

Structures of influenza A and B replication complexes explain avian to human host adaption and reveal a role of ANP32 as an electrostatic chaperone for the apo-polymerase.

Benoit Arragain¹, Tim Krischuns², Martin Pelosse¹, Petra Drncova¹, Martin Blackledge³,
Nadia Naffakh² and Stephen Cusack^{1*}

¹European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France

10 ²RNA Biology of Influenza Virus, Institut Pasteur, Université Paris Cité, CNRS UMR 3569,
11 Paris, France

12 ³Institut de Biologie Structurale, Université Grenoble-Alpes-CEA-CNRS UMR5075, 38000
13 Grenoble, France

14
15 *Corresponding author and lead contact: Stephen Cusack, European Molecular Biology
16 Laboratory, Grenoble Cedex 9, France. Tel. (33)476207238. Email: cusack@embl.fr

19 Preprint April 2024.

21 **Abstract**

22 Replication of influenza viral RNA depends on at least two viral polymerases, a parental
23 replicase and an encapsidase, and cellular factor ANP32. ANP32 comprises an LRR domain
24 and a long C-terminal low complexity acidic region (LCAR). Here we show that ANP32 is
25 recruited to the replication complex (replicase-ANP32-encapsidase) by first acting as an
26 electrostatic chaperone to stabilise the encapsidase moiety within apo-polymerase symmetric
27 dimers that are distinct for influenza A and B polymerases. The encapsidase, with ANP32, then
28 forms an asymmetric complex with the replicase. Cryo-EM structures of the influenza A and
29 B replication complexes give new insight into the mutations known to adapt avian strain
30 polymerases to use the distinct ANP32 in mammalian cells. The cryo-EM map of the FluPolB
31 complex shows extra density attributable to the ANP32 LCAR wrapping around and stabilising
32 the apo-encapsidase conformation. These results suggest a functional requirement for three
33 polymerases for replication.

34

35

36

37 **Keywords:** Influenza virus; negative-strand RNA virus; virus-host interactions; virus-host
38 adaptation; acidic nuclear protein 32 (ANP32); chaperone; RNA-dependent RNA polymerase;
39 RNA synthesis; replication; electron cryo-microscopy; atomic structure; mass photometry

40

41 **Introduction**

42 Influenza polymerase (FluPol) uses the viral genomic RNA (vRNA) as template to perform
43 synthesis of either capped and polyadenylated viral mRNA (transcription) or unmodified
44 progeny genome copies (replication) in the nucleus of the infected cell (Wandzik et al., 2021;
45 Zhu et al., 2023). The functional context for both processes is the viral ribonucleoprotein
46 complex (RNP), a flexible supercoiled rod-shaped particle, in which the vRNA is packaged by
47 multiple copies of the viral nucleoprotein (NP) with one FluPol bound to the conserved 3' and
48 5' ends of the vRNA. Both processes require FluPol to recruit essential host factors. For
49 transcription, FluPol binds to cellular RNA polymerase II (Pol II) to gain access to nascent,
50 capped transcripts from which capped transcription primers are excised, a process known as
51 cap-snatching (Krischuns et al., 2021; Lukarska et al., 2017). In particular, FluPol binding to
52 the serine 5 phosphorylated (pS5) C-terminal domain (CTD) of Pol II is conserved amongst
53 influenza A, B and C polymerases although the binding sites on FluPol are divergent
54 (Krischuns et al., 2022; Lukarska et al., 2017; Serna Martin et al., 2018). It has been recently
55 proposed that the CTD may serve as a platform for both transcription and replication
56 (Krischuns et al., 2024), but additionally for replication, the highly conserved acidic nuclear
57 protein 32 (ANP32) is an obligatory host factor (Long et al., 2016; Sugiyama et al., 2015).
58 ANP32 comprises a folded, N-terminal leucine-rich repeat (LRR) domain followed by a Glu-,
59 Asp-rich intrinsically disordered region known as the low complexity acidic region (LCAR).
60 ANP32 proteins have multiple cellular functions, notably as histone chaperones (Yu et al.,
61 2022). Of the three functional ANP32 isoforms in human cells, hANP32A and hANP32B
62 support human adapted influenza A and B virus replication (Long et al., 2019; Park et al., 2020;
63 Zhang et al., 2019; Zhang et al., 2020), but not hANP32E (Sheppard et al., 2023). ANP32 is
64 required for both vRNA to cRNA and cRNA to vRNA replication (Nilsson-Payant et al., 2022;
65 Swann et al., 2023). It is thought that ANP32 plays at least two mechanistic roles. First, it

66 stabilises the formation of an asymmetric FluPol dimer comprising a replicase, which is part
67 of an RNP and synthesises the genome copy, and an encapsidase, a newly synthesised apo-
68 FluPol, which binds the 5' end of the nascent replicate to nucleate formation of a progeny RNP.
69 Second, ANP32 is proposed to recruit successive NPs via a direct interaction between the
70 LCAR and NP thus facilitating co-replicational packaging of product RNA into a progeny RNP
71 (Camacho-Zarco et al., 2023; Wang et al., 2022). Extensive biochemical and mutagenesis
72 studies have shown that hANP32A binds to FluPol (Camacho-Zarco et al., 2020; Mistry et al.,
73 2019) and NP (Camacho-Zarco et al., 2023; Wang et al., 2022). Moreover, the cryogenic
74 electron microscopy (cryo-EM) structure of the putative influenza C replication complex,
75 comprising the replicase-encapsidase dimer bound to ANP32 has been determined (Carrique
76 et al., 2020). These data underlie the proposed model, but there are a number of aspects of the
77 replication mechanism that remain unclear. Firstly, the structure of the replication complex (i.e.
78 replicase-encapsidase dimer bound to ANP32) has not been determined for influenza A or B
79 viruses, for which most of the biochemical and molecular virological data have been obtained.
80 In the case of influenza A, an avian specific 33 residue insertion in avANP32A compared to
81 hANP32A is critical to explain why avian adapted influenza A strain polymerases cannot
82 replicate in human cells (Long et al., 2016). Indeed, avian to human inter-species transmission
83 necessitates adaptive mutations in the avian polymerase (typically PB2/E627K, D701N or
84 Q591R, see below) to be able to productively use the mammalian ANP32 for replication
85 (Peacock et al., 2023). A complete molecular understanding behind these intriguing
86 observations is still lacking. Given that the binding sites of Pol II CTD on influenza A, B and
87 C polymerases are significantly different, it is likely that there has been co-evolution in the
88 mode of ANP32 binding since the divergence of influenza A, B and C. Therefore, it is
89 important to characterise structurally the influenza A and B replication complexes.

90 As a step towards further understanding of the role of ANP32 in replication, we first
91 analyse binding of hANP32A to FluPolA and FluPolB and show that, at least *in vitro*, it acts
92 as an electrostatic chaperone (Huang et al., 2021) to solubilise the apo-polymerase at
93 physiological salt concentrations, with distinct roles for the LRR and LCAR domains. In the
94 case of FluPolB, cryo-EM shows that hANP32A stabilises, at low salt, a previously
95 undescribed apo-dimer with a 2-fold symmetrical interface, quite different from that of
96 FluPolA (Chang et al., 2015; Fan et al., 2019; Kouba et al., 2023), with one monomer being
97 preferentially in the encapsidase configuration. Cryo-EM structures also show that hANP32A
98 is an integral part of the asymmetric replication complex for both FluPolA strain
99 A/Zhejiang/DTID-ZJU01/2013(H7N9) (A/H7N9) and FluPolB strain B/Memphis/2003. These
100 structures (summarised in Table 1) reveal that there are significant differences in the contacts
101 between the replicase, encapsidase and hANP32A and in domain orientations, compared to the
102 FluPolC complex. In the FluPolB replication complex, additional density clearly indicates the
103 trajectory of the LCAR wrapping around the encapsidase. We also provide minigenome data
104 that combined with extensive existing data in the literature validate these structures as
105 functionally relevant. Importantly, they also provide a rationale for many of the observed
106 mutations that favour adaption of avian FluPol to mammalian cells and that have eluded
107 explanation for many years. Finally, we propose a generalised trimer model of replication,
108 whereby an ANP32-stabilised incoming apo-dimer (distinct for FluPolA and FluPolB) interacts
109 with a replication competent vRNP or cRNP to form the functional replication complex.

110

111 ***In vitro*, ANP32 is as an electrostatic chaperone for apo-influenza polymerase.**

112 Recently it has been shown that proteins DAXX and ANP32 act as ‘electrostatic’
113 chaperones that exhibit disaggregase activity dependent on extensive polyD/E (Asp/Glu)
114 stretches within their sequences (Huang et al., 2021). Such chaperones bind to basic peptides

115 on the target protein and have a maximal effect between 25-150 mM salt, declining in activity
116 between 150-300 mM, indicative of electrostatic interactions. To investigate complex
117 formation between recombinant FluPol and ANP32 we analysed by gel filtration and mass
118 photometry(Foley et al., 2021) mixtures of apo-FluPol A/H7N9 or B/Memphis with hANP32A
119 as a function of NaCl concentration and with different truncations of hANP32A (Figure 1,
120 Figure S1).

121 Apo-FluPolA forms homo-dimers with a 2-fold symmetrical interface mediated by
122 loops from the cores of each the three subunits (Chang et al., 2015; Fan et al., 2019; Kouba et
123 al., 2023). The peripheral domains (PA endonuclease, PB2-C) remain flexible in cryo-EM
124 structures (Fan et al., 2019; Kouba et al., 2023), but take up the replicase conformation when
125 constrained in a crystal (Fan et al., 2019). It has been proposed that template realignment
126 following internal initiation of cRNA to vRNA replication would be specifically facilitated by
127 transient trimer formation involving a third apo-polymerase interacting via using the
128 symmetrical dimer interface with the replicase moiety of the replication complex (Carrique et
129 al., 2020; Chen et al., 2019; Fan et al., 2019). However, it has recently been shown that loop
130 mutations that eliminate symmetrical dimerisation of FluPolA are not detrimental to
131 polymerase activity in the minigenome assay (Krischuns et al., 2024) and indeed are selected
132 for when virus evolves to use the usually non-permissive hANP32E, in the absence of
133 hANP32A and hANP32B (Sheppard et al., 2023). It was concluded from the latter work that
134 optimal virus replication requires the correct balance between competing symmetric and
135 asymmetric polymerase dimer formation, consistent with previous results (Chen et al., 2019).
136 To characterise structurally the FluA asymmetric replication complex, without interference
137 from the symmetric dimer, we have used in the following analysis the monomeric A/H7N9-
138 4M mutant (PA E349K, PA R490I, PB1 K577G, and PB2 G74R). This mutant was

139 demonstrated to be active *in vitro* and in cells in previous studies aimed at elucidating the role
140 of the Pol II CTD in replication (Krischuns et al., 2024).

141 Full-length (FL, 1-249) hANP32A is unable to bind apo-polymerase A/H7N9-4M at 500
142 or 300 mM NaCl, but can do so at 150 mM NaCl, resulting in a broadening and a shift in the
143 elution profile (Figure 1A-E). Complimentary mass photometry, which however is performed
144 at lower concentration (nM versus μ M range), shows that the FluPol A/H7N9-4M remains
145 mainly monomeric at all salt concentrations, but with a small fraction of polymerase dimers at
146 150 mM NaCl (Figure 1F-I). At 150 mM NaCl before gel filtration, FluPol A/H7N9-4M
147 precipitates in the presence of the hANP32A LRR domain alone (1-149) (Figure S1B), but
148 mass photometry, at low concentration, shows the presence of some polymerase dimer (Figure
149 S1G). With the LRR together with half the LCAR (1-199) at 150 mM NaCl, binding,
150 solubilisation and a small fraction of dimers is observed as for the FL hANP32A but the gel
151 filtration profile does not shift (Figure S1C,E,H). With the LCAR alone (149-Cter) at 150 mM
152 NaCl, binding and a shifted elution profile similar to FL hANP32A is observed, but no dimers
153 are detected in mass photometry (Figure S1D,E,I). These results show that only below 300 mM
154 NaCl can hANP32A bind and solubilise A/H7N9-4M polymerase and this depends on the
155 presence of at least half the LCAR. Dimer formation requires the LRR, the LCAR alone being
156 insufficient. Binding to FluPol of the full LCAR (either alone or with the LRR) is mainly
157 responsible for the broadened and shifted gel filtration profile.

158 These results show that FL hANP32A has two functions with respect to FluPol A/H7N9-
159 4M, firstly to act as an electrostatic chaperone preventing aggregation of apo-FluPol at
160 physiological salt concentrations, this requiring the LCAR. Secondly, hANP32A promotes
161 dimer formation, this requiring at least the LRR domain, however FluPolA/H7N9-4M dimers
162 are rare under the conditions used. Below we show that these dimers correspond to the

163 asymmetric replication complex, consistent with the fact that the monomeric FluPolA/H7N9-
164 4M mutant does not form symmetric dimers (unlike the wild-type, see below).

165 For wild-type (WT) FluPol B/Memphis complementary results are obtained. Notably,
166 whereas the polymerase is monomeric at 500 mM NaCl, it forms equally monomers and a
167 stable dimer at 150 mM NaCl in the presence of hANP32A (with already some dimer detected
168 at 300 mM NaCl), as indicated by mass photometry and a gel filtration profile shift (Figure 1J-
169 R). Similar results are obtained with the LCAR alone (Figure S1M,R,N). At 150 mM NaCl
170 with only the LRR domain, the polymerase precipitates in gel filtration but mass photometry
171 at low concentration detects a small fraction (7%) of dimers (Figure S1K,P,N). With the LRR
172 plus half the LCAR (1-199) partial solubilisation is achieved and only 15% dimers are formed
173 (Figure S1L,Q,N). These results show that, as for FluPolA, the LCAR is required for apo-FluB
174 polymerase solubilisation at physiological salt concentration, supporting the notion that
175 hANP32A is acting as an electrostatic chaperone. Interestingly, the stable FluPolB dimer
176 detected by mass photometry only requires the LCAR (Figure S1M,R,N). Below we show by
177 cryo-EM that this dimer is a novel symmetric FluPolB dimer, not previously described. We
178 also observe in cryo-EM a very small proportion of FluPolB trimers which comprise the
179 asymmetric, hANP32A-bound replication complex with the replicase making a symmetric
180 dimer with a third polymerase. These particles are likely too rare to be detected in the
181 biochemical and biophysical experiments, although the FluPolB dimer with the LRR alone
182 could correspond to the asymmetric dimer.

183 As previously established (Fan et al., 2019; Kouba et al., 2023) wild-type A/H7N9
184 FluPol forms symmetric homodimers at high salt (Figure S1S, V). However, these dimers are
185 only stable at low salt in the presence of bound hANP32A (Figure S1T, V). On the other hand,
186 promoter bound FluPolA is mainly monomeric at low salt even in the absence of hANP32A

187 (Figure S1U, V). These results are consistent with the requirement of hANP32A to chaperone
188 apo-FluPolA at physiological salt concentrations, at least *in vitro*.

189

190 **ANP32 binding to apo-influenza A and B polymerases promotes formation of the**
191 **replication complex.**

192 To characterise structurally the influenza A asymmetric replication complex we
193 analysed complexes of FluPol A/H7N9-4M with hANP32A by cryo-EM (Supp. Info. 1-2,
194 Table 1, Table S1). The majority of particles observed are monomers of the polymerase core
195 with the endonuclease in the replicase conformation (ENDO(R)). Two distinct such structures
196 were determined at 2.77 (CORE-ENDO(R)-1) and 2.54 (CORE-ENDO(R)-2) Å resolution
197 respectively, differing in the degree of polymerase core opening (Supp. Info. 1, Table S1).

198 Consistent with the biochemical and biophysical analysis, a small fraction of particles
199 correspond to the FluA replication complex, comprising a replicase and an encapsidase bridged
200 by hANP32A, whose overall structure was determined at 3.25 Å resolution. The overall map
201 resolution is limited by the flexibility between the replicase and hANP32A-encapsidase
202 moieties as well as the presence of a preferred orientation. To alleviate this, a small number of
203 particles have been selected to equilibrate the distribution of orientations. Focussed refinement
204 on the separate replicase and hANP32A-encapsidase moieties then yield good quality maps of
205 respectively 3.21 and 3.13 Å resolution allowing a relatively complete model to be built (Supp.
206 Info. 2; Table S1). The replicase core is most similar to that in the CORE-ENDO(R)-1 structure.

207 In the case of FluPolB, cryo-EM grids made after mixing apo-polymerase and
208 hANP32A show a majority of dimers with 2-fold symmetric interface, which are quite distinct
209 from those of FluPolA (Supp. Info. 3-4, Table 1, Table S2). Several different pseudo-
210 symmetric dimer structures were determined at 2.8 to 3.1 Å overall resolution, with invariably
211 an encapsidase paired with a variable partner (Supp. Info. 3). A minority of particles are

212 FluPolB trimers, comprising the asymmetric replication complex with an additional
213 polymerase, whose overall structure was determined to 3.6 Å resolution. Further refinement
214 focussed on the replicase or hANP32A-encapsidase moieties improved the map quality and
215 estimated resolution to 3.3 Å (Supp. Info. 5; Table 1; Table S3). The FluPolB replication
216 complex is similar to that of FluPolA, with the replicase moiety forming a FluPolB type
217 symmetric dimer with a third polymerase (see below).

218

219 **Structure of the FluPol A/H7N9-4M replication complex**

220 The FluPolA replication complex comprises the asymmetric replicase-encapsidase
221 dimer with bound hANP32A (Figure 2; Figure S2). Both replicase (R) and encapsidase (E)
222 have the conserved polymerase core (PA-C, PB1, PB2-N), but with differently disposed PA-N
223 and PB2-C peripheral domains (Figure 2A; Figure S2B,C). Compared to the transcription (T)
224 conformation (Figure S2A), the replicase (R) conformation is characterised by a rotated
225 endonuclease, against which packs the PB2 NLS domain with the C-terminal, helical NLS
226 containing peptide extending across the endonuclease surface (Fan et al., 2019; Hengrung et
227 al., 2015; Thierry et al., 2016)(Figure 2A; Figure S2A,B,D). The PB2 cap-binding domain
228 (CBD) is packed against the palm domain of PB1 (Figure S2E). The PB2/627-NLS(R) double
229 domain is in the open conformation (Delaforge et al., 2015) with the linker extended and the
230 otherwise flexibly connected PB2/627(R) domain being held in place in the replication
231 complex by interactions with the PB2-NLS(E) domain (Figure 2A). In the distinct encapsidase
232 (E) conformation (Figure S2C), the endonuclease packs on the PB1 fingers domain, but has
233 only low resolution density. The flexible 51-72 insertion of the endonuclease contacts the top
234 of the CBD(E) (e.g. residues PA/55-57 with PB2/I461, 469-471, K482), which is not rigidly
235 integrated into the complex either (Figure 2A; Figure S2C,F). Interestingly, this PA loop, found
236 in FluPolA and FluPolB but not FluPolC, has been shown to be essential for replication by

237 FluPolA (Nilsson-Payant et al., 2018). In contrast, the PB2(E) midlink domain is stabilised by
238 an antiparallel alignment of strands 520-524 with PB2-N 126-132 (Figure S2C,G). PB2(E)-N
239 residues 138-226, which includes the helical lid domain, are not visible in the map, having
240 apparently been displaced to avoid clashing with the encapsidase endonuclease. There is
241 putative density for the PB1-PB2 helical interface bundle, but no model can be built, contrary
242 to the FluPolB case (see below). The encapsidase 627-NLS double domain is in the closed
243 conformation with the 627-domain packing against PA-C. The NLS(E) domain makes a
244 substantial contact with the replicase 627-domain (Figure 2A).

245 The interface between the replicase and the encapsidase buries a solvent accessible
246 surface of around 3300 Å², with three main zones of contact (Figure S3). The first involves
247 PB2-N(R) β-strands (128-134, 243-250), neighbouring PA(R) 432-438 loop interacting with
248 the PA(E) arch (N-ter side, 368-377) and the tip of the PB1(E) β-hairpin (361-364) (Figure
249 S3A,B). The latter region is close to the encapsidase 5' hook binding site, which however is
250 empty in this apo-structure. Key hydrophobic contacts are made by PA(E)/I330, W368 (which
251 changes rotamer) and M374 to PB2-N(R)/T129, M243 and T245; PB1(E)/M362 to
252 PA(R)/P434 and I438 and PB1(E)/K363 to PB2-N(R)/F130 (Figure S3B). The impact of
253 various mutations designed to disrupt this interface was tested using cell-based assays for the
254 A/WSN/33 FluPol in a vRNP reconstitution assay with a reporter vRNA to assess overall
255 transcription/replication activity and a split luciferase-based complementation assay to assess
256 binding to hANP32A (Figure S3E). FluPol activity was significantly impaired in the presence
257 of the PA I330A and PB2 T129A-T245A mutations, more markedly so when they were
258 combined (Figure S3C), consistent with the described structure. Similar trends were observed
259 when FluPol activity support by either hANP32A, hANP32B or chANP32A was determined
260 by transient complementation in HEK-293T cells knocked out for hANP32A and hANP32B
261 (Figure S3D). This is consistent with decreased FluPol-binding levels to either hANP32A,

262 hANP32B, or chANP32A, as determined in a split luciferase-based complementation assay
263 (Figure S3E).

264 The second zone of interaction between replicase and encapsidase involves the C-
265 terminal β -sheet region of PB2-627(R) (residues 645, 651-657, 668-669) with PA(E) (315-316,
266 550-loop 547-558) (Figure S3A,F). Notable hydrophobic interactions include PB2-627(R)
267 M645 and L668-G669 with PA(E) F315 and PB2-627(R) P654 with PA(E) L549, together with
268 a hydrogen bond between PA(E) Q556 and PB2-627(R) N652 carbonyl oxygen (Figure S3F).
269 The third zone of interaction is localized at the interface of PB2-627(R) (residues 585-587,
270 631-637 on the 627-loop, 644-646) with PB2-NLS(E) (residues 703-708, 712, 715-720)
271 (Figure S3A,G). Notable hydrophobic contacts are made by PB2-627(R)/A587, M631, F633
272 S637 and R646 (Figure S3G). Using the cell-based assays described above, we found that the
273 mutations PB2/A587K or A717E significantly reduced overall FluPol activity (Figure S3H),
274 its dependence on either hANP32A, hANP32B or chANP32A (Figure S3I) as well as binding
275 to hANP32A, hANP32B and/or chANP32A (Figure S3J), consistent with the structural
276 findings. The PB2 A717K mutation had the strongest effect on FluPol activity but not on
277 binding to hANP32A, suggesting that it impairs another FluPol function beyond the replicase-
278 encapsidase interaction.

279 PB2-627(R) behaves as a rigid-body part of the encapsidase in focussed cryo-EM
280 refinement (Supp. Info. 2), which is explained by its interfaces with the encapsidase PB2-
281 NLS(E) and PA-C(E) domains. The particular juxtaposition of the replicase 627 domain with
282 the encapsidase 627-NLS domains is a key feature that distinguishes both the FluPolA and B
283 replication complexes from the previously described FluPolC complex (Figure 3). In FluPolA,
284 the NLS(E) domain is sandwiched between the 627(E) and 627(R)-domains, with no contact
285 between the latter two domains, whereas in FluPolC the 627-NLS(E) double domain is rotated
286 relative to the 627(R) domain by $\sim 78^\circ$ and the NLS(E) domain squeezed to one side (Figure

287 3A, B). Consequently, in FluPolC, the replicase and encapsidase 627-domain loops containing
288 K649 (equivalent to E627 in FluPolA/H7N9-4M and K627 in FluPolB) are closer together and
289 face each other with the two K649 C α atoms \sim 19 Å apart. The LCAR is proposed to pass over
290 this interface (Carrique et al., 2020). In FluPolA/B these two loops are rotated far apart from
291 each other with a main chain distance of respectively \sim 40 Å and \sim 42 Å between equivalent
292 PB2/627 residues (Figure 3A,C). This makes a significant difference to the surface with which
293 the LCAR of ANP32 is likely to interact in FluPolA and FluPolB (see below).

294

295 **Interactions of hANP32A with the FluPolA encapsidase and replicase.**

296 Binding of the hANP32A LRR domain into the replicase-encapsidase dimer buries
297 \sim 3300 Å² of solvent accessible surface of which 80 % is with the encapsidase (Figure 2B). The
298 C-terminal end of the LRR domain, notably the 128-129 loop, packs against the encapsidase
299 PA-C domain, burying the N-terminus of PB1 and the peptide 152-157 curves back against the
300 LRR domain to contact the 627-NLS domains of the encapsidase (Figure 2B). In particular,
301 hANP32A/N129 makes a key interaction with PA(E)/K635, a residue previously shown to be
302 critical for the binding of a phosphoserine in Pol II CTD binding site 1 of both FluPolA and B
303 (Krischuns et al., 2024; Lukarska et al., 2017). In addition, PA(E)/K413 makes multiple
304 hydrogen bonds to the main-chain of residues 126-128 of hANP32A (Figure 2C). Consistently,
305 when cell-based mutational analysis was performed in the A/WSN/33 FluPol background, the
306 PA/K413A, PA/K413E and PA/K635A mutations reduced FluPol activity (Figure S4A),
307 FluPol dependence on hANP32A, hANP32B or chANP32A (Figure S4B), and binding to
308 hANP32A, hANP32B or chANP32A (Figure S4C). The effect is most dramatic for PA/K413E
309 which shows FluPol activity and binding levels close to background. These data are in
310 agreement with a previous report that the PA/K413A mutation affects replication of FluPolA,
311 based on the observed role of the equivalent residue K391 in the FluPolC replication complex

312 (Carrique et al., 2020) (note that this residue is not conserved in FluPolB). Similarly, it has
313 been previously reported that the PA/K635A mutant, is not only defective for CTD binding
314 and hence transcription activity, but also replication activity (Krischuns et al., 2024; Lukarska
315 et al., 2017). The observation that PA/K635 is important for binding to both the Pol II CTD
316 and to hANP32A suggests that simultaneous binding of CTD and ANP32 to PA is sterically
317 impossible, notably in the context of the encapsidase. ANP32A/K153 also makes interactions
318 with PB2(E)/N711 and PA(E)/E493, which are stabilised by PA(E)/R495 and E293 in a
319 network of polar interactions (Figure 2D).

