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Abstract 29 

Along a food chain, microbiomes occur in each component and often contribute to the 30 

functioning or the health of their host or environment. ‘One Health’ emphasizes the 31 

connectivity of each component’s health. Chemical stress typically causes dysbiotic 32 

microbiomes, but it remains unclear whether chemical stressors consistently affect the 33 

microbiomes along food chain components. Here, we systematically challenged a model food 34 

chain, including water, sediments, soil, plants, and animals, with three chemical stresses 35 

consisting of arsenic (a toxic trace element), benzoxazinoids (an abundant bioactive plant 36 

metabolites), and terbuthylazine (an herbicide typically found along a human food chain). The 37 

analysis of 1,064 microbiome profiles for commonalities and differences in their stress 38 

responses indicated that chemical stressors decreased microbiome diversity in soil and 39 

animal, but not in the other microbiomes. In response to stress, all food chain communities 40 

strongly shifted in their composition, generally becoming compositionally more similar to each 41 

other. In addition, we observed stochastic effects in host-associated communities (plant, 42 

animal). Dysbiotic microbiomes were characterized by different sets of bacteria, which 43 

responded specifically to the three chemical stressors. Microbial co-occurrence patterns 44 

significantly shifted with either decreased (water, sediment, plant, animal) or increased (soil) 45 

network sparsity and numbers of keystone taxa following stress treatments. This suggested 46 

major re-distribution of the roles that specific taxa may have, with the community stability of 47 

plant and animal microbiomes being the most affected by chemical stresses. Overall, we 48 

observed stress- and component-specific responses to chemical stressors in microbiomes 49 

along the model food chain, which could have implications on food chain health.   50 

 51 

Key words 52 
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Introduction 56 

The ‘One Health’ concept emphasizes the ecological relationships and interdependencies of 57 

all components of a system to collectively determine the global health of that system1. Hence, 58 

the health of our planet results from a connected health of us, plants, animals and the 59 

environment. All system components host microbial communities or are colonized by 60 

microbiomes that have important roles in the health of each system component. The One 61 

Health concept was extended to include the full breadth of microbiomes2–4. It is thought that a 62 

microbiome perspective strengthens the One Health concept due to i) the contribution of 63 

microbiomes to the health of individual system components, ii) the importance of microbiome 64 

processes for the transfer of energy, matter and chemicals between system components, and 65 

iii) the vital services provided by microbiomes to overall system’s health. Furthermore, 66 

dysbiotic microbiomes of humans5, plants6, animals7 or the environment8 are often associated 67 

with diseases or impaired ecosystem performance. A dysbiotic state can originate from 68 

stressors that either induce deterministic, stochastic, or a mix of these two, effects on the 69 

microbiome and thereby reduce the ability of the host or its microbiome to regulate community 70 

composition9. What is not well studied in One Health context is whether stressors of a whole 71 

system influence the microbiomes of the diverse components with commonalities and/or 72 

disparities in their responses. Such information is crucial for estimating individual component 73 

microbiomes' resilience against common disturbances in a One Health framework.  74 

 A wide range of common environmental and anthropogenic stressors including 75 

chemicals like toxic trace elements10, bioactive plant metabolites11, and pesticides12 are known 76 

to negatively affect the health of different system components. Such stresses can directly 77 

impact the health of the exposed environment or organism, for instance by changing metabolic 78 

rates, inhibiting enzymatic functions or indirectly via perturbating or throwing off balance the 79 

microbiome’s composition. Research has traditionally focused on understanding the direct 80 

stress effects on host or environmental physiology (toxic trace elements13, plant metabolites14, 81 

and pesticides15,16) as well as direct stress effects on microbiomes of individual system 82 

components. For instance, water, soil, plant or animal associated microbiomes are perturbed 83 

by stresses like toxic trace elements, plant metabolites, and pesticides17–19. However, the 84 

indirect and microbiome-mediated contributions to connected system components, i.e. taking 85 

the One Health perspective, have received much less attention. A major gap towards such 86 

One Health understanding, is the lack of systematic studies where microbiomes of different 87 

system components are challenged with the same stressors, at the same doses and with the 88 

same exposure protocol. Such systematic work will allow to specifically answer fundamental 89 

questions of a One Health framework, such as (i) whether microbiomes of diverse system 90 

components can be perturbed with the same stress exposure protocol, (ii) if yes, how does 91 

their stress sensitivity compares in direction or magnitude within and across components, and 92 
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(iii) whether there are commonalities or differences in the microbiomes’ stress responses from 93 

different system components?  94 

To close this gap, we set up an idealized food chain system represented by water and 95 

sediment, soil, plants and animals (Figure 1A). Our experimental food chain consisted of 96 

environmental components (water, sediment and soil) with free-living microbial communities 97 

of high diversity, of primary producers (plants, i.e. corn root microbiomes), and end-consumers 98 

(animals, i.e. mouse gut microbiomes) with low-diversity host-associated microbiomes20. For 99 

systematic challenging of these different system components, we selected three chemical 100 

stressors found along a food chain that are known to impact human and/or environmental 101 

health: Arsenic (As) is a toxic trace element, Benzoxazinoids (Bx) are bioactive plant 102 

metabolites, and terbuthylazine (Tb) is a potent herbicide.  103 

The element As is ubiquitously found in many environments and functions as a 104 

carcinogen for humans21. Contamination by As presents a global catastrophe with around 105 

1.5% of the world’s population suffering from As exposure through drinking water22,23, rice24 or 106 

corn consumption25. Although high levels of naturally occurring As can be found in 107 

groundwater and soils around the globe, it is most problematic in countries with dense 108 

population and lack of infrastructure to detect and manage As contamination. As is known to 109 

impact microbiomes in some of the tested system components26,27, but its influence on diverse 110 

microbiomes of a food chain is not known. We utilized inorganic AsV for this study as this is 111 

the most abundant form of As found in the environment28.  112 

Bx are probably the most relevant plant secondary metabolites in food chains. This is 113 

because they are highly abundant in agroecosystems as they are secreted in large quantities 114 

to soil by Poaceae plants (sweet grasses) that include the widely grown crops like corn, wheat 115 

and rye29. Secondary metabolites generally play vital roles in plant adaptation to the 116 

environment30. Bx are a group of highly bioactive multifunctional compounds that act as 117 

feeding toxins against herbivores31, have antimicrobial activities against microbes32 and 118 

improve plant nutrient acquisition33. Bx could have direct influence on health of diverse food 119 

chain components including humans34. Bx were found to affect microbiomes as Bx-120 

conditioned soils mediated growth and defence effects on the following plant generation35, 121 

forwarding Bx as a chemical for One Health research. Whether Bx influence other 122 

microbiomes than those of plants and soil is currently unknown. We choose the Bx 6-methoxy-123 

benzoxazolin-2-one (MBOA) for this study, because this compound is stable and abundantly 124 

accumulates in soils36. 125 

 Tb is a broad-spectrum herbicide from the chloro-s-triazine group, which is commonly 126 

used for chemical weed control around the globe37 and has been detected in different 127 

environments38,39. More generally, pesticides comprising herbicides, insecticides, and 128 

fungicides are not only used in agroecosystems, but also in other areas to protect humans 129 
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from various pests and diseases. Besides their specific toxicity against weeds, pest insects 130 

and pathogenic fungi, they also cause many negative health and environmental side-effects 131 

on off-target organisms40. Pesticides are associated with significant morbidities and mortalities 132 

each year41. They are also known to influence microbiomes but their relative impact on diverse 133 

food chain microbiomes is not known42. We included Tb in this study, because it is broadly 134 

used, and because the compound and its degradation products have been found in surface 135 

and groundwater38 and accumulate in soils43 and sediments39, displaying long-term stability in 136 

the environment43.  137 

 Finally, in large-scale experiments, we systematically challenged the microbiomes of 138 

the different food chain components with As, Bx and Tb. For this, we developed specific setups 139 

and application procedures for continuous exposure of the microbiome to the chemicals 140 

