

1 Component specific responses of the microbiomes to 2 common chemical stressors in the human food chain

3
4 Wasimuddin^{1,*}, Aurea Chiaia-Hernandez^{2,3}, Céline Terrettaz⁴, Lisa Thoenen⁴, Veronica
5 Caggia⁴, Pierre Matteo⁴, Miquel Coll-Crespi², Matheus Notter¹, Mohana Mukherjee¹, Teresa
6 Chavez-Capilla², Francesca Ronchi⁵, Stephanie C. Ganal-Vonarburg⁵, Martin Grosjean^{2,3},
7 Moritz Bigalke^{2,**}, Sandra Spielvogel⁶, Andrew Macpherson⁵, Adrien Mestrot², Siegfried
8 Hapfelmeier¹, Matthias Erb⁴, Klaus Schlaepi^{4,7}, Alban Ramette¹
9

10 **Affiliations**

11 ¹ Institute for Infectious Diseases, University of Bern, Bern, Switzerland

12 ² Institute of Geography, University of Bern, Bern, Switzerland

13 ³ Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland

14 ⁴ Institute of Plant Sciences, University of Bern, Bern, Switzerland

15 ⁵ Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital,
16 University of Bern; Department for BioMedical Research, University of Bern, Bern,
17 Switzerland

18 ⁶ Institute for Plant Nutrition and Soil Science, Christian Albrechts University Kiel, Kiel,
19 Germany

20 ⁷ Department of Environmental Sciences, University of Basel, Basel, Switzerland

21

22 **Current affiliations**

23 *Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Ås, Norway

24 **Institute of Applied Geoscience, Technical University Darmstadt, Darmstadt, Germany

25

26 **Correspondence**

27 Klaus Schlaepi: klaus.schaeppi@unibas.ch

28 Alban Ramette: alban.ramette@unibe.ch

29 **Abstract**

30 Along a food chain, microbiomes occur in each component and often contribute to the
31 functioning or the health of their host or environment. 'One Health' emphasizes the
32 connectivity of each component's health. Chemical stress typically causes dysbiotic
33 microbiomes, but it remains unclear whether chemical stressors consistently affect the
34 microbiomes along food chain components. Here, we systematically challenged a model food
35 chain, including water, sediments, soil, plants, and animals, with three chemical stresses
36 consisting of arsenic (a toxic trace element), benzoxazinoids (an abundant bioactive plant
37 metabolites), and terbuthylazine (an herbicide typically found along a human food chain). The
38 analysis of 1,064 microbiome profiles for commonalities and differences in their stress
39 responses indicated that chemical stressors decreased microbiome diversity in soil and
40 animal, but not in the other microbiomes. In response to stress, all food chain communities
41 strongly shifted in their composition, generally becoming compositionally more similar to each
42 other. In addition, we observed stochastic effects in host-associated communities (plant,
43 animal). Dysbiotic microbiomes were characterized by different sets of bacteria, which
44 responded specifically to the three chemical stressors. Microbial co-occurrence patterns
45 significantly shifted with either decreased (water, sediment, plant, animal) or increased (soil)
46 network sparsity and numbers of keystone taxa following stress treatments. This suggested
47 major re-distribution of the roles that specific taxa may have, with the community stability of
48 plant and animal microbiomes being the most affected by chemical stresses. Overall, we
49 observed stress- and component-specific responses to chemical stressors in microbiomes
50 along the model food chain, which could have implications on food chain health.

51

52 **Key words**

53 Microbiome – One Health – diversity – chemical stressors – dysbiosis

54

55

56 **Introduction**

57 The 'One Health' concept emphasizes the ecological relationships and interdependencies of
58 all components of a system to collectively determine the global health of that system¹. Hence,
59 the health of our planet results from a connected health of us, plants, animals and the
60 environment. All system components host microbial communities or are colonized by
61 microbiomes that have important roles in the health of each system component. The One
62 Health concept was extended to include the full breadth of microbiomes²⁻⁴. It is thought that a
63 microbiome perspective strengthens the One Health concept due to i) the contribution of
64 microbiomes to the health of individual system components, ii) the importance of microbiome
65 processes for the transfer of energy, matter and chemicals between system components, and
66 iii) the vital services provided by microbiomes to overall system's health. Furthermore,
67 dysbiotic microbiomes of humans⁵, plants⁶, animals⁷ or the environment⁸ are often associated
68 with diseases or impaired ecosystem performance. A dysbiotic state can originate from
69 stressors that either induce deterministic, stochastic, or a mix of these two, effects on the
70 microbiome and thereby reduce the ability of the host or its microbiome to regulate community
71 composition⁹. What is not well studied in One Health context is whether stressors of a whole
72 system influence the microbiomes of the diverse components with commonalities and/or
73 disparities in their responses. Such information is crucial for estimating individual component
74 microbiomes' resilience against common disturbances in a One Health framework.

75 A wide range of common environmental and anthropogenic stressors including
76 chemicals like toxic trace elements¹⁰, bioactive plant metabolites¹¹, and pesticides¹² are known
77 to negatively affect the health of different system components. Such stresses can directly
78 impact the health of the exposed environment or organism, for instance by changing metabolic
79 rates, inhibiting enzymatic functions or indirectly via perturbing or throwing off balance the
80 microbiome's composition. Research has traditionally focused on understanding the direct
81 stress effects on host or environmental physiology (toxic trace elements¹³, plant metabolites¹⁴,
82 and pesticides^{15,16}) as well as direct stress effects on microbiomes of individual system
83 components. For instance, water, soil, plant or animal associated microbiomes are perturbed
84 by stresses like toxic trace elements, plant metabolites, and pesticides¹⁷⁻¹⁹. However, the
85 indirect and microbiome-mediated contributions to connected system components, i.e. taking
86 the One Health perspective, have received much less attention. A major gap towards such
87 One Health understanding, is the lack of systematic studies where microbiomes of different
88 system components are challenged with the same stressors, at the same doses and with the
89 same exposure protocol. Such systematic work will allow to specifically answer fundamental
90 questions of a One Health framework, such as (i) whether microbiomes of diverse system
91 components can be perturbed with the same stress exposure protocol, (ii) if yes, how does
92 their stress sensitivity compares in direction or magnitude within and across components, and

93 (iii) whether there are commonalities or differences in the microbiomes' stress responses from
94 different system components?

95 To close this gap, we set up an idealized food chain system represented by water and
96 sediment, soil, plants and animals (**Figure 1A**). Our experimental food chain consisted of
97 environmental components (water, sediment and soil) with free-living microbial communities
98 of high diversity, of primary producers (plants, i.e. corn root microbiomes), and end-consumers
99 (animals, i.e. mouse gut microbiomes) with low-diversity host-associated microbiomes²⁰. For
100 systematic challenging of these different system components, we selected three chemical
101 stressors found along a food chain that are known to impact human and/or environmental
102 health: Arsenic (As) is a toxic trace element, Benzoxazinoids (Bx) are bioactive plant
103 metabolites, and terbuthylazine (Tb) is a potent herbicide.

104 The element As is ubiquitously found in many environments and functions as a
105 carcinogen for humans²¹. Contamination by As presents a global catastrophe with around
106 1.5% of the world's population suffering from As exposure through drinking water^{22,23}, rice²⁴ or
107 corn consumption²⁵. Although high levels of naturally occurring As can be found in
108 groundwater and soils around the globe, it is most problematic in countries with dense
109 population and lack of infrastructure to detect and manage As contamination. As is known to
110 impact microbiomes in some of the tested system components^{26,27}, but its influence on diverse
111 microbiomes of a food chain is not known. We utilized inorganic As^V for this study as this is
112 the most abundant form of As found in the environment²⁸.

113 Bx are probably the most relevant plant secondary metabolites in food chains. This is
114 because they are highly abundant in agroecosystems as they are secreted in large quantities
115 to soil by *Poaceae* plants (sweet grasses) that include the widely grown crops like corn, wheat
116 and rye²⁹. Secondary metabolites generally play vital roles in plant adaptation to the
117 environment³⁰. Bx are a group of highly bioactive multifunctional compounds that act as
118 feeding toxins against herbivores³¹, have antimicrobial activities against microbes³² and
119 improve plant nutrient acquisition³³. Bx could have direct influence on health of diverse food
120 chain components including humans³⁴. Bx were found to affect microbiomes as Bx-
121 conditioned soils mediated growth and defence effects on the following plant generation³⁵,
122 forwarding Bx as a chemical for One Health research. Whether Bx influence other
123 microbiomes than those of plants and soil is currently unknown. We choose the Bx 6-methoxy-
124 benzoxazolin-2-one (MBOA) for this study, because this compound is stable and abundantly
125 accumulates in soils³⁶.

126 Tb is a broad-spectrum herbicide from the chloro-s-triazine group, which is commonly
127 used for chemical weed control around the globe³⁷ and has been detected in different
128 environments^{38,39}. More generally, pesticides comprising herbicides, insecticides, and
129 fungicides are not only used in agroecosystems, but also in other areas to protect humans

130 from various pests and diseases. Besides their specific toxicity against weeds, pest insects
131 and pathogenic fungi, they also cause many negative health and environmental side-effects
132 on off-target organisms⁴⁰. Pesticides are associated with significant morbidities and mortalities
133 each year⁴¹. They are also known to influence microbiomes but their relative impact on diverse
134 food chain microbiomes is not known⁴². We included Tb in this study, because it is broadly
135 used, and because the compound and its degradation products have been found in surface
136 and groundwater³⁸ and accumulate in soils⁴³ and sediments³⁹, displaying long-term stability in
137 the environment⁴³.

138 Finally, in large-scale experiments, we systematically challenged the microbiomes of
139 the different food chain components with As, Bx and Tb. For this, we developed specific setups
140 and application procedures for continuous exposure of the microbiome to the chemicals
141 (**Figure S1**). To assess their sensitivity to chemical perturbation, we exposed the microbiomes
142 to the same concentrations and sampled them following the same timeframe. The overall aim
143 of the experiments was to identify the microbiomes that are the most resistant, and conversely
144 those that are the most sensitive ones to the chemical stresses, i.e. to find the Achilles' heel
145 of our experimental food chain.

146 **Materials and Methods**

147

148 **Experimental overview**

149 We studied the components of our idealized food chain consisting of water, sediment, soil,
150 plant and animal in three large, parallelly executed experiments (**Figure S1**; termed the
151 'water/sediment', the 'soil/plant' and the 'animal' experiments). We developed specific
152 application procedures to ensure that the microbiomes in the different components are
153 continuously exposed to the same chemical concentrations. In the water/sediment and
154 soil/plant experiments, we applied the chemicals in daily intervals to approximate continuous
155 exposure, whereas this was achieved through drinking water in the animal experiment.
156 Besides continuous exposure, the application procedures were conceived that the chemicals
157 reached 1x final concentrations of 10, 100 and 1,000 µg/L in each system component. In the
158 **Supplementary Methods** we provide the experimental details related to sources, setup,
159 chemical application procedures and sampling of the three experiments. After application of
160 the chemicals, we collected samples from each component for microbiome analysis at two
161 time points, 1 (d1) and 7 (d7) days post application.

