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Abstract

Along a food chain, microbiomes occur in each component and often contribute to the
functioning or the health of their host or environment. ‘One Health’ emphasizes the
connectivity of each component’s health. Chemical stress typically causes dysbiotic
microbiomes, but it remains unclear whether chemical stressors consistently affect the
microbiomes along food chain components. Here, we systematically challenged a model food
chain, including water, sediments, soil, plants, and animals, with three chemical stresses
consisting of arsenic (a toxic trace element), benzoxazinoids (an abundant bioactive plant
metabolites), and terbuthylazine (an herbicide typically found along a human food chain). The
analysis of 1,064 microbiome profiles for commonalities and differences in their stress
responses indicated that chemical stressors decreased microbiome diversity in soil and
animal, but not in the other microbiomes. In response to stress, all food chain communities
strongly shifted in their composition, generally becoming compositionally more similar to each
other. In addition, we observed stochastic effects in host-associated communities (plant,
animal). Dysbiotic microbiomes were characterized by different sets of bacteria, which
responded specifically to the three chemical stressors. Microbial co-occurrence patterns
significantly shifted with either decreased (water, sediment, plant, animal) or increased (soil)
network sparsity and numbers of keystone taxa following stress treatments. This suggested
major re-distribution of the roles that specific taxa may have, with the community stability of
plant and animal microbiomes being the most affected by chemical stresses. Overall, we
observed stress- and component-specific responses to chemical stressors in microbiomes

along the model food chain, which could have implications on food chain health.
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Introduction

The ‘One Health’ concept emphasizes the ecological relationships and interdependencies of
all components of a system to collectively determine the global health of that system'. Hence,
the health of our planet results from a connected health of us, plants, animals and the
environment. All system components host microbial communities or are colonized by
microbiomes that have important roles in the health of each system component. The One
Health concept was extended to include the full breadth of microbiomes?. It is thought that a
microbiome perspective strengthens the One Health concept due to i) the contribution of
microbiomes to the health of individual system components, ii) the importance of microbiome
processes for the transfer of energy, matter and chemicals between system components, and
ii) the vital services provided by microbiomes to overall system’s health. Furthermore,
dysbiotic microbiomes of humans®, plants®, animals” or the environment?® are often associated
with diseases or impaired ecosystem performance. A dysbiotic state can originate from
stressors that either induce deterministic, stochastic, or a mix of these two, effects on the
microbiome and thereby reduce the ability of the host or its microbiome to regulate community
composition®. What is not well studied in One Health context is whether stressors of a whole
system influence the microbiomes of the diverse components with commonalities and/or
disparities in their responses. Such information is crucial for estimating individual component
microbiomes' resilience against common disturbances in a One Health framework.

A wide range of common environmental and anthropogenic stressors including
chemicals like toxic trace elements'?, bioactive plant metabolites'’, and pesticides'? are known
to negatively affect the health of different system components. Such stresses can directly
impact the health of the exposed environment or organism, for instance by changing metabolic
rates, inhibiting enzymatic functions or indirectly via perturbating or throwing off balance the
microbiome’s composition. Research has traditionally focused on understanding the direct
stress effects on host or environmental physiology (toxic trace elements'3, plant metabolites,
and pesticides' %) as well as direct stress effects on microbiomes of individual system
components. For instance, water, soil, plant or animal associated microbiomes are perturbed
by stresses like toxic trace elements, plant metabolites, and pesticides'”-'°. However, the
indirect and microbiome-mediated contributions to connected system components, i.e. taking
the One Health perspective, have received much less attention. A major gap towards such
One Health understanding, is the lack of systematic studies where microbiomes of different
system components are challenged with the same stressors, at the same doses and with the
same exposure protocol. Such systematic work will allow to specifically answer fundamental
questions of a One Health framework, such as (i) whether microbiomes of diverse system
components can be perturbed with the same stress exposure protocol, (ii) if yes, how does

their stress sensitivity compares in direction or magnitude within and across components, and
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93  (iii) whether there are commonalities or differences in the microbiomes’ stress responses from
94  different system components?
95 To close this gap, we set up an idealized food chain system represented by water and
96 sediment, soil, plants and animals (Figure 1A). Our experimental food chain consisted of
97  environmental components (water, sediment and soil) with free-living microbial communities
98  of high diversity, of primary producers (plants, i.e. corn root microbiomes), and end-consumers
99 (animals, i.e. mouse gut microbiomes) with low-diversity host-associated microbiomes?°. For
100  systematic challenging of these different system components, we selected three chemical
101  stressors found along a food chain that are known to impact human and/or environmental
102  health: Arsenic (As) is a toxic trace element, Benzoxazinoids (Bx) are bioactive plant
103  metabolites, and terbuthylazine (Tb) is a potent herbicide.
104 The element As is ubiquitously found in many environments and functions as a
105  carcinogen for humans?'. Contamination by As presents a global catastrophe with around
106  1.5% of the world’s population suffering from As exposure through drinking water?%23, rice®* or
107  corn consumption?. Although high levels of naturally occurring As can be found in
108  groundwater and soils around the globe, it is most problematic in countries with dense
109  population and lack of infrastructure to detect and manage As contamination. As is known to
110  impact microbiomes in some of the tested system components?®?7, but its influence on diverse
111 microbiomes of a food chain is not known. We utilized inorganic AsV for this study as this is
112 the most abundant form of As found in the environment?.
113 Bx are probably the most relevant plant secondary metabolites in food chains. This is
114  because they are highly abundant in agroecosystems as they are secreted in large quantities
115  to soil by Poaceae plants (sweet grasses) that include the widely grown crops like corn, wheat
116 and rye?®. Secondary metabolites generally play vital roles in plant adaptation to the
117  environment®°. Bx are a group of highly bioactive multifunctional compounds that act as
118 feeding toxins against herbivores3', have antimicrobial activities against microbes3? and
119  improve plant nutrient acquisition33. Bx could have direct influence on health of diverse food
120  chain components including humans3¢. Bx were found to affect microbiomes as Bx-
121  conditioned soils mediated growth and defence effects on the following plant generation3s,
122  forwarding Bx as a chemical for One Health research. Whether Bx influence other
123 microbiomes than those of plants and soil is currently unknown. We choose the Bx 6-methoxy-
124  benzoxazolin-2-one (MBOA) for this study, because this compound is stable and abundantly
125  accumulates in soils®®.
126 Tb is a broad-spectrum herbicide from the chloro-s-triazine group, which is commonly
127  used for chemical weed control around the globe® and has been detected in different
128  environments®3°. More generally, pesticides comprising herbicides, insecticides, and