(Figure S1). To assess their sensitivity to chemical perturbation, we exposed the microbiomes 141 

to the same concentrations and sampled them following the same timeframe. The overall aim 142 

of the experiments was to identify the microbiomes that are the most resistant, and conversely 143 

those that are the most sensitive ones to the chemical stresses, i.e. to find the Achilles’ heel 144 

of our experimental food chain.   145 
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Materials and Methods 146 

 147 

Experimental overview 148 

We studied the components of our idealized food chain consisting of water, sediment, soil, 149 

plant and animal in three large, parallelly executed experiments (Figure S1; termed the 150 

‘water/sediment’, the ‘soil/plant’ and the ‘animal’ experiments). We developed specific 151 

application procedures to ensure that the microbiomes in the different components are 152 

continuously exposed to the same chemical concentrations. In the water/sediment and 153 

soil/plant experiments, we applied the chemicals in daily intervals to approximate continuous 154 

exposure, whereas this was achieved through drinking water in the animal experiment. 155 

Besides continuous exposure, the application procedures were conceived that the chemicals 156 

reached 1x final concentrations of 10, 100 and 1,000 µg/L in each system component. In the 157 

Supplementary Methods we provide the experimental details related to sources, setup, 158 

chemical application procedures and sampling of the three experiments. After application of 159 

the chemicals, we collected samples from each component for microbiome analysis at two 160 

time points, 1 (d1) and 7 (d7) days post application.  161 

 162 

Treatment solutions of the chemicals 163 

We prepared the "treatment solutions" of the chemicals As (Sodium arsenate dibasic 164 

heptahydrate, ≥98% purity; Sigma-Aldrich, Germany), Bx (6-methoxy-benzoxazolin-2-one 165 

(MBOA), >98% purity; Sigma-Aldrich) and Tb (grade analytical grade; Pestanal, Germany) 166 

with specific concentrations for the different experiments. The water/sediment experiments 167 

needed highly concentrated treatment solutions (300x, to minimize dilution by the lake water 168 

and its microbiome), while we prepared 3x and 1x treatment solutions for the soil/plant and 169 

the animal experiments, respectively (Figure S1). The treatment solutions of As and Bx were 170 

prepared in water, which was sufficient as a buffer as the added compounds did not change 171 

the pH of the solutions (data not shown). Because the animal experiment required ultrapure 172 

surgical irrigation water (ERKF7114; Baxter, USA), we used this water as common source to 173 

prepare all treatment solutions. Tb, however, was dissolved in pure ethanol (>98% purity, 174 

Sigma-Aldrich, Germany) due to its insolubility in water. Ethanol was also added to control 175 

treatment solution for Tb at final amounts of 0.3%. 176 

 177 

DNA Extraction, 16S rRNA amplicon library preparation and sequencing 178 

DNA was extracted using the DNeasy PowerSoil HTP 96 Kit from Qiagen (Hilden, Germany), 179 

as recommended by the Earth Microbiome Project EMP20 following the manufacturer’s 180 

protocol. Loading of the sample material to the DNA extraction plates was done as follows: 181 

Water samples were pipetted directly on to plates (250 µL, well-homogenized by vortexing). 182 
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Sediment samples were defrosted, briefly vortexed, centrifuged, and pipetted up and down for 183 

homogenization of water and solid particles, then 250 µL was transferred into the extraction 184 

plates. A sterile spatula was used to retrieve 230-250 mg of defrosted soil samples. Corn roots 185 

were lyophilized for 48 h, and after grinding, 15 mg of fine ground powder was then used to 186 

load the plate. The loading unit for mouse samples corresponded to one to two faecal pellets. 187 

For loading the extraction plates, we processed the samples in batches by sample type to 188 

avoid cross-contamination and because of the different handling units (weight, unit or volume). 189 

Within batches, the sample groups (time point and treatment) were randomly positioned on 190 

the plate. With this randomization scheme, we tackled the practical challenges (diverse input 191 

materials, avoiding sample mix-up) without compromising scientifically rigorous treatment 192 

comparisons (randomization of treatment groups). DNA was eluted in 50 µL (water, sediment), 193 

75 µL (plant) or 100 µL (soil, animal) of C6 buffer of the kit (10 mM Tris-Cl, no EDTA) and 194 

stored at -20°C until further use. 195 

We then performed a bulk adjustment of DNA concentrations for the water, sediment, 196 

soil, plant and animal samples as follows: From each sample type, we measured the DNA 197 

concentrations of 20 random samples from different DNA extraction plates using Nanodrop 198 

(Thermo Fischer, Waltham, USA). The average DNA concentration of a sample type was 199 

taken to bulk-adjust all samples of the same sample type. PCR-ready concentrations were set 200 

at 10 ng/µL (sediment, soil and plant samples) and 1 ng/µL (animal samples). DNA 201 

concentrations of water extracts were <1 ng/µL and were used without further dilution. At this 202 

step, samples were re-organized for amplification and assigned to 5 different sequencing 203 

libraries (L1 to L5). Each library consisted of ~240 samples, with replicates of a treatment 204 

group being present in at least two different sequencing libraries.  205 

Bacterial 16S rRNA gene amplicon libraries were prepared using PCR primers, 206 

reagents and cycling conditions as recommended by the EMP20, according to our previous 207 

study44: We barcoded the amplicons with the Access Array barcode system from Fluidigm in 208 

a two-step approach adapted from Illumina’s standard 16S profiling protocol. In the first step, 209 

we performed target gene (16S rRNA, region V4) amplification using the PCR primers 515F 210 

and 806R45,46 coupled to CS1 and CS2 linker sequences (CS1-515F: 5'-211 

ACACTGACGACATGGTTCTACA-GTGYCAGCMGCCGCGGTAA-3' and CS2-806R: 5'-212 

TACGGTAGCAGAGACTTGGTCT-GGACTACNVGGGTWTCTAAT-3') of the Access Array 213 

barcode system, respectively. PCR reactions (20 µL total volume) were prepared in a UV-214 

irradiated PCR hood, and contained 0.8x Platinum Hot Start PCR Master Mix (Thermo Fisher), 215 