320 To assess the impact of hANP32A mutations on FluPolA activity, vRNP reconstitution
321 were performed in HEK-293T cells knocked out for ANP32A and ANP32B, and transiently
322 complemented with a wild-type or mutant hANP32A protein. Compared to the wild-type, the
323 hANP32A mutants K153A and K153E were less efficient in supporting FluPol activity (Figure
324 S4D). The PA/E493K mutant was also impaired in FluPol activity. Interestingly, FluPol
325 activity was partially rescued when charge-reversal mutants PA/E493K and hANP32A/K153E
326 (but not K153A) were combined (Figure S4D), indicating that the interaction is restored to
327 some extent. Consistently, hANP32A/K153E and PA/E493K individually decreased FluPol-
328 binding to hANP32A, but showed increased binding-levels when tested in combination (Figure
329 S4E). This is in line with the interactions shown in Figure 2C,D and with previous results
330 showing that this region of hANP32A is critical for its interactions with the polymerase (Park
331 et al., 2021).

332 Another major point of contact is of the PA-C(E) 550-loop, which bends to be able to
333 interact with the concave beta-sheet surface of hANP32A. Loop residues R551, T552 (an avian
334 specific residue, (Mehle et al., 2012), normally serine in mammalian polymerases) and R559
335 make direct interactions with hANP32A/A155, D119, N94 and F121 respectively (Figure 2E).
336 A deletion in the PA 550-loop was previously shown to affect replication in a cell-based assay

337 (Krischuns et al., 2024; Krischuns et al., 2022). Consistent with these observations, we show
338 that the triple mutation R551A-S552A-R559A in WSN PA affects both FluPol activity and
339 binding to hANP32A, as does the double mutation F121A-N122A in hANP32A, although with
340 a relatively modest effect on FluPol activity (Figure S4F-G). Beyond residue 157 there is only
341 disjointed, low resolution density for hANP32A, so that the conformation and interactions of
342 the LCAR cannot be visualised precisely in the FluPolA replication complex.

343 The interactions of the FluPolA replicase with hANP32A are more tenuous (Figure 2F).
344 K660 from the PB2-627(R) 660-loop makes a salt bridge with hANP32A/D25. Residues 680-
345 DE-681 from the extended replicase NLS-627(R) linker likely make electrostatic interactions
346 with R6 and R12 of hANP32A and G608 from PB2-627(R) with R14, although the density is
347 relatively poor in this region, due to mobility. Again, cell-based mutational analysis
348 (PB2/K660A, hANP32A/D25A) confirmed the structural findings (Figure S4H-I).
349 Importantly, steady-state levels of the WT and mutant PA, PB2 and hANP32A proteins used
350 for functional studies in cell-based assays were similar as determined by western blot (Figure
351 S4J-L).

352

353 **Correspondence with other published studies on FluPol-ANP32 interactions.**

354 There is already abundant literature on putative interactions between hANP32A and
355 FluPolA. Residues 129-130 have been shown to be critical for defining functional (or non-
356 functional) species and isoform specific interactions of ANP32. In mammals, these residues
357 are generally 129-ND in ANP32A and ANP32B (but are NA and SD in mouse, ANP32A and
358 B, respectively), all of which support influenza A replication, although mouse proteins are
359 suboptimal (Peacock et al., 2020; Zhang et al., 2019). Avian ANP32A has 129-ND and
360 supports influenza replication, whereas avANP32B (129-IN) and avANP32A with the single
361 N129I mutation do not (Long et al., 2019). Human or avian ANP32E, with 129-ED, poorly

362 support replication (Idoko-Akoh et al., 2023; Long et al., 2019; Sheppard et al., 2023). These
363 observations are fully consistent with the FluPolA replication complex structure that shows
364 N129 interacting with PA/K635(E) (Figure 2C) and which can be plausibly substituted by the
365 smaller serine, as in mouse, but not by the larger isoleucine or glutamate. Virus that has evolved
366 to use ANP32E in human cells knocked out for ANP32A and ANP32B acquires the
367 PB1/K577E and PA/Q556R (550-loop) mutations (Sheppard et al., 2023). The PB1 mutation
368 likely acts by weakening the competing symmetric dimer interface as proposed (Sheppard et
369 al., 2023)(compare FluPolA/H7N9-4M, which bears the PB1-K577G substitution), whereas
370 our replicase structure shows that the PA/Q556R mutation could make a strong salt-bridge with
371 hANP32A E154 (which is conserved in ANP32E), thus promoting asymmetric dimer
372 formation (Figure S5A,B). In a related experiment, when virus is selected to replicate in
373 transgenic chickens or chicken embryos carrying mutant chANP32A (N129I, D130N) instead
374 of WT chANP32A, escape mutants PA/E349K, Q556R, T639I, G634E, K635E, K635Q and
375 PB2/M631L, I570L are found, with a predominance of PA/E349K and PB2/M631L. PA/349K
376 again acts by weakening the symmetric dimer interface (Chen et al., 2019; Sheppard et al.,
377 2023)(compare FluPolA/H7N9-4M, which also bears this substitution), whilst Q556R would
378 strengthen the interaction with ANP32A (see above). The other PA mutations cluster around
379 the key contact with the hANP32A 129-130 loop, plausibly making local perturbations that
380 better accommodate 129-IN-130 (Figure S5A). PB2/M631L is at the other main contact where
381 the polymerase interacts with hANP32A K153 and again may facilitate accommodation to the
382 mutated chANP32A D130N (Figure S5A).

383

384 **The FluPolA replication complex structure explains avian to human host adaptations**

385 Adaptation of avian strain polymerases (which invariably have PB2/E627) to be able
386 to function in human cells requires PB2 mutations. Real-life evolution of circulating influenza

387 A viruses and numerous laboratory studies show that the most effective routes to adapt avian
388 polymerase to mammalian ANP32A or ANP32B are PB2/E627K (Subbarao et al., 1993),
389 PB2/D701N (Chen et al., 2013; Gabriel et al., 2005) or PB2/Q591R (A/H1N1pdm09 strain)
390 (Mehle and Doudna, 2009; Peacock et al., 2023), with other observed mutations (PA/T572S,
391 PB2/T271A, K702R, D740N) potentially assisting to some extent.

392 To understand why these residues make such a difference, we calculated electrostatic
393 surfaces using the FluPolA replication complex model with appropriate modelled substitutions
394 in replicase and encapsidase for the four cases (Figure 3D-G): (1) typical human signature with
395 PB2/Q591, K627, D701 (Figure 3D), (2) typical avian signature with PB2/Q591, E627, D701
396 (Figure 3E), (3) human adapted A/H7N9 FluPol with PB2/Q591, E627, N701 (corresponding
397 to our structure) (Figure 3F), and (4) human adapted A/H1N1pdm09 FluPol with PB2/R591,
398 E627, D701 (Figure 3G).

399 The typical human signature results in an uninterrupted positively-charged path
400 following the PB2-NLS(E)-PB2/627(R) interface (and continuing round the back),
401 encompassing K627(R) and skirting the acidic patch due to D701(E)(Figure 3D). The structure
402 of the fully human adapted FluB replication complex (see below) shows a similar strong basic
403 path (Figure 3H). Residues in FluA contributing to this basic surface are PB2-NLS(E)/K702,
404 R703, K718, K721, K738 and R739 and PB2-627(R)/K586, R589, K627 and R630. We
405 propose that this is likely the trajectory followed by the distal part of the complimentary acidic
406 LCAR of hANP32A or hANP32B (e.g. residues 160-
407 AEGYVEGLDDEEDED**EEEYDEDAQVV**-186, red here is mammalian specific),
408 interacting in a predominantly electrostatic, multivalent fashion, since it is not clearly observed
409 in the structure. Indeed, projecting the residues undergoing chemical shifts when hANP32A
410 interacts with isolated 627-NLS domain, onto PB2-NLS(E)-PB2/627(R) rather than the closed
411 PB2/627(E)-NLS(E) conformation, highlights perturbations (due to direct or indirect binding

412 effects) at the NLS(E)-627(R) interface (Camacho-Zarco et al., 2020) (Figure 3I). The typical
413 avian signature results in an interrupted basic track, due to the combined effect of positively
414 charged D701(E) and E627(R) (Figure 3E). This surface is more appropriate to bind the avian
415 ANP32A due to the 33 amino acid insertion (i.e. residues 160-
416 AEGYVEGLDDEEDED**VLSLVKDRDDK**-186, blue here is avian specific), which could
417 place the avian specific hexapeptide 176-VLSLVK (that strongly interacts, according to
418 NMR(Camacho-Zarco et al., 2020)) and two other basic residues in the equivalent region.

419 Both human adapted signatures, as in A/H7N9 and A/H1N1pdm09 FluPol, partially
420 restore the basic track (Figure 3F,G). Interestingly PB2/Q591R might have a dual mode of
421 action in both replicase and encapsidase, since the simultaneous Q591R(E) mutation could
422 enhance binding of hANP32 to the encapsidase through formation of a salt bridge with
423 hANP32A/D151 (Figure S5C). Furthermore, the ‘third-wave’ mutation PA/N321K in
424 A/H1N1pdm09 FluPol is thought to be an additional adaptation of a swine polymerase to
425 human ANP32 (Elderfield et al., 2014; Peacock et al., 2020). Indeed, the mutation
426 PA(E)/N321K could lead to a salt bridge with PB2(R)/E249 (Figure S5D), thus strengthening
427 the encapsidase-replicase dimer, a mechanism suggested to compensate for a sub-optimal
428 ANP32 interaction (Sheppard et al., 2023).

429 It has also been shown that mammalian ANP32A and ANP32B proteins preferentially
430 drive different adaptive mutations in avian FluPol, respectively PB2/D701N or PB2/E627K,
431 and this ability maps to the significantly different LCAR (Peacock et al., 2023)(Supp. Info. 6).
432 One possible explanation is that hANP32B is considerably more acidic than hANP32A in the
433 region 176-190, with an insertion of 5 extra acidic residues and substitution of three non-
434 charged residues by acidic residues (Supp. Info. 6). This hyper-acidic stretch of hANP32B may
435 require the more basic track resulting from the E627K mutation to bind in a functional way.

436 Importantly, the FluA replication complex structure reveals a significant asymmetry in
437 the positioning of the encapsidase PB2/627 and 701 residues and their counterparts in the
438 replicase. Only the 627(R) and 701(E) residues are in the putative pathway of the LCAR. This
439 would suggest that the nature of these residues, whether E/K or D/N, should only exert their
440 influence in human cells via the replicase or encapsidase, respectively. Whereas the relevant
441 position of PB2/701 has not been analysed, several studies have addressed the effect of making
442 the PB2/E627K substitution only in the encapsidase or the replicase (Manz *et al.*, 2012;
443 Nilsson-Payant *et al.*, 2022; Swann *et al.*, 2023). These studies are based, firstly, on a cRNA
444 stabilisation assay involving infection of human 293T cells in the presence of pre-expressed
445 NP and PB2-627E or -627K polymerase with an inactive PB1, in the presence of actinomycin
446 D or cycloheximide to prevent transcription/translation by the incoming vRNPs. The incoming
447 virus thus provides the vRNA to cRNA replicase, whilst the pre-expressed polymerase acts as
448 encapsidase. Results indicate that both incoming avian 627E and 627K viruses produce stable
449 cRNPs in infected cells, whether the pre-expressed PB2 is 627E or 627K (Manz *et al.*, 2012;
450 Nilsson-Payant *et al.*, 2022; Swann *et al.*, 2023). In a second assay, performed in the presence
451 of pre-expressed NP and polymerase with an active PB1 (i.e. a replication assay), Manz *et al.*
452 found that only 627K viruses could produce functional cRNPs in human cells. In contrast,
453 Nilsson-Payant *et al.* and Swan *et al.* found that: (i) cRNPs produced by 627E and 627K viruses
454 can both serve as a template for cRNA to vRNA synthesis, provided that the pre-expressed
455 PB2 (which now is part of the replicase) is 627K; and (ii) the impaired vRNA synthesis when
456 the pre-expressed PB2 is 627E can be restored by pre-expressing chicken ANP32A. Taken
457 together, these observations indicate that in human cells, the PB2-627E polymerase is
458 functional as a replicase to perform vRNA to cRNA synthesis and as an encapsidase, but is
459 impaired as a replicase to co-opt human ANP32 and perform cRNA to vRNA synthesis. This
460 agrees with the structure showing that only the replicase 627 residues is part of the likely LCAR

461 trajectory, however why this restriction only affects cRNA to vRNA replication remains
462 unexplained.

463

464 **Structure of the FluPolB symmetrical dimer**

465 The biochemical and biophysical analysis revealed that a stable apo-FluPolB dimer is
466 formed in the presence of hANP32A at physiological salt concentrations (Figure 1). Indeed,
467 the majority of particles in the FluPolB-hANP32A cryo-EM analysis are dimers or monomers,
468 consistent with the biophysical analysis, together with a minority of trimers (Supp. Info. 2-5).
469 The dimers have a 2-fold symmetrical interface, although the peripheral domains of each
470 monomer can be in quite different conformations (Figure 4, Table 1, Table S3, Supp. Info. 3-
471 4). The symmetrical interface involves the PA-arch residues 375-385 of one monomer
472 contacting PA/332-338 and 361-364 of the second monomer, and *vice versa*. In addition the
473 tips of the PB1 β -hairpin of each monomer (residues 360-363, closely associated with the PA-
474 arch), interact with each other across the 2-fold axis (Figure 4A,B). The core dimer interface
475 buries \sim 2200 \AA^2 of solvent accessible surface (less than the \sim 3600 \AA^2 for the FluPolA
476 homodimer) and involves both hydrophobic (e.g. PA/F335, Y361, W364, I375, M376, V379)
477 and polar and salt-bridge interactions (e.g. PA/D382 with Y361 and K338, E378 with K338
478 and K358) (Figure 4C). PA peptides 357-372 (notably aromatics PA/Y361 and W364) and
479 504-513 (including PA/H506, which stacks on nucleotide 11 of the 5' hook) are refolded in the
480 apo-form compared to their configuration in the 5' hook bound form of FluPolB (Figure 4D),
481 suggesting that for FluPolB, symmetrical dimer formation and 5' hook binding are mutually
482 exclusive. Biochemically and biophysically this is found to be the case since FluPolB bound
483 to the vRNA 5' hook is soluble and monomeric at 150 mM NaCl and, furthermore, does not
484 bind hANP32A (Figure S6). This highlights the fact that hANP32A is only required to
485 chaperone apo-polymerase, even though we see no density corresponding to it in the

486 symmetrical dimer structures. We confirmed these observations by structure determination of
487 a monomeric form of the FluPolB encapsidase bound to nucleotides 1-12 of the 5' hook of
488 cRNA (Figure 4E, Table 1, Table S4, Supp. Info. 7), which can serve as a model for the vRNA
489 replication product-bound encapsidase. We conclude that 5' hook binding disassociates the
490 FluPolB symmetric dimer or, conversely, under certain circumstances, formation of a
491 symmetrical dimer could perhaps eject the bound 5' end (see discussion).

492 The cryo-EM analysis shows that most FluPolB symmetric dimers exhibit a complete
493 encapsidase conformation in one monomer (monomer 1 in Figure 4A). In the FluPolB
494 encapsidase, the PB2 lid domain is disordered (as in FluPolA), but interestingly, is observed
495 in its normal position in the 5' cRNA hook bound form of the encapsidase, due to subtle
496 displacements of domains (compare Figure 4A and 4E). For the symmetric partner monomer
497 (monomer 2 in Figure 4A), denoted FluPolB(S), a variety of conformations are observed
498 including with the endonuclease in either the replicase (ENDO(R)), encapsidase (ENDO(E))
499 or transcriptase (ENDO(T)) orientations, with the PB2-C domains usually exhibiting only
500 weak density. Even the core conformations vary due to different openings of the polymerase.
501 Given that this encapsidase-containing dimer requires the hANP32A LCAR for stabilisation,
502 we suggest that the LCAR in fact stabilises the encapsidase conformation. This is consistent
503 with the fact that the encapsidase conformation has only ever been visualised in the presence
504 of ANP32, as here, or for FluPolC (Carrique et al., 2020). As shown below, the FluPolB
505 replication complex cryo-EM maps reveal the likely pathway of the extended LCAR, providing
506 a rationale for how it stabilises the encapsidase structure.

507 We used the split luciferase assay to show that mutations in the FluPolB homodimer
508 interface significantly reduce self-oligomerisation in cells (Figure 4G), suggesting that this
509 dimer likely exists under physiological conditions.

510

511 **Structure of the influenza B replication complex**

512 The overall architecture of the influenza B replication complex is similar to that of
513 FluA, with most domains in the equivalent location, but with a few significant differences
514 (Figure 5; Figure S7). In the FluPolB replicase there is a rotation of ~15° of the ENDO(R)
515 towards the 627(R) domain compared to FluPolA (after alignment of PB1(R)), allowing the
516 endonuclease 63-73 insertion to contact the 627(R) domain in the region of W575 (contact not
517 observed in FluPolA) (Figure S7D). The encapsidase moiety of the FluPolB replication
518 complex adopts a very similar conformation to that seen in the FluPolB symmetrical dimer.
519 The encapsidase endonuclease, ENDO(E) is rotated by ~48° away from the cap-binding
520 domain compared to FluPolA (after alignment of PB1(E)), so there is no longer contact with
521 the endonuclease 63-73 loop as in FluPolA (Figure S7E). The lid domain of PB2(E) is also
522 disordered in FluPolB encapsidase, although there is some suggestive, but low resolution,
523 density close to the endonuclease. Interestingly, there is unambiguous density for the
524 encapsidase PB1(Cter)-PB2(Nter) helical bundle swung away from its normal position (Figure
525 S7E). This structural element, together with the tip of the encapsidase PB1 β -ribbon (residues
526 194-198), makes a significant new interface with the top of the replicase cap-binding domain
527 (PB2/466-474), which considerably reinforces the asymmetric dimer (Figure 5A; Figure
528 S8A,F). No equivalent interaction is observed in the FluPolA structure. This extra contact
529 largely accounts for the fact that the total buried surface between encapsidase and replicase in
530 FluB is ~ 5100 \AA^2 (mainly resulting from the three encapsidase subunits each contacting
531 PB2(R)) considerably more than the ~3300 \AA^2 for FluA (Figure S8A-D). Interestingly, the
532 PA/609-loop, a specific FluPolB insertion that is important for Pol II CTD binding (Krischuns
533 et al., 2022) makes special contacts within the complex. The encapsidase PA/609 loop interacts
534 with the encapsidase cap-binding domain 420-loop (not shown) and the replicase PA/609 loop
535 interacts with the encapsidase PA arch (Figure S8E).

536

537 **FluPolB trimer**

538 The FluB replicase-encapsidase complex is only seen as part of a trimer (determined at
539 3.57 Å resolution overall), with an additional monomer, FluPolB(S), making a symmetrical
540 FluB-type dimer interface with the replicase (Figure 4F, 5A, Table 1, Supp. Info. 5). The third
541 polymerase is less well ordered with only the core visible and not the peripheral domains, likely
542 because it is a mixture of conformations. The encapsidase component of the replication
543 complex cannot simultaneously make a symmetrical dimer as it uses the same interface (the
544 PA-arch and PB1 β-hairpin) to make the asymmetric dimer with the replicase. This shows that
545 the encapsidase component of the symmetric apo-dimer would have to disassociate to be able
546 to form the replication complex. Consistent with this and the biophysical data, a significant
547 number of monomeric apo-encapsidases are observed (Supp. Info. 4). A speculative biological
548 role for the replication complex-containing FluPolB trimer is mentioned in the discussion.

549

550 **Interactions of hANP32A within the FluB replication complex.**

551 hANP32A binds in the same position and orientation to the FluPolB encapsidase as in
552 FluPolA, but due to sequence divergence the interactions are not necessarily conserved (Figure
553 5A,B). The overall buried solvent accessible surface upon hANP32A binding to the FluB
554 replication complex is ~2200 Å² only 66% that for FluPolA. As for FluPolA, the main anchor
555 point remains the C-terminal end of the LRR domain wedged against the PA-C(E) domain in
556 the vicinity of the N-terminus of PB1(E) (Figure 5A,B). On the other hand, the N-terminal end
557 of the LRR domain does not make contact with either polymerase and consequently has less
558 well ordered density due to mobility. A critical contact is again made by hANP32A 129-ND,
559 but in FluB it is D130 that directly interacts with CTD-binding residue PA(E)/K631 (in FluA
560 N129 contacts the equivalent PA/K635) with also a slightly more distant salt-bridge to R634,

561 whereas N129 hydrogen bonds to PA(E)/S411 (Figure 5C). The equivalent of FluPolA
562 PA/K413 is L409 in FluPolB and is close but does not interact (Figure 5C). It has previously
563 been shown that the substitution N129E that occurs in hANP32E is responsible for the limited
564 ability of hANP32E to support FluB replication (Zhang et al., 2020), emphasising the
565 importance of this contact point. Furthermore, we show that mutations PA/K631A and R634A
566 together reduce FluPolB activity (Figure 5E), as previously described (Krischuns, 2022 #2204),
567 as well as hANP32A binding to FluPolB in a cell-based split luciferase assay (Figure 5F). In
568 FluPolA PA(E)/R638 is further away and its mutation less impacts replication (Lukarska et al.,
569 2017). The PA/550-loop of FluPolB is four residues shorter than that of FluA and does not
570 reach so far onto the β -sheet surface of hANP32A (Figure 5B,D), which is consistent with the
571 fact that no decreased binding of FluPolB PA/550-loop to hANP32A was observed (Figure
572 5F), despite some contacts being observed (PA(E)/S547 to hANP32A D152 and the carbonyl
573 oxygen of K153 and PA(E)/R549 to ANP32A/N84 and D119). Other polar interactions are
574 made to hANP32A/R150 and D151 by PB2(E)/S630 and R629, respectively, and to E154 by
575 PB2(R)/R653 and possibly K639 (Figure 5D).

576

577 **Path of the hANP32A LCAR in the FluB replication complex.**

578 Additional pseudo-continuous density is present in the FluB replication complex maps
579 that we interpret as tracing the path of the hANP32A LCAR extending beyond residue 155, the
580 last of the folded part of the protein core, and wrapping around the encapsidase (Figure 6A,B).
581 Although no model can be built into this density, it could correspond to an extended chain of
582 at least 50 residues (i.e. beyond hANP32A residue 200). The path follows a clearly defined
583 positively-charged electrostatic track, created by a number of basic residues that would point
584 towards the acidic LCAR, in order along the pathway: PB2-NLS(E)/K721, K742, R741, K703,
585 K734, PB2-627(R)/R629, K588 then PB1(E)/K566, K570 and PA(E)/K298, K301, K475,

586 H506, K374, then PB1(E)/R196 and R203 (close to the PB1 NLS on the long β ribbon
587 (Hutchinson et al., 2011)) and finally PB1(E)/R135, K353 and PB2(E)/R40 (Figure 6C). The
588 LCAR passes over the PB2-NLS(E)/PB2-627(R) interface, then over the 3' end secondary
589 binding loop (PA/K298, K301), round the tip of the PB1(E) β ribbon (PB1/R203) and parallel
590 to the β ribbon with the PA(E) arch on the other side (PA/K374) (Figure 6B,C). These
591 observations plausibly explain how the LCAR stabilises the encapsidase conformation by
592 electrostatic complementation.

593

594 **Model of the RNA bound replication complex.**

595 We have determined the structure of the putative FluPolA and B replication complexes
596 in the absence of viral RNA. We therefore sought to model how template and product RNA
597 could bind to an active replication complex (Figure 6D-F). In doing this we have not taken into
598 account the expected conformational changes that are known to accompany promoter binding
599 and the initiation to elongation transition (e.g. different degrees of polymerase opening and
600 extrusion of the priming loop) (Kouba et al., 2019; Wandzik et al., 2020). The template
601 extremities and product-template duplex bound to the replicase were modelled by superposing
602 on PB1 an A/H7N9 elongation state (e.g. PDB 8PNQ). The 3' end of the template binds back
603 to the secondary site. The replication product was manually extended from the top of the duplex
604 through a channel into the 5' end hook binding site of the encapsidase (modelled using the
605 cRNA 5' hook-bound FluPol(E) structure). From the 3' end at the +1 position in the replicase
606 active site to the 5' end in the encapsidase hook-binding site, a minimal 32 nucleotides of the
607 product are modelled (10 in the duplex, 12 in the channel, 10 in the 5' hook) (Figure 6D,E). In
608 the FluPolA structure, the putative product exit channel linking replicase to encapsidase passes
609 between the replicase PB2-N and cap-binding domains and then has PA(E) on one side, while
610 the other side is solvent exposed and could be where the extending product bulges out to be

611 bound by NP (Figure 6E,F). The channel is lined by basic residues notably PB2(R)/R143,
612 R144, K157, R213, R368, R369, K389 and PA(E)/K361, K362, K367, R508 yielding a
613 positively charged passage rich in flexible arginines that are able to interact with both bases
614 and backbone (Figure 6E,F). Not unexpectedly, the product exit channel partially overlaps with
615 the capped transcription primer entrance channel, where it has already been shown how some
616 of the same arginines can adapt to interact with different RNA configurations (Kouba et al.,
617 2023). The RNA model is transferable between the FluPolA and FluPolB replication
618 complexes, without modification. In FluPolB, one can see that the distal, C-terminal end of the
619 modelled LCAR, would clash with the product RNA entering the encapsidase hook-binding
620 site (Figure 6D,F) and therefore would have to be displaced as the RNA emerges. This could
621 have the dual effect of preventing non-specific RNA binding to the encapsidase and releasing
622 the LCAR for interaction with NP when the product RNA emerges.

623

624 **Discussion**

625 *De novo* synthesis of the influenza anti-genomic and genomic RNA (cRNA and vRNA),
626 respectively from parental vRNPs and cRNPs, with concomitant packaging of the product RNA
627 into a progeny RNP, is a highly complex process that we are only just beginning to get a grasp
628 off. Two key elements have been established, firstly that the host factor ANP32 plays critical
629 and probably multiple roles in the process, and secondly, that an asymmetric FluPol dimer
630 comprising replicase (integrated into the parental RNP) and encapsidase (a newly synthesised
631 and initially apo-FluPol) is fundamental to nucleate co-replicative assembly of the progeny
632 RNP. The proposed roles of ANP32 so far include formation and stabilisation of the ternary
633 replicase-ANP32-encapsidase replication complex (Carrique et al., 2020) and secondly,
634 through interactions of the LCAR with apo-NP, successive recruitment of NPs to package the
635 growing replicate (Camacho-Zarco et al., 2023; Wang et al., 2022). A further intriguing aspect

636 that needs a full mechanistic explanation is why certain specific mutations, mainly in PB2, are
637 required to overcome the restriction of avian strain polymerases to replicate in human cells,
638 given that this depends on a systematic difference in avian ANP32A (a 33 aa insertion in the
639 LCAR) compared to human ANP32A and ANP32B (Long et al., 2016).