162

163 **Treatment solutions of the chemicals**

164 We prepared the "treatment solutions" of the chemicals As (Sodium arsenate dibasic
165 heptahydrate, ≥98% purity; Sigma-Aldrich, Germany), Bx (6-methoxy-benzoxazolin-2-one
166 (MBOA), >98% purity; Sigma-Aldrich) and Tb (grade analytical grade; Pestanal, Germany)
167 with specific concentrations for the different experiments. The water/sediment experiments
168 needed highly concentrated treatment solutions (300x, to minimize dilution by the lake water
169 and its microbiome), while we prepared 3x and 1x treatment solutions for the soil/plant and
170 the animal experiments, respectively (**Figure S1**). The treatment solutions of As and Bx were
171 prepared in water, which was sufficient as a buffer as the added compounds did not change
172 the pH of the solutions (data not shown). Because the animal experiment required ultrapure
173 surgical irrigation water (ERKF7114; Baxter, USA), we used this water as common source to
174 prepare all treatment solutions. Tb, however, was dissolved in pure ethanol (>98% purity,
175 Sigma-Aldrich, Germany) due to its insolubility in water. Ethanol was also added to control
176 treatment solution for Tb at final amounts of 0.3%.

177

178 **DNA Extraction, 16S rRNA amplicon library preparation and sequencing**

179 DNA was extracted using the DNeasy PowerSoil HTP 96 Kit from Qiagen (Hilden, Germany),
180 as recommended by the Earth Microbiome Project EMP²⁰ following the manufacturer's
181 protocol. Loading of the sample material to the DNA extraction plates was done as follows:
182 Water samples were pipetted directly on to plates (250 µL, well-homogenized by vortexing).

183 Sediment samples were defrosted, briefly vortexed, centrifuged, and pipetted up and down for
184 homogenization of water and solid particles, then 250 µL was transferred into the extraction
185 plates. A sterile spatula was used to retrieve 230-250 mg of defrosted soil samples. Corn roots
186 were lyophilized for 48 h, and after grinding, 15 mg of fine ground powder was then used to
187 load the plate. The loading unit for mouse samples corresponded to one to two faecal pellets.
188 For loading the extraction plates, we processed the samples in batches by sample type to
189 avoid cross-contamination and because of the different handling units (weight, unit or volume).
190 Within batches, the sample groups (time point and treatment) were randomly positioned on
191 the plate. With this randomization scheme, we tackled the practical challenges (diverse input
192 materials, avoiding sample mix-up) without compromising scientifically rigorous treatment
193 comparisons (randomization of treatment groups). DNA was eluted in 50 µL (water, sediment),
194 75 µL (plant) or 100 µL (soil, animal) of C6 buffer of the kit (10 mM Tris-Cl, no EDTA) and
195 stored at -20°C until further use.

196 We then performed a bulk adjustment of DNA concentrations for the water, sediment,
197 soil, plant and animal samples as follows: From each sample type, we measured the DNA
198 concentrations of 20 random samples from different DNA extraction plates using Nanodrop
199 (Thermo Fischer, Waltham, USA). The average DNA concentration of a sample type was
200 taken to bulk-adjust all samples of the same sample type. PCR-ready concentrations were set
201 at 10 ng/µL (sediment, soil and plant samples) and 1 ng/µL (animal samples). DNA
202 concentrations of water extracts were <1 ng/µL and were used without further dilution. At this
203 step, samples were re-organized for amplification and assigned to 5 different sequencing
204 libraries (L1 to L5). Each library consisted of ~240 samples, with replicates of a treatment
205 group being present in at least two different sequencing libraries.

206 Bacterial 16S rRNA gene amplicon libraries were prepared using PCR primers,
207 reagents and cycling conditions as recommended by the EMP²⁰, according to our previous
208 study⁴⁴: We barcoded the amplicons with the Access Array barcode system from Fluidigm in
209 a two-step approach adapted from Illumina's standard 16S profiling protocol. In the first step,
210 we performed target gene (16S rRNA, region V4) amplification using the PCR primers 515F
211 and 806R^{45,46} coupled to CS1 and CS2 linker sequences (CS1-515F: 5'-
212 ACACTGACGACATGGTTCTACA-GTGYCAGCMGCCGCGGTAA-3' and CS2-806R: 5'-
213 TACGGTAGCAGAGACTTGGTCT-GGACTACNVGGGTWTCTAAT-3') of the Access Array
214 barcode system, respectively. PCR reactions (20 µL total volume) were prepared in a UV-
215 irradiated PCR hood, and contained 0.8x Platinum Hot Start PCR Master Mix (Thermo Fisher),
216 0.2 µM of each primer, PCR-grade water and 3 µL of DNA template. After 3 min initial
217 denaturation at 94°C, we ran 25 PCR cycles (25 of the 35 cycles as suggested by EMP²⁰; 45
218 s at 94°C, 60 s at 50°C and 90 s at 72°C) followed by 10 min final elongation at 72°C. We
219 performed gel electrophoresis with few samples, and the positive and negative controls for

220 each PCR plate to confirm that the PCR has worked and was not contaminated. PCR products
221 were purified with self-made Solid Phase Reversible Immobilisation (SPRI) magnetic beads
222 (https://openwetware.org/wiki/SPRI_bead_mix).

223 In the second PCR step, we barcoded the individual samples with the Access Array
224 system consisting of 384 barcodes (BC). The PCR primers PE1-CS1-F and PE2-[BC]-CS2-R
225 contain the paired-end (PE) adapters required for Illumina sequencing and bind via the linker
226 sequences CS1 and CS2 to the PCR amplicons of the first step. Stocks (50 µL, 2 µM) of the
227 384 unique primer combinations were repeatedly utilized to prepare the 5 libraries L1 to L5.
228 PCR reactions were prepared in volumes of 25 µL with 0.8x Platinum Hot Start PCR Master
229 Mix (Thermo Fisher Scientific, Reinach, Switzerland), Access Array primers (0.4 µM), PCR-
230 grade water and 5 µL of the purified PCR product as template. After 3 min of initial denaturation
231 at 94°C, we ran 10 PCR cycles (25 cycles in step 1 + 10 cycles in step 2 correspond to the 35
232 cycles as suggested by EMP²⁰; 45 s at 94°C, 60 s at 60°C and 90 s at 72°C), followed by 10
233 min of final elongation at 72°C. Again, gel electrophoresis was performed with few samples,
234 and positive and negative controls for each PCR plate to confirm that the PCR has worked.
235 No DNA contamination was observed in the negative controls after two rounds of PCR
236 amplification. Amplicon DNA of the second PCR was purified with SPRI beads as described
237 above and quantified with NanoDrop 8000 (Thermo Fisher Scientific).

238 For equimolar pooling of the barcoded amplicons into their assigned library (L1 to L5),
239 we used a robotic liquid handling station (Brand, Wertheim, Germany). Pooled libraries were
240 well mixed and a subset was purified using the SPRI beads as described above. DNA
241 concentration and size of the purified library were then determined by Qubit 1.0 (Thermo
242 Fischer) and TapeStation (Agilent, Santa Clara, CA, USA) analyses. The final pooled libraries
243 were paired-end sequenced (2 × 300 cycles) in five runs on Illumina MiSeq at the NGS
244 platform of University of Bern (www.ngs.unibe.ch). The sequencing data is available from the
245 European Nucleotide Archive (<http://www.ebi.ac.uk/ena>) under the study accession
246 PRJEB72104.

247

248 **Bioinformatic and statistical analyses**

249 All code and metadata (experimental design, sample-to-barcode assignments) are available
250 on GitHub (<https://github.com/wasimbt/Component-specific-responses-of-the-microbiome>).
251 Demultiplexed reads without barcodes and adapters were received as output from the
252 sequencing centre. Primer sequences were removed by using *Cutadapt*⁴⁷ (version 2.5). All
253 subsequent analyses were performed within the R environment⁴⁸ (version 3.5.1). For data pre-
254 processing, we followed the *DADA2*⁴⁹ pipeline (version 1.10.1) by keeping the same
255 parameters for the five libraries, except for error rate estimation that was allowed to be library-
256 specific. Reads were trimmed from both ends based on quality profile, error rates were learned

257 from the data using the parametric error model as implemented in *DADA2*. After denoising
258 and merging of forward and reverse reads, all five libraries were regrouped. Chimeric
259 sequences were removed from the dataset by following the ‘consensus’ method implemented
260 in *DADA2*. The final table thus consisted of number of occurrences of amplicon sequence
261 variants (ASVs; i.e. sequence groups differing by as little as one nucleotide) in each sample.
262 Taxonomy assignments of the ASVs were performed using the naïve Bayesian classifier⁵⁰
263 with the SILVA database⁵¹ (version v132, non-redundant). Species level assignment was done
264 by exact matching (100% identity) of ASVs with database sequences, as previously
265 recommended. *Phyloseq*⁵² (version 1.24.2) was used for further data processing. We removed
266 ASVs with less than 10 read counts from overall dataset. Furthermore, ASVs belonging to
267 chloroplast, mitochondria, and unassigned ASVs at phylum level were removed from the
268 dataset.

269

270 *Alpha and beta diversity analyses*: We investigated the effects of sample type (water,
271 sediment, soil, plant, animal), treatments (Control (Ctr), As, Bx, Tb), time point (0, 1, 7 days),
272 concentration (0, 10, 100, 1,000 µg/L), and interactions among these factors. First, we
273 analysed bacterial diversity for each sample using two different alpha diversity indices (number
274 of observed species and Shannon) after rarefying the data to 8,100 sequences per sample
275 using *Phyloseq*⁵². To analyse the effects of these factors on alpha diversity, we performed
276 General Linear Modelling (GLM) by using the *lme4*⁵³ package (version 1.1.30). As the samples
277 were pooled in 5 libraries and were sequenced in five sequencing runs, we also included
278 “library identity” as explanatory factor in the model to account for potential technical
279 confounding. We performed Tukey’s Honest Significant Difference test (HSD) to compare
280 average effects between groups when overall multivariable model significance was observed.
281 Second, beta diversity analyses were calculated based on a Bray-Curtis dissimilarity matrix
282 after rarefying the data to 8,100 sequences per sample using *Phyloseq*⁵². The permutational
283 multivariate analysis of variance (PERMANOVA) was employed as implemented in the *adonis*
284 function of the *vegan*⁵⁴ package (version 2.5-2) to test the significance of the differences in
285 community composition with 999 permutations. For beta diversity metric, we similarly included
286 sample type, treatments, time point, concentration and interactions among these factors in the
287 model as explanatory variables. We also included “library identity” as potential confounding
288 factor in the model. We performed *pairwise.adonis* to compare groupings, similar to Tukey’s
289 HSD done on linear models. To visualize patterns of separation between different sample
290 groups, non-metric multidimensional scaling (NMDS; *Phyloseq*) plots were prepared based on
291 Bray-Curtis dissimilarity matrices. To assess the strength of treatment in each specific
292 component of the food chain, we performed constrained ordination (distance-based
293 redundancy analysis; dbRDA) by using the *capscale* function of the *vegan*⁵⁴ package on Bray-

294 Curtis dissimilarity matrices within each component. We employed ANOVA to assess the
295 significance of each component model.