129  fungicides are not only used in agroecosystems, but also in other areas to protect humans
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130  from various pests and diseases. Besides their specific toxicity against weeds, pest insects
131  and pathogenic fungi, they also cause many negative health and environmental side-effects
132 on off-target organisms“°. Pesticides are associated with significant morbidities and mortalities
133 each year*'. They are also known to influence microbiomes but their relative impact on diverse
134  food chain microbiomes is not known#2. We included Tb in this study, because it is broadly
135 used, and because the compound and its degradation products have been found in surface
136  and groundwater® and accumulate in soils** and sediments®®, displaying long-term stability in
137  the environment*,

138 Finally, in large-scale experiments, we systematically challenged the microbiomes of
139  the different food chain components with As, Bx and Tb. For this, we developed specific setups
140  and application procedures for continuous exposure of the microbiome to the chemicals
141  (Figure S1). To assess their sensitivity to chemical perturbation, we exposed the microbiomes
142 to the same concentrations and sampled them following the same timeframe. The overall aim
143 of the experiments was to identify the microbiomes that are the most resistant, and conversely
144  those that are the most sensitive ones to the chemical stresses, i.e. to find the Achilles’ heel

145  of our experimental food chain.
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146  Materials and Methods

147

148  Experimental overview

149  We studied the components of our idealized food chain consisting of water, sediment, soil,
150 plant and animal in three large, parallelly executed experiments (Figure S1; termed the
151  ‘water/sediment’, the ‘soil/plant’ and the ‘animal’ experiments). We developed specific
152  application procedures to ensure that the microbiomes in the different components are
153  continuously exposed to the same chemical concentrations. In the water/sediment and
154  soil/plant experiments, we applied the chemicals in daily intervals to approximate continuous
155  exposure, whereas this was achieved through drinking water in the animal experiment.
156  Besides continuous exposure, the application procedures were conceived that the chemicals
157  reached 1x final concentrations of 10, 100 and 1,000 ug/L in each system component. In the
158 Supplementary Methods we provide the experimental details related to sources, setup,
159  chemical application procedures and sampling of the three experiments. After application of
160  the chemicals, we collected samples from each component for microbiome analysis at two
161  time points, 1 (d1) and 7 (d7) days post application.

162

163  Treatment solutions of the chemicals

164  We prepared the "treatment solutions" of the chemicals As (Sodium arsenate dibasic
165  heptahydrate, 298% purity; Sigma-Aldrich, Germany), Bx (6-methoxy-benzoxazolin-2-one
166 (MBOA), >98% purity; Sigma-Aldrich) and Tb (grade analytical grade; Pestanal, Germany)
167  with specific concentrations for the different experiments. The water/sediment experiments
168  needed highly concentrated treatment solutions (300x, to minimize dilution by the lake water
169  and its microbiome), while we prepared 3x and 1x treatment solutions for the soil/plant and
170  the animal experiments, respectively (Figure S$1). The treatment solutions of As and Bx were
171  prepared in water, which was sufficient as a buffer as the added compounds did not change
172 the pH of the solutions (data not shown). Because the animal experiment required ultrapure
173 surgical irrigation water (ERKF7114; Baxter, USA), we used this water as common source to
174  prepare all treatment solutions. Tb, however, was dissolved in pure ethanol (>98% purity,
175  Sigma-Aldrich, Germany) due to its insolubility in water. Ethanol was also added to control
176  treatment solution for Tb at final amounts of 0.3%.

177

178  DNA Extraction, 16S rRNA amplicon library preparation and sequencing

179  DNA was extracted using the DNeasy PowerSoil HTP 96 Kit from Qiagen (Hilden, Germany),
180 as recommended by the Earth Microbiome Project EMP?° following the manufacturer’s
181  protocol. Loading of the sample material to the DNA extraction plates was done as follows:

182  Water samples were pipetted directly on to plates (250 yL, well-homogenized by vortexing).
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183  Sediment samples were defrosted, briefly vortexed, centrifuged, and pipetted up and down for
184  homogenization of water and solid particles, then 250 uL was transferred into the extraction
185  plates. A sterile spatula was used to retrieve 230-250 mg of defrosted soil samples. Corn roots
186  were lyophilized for 48 h, and after grinding, 15 mg of fine ground powder was then used to
187 load the plate. The loading unit for mouse samples corresponded to one to two faecal pellets.
188  For loading the extraction plates, we processed the samples in batches by sample type to
189  avoid cross-contamination and because of the different handling units (weight, unit or volume).
190  Within batches, the sample groups (time point and treatment) were randomly positioned on
191 the plate. With this randomization scheme, we tackled the practical challenges (diverse input
192  materials, avoiding sample mix-up) without compromising scientifically rigorous treatment
193  comparisons (randomization of treatment groups). DNA was eluted in 50 pL (water, sediment),
194 75 uL (plant) or 100 uL (soil, animal) of C6 buffer of the kit (10 mM Tris-Cl, no EDTA) and
195  stored at -20°C until further use.

196 We then performed a bulk adjustment of DNA concentrations for the water, sediment,
197  soil, plant and animal samples as follows: From each sample type, we measured the DNA
198  concentrations of 20 random samples from different DNA extraction plates using Nanodrop
199  (Thermo Fischer, Waltham, USA). The average DNA concentration of a sample type was
200  taken to bulk-adjust all samples of the same sample type. PCR-ready concentrations were set
201 at 10 ng/uL (sediment, soil and plant samples) and 1 ng/uL (animal samples). DNA
202  concentrations of water extracts were <1 ng/uL and were used without further dilution. At this
203  step, samples were re-organized for amplification and assigned to 5 different sequencing
204  libraries (L1 to L5). Each library consisted of ~240 samples, with replicates of a treatment
205  group being present in at least two different sequencing libraries.

206 Bacterial 16S rRNA gene amplicon libraries were prepared using PCR primers,
207  reagents and cycling conditions as recommended by the EMP2°, according to our previous
208  study**: We barcoded the amplicons with the Access Array barcode system from Fluidigm in
209  atwo-step approach adapted from lllumina’s standard 16S profiling protocol. In the first step,
210  we performed target gene (16S rRNA, region V4) amplification using the PCR primers 515F
211 and 806R*4® coupled to CS1 and CS2 linker sequences (CS1-515F: 5'-
212 ACACTGACGACATGGTTCTACA-GTGYCAGCMGCCGCGGTAA-3'" and CS2-806R: 5'-
213 TACGGTAGCAGAGACTTGGTCT-GGACTACNVGGGTWTCTAAT-3") of the Access Array
214  barcode system, respectively. PCR reactions (20 uL total volume) were prepared in a UV-
215 irradiated PCR hood, and contained 0.8x Platinum Hot Start PCR Master Mix (Thermo Fisher),
216 0.2 yM of each primer, PCR-grade water and 3 pL of DNA template. After 3 min initial
217  denaturation at 94°C, we ran 25 PCR cycles (25 of the 35 cycles as suggested by EMP%; 45
218 s at 94°C, 60 s at 50°C and 90 s at 72°C) followed by 10 min final elongation at 72°C. We

219  performed gel electrophoresis with few samples, and the positive and negative controls for
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220  each PCR plate to confirm that the PCR has worked and was not contaminated. PCR products
221  were purified with self-made Solid Phase Reversible Immobilisation (SPRI) magnetic beads
222 (https://openwetware.org/wiki/SPRI_bead_mix).