640 Here we present evidence based on *in vitro* biochemical and structural analysis of
641 complexes of FluPolA and FluPolB with hANP32A, that ANP32 may have a third important
642 role that is to act as an electrostatic chaperone/disaggregase (Huang et al., 2021), that
643 solubilises and stabilises apo-FluPolA or FluPolB in a principally dimeric form at physiological
644 salt concentrations, this depending principally on the LCAR. We speculate that this may have
645 been the primordial role of ANP32 in the nuclear lifecycle of influenza-like viral polymerases,
646 since it is highly conserved in all potential eukaryotic hosts of orthomyxo- and orthomyxo-like
647 viruses. Later, it would have acquired an active role in replication. Interestingly, the FluPolA
648 and FluPolB apo-dimers both have 2-fold symmetric core interfaces (although the peripheral
649 domains need not be disposed symmetrically), but they are structurally quite different. The
650 FluPolA apo-dimer is stable at high salt without ANP32 (Fan et al., 2019; Kouba et al., 2023)
651 but requires ANP32 at physiological salt (Fig S1S-V), whereas FluPolB is monomeric at high
652 salt (Figure 1). One monomer of the FluPolB apo-dimer is observed to be preferentially in the
653 encapsidase conformation, which appears specifically to be stabilised by the LCAR of ANP32.
654 These initial studies led us to perform cryo-EM structural studies on mixtures of apo-FluPolA
655 and FluPolB with hANP32A, which yielded multiple structures including the replication
656 complex of each FluPol. Electrostatic calculations for the FluPolA replication structure suggest
657 that human adaptive mutations restore a coherent positively charged pathway at the NLS(E)-
658 627(R) interface, able to bind the negatively charged distal LCAR of hANP32A/B, whereas
659 the more mixed surface of avian FluPol more appropriately binds the avian LCAR, which
660 because of the 33 aa insertion has more basic and hydrophobic residues (Figure 3). The FluPolA

661 structure also explains why PB2/E627 is only restrictive in human cells in the replicase. The
662 FluPolB replication complex exhibits density for the extended LCAR following a basic
663 pathway around the encapsidase, thus providing a plausible explanation of how it stabilises this
664 particular FluPol conformation (Figure 6A-C). Both the FluA and FluB replication complexes
665 exhibit a positively-charge channel for the product RNA to exit the replicase and enter the 5'
666 hook binding site of the encapsidase (Figure 6D-F).

667 For both FluA and FluB, an ANP32-bound apo-FluPol symmetric dimer is brought
668 together with a replication-competent RNP during the replication initiation process. We
669 therefore propose a generalised trimer model of replication (Figure 7). In each case, one half
670 of the dimer would become the ANP32-bound encapsidase within the asymmetric replication
671 complex. For FluPolA, the third polymerase has been proposed to play a role in template
672 realignment specifically during initiation of cRNA to vRNA synthesis by forming a transient
673 symmetrical interface with the asymmetric replication complex dimer (Fan et al., 2019).
674 However, such a trimer has not been observed structurally. For FluPolB, based on the observed
675 trimer structure, where the third FluPolB forms a different symmetrical interface with the
676 replicase, we speculate that it could have a distinct role. It might assist in replication
677 termination by binding the replicase and releasing the 5' hook of the template so it can be
678 copied. It is possible that both types of symmetric dimer exist for both FluPolA and B under
679 certain conditions, but this has not been shown yet. However, given that FluPolA mutated to
680 be monomeric appears to be functional (Krischuns et al., 2024; Sheppard et al., 2023), it could
681 be that these third polymerases are not essential but merely increase efficiency of replication.

682 To elaborate in more detail the mechanism of replication it will be important to
683 determine structural snapshots of replication in action, as has recently been done for
684 transcription (Kouba et al., 2019; Wandzik et al., 2020). This would visualise the trajectory of
685 the nascent RNA replicate from the replicase into the encapsidase and subsequent

686 conformational changes that might occur as elongation proceeds. Ultimately, one would like
687 to validate the NP recruitment model leading to RNP assembly.

688

689 **Acknowledgments**

690 We thank Aldo R. Camacho-Zarco for providing hANP32A truncated constructs proteins. We
691 thank Wojtek Galej, Sarah Schneider and Romain Linares for access to the Glacios at EMBL
692 Grenoble; Aymeric Peuch for support using the joint EMBL-IBS computer cluster and Caroline
693 Mas help with the Mass Photometer measurements. We acknowledge the European
694 Synchrotron Radiation Facility and Grenoble Partnership for Structural Biology for access to
695 the Titan Krios CM01 and Romain Linares and Gregory Effantin for assistance with data
696 collection. We thank Matthias Budt and Thorsten Wolff (Robert Koch Institute, Berlin) for
697 providing the HEK-293T ANP32AB KO cells and Sylvain Paisant (Institut Pasteur) for helping
698 with plasmid mutagenesis and purification.

699

700 **Author contributions**

701 SC and BA conceived the project. MP and BA performed cloning. PD did initial biochemical
702 studies on FluPol-hANP32A complexes. BA performed all other *in vitro* biochemical,
703 biophysical and cryo-EM analyses. SC did model building and refinement. Discussions with
704 MB led to inclusion of Figure 3I. TK, supervised by NN, performed all cellular assays. SC and
705 BA prepared the manuscript with input from all authors, especially TK and NN.

706

707 **Declaration of Interests**

708 The authors declare no competing interests.

709

710 **Funding sources**

711 This work was partially funded by the ANR grant FluTranscript (ANR-18-CE18-0028), held
712 jointly by SC and NN. TK was funded by the ANR grants FluTranscript and ANR-10-LABX-
713 62-IBEID. This work used the platforms at the Grenoble Instruct-ERIC Center (ISBG ; UMS

714 3518 CNRS CEA-UGA-EMBL) with support from the French Infrastructure for Integrated
715 Structural Biology (FRISBI ; ANR-10-INSB-05-02) and GRAL, a project of the University
716 Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-
717 17-EURE-0003) within the Grenoble Partnership for Structural Biology.

718

719 **Data availability**

720 The data that support this study are available from the corresponding authors upon reasonable
721 request. The coordinates and EM maps generated in this study have been deposited in the
722 Protein Data Bank and the Electron Microscopy Data Bank (summarised in Table 1). Source
723 data are provided in a Supplemental file associated with this paper.

724

725 **Figure Legends**

726 **Figure 1. Biochemical analysis of the interaction of FluPolA/H7N9-4M and FluPolB with**
727 **hANP32A.**

728 **(A)** SDS-PAGE analysis of FluPolA/H7N9-4M at 500 mM NaCl. The molecular ladder (M) in
729 kDa and FluPolA/H7N9-4M heterotrimer are indicated on the left of the gel. “IN” corresponds
730 to the input.

731 **(B-D)** SDS-PAGE analysis of FluPolA/H7N9-4M-hANP32A at 500 **(B)**, 300 **(C)**, and 150 mM
732 NaCl **(D)**. The molecular ladder (M) in kDa, FluPolA/H7N9-4M heterotrimer, and hANP32A
733 are indicated on the left of the gel. “IN” corresponds to the input.

734 **(E)** Superposition of size exclusion chromatography profiles of FluPolA/H7N9-4M alone at
735 500 mM NaCl (dark blue), and with hANP32A at 500 mM (blue), 300 mM (light blue) and
736 150 mM (blue-grey) NaCl. The relative absorbance at 280 nm (mAU) is on the y-axis. The
737 elution volume (ml) is on the x-axis, graduated every 50 µl. SDS-PAGE fractions 1 to 13
738 corresponds to the elution volume 1.1 ml - 1.75 ml, represented as an arrow on top.

739 **(F)** Mass photometry analysis of FluPolA/H7N9-4M at 500 mM NaCl. The mass determined
740 in kDa of the monomeric FluPolA/H7N9-4M is indicated.

741 **(G-I)** Mass photometry analysis of FluPolA/H7N9-4M-hANP32A interaction at 500 mM **(G)**,
742 300 **(H)**, and 150 mM NaCl **(I)**. The determined masses in kDa of the main species are
743 indicated.

744 **(J)** SDS-PAGE analysis of FluPolB at 500 mM NaCl. The molecular ladder (M) in kDa and
745 FluPolB heterotrimer are indicated on the left of the gel. “IN” corresponds to the input.

746 **(K-M)** SDS-PAGE analysis of FluPolB-hANP32A interaction at 500 **(K)**, 300 **(L)**, and 150
747 mM NaCl **(M)**. The molecular ladder (M) in kDa, FluPolB heterotrimer, and hANP32A are
748 indicated on the left of the gel. “IN” corresponds to the input.

749 **(N)** Superposition of size exclusion chromatography profiles of FluPolB alone at 500 mM NaCl
750 (dark blue), and with hANP32A at 500 mM (blue), 300 mM (light blue) and 150 mM (blue-
751 grey) NaCl. The relative absorbance at 280 nm (mAU) is on the y-axis. The elution volume
752 (ml) is on the x-axis, graduated every 50 µl. SDS-PAGE fractions 1 to 13 corresponds to the
753 elution volume 1.0 ml - 1.65 ml, represented as an arrow on top.

754 **(O)** Mass photometry analysis of FluPolB at 500 mM NaCl. The determined mass in kDa of
755 the monomeric FluPolB is indicated.

756 **(P-R)** Mass photometry analysis of FluPolB-hANP32A interaction at 500 **(P)**, 300 **(Q)**, and
757 150 mM NaCl **(R)**. The determined masses in kDa of the main species are indicated.

758

759 **Figure 2. Overall structure of the FluPolA/H7N9-4M replication complex and the**
760 **interactions of hANP32A.**

761 **(A)** Surface representation of the FluPolA/H7N9-4M replication complex with hANP32A
762 displayed as a cartoon (purple). FluPolA/H7N9-4M replicase (R) core is dark grey. PA
763 ENDO(R) is in dark green, PB2 midlink(R) magenta, PB2 CBD(R) orange, PB2 627(R) pink
764 and PB2 NLS(R) beige. FluPolA/H7N9-4M encapsidase (E) core is light grey. PA ENDO(E)
765 is in light green, PB2 midlink(E) salmon, PB2 CBD(E) orange, PB2 627(E) light pink and PB2
766 NLS(E) brown.

767 **(B)** Close up view of hANP32A interactions with FluPolA/H7N9-4M replicase complex.
768 Interaction surface are highlighted, main contacts are labelled from **(C)** to **(F)**, and coloured
769 according to FluPolA/H7N9-4M interacting domains. PB1-N(E) is coloured in light blue, PA-
770 C(E) in light green, with PB2 627(E)/NLS(E), PB2 627(R) coloured as in **(A)**.

771 **(C)** Cartoon representation of the interaction between hANP32A 128-130 loop and
772 FluPolA/H7N9-4M PA-C(E) and PB1-N(E). hANP32A and FluPolA/H7N9-4M domains are
773 coloured as in **(B)**. Ionic and hydrogen bonds are shown as grey dotted lines.

774 **(D)** Cartoon representation of the interaction between hANP32A K153 and FluPolA/H7N9-
775 4M PA-C(E) and PB2 627(E)/NLS(E). hANP32A and FluPolA/H7N9-4M domains are
776 coloured as in **(B)**. Ionic and hydrogen bonds are shown as grey dotted lines.

777 **(E)** Cartoon representation of the interaction between hANP32A curved β -sheet and
778 FluPolA/H7N9-4M PA-C(E) 550-loop. hANP32A and FluPolA/H7N9-4M domains are
779 coloured as in **(B)**. Ionic and hydrogen bonds are shown as grey dotted lines.

780 **(F)** Cartoon representation of the interaction between hANP32A N-terminus and
781 FluPolA/H7N9-4M PB2 627(R)/NLS(R). hANP32A and FluPolA/H7N9-4M domains are
782 coloured as in **(B)**. Ionic and hydrogen bonds are shown as grey dotted lines.

783

784 **Figure 3. hANP32A, PB2 627-NLS(E) and PB2 627(R) domain organisation and**
785 **implication in human adaptive mutations.**

786 **(A)** Surface representation of FluPolA/H7N9-4M PB2 627(E)/NLS(E) and PB2 627(R)
787 domains. hANP32A is displayed as cartoon. PB2 E627 residue is coloured in red as surface.
788 The distance between PB2 E627(R) and PB2 E627(E) is indicated. The last seen hANP32A C-
789 terminal residue is annotated. hANP32A and FluPolA/H7N9-4M domains are coloured as in
790 **Figure 2.**

791 **(B)** Surface representation of FluPolC PB2 627(E)/NLS(E) and PB2 627(R) domains.
792 FluPolA/H7N9-4M PB2 627(R) **(A)** has been used as reference to align the corresponding
793 FluPolC PB2 627(R) domain (extracted from PDB 6XZQ). hANP32A is displayed as cartoon.
794 PB2 K649 residue is coloured in blue as surface. The distance between PB2 K649(R) and PB2
795 K649(E) is indicated. FluPolC PB2 627(E)/NLS(E) 78 degree rotation compared to
796 FluPolA/H7N9-4M PB2 627(E)/NLS(E) is indicated with an arrow. The last seen hANP32A
797 C-terminal residue is annotated. hANP32A and FluPolC domains are coloured as
798 FluPolA/H7N9-4M.

799 **(C)** Surface representation of FluPolB PB2 627(E)/NLS(E) and PB2 627(R) domains.
800 FluPolA/H7N9-4M PB2 627(R) **(A)** has been used as reference to align the corresponding
801 FluPolB PB2 627(R) domain. hANP32A is displayed as cartoon. PB2 K627 residue is coloured
802 in blue as surface. The distance between PB2 K627(R) and PB2 K627(E) is indicated. The last
803 seen hANP32A C-terminal residue is annotated. hANP32A and FluPolB domains are coloured
804 as FluPolA/H7N9-4M.

805 **(D-G)** Surface representation of FluPolA/H7N9 627-NLS(E) and 627(R) domains, bearing
806 human or avian adapted mutations, coloured according to the electrostatic potential: **(D)** human
807 signature with PB2 E627K/D701 (modelled); **(E)** avian signature with PB2 E627/D701
808 (modelled); **(F)** human adapted avian signature with PB2 E627/D701N (obtained in this study);
809 **(G)** human adapted (p2009) signature with PB2 E627/D701/Q591R (modelled). A strong basic
810 path allows hANP32 LCAR (red dotted line) electrostatic interaction to FluPolA/H7N9 PB2
811 627(E)/NLS(E) and PB2 627(R) domains. An interrupted basic path allows avANP32A
812 insertion (black dotted line) interaction, displayed as a black dotted line.

813 **(H)** Surface representation of FluPolB PB2 627(E)/NLS(E) and PB2 627(R) domains coloured
814 by electrostatic potential. The putative path of the hANP32 LCAR is shown as a red dotted
815 line.

816 **(I)** Chemical shift perturbations (CSPs), calculated from chemical shift differences between
817 free and hANP32A bound forms of 627(K)-NLS from avian H5N1
818 A/duck/Shantou/4610/2003, were taken from **Figure 2** of (Camacho-Zarco et al., 2020). CSPs
819 were mapped onto the structure of the 627-NLS(E) and 627(R) domains from the
820 FluPolA/H7N9-4M replication complex. CSPs from the 627 domain were designated as being
821 associated with the replicase, while shifts from the NLS domain were associated with the
822 encapsidase. Red corresponds to the highest CSPs (CSP>0.35), orange corresponds to
823 intermediate CSPs (>0.2) and yellow to lower but still measurable CSPs (CSP>0.13).

824

825 **Figure 4. Apo-FluPolB pseudo-symmetrical dimer and 5' cRNA bound FluPolB**
826 **encapsidase.**

827 **(A)** Cartoon representation of the most abundant apo-FluPolB pseudo-symmetrical dimer. The
828 monomer 1 is in an encapsidase conformation FluPolB(E). PA-C(E) is coloured in light green,
829 PB1(E) in light blue, PB2-N(E) (43-226) in dark red, PB2 midlink(E) in salmon, PB2 CBD(E)
830 in orange, PB2 627(E) in light pink, PB2 NLS(E) in brown. Putative PB2-N(E) lid density are
831 located next to PA-ENDO(E) and indicated by a dotted ellipse. The symmetrical monomer 2
832 FluPol(S) takes multiple conformation. Here, only PA(S) and PB1(S) subunits are shown, and
833 respectively coloured in light green and light blue. Both monomers core form a symmetrical
834 interface highlighted by a dotted rectangle, with a close-up view shown in **(B)**.

835 **(B)** Close-up view on the FluPolB symmetrical dimer interface. The main interaction is
836 mediated by PA(E) 332-338 interacting with PA(S) 375-385. PB1 β -hairpin tip from both
837 monomers interact with each other across the 2-fold axis. One of the symmetrical dimer
838 interface is highlighted with a dotted rectangle, corresponding to **(C)**.

839 **(C)** Close-up view on the main FluPolB symmetrical dimer interface between PA(E) 332-338
840 and PA(S) 375-385. Domains are coloured as in **(A-B)**. Ionic and hydrogen bonds are shown
841 as grey dotted lines.

842 **(D)** Structural rearrangement of PA(E) upon 5' cRNA hook binding. Residues undergoing the
843 biggest movement are displayed. The 5' cRNA hook (nts 1-12) is coloured in plum with
844 nucleotides represented as stubs.

845 **(E)** Cartoon representation of the 5' cRNA bound FluPolB encapsidase structure. Domains are
846 coloured as in **(A)**. The 5' cRNA hook (nts 1-12) is coloured in plum, and atoms are displayed
847 as spheres. The PB2-N(E) lid is observed when FluPol(E) is bound to the 5' cRNA hook.

848 **(F)** Cartoon representation of the complete FluPolB trimer, composed of the replication
849 complex (FluPolB(R)+hANP32A+FluPolB(E)), with FluPolB(R) core forming a pseudo-
850 symmetrical dimer with a third FluPolB(S). FluPolB(S) is coloured as in **(A)**. hANP32A is
851 displayed as surface, coloured in purple. FluPolB(R) core is coloured in dark grey. PA
852 ENDO(R) in dark green, PB2 midlink(R) in magenta, PB2 CBD(R) in orange, PB2 627(R) in
853 pink, PB2 NLS(R) in beige. FluPolB(E) core is coloured in light grey, PA ENDO(E) in light
854 green, PB2 midlink(E) in salmon, PB2 CBD(E) in orange, PB2 627(E) in light pink, PB2
855 NLS(E) in brown.

856 **(G)** Cell-based split-luciferase complementation assay to assess B/Memphis/13/2003 FluPol
857 self-oligomerisation for the indicated PA mutants. HEK-293T cells were co-transfected with
858 plasmids encoding PB2, PA, PB1-luc1 and PB1-luc2 (Chen et al., PMID: 31581279).
859 Luminescence signals due to luciferase reconstitution are represented as a percentage of PA-
860 WT (mean \pm SD, n=6, ***p < 0.001, one-way ANOVA; Dunnett's multiple comparisons test).

861

862 **Figure 5. Overall FluPolB trimer replication complex and hANP32A interactions.**

863 **(A)** Surface representation of the FluPolB trimer replication complex. hANP32A is displayed
864 as cartoon, coloured in purple. FluPolB replicase (R) core is coloured in dark grey. PA
865 ENDO(R) in dark green, PB2 midlink(R) in magenta, PB2 CBD(R) in orange, PB2 627(R) in
866 pink, PB2 NLS(R) in beige. FluPolB encapsidase (E) core is coloured in light grey, PA
867 ENDO(E) in light green, PB2 midlink(E) in salmon, PB2 CBD(E) in orange, PB2 627(E) in
868 light pink, PB2 NLS(E) in brown. PB1-C(E) and PB2-N(E), respectively coloured in blue and
869 dark red, interacts with PB2 CBD(R) bridging FluPolB(R) and FluPolB(E). The symmetrical
870 FluPolB(S) is coloured as in **Figure 4**.

871 **(B)** Close up view on hANP32A interaction with FluPolB(R) and FluPolB(E). Interaction
872 surface are highlighted, main contacts are labelled from **(C)** to **(D)**, and coloured according to
873 FluPolB interacting domains. PB1-N(E) is coloured in light blue, PA-C(E) is coloured in light
874 green, PB2 627(E)/NLS(E), PB2 627(R) are coloured as in **(A)**.

875 **(C)** Comparison of the interaction between hANP32A 128-130 loop with FluPolB PA-
876 C(E)/PB1-N(E) and FluPolA/H7N9-4M PA-C(E)/PB1-N(E). hANP32A and FluPol domains
877 are coloured as in **(B)**. Ionic and hydrogen bonding are shown as grey dotted lines.

878 **(D)** Cartoon representation of the interaction between hANP32A curved β -sheet and LRR C-
879 terminus with FluPolB PA-C(E) 550-loop, PB2 627(E)/NLS(E), PB2 627(R). hANP32A and
880 FluPolB domains are coloured as in **(B)**. Ionic and hydrogen bonding are shown as grey dotted
881 lines.

882 **(E)** Cell-based assay of B/Memphis/13/2003 FluPol activity for the indicated PA mutants.
883 HEK-293T cells were co-transfected with plasmids encoding PB2, PB1, PA, NP with a model
884 vRNA encoding the Firefly luciferase. Luminescence was normalised to a transfection control
885 and is represented as a percentage of PA-WT (mean \pm SD, n=3, **p < 0.002, ***p < 0.001,
886 one-way ANOVA; Dunnett's multiple comparisons test).

887 **(F)** Cell-based assay of B/Memphis/13/2003 FluPol binding to ANP32A for the indicated PA
888 mutants. HEK-293T cells were co-transfected with plasmids encoding PB2, PA, PB1-luc1 and
889 hANP32A-luc2. Luminescence signals due to luciferase reconstitution are represented as a
890 percentage of PA-WT (mean \pm SD, n=3, *p < 0.033, one-way ANOVA; Dunnett's multiple
891 comparisons test).

892

893 **Figure 6. hANP32A LCAR density and putative RNA path within FluPolA/H7N9-4M and**
894 **FluPolB replication complexes.**

895 **(A)** Low-pass filtered FluPolB trimeric replication complex map at 5Å resolution (threshold =
896 0.12). hANP32A and FluPolB domains are coloured as in **Figure 5**. Density assigned to the
897 hANP32A LCAR, in red, pass over the NLS(E) and 627(R) interface and extends over
898 FluPolB(E).

899 **(B)** Surface representation of the FluPolB trimer replication complex coloured by electrostatic
900 potential. hANP32A is coloured as in **(A)**. The hANP32A LCAR follows a positively charged
901 electrostatic path.

902 **(C)** Close-up view on the positively-charged electrostatic track followed by hANP32A LCAR.
903 Domains are coloured as in **(A)**. Atoms are displayed as spheres, shown as non-transparent.
904 hANP32A LCAR is displayed as cartoon.

905 **(D)** Model of template and product RNA binding to the FluPolB replication complex in the
906 early-elongation state. The complex is shown as a transparent surface with hANP32A LRR
907 coloured in purple and the LCAR in red. The template 5' hook is coloured in plum and the 3'
908 end gold. The replication product is coloured in cyan. The template extremities and product-
909 template duplex bound to the replicase are modelled according to PDB 6QCT. The replication
910 product is modelled to extend through a channel between the replicase PB2-N and midlink/cap-
911 binding domains into the 5' end hook binding site of the encapsidase (modelled using the cRNA
912 hook-bound FluPol(E) structure). The 3' end template binds back to the secondary site. Un-
913 modelled RNAs are displayed as dotted lines. The C-terminal end of the modelled LCAR **(A-C)**
914 would clash with the product RNA entering the hook-binding site and therefore would have
915 to be displaced.

916 **(E)** Close-up view of the RNA product exit channel from the replicase to the encapsidase.
917 Domains are coloured as in **(A)**, with PB1(R) in blue, PB2 midlink(R) in magenta, PB2-N(R)
918 in dark red, PB2 CBD(R) in orange, PA-C(E) in green. Modelled RNA product is displayed,
919 coloured as in **(D)**. Nucleotides 1-22 are numbered from the 5' end to the first nucleotide exiting
920 the duplex in the replicase. Nucleotides 1-10 corresponds to the 5' hook product, bound to the
921 encapsidase. Nucleotides 11-22 corresponds to the minimal product in the channel formed by
922 PB2-N/midlink/CBD(R) and PA-C(E). Basic residues are displayed with atoms represented as
923 spheres.

924 **(F)** Surface representation of FluPolA/H7N9-4M replication complex coloured according to
925 the electrostatic potential, with the FluPolB modelled RNA product and hANP32A LCAR
926 superimposed. The RNA product and hANP32A LCAR are coloured as in **(E)**. Nucleotides are
927 numbered from the 5' end. The distal end of the hANP32A LCAR clashes with the RNA
928 product. White arrows indicate the 5' hook bound to the encapsidase and where the growing
929 replication product could bulge out.

930 **Figure 7. Trimer model of FluPol replication.**

931 **(A)** vRNPs bound to cellular Pol II with the FluPol in the transcriptase conformation
932 (FluPol(T)) perform primary transcription leading to the synthesis of capped/poly-adenylated
933 viral mRNAs. These are translated by the host machinery to yield new viral proteins, including
934 the apo-FluPols and NPs that are required for replication.

935 **(B)** ANP32 acts as a chaperone at physiological salt concentration, stabilising apo-FluPol
936 through electrostatic interactions via the LCAR. ANP32-bound apo-FluPolA and apo-FluPolB
937 form distinct dimers with a 2-fold symmetric interface. For FluPolB at least, one of the
938 monomers preferentially takes up the encapsidase conformation (FluPol(E)).

939 **(C)** Within the parental vRNP, due to domain flexibility, the FluPol(T) conformation can
940 transiently adopt the intermediate conformation FluPol(I), but only in the presence of ANP32
941 bound apo-FluPol, possibly co-localised by interaction with the Pol II CTD, can it be locked
942 into the stable replicase conformation upon formation of the ANP32-FluPol(E)-FluPol(R)
943 complex. The FluPol(E) must derive from dissociation of the symmetric dimer (which is
944 probably in equilibrium with monomeric forms, at least for FluPolB), bringing with it ANP32.
945 While the ANP32 LCAR stabilises FluPol(E), the LRR domain bridges FluPol(E) to FluPol(R).