296 In order to understand whether treatments reflect true shift in microbial community
297 composition or differential spread (dispersion) of data points from their group centroid, we
298 assessed the multivariate homogeneity of group dispersions by performing PERMDISP test
299 using the *betadisper* function of the *vegan*⁵⁴ package on Bray-Curtis dissimilarity matrices. We
300 employed permutation (999) test with *permute* function as implemented in *vegan*⁵⁴ to
301 analyse significance of grouping (treatment) for each component of the food chain.

302

303 *Differential abundance analyses*: In order to identify ASVs specifically influenced by a given
304 treatment, we employed a negative binomial model-based approach available in the *DESeq2*⁵⁵
305 package (version 1.22.2), in which ASV relative abundances were compared for each
306 treatment vs. control group (Ctr-As, Ctr-Bx, Ctr-Tb) for the respective component. Only ASVs
307 remained significant ($P \leq 0.05$) after Benjamini–Hochberg correction of Wald test were
308 considered as differently abundant ASVs. Here, we calculated an Influence Score (IS) for each
309 comparison, which considers both the number of affected ASVs and their relative change in
310 abundance, as consists in the cumulative log-fold changes for all ASVs significantly differing
311 for a given comparison (e.g. Ctr-As; **Figure S6**).

312

313 *Network analyses*: To infer the relationships among ASVs, we prepared networks for each
314 food chain component and their treatments by using Sparse Inverse Covariance Estimation
315 for Ecological Association Inference SPIEC-EASI⁵⁶. SPIEC-EASI is a statistical method for the
316 inference of ecological networks that relies on algorithms for sparse neighbourhood and
317 inverse covariance selection, and that applies data transformation and normalization, which
318 can better deal with compositional data. To prepare the networks, only ASVs present in control
319 groups were kept in treated groups for each component. Furthermore, ASVs containing fewer
320 than 100 reads from overall component dataset, present in less than 15% of the control
321 samples were removed prior to selecting control ASVs. Network inference used the
322 Meinshausen-Buhmann method for neighbourhood selection and the bounded StARS
323 approach with nlambd of 50 and 99 pulsar permutations. Node attributes, such as degree
324 distribution, betweenness centrality, transitivity, closeness centrality, were calculated using
325 the *igraph*⁵⁷ package (version 1.3.2) with 10,000 iterations. We then performed the
326 Kolmogorov–Smirnov test to compare node attributes between control and treated groups.
327 Kolmogorov–Smirnov test compares the overall shape of the cumulative distribution of two
328 variables where the null hypothesis is that the variables derive from the same distribution. To
329 characterize the underlying network degree distribution type, we evaluated four distributions
330 namely, power-law, log normal, exponential and Poisson and tested goodness of fit of the

331 distribution after 1,000 iterations, and we also compared the fitted distributions with each
332 other's using *t*-test to detect the best fitting distribution(s). Finally, to detect hub nodes which
333 could represent keystone taxa, we calculated Kleinberg's hub centrality scores using the
334 *hub_score* function implemented in *igraph*⁵⁷. Nodes having hub score values of more than 0.7
335 were assigned as hub nodes across sample types.

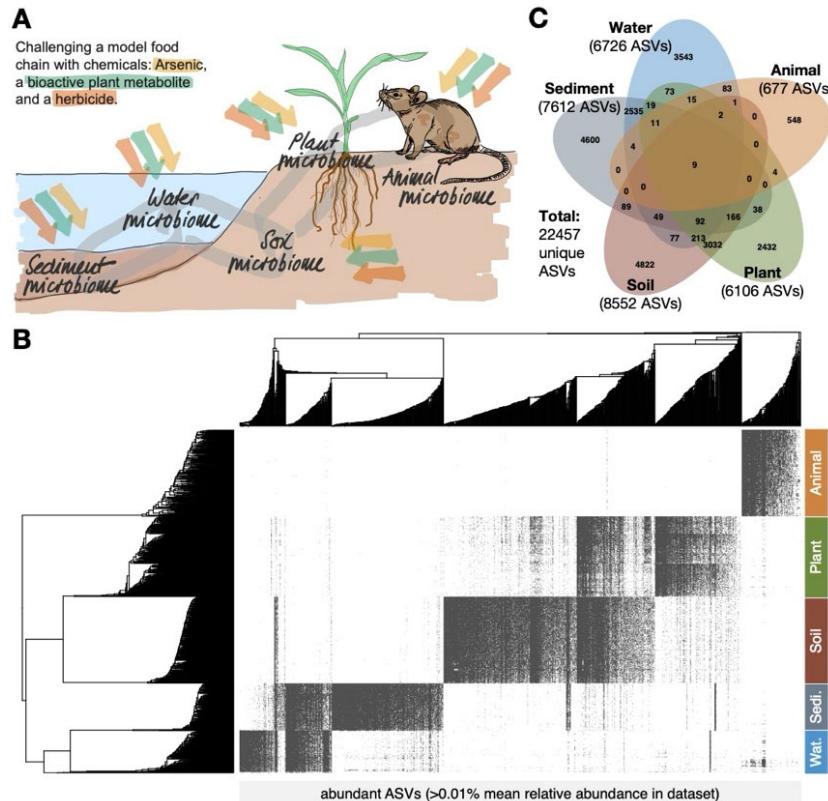
336

337 **Results**

338 **Microbiomes are distinct across components of a food chain**

339 To assess the sensitivity of different food chain components to chemical perturbation, we
340 systematically exposed their microbiomes to As, Bx and Tb concentrations of 10, 100 and
341 1,000 µg/L and sampled them after same exposure times (**Figure S1**). Each food chain
342 component was also treated with buffer and these control microbiomes served as baseline for
343 healthy un-perturbed microbiomes. We first validated the quantities of As, Bx and Tb in the
344 water or treatment solutions, which we used to challenge the different food chain microbiomes.
345 The water of the water/sediment and animal experiments and the treatment solutions of the
346 soil/plant experiment contained the standardized 10-fold increments of stress chemicals at the
347 expected concentrations (**Figure S2**). Following the systematic exposures, we collected
348 samples from each component at two time points, and thus characterized a total of 1,064
349 microbiomes originating from water (n= 133; Ctr-34, As-33, Bx-31, Tb-35), sediment (n= 144;
350 Ctr-36, As-36, Bx-36, Tb-36), soil (n= 266; Ctr-36, As-78, Bx-77, Tb-75), plants (n= 255; Ctr-
351 37, As-72, Bx-75, Tb-71) and animal (n= 266; Ctr-25, As-82, Bx-76, Tb-83). All samples were
352 subjected to high-throughput sequencing of the V4 region of the bacterial 16S ribosomal RNA
353 gene. We recovered on average 38'709 (range 5'437-116'475) high-quality, taxonomically
354 assigned reads per sample. Microbiome diversity differed markedly between the different food
355 chain components (**Figure S4**). Quantifying their effect size from PERMANOVA (based on
356 interpreting the R² of the model) revealed 71.8% based on the Bray-Curtis metric (**Table S2**).
357 The 'naturally close' microbiomes of water and sediment, as well as of soil and plant each
358 shared some abundant bacteria, whereas hardly any overlap existed between these
359 microbiomes and the distinct animal microbiomes (**Figure 1B**). The same was true when
360 inspecting all ASVs that were detected in this study (**Figure 1C**). Hence, it is unlikely that the
361 stress treatments will affect the different bacteria of the food chain components in similar
362 manner. Thus, we further analysed the stress-induced impact on the microbiomes of the
363 different components separately, at the levels of diversity patterns, community composition
364 and interaction between members of the community.

365



366

367

368 **Figure 1. A)** Depiction of representative components of a model food chain used in this study.
369 **B)** Heatmap of abundant ASVs (>0.01% mean relative abundance in the dataset) across
370 components (right) showing little overlap among components except between related
371 components (water and sediment, soil and plant), arranged according to hierarchical cluster
372 tree. **C)** Venn diagram showing unique and shared ASVs among components.
373

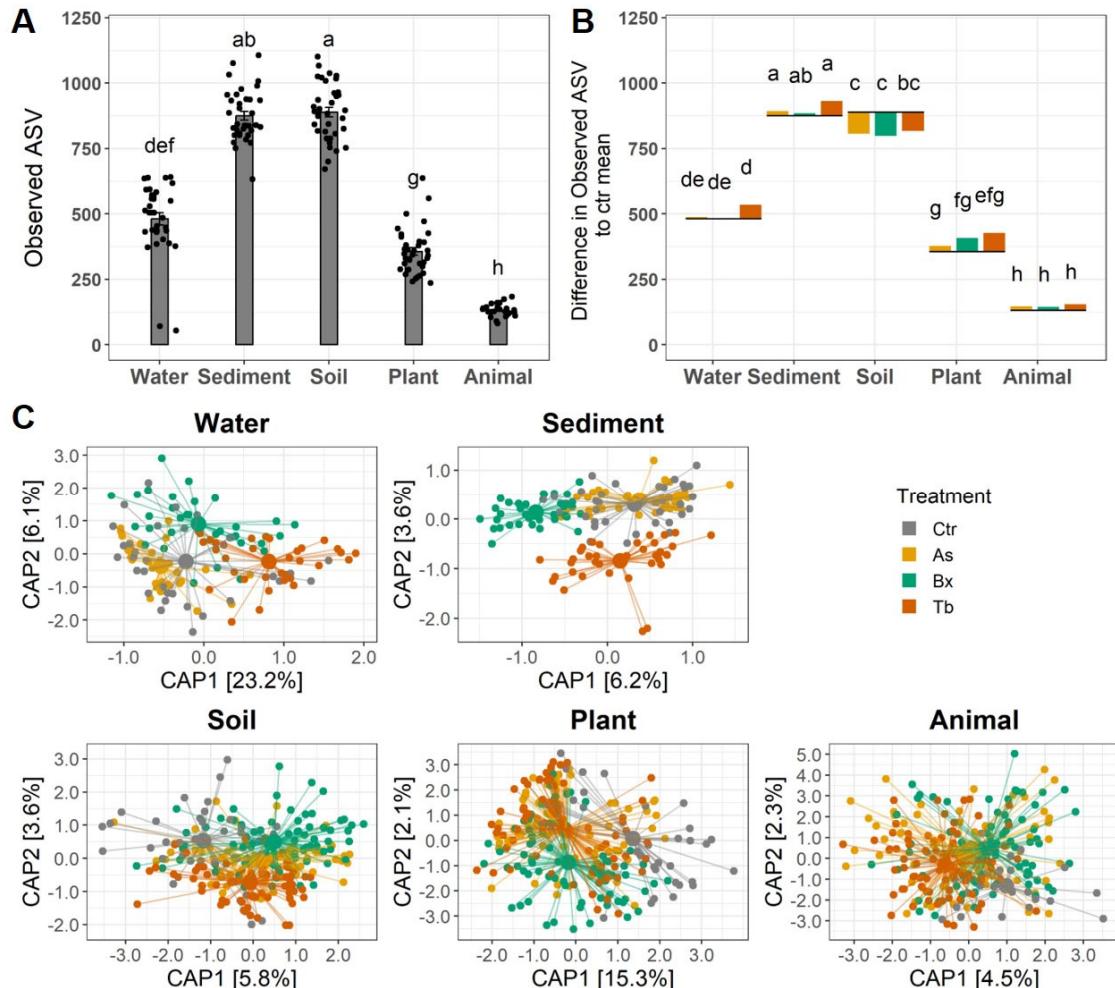
374 **Chemical stressors mainly affect diversity of soil and animal microbiomes**