223 In the second PCR step, we barcoded the individual samples with the Access Array
224 system consisting of 384 barcodes (BC). The PCR primers PE1-CS1-F and PE2-[BC]-CS2-R
225  contain the paired-end (PE) adapters required for lllumina sequencing and bind via the linker
226  sequences CS1 and CS2 to the PCR amplicons of the first step. Stocks (50 pL, 2 uM) of the
227 384 unique primer combinations were repeatedly utilized to prepare the 5 libraries L1 to L5.
228  PCR reactions were prepared in volumes of 25 uL with 0.8x Platinum Hot Start PCR Master
229  Mix (Thermo Fisher Scientific, Reinach, Switzerland), Access Array primers (0.4 uM), PCR-
230  grade water and 5 pL of the purified PCR product as template. After 3 min of initial denaturation
231 at94°C, weran 10 PCR cycles (25 cycles in step 1 + 10 cycles in step 2 correspond to the 35
232 cycles as suggested by EMP?%; 45 s at 94°C, 60 s at 60°C and 90 s at 72°C), followed by 10
233 min of final elongation at 72°C. Again, gel electrophoresis was performed with few samples,
234  and positive and negative controls for each PCR plate to confirm that the PCR has worked.
235 No DNA contamination was observed in the negative controls after two rounds of PCR
236  amplification. Amplicon DNA of the second PCR was purified with SPRI beads as described
237  above and quantified with NanoDrop 8000 (Thermo Fisher Scientific).

238 For equimolar pooling of the barcoded amplicons into their assigned library (L1 to L5),
239  we used a robotic liquid handling station (Brand, Wertheim, Germany). Pooled libraries were
240  well mixed and a subset was purified using the SPRI beads as described above. DNA
241  concentration and size of the purified library were then determined by Qubit 1.0 (Thermo
242 Fischer) and TapeStation (Agilent, Santa Clara, CA, USA) analyses. The final pooled libraries
243 were paired-end sequenced (2 x 300 cycles) in five runs on lllumina MiSeq at the NGS
244 platform of University of Bern (www.ngs.unibe.ch). The sequencing data is available from the
245  European Nucleotide Archive (http://www.ebi.ac.uk/ena) under the study accession
246  PRJEB72104.

247

248  Bioinformatic and statistical analyses

249  All code and metadata (experimental design, sample-to-barcode assignments) are available
250 on GitHub (https://github.com/wasimbt/Component-specific-responses-of-the-microbiome).
251 Demultiplexed reads without barcodes and adapters were received as output from the
252  sequencing centre. Primer sequences were removed by using Cutadapt*” (version 2.5). All
253  subsequent analyses were performed within the R environment*® (version 3.5.1). For data pre-
254  processing, we followed the DADA2* pipeline (version 1.10.1) by keeping the same
255  parameters for the five libraries, except for error rate estimation that was allowed to be library-

256  specific. Reads were trimmed from both ends based on quality profile, error rates were learned
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257  from the data using the parametric error model as implemented in DADA2. After denoising
258 and merging of forward and reverse reads, all five libraries were regrouped. Chimeric
259  sequences were removed from the dataset by following the ‘consensus’ method implemented
260 in DADA2. The final table thus consisted of number of occurrences of amplicon sequence
261 variants (ASVs; i.e. sequence groups differing by as little as one nucleotide) in each sample.
262  Taxonomy assignments of the ASVs were performed using the naive Bayesian classifier®
263  with the SILVA database®! (version v132, non-redundant). Species level assignment was done
264 by exact matching (100% identity) of ASVs with database sequences, as previously
265  recommended. Phyloseq®? (version 1.24.2) was used for further data processing. We removed
266  ASVs with less than 10 read counts from overall dataset. Furthermore, ASVs belonging to
267  chloroplast, mitochondria, and unassigned ASVs at phylum level were removed from the
268  dataset.

269

270 Alpha and beta diversity analyses: We investigated the effects of sample type (water,
271 sediment, soil, plant, animal), treatments (Control (Ctr), As, Bx, Tb), time point (0, 1, 7 days),
272  concentration (0, 10, 100, 1,000 upg/L), and interactions among these factors. First, we
273  analysed bacterial diversity for each sample using two different alpha diversity indices (hnumber
274  of observed species and Shannon) after rarefying the data to 8,100 sequences per sample
275  using Phyloseq®. To analyse the effects of these factors on alpha diversity, we performed
276  General Linear Modelling (GLM) by using the Ime4%3 package (version 1.1.30). As the samples
277  were pooled in 5 libraries and were sequenced in five sequencing runs, we also included
278  library identity" as explanatory factor in the model to account for potential technical
279  confounding. We performed Tukey’s Honest Significant Difference test (HSD) to compare
280  average effects between groups when overall multivariable model significance was observed.
281  Second, beta diversity analyses were calculated based on a Bray-Curtis dissimilarity matrix
282  after rarefying the data to 8,100 sequences per sample using Phyloseq®. The permutational
283  multivariate analysis of variance (PERMANOVA) was employed as implemented in the adonis
284  function of the vegan® package (version 2.5-2) to test the significance of the differences in
285  community composition with 999 permutations. For beta diversity metric, we similarly included
286  sample type, treatments, time point, concentration and interactions among these factors in the
287  model as explanatory variables. We also included “library identity” as potential confounding
288  factor in the model. We performed pairwise.adonis to compare groupings, similar to Tukey’s
289  HSD done on linear models. To visualize patterns of separation between different sample
290  groups, non-metric multidimensional scaling (NMDS; Phyloseq) plots were prepared based on
291  Bray-Curtis dissimilarity matrices. To assess the strength of treatment in each specific
292  component of the food chain, we performed constrained ordination (distance-based

293  redundancy analysis; dbRDA) by using the capscale function of the vegan®* package on Bray-
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294 Curtis dissimilarity matrices within each component. We employed ANOVA to assess the
295  significance of each component model.