946 **(D)** Replication initiation may start concomitantly with replication complex formation. For
947 cRNA synthesis, initiation is terminal but for vRNA synthesis, it is internal. For FluPolA, one
948 FluPol from the apo-dimer (FluPol(S)) is proposed to form a symmetric dimer with FluPol(R),
949 allowing template realignment in the case of vRNA synthesis (Fan et al., 2019). A similar
950 mechanism may occur for FluPolB, even though no FluPolA-like symmetric dimers have been
951 described for FluPolB so far.

952 **(E)** FluPol(R) synthesises the complementary replication product. In early elongation, the
953 newly synthesized 5' end binds to the FluPol(E) hook binding site, accessible from the replicase
954 through a protected channel. Simultaneously, the ANP32 LCAR, where may initially prevent
955 non-specific RNA binding, is partially displaced from FluPol(E). It becomes available for
956 recruiting apo-NPs that successively will bind the replication product bulging out of the
957 replication complex. Concomitantly, NPs are transferred from the ingoing to outgoing template
958 in the parental replicase RNP.

959 **(F)** FluPol(R) processively copies the template until it reaches nucleotide 17 from the 5' end
960 whereupon further template translocation is normally resisted by the tight binding of the 5'
961 hook. In the case of transcription of the vRNA template, this leads to poly-adenylation through
962 repeated copying of U17. However, in replication, FluPol(R) manages to read-through to the
963 end of the template. At this stage, a progeny nucleocapsid has formed, packaging the almost
964 full-length replication product.

965 **(G)** Replication termination. To synthesize a full-length complementary replication product,
966 the 5' end of the template must be released from its binding site. The mechanism for this is
967 unknown. However, the trimeric replication complex structures observed for FluPolB suggests
968 that a FluPol(S) from the apo-dimer could interact with FluPol(R), forcing release of the 5'
969 hook and stabilising the replicase while it copies the last nucleotides up to the template 5' end.

970 **(H)** Replication complex dissociation and recycling. Once replication is terminated, FluPol
971 recycling can occur as previously proposed for the transcription cycle (Wandzik et al., 2020).

972 FluPol(R), within the parental RNP, can perform another round of replication (or potentially
973 transcription). The erstwhile FluPol(E), now part of the progeny RNP, can become a replicase
974 or transcriptase (in the case of a progeny vRNP).

975

976 **Table 1. Summary of FluPolA and FluPolB polymerase structures.**

977

Structure No.	Short name	Resolution	PDB/EMDB
FluPolA-4M monomers			
1	Core 1 with ENDO(R)	2.77 Å	PDB 8RMP, EMD-19366
2	Core 2 with ENDO(R)	2.54 Å	PDB 8RMQ, EMD-19367
FluPolA-4M replication complex with hANP32A			
3	Focus Replicase	3.21 Å	PDB 8RMS, EMD-19369
4	Focus Encapsidase + 627(R) + hANP32A	3.13 Å	PDB 8RN0, EMD-19382-
5	Complete Replication Complex	3.25 Å	PDB 8RMR, EMD-19368
FluPolB monomers			
6	Apo-FluPolB encapsidase	2.89 Å	PDB 8RN2, EMD-19384
7	FluPolB with 5' cRNA	3.64 Å	PDB 8RN1, EMD-19383
FluPolB symmetrical dimers			
9	Focus Encapsidase moiety	2.75 Å	PDB 8RN3, EMD-19385-
10	Focus ENDO(T) moiety	2.87 Å	PDB 8RN4, EMD-19386
11	Focus ENDO(R) moiety	2.88 Å	PDB 8RN5, EMD-19387
12	Focus ENDO(E) moiety	2.82 Å	PDB 8RN6, EMD-19388
13	Focus core moiety	3.09 Å	PDB 8RN7, EMD-19389
14	Complete dimer	2.92 Å	PDB 8RN8, EMD-19390
FluPolB trimer with hANP32A			
15	Focus Replicase	3.31 Å	PDB 8RN9, EMD-19391-
16	Focus Encapsidase+ hANP32A	3.13 Å	PDB 8RNB, EMD-19393
17	Focus Replication Complex	3.52 Å	PDB 8RNC, EMD-19394
18	Complete Trimer	3.57 Å	PDB 8RNA, EMD-19392

979 **Methods**

980 **Construction of expression plasmids for influenza A/Zhejiang/DTID-ZJU01/2013(H7N9)
981 and B/Memphis/2003 polymerases**

982 The previously described pFastBac Dual vector encoding for the influenza
983 A/Zhejiang/DTID-ZJU01/2013(H7N9) polymerase subunits, PA (Uniprot: M9TI86), PB1
984 (Uniprot: M9TLW3), and PB2 (Uniprot: X5F427), with the mutations PA/E349K and R490I,
985 PB1/K577G and PB2/G74R (FluPolA/H7N9-4M) (Krischuns et al., 2024) was used as a
986 starting point. The PA N-terminal His-tag was removed by a combination of PCRs and Gibson
987 assembly. The PB2 C-terminal Twin-strep-tag was kept. The previously described pKL vector
988 encoding the self-cleavable poly-protein B/Memphis/2003 influenza polymerase subunits, PA
989 (Uniprot: Q5V8Z9_9INFB), PB1 (Uniprot: Q5V8Y6_9INFB), and PB2 (Uniprot:
990 Q5V8X3_9INFB) (Reich et al., 2014) was used as a starting point. Each FluPolB subunit was
991 amplified and inserted in a pLIB plasmid by a combination of PCRs and Gibson assembly
992 resulting in FluPolB subunits being under control of distinct polyhedrin promoters. The PA N-
993 terminal His-tag was removed, whilst the PB2 C-terminal Twin-strep-tag was retained to
994 enable purification. All plasmid sequences were confirmed by Sanger sequencing for each
995 polymerase subunit.

996 Removal of all N- or C-terminal tags (except the PB2 C-terminal purification tag) was
997 essential to allow replication complex formation. An N-terminal PA tag prevents formation of
998 the full replicase conformation, which requires close contact of the cap-binding domain to the
999 N-terminus of PA. An N-terminal PB1 extension impedes close packing against PA-C of
1000 ANP32 in the vicinity of residues 129-130, which buries the PB1 N-terminus. In the FluB
1001 replication complex, an N-terminal PB2 extension would prevent the observed contact between
1002 the encapsidase PB1-C/PB2-N helical bundle with the replicase cap-binding domain.

1003

1004 **FluPolA and FluPolB expression and purification**

1005 FluPolA/H7N9-WT was expressed and purified as previously described (Kouba et al.,
1006 2019). FluPolA/H7N9-4M and FluPolB were produced using the baculovirus expression
1007 system in *Trichoplusia ni* High 5 cells. For large-scale expression, cells at $0.8\text{-}10^6$ cells/mL
1008 concentration were infected by adding 1% of virus. Expression was stopped 72 to 96 h after
1009 the day of proliferation arrest and cells were harvested by centrifugation (1000g, 20 min at
1010 4°C). Cells were disrupted by sonication for 5 min (5 s ON, 20 s OFF, 40% amplitude) on ice
1011 in lysis buffer (50 mM HEPES pH 8, 500 mM NaCl, 2 mM TCEP, 5% glycerol) with cOmplete
1012 EDTA-free Protease Inhibitor Cocktail (Roche). After lysate centrifugation at 48,000g for
1013 45 min at 4°C, ammonium sulphate was added to the supernatant at 0.5 g/mL final
1014 concentration. The recombinant protein was then collected by centrifugation (45 min, 4°C at
1015 70.000g), re-suspended in the lysis buffer, and the procedure was repeated. FluPol was purified
1016 using strep-tactin affinity purification beads (IBA, Superflow). Bound proteins were eluted
1017 using the lysis buffer supplemented by 2.5 mM d-desthiobiotin and protein-containing
1018 fractions were pooled and diluted with an equal volume of buffer (50 mM HEPES pH 8, 2 mM
1019 TCEP, 5% glycerol) before loading on an affinity column HiTrap Heparin HP 5 mL (Cytiva).
1020 A continuous gradient of lysis buffer supplemented with 1 M NaCl was applied over 15 CV,
1021 and FluPol was eluted as single species at \sim 800 mM NaCl. Pure and acid nucleic free FluPol
1022 were dialysed overnight in a final buffer (50 mM HEPES pH 8, 500 mM NaCl, 2 mM TCEP,
1023 5% glycerol), concentrated with Amicon Ultra-15 (50 kDa cutoff), flash-frozen and stored at -
1024 80°C for later use.

1025 **Human Acidic Nuclear Phosphoprotein 32A (hANP32A)**

1026 Human ANP32A (hANP32A) was cloned and expressed as previously described
1027 (Krischuns et al., 2024). The N-terminal His-tagged hANP32A construct was expressed in
1028 BL21(DE3) *E.coli* cells. Expression was induced with 1 mM IPTG, for 4 h at 37°C. Cells were

1029 harvested by centrifugation (1000g, 20 min at 4°C), disrupted by sonication for 5 min (5 s ON,
1030 15 s OFF, 50% amplitude) on ice in lysis buffer (50 mM HEPES pH 8, 150 mM NaCl, 5 mM
1031 beta-mercaptoethanol (BME)) with cOmplete EDTA-free Protease Inhibitor Cocktail (Roche).
1032 After lysate centrifugation at 48,000g for 45 min at 4°C, the soluble fraction was loaded on a
1033 HisTrap HP 5 mL column (Cytiva). Bound proteins were subjected to a wash step using the
1034 lysis buffer supplemented by 50 mM imidazole. Remaining bound protein was eluted using the
1035 lysis buffer supplemented by 500 mM imidazole. Fractions containing hANP32A were
1036 dialysed overnight in the lysis buffer (50 mM HEPES pH 8, 150 mM NaCl, 5 mM BME)
1037 together with N-terminal his-tagged TEV protease (ratio 1:5 w/w). Tag-cleaved hANP32A
1038 protein was subjected to a Ni-sepharose affinity column to remove the TEV protease, further
1039 concentrated with Amicon Ultra-15 (3 kDa cutoff) and subjected to a Size-Exclusion
1040 Chromatography using a Superdex 200 Increase 10/300 GL column (Cytiva) in a final buffer
1041 containing 50 mM HEPES pH 8, 150 mM NaCl, 2 mM TCEP. Fractions containing
1042 exclusively hANP32A were concentrated with Amicon Ultra-15 (3 kDa cutoff), flash-frozen
1043 and stored at -80°C for later use.

1044 Truncated hANP32A constructs (1-199 and 144-249) were generated, expressed and
1045 purified as previously described (Camacho-Zarco et al., 2020). The hANP32A 1-149 construct
1046 was a gift from Cynthia Wolberger (Addgene plasmid # 67241, (Huyton and Wolberger, 2007))
1047 and was expressed and purified as previously described (Camacho-Zarco et al., 2020).

1048 **Analytical size exclusion chromatography**

1049 Size exclusion chromatography (SEC) experiments for FluPolA/H7N9-4M and
1050 FluPolB were performed on a Superdex 200 Increase 3.2/300 (Cytiva) at 4°C, in a final buffer
1051 containing 50 mM HEPES pH 8, 150/300/500 mM NaCl, 2 mM TCEP. Depending on the
1052 experiment, 5 µM FluPol, 15 µM hANP32A (full-length, “1-149”, “1-199”, “144-Cter”), and
1053 10 µM 5' vRNA 1-12 (5'-pAGU AGU AAC AAG-3') were used. Resulting mixtures were

1054 incubated 1h on ice before injection onto the column. SEC fractions of interest were loaded on
1055 4-20% Tris-glycine gel (ThermoFisher) and stained with Coommassie Blue.

1056 Size exclusion chromatography (SEC) experiments for FluPolA/H7N9-WT were
1057 performed on a Superdex 200 Increase 3.2/300 (Cytiva) at 4°C, in a final buffer containing 25
1058 mM HEPES pH 8, 200/650 mM NaCl, 2 mM TCEP. Depending on the experiment, 10 µM
1059 FluPol, 5 µM hANP32A, and 10 µM 5' vRNA 1-14 (5'-pAGU AGU AAC AAG AG)/ 3' 1-18
1060 (5'-UAU ACC UCU GCU UCU GCU -3') were used. Resulting mixtures were incubated 1h on
1061 ice before injection onto the column. SEC fractions of interest were loaded on 4-20% Tris-
1062 glycine gel (ThermoFisher) and stained with Coommassie Blue.

1063

1064 **Mass photometry analysis**

1065 Mass photometry measurements were performed on a OneMP mass photometer
1066 (Refeyn). Coverslips (No. 1.5H, 24x50mm, VWR) were washed with water and isopropanol
1067 before being used as a support for silicone gaskets (CultureWellTM 423 Reusable Gaskets,
1068 Grace Bio-labs). Contrast/mass calibration was realized using native marker (Native Marker
1069 unstained protein 426 standard, LC0725, Life Technologies) with a medium field of view and
1070 monitored during 60 sec using the AcquireMP software (Refeyn). For each condition, 18 µl of
1071 buffer (50 mM HEPES pH 8, 150/300/500 mM NaCl, 2 mM TCEP) were used to find the
1072 focus. Using diluted SEC inputs, 2 µl of sample were added to reach a final FluPol
1073 concentration of 50 nM. Movies of 60 sec were recorded, processed, and mass estimation was
1074 determined automatically using the DiscoverMP software (Refeyn).

1075 **Electron microscopy**

1076 FluPol A/Zhejiang/DTID-ZJU01/2013(H7N9) and B/Memphis/2003 replication complexes
1077 sample preparation

1078 FluPolA/H7N9-4M and FluPolB replication complexes were trapped by mixing
1079 1.15 μ M FluPol with 5.75 μ M hANP32A (molar ratio 1:5) in a final buffer containing 50 mM
1080 HEPES pH 8, 150 mM NaCl, 2 mM TCEP. Mix were incubated for 1 h at 4°C, centrifuged for
1081 5 min at 11000g and kept at 4°C before proceeding to grids freezing. For grid preparation,
1082 1.5 μ l of sample was applied on each sides of plasma cleaned (Fischione 1070 Plasma Cleaner:
1083 1 min 10 s, 90% oxygen, 10% argon) grids (UltrAufoil 1.2/1.3, Au 300). Excess solution was
1084 blotted for 3 sec, blot force 0, 100% humidity, at 10°C, with a Vitrobot Mark IV
1085 (ThermoFisher) before plunge freezing in liquid ethane.

1086 **FluPol B/Memphis/2003 bound to 5' cRNA sample preparation**

1087 The FluPolB encapsidase bound to 5' cRNA structure was trapped by mixing 1.15 μ M
1088 FluPolB with 5.75 μ M hANP32A and 1.72 μ M 5' cRNA 1-12 (5'-AGC AGA AGC AGA -3')
1089 (molar ratio 1:5:1.5) in a final buffer containing 50 mM HEPES pH 8, 150 mM NaCl, 2 mM
1090 TCEP. The mix was incubated for 1 h at 4°C, centrifuged for 5 min at 11000g and kept at 4°C
1091 before proceeding to grid freezing. For grid preparation, 1.5 μ l of sample was applied on each
1092 sides of plasma cleaned (Fischione 1070 Plasma Cleaner: 1 min 10 s, 90% oxygen, 10% argon)
1093 grids (UltrAufoil 1.2/1.3, Au 300). Excess solution was blotted for 3 sec, blot force 0, 100%
1094 humidity, at 10°C, with a Vitrobot Mark IV (ThermoFisher) before plunge freezing in liquid
1095 ethane.

1096 **Cryo-EM data collection**

1097 **FluPol A/Zhejiang/DTID-ZJU01/2013(H7N9) and B/Memphis/2003 replication complexes**

1098 Automated data collections were performed on a TEM Titan Krios G3 (ThermoFisher)
1099 operated at 300 kV equipped with a K3 direct electron detector camera (Gatan) and a
1100 BioQuantum energy filter (Gatan), using EPU (ThermoFisher). Coma and astigmatism
1101 correction were performed on a carbon grid. Micrographs were recorded in counting mode at
1102 a \times 105,000 magnification giving a pixel size of 0.84 \AA with defocus ranging from -0.8 to

1103 $-2.0\text{ }\mu\text{m}$. Gain-normalised movies of 40 frames were collected with a total exposure of
1104 $\sim40\text{ e}^{-}/\text{\AA}^2$.

1105 **FluPol B/Memphis/2003 bound to 5' cRNA sample preparation**

1106 Automated data collection was performed on a TEM Glacios (ThermoFisher) operated
1107 at 200 kV equipped with a F4i direct electron detector camera (ThermoFisher) and a SelectrisX
1108 energy filter (ThermoFisher), using EPU (ThermoFisher). Coma and astigmatism correction
1109 were performed on a carbon grid. Micrographs were recorded in counting mode at a $\times 130,000$
1110 magnification giving a pixel size of 0.878 \AA with defocus ranging from -0.8 to $-2.0\text{ }\mu\text{m}$. EER
1111 movies were collected with a total exposure of $\sim40\text{ e}^{-}/\text{\AA}^2$.

1112 **Image processing**

1113 **FluPol A/Zhejiang/DTID-ZJU01/2013(H7N9) structure determination**

1114 For the FluPolA TEM Titan Krios dataset, 14,001 movies were collected. Movie drift
1115 correction was performed using Relion's Motioncor implementation, with 7x5 patch, using all
1116 movie frames (Zheng et al., 2017). All additional initial image processing steps were performed
1117 in CryoSPARC v4.3 (Punjani et al., 2017). CTF parameters were determined using "Patch CTF
1118 estimation". Realigned micrographs were then manually inspected and low-quality images
1119 were manually discarded resulting in 13,328 micrographs kept. Particles were automatically
1120 picked using a circular blob with a diameter ranging from 110 to 130 \AA , and extracted using a
1121 box size of 420×420 pixels 2 , Fourier cropped to 210×210 pixels 2 . Successive 2D
1122 classifications were used to eliminate particles displaying poor structural features, and coarsely
1123 separate monomers from dimers. Monomers were subjected to a "heterogeneous refinement"
1124 job. Particles displaying PA-ENDO in the replicase conformation (PA-ENDO(R)), the rest of
1125 them displaying a dislocated FluPol core, were Fourier uncropped and subjected to a "non-
1126 uniform refinement" job. Based on the estimated particle angles and shifts, a "3D
1127 classification" job was performed. For each relevant FluPol conformation, particles were

1128 grouped and subjected to a final “non-uniform refinement”. FluPolA/H7N9-4M asymmetric
1129 dimers were first subjected to a “heterogeneous refinement” job. Particles assigned to the 3D
1130 class displaying well-defined secondary structures were used for model training and picking
1131 using Topaz (Bepler et al., 2019). The resulting picked particles were extracted and subjected
1132 to 2D classification. All asymmetric dimers particles were merged, the duplicates removed,
1133 Fourier uncropped, and then subjected to a “non-uniform refinement” job. To alleviate the
1134 preferential orientation problem of the FluPolA/H7N9-4M replication complex, a “3D
1135 classification” job was used. Particles displaying a proper view distribution equilibrium were
1136 used and subjected to a “non-uniform refinement”. Based on this consensus map, particle
1137 subtraction around “FluPol(R) minus 627(R)” and “FluPol(E)-hANP32A-627(R)” was
1138 performed. The subtracted particles were finally subjected to local refinement to improve
1139 subtracted particle angles and shifts estimation. Post-processing was performed in CryoSPARC
1140 using an automatically or manually determined B-factor. For each final map, reported global
1141 resolution is based on the FSC 0.143 cut-off criteria. Local resolution variations were estimated
1142 in CryoSPARC. The detailed image processing pipeline is shown in Supp. Info. 1-2.

1143 FluPol B/Memphis/2003 structure determination

1144 For the FluPolB TEM Titan Krios dataset, 15,650 movies were collected. Movie drift
1145 correction was performed using Relion’s Motioncor implementation, with 7x5 patch, using all
1146 movie frames (Zheng et al., 2017). All additional initial image processing steps were performed
1147 in cryoSPARC v4.3 (Punjani et al., 2017). CTF parameters were determined using “Patch CTF
1148 estimation”, realigned micrographs were then manually inspected and low-quality images were
1149 manually discarded resulting in 15,234 micrographs kept. Particles were automatically picked
1150 using a circular blob with a diameter ranging from 110 to 140 Å and extracted using a box size
1151 of 480 x 480 pixels², Fourier cropped to 200 x 200 pixels². Successive 2D classifications using
1152 a circular mask of 210 Å were used to eliminate particles displaying poor structural features.

1153 Following initial 2D classifications, all particles were re-extracted at a larger box size (512 x
1154 512 pixels², Fourier cropped to 200 x 200 pixels²) and subjected to multiple 2D classifications
1155 using a circular mask of 280 Å to coarsely separate dimers, monomers, and trimers. For the
1156 FluPolB symmetrical dimers, following an “ab-initio” reconstruction job, particles displaying
1157 one FluPolB(E) were Fourier uncropped and subjected to a “non-uniform refinement” job,
1158 followed by respective FluPolB symmetrical (FluPolB(S)) and FluPolB(E) signal subtraction.
1159 After subsequent local refinements, “3D classification” jobs were performed to separate the
1160 different FluPolB states. 3D classes displaying a complete FluPol(E) conformation were
1161 grouped, locally refined, and subjected to a final “non-uniform refinement” using the un-
1162 subtracted particles. A similar approach was used for the different FluPol(S) conformations
1163 (core, ENDO(R), ENDO(E) or ENDO(T)) (Supp. Info. 3). Dimers displaying two FluPolB core
1164 were Fourier uncropped and subjected to a “non-uniform refinement” job followed by a “3D
1165 classification”. Particles displaying one FluPolB with PA-ENDO in a transcriptase
1166 conformation (ENDO(T)) were grouped and subjected to a final “non-uniform refinement” job
1167 (Supp. Info. 4). For the FluPolB monomers, particles were subjected to an “ab-initio”
1168 reconstruction followed by a “non-uniform refinement”. Subsequent “3D classification”
1169 allowed isolation of monomeric apo-FluPolB(E). Particles were Fourier uncropped and
1170 subjected to a final “non-uniform refinement” job (Supp. Info. 4). For the FluPolB trimers
1171 (FluPolB replication complex plus one FluPol(S)), particles were subjected to an “ab-initio”
1172 reconstruction job. The few particles displaying a well-defined FluPolB replication complex
1173 were Fourier uncropped and subjected to a “non-uniform refinement” job. Particle subtraction
1174 was performed on “FluPolB(S) + FluPolB(E)”, “FluPolB(S)+FluPolB(R)” and “FluPolB(S)”
1175 moieties, followed by local refinements to improve subtracted particle angles and shifts
1176 estimation. (Supp. Info. 5). Post-processing was performed in CryoSPARC using an
1177 automatically or manually determined B-factor. For each final map, reported global resolution

1178 is based on the FSC 0.143 cut-off criteria. Local resolution variations were estimated in
1179 CryoSPARC. The detailed image processing pipeline is shown in Supp. Info. 3-5.

1180 **5' cRNA bound FluPol B/Memphis/2003 structure determination**

1181 For the TEM Glacios dataset, 2,451 movies were collected. Movie drift correction was
1182 performed using Relion's Motioncor implementation, with 7x5 patch, using all movie frames
1183 (Zheng et al., 2017). All additional initial image processing steps were performed in
1184 CryoSPARC v4.3 (Punjani et al., 2017). CTF parameters were determined using "Patch CTF
1185 estimation", realigned micrographs were then manually inspected and low-quality images were
1186 manually discarded resulting in 2,353 micrographs kept. Particles were automatically picked
1187 using a circular blob with a diameter ranging from 110 to 140 Å and extracted using a box size
1188 of 380 x 380 pixels², Fourier cropped to 240 x 240 pixels². Successive 2D classifications using
1189 a circular mask of 210 Å were used to eliminate particles displaying poor structural features.
1190 Remaining particles were subjected to a "heterogeneous refinement" job. Particles belonging
1191 to the class corresponding to 5' cRNA bound FluPolB(E) were subjected to a "non-uniform
1192 refinement" job, followed by "3D classification". A final "non-uniform refinement" has been
1193 done with particles displaying a complete FluPol(E) conformation. Post-processing was
1194 performed in CryoSPARC using an automatically or manually determined B-factor. For each
1195 final map, reported global resolution is based on the FSC 0.143 cut-off criteria. Local resolution
1196 variations were estimated in CryoSPARC. The detailed image processing pipeline is shown in
1197 Supp. Info. 7.

1198 **Model building and refinement**

1199 Atomic models were constructed by iterative rounds of manual model building with
1200 COOT (Emsley and Cowtan, 2004) and real-space refinement using Phenix, with
1201 Ramachandran restraints (Afonine et al., 2018). For model building of the replicase-moiety of
1202 the FluPolB replication complex, the previously determined replicase-like structure

1203 (PDB: 5EPI)(Thierry et al., 2016) was used as starting point. The FluPolB encapsidase
1204 conformation was initially constructed from the higher resolution symmetrical dimer map and
1205 transferred to the replicase complex. For FluPolA replication complex structure building, a
1206 variety of previous A/H7N9 structures were used as starting models.

1207 Validation was performed using Phenix. Model resolution according to the cryo-EM
1208 map was estimated at the 0.5 FSC cutoff. Structural analysis was performed in Coot and
1209 Chimera (Pettersen et al., 2004). Electrostatic potential surfaces were calculated using the
1210 APBS-PDB2PQR software suite (Jurrus et al., 2018). Buried solvent accessible surfaces were
1211 calculated using PISA (Krissinel and Henrick, 2007) at the PDBe. Figures were generated using
1212 ChimeraX (Goddard et al., 2018).

1213 Cells

1214 HEK-293T cells (ATCC CRL-3216) and HEK-293T (ATCC CRL-11268) ANP32AB KO cells
1215 (Krischuns et al., 2024) were grown in complete Dulbecco's modified Eagle's medium
1216 (DMEM, Gibco) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-
1217 streptomycin (Gibco). Cell cultures were PCR-tested regularly to ensure absence of
1218 mycoplasma contamination. Cells (3E04/well) were seeded in 96-well white plates (Greiner
1219 Bio-One) the day before transfection with polyethyleneimine (PEI-max, #24765-1
1220 Polysciences Inc).