375 We first investigated to which degree the chemical stressors perturbed alpha diversity in food
376 chain microbiomes. Sediment and soil harboured the richest (number of observed ASVs;

377 **Figure 2A)** and most diverse (Shannon; **Figure S5A**) microbiomes followed by water and
378 plant microbiomes, while animal microbiomes were lowest in both metrics. We used General
379 Linear Modelling (GLM) to statistically assess and quantify the effects of the applied stressors
380 (As, Bx, Tb) on bacterial richness when compared to un-perturbed conditions (**Table S3**).
381 Richness was most strongly (interpreting the sums of squares of the model as effect size)
382 differing between sample type, followed by time point, concentration and type of chemical
383 treatment, while accounting for technical variation due to sequencing library preparation (all
384 $P < 0.001$). Albeit of lower effect size, many factor interactions including chemical treatment
385 and concentrations were also significant. Significant differences on richness were observed
386 between control and treatment groups for soil microbiomes, where chemical stressors reduced
387 richness (**Figure 2B**). No chemical stressor-effect on richness was found in water, sediment,
388 plant and animal microbiomes. Pairwise effects of time point and concentration were not

389 significant due to lack of statistical power across all implied treatment levels. Similar results
390 were obtained analysing Shannon diversity, except that Tb-mediated stress also increased
391 diversity in the water, plant and animal microbiomes (**Figure S5B**). Overall, alpha diversity
392 decreased in soil microbiomes by the three chemical stressors, while only Tb but not Bx and
393 As affected Shannon diversity in most of the other food chain microbiomes.

394



395

396 **Figure 2.** Observed ASV richness in control (**A**) and their relative changes in stress-induced
397 treatments (**B**). In A) the jittered dots represent individual values of samples, while error bars
398 indicate standard deviation per treatment. In B), differences to the means for each treatment
399 (As, Bx, Tb) relative to the mean of their respective controls, which are represented as grey
400 lines, are represented as barplots. The graphs are annotated with the Tukey HSD differences
401 indicated by different letters ($P<0.05$). The same compact letter display is used as for the left
402 panel. **C**) The first two significant axes of constrained ordination (dbRDA) are displayed for
403 each component, with sample centroids per treatment indicated as different colours (see
404 legend). Percentages of explained variance by each principal axis are indicated in square
405 brackets.

406

407 **Chemical stressors alter microbiome composition to different levels**

408 Next, we investigated whether and if to which magnitude the composition (beta diversity) of
409 food chain microbiomes are perturbed by the chemical stressors. Besides the major

410 differences between the food chain components (**Figure S4, Table S2**), much smaller, yet
411 significant effects sizes were detected for time point, chemical treatment and concentration
412 (all $P=0.001$). Similar to the alpha diversity analyses, most factor interactions were significant,
413 but of very low effect sizes (~1%). Post-hoc pairwise PERMANOVAs performed on the Bray-
414 Curtis metrics between treatments revealed significant stressors-dependent decreases in beta
415 diversity in water, soil and plant microbiomes (**Figure S6, Table S4**). Average beta diversity
416 increased in animal microbiomes with all three stressors, while it increased after As and Tb
417 treatments in sediment microbiomes but decreased after Bx treatment. We utilized
418 constrained ordination of the Bray-Curtis metrics to visualize the chemical stressors-induced
419 shifts in microbiome composition in comparison to the control groups (**Figure 2C**) and noted
420 that performed models with treatment as an explanatory variable was significant (all $P<0.01$)
421 in each component (**Table S5**). The ordinations further indicated that treatments altogether
422 affected microbiome composition to different levels, with stressors impacts larger for the
423 microbiomes in water (29.3% of explained variation; both axes) and plant (17.4%) than for
424 those in sediment (9.8%), soil (9.4%), or animal (6.8%). The homogeneity of group dispersions
425 tests showed significant dispersions (PERMDISP) in the low diversity microbiomes of plant
426 ($P=0.048$) and animal ($P=0.001$), but not in the high diversity microbiomes of water ($P=0.283$),
427 sediment ($P=0.158$), and soil ($P=0.137$) (**Table S6**). Overall, the three chemical stressors
428 perturbed community composition of all tested food chain microbiomes. They generally
429 caused the microbiomes to become more similar to each other, hence reduced beta diversity,
430 with the exception of the animal microbiome, where the stress-perturbed microbiomes became
431 more divergent than the control microbiomes. Furthermore, the low diversity microbiomes
432 showed significant dispersion effects compared to high diversity microbial components of the
433 food chain.

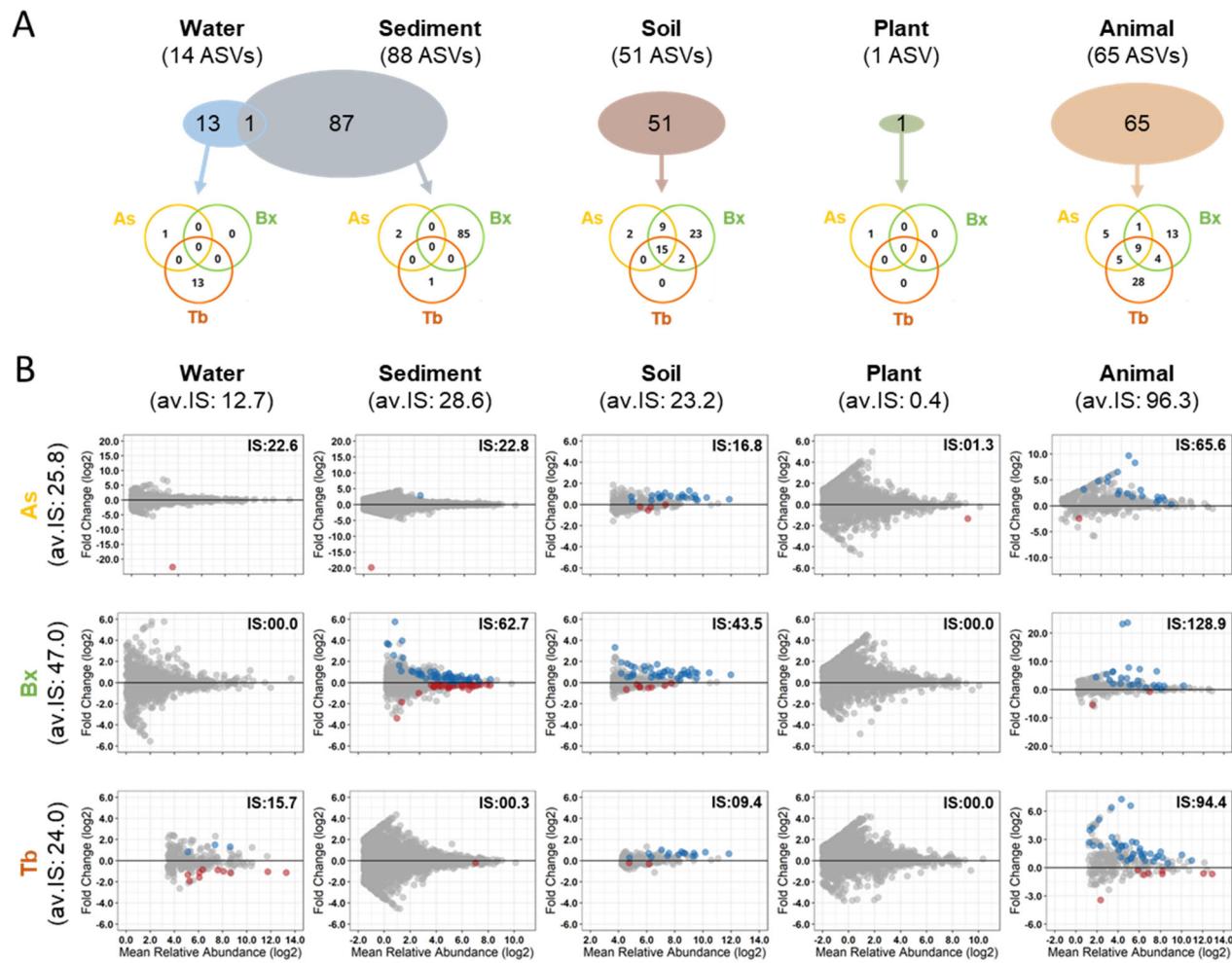
434

435 **Chemical stressors are associated with differential abundance of specific bacteria**

436 We identified for each component the ASVs that differed significantly in mean relative
437 abundance due to the chemical stressor treatments (i.e., contrasts between Ctr-As, Ctr-Bx,
438 Ctr-Tb; $P\leq0.05$) using negative binomial-based Wald tests (**Database S1**). Overall, the
439 number of these unique, stressor-sensitive ASVs ranged from 1 (plant), 14 (water) 51 (soil),
440 65 (animal) up to 88 ASVs in the sediment microbiomes (**Figure 3A**). Consistent with the little
441 overlap between the microbiomes (**Figure 1**), most stressor-sensitive ASVs were unique to a
442 food chain microbiome, except one ASV that was common between water and sediment
443 components. Within food chain components, 15/51 out of significant, unique ASVs in soil and
444 9/65 ASVs in animal microbiomes were commonly influenced by all three stressors while most
445 other stressor-sensitive ASVs changed in abundance only after one and a few ASVs after two
446 treatments. Stressor-sensitive ASVs rather decreased in abundance in water microbiomes,

447 while in soil and animal microbiomes they mostly increased at the expense of few strongly
 448 decreasing ASVs (**Figures 3B, S7**).