0.2 µM of each primer, PCR-grade water and 3 µL of DNA template. After 3 min initial 216 

denaturation at 94°C, we ran 25 PCR cycles (25 of the 35 cycles as suggested by EMP20; 45 217 

s at 94°C, 60 s at 50°C and 90 s at 72°C) followed by 10 min final elongation at 72°C. We 218 

performed gel electrophoresis with few samples, and the positive and negative controls for 219 
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each PCR plate to confirm that the PCR has worked and was not contaminated. PCR products 220 

were purified with self-made Solid Phase Reversible Immobilisation (SPRI) magnetic beads 221 

(https://openwetware.org/wiki/SPRI_bead_mix). 222 

In the second PCR step, we barcoded the individual samples with the Access Array 223 

system consisting of 384 barcodes (BC). The PCR primers PE1-CS1-F and PE2-[BC]-CS2-R 224 

contain the paired-end (PE) adapters required for Illumina sequencing and bind via the linker 225 

sequences CS1 and CS2 to the PCR amplicons of the first step. Stocks (50 µL, 2 µM) of the 226 

384 unique primer combinations were repeatedly utilized to prepare the 5 libraries L1 to L5. 227 

PCR reactions were prepared in volumes of 25 µL with 0.8x Platinum Hot Start PCR Master 228 

Mix (Thermo Fisher Scientific, Reinach, Switzerland), Access Array primers (0.4 µM), PCR-229 

grade water and 5 µL of the purified PCR product as template. After 3 min of initial denaturation 230 

at 94°C, we ran 10 PCR cycles (25 cycles in step 1 + 10 cycles in step 2 correspond to the 35 231 

cycles as suggested by EMP20; 45 s at 94°C, 60 s at 60°C and 90 s at 72°C), followed by 10 232 

min of final elongation at 72°C. Again, gel electrophoresis was performed with few samples, 233 

and positive and negative controls for each PCR plate to confirm that the PCR has worked. 234 

No DNA contamination was observed in the negative controls after two rounds of PCR 235 

amplification. Amplicon DNA of the second PCR was purified with SPRI beads as described 236 

above and quantified with NanoDrop 8000 (Thermo Fisher Scientific).  237 

For equimolar pooling of the barcoded amplicons into their assigned library (L1 to L5), 238 

we used a robotic liquid handling station (Brand, Wertheim, Germany). Pooled libraries were 239 

well mixed and a subset was purified using the SPRI beads as described above. DNA 240 

concentration and size of the purified library were then determined by Qubit 1.0 (Thermo 241 

Fischer) and TapeStation (Agilent, Santa Clara, CA, USA) analyses. The final pooled libraries 242 

were paired-end sequenced (2 × 300 cycles) in five runs on Illumina MiSeq at the NGS 243 

platform of University of Bern (www.ngs.unibe.ch). The sequencing data is available from the 244 

European Nucleotide Archive (http://www.ebi.ac.uk/ena) under the study accession 245 

PRJEB72104.  246 

 247 

Bioinformatic and statistical analyses 248 

All code and metadata (experimental design, sample-to-barcode assignments) are available 249 

on GitHub (https://github.com/wasimbt/Component-specific-responses-of-the-microbiome). 250 

Demultiplexed reads without barcodes and adapters were received as output from the 251 

sequencing centre. Primer sequences were removed by using Cutadapt47 (version 2.5). All 252 

subsequent analyses were performed within the R environment48 (version 3.5.1). For data pre-253 

processing, we followed the DADA249 pipeline (version 1.10.1) by keeping the same 254 

parameters for the five libraries, except for error rate estimation that was allowed to be library-255 

specific. Reads were trimmed from both ends based on quality profile, error rates were learned 256 
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from the data using the parametric error model as implemented in DADA2. After denoising 257 

and merging of forward and reverse reads, all five libraries were regrouped. Chimeric 258 

sequences were removed from the dataset by following the ‘consensus’ method implemented 259 

in DADA2. The final table thus consisted of number of occurrences of amplicon sequence 260 

variants (ASVs; i.e. sequence groups differing by as little as one nucleotide) in each sample. 261 

Taxonomy assignments of the ASVs were performed using the naïve Bayesian classifier50 262 

with the SILVA database51 (version v132, non-redundant). Species level assignment was done 263 

by exact matching (100% identity) of ASVs with database sequences, as previously 264 

recommended. Phyloseq52 (version 1.24.2) was used for further data processing. We removed 265 

ASVs with less than 10 read counts from overall dataset. Furthermore, ASVs belonging to 266 

chloroplast, mitochondria, and unassigned ASVs at phylum level were removed from the 267 

dataset.  268 

 269 

Alpha and beta diversity analyses: We investigated the effects of sample type (water, 270 

sediment, soil, plant, animal), treatments (Control (Ctr), As, Bx, Tb), time point (0, 1 , 7 days), 271 

concentration (0, 10, 100, 1,000 µg/L), and interactions among these factors. First, we 272 

analysed bacterial diversity for each sample using two different alpha diversity indices (number 273 

of observed species and Shannon) after rarefying the data to 8,100 sequences per sample 274 

using Phyloseq52. To analyse the effects of these factors on alpha diversity, we performed 275 

General Linear Modelling (GLM) by using the lme453 package (version 1.1.30). As the samples 276 

were pooled in 5 libraries and were sequenced in five sequencing runs, we also included 277 

"library identity" as explanatory factor in the model to account for potential technical 278 

confounding. We performed Tukey’s Honest Significant Difference test (HSD) to compare 279 

average effects between groups when overall multivariable model significance was observed.  280 

Second, beta diversity analyses were calculated based on a Bray-Curtis dissimilarity matrix 281 

after rarefying the data to 8,100 sequences per sample using Phyloseq52. The permutational 282 

multivariate analysis of variance (PERMANOVA) was employed as implemented in the adonis 283 

function of the vegan54 package (version 2.5-2) to test the significance of the differences in 284 

community composition with 999 permutations. For beta diversity metric, we similarly included 285 

sample type, treatments, time point, concentration and interactions among these factors in the 286 

model as explanatory variables. We also included “library identity” as potential confounding 287 

factor in the model. We performed pairwise.adonis to compare groupings, similar to Tukey’s 288 

HSD done on linear models. To visualize patterns of separation between different sample 289 

groups, non-metric multidimensional scaling (NMDS; Phyloseq) plots were prepared based on 290 

Bray-Curtis dissimilarity matrices. To assess the strength of treatment in each specific 291 

component of the food chain, we performed constrained ordination (distance-based 292 

redundancy analysis; dbRDA) by using the capscale function of the vegan54 package on Bray-293 
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Curtis dissimilarity matrices within each component. We employed ANOVA to assess the 294 

significance of each component model. 295 

In order to understand whether treatments reflect true shift in microbial community 296 

composition or differential spread (dispersion) of data points from their group centroid, we 297 

assessed the multivariate homogeneity of group dispersions by performing PERMDISP test 298 

using the betadisper function of the vegan54 package on Bray-Curtis dissimilarity matrices. We 299 

employed permutation (999) test with permutest function as implemented in vegan54 to 300 

analyse significance of grouping (treatment) for each component of the food chain. 301 

