per field to assign a score to each neuron. 672 

 673 

Continuous model of trial-dependent change 674 

We compared the discrete switching model with a continuous model for explaining both the 675 

change in single place field’s activity over trials and also the decay in the population vector 676 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2024. ; https://doi.org/10.1101/2024.04.22.590576doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.22.590576
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

correlations as a function of trial lags. The continuous model was a polynomial regression 677 

𝑦(𝑡)~𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + ⋯ 𝑏𝑘𝑡𝑘 , where 𝑦(𝑡) was either the peak within-field firing rate of one 678 

place field in trial 𝑡 or the population vector correlation averaged over all trials pairs 𝑡 trials 679 

apart, 𝑏𝑖𝑠 were the coefficients and 𝑘 was the order of the model. The fitting was done using the 680 

Python library statsmodels56.  681 

 682 

Model comparison applied to the population vectors 683 

To further determine whether the population vectors evolve gradually or abruptly while ruling 684 

out the effect of trial averaging, we apply the change point or regression models to the 685 

population vectors themselves (instead of the correlations previously). To simultaneously speed 686 

up the computation and reduce the noise, we first reduced the dimensionality of the matrix of 687 

population vectors (n_trial-by-(n_neuron x n_position)) to n_trial-by-n_feature, where n_feature 688 

is chosen to preserve just above 95% of the variance, usually n_trial-2. Now the fitted piece-wise 689 

constant function from the change point model are vector-valued functions, with change points 690 

shared across the feature dimensions. The cost for one section is now the sum of the cost over all 691 

dimensions. The polynomial regression models are fitted to each feature dimension 692 

independently. This choice is justified since gradual changes of each dimension would add up to 693 

a gradual change of the population, whereas if sudden changes occur at different times across 694 

each dimension, we would not necessarily regard the population as having jumps. The explained 695 

variance ratio can be obtained as usual.  696 

 697 

Switch duration quantification and comparison 698 

If the trial-to-trial firing rate fluctuations before and after an instantaneous step up/down are 699 

symmetric around the mean, the distribution of first passage times (FPTs) follows a negative 700 

binomial distribution. The negative binomial distribution models the number of tails in a 701 

sequence of coin tosses before k heads occur. In our case, the coin was fair (p = 0.5). We defined 702 

thresholds as the firing rates (FRs) predicted by the change point model. For switch-ONs, the 703 

first threshold crossing post-switch was defined as the first trial when the actual FR went above 704 

the predicted FR after the switch. The first threshold crossing pre-switch was the first trial 705 

(counting backwards from the switch) when the actual FR was below the predicted FR before the 706 

switch. Vice versa for switch-OFFs. The FPTs were defined as the number of trials between the 707 

post/pre-switch trial and the first threshold crossing. The post-switch trial was the change point 708 

given by the change point detection, while the pre-switch trial was the trial before the post-709 

switch trial. For each switching, we summed the FPTs pre- and post-switch to get the switch 710 

duration. Since each of the FPT was expected to follow a negative binomial distribution with 711 

𝑘 = 1, the switch duration was compared with a negative binomial distribution with 𝑘 = 2, i.e. 712 

the sum of two independent negative binomial variables with 𝑘 =  1. 713 

 714 

Contribution of switching neurons to drift 715 
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We grouped the place cell population into the “switchers” (cells with at least one switching field) 716 

and “non-switchers” (cells with no switching fields). To ensure the sizes of the groups were 717 

comparable, we sampled non-switchers to match the size of the switchers for each session ten 718 

times and averaged the analysis results for Fig. 4A and B. For each subpopulation, we computed 719 

the population vector correlation and took the median across all trial pairs given a trial lag for 720 

each session. We next measured the magnitude of decorrelation per session by fitting a linear 721 

regression on the population vector correlation, using trial lag as the regressor. 722 

 723 

Generalized linear model of switching 724 

We used a generalized linear model (GLM) to predict the number of switching ON/OFF per trial 725 

and arm (familiar maze only). The relevant variables were aggregated per trial and arm for each 726 

session and concatenated across sessions and animals. The full model was 727 

𝑙𝑜𝑔(𝑦)~𝐶(𝐴𝑛𝑖𝑚𝑎𝑙) +  𝐶(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)  +  𝑁_𝑓𝑖𝑒𝑙𝑑 +  𝑇𝑟𝑖𝑎𝑙 +  𝑆𝑝𝑒𝑒𝑑 +  𝐶𝑉_𝑠𝑝𝑒𝑒𝑑 +728 

 𝐶(𝐶𝑜𝑟𝑟𝑒𝑐𝑡) +  𝐶(𝑃𝑟𝑒𝑣_𝑐𝑜𝑟𝑟𝑒𝑐𝑡), where 𝑦 was the number of switching 𝐶(⋅) indicates 729 

categorical variables. “Position” refers to the arm of the maze. “N_field” refers to the number of 730 

fields whose peak lied in that arm. “Trial” and “Speed” were z-scored within session to aid 731 

comparison across sessions and animals. “Speed” refers to the average speed within the arm at 732 

the trial. “CV_speed” refers to the coefficient of variation of the speed within the arm at the trial. 733 

“Correct” refers to whether the animal made the correct turn on the current trial, and 734 

“Prev_correct” whether the previous trial was correct. We used a Poisson likelihood function. 735 

The variable selection was performed by repeating a 5-fold stratified cross-validation 10 times 736 

(grouped by animal to make sure the relative sample size for different animals were maintained). 737 

The fitting and cross-validations were done via the Python library sklearn.  738 

 739 

Quantification of pre-existing constraint  740 

To quantify the extent to which the place field preexisted (before switch-ONs) or persisted (after 741 

switch-OFFs), we computed the difference between the mean within-field firing rate (or dF/F for 742 

imaging) and the mean outside-of-field firing rate (or dF/F). The “outside” was defined by 743 

extending the field boundary in both directions by 10% of the track length, until it hit the end of 744 

track or the onset of another place field. This way we ensured that the quantification was not 745 

obfuscated by the existence of multiple fields. We then took the median across trials for each 746 

neuron and plotted the distribution in Fig. 7E-H (left panels). To make sure the result is robust 747 

across sessions, we also averaged the within and outside dF/F across all fields within a session 748 

(Fig. 7E-H, right panels). 749 

 750 

QUANTIFICATION AND STATISTICAL ANALYSIS 751 

All statistical details, including the specific statistical tests, are specified in the corresponding 752 

figure legends. In general, for one sample and paired two samples we performed two-sided 753 

Wilcoxon signed rank tests. For unpaired two samples we performed two-sided Wilcoxon rank 754 

sums test. We used the Pearson correlation coefficient to measure linear correlation. Effect sizes 755 

were reported using Cohen’s d. All statistical analyses were conducted using Python.   756 
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