449 We calculated an Influence Score (IS) to compare the impacts on differentially
 450 abundant ASVs across treatments and component. For a specific contrast (e.g., Ctr-As), the
 451 score considers both the number of affected ASVs and their log-fold change (see methods).
 452 Per food chain component, the highest average IS (av.IS) was noted for animal followed by
 453 sediment, soil, water and plant microbiomes (**Figure 3B**). Comparing the individual chemical
 454 stresses, the Bx treatment had higher average IS compared to As and Tb treatments. The IS
 455 were microbiome- and treatment-specific with the highest IS recorded for the Bx treatment on
 456 the animal microbiome, and lowest for the Tb and Bx treatments of the plant microbiome.
 457 Overall, the individual bacteria of the animal microbiome were generally most sensitive to the
 458 chemical stressors, in particular in the Bx treatment.



459
 460 **Figure 3.** (A) Summaries of the stress-sensitive ASVs in the different microbiomes to the total
 461 number of stress-sensitive ASVs (circles scaled to their numbers) per component. The lower
 462 Venns detail the stress-sensitive ASVs by stress treatments As, Bx or Tb. (B) The MA plots
 463 display the log2-fold change of all ASVs and their log-mean abundance plotted on y- and x-
 464 axes, respectively, for each stress in each food chain component. ASVs being differentially
 465 abundant between control and treatments (As, Bx, Tb) were determined by DESeq2 analysis

466 (Benjamini–Hochberg correction, $P \leq 0.05$). Colours refer to enriched ASVs in control (blue) or
467 treatment (red) groups for all comparisons. Influence Score (IS) for each comparison was
468 shown representing both the number of affected ASVs ($P \leq 0.05$) and their relative change in
469 abundance for a given comparison (see method sections and Figure S7 for details). Average
470 IS (av.IS) are indicated for each component.
471

472 **Diverse bacterial taxa respond to the different chemical stressors**

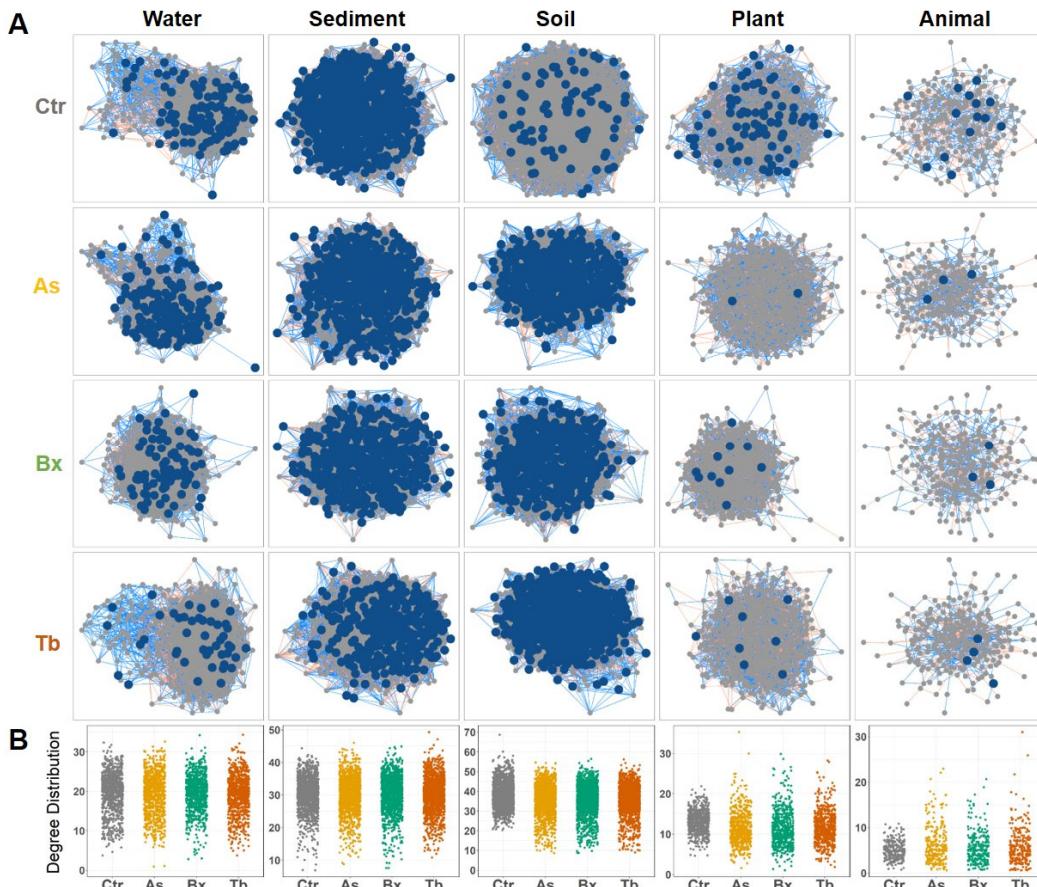
473 Next, we inspected the taxonomies of the stressor-sensitive ASVs in all food chain
474 components. In the water microbiome, we found one and 13 ASVs specifically responding to
475 As and Tb treatments, respectively (**Figures 3, S7**). Most of the ASVs that decreased by the
476 Tb treatment belonged to Methylomonaceae ($n = 3$ ASVs) and Methylophilaceae ($n = 4$ ASVs)
477 families. For sediment, we found two, 85 and one ASVs significantly changing with As, Bx and
478 Tb treatments, respectively (**Figures 3, S7**). Of the Bx treatment, many shifting ASVs
479 belonged to Syntrophaceae ($n = 7$ ASVs), Bacteroidetes ($n = 6$ ASVs), Anaerolineaceae ($n = 5$
480 ASVs) and Lentimicrobiaceae ($n = 5$ ASVs) families. For soil, we observed 26, 49, 17 ASVs
481 significantly differing in abundance after As, Bx and Tb treatments, respectively (**Figures 3,**
482 **S7**). In all three comparisons, most ASVs showed increase in abundance and few decreased.
483 The increase was mainly ASVs from the Flavobacteriaceae family, specifically from
484 *Flavobacter* genus (As, $n = 7$ ASVs; Bx, $n = 18$ ASVs; Tb, $n = 7$ ASVs), of which 6 ASVs
485 commonly increased in all comparisons. ASVs from Burkholderiaceae (As, $n = 4$ ASVs; Bx,
486 $n = 5$ ASVs; Tb, $n = 2$ ASVs) and Xanthomonadaceae (As, $n = 3$ ASVs; Bx, $n = 4$ ASVs; Tb,
487 $n = 1$ ASV) also increased in all comparisons. One ASV from the Latescibacteria generally
488 decreased in abundance in all treated groups. In the plant microbiome, only one abundant
489 ASV belonging to the *Duganella* genus decreased in abundance upon As treatment, whereas
490 no other ASV changed in abundance due to Bx and Tb treatments (**Figure 3**). Finally, in the
491 animal microbiome, we observed 20, 27, 46 ASVs significantly differing in abundance after
492 As, Bx and Tb treatments, respectively (**Figures 3, S7**). Most ASVs increased in relative
493 abundance after treatment. This increase was associated mainly with ASVs from
494 Lachnospiraceae (As, $n = 11$ ASVs; Bx, $n = 13$ ASVs; Tb, $n = 18$ ASVs), four of which were
495 common in all treatment groups and belonged to *Lachnoclostridium*, *Shuttleworthia*,
496 *Acetatifactor* and an Lachnospiraceae bacterium. ASVs from Ruminococcaceae (As, $n = 3$
497 ASVs; Bx, $n = 4$ ASVs; Tb, $n = 12$ ASVs) and Muribaculaceae (As, $n = 2$ ASVs; Bx, $n = 4$ ASVs;
498 Tb, $n = 6$ ASVs) families also showed shifts in treatment groups. In general, the stressor-
499 sensitive ASVs of the different microbiomes belonged to diverse taxonomic groups. In few
500 cases, multiple ASVs of the same families had the same responses like Methylomonaceae
501 and Methylophilaceae decreasing by the Tb treatment in water, or Flavobacteriaceae,
502 Burkholderiaceae and Xanthomonadaceae increasing in soil in response to all 3 stresses or a
503 consistent increase of Lachnospiraceae in the animal microbiome.

504

505 **Chemical stress disturbs bacterial co-occurrence networks**

506 Co-occurrence networks were generated for each treatment and all microbiomes to
507 investigate whether ASV co-occurrence may change due to a chemical stressor. In general,
508 number of nodes and edges decreased from soil, sediment, water, plant to the lowest
509 complexity network of the animal microbiome (**Figures 4A, S8**). The average edges per node
510 were also the highest for soil, followed by sediment, water, plant, and the lowest for animal
511 networks (**Table S7**). Positive, rather than negative associations were more prevalent in all
512 networks (**Figure S8**). Several parameters of network complexity, such as node degree,
513 betweenness centrality, closeness centrality, transitivity, were significantly different between
514 control versus treatment groups (**Table S7**), and presented component-specific trends: For
515 example, average node degrees decreased in most microbiomes after chemical treatments
516 leading to sparse networks except for animal and sediment, where node degrees increased
517 in the treated groups (**Figure 4B; Table S7**). We then examined the shapes, i.e. the
518 distributions of the network's node degrees and tested whether they were altered by the
519 chemical treatments. From the evaluated different distribution types (power law, log normal,
520 exponential and Poisson), the low complexity networks of animal and plant generally fitted
521 best to a log-normal distribution while none of the tested data distribution types fitted to the
522 high-complexity networks of water, sediment and soil (**Table S7**). However, no noticeable
523 differences in degree distribution shapes were found after chemical treatments (Kolmogorov-
524 Smirnov tests at $P<0.05$; **Figure S9**). Microbiome networks can also be used to detect hub
525 nodes, which represent the most connected and possibly influential members of a given
526 network. Based on Kleinberg's hub centrality scores⁵⁴, few hubs were observed in the lower
527 complexity animal and plant networks, whereas higher numbers of hubs were observed the
528 higher diversity components water, sediment and soil (**Figure 4, Table S7**). Chemical
529 stressors consistently decreased the numbers of hub nodes for animal, plant and sediment
530 components. In the soil microbiomes, however, the number of hub nodes increased in all
531 treatment compared to control networks. For water, As treatment increased the number of
532 hubs, while Bx and Tb treated microbiome showed lower numbers of hubs than the controls.
533 Overall, chemical stress decreased network complexity for most microbiomes (water,
534 sediment, soil and plant) except for the animal microbiomes where network complexity
535 increased.

536



539 **Figure 4. Co-occurrence network analysis.** (A) Microbial association networks based on
540 Meinshausen-Buhlmann method in SPIEC-EASI analysis for control versus treatments for all
541 components. Nodes represent different ASVs, with blue colour nodes indicating hub nodes
542 that are more connected to other nodes in the network (Kleinberg's hub centrality scores >0.7).
543 Blue edges indicate positive associations between ASVs, while red edges indicate negative
544 associations. (B) The dot plots display the node degree's (number of edges per node) of each
545 ASV within the network as a function of treatment for each sample type. Differences in mean
546 degrees for each chemical treatment vs. control were all significant ($P \leq 0.001$) in each
547 component based on 10,000 bootstrap replicates of the underlying network properties (Table
548 S7).