 302 

Differential abundance analyses: In order to identify ASVs specifically influenced by a given 303 

treatment, we employed a negative binomial model-based approach available in the DESeq255 304 

package (version 1.22.2), in which ASV relative abundances were compared for each 305 

treatment vs. control group (Ctr-As, Ctr-Bx, Ctr-Tb) for the respective component. Only ASVs 306 

remained significant (P≤0.05) after Benjamini–Hochberg correction of Wald test were 307 

considered as differently abundant ASVs. Here, we calculated an Influence Score (IS) for each 308 

comparison, which considers both the number of affected ASVs and their relative change in 309 

abundance, as consists in the cumulative log-fold changes for all ASVs significantly differing 310 

for a given comparison (e.g. Ctr-As; Figure S6).  311 

 312 

Network analyses: To infer the relationships among ASVs, we prepared networks for each 313 

food chain component and their treatments by using Sparse Inverse Covariance Estimation 314 

for Ecological Association Inference SPIEC-EASI56. SPIEC-EASI is a statistical method for the 315 

inference of ecological networks that relies on algorithms for sparse neighbourhood and 316 

inverse covariance selection, and that applies data transformation and normalization, which 317 

can better deal with compositional data. To prepare the networks, only ASVs present in control 318 

groups were kept in treated groups for each component. Furthermore, ASVs containing fewer 319 

than 100 reads from overall component dataset, present in less than 15% of the control 320 

samples were removed prior to selecting control ASVs. Network inference used the 321 

Meinshausen-Buhlmann method for neighbourhood selection and the bounded StARS 322 

approach with nlambda of 50 and 99 pulsar permutations. Node attributes, such as degree 323 

distribution, betweenness centrality, transitivity, closeness centrality, were calculated using 324 

the igraph57 package (version 1.3.2) with 10,000 iterations. We then performed the 325 

Kolmogorov–Smirnov test to compare node attributes between control and treated groups. 326 

Kolmogorov–Smirnov test compares the overall shape of the cumulative distribution of two 327 

variables where the null hypothesis is that the variables derive from the same distribution. To 328 

characterize the underlying network degree distribution type, we evaluated four distributions 329 

namely, power-law, log normal, exponential and Poisson and tested goodness of fit of the 330 
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distribution after 1,000 iterations, and we also compared the fitted distributions with each 331 

other’s using t-test to detect the best fitting distribution(s). Finally, to detect hub nodes which 332 

could represent keystone taxa, we calculated Kleinberg's hub centrality scores using the 333 

hub_score function implemented in igraph57. Nodes having hub score values of more than 0.7 334 

were assigned as hub nodes across sample types.  335 

 336 

Results 337 

Microbiomes are distinct across components of a food chain 338 

To assess the sensitivity of different food chain components to chemical perturbation, we 339 

systematically exposed their microbiomes to As, Bx and Tb concentrations of 10, 100 and 340 

1,000 µg/L and sampled them after same exposure times (Figure S1). Each food chain 341 

component was also treated with buffer and these control microbiomes served as baseline for 342 

healthy un-perturbed microbiomes. We first validated the quantities of As, Bx and Tb in the 343 

water or treatment solutions, which we used to challenge the different food chain microbiomes. 344 

The water of the water/sediment and animal experiments and the treatment solutions of the 345 

soil/plant experiment contained the standardized 10-fold increments of stress chemicals at the 346 

expected concentrations (Figure S2). Following the systematic exposures, we collected 347 

samples from each component at two time points, and thus characterized a total of 1,064 348 

microbiomes originating from water (n= 133; Ctr-34, As-33, Bx-31, Tb-35), sediment (n= 144; 349 

Ctr-36, As-36, Bx-36, Tb-36), soil (n= 266; Ctr-36, As-78, Bx-77, Tb-75), plants (n= 255; Ctr-350 

37, As-72, Bx-75, Tb-71) and animal (n= 266; Ctr-25, As-82, Bx-76, Tb-83). All samples were 351 

subjected to high-throughput sequencing of the V4 region of the bacterial 16S ribosomal RNA 352 

gene. We recovered on average 38’709 (range 5’437-116’475) high-quality, taxonomically 353 

assigned reads per sample. Microbiome diversity differed markedly between the different food 354 

chain components (Figure S4). Quantifying their effect size from PERMANOVA (based on 355 

interpreting the R2 of the model) revealed 71.8% based on the Bray-Curtis metric (Table S2). 356 

The ‘naturally close’ microbiomes of water and sediment, as well as of soil and plant each 357 

shared some abundant bacteria, whereas hardly any overlap existed between these 358 

microbiomes and the distinct animal microbiomes (Figure 1B). The same was true when 359 

inspecting all ASVs that were detected in this study (Figure 1C). Hence, it is unlikely that the 360 

stress treatments will affect the different bacteria of the food chain components in similar 361 

manner. Thus, we further analysed the stress-induced impact on the microbiomes of the 362 

different components separately, at the levels of diversity patterns, community composition 363 

and interaction between members of the community. 364 

 365 
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 366 

 367 

Figure 1. A) Depiction of representative components of a model food chain used in this study. 368 
B) Heatmap of abundant ASVs (>0.01% mean relative abundance in the dataset) across 369 
components (right) showing little overlap among components except between related 370 
components (water and sediment, soil and plant), arranged according to hierarchical cluster 371 
tree. C) Venn diagram showing unique and shared ASVs among components.  372 
 373 

Chemical stressors mainly affect diversity of soil and animal microbiomes 374 

We first investigated to which degree the chemical stressors perturbed alpha diversity in food 375 

chain microbiomes. Sediment and soil harboured the richest (number of observed ASVs; 376 

Figure 2A) and most diverse (Shannon; Figure S5A) microbiomes followed by water and 377 

plant microbiomes, while animal microbiomes were lowest in both metrics. We used General 378 

Linear Modelling (GLM) to statistically assess and quantify the effects of the applied stressors 379 

(As, Bx, Tb) on bacterial richness when compared to un-perturbed conditions (Table S3). 380 

Richness was most strongly (interpreting the sums of squares of the model as effect size) 381 

differing between sample type, followed by time point, concentration and type of chemical 382 

treatment, while accounting for technical variation due to sequencing library preparation (all 383 

P<0.001). Albeit of lower effect size, many factor interactions including chemical treatment 384 

and concentrations were also significant. Significant differences on richness were observed 385 

between control and treatment groups for soil microbiomes, where chemical stressors reduced 386 

richness (Figure 2B). No chemical stressor-effect on richness was found in water, sediment, 387 

plant and animal microbiomes. Pairwise effects of time point and concentration were not 388 
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significant due to lack of statistical power across all implied treatment levels. Similar results 389 

were obtained analysing Shannon diversity, except that Tb-mediated stress also increased 390 

diversity in the water, plant and animal microbiomes (Figure S5B). Overall, alpha diversity 391 

decreased in soil microbiomes by the three chemical stressors, while only Tb but not Bx and 392 