1221 Plasmids used in cell-based assays

1222 The pcDNA3.1-hANP32A-FLAG, A/WSN/33 (WSN) pcDNA3.1-PB2, -PB1, -PA, pCI-NP
1223 and B/Memphis/13/2003 (Memphis) pcDNA3.1-PB2, -PB1, -PA, -NP plasmids were
1224 described previously (Lukarska et al. PMID: PMID: 28002402, Reich et al. (Camacho-Zarco
1225 et al., 2023; Lukarska et al., 2017; Reich et al., 2014). Plasmids used for vRNP reconstitution
1226 assays and the WSN pCI-PB1-luc1, Memphis pCI-PB1-luc1, pCI-hANP32A-luc2, pCI-
1227 chANP32A-luc2 plasmids used for split-luciferase-based complementation assays were

1228 described previously (Krischuns et al., 2024; Krischuns et al., 2022). The pCI-hANP32B-luc2
1229 plasmid was constructed by replacing the hANP32A sequence in the pCI-hANP32A-luc2
1230 plasmid. pcDNA3.1-hANP32B-FLAG, -chANP32A-FLAG were constructed by replacing the
1231 hANP32A sequence in the pcDNA3.1-hANP32A-FLAG plasmid. All mutations were
1232 introduced by an adapted QuikChange site-directed mutagenesis (Agilent Technologies)
1233 protocol (Zheng et al., 2004). ORFs were verified by Sanger sequencing and primer and
1234 plasmid sequences are available with annotations as a supplementary data file.

1235 **vRNP reconstitution assays**

1236 HEK-293T cells were co-transfected with plasmids encoding the vRNP protein components
1237 (PB2, PB1, PA, NP), a pPolI-Firefly plasmid encoding a negative-sense viral-like RNA
1238 expressing the Firefly luciferase and the pTK-Renilla plasmid (Promega) as an internal control.
1239 For FluPol activity rescue experiments in ANP32AB KO cells, a plasmid encoding either the
1240 wild-type or mutant hANP32A, hANP32B or chANP32A protein was co-transfected. Mean
1241 relative light units (RLUs) produced by the Firefly and Renilla luciferase, reflecting the viral
1242 polymerase activity and transfection efficiency, respectively, were measured using the Dual-
1243 Glo Luciferase Assay System (Promega) on a Centro XS LB960 microplate luminometer
1244 (Berthold Technologies, MikroWin Version 4.41) at 48 hours post-transfection (hpt). Firefly
1245 luciferase signals were normalised with respect to Renilla luciferase signals. At least three
1246 independent experiments (each in technical duplicates) were performed, and each biological
1247 replicate is represented as a dot in the graphs. Plasmid combinations, orientations of tags as
1248 well as plasmid amounts used for transfections in a given experiment are available as a source
1249 data file.

1250 **Protein complementation assays**

1251 HEK-293T cells were co-transfected with plasmids encoding the FluPol subunits (PB2, PB1-
1252 G1, PA) and an ANP32A protein (hANP23A-G2, hANP32B-G2 or chANP32A-G2). Cells

1253 were lysed 20-24 hpt in Renilla lysis buffer (Promega) for 45 min at room temperature under
1254 steady shaking. RLUs produced by the reconstituted *Gaussia princeps* luciferase, reflecting the
1255 FluPol-ANP32 interaction, were measured on a Centro XS LB960 microplate luminometer
1256 (Berthold Technologies, MikroWin Version 4.41) using a reading time of 10 s upon injection
1257 of 50 µl Renilla luciferase reagent (Promega). Three independent experiments (each in
1258 technical triplicates) were performed, and each biological replicate is represented as a dot in
1259 the graphs. Plasmid combinations, orientations of tags as well as plasmid amounts used for
1260 transfections in a given experiment are available as a source data file.

1261 **Antibodies and immunoblots**

1262 Total cell lysates were prepared in RIPA cell lysis buffer as described (Krischuns et al., 2018).
1263 Proteins were separated by SDS-PAGE using NuPAGE™ 4-12% Bis-Tris gels (Invitrogen)
1264 and transferred to nitrocellulose membranes which were incubated with primary antibodies
1265 directed against PA ((Da Costa et al., 2015), 1:2500), PB2 (GTX125925, GeneTex, 1:5,000),
1266 *Gaussia princeps* luciferase (New England Biolabs, #E8023, 1:5,000), Histone H3 (Cell
1267 Signaling Technology, #9715, 1:1,000), Tubulin (B-5-1-2, Sigma Aldrich, 1:10,000) and
1268 subsequently with HRP-tagged secondary antibodies (Jackson Immunoresearch, 1:10,000).
1269 Membranes were revealed with the ECL2 substrate according to the manufacturer's
1270 instructions (Pierce). Chemiluminescence signals were acquired using the ChemiDoc imaging
1271 system (Bio-Rad, Image Lab Touch Software 2.4.0.03) and analysed with ImageLab (Bio-Rad,
1272 Image Lab 6.0.1 build 34). Uncropped gels are provided as a source data file.

1273

1274 **References**

1275 Afonine, P.V., Poon, B.K., Read, R.J., Sobolev, O.V., Terwilliger, T.C., Urzhumtsev, A., and
1276 Adams, P.D. (2018). Real-space refinement in PHENIX for cryo-EM and crystallography.
1277 *Acta crystallographica Section D, Structural biology* *74*, 531-544.

1278 Bepler, T., Morin, A., Rapp, M., Brasch, J., Shapiro, L., Noble, A.J., and Berger, B. (2019).
1279 Positive-unlabeled convolutional neural networks for particle picking in cryo-electron
1280 micrographs. *Nature Methods* *16*, 1153-1160.

1281 Camacho-Zarco, A.R., Kalayil, S., Maurin, D., Salvi, N., Delaforge, E., Milles, S., Jensen,
1282 M.R., Hart, D.J., Cusack, S., and Blackledge, M. (2020). Molecular basis of host-adaptation
1283 interactions between influenza virus polymerase PB2 subunit and ANP32A. *Nat Commun*
1284 *11*, 3656.

1285 Camacho-Zarco, A.R., Yu, L., Krischuns, T., Dedeoglu, S., Maurin, D., Bouvignies, G.,
1286 Crepin, T., Ruigrok, R.W.H., Cusack, S., Naffakh, N., *et al.* (2023). Multivalent Dynamic
1287 Colocalization of Avian Influenza Polymerase and Nucleoprotein by Intrinsically
1288 Disordered ANP32A Reveals the Molecular Basis of Human Adaptation. *Journal of the*
1289 *American Chemical Society* *145*, 20985-21001.

1290 Carrique, L., Fan, H., Walker, A.P., Keown, J.R., Sharps, J., Staller, E., Barclay, W.S., Fodor,
1291 E., and Grimes, J.M. (2020). Host ANP32A mediates the assembly of the influenza virus
1292 replicase. *Nature* *587*, 638-643.

1293 Chang, S., Sun, D., Liang, H., Wang, J., Li, J., Guo, L., Wang, X., Guan, C., Boruah, B.M.,
1294 Yuan, L., *et al.* (2015). Cryo-EM structure of influenza virus RNA polymerase complex at
1295 4.3 Å resolution. *Molecular Cell* *57*, 925-935.

1296 Chen, K.Y., Santos Afonso, E.D., Enouf, V., Isel, C., and Naffakh, N. (2019). Influenza virus
1297 polymerase subunits co-evolve to ensure proper levels of dimerization of the heterotrimer.
1298 *PLoS pathogens* *15*, e1008034.

1299 Chen, Y., Liang, W., Yang, S., Wu, N., Gao, H., Sheng, J., Yao, H., Wo, J., Fang, Q., Cui, D.,
1300 *et al.* (2013). Human infections with the emerging avian influenza A H7N9 virus from wet
1301 market poultry: clinical analysis and characterisation of viral genome. *Lancet*.

1302 Da Costa, B., Sausset, A., Munier, S., Ghounaris, A., Naffakh, N., Le Goffic, R., and Delmas,
1303 B. (2015). Temperature-Sensitive Mutants in the Influenza A Virus RNA Polymerase:

1304 Alterations in the PA Linker Reduce Nuclear Targeting of the PB1-PA Dimer and Result
1305 in Viral Attenuation. *Journal of virology* *89*, 6376-6390.

1306 Delaforge, E., Milles, S., Bouvignies, G., Bouvier, D., Boivin, S., Salvi, N., Maurin, D., Martel,
1307 A., Round, A., Lemke, E.A., *et al.* (2015). Large-Scale Conformational Dynamics Control
1308 H5N1 Influenza Polymerase PB2 Binding to Importin alpha. *Journal of the American
1309 Chemical Society* *137*, 15122-15134.

1310 Elderfield, R.A., Watson, S.J., Godlee, A., Adamson, W.E., Thompson, C.I., Dunning, J.,
1311 Fernandez-Alonso, M., Blumenkrantz, D., Hussell, T., Investigators, M., *et al.* (2014).
1312 Accumulation of human-adapting mutations during circulation of A(H1N1)pdm09
1313 influenza virus in humans in the United Kingdom. *Journal of virology* *88*, 13269-13283.

1314 Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. *Acta
1315 crystallographica Section D, Biological crystallography* *60*, 2126-2132.

1316 Fan, H., Walker, A.P., Carrique, L., Keown, J.R., Serna Martin, I., Karia, D., Sharps, J.,
1317 Hengrung, N., Pardon, E., Steyaert, J., *et al.* (2019). Structures of influenza A virus RNA
1318 polymerase offer insight into viral genome replication. *Nature* *573*, 287-290.

1319 Foley, E.D.B., Kushwah, M.S., Young, G., and Kukura, P. (2021). Mass photometry enables
1320 label-free tracking and mass measurement of single proteins on lipid bilayers. *Nature
1321 Methods* *18*, 1247-1252.

1322 Gabriel, G., Dauber, B., Wolff, T., Planz, O., Klenk, H.-D., and Stech, J. (2005). The viral
1323 polymerase mediates adaptation of an avian influenza virus to a mammalian host. *PNAS*
1324 *102*, 18590-18595.

1325 Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris, J.H., and Ferrin,
1326 T.E. (2018). UCSF ChimeraX: Meeting modern challenges in visualization and analysis.
1327 *Protein science* *27*, 14-25.

1328 Hengrung, N., El Omari, K., Serna Martin, I., Vreede, F.T., Cusack, S., Rambo, R.P., Vonrhein,
1329 C., Bricogne, G., Stuart, D.I., Grimes, J.M., *et al.* (2015). Crystal structure of the RNA-
1330 dependent RNA polymerase from influenza C virus. *Nature* *527*, 114-117.

1331 Huang, L., Agrawal, T., Zhu, G., Yu, S., Tao, L., Lin, J., Marmorstein, R., Shorter, J., and
1332 Yang, X. (2021). DAXX represents a new type of protein-folding enabler. *Nature* *597*, 132-
1333 137.

1334 Hutchinson, E.C., Orr, O.E., Man Liu, S., Engelhardt, O.G., and Fodor, E. (2011).
1335 Characterization of the interaction between the influenza A virus polymerase subunit PB1
1336 and the host nuclear import factor Ran-binding protein 5. *The Journal of General Virology*
1337 92, 1859-1869.

1338 Huyton, T., and Wolberger, C. (2007). The crystal structure of the tumor suppressor protein
1339 pp32 (Anp32a): structural insights into Anp32 family of proteins. *Protein science* 16, 1308-
1340 1315.

1341 Idoko-Akoh, A., Goldhill, D.H., Sheppard, C.M., Bialy, D., Quantrill, J.L., Sukhova, K.,
1342 Brown, J.C., Richardson, S., Campbell, C., Taylor, L., *et al.* (2023). Creating resistance to
1343 avian influenza infection through genome editing of the ANP32 gene family. *Nat Commun*
1344 14, 6136.

1345 Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L.E., Brookes, D.H., Wilson,
1346 L., Chen, J., Liles, K., *et al.* (2018). Improvements to the APBS biomolecular solvation
1347 software suite. *Protein science* 27, 112-128.

1348 Kouba, T., Drncova, P., and Cusack, S. (2019). Structural snapshots of actively transcribing
1349 influenza polymerase. *Nature Structural & Molecular Biology* 26, 460-470.

1350 Kouba, T., Dubankova, A., Drncova, P., Donati, E., Vidossich, P., Speranzini, V., Pflug, A.,
1351 Huchting, J., Meier, C., De Vivo, M., *et al.* (2023). Direct observation of backtracking by
1352 influenza A and B polymerases upon consecutive incorporation of the nucleoside analog
1353 T1106. *Cell Reports* 42, 111901.

1354 Krischuns, T., Arragain, B., Isel, C., Paisant, S., Budt, M., Wolff, T., Cusack, S., and Naffakh,
1355 N. (2024). The host RNA polymerase II C-terminal domain is the anchor for replication of
1356 the influenza virus genome. *Nat Commun* 15, 1064.

1357 Krischuns, T., Gunl, F., Henschel, L., Binder, M., Willemse, J., Schloer, S., Rescher, U., Gerlt,
1358 V., Zimmer, G., Nordhoff, C., *et al.* (2018). Phosphorylation of TRIM28 Enhances the
1359 Expression of IFN-beta and Proinflammatory Cytokines During HPAIV Infection of
1360 Human Lung Epithelial Cells. *Front Immunol* 9, 2229.

1361 Krischuns, T., Isel, C., Drncova, P., Lukarska, M., Pflug, A., Paisant, S., Navratil, V., Cusack,
1362 S., and Naffakh, N. (2022). Type B and type A influenza polymerases have evolved distinct
1363 binding interfaces to recruit the RNA polymerase II CTD. *PLoS pathogens* 18, e1010328.

1364 Krischuns, T., Lukarska, M., Naffakh, N., and Cusack, S. (2021). Influenza Virus RNA-
1365 Dependent RNA Polymerase and the Host Transcriptional Apparatus. *Annu Rev Biochem*
1366 90, 321-348.

1367 Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline
1368 state. *Journal of Molecular Biology* 372, 774-797.

1369 Long, J.S., Giotis, E.S., Moncorge, O., Frise, R., Mistry, B., James, J., Morisson, M., Iqbal,
1370 M., Vignal, A., Skinner, M.A., *et al.* (2016). Species difference in ANP32A underlies
1371 influenza A virus polymerase host restriction. *Nature* 529, 101-104.

1372 Long, J.S., Idoko-Akoh, A., Mistry, B., Goldhill, D., Staller, E., Schreyer, J., Ross, C.,
1373 Goodbourn, S., Shelton, H., Skinner, M.A., *et al.* (2019). Species specific differences in
1374 use of ANP32 proteins by influenza A virus. *eLife* 8.

1375 Lukarska, M., Fournier, G., Pflug, A., Resa-Infante, P., Reich, S., Naffakh, N., and Cusack, S.
1376 (2017). Structural basis of an essential interaction between influenza polymerase and Pol
1377 II CTD. *Nature* 541, 117-121.

1378 Manz, B., Brunotte, L., Reuther, P., and Schwemmle, M. (2012). Adaptive mutations in NEP
1379 compensate for defective H5N1 RNA replication in cultured human cells. *Nat Commun* 3,
1380 802.

1381 Mehle, A., and Doudna, J.A. (2009). Adaptive strategies of the influenza virus polymerase for
1382 replication in humans. *PNAS USA* 106(50):21312-6.

1383 Mehle, A., Dugan, V.G., Taubenberger, J.K., and Doudna, J.A. (2012). Reassortment and
1384 mutation of the avian influenza virus polymerase PA subunit overcome species barriers.
1385 *Journal of Virology* 86, 1750-1757.

1386 Mistry, B., Long, J.S., Schreyer, J., Staller, E., Sanchez-David, R.Y., and Barclay, W.S. (2019).
1387 Elucidating the interactions between influenza virus polymerase and host factor ANP32A.
1388 *Journal of Virology* 94(3):e01353-19.

1389 Nilsson-Payant, B.E., Sharps, J., Hengrung, N., and Fodor, E. (2018). The Surface-Exposed
1390 PA(51-72)-Loop of the Influenza A Virus Polymerase Is Required for Viral Genome
1391 Replication. *Journal of Virology* 92(16):e00687-18.

1392 Nilsson-Payant, B.E., tenOever, B.R., and Te Velthuis, A.J.W. (2022). The Host Factor
1393 ANP32A Is Required for Influenza A Virus vRNA and cRNA Synthesis. *Journal of*
1394 *Virology* 96, e0209221.

1395 Park, Y.H., Chungu, K., Lee, S.B., Woo, S.J., Cho, H.Y., Lee, H.J., Rengaraj, D., Lee, J.H.,
1396 Song, C.S., Lim, J.M., *et al.* (2020). Host-Specific Restriction of Avian Influenza Virus
1397 Caused by Differential Dynamics of ANP32 Family Members. *The Journal of infectious*
1398 *diseases* *221*, 71-80.

1399 Park, Y.H., Woo, S.J., Chungu, K., Lee, S.B., Shim, J.H., Lee, H.J., Kim, I., Rengaraj, D.,
1400 Song, C.S., Suh, J.Y., *et al.* (2021). Asp149 and Asp152 in chicken and human ANP32A
1401 play an essential role in the interaction with influenza viral polymerase. *FASEB J* *35*,
1402 e21630.

1403 Peacock, T.P., Sheppard, C.M., Lister, M.G., Staller, E., Frise, R., Swann, O.C., Goldhill, D.H.,
1404 Long, J.S., and Barclay, W.S. (2023). Mammalian ANP32A and ANP32B Proteins Drive
1405 Differential Polymerase Adaptations in Avian Influenza Virus. *Journal of Virology* *97*,
1406 e0021323.

1407 Peacock, T.P., Swann, O.C., Salvesen, H.A., Staller, E., Leung, P.B., Goldhill, D.H., Zhou, H.,
1408 Lillico, S.G., Whitelaw, C.B.A., Long, J.S., *et al.* (2020). Swine ANP32A Supports Avian
1409 Influenza Virus Polymerase. *Journal of Virology* *94*.

1410 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and
1411 Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and
1412 analysis. *Journal of Computational Chemistry* *25*, 1605-1612.

1413 Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017). cryoSPARC: algorithms
1414 for rapid unsupervised cryo-EM structure determination. *Nature Methods* *14*, 290-296.

1415 Reich, S., Guilligay, D., Pflug, A., Malet, H., Berger, I., Crepin, T., Hart, D., Lunardi, T.,
1416 Nanao, M., Ruigrok, R.W., *et al.* (2014). Structural insight into cap-snatching and RNA
1417 synthesis by influenza polymerase. *Nature* *516*, 361-366.

1418 Serna Martin, I., Hengrung, N., Renner, M., Sharps, J., Martinez-Alonso, M., Masiulis, S.,
1419 Grimes, J.M., and Fodor, E. (2018). A Mechanism for the Activation of the Influenza Virus
1420 Transcriptase. *Molecular Cell* *70*, 1101-1110 e1104.

1421 Sheppard, C.M., Goldhill, D.H., Swann, O.C., Staller, E., Penn, R., Platt, O.K., Sukhova, K.,
1422 Baillon, L., Frise, R., Peacock, T.P., *et al.* (2023). An Influenza A virus can evolve to use
1423 human ANP32E through altering polymerase dimerization. *Nat Commun* *14*, 6135.

1424 Subbarao, E.K., London, W., and Murphy, B.R. (1993). A single amino acid in the PB2 gene
1425 of influenza A virus is a determinant of host range. *Journal of Virology* *67*, 1761-1764.

1426 Sugiyama, K., Kawaguchi, A., Okuwaki, M., and Nagata, K. (2015). pp32 and APRIL are host
1427 cell-derived regulators of influenza virus RNA synthesis from cRNA. *eLife* 4.

1428 Swann, O.C., Rasmussen, A.B., Peacock, T.P., Sheppard, C.M., and Barclay, W.S. (2023).
1429 Avian Influenza A Virus Polymerase Can Utilize Human ANP32 Proteins To Support
1430 cRNA but Not vRNA Synthesis. *mBio* 14, e0339922.

1431 Thierry, E., Guilligay, D., Kosinski, J., Bock, T., Gaudon, S., Round, A., Pflug, A., Hengrung,
1432 N., El Omari, K., Baudin, F., *et al.* (2016). Influenza Polymerase Can Adopt an Alternative
1433 Configuration Involving a Radical Repacking of PB2 Domains. *Molecular Cell* 61, 125-
1434 137.

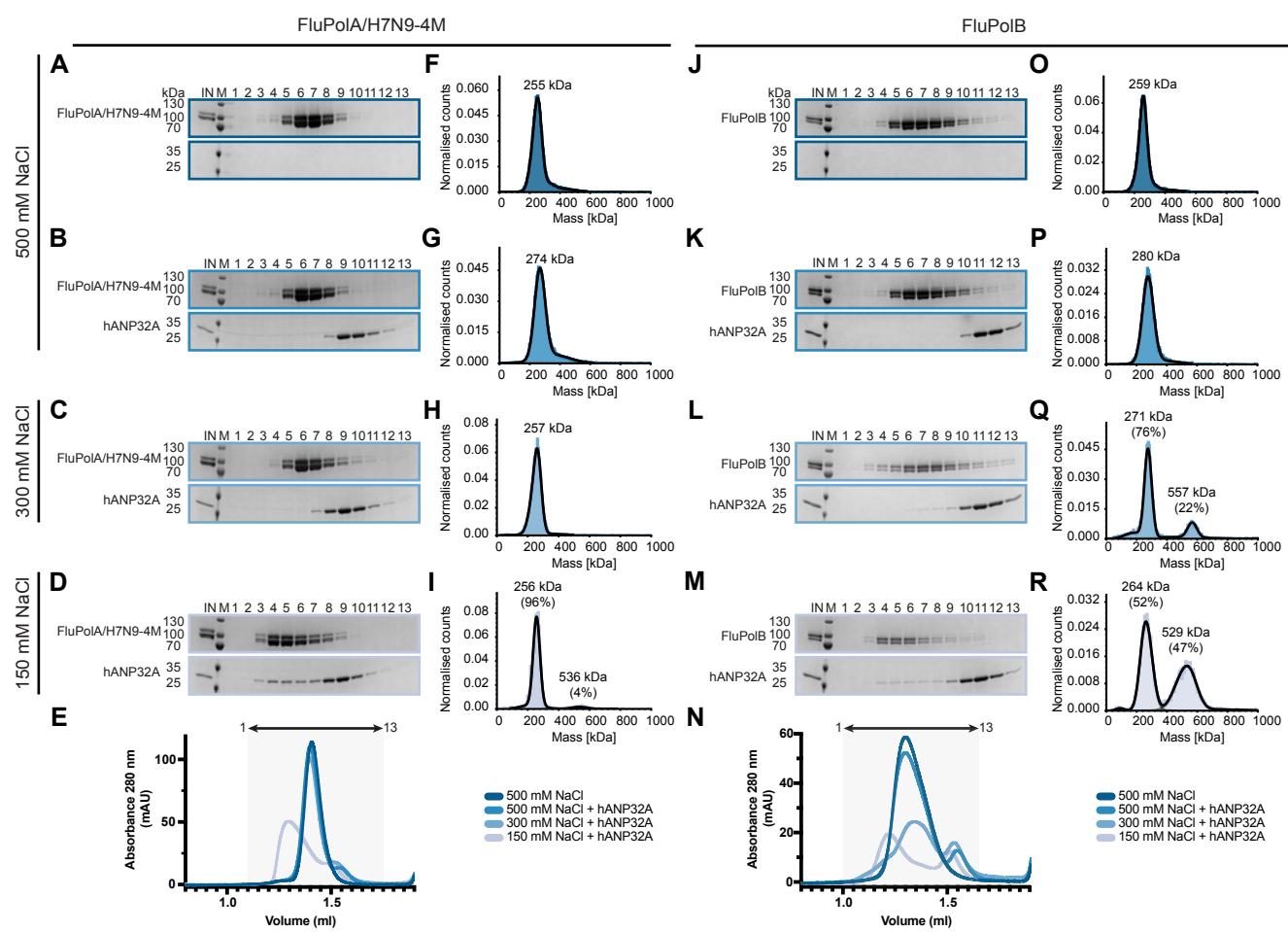
1435 Wandzik, J.M., Kouba, T., and Cusack, S. (2021). Structure and Function of Influenza
1436 Polymerase. *Cold Spring Harb Perspect Med* 11.

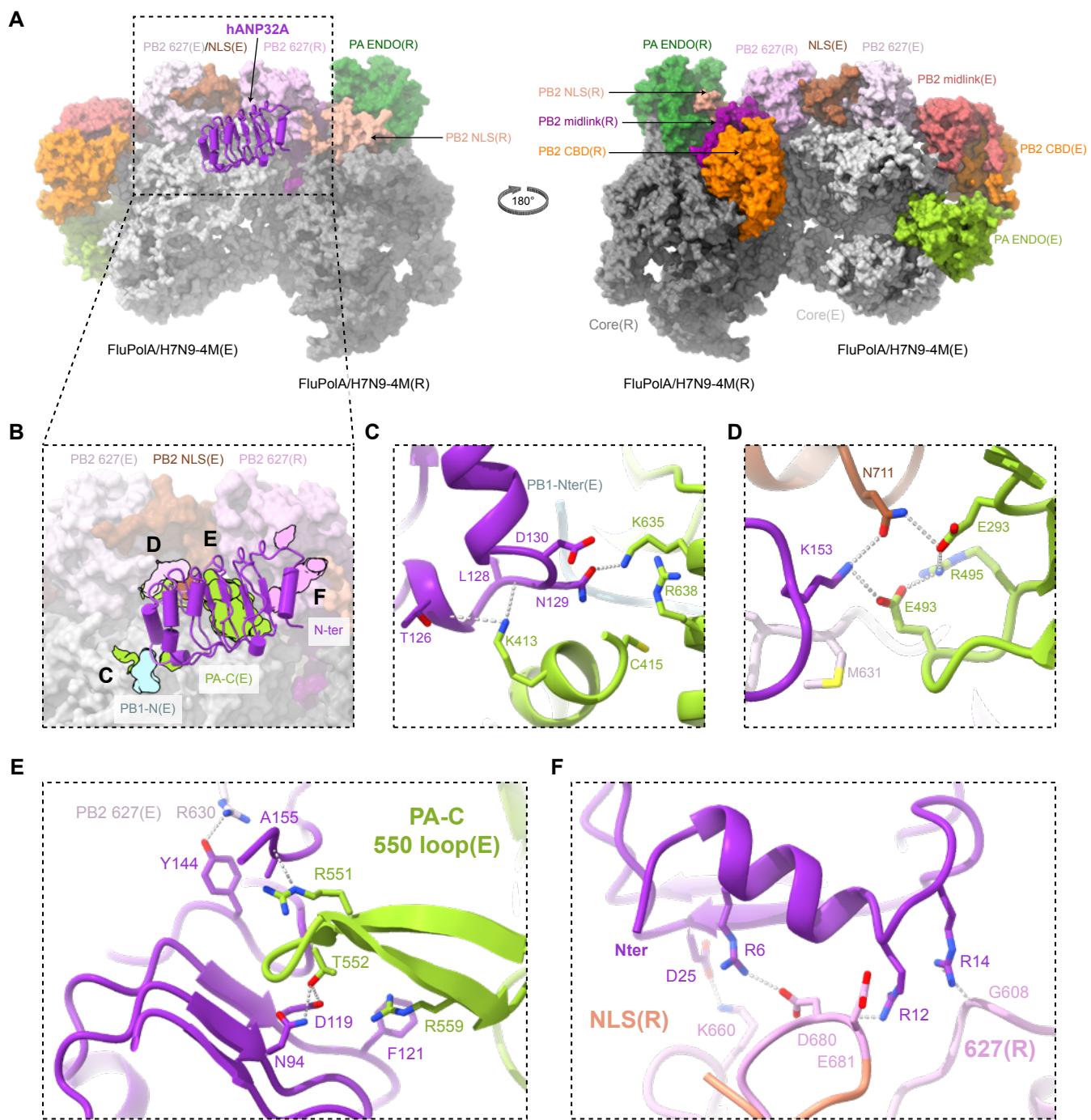
1437 Wandzik, J.M., Kouba, T., Drncova, P., Karuppasamy, M., Pflug, A., Provaznik, J., Azevedo,
1438 N., and Cusack, S. (2020). A structure-based model for the complete transcription cycle of
1439 influenza polymerase. *Cell* 181(4):877-893.e21.