549

550

551 Discussion

552 Microbes - whether mutualistic, commensal or pathogenic - have important roles in the health
553 of a system as they are omnipresent with different communities in the different system
554 components. A major gap towards a One Health understanding of microbiomes in a multi-
555 component system is how sensitive or resistant different microbiomes are to different stresses.
556 Are there commonalities and/or differences in the stress responses of different microbiomes
557 to different stresses? To address this question, we systematically exposed different microbial
558 communities of a multi-component system to three distinct chemical stressors at the same
559 concentrations and we then analysed the microbiomes after the same exposure time. The

560 system was an idealized food chain composed of water, sediment, soil, plants and animal
561 microbiomes (**Figure 1A**). The three chemical stressors, i.e., the toxic trace element As, the
562 bioactive plant metabolite Bx and the herbicide Tb were chosen because they can negatively
563 impact the health of individual food chain components (As¹³, Bx^{14,58} and Tb^{15,16}) and/or their
564 microbiome¹⁷⁻¹⁹. Overall, we found that each component's microbiome responded specifically
565 to the different tested chemical stressors. Below we discuss various microbiome metrics to
566 answer the main question of this study – commonalities and differences in stress responses
567 of different microbiomes to different stresses – with the goal to identify the Achilles' heel (i.e.,
568 the most stress-sensitive microbiome), as well as the most stress-resistant microbiome in our
569 experimental food chain.

570

571 **No common stress responses of different microbiomes in their alpha diversity**

572 We first discuss how the chemical stresses impacted the alpha diversity within and across the
573 microbiomes of the experimental food chain. We confirm that free-living microbial communities
574 (i.e., soil, sediment) have higher diversity and higher species richness than host-associated
575 communities (i.e., plant roots, animal guts; **Figures 2A, S5A**), which has been shown earlier
576^{20,44}. The effects on alpha diversity by the three chemical stressors were not linked to whether
577 communities have high or low levels of richness or diversity. The three applied chemical
578 stressors reduced bacterial richness (**Figure 2B**) and Shannon diversity (**Figure S5B**) in soil
579 but not in the other food chain microbiomes. This consistent decrease in soil bacterial alpha
580 diversity by chemical stress is consistent with earlier work investigating the effects of individual
581 chemical stressors on the soil microbiome^{19,32,35,59,60}. Mechanistically, one could imagine that
582 many or abundant bacteria, which tolerate and/or benefit from the chemical stressors, that
583 they increase in abundance²⁶ and that then leads to a decrease in overall diversity. The
584 observed fold change in ASV abundances supports this idea (**Figure 3B**).

585 We further noticed that while As and Bx did not have any effects on alpha diversity,
586 Tb-mediated stress increased Shannon diversity in the low diversity water, plant and animal
587 microbiomes (**Figure S5B**). For such stress-specific changes, it could be postulated that some
588 abundant taxa may be specifically susceptible to the compounds present in the chemical
589 treatments and therefore, they decrease in abundance, what then allows other bacteria to
590 proliferate increase overall diversity. Support for this postulation is seen in **Figure 3B**, where
591 particularly the abundant bacteria were decreasing in abundance in the water and animal
592 microbiomes. Finally, alpha diversity of the sediment microbiome remained fully unaffected
593 (**Figures 2B, S5B**). One possible explanation that the chemical stressors did not affect these
594 microbiomes could be that our study was limited to a duration of one week. One week may
595 have been too short for slow metabolizing bacterial communities, such as those in
596 sediments⁶¹, to result in detectable changes in alpha diversity. Regarding the main question

597 of this study, i.e., how the chemical stresses compare in their impacts within and across the
598 food chain microbiomes, we can conclude that stress effects on microbiome's alpha diversity
599 were both food chain component and chemical stress dependent. In other words, we did not
600 find commonalities in the microbiomes' stress responses from different food chain
601 components.

602

603 **Food chain microbiomes responded deterministically to chemical stress responses**
604 **and when host-associated combined with stochastic effects**

605 Second, we reflect on the chemical stress impacts on community composition (i.e., beta
606 diversity) that we found both, within and across the microbiomes of the experimental food
607 chain. Consistent with alpha diversity, we found a strong "component" effect in beta diversity
608 (**Figure S4**). This is expected as each component harbours compositionally different sets of
609 bacteria and in different proportions^{20,62}. In general, the three applied chemical stressors
610 decreased average beta diversity of water, soil and plant microbiomes, while it increased in
611 the mouse microbiomes (**Figure S6**). Minor changes were found in the sediment microbiomes,
612 where it mildly increased or decreased according to treatment type. Individual studies of
613 individual components (water⁵⁷, sediments⁶³, soils¹⁹, plants³⁵ and animals²⁰) may have
614 suggested such heterogeneous changes in beta diversity in response to different stressors.
615 Here, by comparing three stressors on five microbial communities, we demonstrate that the
616 same stressors, in terms of chemical quality and quantity, have differential influence on
617 different microbiomes. This systematic examination allows now to conclude whether stressors
618 induced either deterministic, stochastic or a combination of these effects on microbiome
619 composition. With deterministic effects, all microbiome members shift to new composition
620 states without any dispersion effect (statistically: PERMANOVA and PERMDISP tests would
621 be significant and nonsignificant, respectively). In contrast, with stochastic effects all
622 microbiome members randomly disperse from their original composition state (PERMANOVA:
623 nonsignificant; PERMDISP: significant). Third, there could be a combination of deterministic
624 and stochastic effects where only some microbes move to a new community composition
625 state, while others remain (PERMANOVA: significant; PERMDISP: significant). In conclusion,
626 for the three chemical stressors we found deterministic changes in water, sediment and soil
627 microbiomes and in plant and animal microbiomes, the detected deterministic changes were
628 combined with stochastic effects in dispersion (**Tables S4, S5**).

629 A caveat for this conclusion is that deterministic and stochastic effects can vary with
630 time and stress strengths: For instance, mild stress can lead to an increase, but severe stress
631 leads to a drastic reduction in beta diversity compared to that of healthy subjects⁶⁴, as also
632 shown here for most microbiomes of the experimental food chain. However, we could not
633 evaluate the effects of chemical concentrations as well as of time point due to a statistical

634 limitation (PERMDISP does not allow interaction terms) and due to lack of statistical power to
635 resolve the significance of each pair of combined treatment levels. Our experiment was
636 designed to systematically compare all components along the food chain with different
637 chemical stressors and allowed to highlight that any stressor effect on a component
638 microbiome could not be generalized to other microbiomes of the food chain. Future work is
639 needed to reveal fine-grained differences of combinations of chemical concentrations and
640 temporal changes. Also host effects on corn roots or mouse guts should be accounted in such
641 interactions. This research would aim to understand how the microbiome evolves over time,
642 especially in terms of the resilience and resistance of microbial communities following initial
643 dysbiosis induced by different chemical concentrations.

644

645 **Stress-specific microbiome changes may result in health effects**

646 Because the microbiomes of our experimental food chain do not share much overlap in
647 bacterial species (**Figure 1B, 1C**), it is of little use to discuss taxonomic commonalities and
648 disparities of the microbiome members that responded to the different stressors. Instead, we
649 explored whether the taxonomic information of the stress-sensitive ASVs in a given
650 microbiome, may be indicative for eventual health effects on the food chain component. For
651 this we focused on the major stress-sensitive ASVs in each microbiome. Only one ASV in
652 plant and few stressor-sensitive ASVs in the water microbiomes were detected, while several
653 stressor-responsive ones were found in sediment, soil and animal microbiomes (**Figure 3A**).
654 With the exception of a single ASV after As stress, no changes were observed in the corn root
655 microbiomes after the stress treatments. Albeit negative health effects had been described for
656 plants²⁵, this finding may indicate that the root microbiome may be relatively insensitive or
657 slow to stress perturbation compared to the other components. In the water microbiome, ASVs
658 of the Methylomonaceae and Methylophilaceae mainly decreased in abundance (**Figures 3,**
659 **S7**). Members of this family are responsible for methane oxidation in lakes and are important
660 members of lake microbiome. Thus, their decrease in after Tb treatment could indicate a
661 disruption of normal methane cycling in the water microbiome⁶⁵ and may point to a negative
662 health effect. The major effect on the sediment microbiome was observed in response to the
663 Bx treatments with several shifting ASVs belonging to the Syntrophaceae, Bacteroidetes,
664 Anaerolineaceae and Lentimicrobiaceae (**Figures 3, S7**). Members of these families are
665 abundant in sediments and are often associated with bioremediation, organic matter
666 decomposition and acetate oxidation processes⁶⁶⁻⁶⁹. However, future experiments are needed
667 to test if their change in abundance affects sediment health.

668 For the soil microbiome, the majority of ASVs responded with an increase in relative
669 abundance, particularly after As and Bx treatments and several of these ASVs were members
670 of Flavobacteriaceae, Burkholderiaceae and Xanthomonadaceae families (**Figures 3, S7**).

671 Members of the Flavobacteriaceae are dominant in soil and marine microbiomes, but are also
672 found in association with plant roots. Specifically, the genus *Flavobacter* is specialized in
673 uptake and decomposition of organic matter due to its capacity to hydrolyse organic
674 polymers^{70,71} and therefore, their wide biotechnological use in biotransformation, wastewater
675 treatment and bioremediations⁷¹. Similarly, members of Burkholderiaceae, specifically the
676 *Massilia* genus can degrade herbicides, metabolize aromatic hydrocarbons and are resistant
677 to metals⁷²⁻⁷⁴, thus their increase in relative abundance after the stress treatment. Members
678 of the Xanthomonadaceae, mainly *Lysobacter* bacteria possess antimicrobial and antifungal
679 properties, secret many bioactive compounds, are resistant to arsenite, and function in
680 bioremediation of hydrocarbon polluted soils⁷⁵. Similar as for sediments, the shifts of the
681 bacteria in response to the chemical treatments, are consistent with metabolic traits, but
682 whether their change in abundance in the microbiome affects soil health remains to be
683 experimentally assessed.

684 The major effect observed in the animal microbiomes was that ASVs from
685 Lachnospiraceae, Ruminococcaceae and Muribaculaceae increased after the stressor
686 treatments (**Figures 3, S7**). Lachnospiraceae and Ruminococcaceae are two commensal
687 families specialized in the degradation of complex plant material, but they may also provide
688 protection against enteric infections in the human gut. Some Ruminococcaceae and
689 Lachnospiraceae are butyrate producers, an important source of energy for gut epithelial cells,
690 and they support humans to maintain epithelial barrier integrity and thereby, prevent
691 diarrhea^{76,77}. Increase of both of these families after exposure of humans to toxic trace
692 elements and their beneficial roles in the gut health was found earlier^{78,79}. The Muribaculaceae
693 family commonly occurs in animals with high abundance in rodents and provide several
694 important functions to the host⁸⁰. Interestingly, members of Muribaculaceae were found to be
695 associated with enhanced longevity in mouse⁸¹. Hence, the taxonomic information of the
696 stress-sensitive ASVs clearly point to health effects on the animal host.