As affected Shannon diversity in most of the other food chain microbiomes. 393 

  394 

 395 

Figure 2. Observed ASV richness in control (A) and their relative changes in stress-induced 396 
treatments (B). In A) the jittered dots represent individual values of samples, while error bars 397 
indicate standard deviation per treatment. In B), differences to the means for each treatment 398 
(As, Bx, Tb) relative to the mean of their respective controls, which are represented as grey 399 
lines, are represented as barplots. The graphs are annotated with the Tukey HSD differences 400 
indicated by different letters (P<0.05). The same compact letter display is used as for the left 401 
panel. C) The first two significant axes of constrained ordination (dbRDA) are displayed for 402 
each component, with sample centroids per treatment indicated as different colours (see 403 
legend). Percentages of explained variance by each principal axis are indicated in square 404 
brackets. 405 
 406 

Chemical stressors alter microbiome composition to different levels 407 

Next, we investigated whether and if to which magnitude the composition (beta diversity) of 408 

food chain microbiomes are perturbed by the chemical stressors. Besides the major 409 
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differences between the food chain components (Figure S4, Table S2), much smaller, yet 410 

significant effects sizes were detected for time point, chemical treatment and concentration 411 

(all P=0.001). Similar to the alpha diversity analyses, most factor interactions were significant, 412 

but of very low effect sizes (~1%). Post-hoc pairwise PERMANOVAs performed on the Bray-413 

Curtis metrics between treatments revealed significant stressors-dependent decreases in beta 414 

diversity in water, soil and plant microbiomes (Figure S6, Table S4). Average beta diversity 415 

increased in animal microbiomes with all three stressors, while it increased after As and Tb 416 

treatments in sediment microbiomes but decreased after Bx treatment. We utilized 417 

constrained ordination of the Bray-Curtis metrics to visualize the chemical stressors-induced 418 

shifts in microbiome composition in comparison to the control groups (Figure 2C) and noted 419 

that performed models with treatment as an explanatory variable was significant (all P<0.01) 420 

in each component (Table S5). The ordinations further indicated that treatments altogether 421 

affected microbiome composition to different levels, with stressors impacts larger for the 422 

microbiomes in water (29.3% of explained variation; both axes) and plant (17.4%) than for 423 

those in sediment (9.8%), soil (9.4%), or animal (6.8%). The homogeneity of group dispersions 424 

tests showed significant dispersions (PERMDISP) in the low diversity microbiomes of plant 425 

(P=0.048) and animal (P=0.001), but not in the high diversity microbiomes of water (P=0.283), 426 

sediment (P=0.158), and soil (P=0.137) (Table S6). Overall, the three chemical stressors 427 

perturbed community composition of all tested food chain microbiomes. They generally 428 

caused the microbiomes to become more similar to each other, hence reduced beta diversity, 429 

with the exception of the animal microbiome, where the stress-perturbed microbiomes became 430 

more divergent than the control microbiomes. Furthermore, the low diversity microbiomes 431 

showed significant dispersion effects compared to high diversity microbial components of the 432 

food chain. 433 

 434 

Chemical stressors are associated with differential abundance of specific bacteria 435 

We identified for each component the ASVs that differed significantly in mean relative 436 

abundance due to the chemical stressor treatments (i.e., contrasts between Ctr-As, Ctr-Bx, 437 

Ctr-Tb; P≤0.05) using negative binomial-based Wald tests (Database S1). Overall, the 438 

number of these unique, stressor-sensitive ASVs ranged from 1 (plant), 14 (water) 51 (soil), 439 

65 (animal) up to 88 ASVs in the sediment microbiomes (Figure 3A). Consistent with the little 440 

overlap between the microbiomes (Figure 1), most stressor-sensitive ASVs were unique to a 441 

food chain microbiome, except one ASV that was common between water and sediment 442 

components. Within food chain components, 15/51 out of significant, unique ASVs in soil and 443 

9/65 ASVs in animal microbiomes were commonly influenced by all three stressors while most 444 

other stressor-sensitive ASVs changed in abundance only after one and a few ASVs after two 445 

treatments. Stressor-sensitive ASVs rather decreased in abundance in water microbiomes, 446 
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while in soil and animal microbiomes they mostly increased at the expense of few strongly 447 

decreasing ASVs (Figures 3B, S7). 448 

 We calculated an Influence Score (IS) to compare the impacts on differentially 449 

abundant ASVs across treatments and component. For a specific contrast (e.g., Ctr-As), the 450 

score considers both the number of affected ASVs and their log-fold change (see methods). 451 

Per food chain component, the highest average IS (av.IS) was noted for animal followed by 452 

sediment, soil, water and plant microbiomes (Figure 3B). Comparing the individual chemical 453 

stresses, the Bx treatment had higher average IS compared to As and Tb treatments. The IS 454 

were microbiome- and treatment-specific with the highest IS recorded for the Bx treatment on 455 

the animal microbiome, and lowest for the Tb and Bx treatments of the plant microbiome. 456 

Overall, the individual bacteria of the animal microbiome were generally most sensitive to the 457 

chemical stressors, in particular in the Bx treatment. 458 

 459 

Figure 3. (A) Summaries of the stress-sensitive ASVs in the different microbiomes to the total 460 
number of stress-sensitive ASVs (circles scaled to their numbers) per component. The lower 461 
Venns detail the stress-sensitive ASVs by stress treatments As, Bx or Tb. (B) The MA plots 462 
display the log2-fold change of all ASVs and their log-mean abundance plotted on y- and x-463 
axes, respectively, for each stress in each food chain component. ASVs being differentially 464 
abundant between control and treatments (As, Bx, Tb) were determined by DESeq2 analysis 465 
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(Benjamini–Hochberg correction, P≤0.05). Colours refer to enriched ASVs in control (blue) or 466 
treatment (red) groups for all comparisons. Influence Score (IS) for each comparison was 467 
shown representing both the number of affected ASVs (P≤0.05) and their relative change in 468 
abundance for a given comparison (see method sections and Figure S7 for details). Average 469 
IS (av.IS) are indicated for each component.  470 
 471 

Diverse bacterial taxa respond to the different chemical stressors 472 

Next, we inspected the taxonomies of the stressor-sensitive ASVs in all food chain 473 

components. In the water microbiome, we found one and 13 ASVs specifically responding to 474 

As and Tb treatments, respectively (Figures 3, S7). Most of the ASVs that decreased by the 475 

Tb treatment belonged to Methylomonaceae (n = 3 ASVs) and Methylophilaceae (n = 4 ASVs) 476 

families. For sediment, we found two, 85 and one ASVs significantly changing with As, Bx and 477 