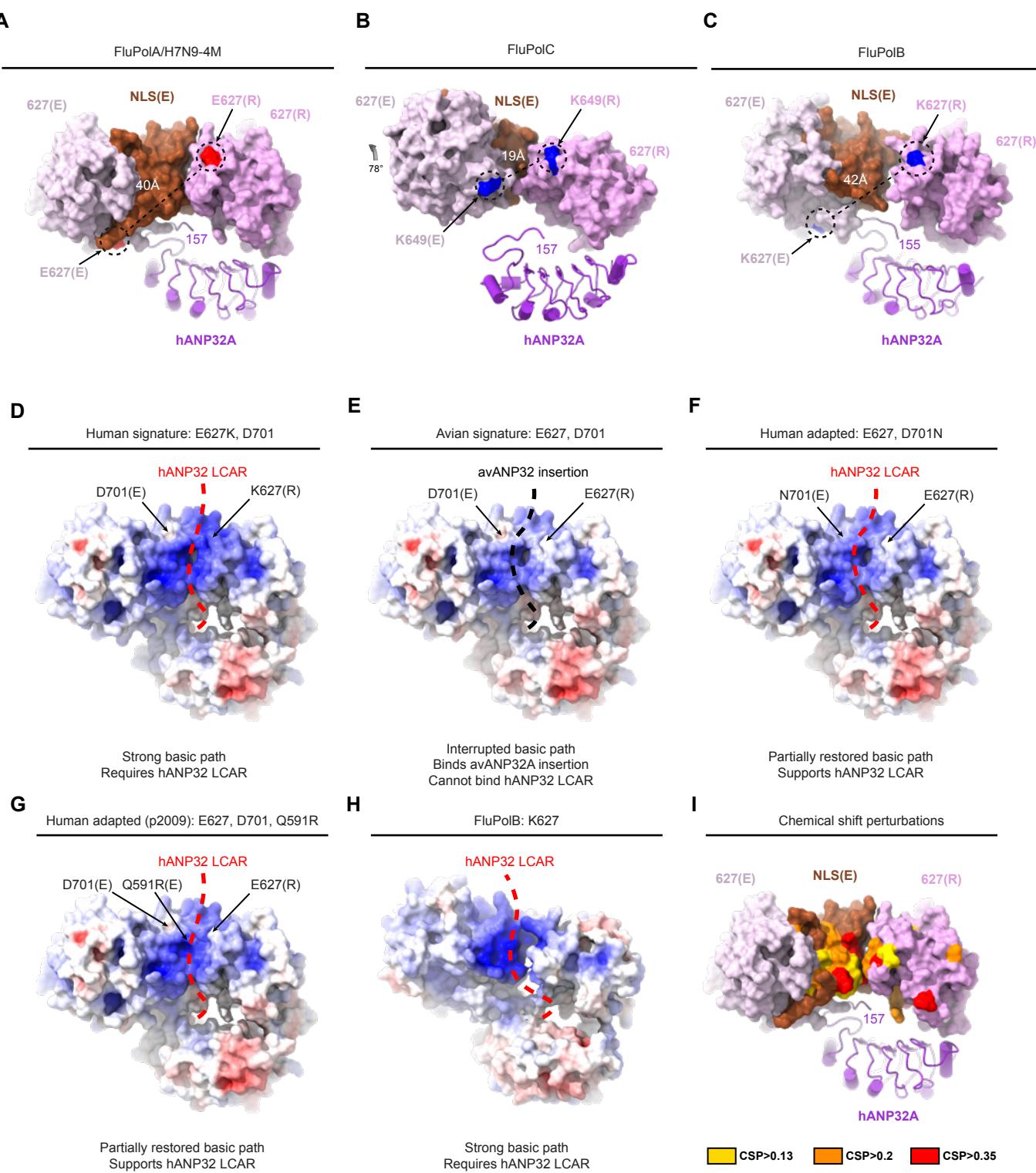
1440 Wang, F., Sheppard, C.M., Mistry, B., Staller, E., Barclay, W.S., Grimes, J.M., Fodor, E., and
1441 Fan, H. (2022). The C-terminal LCAR of host ANP32 proteins interacts with the influenza
1442 A virus nucleoprotein to promote the replication of the viral RNA genome. *Nucleic Acids*
1443 *Research* 50, 5713-5725.

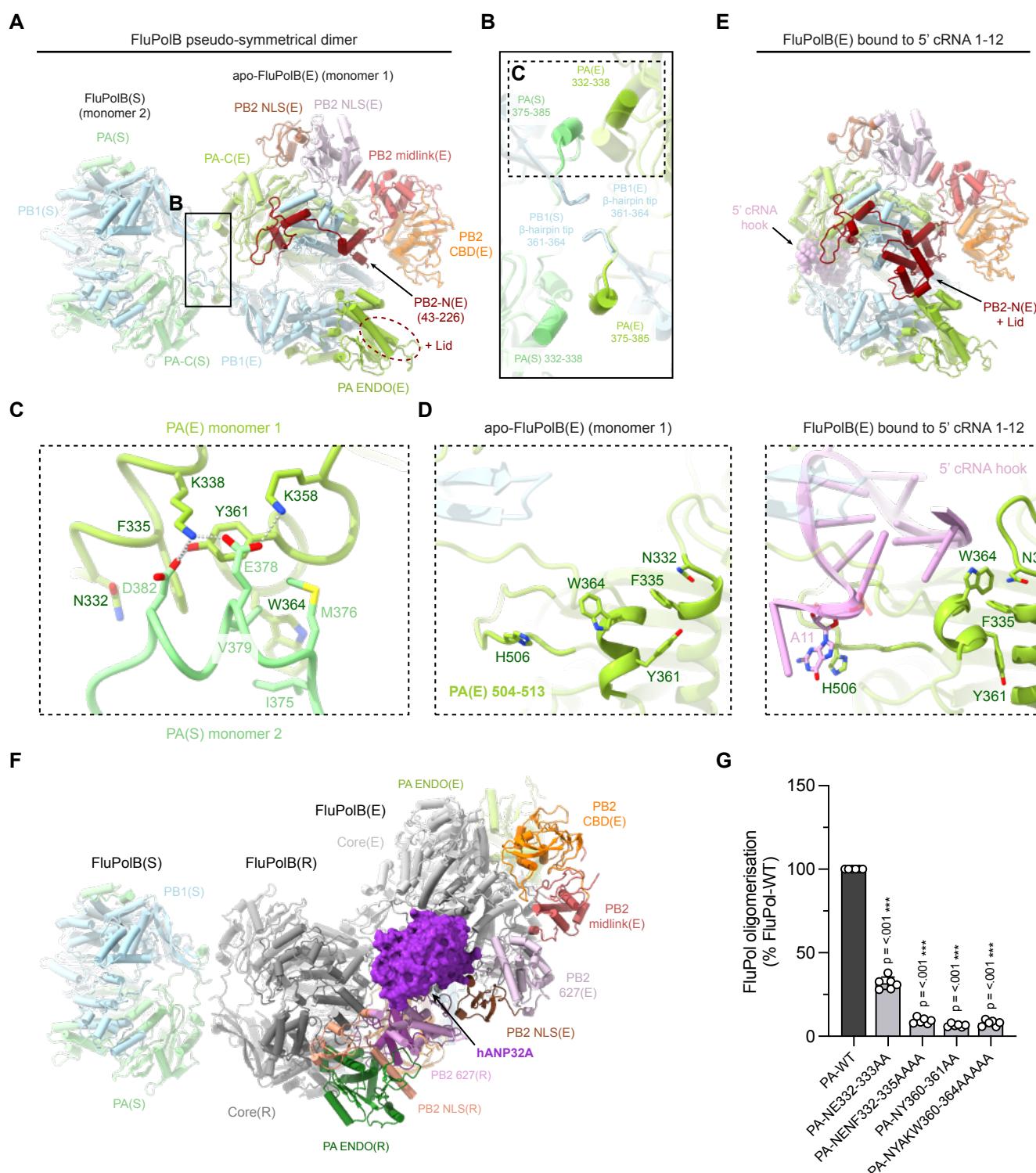
1444 Yu, M., Qu, Y., Zhang, H., and Wang, X. (2022). Roles of ANP32 proteins in cell biology and
1445 viral replication. *Animal Diseases* 2.

1446 Zhang, H., Zhang, Z., Wang, Y., Wang, M., Wang, X., Zhang, X., Ji, S., Du, C., Chen, H., and
1447 Wang, X. (2019). Fundamental Contribution and Host Range Determination of ANP32A
1448 and ANP32B in Influenza A Virus Polymerase Activity. *Journal of Virology* 93.

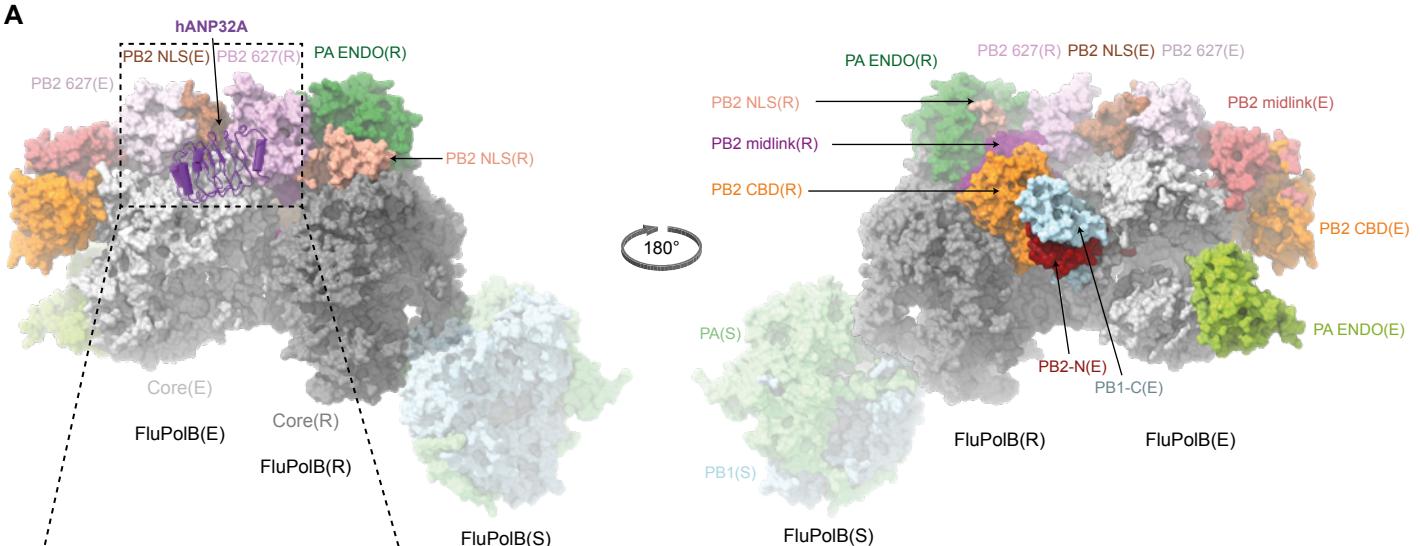

1449 Zhang, Z., Zhang, H., Xu, L., Guo, X., Wang, W., Ji, Y., Lin, C., Wang, Y., and Wang, X.
1450 (2020). Selective usage of ANP32 proteins by influenza B virus polymerase: Implications
1451 in determination of host range. *PLoS Pathogens* 16, e1008989.

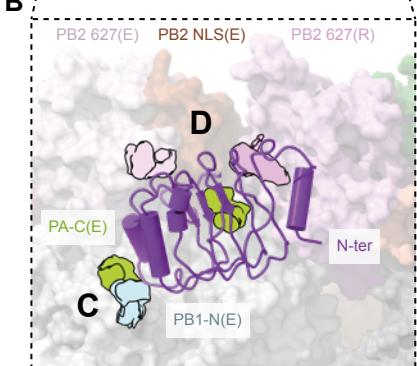

1452 Zheng, L., Baumann, U., and Reymond, J.L. (2004). An efficient one-step site-directed and
1453 site-saturation mutagenesis protocol. *Nucleic Acids Research* 32, e115.

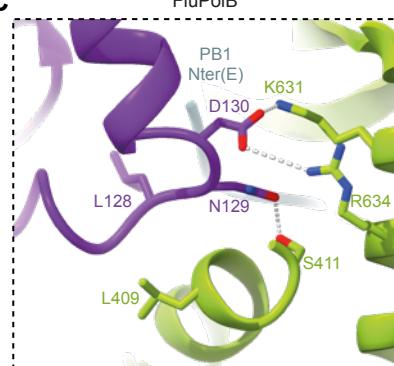

1454 Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., and Agard, D.A. (2017).
1455 MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron
1456 microscopy. *Nature Methods* 14, 331-332.

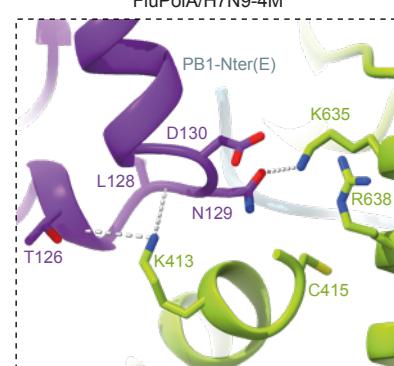

1457 Zhu, Z., Fodor, E., and Keown, J.R. (2023). A structural understanding of influenza virus
1458 genome replication. *Trends Microbiol* 31, 308-319.

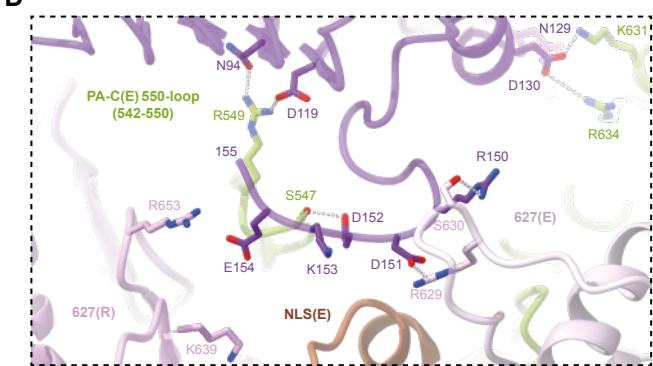
1459

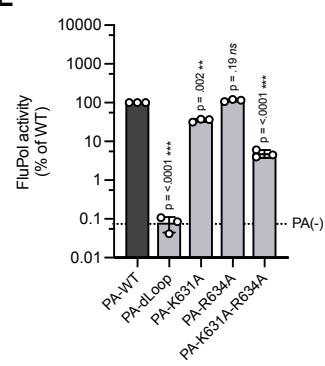


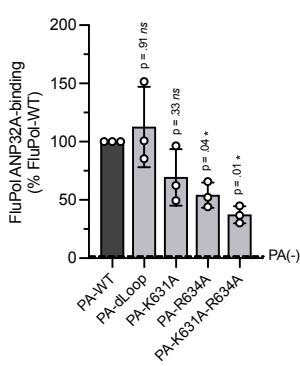


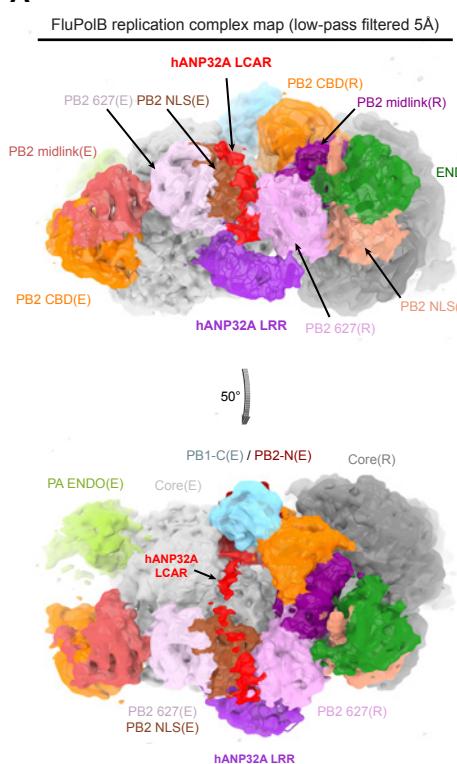

A

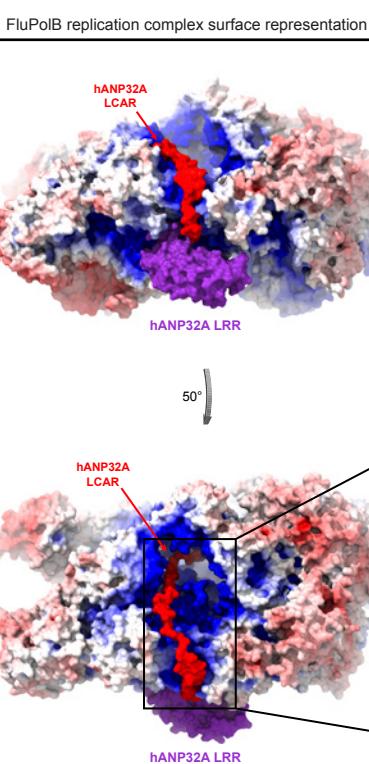

B

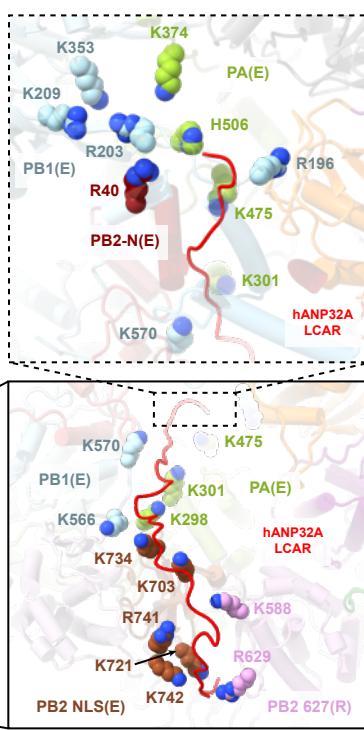

C FluPolB

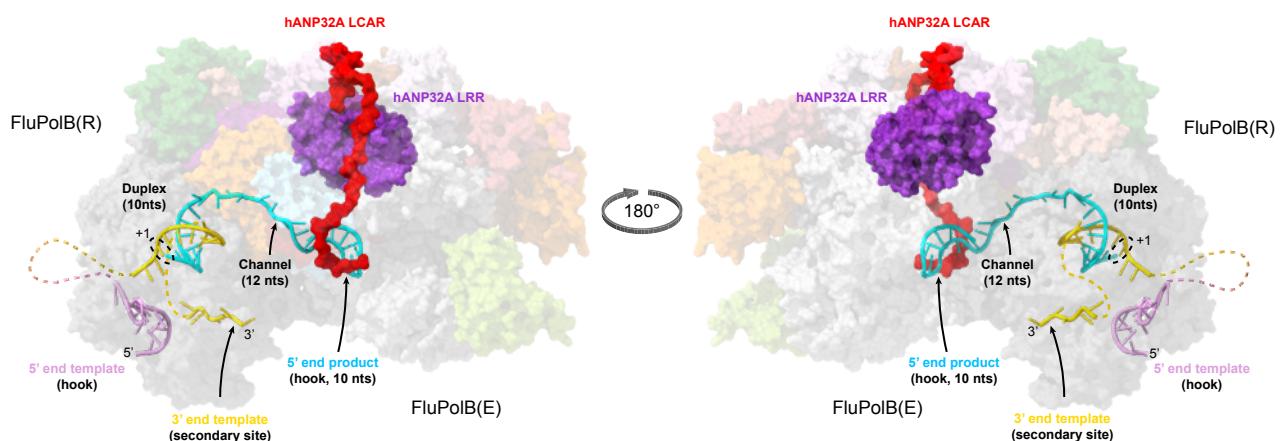

FluPolA/H7N9-4M

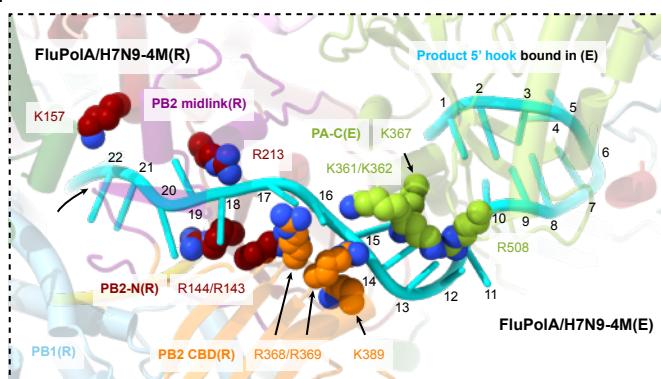

D

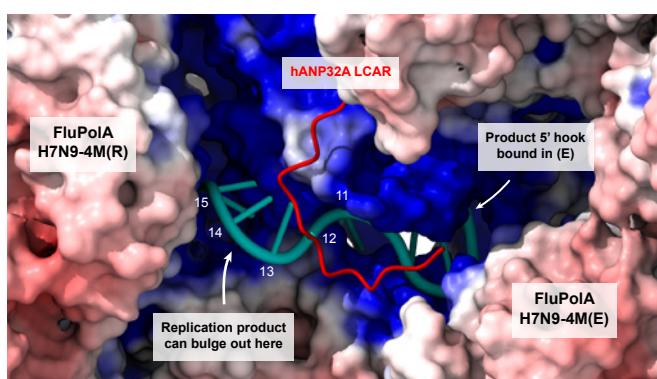

E

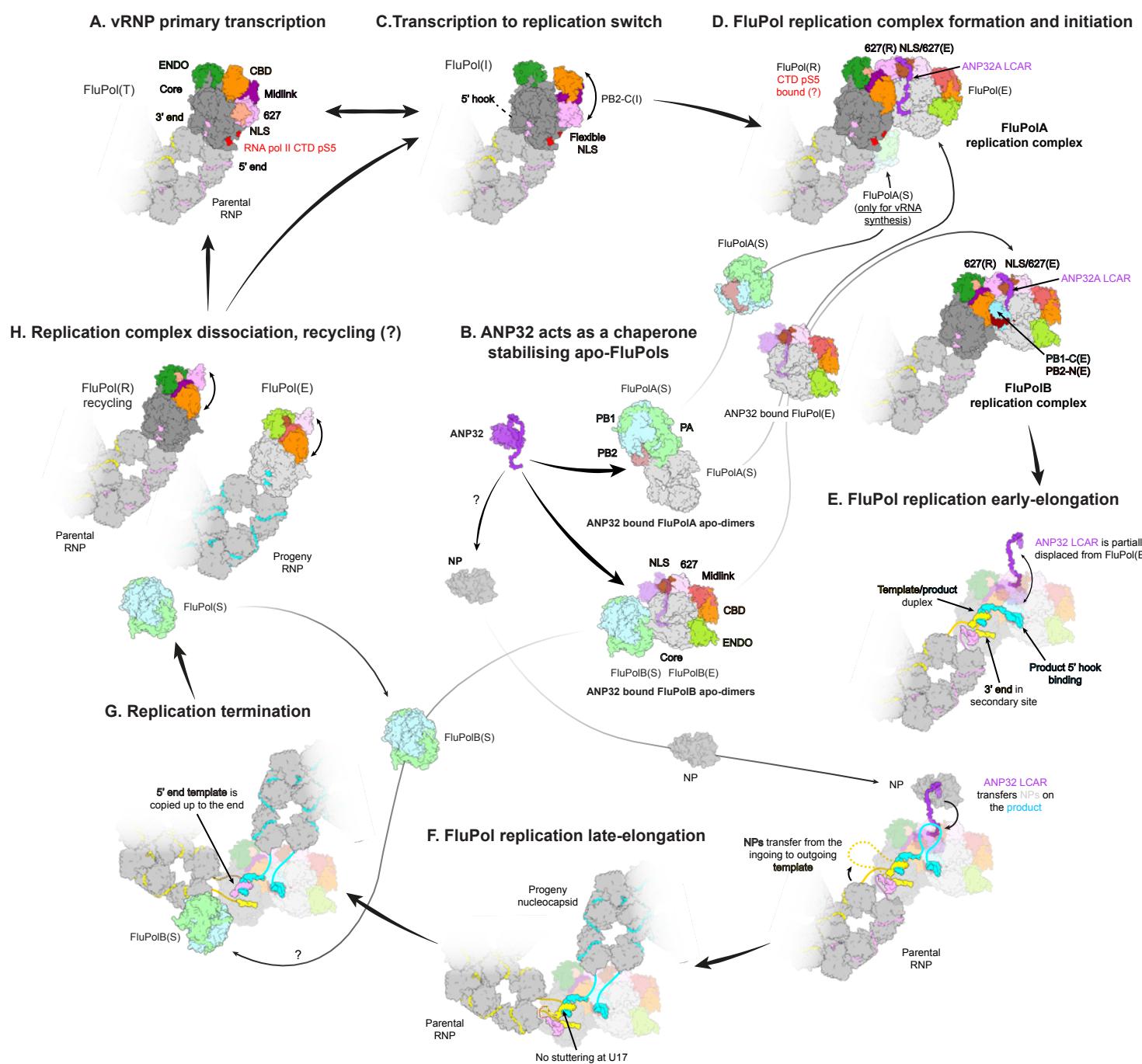

F


A


B


C


D



E

F

Supplemental information

Tables S1-S4. Cryo-EM data collection, refinement and validation statistics

Figures S1-S8

Supplemental Information 1-5 and 7. Cryo-EM data processing pipelines

Supplemental Information 6. ANP32 multiple sequence alignment.