697 Taken together, although some of the stressor-specific influences on the different
698 microbiomes indicate individual health effects, a next step is now to compare systematically
699 the health effects, both within and across the components of the experimental food chain.

700

701 **Chemically stressed microbiomes become structurally sparser**

702 Finally, addressing the main question of this study – commonalities and differences in
703 microbiome's responses to different stresses - we specifically investigated the stress-induced
704 changes in network properties, as these can reveal hidden patterns in the communities usually
705 not captured by diversity metrics⁸². Generally, the inferred networks reflected microbial
706 diversity with the number of nodes and edges among microbiome members of a given food
707 chain component. As expected from bacterial richness and diversity, number of nodes and

708 edges decreased from soil, sediment, water, plant to the lowest complexity network of the
709 animal microbiome (**Figures 4A, S8**). We found that positive associations outnumbered
710 negative associations when analysing networks from five different components (**Figure S8**).
711 This did not change with chemical stress, which suggests that microbial community changes
712 are primarily driven by conjointly enhancing biological fitness rather than by increasing
713 competitive pressure. Chemical stress still changed several network parameters including the
714 distribution of node degrees (**Table S6**). Node degree suggests how well a node is connected
715 to other nodes, its decrease suggests loss in bacterial community cohesiveness and overall
716 sparser network structure and instability. With the exception of the mouse microbiome, we
717 observed that all networks became structurally sparser after applying chemical stressors
718 (**Figure 4**). In addition, we noticed changes in abundance of hub nodes also called keystone
719 taxa, which showed high degree connectivity to other nodes and are considered as important
720 members of the community⁸³. After chemical stress, the number of keystone taxa decreased
721 in most components' networks, except in soil where they increased. Such a decrease suggests
722 losing contributions of important taxa, which can potentially decrease the community stability
723 and affect health of the overall community. Such decrease in keystone taxa in response to
724 chemical stress is in accord with previous studies investigating chemical fertilizers or
725 pesticides⁸⁴. Overall, our performed co-occurrence analysis revealed that network properties
726 changed after the chemical treatments in all components and with all stresses. Networks
727 became often sparse with loss of keystone taxa, which could negatively influence the
728 resilience of each component and indicate dysbiosis.
729

730 **Conclusions**

731 The main motivation for this study was to answer whether different microbiomes cope with
732 different stresses with common and/or differential stress responses. We can conclude from
733 applying three representative chemical stressors to five microbiomes over a short time
734 typically found along a human food chain, that each microbiome responded in its own way to
735 stress treatments. We found stress and microbiome-specific shifts in community composition
736 with some of the changing members pointing to possible impacts on food chain health. The
737 shifts to different dysbiotic microbiomes, that we observed, are reminiscent of the Anna
738 Karenina principle⁹. It refers to Leo Tolstoy's dictum that "all happy families are alike; each
739 unhappy family is unhappy in its own way" and applied to microbiomes, it states that dysbiotic
740 individuals vary more in community composition than healthy individuals. In addition to specific
741 responses on diversity and community composition, our work revealed that chemical stress
742 commonly affected the complexity of bacterial co-occurrence. Most microbiome networks
743 became sparser with fewer keystone taxa, while stress increased these properties in soil
744 networks. Hence, chemical stressors induce microbiome alterations that may differentially

745 impact the stability and structure of the different microbiomes along a food chain. A goal of
746 this study was to identify the Achilles' heel of our experimental food chain. With reference to
747 the influence score, which takes number and abundance changes of ASVs into account, the
748 animal gut presented the most stress-sensitive microbiome in our experimental
749 food. However, extending the Anna Karenina principle to the wider One Health context, implies
750 that each component's microbiome will have its own Achilles' heel and therefore,
751 investigations that particularly elucidate the contribution of microbiomes to the health of a
752 system are needed.

753

754 **Acknowledgments**

755 We thank Evelyne Vonwyl for her help in the laboratory and field work and Luyao Tu and
756 Tobias Schneider for their help in the field as well as Anna Muntwyler (all from the Department
757 of Geography, University of Bern). For experimental and logistical support, we are also grateful
758 to Oliver Schären, Luca Beldi, Disha Tandon, Stephen Leib, Stefan Neuenschwander, and
759 Miguel Terrazos Miani (all from the Institute of Infectious Diseases, University of Bern). We
760 also thank Pascal Wyss, Christina Widmer, Bernardus CJ Schimmel and Lei Wang for support
761 during sample collection (all from the Institute of Plant Sciences, University of Bern). The
762 sequencing data were generated in collaboration with the Genetic Diversity Centre (GDC),
763 ETH Zurich.

764

765 **Author contributions**

766 The study was conventionalized and supervised by W, FR, SGV, MB, MG, SS, MA, AM, SH,
767 ME, KS and AR. Funding was acquired and resources provided by FR, SGV, MB, MG, SS,
768 MA, AM, SH, ME, KS and AR. Experiments were performed by W, ACH, CT, LT, VC, PM, MN,
769 MM, TCC, FR and SGV. Specific methodology was developed and provided by W, ACH, MCC,
770 PM, TCC, AM, ME, KS and AR. W, CT, KS and AR were responsible for data curation.
771 Software was developed, data was analysed, validated, visualized and the first draft written
772 by W, KS and AR. All co-authors have contributed to reviewing and editing the manuscript and
773 agree on the final version of this study.

774 **References**

- 775 1. Destoumieux-Garzón, D. *et al.* The One Health Concept: 10 years old and a long road ahead. *Front. Vet. Sci.* **5**, 1–13 (2018).
- 776 2. Bell, V., Ferrão, J., Lígia, P., Pintado, M. & Fernandes, T. One health, fermented foods, and gut microbiota. *Foods* **7**, 195 (2018).
- 777 3. Trinh, P., Zaneveld, J. R., Safranek, S. & Rabinowitz, P. M. One health relationships between human, animal, and environmental microbiomes: A mini-review. *Front. Public Heal.* **6**, 235 (2018).
- 778 4. Ma, L., Zhao, H., Wu, L. B., Cheng, Z. & Liu, C. Impact of the microbiome on human, animal, and environmental health from a One Health perspective. *Sci. One Heal.* **2**, 100037 (2023).
- 779 5. Hou, K. *et al.* Microbiota in health and diseases. *Signal Transduct. Target. Ther.* **2022** **71** **7**, 1–28 (2022).
- 780 6. Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. *Nat. Rev. Microbiol.* **2020** **18** **11**, 607–621 (2020).
- 781 7. Lee, W. J. & Hase, K. Gut microbiota–generated metabolites in animal health and disease. *Nat. Chem. Biol.* **2014** **10** **6**, 416–424 (2014).
- 782 8. Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E. & van der Heijden, M. G. A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. *Nat. Commun.* **10**, (2019).
- 783 9. Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. *Nat. Microbiol.* **2**, 17121 (2017).
- 784 10. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B. & Beeregowda, K. N. Toxicity, mechanism and health effects of some heavy metals. *Interdiscip. Toxicol.* **7**, 60 (2014).
- 785 11. Lavecchia, T., Rea, G., Antonacci, A. & Giardi, M. T. Healthy and adverse effects of plant-derived functional metabolites: the need of revealing their content and bioactivity in a complex food matrix. *Crit. Rev. Food Sci. Nutr.* **53**, 198 (2013).
- 786 12. Pathak, V. M. *et al.* Current status of pesticide effects on environment, human health and its eco-friendly management as bioremediation: A comprehensive review. *Front. Microbiol.* **13**, (2022).
- 787 13. Ali, H., Khan, E. & Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. *J. Chem.* **2019**, (2019).
- 788 14. Gertsch, J. The metabolic plant feedback hypothesis: How plant secondary metabolites nonspecifically impact human health. *Planta Med.* **82**, 920–929 (2016).
- 789 15. Parween, T., Jan, S., Mahmooduzzafar, S., Fatma, T. & Siddiqui, Z. H. Selective effect of pesticides on plant—A review. *Crit. Rev. Food Sci. Nutr.* **56**, 160–179 (2016).
- 790 16. Kim, K. H., Kabir, E. & Jahan, S. A. Exposure to pesticides and the associated human health effects. *Sci. Total Environ.* **575**, 525–535 (2017).
- 791 17. Duan, H. *et al.* Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy. *Sci. Total Environ.* **742**, 140429 (2020).
- 792 18. Jacoby, R. P., Koprivova, A. & Kopriva, S. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. *J. Exp. Bot.* **72**, 57–69 (2021).
- 793 19. Meena, R. S. *et al.* Impact of agrochemicals on soil microbiota and management: A review. *Land* **9**, 34 (2020).
- 794 20. Thompson, L. R. *et al.* A communal catalogue reveals Earth's multiscale microbial diversity. *Nature* **551**, 457–463 (2017).
- 795 21. J, M. & Matschullat, J. Arsenic in the geosphere--a review. *Sci. Total Environ.* **249**, 297–312 (2000).
- 796 22. Kato, M. *et al.* Multidisciplinary approach to assess the toxicities of arsenic and barium in drinking water. *Environ. Health Prev. Med.* **25**, 1–7 (2020).
- 797 23. Guha Mazumder, D. N. Chronic arsenic toxicity & human health. *Indian J. Med. Res.*

828 128, 436–447 (2008).

829 24. Karagas, M. R. *et al.* Rice Intake and emerging concerns on Arsenic in Rice: a review
830 of the human evidence and methodologic challenges. *Curr. Environ. Heal. reports* **6**,
831 361–372 (2019).

832 25. Rosas-Castor, J. M., Guzmán-Mar, J. L., Hernández-Ramírez, A., Garza-González, M.
833 T. & Hinojosa-Reyes, L. Arsenic accumulation in maize crop (*Zea mays*): a review. *Sci.
834 Total Environ.* **488–489**, 176–187 (2014).

835 26. Coryell, M., McAlpine, M., Pinkham, N. V., McDermott, T. R. & Walk, S. T. The gut
836 microbiome is required for full protection against acute arsenic toxicity in mouse
837 models. *Nat. Commun.* **2018** *9*, 1–9 (2018).

838 27. Guan, H. *et al.* The effects of soil microbial disturbance and plants on Arsenic
839 concentrations and speciation in soil water and soils. *Expo. Heal.* 1–16 (2023).
840 doi:10.1007/S12403-023-00593-6/FIGURES/6

841 28. Moreno-Jiménez, E., Esteban, E. & Peñalosa, J. M. The fate of Arsenic in soil-plant
842 systems. *Rev. Environ. Contam. Toxicol.* **215**, 1–37 (2012).

843 29. de Bruijn, W. J. C., Gruppen, H. & Vincken, J. P. Structure and biosynthesis of
844 benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds.
845 *Phytochemistry* **155**, 233–243 (2018).