Tb treatments, respectively (Figures 3, S7). Of the Bx treatment, many shifting ASVs 478 

belonged to Syntrophaceae (n = 7 ASVs), Bacteroidetes (n = 6 ASVs), Anaerolineaceae (n = 5 479 

ASVs) and Lentimicrobiaceae (n = 5 ASVs) families. For soil, we observed 26, 49, 17 ASVs 480 

significantly differing in abundance after As, Bx and Tb treatments, respectively (Figures 3, 481 

S7). In all three comparisons, most ASVs showed increase in abundance and few decreased. 482 

The increase was mainly ASVs from the Flavobacteriaceae family, specifically from 483 

Flavobacter genus (As, n = 7 ASVs; Bx, n = 18 ASVs; Tb, n = 7 ASVs), of which 6 ASVs 484 

commonly increased in all comparisons. ASVs from Burkholderiaceae (As, n = 4 ASVs; Bx, 485 

n = 5 ASVs; Tb, n = 2 ASVs) and Xanthomonadaceae (As, n = 3 ASVs; Bx, n = 4 ASVs; Tb, 486 

n = 1 ASV) also increased in all comparisons. One ASV from the Latescibacteria generally 487 

decreased in abundance in all treated groups. In the plant microbiome, only one abundant 488 

ASV belonging to the Duganella genus decreased in abundance upon As treatment, whereas 489 

no other ASV changed in abundance due to Bx and Tb treatments (Figure 3). Finally, in the 490 

animal microbiome, we observed 20, 27, 46 ASVs significantly differing in abundance after 491 

As, Bx and Tb treatments, respectively (Figures 3, S7). Most ASVs increased in relative 492 

abundance after treatment. This increase was associated mainly with ASVs from 493 

Lachnospiraceae (As, n = 11 ASVs; Bx, n = 13 ASVs; Tb, n = 18 ASVs), four of which were 494 

common in all treatment groups and belonged to Lachnoclostridium, Shuttleworthia, 495 

Acetatifactor and an Lachnospiraceae bacterium. ASVs from Ruminococcaceae (As, n = 3 496 

ASVs; Bx, n = 4 ASVs; Tb, n = 12 ASVs) and Muribaculaceae (As, n = 2 ASVs; Bx, n = 4 ASVs; 497 

Tb, n = 6 ASVs) families also showed shifts in treatment groups. In general, the stressor-498 

sensitive ASVs of the different microbiomes belonged to diverse taxonomic groups. In few 499 

cases, multiple ASVs of the same families had the same responses like Methylomonaceae 500 

and Methylophilaceae decreasing by the Tb treatment in water, or Flavobacteriaceae, 501 

Burkholderiaceae and Xanthomonadaceae increasing in soil in response to all 3 stresses or a 502 

consistent increase of Lachnospiraceae in the animal microbiome. 503 
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 504 

Chemical stress disturbs bacterial co-occurrence networks 505 

Co-occurrence networks were generated for each treatment and all microbiomes to 506 

investigate whether ASV co-occurrence may change due to a chemical stressor. In general, 507 

number of nodes and edges decreased from soil, sediment, water, plant to the lowest 508 

complexity network of the animal microbiome (Figures 4A, S8). The average edges per node 509 

were also the highest for soil, followed by sediment, water, plant, and the lowest for animal 510 

networks (Table S7). Positive, rather than negative associations were more prevalent in all 511 

networks (Figure S8). Several parameters of network complexity, such as node degree, 512 

betweenness centrality, closeness centrality, transitivity, were significantly different between 513 

control versus treatment groups (Table S7), and presented component-specific trends: For 514 

example, average node degrees decreased in most microbiomes after chemical treatments 515 

leading to sparse networks except for animal and sediment, where node degrees increased 516 

in the treated groups (Figure 4B; Table S7). We then examined the shapes, i.e. the 517 

distributions of the network’s node degrees and tested whether they were altered by the 518 

chemical treatments. From the evaluated different distribution types (power law, log normal, 519 

exponential and Poisson), the low complexity networks of animal and plant generally fitted 520 

best to a log-normal distribution while none of the tested data distribution types fitted to the 521 

high-complexity networks of water, sediment and soil (Table S7). However, no noticeable 522 

differences in degree distribution shapes were found after chemical treatments (Kolmogorov-523 

Smirnov tests at P<0.05; Figure S9). Microbiome networks can also be used to detect hub 524 

nodes, which represent the most connected and possibly influential members of a given 525 

network. Based on Kleinberg's hub centrality scores54, few hubs were observed in the lower 526 

complexity animal and plant networks, whereas higher numbers of hubs were observed the 527 

higher diversity components water, sediment and soil (Figure 4, Table S7). Chemical 528 

stressors consistently decreased the numbers of hub nodes for animal, plant and sediment 529 

components. In the soil microbiomes, however, the number of hub nodes increased in all 530 

treatment compared to control networks. For water, As treatment increased the number of 531 

hubs, while Bx and Tb treated microbiome showed lower numbers of hubs than the controls. 532 

Overall, chemical stress decreased network complexity for most microbiomes (water, 533 

sediment, soil and plant) except for the animal microbiomes where network complexity 534 

increased. 535 

 536 
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 537 

 538 

Figure 4. Co-occurrence network analysis. (A) Microbial association networks based on 539 
Meinshausen-Buhlmann method in SPIEC-EASI analysis for control versus treatments for all 540 
components. Nodes represent different ASVs, with blue colour nodes indicating hub nodes 541 
that are more connected to other nodes in the network (Kleinberg's hub centrality scores >0.7). 542 
Blue edges indicate positive associations between ASVs, while red edges indicate negative 543 
associations. (B) The dot plots display the node degree’s (number of edges per node) of each 544 
ASV within the network as a function of treatment for each sample type. Differences in mean 545 
degrees for each chemical treatment vs. control were all significant (P≤0.001) in each 546 
component based on 10,000 bootstrap replicates of the underlying network properties (Table 547 
S7). 548 
 549 
 550 
Discussion 551 

Microbes - whether mutualistic, commensal or pathogenic - have important roles in the health 552 

of a system as they are omnipresent with different communities in the different system 553 

components. A major gap towards a One Health understanding of microbiomes in a multi-554 

component system is how sensitive or resistant different microbiomes are to different stresses. 555 

Are there commonalities and/or differences in the stress responses of different microbiomes 556 

to different stresses? To address this question, we systematically exposed different microbial 557 

communities of a multi-component system to three distinct chemical stressors at the same 558 

concentrations and we then analysed the microbiomes after the same exposure time. The 559 
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system was an idealized food chain composed of water, sediment, soil, plants and animal 560 

microbiomes (Figure 1A). The three chemical stressors, i.e., the toxic trace element As, the 561 

bioactive plant metabolite Bx and the herbicide Tb were chosen because they can negatively 562 

impact the health of individual food chain components (As13, Bx14,58 and Tb15,16) and/or their 563 

microbiome17–19. Overall, we found that each component’s microbiome responded specifically 564 

to the different tested chemical stressors. Below we discuss various microbiome metrics to 565 

answer the main question of this study – commonalities and differences in stress responses 566 

of different microbiomes to different stresses – with the goal to identify the Achilles’ heel (i.e., 567 

the most stress-sensitive microbiome), as well as the most stress-resistant microbiome in our 568 

experimental food chain.  569 

 570 

No common stress responses of different microbiomes in their alpha diversity 571 

We first discuss how the chemical stresses impacted the alpha diversity within and across the 572 

microbiomes of the experimental food chain. We confirm that free-living microbial communities 573 