Table S1. Cryo-EM data collection, refinement and validation statistics for A/H7N9-4M polymerase with hANP32A.

Sample	A/H7N9-4M polymerase with hANP32				
Structure	Endo(R) core1	Endo(R) core2	Focus replicase minus 627(R)	Focus Encapsidase plus 627(R) hANP32	Complete replication complex
PDB ID	PDB ID 8RMP	PDB ID 8RMQ	PDB ID 8RMS	PDB ID 8RN0	PDB ID 8RMR
EMDB ID	EMD-19366	EMD-19367	EMD-19369	EMD-19382	EMD-19368
Data collection and processing					
Microscope	ThermoFisher Krios TEM				
Voltage (kV)	300				
Camera	Gatan K3 direct electron detector mounted on a Gatan Bioquantum LS/967 energy filter				
Magnification	105,000				
Nominal defocus range (μm)	-0.8 / -2				
Electron exposure (e ⁻ /Å ²)	40				
Pixel size (Å)	0.84				
Initial micrographs (no.)	14,001				
Final micrographs (no.)	13,328				
Refinement					
Particles per class (no.)	56,572	277,339	18,596		
Map resolution (Å), 0.143 FSC	2.77	2.54	3.21	3.13	3.25
Model resolution (Å), 0.5 FSC	3.0	2.6	3.76	3.60	3.80
Map sharpening B factor (Å ²)	-75	-87	-56	-56	-55
Map versus model cross-correlation (CCmask)	0.8241	0.8462	0.7118	0.8241	0.8462
Model composition					
Non-hydrogen atoms	13818	13676	16190	18082	34215
Protein residues	1717	1699	2019	2262	4273
Water	-	7	-	-	-
Ligands	1 Mg	2 Mg	1 Mg	-	2 Mg
B factors (Å ²)					
Protein	79.96	49.91	99.99	116.09	100.81
Water	-	21.56	-	-	-
RMS deviations					
Bond lengths (Å)	0.003	0.003	0.002	0.002	0.002
Bond angles (°)	0.512	0.484	0.466	0.482	0.502

Validation					
MolProbity score	1.76	1.65	1.58	1.76	1.77
All-atom clash score	4.49	4.57	7.06	8.05	8.85
Poor rotamers (%)	2.95	2.45	0.17	0.15	0.26
Ramachandran plot					
Favored (%)	97.00	97.38	96.85	95.44	95.73
Allowed (%)	2.94	2.62	3.15	4.43	4.20
Outliers (%)	0.06	0.0	0.0	0.13	0.07

Table S2. Cryo-EM data collection, refinement and validation statistics for B/Memphis polymerase with hANP32A.

Sample	B/Memphis polymerase with hANP32				
Structure	Focus replicase minus 627(R)	Focus Encapsidase plus 627(R) and hANP32	Complete replication complex	Complete Trimer	Monomer
PDB ID	PDB ID 8RN9	PDB ID 8RNB	PDB ID 8RNC	PDB ID 8RNA	PDB ID 8RN2
EMDB ID	EMD-19391	EMD-19393	EMD-19394	EMD-19392	EMD-19384
Data collection and processing					
Microscope	ThermoFisher Krios TEM				
Voltage (kV)	300				
Camera	Gatan K3 direct electron detector mounted on a Gatan Bioquantum LS/967 energy filter				
Magnification	105,000				
Nominal defocus range (μm)	-0.8 / -2.0				
Electron exposure (e-/Å ²)	40				
Pixel size (Å)	0.84				
Initial micrographs (no.)	15,650				
Final micrographs (no.)	15,234				
Refinement					
Particles per class (no.)	24,051				167,036
Map resolution (Å), 0.143 FSC	3.31	3.13	3.52	3.57	2.89
Model resolution (Å), 0.5 FSC	3.6	3.6	Composite model not refined	Composite model not refined	3.1
Map sharpening <i>B</i> factor (Å ²)	-59	-61	-64	-61	-98
Map versus model cross-correlation (CCmask)	0.7848	0.7892	Composite model not refined	Composite model not refined	0.7559
Model composition					
Non-hydrogen atoms	17876	20714	35638	45474	15504
Protein residues	2246	2594	4477	5718	1952
Mean <i>B</i> factor (Å ²)					
Protein	87.56	110.96	93.41	88.31	70.96
RMS deviations					

Bond lengths (Å)	0.003	0.002	0.002	0.002	0.003
Bond angles (°)	0.529	0.487	0.508	0.505	0.545
Validation					
MolProbity score	1.77	1.76	1.80	1.74	1.95
All-atom clash score	7.94	7.94	8.60	8.00	7.18
Poor rotamers (%)	0.31	0.40	0.33	0.68	2.05
Ramachandran plot					
Favored (%)	95.15	95.25	95.22	95.64	95.46
Allowed (%)	4.81	4.67	4.71	4.29	4.54
Outliers (%)	0.04	0.08	0.07	0.07	0.0

Table S3. Cryo-EM data collection, refinement and validation statistics for B/Memphis polymerase pseudo-symmetric dimer.

Sample	B/Memphis polymerase with hANP32A					
Structure	Symmetric dimer focus encapsidase	Symmetric dimer Encap+ Focus Endo(R)	Symmetric dimer Encap+ Focus Endo(E)	Symmetric dimer Encap+ Focus Endo(T)	Symmetric dimer Encap+ Focus Core	Complete Sym dimer Encap+Mix
PDB ID	PDB ID 8RN3	PDB ID 8RN5	PDB ID 8RN6	PDB ID 8RN4	PDB ID 8RN7	PDB ID 8RN8
EMDB ID	EMD-19385	EMD-19387	EMD-19388	EMD-19386	EMD-19389	EMD-19390
Data collection and processing						
Microscope	ThermoFisher Krios TEM					
Voltage (kV)	300					
Camera	Gatan K3 direct electron detector mounted on a Gatan Bioquantum LS/967 energy filter					
Magnification	105,000					
Nominal defocus range (μm)	-0.8 / -2.0					
Electron exposure (e-/Å ²)	40					
Pixel size (Å)	0.84					
Initial micrographs (no.)	15,650					
Final micrographs (no.)	15,234					
Refinement						
Particles per class (no.)	179,550	92,684	88,053	86,279	34,404	179,550
Map resolution (Å), 0.143 FSC	2.75	2.88 (dimer 3.07)	2.82 (dimer 3.0)	2.87 (dimer 3.10)	3.09 (dimer 3.38)	2.92
Model resolution (Å), 0.5 FSC	2.9	3.1	3.0	3.1	3.3	3.0
Map sharpening <i>B</i> factor (Å ²)	-90	-93	-94	-94	-79	-100
Map versus model cross-correlation (CCmask)	0.8543	0.7680	0.8671	0.8160	0.7917	0.8087
Model composition						
Non-hydrogen atoms	15528	16487	11544	13718	12105	25662
Protein residues	1955	2074	1455	1721	1524	3234
Water	-	-	-	-	-	-
Ligands	2 Mg	1 Mg	-	2 Mg	1 Mg	5 Mg

Mean <i>B</i> factors (Å²)						
Protein	39.07	107.66	55.67	50.32	83.82	59.20
Water	-					-
RMS deviations						
Bond lengths (Å)	0.003	0.002	0.003	0.002	0.002	0.003
Bond angles (°)	0.574	0.473	0.551	0.478	0.483	0.495
Validation						
MolProbity score	2.11	1.91	1.88	1.63	1.63	1.81
All-atom clash score	7.65	6.13	5.85	5.13	6.96	6.27
Poor rotamers (%)	3.05	2.54	2.21	1.73	0.0	1.95
Ramachandran plot						
Favored (%)	95.31	96.15	95.69	97.00	96.34	96.35
Allowed (%)	4.53	3.80	4.24	2.94	3.60	3.56
Outliers (%)	0.15	0.05	0.07	0.06	0.07	0.09

Table S4. Cryo-EM data collection, refinement and validation statistics for B/Memphis encapsidase bound to 5' cRNA 1-12.

Sample	B/Memphis polymerase with 5' cRNA 1-12
Structure	
PDB ID	PDB ID 8RN1
EMDB ID	EMD-19383
Data collection and processing	
Microscope	Glacios
Voltage (kV)	200
Camera	Falcon 4i / SelectrisX
Magnification	130,000
Nominal defocus range (μm)	-0.8 / -2.0
Electron exposure (e-/Å ²)	40
Pixel size (Å)	0.878
Initial micrographs (no.)	2,451
Final micrographs (no.)	2,353
Refinement	
Particles per class (no.)	15,009
Map resolution (Å), 0.143 FSC	3.64
Model resolution (Å), 0.5 FSC	3.85
Map sharpening <i>B</i> factor (Å ²)	-90
Map versus model cross-correlation (CCmask)	0.8013
Model composition	
Non-hydrogen atoms	16468
Protein residues	2037
RNA nts	12
Mean <i>B</i> factors (Å²)	
Protein	109.41
RNA	75.42
RMS deviations	
Bond lengths (Å)	0.003
Bond angles (°)	0.532
Validation	
MolProbity score	1.84
All-atom clash score	10.27
Poor rotamers (%)	0.34
Ramachandran plot	
Favored (%)	95.50
Allowed (%)	4.50
Outliers (%)	0.0

Figure S1. Biochemical analysis of the interaction of FluPolA/H7N9-4M and FluPolB with different hANP32A constructs.

(A) SDS-PAGE analysis of FluPolA/H7N9-4M-hANP32A at 150 mM NaCl. The molecular ladder (M) in kDa, FluPolA/H7N9-4M heterotrimer, and hANP32A are indicated on the left of the gel. “IN” corresponds to the input. This data is also presented in **Figure 1D**.

(B-D) SDS-PAGE analysis of FluPolA/H7N9-4M interaction with hANP32A 1-149 (LRR domain alone) **(B)**, hANP32A 1-199 (LRR domain with half the LCAR) **(C)**, and hANP32A 144-C-terminus (LCAR alone) **(D)** at 150 mM NaCl. The molecular ladder (M) in kDa, FluPolA/H7N9-4M heterotrimer, and hANP32A constructs are indicated on the left of the gel. “IN” corresponds to the input.

(E) Superposition of size exclusion chromatography profiles of FluPolA/H7N9-4M with hANP32A (blue-grey), hANP32A 1-149 (dark blue), hANP32A 1-199 (green) and hANP32A 144-C-terminus (yellow) at 150 mM NaCl. SEC profile of FluPolA/H7N9-4M with hANP32A is presented in **Figure 1E**. The relative absorbance at 280 nm (mAU) is on the y-axis. The elution volume (ml) is on the x-axis, graduated every 50 µl. SDS-PAGE fractions 1 to 13 corresponds to the elution volume 1.1 ml - 1.75 ml, represented as an arrow on top.

(F) Mass photometry analysis of FluPolA/H7N9-4M-hANP32A interaction at 150 mM NaCl. The determined masses in kDa of the main species are indicated. This data is also presented in **Figure 1I**.

(G-I) Mass photometry analysis of FluPolA/H7N9-4M interaction with hANP32A 1-149 (LRR domain alone) **(G)**, hANP32A 1-199 (LRR domain with half the LCAR) **(H)**, and hANP32A 144-C-terminus (LCAR alone) **(I)**, at 150 mM NaCl. The determined masses in kDa of the main species are indicated.

(J) SDS-PAGE analysis of FluPolB-hANP32A interaction at 150 mM NaCl. The molecular ladder (M) in kDa, FluPolB heterotrimer and hANP32A are indicated on the left of the gel. “IN” corresponds to the input. This data is presented in **Figure 1M**.

(K-M) SDS-PAGE analysis of FluPolB interaction with hANP32A 1-149 (LRR domain alone) **(K)**, hANP32A 1-199 (LRR domain with half the LCAR) **(L)**, and hANP32A 144-C-terminus (LCAR alone) **(M)**, at 150 mM NaCl. The molecular ladder (M) in kDa, FluPolB heterotrimer, and hANP32A constructs are indicated on the left of the gel. “IN” corresponds to the input.

(N) Superposition of size exclusion chromatography profiles of FluPolB with hANP32A (blue-grey), hANP32A 1-149 (dark blue), hANP32A 1-199 (green) and hANP32A 144-C-terminus

(yellow) at 150 mM NaCl. SEC profile of FluPolB with hANP32A is presented in **Figure 1N**. The relative absorbance at 280 nm (mAU) is on the y-axis. The elution volume (ml) is on the x-axis, graduated every 50 μ l. SDS-PAGE fractions 1 to 13 corresponds to the elution volume 1.0 ml - 1.65 ml, represented as an arrow on top.

(O) Mass photometry analysis of FluPolB-hANP32A interaction at 150 mM NaCl. The determined masses in kDa of the main species are indicated. This data is presented in **Figure 1R**.

(P-R) Mass photometry analysis of FluPolB interaction with hANP32A 1-149 (LRR domain alone) **(P)**, hANP32A 1-199 (LRR domain with half the LCAR) **(Q)**, and hANP32A 144-C-terminus (LCAR alone) **(R)**, at 150 mM NaCl. The determined masses in kDa of the main species are indicated.

(S) SDS-PAGE analysis of FluPolA/H7N9-WT at 650 mM NaCl. The molecular ladder (M) in kDa, FluPolA/H7N9-WT heterotrimer, are indicated on the left of the gel.

(T) SDS-PAGE analysis of FluPolA/H7N9-WT interaction with hANP32A at 200 mM NaCl. The molecular ladder (M) in kDa, FluPolA/H7N9-WT heterotrimer, and hANP32A are indicated on the left of the gel.

(U) SDS-PAGE analysis of FluPolA/H7N9-WT in complex with vRNA promoter bound. The molecular ladder (M) in kDa, FluPolA/H7N9-WT heterotrimer are indicated on the left of the gel.

(V) Superposition of size exclusion chromatography profiles of FluPolA/H7N9-WT at 650 mM NaCl (yellow), 200 mM NaCl with hANP32A (orange), 200 mM NaCl with vRNA promoter bound (dark blue). The relative absorbance at 280 nm (mAU) is on the y-axis. The elution volume (ml) is on the x-axis, graduated every 50 μ l. SDS-PAGE fractions 1 to 10 corresponds to the elution volume 1.1 ml - 1.6 ml, represented as an arrow on top.

Figure S2. Structural comparison of FluPolA/H7N9 transcriptase, replicase and encapsidase conformations.

(A) Cartoon representation of FluPolA/H7N9 in the transcriptase conformation (FluPolA/H7N9(T)) (PDB 7QTL). FluPolA/H7N9(T) core is dark grey, shown in transparency, PA ENDO(T) in dark green, PB1-C(T) in blue, PB2-N(T) in red, PB2 midlink(T) in magenta, PB2 CBD(T) in orange, PB2 627(T) in pink, PB2 NLS(T) in beige.

(B) Cartoon representation of FluPolA/H7N9-4M in the replicase conformation (FluPolA/H7N9-4M(R)), extracted from the replication complex and aligned on FluPolA/H7N9(T) PB1 subunit. FluPolA/H7N9-4M(R) core is in dark grey, shown in transparency, PA ENDO(R) in dark green, PB1-C(R) in blue, PB2-N(R) in red, PB2 midlink(R) in magenta, PB2 CBD(R) in orange, PB2 627(R) in pink, PB2 NLS(R) in beige.

(C) Cartoon representation of FluPolA/H7N9-4M in the encapsidase conformation (FluPolA/H7N9-4M(E)), extracted from the replication complex and aligned on FluPolA/H7N9(T) PB1 subunit. FluPolA/H7N9-4M(E) core is in light grey, shown in transparency, PA ENDO(E) in light green, PB2 midlink(E) in salmon, PB2 CBD(E) in orange, PB2 627(E) in light pink, PB2 NLS(E) in brown. PB1-C(E) and PB2-N(E) are flexible. Specific interactions within FluPolA/H7N9-4M(E) are annotated with dotted black circles, and refer to panels **(F)** and **(G)**.

(D) PA-endonuclease (ENDO) conformation comparison between FluPolA/H7N9(T) and FluPolA/H7N9-4M(R). ENDOs are displayed as transparent surface, coloured from the N-terminus to the C-terminus from dark to light green. ENDO(R) rotates and interacts with PB2 NLS(R), represented as cartoon and coloured in beige.

(E) Cartoon representation of PB2(R) C-terminal domains and PB1(R) palm domain. PB2(R) C-terminal domains are coloured as in **(B)**. PB2 CBD(R) interacts with PB1 palm domain, in light grey. Catalytic aspartic acids are shown with atoms as spheres, circled with a dotted line.

(F) Close-up view of PA ENDO(E) flexible insertion (51-72) interacting with PB2 CBD(E). Domains are coloured as in **(C)**. PA ENDO(E) residues 67-72 are flexible, represented as a dotted line. Ionic and hydrogen bonds are shown as grey dotted lines.

(G) Close-up view of the interaction between PB2-N(E) and PB2 midlink(E). Domains are coloured as in **(C)**. Interacting residues are displayed.

Figure S3. Interface between FluPolA/H7N9-4M(R) and FluPolA/H7N9-4M(E).

(A) Overview of the interacting domains between FluPolA/H7N9-4M(R) and FluPolA/H7N9-4M(E). Both replicase and encapsidase moiety were split and rotated of 50 degree. Interacting surface is shown as non-transparent. Most domains are coloured as in **Figure 2**, with PA(R) in dark green, PB2-N(R) in red. For the three main interfaces, a close-up view is shown in panels **(B)**, **(F)**, **(G)**.

(B) FluPolA/H7N9-4M PA-C(R), PB2-N(R) and FluPolA/H7N9-4M PA(E) arch interaction. Domains are coloured as in **(A)**. Interacting residues are displayed, shown as non-transparent. Ionic and hydrogen bonds are shown as grey dotted lines.

(C) Mutational analysis of the PB2-N(R) - PA(E) arch interaction shown in **(B)**. Cell-based assay of WSN FluPol activity for the indicated PA and PB2 mutants and combinations thereof. HEK-293T cells were co-transfected with plasmids encoding PB2, PB1, PA, NP with a model vRNA encoding the Firefly luciferase. Luminescence was normalised to a transfection control and is represented as a percentage of FluPol WT (mean \pm SD, n=3, **p < 0.002, ***p < 0.001, one-way ANOVA; Dunnett's multiple comparisons test).

(D) Mutational analysis of the PB2-N(R) - PA(E) arch interaction shown in **(B)**. Cell-based assay of WSN FluPol activity for the indicated PA and PB2 mutants and combinations thereof. HEK-293T in which hANP32A and hANP32B were knocked out were transfected as in **(C)** and transiently complemented by co-transfection of plasmids encoding hANP32A, hANP32B or chANP32A. Luminescence was normalised to a transfection control and is represented as a percentage of FluPol WT (mean \pm SD, n=3, ***p < 0.001, two-way ANOVA; Dunnett's multiple comparisons test).

(E) Mutational analysis of the PB2-N(R) - PA(E) arch interaction as shown in **(B)**. Cell-based assay of WSN FluPol binding to ANP32 for the indicated PA and PB2 mutants and combinations thereof. HEK-293T cells were co-transfected with plasmids encoding PB2, PA, PB1-luc1 and either hANP32A-luc2, hANP32B-luc2 or chANP32A-luc2. Luminescence signals due to luciferase reconstitution are represented as a percentage of FluPol WT (mean \pm SD, n=3, **p < 0.002, ***p < 0.001, two-way ANOVA; Dunnett's multiple comparisons test).

(F) FluPolA/H7N9-4M PB2 627(R) C-terminal β -sheet and FluPolA/H7N9-4M PA-C 550-loop(E) interaction. Domains are coloured as in **(A)**. Interacting residues are displayed, shown as non-transparent. Ionic and hydrogen bonds are shown as grey dotted lines.

(G) FluPolA/H7N9-4M PB2 627(R) and FluPolA/H7N9-4M PB2 NLS(E) interaction. Domains are coloured as in **(A)**. Most of interacting residues are displayed, shown as non-transparent.

(H) Mutational analysis of the PB2-627(R) - PB2-NLS(E) interaction as shown in **(G)**. Cell-based assay of WSN FluPol activity for the indicated PB2 mutants and combinations thereof as described in **(C)** (mean \pm SD, n=4, ***p < 0.001, one-way ANOVA; Dunnett's multiple comparisons test).

(I) Mutational analysis of the PB2-627(R) - PB2-NLS(E) interaction as shown in **(G)**. Cell-based assay of WSN FluPol activity for the indicated PB2 mutants and combinations thereof as described in **(D)** (mean \pm SD, n=3, ***p < 0.001, two-way ANOVA; Dunnett's multiple comparisons test).

(J) Mutational analysis of the PB2-627(R) - PB2-NLS(E) interaction as shown in **(G)**. Cell-based assay of WSN FluPol binding to ANP32 for the indicated PB2 mutants and combinations thereof as described in **(E)** (mean \pm SD, n=3, ***p < 0.001, two-way ANOVA; Dunnett's multiple comparisons test).

Figure S4. Interface between FluPolA/H7N9-4M and hANP32A.

(A) Mutational analysis of the PA(E)-hANP32A interaction shown in **Fig. 2C**. Cell-based assay of WSN FluPol activity for the indicated PA mutants. HEK-293T WT cells were co-transfected with plasmids encoding PB2, PB1, PA, NP with a model vRNA encoding the Firefly luciferase. Luminescence was normalised to a transfection control and is represented as a percentage of PA-WT (mean \pm SD, n=3, ***p < 0.001, one-way ANOVA; Dunnett's multiple comparisons test).

(B) Mutational analysis of the PA(E)-hANP32A interaction shown in **Fig. 2C**. Cell-based assay of WSN FluPol activity for the indicated PA mutants. HEK-293T in which hANP32A and hANP32B were knocked out were transfected as in **(A)** and transiently complemented by co-transfection of plasmids encoding hANP32A, hANP32B or chANP32A. Luminescence was normalised to a transfection control and is represented as a percentage of FluPol WT (mean \pm SD, n=3, ***p < 0.001, two-way ANOVA; Dunnett's multiple comparisons test).

(C) Mutational analysis of the PA(E)-hANP32A interaction shown in **Fig. 2C**. Cell-based assay of WSN FluPol binding to ANP32 for the indicated PA mutants. HEK-293T cells were co-transfected with plasmids encoding PB2, PA, PB1-luc1 and either hANP32A-luc2, hANP32B-luc2 or chANP32A-luc2. Luminescence signals due to luciferase reconstitution are represented as a percentage of FluPol WT (mean \pm SD, n=3, ***p < 0.001, two-way ANOVA; Dunnett's multiple comparisons test).

(D) Mutational analysis of the PA(E)-hANP32A interaction shown in **Fig. 2D**. Cell-based assay of WSN FluPol activity for the indicated PA and hANP32A mutants. HEK-293T in which hANP32A and hANP32B were knocked out were transfected as in **(A)** and transiently complemented by co-transfection of plasmids encoding hANP32A-WT or the indicated hANP32A mutants. Luminescence was normalised to a transfection control and is represented as a percentage of WT (mean \pm SD, n=4, ***p < 0.001, one-way ANOVA; Dunnett's multiple comparisons test).

(E) Mutational analysis of the PA(E)-hANP32A interaction shown in **Fig. 2D**. Cell-based assay of WSN FluPol binding to ANP32 for the indicated PA and hANP32A mutants as described in **(C)** (mean \pm SD, n=3, *p < 0.033, **p < 0.002, one-way ANOVA; Dunnett's multiple comparisons test).

(F) Mutational analysis of the PA(E)-hANP32A interaction shown in **Fig. 2E**. Cell-based assay of WSN FluPol activity for the indicated PA and hANP32A mutants as described in **(D)** (mean \pm SD, n=4, ***p < 0.001, one-way ANOVA; Dunnett's multiple comparisons test).

(G) Mutational analysis of the PA(E)-hANP32A interaction shown in **Fig. 2E**. Cell-based assay of WSN FluPol binding to ANP32 for the indicated PA and hANP32A mutants as described in **(C)**

(mean \pm SD, n=3, **p < 0.002, ***p < 0.001, one-way ANOVA; Dunnett's multiple comparisons test).

(H) Mutational analysis of the PB2(R)-hANP32A interaction shown in **Fig. 2F**. Cell-based assay of WSN FluPol activity for the indicated PB2 and hANP32A mutants as described in **(D)** (mean \pm SD, n=4, **p < 0.002, ***p < 0.001, one-way ANOVA; Dunnett's multiple comparisons test).

(I) Mutational analysis of the PB2(R)-hANP32A interaction shown in **Fig. 2F**. Cell-based WSN FluPol ANP32-binding assays of the indicated PB2 and hANP32A mutants as described in **(C)** (mean \pm SD, n=3, *p < 0.033, **p < 0.002, one-way ANOVA; Dunnett's multiple comparisons test).

(J-K) HEK-293T cells were co-transfected with expression plasmids for WSN PB1, PB2 and PA with the indicated PB2 **(J)** or PA **(K)** mutations. Cell lysates were analysed by western blot using antibodies specific for PB2, PA and tubulin. Uncropped gels are provided as a source data file.

(L) HEK-293T cells were transfected with expression plasmids for hANP32A-luc1 with the indicated mutations. Cell lysates were analysed by western blot using antibodies specific for Gaussia luciferase and Histone H3. Uncropped gels are provided as a source data file.

Figure S5. Human adaptive mutations mapped onto the FluPolA/H7N9-4M replication complex.

(A) Overview of hANP32A interaction with FluPolA/H7N9-4M(R) and FluPolA/H7N9-4M(E). Domains are coloured as in **Figure 2**. FluPolA/H7N9-4M adaptive mutations are annotated (PA Q556R, G634E K635E/Q, T639I and PB2 I570L, Q591R, M631L). Corresponding residues of the FluPolA/H7N9-4M replication complex structure are displayed. Atoms are shown as spheres.

(B) Close-up view of PA-C(E) showing the effect of the Q556R mutation. Left: PA-C(E) Q556 residue as built in the FluPolA/H7N9-4M replication complex structure. Right: Modelled PA-C(E) Q556R mutation is likely to make a salt-bridge with hANP32A E154. Ionic bonds are shown as grey dotted lines.