296 In order to understand whether treatments reflect true shift in microbial community
297  composition or differential spread (dispersion) of data points from their group centroid, we
298  assessed the multivariate homogeneity of group dispersions by performing PERMDISP test
299  using the betadisper function of the vegan®* package on Bray-Curtis dissimilarity matrices. We
300 employed permutation (999) test with permutest function as implemented in vegan® to
301 analyse significance of grouping (treatment) for each component of the food chain.

302

303  Differential abundance analyses: In order to identify ASVs specifically influenced by a given
304 treatment, we employed a negative binomial model-based approach available in the DESeq25°
305 package (version 1.22.2), in which ASV relative abundances were compared for each
306 treatment vs. control group (Ctr-As, Ctr-Bx, Ctr-Tb) for the respective component. Only ASVs
307 remained significant (P<0.05) after Benjamini-Hochberg correction of Wald test were
308 considered as differently abundant ASVs. Here, we calculated an Influence Score (IS) for each
309 comparison, which considers both the number of affected ASVs and their relative change in
310 abundance, as consists in the cumulative log-fold changes for all ASVs significantly differing
311  for a given comparison (e.g. Ctr-As; Figure S6).

312

313  Network analyses: To infer the relationships among ASVs, we prepared networks for each
314  food chain component and their treatments by using Sparse Inverse Covariance Estimation
315  for Ecological Association Inference SPIEC-EASI®®. SPIEC-EASI is a statistical method for the
316 inference of ecological networks that relies on algorithms for sparse neighbourhood and
317 inverse covariance selection, and that applies data transformation and normalization, which
318 can better deal with compositional data. To prepare the networks, only ASVs present in control
319  groups were kept in treated groups for each component. Furthermore, ASVs containing fewer
320 than 100 reads from overall component dataset, present in less than 15% of the control
321 samples were removed prior to selecting control ASVs. Network inference used the
322  Meinshausen-Buhimann method for neighbourhood selection and the bounded StARS
323  approach with nlambda of 50 and 99 pulsar permutations. Node attributes, such as degree
324 distribution, betweenness centrality, transitivity, closeness centrality, were calculated using
325 the igraph®” package (version 1.3.2) with 10,000 iterations. We then performed the
326  Kolmogorov—Smirnov test to compare node attributes between control and treated groups.
327  Kolmogorov—Smirnov test compares the overall shape of the cumulative distribution of two
328  variables where the null hypothesis is that the variables derive from the same distribution. To
329  characterize the underlying network degree distribution type, we evaluated four distributions

330  namely, power-law, log normal, exponential and Poisson and tested goodness of fit of the

10


https://doi.org/10.1101/2024.04.20.590402
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.20.590402; this version posted April 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

331 distribution after 1,000 iterations, and we also compared the fitted distributions with each
332 other’s using t-test to detect the best fitting distribution(s). Finally, to detect hub nodes which
333  could represent keystone taxa, we calculated Kleinberg's hub centrality scores using the
334  hub_score function implemented in igraph®’. Nodes having hub score values of more than 0.7
335  were assigned as hub nodes across sample types.

336

337 Results

338 Microbiomes are distinct across components of a food chain

339 To assess the sensitivity of different food chain components to chemical perturbation, we
340 systematically exposed their microbiomes to As, Bx and Tb concentrations of 10, 100 and
341 1,000 pg/L and sampled them after same exposure times (Figure S1). Each food chain
342  component was also treated with buffer and these control microbiomes served as baseline for
343  healthy un-perturbed microbiomes. We first validated the quantities of As, Bx and Tb in the
344  water or treatment solutions, which we used to challenge the different food chain microbiomes.
345  The water of the water/sediment and animal experiments and the treatment solutions of the
346  soil/plant experiment contained the standardized 10-fold increments of stress chemicals at the
347  expected concentrations (Figure S$2). Following the systematic exposures, we collected
348 samples from each component at two time points, and thus characterized a total of 1,064
349  microbiomes originating from water (n= 133; Ctr-34, As-33, Bx-31, Tb-35), sediment (n= 144;
350  Ctr-36, As-36, Bx-36, Tb-36), soil (n= 266; Ctr-36, As-78, Bx-77, Tb-75), plants (n= 255; Ctr-
351 37, As-72, Bx-75, Tb-71) and animal (n= 266; Ctr-25, As-82, Bx-76, Tb-83). All samples were
352  subjected to high-throughput sequencing of the V4 region of the bacterial 16S ribosomal RNA
353 gene. We recovered on average 38709 (range 5437-116'475) high-quality, taxonomically
354  assigned reads per sample. Microbiome diversity differed markedly between the different food
355  chain components (Figure S4). Quantifying their effect size from PERMANOVA (based on
356 interpreting the R? of the model) revealed 71.8% based on the Bray-Curtis metric (Table S2).
357  The ‘naturally close’ microbiomes of water and sediment, as well as of soil and plant each
358 shared some abundant bacteria, whereas hardly any overlap existed between these
359  microbiomes and the distinct animal microbiomes (Figure 1B). The same was true when
360 inspecting all ASVs that were detected in this study (Figure 1C). Hence, it is unlikely that the
361 stress treatments will affect the different bacteria of the food chain components in similar
362 manner. Thus, we further analysed the stress-induced impact on the microbiomes of the
363  different components separately, at the levels of diversity patterns, community composition
364 and interaction between members of the community.

365
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368 Figure 1. A) Depiction of representative components of a model food chain used in this study.
369 B) Heatmap of abundant ASVs (>0.01% mean relative abundance in the dataset) across
370  components (right) showing little overlap among components except between related
371 components (water and sediment, soil and plant), arranged according to hierarchical cluster
372  tree. C) Venn diagram showing unique and shared ASVs among components.

373

374  Chemical stressors mainly affect diversity of soil and animal microbiomes

375  We first investigated to which degree the chemical stressors perturbed alpha diversity in food
376  chain microbiomes. Sediment and soil harboured the richest (number of observed ASVs;
377  Figure 2A) and most diverse (Shannon; Figure S5A) microbiomes followed by water and
378  plant microbiomes, while animal microbiomes were lowest in both metrics. We used General
379 Linear Modelling (GLM) to statistically assess and quantify the effects of the applied stressors
380 (As, Bx, Tb) on bacterial richness when compared to un-perturbed conditions (Table S3).
381 Richness was most strongly (interpreting the sums of squares of the model as effect size)
382  differing between sample type, followed by time point, concentration and type of chemical
383 treatment, while accounting for technical variation due to sequencing library preparation (all
384  P<0.001). Albeit of lower effect size, many factor interactions including chemical treatment
385 and concentrations were also significant. Significant differences on richness were observed
386  between control and treatment groups for soil microbiomes, where chemical stressors reduced
387  richness (Figure 2B). No chemical stressor-effect on richness was found in water, sediment,