(i.e., soil, sediment) have higher diversity and higher species richness than host-associated 574 

communities (i.e., plant roots, animal guts; Figures 2A, S5A), which has been shown earlier 575 
20,44. The effects on alpha diversity by the three chemical stressors were not linked to whether 576 

communities have high or low levels of richness or diversity. The three applied chemical 577 

stressors reduced bacterial richness (Figure 2B) and Shannon diversity (Figure S5B) in soil 578 

but not in the other food chain microbiomes. This consistent decrease in soil bacterial alpha 579 

diversity by chemical stress is consistent with earlier work investigating the effects of individual 580 

chemical stressors on the soil microbiome19,32,35,59,60. Mechanistically, one could imagine that 581 

many or abundant bacteria, which tolerate and/or benefit from the chemical stressors, that 582 

they increase in abundance26 and that then leads to a decrease in overall diversity. The 583 

observed fold change in ASV abundances supports this idea (Figure 3B).  584 

We further noticed that while As and Bx did not have any effects on alpha diversity, 585 

Tb-mediated stress increased Shannon diversity in the low diversity water, plant and animal 586 

microbiomes (Figure S5B). For such stress-specific changes, it could be postulated that some 587 

abundant taxa may be specifically susceptible to the compounds present in the chemical 588 

treatments and therefore, they decrease in abundance, what then allows other bacteria to 589 

proliferate increase overall diversity. Support for this postulation is seen in Figure 3B, where 590 

particularly the abundant bacteria were decreasing in abundance in the water and animal 591 

microbiomes. Finally, alpha diversity of the sediment microbiome remained fully unaffected 592 

(Figures 2B, S5B). One possible explanation that the chemical stressors did not affect these 593 

microbiomes could be that our study was limited to a duration of one week. One week may 594 

have been too short for slow metabolizing bacterial communities, such as those in 595 

sediments61, to result in detectable changes in alpha diversity. Regarding the main question 596 
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of this study, i.e., how the chemical stresses compare in their impacts within and across the 597 

food chain microbiomes, we can conclude that stress effects on microbiome’s alpha diversity 598 

were both food chain component and chemical stress dependent. In other words, we did not 599 

find commonalities in the microbiomes’ stress responses from different food chain 600 

components.  601 

 602 

Food chain microbiomes responded deterministically to chemical stress responses 603 

and when host-associated combined with stochastic effects  604 

Second, we reflect on the chemical stress impacts on community composition (i.e., beta 605 

diversity) that we found both, within and across the microbiomes of the experimental food 606 

chain. Consistent with alpha diversity, we found a strong "component" effect in beta diversity 607 

(Figure S4). This is expected as each component harbours compositionally different sets of 608 

bacteria and in different proportions20,62. In general, the three applied chemical stressors 609 

decreased average beta diversity of water, soil and plant microbiomes, while it increased in 610 

the mouse microbiomes (Figure S6). Minor changes were found in the sediment microbiomes, 611 

where it mildly increased or decreased according to treatment type. Individual studies of 612 

individual components (water57, sediments63, soils19, plants35 and animals26) may have 613 

suggested such heterogeneous changes in beta diversity in response to different stressors.  614 

Here, by comparing three stressors on five microbial communities, we demonstrate that the 615 

same stressors, in terms of chemical quality and quantity, have differential influence on 616 

different microbiomes. This systematic examination allows now to conclude whether stressors 617 

induced either deterministic, stochastic or a combination of these effects on microbiome 618 

composition. With deterministic effects, all microbiome members shift to new composition 619 

states without any dispersion effect (statistically: PERMANOVA and PERMDISP tests would 620 

be significant and nonsignificant, respectively). In contrast, with stochastic effects all 621 

microbiome members randomly disperse from their original composition state (PERMANOVA: 622 

nonsignificant; PERMDISP: significant). Third, there could be a combination of deterministic 623 

and stochastic effects where only some microbes move to a new community composition 624 

state, while others remain (PERMANOVA: significant; PERMDISP: significant). In conclusion, 625 

for the three chemical stressors we found deterministic changes in water, sediment and soil 626 

microbiomes and in plant and animal microbiomes, the detected deterministic changes were 627 

combined with stochastic effects in dispersion (Tables S4, S5).  628 

A caveat for this conclusion is that deterministic and stochastic effects can vary with 629 

time and stress strengths: For instance, mild stress can lead to an increase, but severe stress 630 

leads to a drastic reduction in beta diversity compared to that of healthy subjects64, as also 631 

shown here for most microbiomes of the experimental food chain. However, we could not 632 

evaluate the effects of chemical concentrations as well as of time point due to a statistical 633 
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limitation (PERMDISP does not allow interaction terms) and due to lack of statistical power to 634 

resolve the significance of each pair of combined treatment levels. Our experiment was 635 

designed to systematically compare all components along the food chain with different 636 

chemical stressors and allowed to highlight that any stressor effect on a component 637 

microbiome could not be generalized to other microbiomes of the food chain. Future work is 638 

needed to reveal fine-grained differences of combinations of chemical concentrations and 639 

temporal changes. Also host effects on corn roots or mouse guts should be accounted in such 640 

interactions. This research would aim to understand how the microbiome evolves over time, 641 

especially in terms of the resilience and resistance of microbial communities following initial 642 

dysbiosis induced by different chemical concentrations. 643 

 644 

Stress-specific microbiome changes may result in health effects 645 

Because the microbiomes of our experimental food chain do not share much overlap in 646 

bacterial species (Figure 1B, 1C), it is of little use to discuss taxonomic commonalities and 647 

disparities of the microbiome members that responded to the different stressors. Instead, we 648 

explored whether the taxonomic information of the stress-sensitive ASVs in a given 649 

microbiome, may be indicative for eventual health effects on the food chain component. For 650 

this we focused on the major stress-sensitive ASVs in each microbiome. Only one ASV in 651 

plant and few stressor-sensitive ASVs in the water microbiomes were detected, while several 652 

stressor-responsive ones were found in sediment, soil and animal microbiomes (Figure 3A).  653 

With the exception of a single ASV after As stress, no changes were observed in the corn root 654 

microbiomes after the stress treatments. Albeit negative health effects had been described for 655 

plants25, this finding may indicate that the root microbiome may be relatively insensitive or 656 

slow to stress perturbation compared to the other components. In the water microbiome, ASVs 657 

of the Methylomonaceae and Methylophilaceae mainly decreased in abundance (Figures 3, 658 