846 30. Erb, M. & Kliebenstein, D. J. Plant secondary metabolites as defenses, regulators, and
847 primary metabolites: The blurred functional trichotomy. *Plant Physiol.* **184**, 39–52
848 (2020).

849 31. Zhang, X. *et al.* Plant defense resistance in natural enemies of a specialist insect
850 herbivore. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 23174–23181 (2019).

851 32. Schandry, N., Jandrasits, K., Garrido-Oter, R., Becker, C. & Mendel, G. Plant-derived
852 benzoxazinoids act as antibiotics and shape bacterial communities. *bioRxiv*
853 2021.01.12.425818 (2021). doi:10.1101/2021.01.12.425818

854 33. Hu, L. *et al.* Plant iron acquisition strategy exploited by an insect herbivore. *Science*
855 **361**, 694–697 (2018).

856 34. Schlaeppi, K., Gross, J. J., Hapfelmeier, S. & Erb, M. Plant chemistry and food web
857 health. *New Phytol.* **231**, 957–962 (2021).

858 35. Hu, L. *et al.* Root exudate metabolites drive plant-soil feedbacks on growth and defense
859 by shaping the rhizosphere microbiota. *Nat. Commun.* **9**, 1–13 (2018).

860 36. Teasdale, J. R., Rice, C. P., Cai, G. & Mangum, R. W. Expression of allelopathy in the
861 soil environment: Soil concentration and activity of benzoxazinoid compounds released
862 by rye cover crop residue. *Plant Ecol.* **213**, 1893–1905 (2012).

863 37. Rose, M. T. *et al.* Impact of herbicides on soil biology and function. *Advances in
864 Agronomy* **136**, (Elsevier Inc., 2016).

865 38. Moschet, C. *et al.* How a complete pesticide screening changes the assessment of
866 surface water quality. *Environ. Sci. Technol.* **48**, 5423–5432 (2014).

867 39. Chiaia-Hernández, A. C. *et al.* High-resolution historical record of plant protection
868 product deposition documented by target and nontarget trend analysis in a Swiss lake
869 under anthropogenic pressure. *Environ. Sci. Technol.* **54**, 13090–13100 (2020).

870 40. Štěpanova, S. *et al.* The effects of subchronic exposure to terbutylazine on early
871 developmental stages of common carp. *ScientificWorldJournal.* **2012**, (2012).

872 41. Mew, E. J. *et al.* The global burden of fatal self-poisoning with pesticides 2006–15:
873 Systematic review. *J. Affect. Disord.* **219**, 93–104 (2017).

874 42. Caggia, V. *et al.* Glyphosate and terbutylazine effects on soil functions, microbiome
875 composition and crop performance. *Appl. Soil Ecol.* **191**, 105036 (2023).

876 43. Garrett, L. G., Watt, M. S. & Pearce, S. H. Environmental fate of terbutylazine and
877 hexazinone in a planted forest steepland recent soil, New Zealand. *New Zeal. J. For.
878 Sci.* **46**, 1–7 (2016).

879 44. Wasimuddin *et al.* Evaluation of primer pairs for microbiome profiling from soils to
880 humans within the One Health framework. *Mol. Ecol. Resour.* **20**, 1558–1571 (2020).

881 45. Apprill, A., Mcnally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA
882 806R gene primer greatly increases detection of SAR11 bacterioplankton. *Aquat.*

883 46. *Microb. Ecol.* **75**, 129–137 (2015).

884 46. Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters : assessing small
885 subunit rRNA primers for marine microbiomes with mock communities , time series and
886 global field samples. *Environ. Microbiol.* **18**, 1403–1414 (2016).

887 47. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing
888 reads. *EMBnet.journal* **17**, 10 (2011).

889 48. R Core Team. R: A language and environment for statistical computing. R Foundation
890 for Statistical Computing, Vienna, Austria. (2011).

891 49. Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon
892 data. *Nat. Methods* **13**, 581–583 (2016).

893 50. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid
894 assignment of rRNA sequences into the new bacterial taxonomy. *Appl. Environ. Microbiol.* **73**, 5261 (2007).

895 51. Quast, C. *et al.* The SILVA ribosomal RNA gene database project: improved data
896 processing and web-based tools. *Nucleic Acids Res.* **41**, D590 (2013).

897 52. McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive
898 analysis and graphics of microbiome census data. *PLoS One* **8**, e61217 (2013).

899 53. Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting Linear Mixed-Effects
900 models using lme4. *J. Stat. Softw.* **67**, 1–48 (2015).

901 54. Oksanen, A. J. *et al.* Package ‘ vegan ’. *vegan Community Ecol. Packag.* (2018).

902 55. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
903 for RNA-seq data with DESeq2. *Genome Biol.* **15**, 1–21 (2014).

904 56. Kurtz, Z. D. *et al.* Sparse and compositionally robust inference of microbial ecological
905 networks. *PLoS Comput. Biol.* **11**, 1–25 (2015).

906 57. Csárdi, G. & Nepusz, T. The igraph software package for complex network research.
907 *InterJournal Complex Sy*, 1695 (2006).

908 58. Isah, T. Stress and defense responses in plant secondary metabolites production. *Biol.*
909 *Res.* **52**, 39 (2019).

910 59. Sheik, C. S. *et al.* Exposure of soil microbial communities to Chromium and Arsenic
911 alters their diversity and structure. *PLoS One* **7**, e40059 (2012).

912 60. Sun, W. *et al.* Response of soil microbial communities to elevated Antimony and Arsenic
913 contamination indicates the relationship between the innate microbiota and
914 contaminant fractions. *Environ. Sci. Technol.* **51**, 9165–9175 (2017).

915 61. Hoehler, T. M. & Jørgensen, B. B. Microbial life under extreme energy limitation. *Nat.*
916 *Rev. Microbiol.* **11**, 83–94 (2013).

917 62. Hacquard, S. *et al.* Microbiota and host nutrition across plant and animal kingdoms. *Cell*
918 *Host Microbe* **17**, 603–616 (2015).

919 63. Zhang, C. *et al.* Unexpected genetic and microbial diversity for Arsenic cycling in deep
920 sea cold seep sediments. *npj Biofilms Microbiomes* **2023** *91* **9**, 1–10 (2023).

921 64. Wasimuddin *et al.* Astrovirus infections induce age-dependent dysbiosis in gut
922 microbiomes of bats. *ISME J.* **12**, 2883–2893 (2018).

923 65. Mayr, M. J. *et al.* Growth and rapid succession of methanotrophs effectively limit
924 methane release during lake overturn. *Commun. Biol.* **3**, 1–9 (2020).

925 66. Rasigraf, O. *et al.* Microbial community composition and functional potential in Bothnian
926 Sea sediments is linked to Fe and S dynamics and the quality of organic matter. *Limnol.*
927 *Oceanogr.* **65**, S113–S133 (2020).

928 67. Yan, Y. *et al.* Microbial communities and diversities in mudflat sediments analyzed
929 using a modified metatranscriptomic method. *Front. Microbiol.* **9**, 1–15 (2018).

930 68. Zheng, D. *et al.* Identification of novel potential acetate-oxidizing bacteria in
931 thermophilic methanogenic chemostats by DNA stable isotope probing. *Appl. Microbiol.*
932 *Biotechnol.* **103**, 8631–8645 (2019).

933 69. Seeley, M. E. *et al.* Microplastics affect sedimentary microbial communities and
934 nitrogen cycling. *Nat. Commun.* **2020** *111* **11**, 1–10 (2020).

935 70. Li, W., Liu, J. & Hudson-Edwards, K. A. Seasonal variations in Arsenic mobility and
936 bacterial diversity: The case study of Huangshui Creek, Shimen Realgar Mine, Hunan
937

938 Province, China. *Sci. Total Environ.* **749**, 142353 (2020).
939 71. Waśkiewicz, A. & Irzykowska, L. *Flavobacterium* spp. - characteristics, occurrence, and
940 toxicity. *Encycl. Food Microbiol. Second Ed.* **1**, 938–942 (2014).
941 72. Feng, G.-D., Yang, S.-Z., Li, H.-P. & Zhu, H.-H. *Massilia putida* sp. nov., a dimethyl
942 disulfide-producing bacterium isolated from wolfram mine tailing. *Int. J. Syst. Evol.*
943 *Microbiol.* **66**, 50–55 (2016).
944 73. Gu, H. *et al.* Biodegradation, biosorption of phenanthrene and its trans-membrane
945 transport by *Massilia* sp. WF1 and *Phanerochaete chrysosporium*. *Front. Microbiol.* **7**,
946 1–12 (2016).
947 74. Lee, H., Kim, D. U., Park, S., Yoon, J. H. & Ka, J. O. *Massilia chloroacetimidivorans* sp.
948 nov., a chloroacetamide herbicide-degrading bacterium isolated from soil. *Antonie van*
949 *Leeuwenhoek, Int. J. Gen. Mol. Microbiol.* **110**, 751–758 (2017).
950 75. Brescia, F., Pertot, I. & Puopolo, G. *Lysobacter*. *Benef. Microbes Agro-Ecology* 313–
951 338 (2020).
952 76. Antharam, V. C. *et al.* Intestinal dysbiosis and depletion of butyrogenic bacteria in
953 *Clostridium difficile* infection and nosocomial diarrhea. *J. Clin. Microbiol.* **51**, 2884–2892
954 (2013).
955 77. Hamer, H. M. *et al.* Review article: the role of butyrate on colonic function. *Aliment.*
956 *Pharmacol. Ther.* **27**, 104–119 (2008).
957 78. Coryell, M., Roggenbeck, B. A. & Walk, S. T. The human gut microbiome's influence
958 on Arsenic toxicity. *Curr. Pharmacol. Reports* **5**, 491–504 (2019).
959 79. Shao, M. & Zhu, Y. Long-term metal exposure changes gut microbiota of residents
960 surrounding a mining and smelting area. *Sci. Reports 2020* **101** **10**, 1–9 (2020).
961 80. Lagkouvardos, I. *et al.* Sequence and cultivation study of Muribaculaceae reveals novel
962 species, host preference, and functional potential of this yet undescribed family.
963 *Microbiome* **7**, 1–15 (2019).
964 81. Smith, B. J. *et al.* Changes in the gut microbiome and fermentation products concurrent
965 with enhanced longevity in acarbose-treated mice. *BMC Microbiol.* **19**, 1–16 (2019).
966 82. Faust, K. & Raes, J. Microbial interactions: from networks to models. *Nat. Rev.*
967 *Microbiol.* **2012** **108** **10**, 538–550 (2012).
968 83. Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of
969 microbiome structure and functioning. *Nat. Rev. Microbiol.* **16**, 567–576 (2018).
970 84. Banerjee, S. *et al.* Agricultural intensification reduces microbial network complexity and
971 the abundance of keystone taxa in roots. *ISME Journal* **13**, 1722–1736 (2019).
972