388 plant and animal microbiomes. Pairwise effects of time point and concentration were not
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389  significant due to lack of statistical power across all implied treatment levels. Similar results
390 were obtained analysing Shannon diversity, except that Th-mediated stress also increased
391 diversity in the water, plant and animal microbiomes (Figure S5B). Overall, alpha diversity
392  decreased in soil microbiomes by the three chemical stressors, while only Tb but not Bx and
393  As affected Shannon diversity in most of the other food chain microbiomes.
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396 Figure 2. Observed ASV richness in control (A) and their relative changes in stress-induced
397 treatments (B). In A) the jittered dots represent individual values of samples, while error bars
398 indicate standard deviation per treatment. In B), differences to the means for each treatment
399  (As, Bx, Tb) relative to the mean of their respective controls, which are represented as grey
400 lines, are represented as barplots. The graphs are annotated with the Tukey HSD differences
401 indicated by different letters (P<0.05). The same compact letter display is used as for the left
402  panel. C) The first two significant axes of constrained ordination (dbRDA) are displayed for
403  each component, with sample centroids per treatment indicated as different colours (see
404 legend). Percentages of explained variance by each principal axis are indicated in square
405  brackets.

406

407 Chemical stressors alter microbiome composition to different levels
408  Next, we investigated whether and if to which magnitude the composition (beta diversity) of

409 food chain microbiomes are perturbed by the chemical stressors. Besides the major
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410  differences between the food chain components (Figure S4, Table S2), much smaller, yet
411  significant effects sizes were detected for time point, chemical treatment and concentration
412  (all P=0.001). Similar to the alpha diversity analyses, most factor interactions were significant,
413  but of very low effect sizes (~1%). Post-hoc pairwise PERMANOVAs performed on the Bray-
414  Curtis metrics between treatments revealed significant stressors-dependent decreases in beta
415  diversity in water, soil and plant microbiomes (Figure S6, Table S4). Average beta diversity
416  increased in animal microbiomes with all three stressors, while it increased after As and Tb
417  treatments in sediment microbiomes but decreased after Bx treatment. We utilized
418  constrained ordination of the Bray-Curtis metrics to visualize the chemical stressors-induced
419  shifts in microbiome composition in comparison to the control groups (Figure 2C) and noted
420  that performed models with treatment as an explanatory variable was significant (all P<0.01)
421  in each component (Table S5). The ordinations further indicated that treatments altogether
422  affected microbiome composition to different levels, with stressors impacts larger for the
423  microbiomes in water (29.3% of explained variation; both axes) and plant (17.4%) than for
424  those in sediment (9.8%), soil (9.4%), or animal (6.8%). The homogeneity of group dispersions
425  tests showed significant dispersions (PERMDISP) in the low diversity microbiomes of plant
426  (P=0.048) and animal (P=0.001), but not in the high diversity microbiomes of water (P=0.283),
427  sediment (P=0.158), and soil (P=0.137) (Table S6). Overall, the three chemical stressors
428  perturbed community composition of all tested food chain microbiomes. They generally
429  caused the microbiomes to become more similar to each other, hence reduced beta diversity,
430  with the exception of the animal microbiome, where the stress-perturbed microbiomes became
431 more divergent than the control microbiomes. Furthermore, the low diversity microbiomes
432  showed significant dispersion effects compared to high diversity microbial components of the
433  food chain.

434

435 Chemical stressors are associated with differential abundance of specific bacteria

436  We identified for each component the ASVs that differed significantly in mean relative
437  abundance due to the chemical stressor treatments (i.e., contrasts between Ctr-As, Ctr-Bx,
438  Ctr-Tbh; P<0.05) using negative binomial-based Wald tests (Database S$1). Overall, the
439  number of these unique, stressor-sensitive ASVs ranged from 1 (plant), 14 (water) 51 (soil),
440 65 (animal) up to 88 ASVs in the sediment microbiomes (Figure 3A). Consistent with the little
441  overlap between the microbiomes (Figure 1), most stressor-sensitive ASVs were unique to a
442  food chain microbiome, except one ASV that was common between water and sediment
443  components. Within food chain components, 15/51 out of significant, unique ASVs in soil and
444 9/65 ASVs in animal microbiomes were commonly influenced by all three stressors while most
445  other stressor-sensitive ASVs changed in abundance only after one and a few ASVs after two

446  treatments. Stressor-sensitive ASVs rather decreased in abundance in water microbiomes,
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while in soil and animal microbiomes they mostly increased at the expense of few strongly
decreasing ASVs (Figures 3B, S7).

We calculated an Influence Score (IS) to compare the impacts on differentially
abundant ASVs across treatments and component. For a specific contrast (e.g., Ctr-As), the
score considers both the number of affected ASVs and their log-fold change (see methods).
Per food chain component, the highest average IS (av.IS) was noted for animal followed by
sediment, soil, water and plant microbiomes (Figure 3B). Comparing the individual chemical
stresses, the Bx treatment had higher average IS compared to As and Tb treatments. The IS
were microbiome- and treatment-specific with the highest IS recorded for the Bx treatment on
the animal microbiome, and lowest for the Tb and Bx treatments of the plant microbiome.

Overall, the individual bacteria of the animal microbiome were generally most sensitive to the
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Figure 3. (A) Summaries of the stress-sensitive ASVs in the different microbiomes to the total
number of stress-sensitive ASVs (circles scaled to their numbers) per component. The lower
Venns detail the stress-sensitive ASVs by stress treatments As, Bx or Tb. (B) The MA plots
display the log2-fold change of all ASVs and their log-mean abundance plotted on y- and x-
axes, respectively, for each stress in each food chain component. ASVs being differentially
abundant between control and treatments (As, Bx, Tb) were determined by DESeq2 analysis
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466  (Benjamini-Hochberg correction, P<0.05). Colours refer to enriched ASVs in control (blue) or
467  treatment (red) groups for all comparisons. Influence Score (IS) for each comparison was
468  shown representing both the number of affected ASVs (P<0.05) and their relative change in
469  abundance for a given comparison (see method sections and Figure S7 for details). Average
470 IS (av.IS) are indicated for each component.