S7). Members of this family are responsible for methane oxidation in lakes and are important 659 

members of lake microbiome. Thus, their decrease in after Tb treatment could indicate a 660 

disruption of normal methane cycling in the water microbiome65 and may point to a negative 661 

health effect. The major effect on the sediment microbiome was observed in response to the 662 

Bx treatments with several shifting ASVs belonging to the Syntrophaceae, Bacteroidetes, 663 

Anaerolineaceae and Lentimicrobiaceae (Figures 3, S7). Members of these families are 664 

abundant in sediments and are often associated with bioremediation, organic matter 665 

decomposition and acetate oxidation processes66–69. However, future experiments are needed 666 

to test if their change in abundance affects sediment health.  667 

For the soil microbiome, the majority of ASVs responded with an increase in relative 668 

abundance, particularly after As and Bx treatments and several of these ASVs were members 669 

of Flavobacteriaceae, Burkholderiaceae and Xanthomonadaceae families (Figures 3, S7). 670 
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Members of the Flavobacteriaceae are dominant in soil and marine microbiomes, but are also 671 

found in association with plant roots. Specifically, the genus Flavobacter is specialized in 672 

uptake and decomposition of organic matter due to its capacity to hydrolyse organic 673 

polymers70,71 and therefore, their wide biotechnological use in biotransformation, wastewater 674 

treatment and bioremediations71. Similarly, members of Burkholderiaceae, specifically the 675 

Massilia genus can degrade herbicides, metabolize aromatic hydrocarbons and are resistant 676 

to metals72–74, thus their increase in relative abundance after the stress treatment. Members 677 

of the Xanthomonadaceae, mainly Lysobacter bacteria possess antimicrobial and antifungal 678 

properties, secret many bioactive compounds, are resistant to arsenite, and function in 679 

bioremediation of hydrocarbon polluted soils75. Similar as for sediments, the shifts of the 680 

bacteria in response to the chemical treatments, are consistent with metabolic traits, but 681 

whether their change in abundance in the microbiome affects soil health remains to be 682 

experimentally assessed. 683 

The major effect observed in the animal microbiomes was that ASVs from 684 

Lachnospiraceae, Ruminococcaceae and Muribaculaceae increased after the stressor 685 

treatments (Figures 3, S7). Lachnospiraceae and Ruminococcaceae are two commensal 686 

families specialized in the degradation of complex plant material, but they may also provide 687 

protection against enteric infections in the human gut. Some Ruminococcaceae and 688 

Lachnospiraceae are butyrate producers, an important source of energy for gut epithelial cells, 689 

and they support humans to maintain epithelial barrier integrity and thereby, prevent 690 

diarrhea76,77. Increase of both of these families after exposure of humans to toxic trace 691 

elements and their beneficial roles in the gut health was found earlier78,79. The Muribaculaceae 692 

family commonly occurs in animals with high abundance in rodents and provide several 693 

important functions to the host80. Interestingly, members of Muribaculaceae were found to be 694 

associated with enhanced longevity in mouse81. Hence, the taxonomic information of the 695 

stress-sensitive ASVs clearly point to health effects on the animal host. 696 

Taken together, although some of the stressor-specific influences on the different 697 

microbiomes indicate individual health effects, a next step is now to compare systematically 698 

the health effects, both within and across the components of the experimental food chain.  699 

 700 

Chemically stressed microbiomes become structurally sparser 701 

Finally, addressing the main question of this study – commonalities and differences in 702 

microbiome’s responses to different stresses - we specifically investigated the stress-induced 703 

changes in network properties, as these can reveal hidden patterns in the communities usually 704 

not captured by diversity metrics82. Generally, the inferred networks reflected microbial 705 

diversity with the number of nodes and edges among microbiome members of a given food 706 

chain component. As expected from bacterial richness and diversity, number of nodes and 707 
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edges decreased from soil, sediment, water, plant to the lowest complexity network of the 708 

animal microbiome (Figures 4A, S8). We found that positive associations outnumbered 709 

negative associations when analysing networks from five different components (Figure S8). 710 

This did not change with chemical stress, which suggests that microbial community changes 711 

are primarily driven by conjointly enhancing biological fitness rather than by increasing 712 

competitive pressure. Chemical stress still changed several network parameters including the 713 

distribution of node degrees (Table S6). Node degree suggests how well a node is connected 714 

to other nodes, its decrease suggests loss in bacterial community cohesiveness and overall 715 

sparser network structure and instability. With the exception of the mouse microbiome, we 716 

observed that all networks became structurally sparser after applying chemical stressors 717 

(Figure 4). In addition, we noticed changes in abundance of hub nodes also called keystone 718 

taxa, which showed high degree connectivity to other nodes and are considered as important 719 

members of the community83. After chemical stress, the number of keystone taxa decreased 720 

in most components’ networks, except in soil where they increased. Such a decrease suggests 721 

losing contributions of important taxa, which can potentially decrease the community stability 722 

and affect health of the overall community. Such decrease in keystone taxa in response to 723 

chemical stress is in accord with previous studies investigating chemical fertilizers or 724 

pesticides84. Overall, our performed co-occurrence analysis revealed that network properties 725 

changed after the chemical treatments in all components and with all stresses. Networks 726 

became often sparse with loss of keystone taxa, which could negatively influence the 727 

resilience of each component and indicate dysbiosis.  728 

 729 

Conclusions 730 

The main motivation for this study was to answer whether different microbiomes cope with 731 

different stresses with common and/or differential stress responses. We can conclude from 732 

applying three representative chemical stressors to five microbiomes over a short time 733 

typically found along a human food chain, that each microbiome responded in its own way to 734 

stress treatments. We found stress and microbiome-specific shifts in community composition 735 

with some of the changing members pointing to possible impacts on food chain health. The 736 

shifts to different dysbiotic microbiomes, that we observed, are reminiscent of the Anna 737 

Karenina principle9. It refers to Leo Tolstoy’s dictum that "all happy families are alike; each 738 

unhappy family is unhappy in its own way" and applied to microbiomes, it states that dysbiotic 739 

individuals vary more in community composition than healthy individuals. In addition to specific 740 

responses on diversity and community composition, our work revealed that chemical stress 741 

commonly affected the complexity of bacterial co-occurrence. Most microbiome networks 742 

became sparser with fewer keystone taxa, while stress increased these properties in soil 743 

networks. Hence, chemical stressors induce microbiome alterations that may differentially 744 
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impact the stability and structure of the different microbiomes along a food chain. A goal of 745 

this study was to identify the Achilles’ heel of our experimental food chain. With reference to 746 

the influence score, which takes number and abundance changes of ASVs into account, the 747 

animal gut presented the most stress-sensitive microbiome in our experimental 748 

food. However, extending the Anna Karenina principle to the wider One Health context, implies 749 

that each component’s microbiome will have its own Achilles’ heel and therefore, 750 

investigations that particularly elucidate the contribution of microbiomes to the health of a 751 

system are needed. 752 

  753 
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