471

472  Diverse bacterial taxa respond to the different chemical stressors

473 Next, we inspected the taxonomies of the stressor-sensitive ASVs in all food chain
474  components. In the water microbiome, we found one and 13 ASVs specifically responding to
475  As and Tb treatments, respectively (Figures 3, S7). Most of the ASVs that decreased by the
476  Tb treatment belonged to Methylomonaceae (n = 3 ASVs) and Methylophilaceae (n =4 ASVs)
477  families. For sediment, we found two, 85 and one ASVs significantly changing with As, Bx and
478  Tb treatments, respectively (Figures 3, S7). Of the Bx treatment, many shifting ASVs
479  belonged to Syntrophaceae (n =7 ASVs), Bacteroidetes (n =6 ASVs), Anaerolineaceae (n=5
480  ASVs) and Lentimicrobiaceae (n=5 ASVs) families. For soil, we observed 26, 49, 17 ASVs
481  significantly differing in abundance after As, Bx and Tb treatments, respectively (Figures 3,
482  87). In all three comparisons, most ASVs showed increase in abundance and few decreased.
483 The increase was mainly ASVs from the Flavobacteriaceae family, specifically from
484  Flavobacter genus (As, n=7 ASVs; Bx, n=18 ASVs; Tb, n=7 ASVs), of which 6 ASVs
485  commonly increased in all comparisons. ASVs from Burkholderiaceae (As, n=4 ASVs; Bx,
486 n=5 ASVs; Tb, n=2 ASVs) and Xanthomonadaceae (As, n=3 ASVs; Bx, n=4 ASVs; Tb,
487 n=1 ASV) also increased in all comparisons. One ASV from the Latescibacteria generally
488  decreased in abundance in all treated groups. In the plant microbiome, only one abundant
489  ASV belonging to the Duganella genus decreased in abundance upon As treatment, whereas
490  no other ASV changed in abundance due to Bx and Tb treatments (Figure 3). Finally, in the
491 animal microbiome, we observed 20, 27, 46 ASVs significantly differing in abundance after
492  As, Bx and Tb treatments, respectively (Figures 3, S7). Most ASVs increased in relative
493  abundance after treatment. This increase was associated mainly with ASVs from
494  Lachnospiraceae (As, n=11 ASVs; Bx, n=13 ASVs; Tb, n=18 ASVs), four of which were
495 common in all treatment groups and belonged to Lachnoclostridium, Shuttleworthia,
496  Acetatifactor and an Lachnospiraceae bacterium. ASVs from Ruminococcaceae (As, n=3
497  ASVs; Bx,n=4 ASVs; Tb, n =12 ASVs) and Muribaculaceae (As, n =2 ASVs; Bx, n =4 ASVs;
498 Tb, n=6 ASVs) families also showed shifts in treatment groups. In general, the stressor-
499  sensitive ASVs of the different microbiomes belonged to diverse taxonomic groups. In few
500 cases, multiple ASVs of the same families had the same responses like Methylomonaceae
501 and Methylophilaceae decreasing by the Tb treatment in water, or Flavobacteriaceae,
502  Burkholderiaceae and Xanthomonadaceae increasing in soil in response to all 3 stresses or a

503  consistent increase of Lachnospiraceae in the animal microbiome.
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504

505 Chemical stress disturbs bacterial co-occurrence networks

506  Co-occurrence networks were generated for each treatment and all microbiomes to
507  investigate whether ASV co-occurrence may change due to a chemical stressor. In general,
508 number of nodes and edges decreased from soil, sediment, water, plant to the lowest
509  complexity network of the animal microbiome (Figures 4A, S8). The average edges per node
510  were also the highest for soil, followed by sediment, water, plant, and the lowest for animal
511 networks (Table S7). Positive, rather than negative associations were more prevalent in all
512  networks (Figure S8). Several parameters of network complexity, such as node degree,
513  betweenness centrality, closeness centrality, transitivity, were significantly different between
514  control versus treatment groups (Table S7), and presented component-specific trends: For
515 example, average node degrees decreased in most microbiomes after chemical treatments
516 leading to sparse networks except for animal and sediment, where node degrees increased
517 in the treated groups (Figure 4B; Table S7). We then examined the shapes, i.e. the
518 distributions of the network’s node degrees and tested whether they were altered by the
519  chemical treatments. From the evaluated different distribution types (power law, log normal,
520  exponential and Poisson), the low complexity networks of animal and plant generally fitted
521  best to a log-normal distribution while none of the tested data distribution types fitted to the
522 high-complexity networks of water, sediment and soil (Table S7). However, no noticeable
523  differences in degree distribution shapes were found after chemical treatments (Kolmogorov-
524  Smirnov tests at P<0.05; Figure S9). Microbiome networks can also be used to detect hub
525 nodes, which represent the most connected and possibly influential members of a given
526  network. Based on Kleinberg's hub centrality scores®*, few hubs were observed in the lower
527  complexity animal and plant networks, whereas higher numbers of hubs were observed the
528  higher diversity components water, sediment and soil (Figure 4, Table S7). Chemical
529  stressors consistently decreased the numbers of hub nodes for animal, plant and sediment
530 components. In the soil microbiomes, however, the number of hub nodes increased in all
531 treatment compared to control networks. For water, As treatment increased the number of
532 hubs, while Bx and Tb treated microbiome showed lower numbers of hubs than the controls.
533  Overall, chemical stress decreased network complexity for most microbiomes (water,
534  sediment, soil and plant) except for the animal microbiomes where network complexity
535 increased.

536
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539  Figure 4. Co-occurrence network analysis. (A) Microbial association networks based on
540  Meinshausen-Buhimann method in SPIEC-EASI analysis for control versus treatments for all
541  components. Nodes represent different ASVs, with blue colour nodes indicating hub nodes
542 that are more connected to other nodes in the network (Kleinberg's hub centrality scores >0.7).
543  Blue edges indicate positive associations between ASVs, while red edges indicate negative
544  associations. (B) The dot plots display the node degree’s (humber of edges per node) of each
545  ASV within the network as a function of treatment for each sample type. Differences in mean
546  degrees for each chemical treatment vs. control were all significant (P<0.001) in each
547  component based on 10,000 bootstrap replicates of the underlying network properties (Table
548  S7).

549

550

551 Discussion

552 Microbes - whether mutualistic, commensal or pathogenic - have important roles in the health
553  of a system as they are omnipresent with different communities in the different system
554  components. A major gap towards a One Health understanding of microbiomes in a multi-
555 component system is how sensitive or resistant different microbiomes are to different stresses.
556  Are there commonalities and/or differences in the stress responses of different microbiomes
557  to different stresses? To address this question, we systematically exposed different microbial
558  communities of a multi-component system to three distinct chemical stressors at the same

559  concentrations and we then analysed the microbiomes after the same exposure time. The
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560 system was an idealized food chain composed of water, sediment, soil, plants and animal
561  microbiomes (Figure 1A). The three chemical stressors, i.e., the toxic trace element As, the
562  Dbioactive plant metabolite Bx and the herbicide Tb were chosen because they can negatively
563  impact the health of individual food chain components (As'3, Bx'4% and Tb'5'¢) and/or their
564  microbiome'-1°. Overall, we found that each component’s microbiome responded specifically
565  to the different tested chemical stressors. Below we discuss various microbiome metrics to
566  answer the main question of this study — commonalities and differences in stress responses
567  of different microbiomes to different stresses — with the goal to identify the Achilles’ heel (i.e.,
568 the most stress-sensitive microbiome), as well as the most stress-resistant microbiome in our
569  experimental food chain.

570

571  No common stress responses of different microbiomes in their alpha diversity

572  We first discuss how the chemical stresses impacted the alpha diversity within and across the
573  microbiomes of the experimental food chain. We confirm that free-living microbial communities
574  (i.e., soil, sediment) have higher diversity and higher species richness than host-associated
575  communities (i.e., plant roots, animal guts; Figures 2A, S5A), which has been shown earlier
576 2044 The effects on alpha diversity by the three chemical stressors were not linked to whether
577  communities have high or low levels of richness or diversity. The three applied chemical
578  stressors reduced bacterial richness (Figure 2B) and Shannon diversity (Figure S5B) in soil
579  but not in the other food chain microbiomes. This consistent decrease in soil bacterial alpha
580  diversity by chemical stress is consistent with earlier work investigating the effects of individual
581  chemical stressors on the soil microbiome’9:32:3559.60 Mechanistically, one could imagine that
582  many or abundant bacteria, which tolerate and/or benefit from the chemical stressors, that
583  they increase in abundance?® and that then leads to a decrease in overall diversity. The
584  observed fold change in ASV abundances supports this idea (Figure 3B).

585 We further noticed that while As and Bx did not have any effects on alpha diversity,
586  Tb-mediated stress increased Shannon diversity in the low diversity water, plant and animal
587  microbiomes (Figure S5B). For such stress-specific changes, it could be postulated that some
588 abundant taxa may be specifically susceptible to the compounds present in the chemical
589 treatments and therefore, they decrease in abundance, what then allows other bacteria to
590 proliferate increase overall diversity. Support for this postulation is seen in Figure 3B, where
591  particularly the abundant bacteria were decreasing in abundance in the water and animal
592  microbiomes. Finally, alpha diversity of the sediment microbiome remained fully unaffected
593  (Figures 2B, S5B). One possible explanation that the chemical stressors did not affect these
594  microbiomes could be that our study was limited to a duration of one week. One week may
595 have been too short for slow metabolizing bacterial communities, such as those in

596  sediments®’, to result in detectable changes in alpha diversity. Regarding the main question
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597  of this study, i.e., how the chemical stresses compare in their impacts within and across the
598  food chain microbiomes, we can conclude that stress effects on microbiome’s alpha diversity
599  were both food chain component and chemical stress dependent. In other words, we did not
600 find commonalities in the microbiomes’ stress responses from different food chain
601  components.

602

603 Food chain microbiomes responded deterministically to chemical stress responses
604 and when host-associated combined with stochastic effects

605 Second, we reflect on the chemical stress impacts on community composition (i.e., beta
606  diversity) that we found both, within and across the microbiomes of the experimental food
607  chain. Consistent with alpha diversity, we found a strong "component" effect in beta diversity
608 (Figure S4). This is expected as each component harbours compositionally different sets of
609 bacteria and in different proportions?%62. In general, the three applied chemical stressors
610 decreased average beta diversity of water, soil and plant microbiomes, while it increased in
611 the mouse microbiomes (Figure S$6). Minor changes were found in the sediment microbiomes,
612  where it mildly increased or decreased according to treatment type. Individual studies of
613  individual components (water®’, sediments®3, soils'®, plants®® and animals?6) may have
614  suggested such heterogeneous changes in beta diversity in response to different stressors.
615 Here, by comparing three stressors on five microbial communities, we demonstrate that the
616 same stressors, in terms of chemical quality and quantity, have differential influence on
617  different microbiomes. This systematic examination allows now to conclude whether stressors
618 induced either deterministic, stochastic or a combination of these effects on microbiome
619 composition. With deterministic effects, all microbiome members shift to new composition
620  states without any dispersion effect (statistically: PERMANOVA and PERMDISP tests would
621 be significant and nonsignificant, respectively). In contrast, with stochastic effects all
622  microbiome members randomly disperse from their original composition state (PERMANOVA:
623  nonsignificant; PERMDISP: significant). Third, there could be a combination of deterministic
624  and stochastic effects where only some microbes move to a new community composition
625  state, while others remain (PERMANOVA: significant; PERMDISP: significant). In conclusion,
626  for the three chemical stressors we found deterministic changes in water, sediment and soil
627  microbiomes and in plant and animal microbiomes, the detected deterministic changes were
628  combined with stochastic effects in dispersion (Tables S4, S5).

629 A caveat for this conclusion is that deterministic and stochastic effects can vary with
630 time and stress strengths: For instance, mild stress can lead to an increase, but severe stress
631 leads to a drastic reduction in beta diversity compared to that of healthy subjects®, as also
632 shown here for most microbiomes of the experimental food chain. However, we could not

633  evaluate the effects of chemical concentrations as well as of time point due to a statistical
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634 limitation (PERMDISP does not allow interaction terms) and due to lack of statistical power to
635 resolve the significance of each pair of combined treatment levels. Our experiment was
636 designed to systematically compare all components along the food chain with different
637 chemical stressors and allowed to highlight that any stressor effect on a component
638  microbiome could not be generalized to other microbiomes of the food chain. Future work is
639 needed to reveal fine-grained differences of combinations of chemical concentrations and
640 temporal changes. Also host effects on corn roots or mouse guts should be accounted in such
641 interactions. This research would aim to understand how the microbiome evolves over time,
642  especially in terms of the resilience and resistance of microbial communities following initial
643  dysbiosis induced by different chemical concentrations.

644

645  Stress-specific microbiome changes may result in health effects

646  Because the microbiomes of our experimental food chain do not share much overlap in
647  bacterial species (Figure 1B, 1C), it is of little use to discuss taxonomic commonalities and
648  disparities of the microbiome members that responded to the different stressors. Instead, we
649  explored whether the taxonomic information of the stress-sensitive ASVs in a given
650  microbiome, may be indicative for eventual health effects on the food chain component. For
651  this we focused on the major stress-sensitive ASVs in each microbiome. Only one ASV in
652  plant and few stressor-sensitive ASVs in the water microbiomes were detected, while several
653  stressor-responsive ones were found in sediment, soil and animal microbiomes (Figure 3A).
654  With the exception of a single ASV after As stress, no changes were observed in the corn root
655  microbiomes after the stress treatments. Albeit negative health effects had been described for
656  plants?®, this finding may indicate that the root microbiome may be relatively insensitive or
657  slow to stress perturbation compared to the other components. In the water microbiome, ASVs
658  of the Methylomonaceae and Methylophilaceae mainly decreased in abundance (Figures 3,
659  S87). Members of this family are responsible for methane oxidation in lakes and are important
660 members of lake microbiome. Thus, their decrease in after Tb treatment could indicate a
661  disruption of normal methane cycling in the water microbiome®® and may point to a negative
662  health effect. The major effect on the sediment microbiome was observed in response to the
663  Bx treatments with several shifting ASVs belonging to the Syntrophaceae, Bacteroidetes,
664  Anaerolineaceae and Lentimicrobiaceae (Figures 3, S7). Members of these families are
665 abundant in sediments and are often associated with bioremediation, organic matter
666  decomposition and acetate oxidation processes®®-6%. However, future experiments are needed
667  to testif their change in abundance affects sediment health.

668 For the soil microbiome, the majority of ASVs responded with an increase in relative
669  abundance, particularly after As and Bx treatments and several of these ASVs were members

670  of Flavobacteriaceae, Burkholderiaceae and Xanthomonadaceae families (Figures 3, S7).
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671  Members of the Flavobacteriaceae are dominant in soil and marine microbiomes, but are also
672  found in association with plant roots. Specifically, the genus Flavobacter is specialized in
673 uptake and decomposition of organic matter due to its capacity to hydrolyse organic
674  polymers’®’" and therefore, their wide biotechnological use in biotransformation, wastewater
675 treatment and bioremediations’'. Similarly, members of Burkholderiaceae, specifically the
676  Massilia genus can degrade herbicides, metabolize aromatic hydrocarbons and are resistant
677  to metals’274, thus their increase in relative abundance after the stress treatment. Members
678  of the Xanthomonadaceae, mainly Lysobacter bacteria possess antimicrobial and antifungal
679  properties, secret many bioactive compounds, are resistant to arsenite, and function in
680  bioremediation of hydrocarbon polluted soils”. Similar as for sediments, the shifts of the
681 bacteria in response to the chemical treatments, are consistent with metabolic traits, but
682  whether their change in abundance in the microbiome affects soil health remains to be
683  experimentally assessed.

684 The major effect observed in the animal microbiomes was that ASVs from
685 Lachnospiraceae, Ruminococcaceae and Muribaculaceae increased after the stressor
686 treatments (Figures 3, S7). Lachnospiraceae and Ruminococcaceae are two commensal
687  families specialized in the degradation of complex plant material, but they may also provide
688  protection against enteric infections in the human gut. Some Ruminococcaceae and
689  Lachnospiraceae are butyrate producers, an important source of energy for gut epithelial cells,
690 and they support humans to maintain epithelial barrier integrity and thereby, prevent
691 diarrhea’®”. Increase of both of these families after exposure of humans to toxic trace
692  elements and their beneficial roles in the gut health was found earlier’®7°. The Muribaculaceae
693  family commonly occurs in animals with high abundance in rodents and provide several
694  important functions to the host®. Interestingly, members of Muribaculaceae were found to be
695 associated with enhanced longevity in mouse®'. Hence, the taxonomic information of the
696  stress-sensitive ASVs clearly point to health effects on the animal host.

697 Taken together, although some of the stressor-specific influences on the different
698  microbiomes indicate individual health effects, a next step is now to compare systematically
699 the health effects, both within and across the components of the experimental food chain.
700

701  Chemically stressed microbiomes become structurally sparser

702 Finally, addressing the main question of this study — commonalities and differences in
703  microbiome’s responses to different stresses - we specifically investigated the stress-induced
704  changes in network properties, as these can reveal hidden patterns in the communities usually
705  not captured by diversity metrics®2. Generally, the inferred networks reflected microbial
706  diversity with the number of nodes and edges among microbiome members of a given food

707  chain component. As expected from bacterial richness and diversity, number of nodes and
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708  edges decreased from soil, sediment, water, plant to the lowest complexity network of the
709  animal microbiome (Figures 4A, S8). We found that positive associations outnumbered
710  negative associations when analysing networks from five different components (Figure S8).
711  This did not change with chemical stress, which suggests that microbial community changes
712 are primarily driven by conjointly enhancing biological fitness rather than by increasing
713 competitive pressure. Chemical stress still changed several network parameters including the
714 distribution of node degrees (Table S6). Node degree suggests how well a node is connected
715  to other nodes, its decrease suggests loss in bacterial community cohesiveness and overall
716  sparser network structure and instability. With the exception of the mouse microbiome, we
717  observed that all networks became structurally sparser after applying chemical stressors
718  (Figure 4). In addition, we noticed changes in abundance of hub nodes also called keystone
719  taxa, which showed high degree connectivity to other nodes and are considered as important
720  members of the community®. After chemical stress, the number of keystone taxa decreased
721  inmost components’ networks, except in soil where they increased. Such a decrease suggests
722 losing contributions of important taxa, which can potentially decrease the community stability
723  and affect health of the overall community. Such decrease in keystone taxa in response to
724  chemical stress is in accord with previous studies investigating chemical fertilizers or
725  pesticides®. Overall, our performed co-occurrence analysis revealed that network properties
726  changed after the chemical treatments in all components and with all stresses. Networks
727  became often sparse with loss of keystone taxa, which could negatively influence the
728  resilience of each component and indicate dysbiosis.

729

730  Conclusions

731  The main motivation for this study was to answer whether different microbiomes cope with
732  different stresses with common and/or differential stress responses. We can conclude from
733 applying three representative chemical stressors to five microbiomes over a short time
734  typically found along a human food chain, that each microbiome responded in its own way to
735  stress treatments. We found stress and microbiome-specific shifts in community composition
736  with some of the changing members pointing to possible impacts on food chain health. The
737  shifts to different dysbiotic microbiomes, that we observed, are reminiscent of the Anna
738  Karenina principle®. It refers to Leo Tolstoy’s dictum that "all happy families are alike; each
739  unhappy family is unhappy in its own way" and applied to microbiomes, it states that dysbiotic
740  individuals vary more in community composition than healthy individuals. In addition to specific
741  responses on diversity and community composition, our work revealed that chemical stress
742 commonly affected the complexity of bacterial co-occurrence. Most microbiome networks
743  became sparser with fewer keystone taxa, while stress increased these properties in soil

744  networks. Hence, chemical stressors induce microbiome alterations that may differentially
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745  impact the stability and structure of the different microbiomes along a food chain. A goal of
746  this study was to identify the Achilles’ heel of our experimental food chain. With reference to
747  the influence score, which takes number and abundance changes of ASVs into account, the
748  animal gut presented the most stress-sensitive microbiome in our experimental
749  food. However, extending the Anna Karenina principle to the wider One Health context, implies
750 that each component's microbiome will have its own Achilles’ heel and therefore,
751  investigations that particularly elucidate the contribution of microbiomes to the health of a
752  system are needed.

753
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