(C) Close-up view of PB2(E) showing the effect of the Q591R mutation. Left: PB2(E) Q591 residue as built in the FluPolA/H7N9-4M replication complex structure. Right: Modelled PB2(E) Q591R mutation is likely to make a salt-bridge with hANP32A D151. Ionic bonds are shown as grey dotted lines.

(D) Close-up view of PA(E) showing the effect of the N321K mutation. Left: PA(E) N321 residue as built in the FluPolA/H7N9-4M replication complex structure. Right: Modelled PA(E) N321K mutation is likely to reinforce the replicase-encapsidase interface, by interacting with PB2 midlink(R) E249. Ionic bonds are shown as grey dotted lines.

Figure S6. 5' vRNA end binding dissociates FluPolB dimer.

(A) SDS-PAGE analysis of FluPolB bound to the 5' vRNA end (nts 1-12) at 150 mM NaCl. The molecular ladder (M) in kDa and FluPolB heterotrimer are indicated on the left of the gel. “IN” corresponds to the input.

(B) SDS-PAGE analysis of FluPolB bound to the 5' vRNA end (1-12) with excess of hANP32A at 150 mM NaCl. The molecular ladder (M) in kDa, FluPolB heterotrimer and hANP32A are indicated on the left of the gel. “IN” corresponds to the input.

(C) Superposition of size exclusion chromatography profiles of FluPolB bound to 5' vRNA end (1-12) (solid line), and with hANP32A (dotted line), at 150 mM NaCl. The relative absorbance at 280 nm (mAU) is on the y-axis. The elution volume (ml) is on the x-axis, graduated every 50 µl. SDS-PAGE fractions 1 to 13 corresponds to the elution volume 1.0 ml - 1.65 ml.

(D) Mass photometry analysis of FluPolB bound to the 5' vRNA end (1-12) at 150 mM NaCl. The determined masses in kDa of the main species are indicated.

(E) Mass photometry analysis of FluPolB bound to the 5' vRNA end (1-12) with excess of hANP32A at 150 mM NaCl. The determined masses in kDa of the main species are indicated.

Figure S7. Structural comparison of FluPolB transcriptase, replicase, encapsidase conformations and between FluPolA/H7N9-4M, FluPolB replication complexes.

(A) Cartoon representation of FluPolB in a transcriptase conformation (FluPolB(T)) (PDB 4WSA). FluPolB(T) core is dark grey, shown in transparency, PA ENDO(T) in dark green, PB1-C(T) in blue, PB2-N(T) in red, PB2 midlink(T) in magenta, PB2 CBD(T) in orange, PB2 627(T) in pink, PB2 NLS(T) in beige.

(B) Cartoon representation of FluPolB in a replicase conformation (FluPolB(R)), extracted from the replication complex and aligned on FluPolB(T) PB1 subunit. FluPolB(R) core is in dark grey, shown in transparency, PA ENDO(R) in dark green, PB1-C(R) in blue, PB2-N(R) in red, PB2 midlink(R) in magenta, PB2 CBD(R) in orange, PB2 627(R) in pink, PB2 NLS(R) in beige.

(C) Cartoon representation of FluPolB in an encapsidase conformation (FluPolB(E)), extracted from the replication complex and aligned on FluPolB(T) PB1 subunit. FluPolB(E) core is in light grey, shown in transparency, PA ENDO(E) in light green, PB1-C(R) in blue, PB2-N(R) in red, PB2 midlink(E) in salmon, PB2 CBD(E) in orange, PB2 627(E) in light pink, PB2 NLS(E) in brown. PB1-C(E) and PB2-N(E) helical bundle swung away, interacting with FluPolB(R) (shown in **Figure S8F**).

(D) Structural comparison between FluPolA/H7N9-4M and FluPolB replication complexes. Domains are coloured as in **(B-C)**. FluPolA/H7N9-4M PA ENDO(R) 63-73 loop is flexible, shown as a dotted line. FluPolB(R) equivalent interacts with FluPolB PB2 627(R), next to W575, displayed and indicated. FluPolB PA ENDO(R) compared to FluPolA/H7N9-4M PA ENDO(R) undergoes a 15 degree rotation, indicated with an arrow. PB2 627(R)/NLS(R) linkers are indicated, taking up an α -helical conformation in FluPolB replication complex.

(E) Structural comparison between FluPolA/H7N9-4M(E) and FluPolB(E). Domains are coloured as in **(C)**. FluPolA/H7N9-4M PA ENDO(E) 63-73 insertion interacts with PB2 CBD(E) (as seen in **Figure S2F**). FluPolB PA ENDO(E), compared to FluPolA/H7N9-4M PA ENDO(E), undergoes a 48 degree rotation, indicated an arrow. FluPolB PA ENDO(E) 63-73 loop is flexible, represented as a dotted line.

Figure S8. Structural comparison between FluPolA/H7N9-4M and FluPolB replication complexes interfaces.

(A) Overview of the interacting domains between FluPol(R) and FluPol(E). Both replicase and encapsidase moiety were split and rotated by 50 degree. Interacting surface is shown as non-transparent. Most domains are coloured as in **Figure 2**, with PA(R) in dark green, PB2-N(R) in red. For the three main conserved interfaces between FluPolA/H7N9-4M and FluPolB replication complexes, a close-up view is shown in panels **(B)**, **(C)**, **(D)**.

(B) PA-C(R), PB2-N(R) and PA(E) arch interaction. Domains are coloured as in **(A)**. Interacting residues are displayed, shown as non-transparent. Ionic and hydrogen bonds are shown as grey dotted lines.

(C) PB2 627(R) C-terminal β -sheet and PA-C 550-loop(E) interaction. Domains are coloured as in **(A)**. Interacting residues are displayed, shown as non-transparent. Ionic and hydrogen bonds are shown as grey dotted lines.

(D) PB2 627(R) and PB2 NLS(E) interaction. Domains are coloured as in **(A)**. Interacting residues are displayed, shown as non-transparent.

(E) FluPolB PA-C(R), PA-C(E) and PB1(E) specific interface. FluPolB PA-C(R) specific insertion 605-613 interacts with PA-C(E) 377-382 and PB1(E) 373-377. Domains are coloured as in **(A)**. Interacting residues are displayed, shown as non-transparent.

(F) FluPolB PB1-C(E)/PB2-N(E) helical bundle interacts with PB2 CBD(R). Interacting Domains are coloured as in **(A)** and shown as non-transparent.

Supplemental information 1. Cryo-EM image processing strategy applied to obtain FluPolA/H7N9-4M ENDO(R) core1 and core2 structures.

Schematics of the image processing strategy used with the data collected on a TEM Titan Krios equipped with a Gatan K3 direct electron detector mounted on a Gatan Bioquantum energy filter. Representative cropped micrograph, 2D class averages and 3D classes are displayed. Full and cutaway views of each local resolution filtered EM maps are shown. Fourier shell correlation curves (FSC) are displayed. Scale bar = 200 Å.

Supplemental information 2. Cryo-EM image processing strategy applied to obtain FluPolA/H7N9-4M replication complex structures.

Schematics of the image processing strategy used with the data collected on a TEM Titan Krios equipped with a Gatan K3 direct electron detector mounted on a Gatan Bioquantum energy filter. Representative cropped micrograph, 2D class averages and 3D classes are displayed. Full and cutaway views of each DeepEMhancer (Sanchez-Garcia et al., 2021) filtered EM maps are shown. Fourier shell correlation curves (FSC) are displayed. Scale bar = 200 Å.

Supplemental information 3. Cryo-EM image processing strategy applied to obtain FluPolB pseudo-symmetrical dimer structures, with one moiety being an encapsidase.

Schematics of the image processing strategy used with the data collected on a TEM Titan Krios equipped with a Gatan K3 direct electron detector mounted on a Gatan Bioquantum energy filter. Representative cropped micrograph, 2D class averages and 3D classes are displayed. Full and cutaway views of each local resolution filtered EM maps are shown. Fourier shell correlation curves (FSC) are displayed. Scale bar = 200 Å.

Supplemental information 4. Cryo-EM image processing strategy applied to obtain FluPolB (pseudo-)symmetrical dimer structures and monomeric apo-FluPolB encapsidase.

Schematics of the image processing strategy used with the data collected on a TEM Titan Krios equipped with a Gatan K3 direct electron detector mounted on a Gatan Bioquantum energy filter. Representative cropped micrograph, 2D class averages and 3D classes are displayed. Full and cutaway views of each local resolution filtered EM maps are shown. Fourier shell correlation curves (FSC) are displayed. Scale bar = 200 Å.

Supplementary figure 5. Cryo-EM image processing strategy applied to obtain FluPolB replication complex structures.

Schematics of the image processing strategy used with the data collected on a TEM Titan Krios equipped with a Gatan K3 direct electron detector mounted on a Gatan Bioquantum energy filter. Representative cropped micrograph, 2D class averages and 3D classes are displayed. Full and cutaway views of each DeepEMhancer (Sanchez-Garcia et al., 2021) filtered EM maps are shown. Fourier shell correlation curves (FSC) are displayed. Scale bar = 200 Å.

Supplemental information 6. Multiple sequence alignment of human and chicken ANP32A, B and E.

Human (h), chicken (ch), ANP32A/B/E UniProt numbers are indicated. Both Leucine Rich Repeat (LRR) and Low Complexity Acidic Region (LCAR) are indicated on top of the aligned sequences, respectively in dark and light purple. hANP32A interacting residues with FluPolA/H7N9-4M and FluPolB are indicated below aligned sequences, with respectively purple squares, or circles. The specific avian insertion of 33 residues is highlighted with a grey rectangle. hANP32B extra acidic residues are highlighted with red rectangles.

Supplemental information 7. Cryo-EM image processing strategy applied to obtain FluPolB encapsidase bound to 5' cRNA 1-12.

Schematics of the image processing strategy used with the data collected on a TEM Glacios equipped with a Falcon4i direct electron detector mounted on a SelectrisX energy filter. Representative cropped micrograph, 2D class averages and 3D classes are displayed. Full and cutaway views of each local resolution filtered EM maps are shown. Fourier shell correlation curves (FSC) are displayed. Scale bar = 200 Å.

References

Sanchez-Garcia, R., Gomez-Blanco, J., Cuervo, A., Carazo, J.M., Sorzano, C.O.S., and Vargas, J. (2021). DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun Biol 4, 874.

FIGURE S1

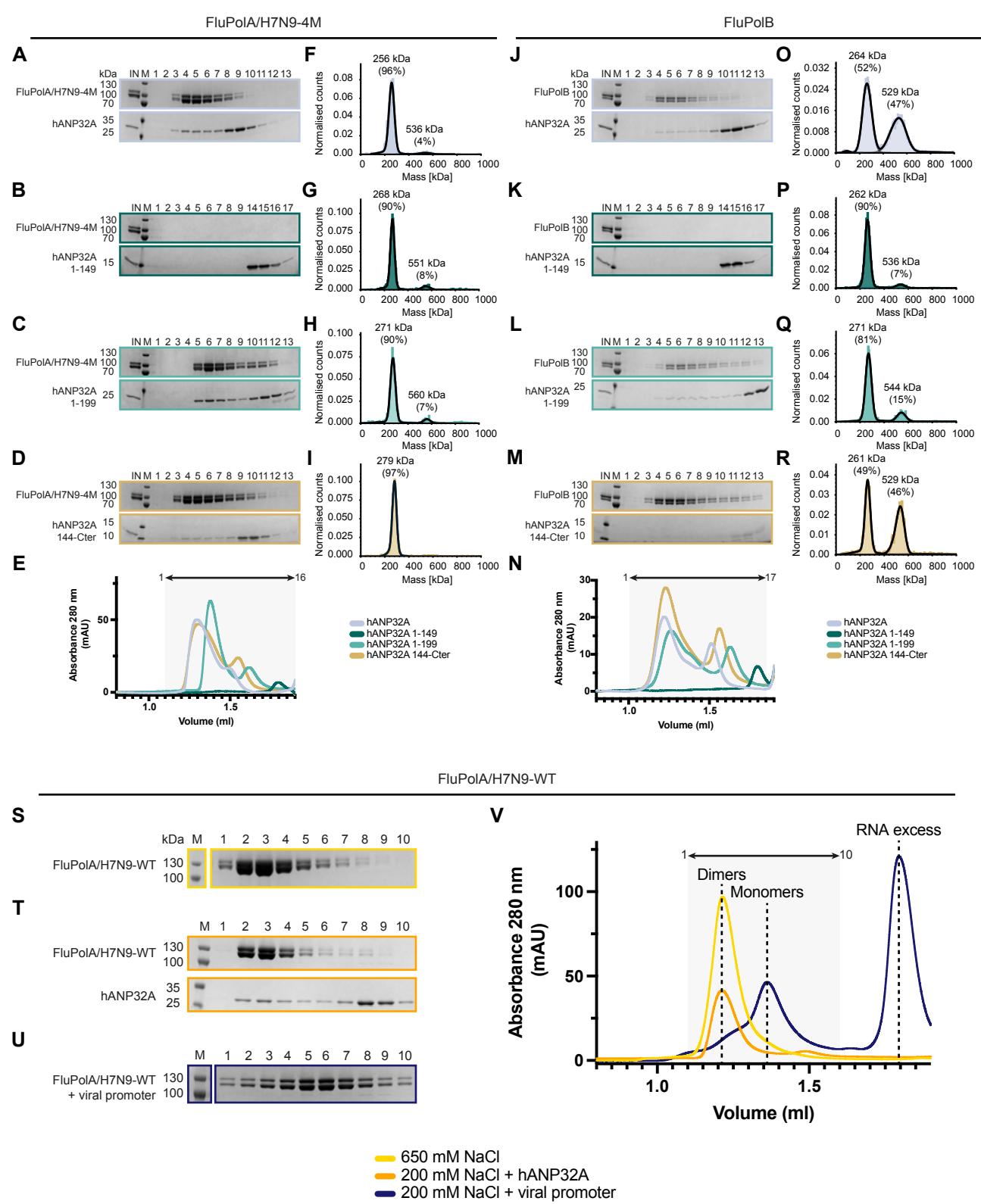


FIGURE S2

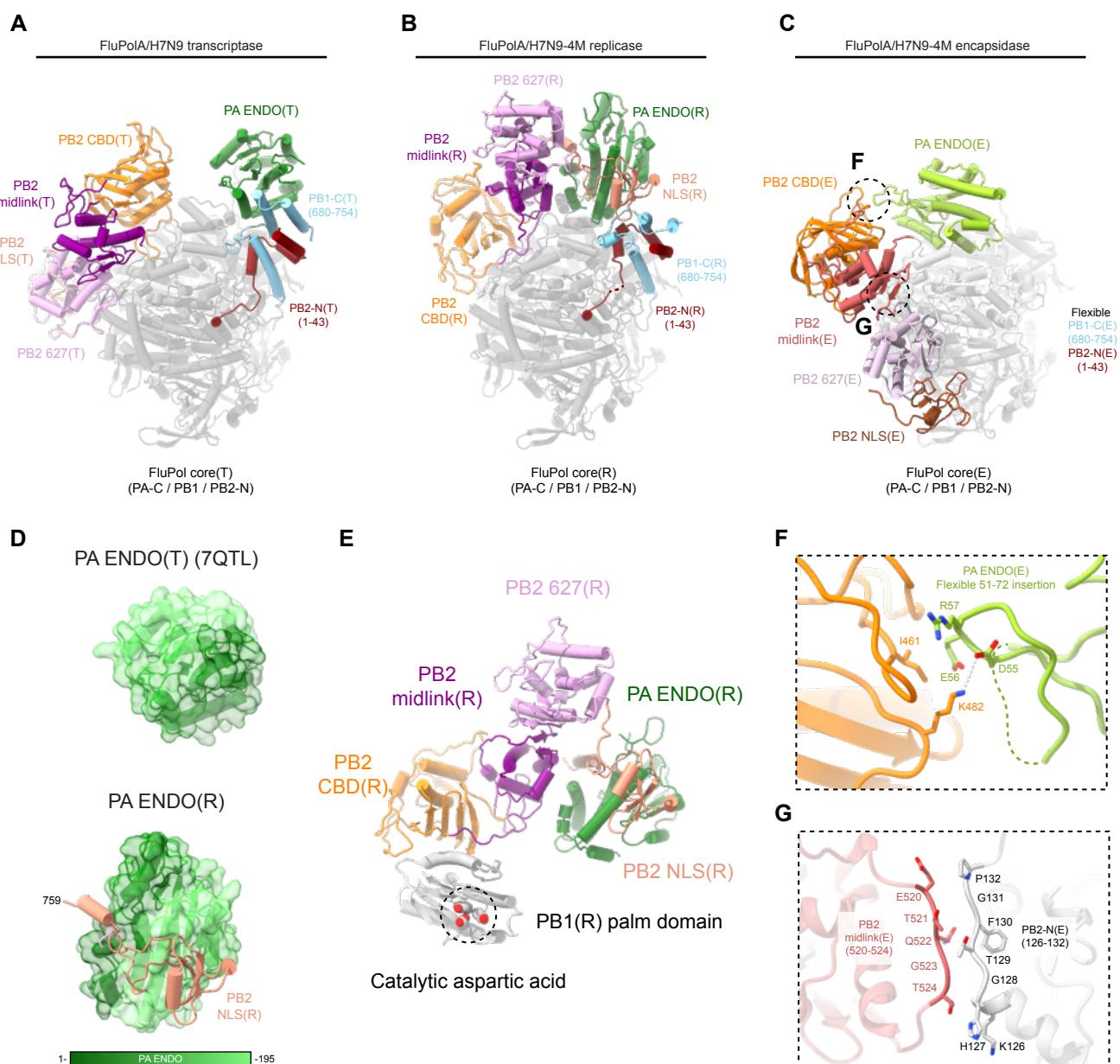


FIGURE S3

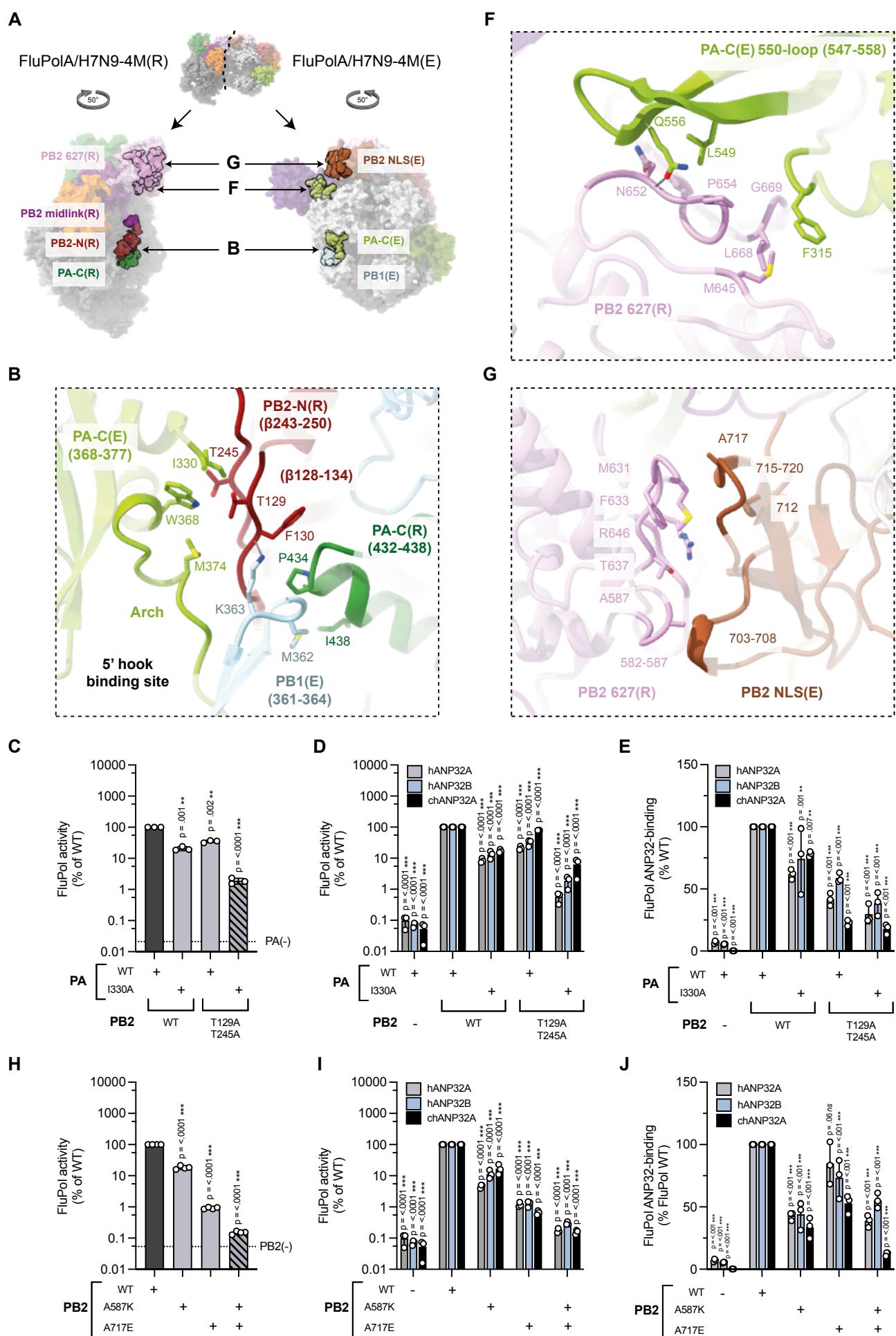


FIGURE S4

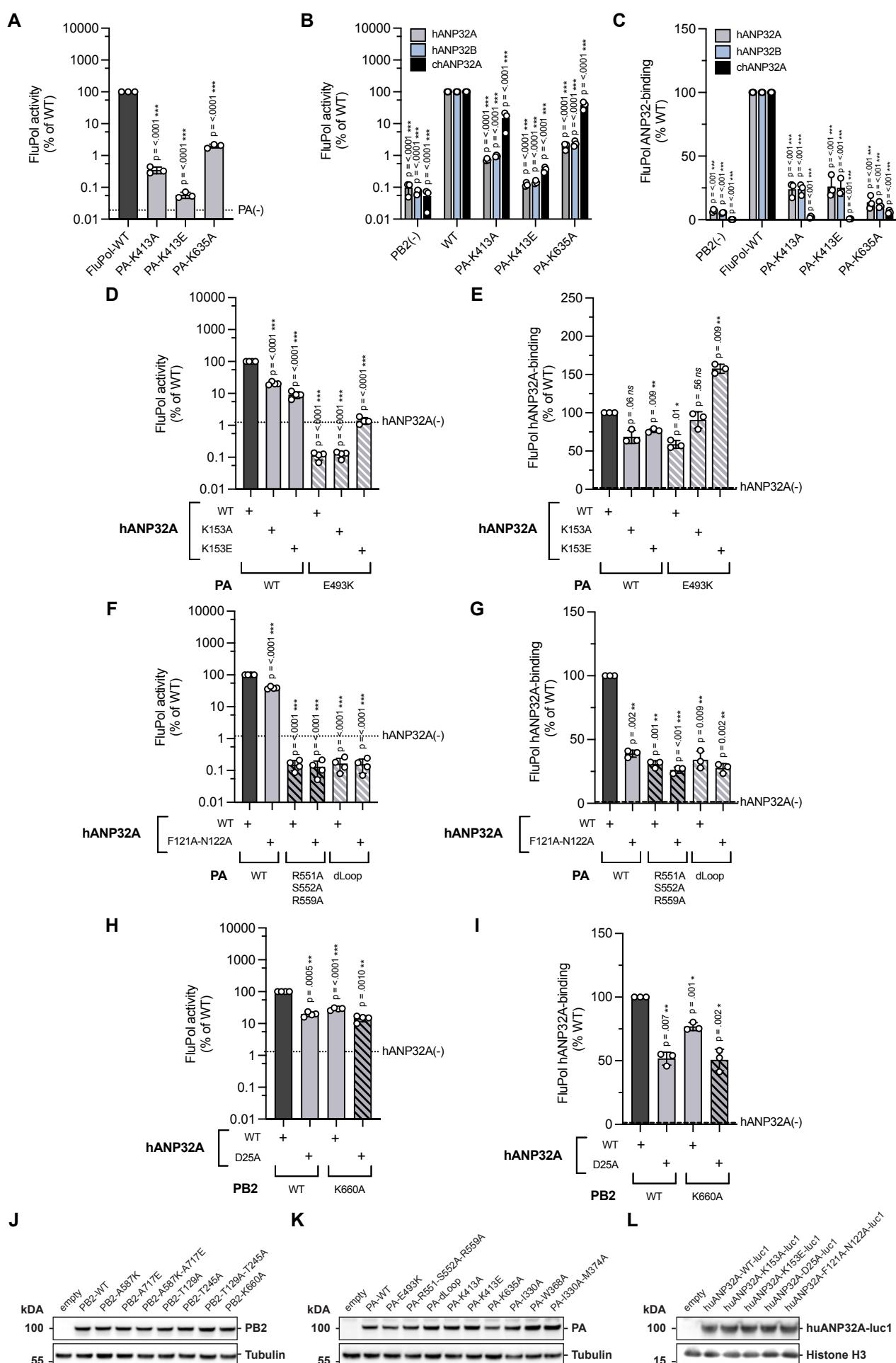
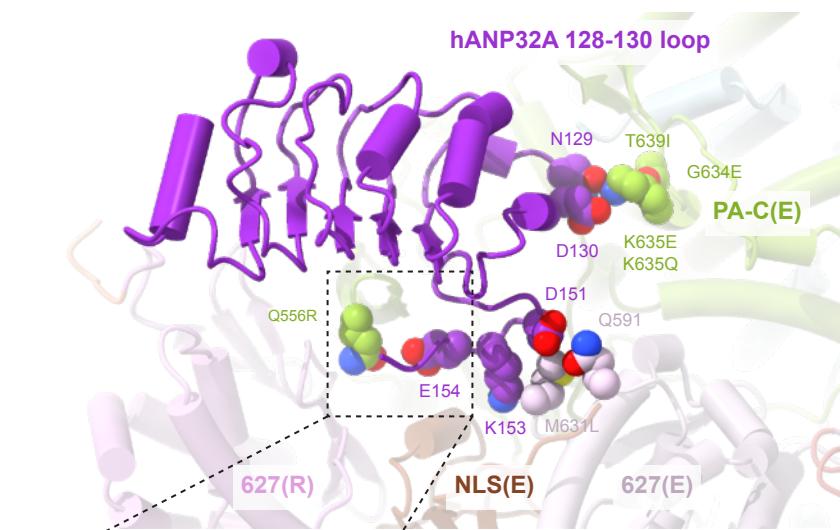
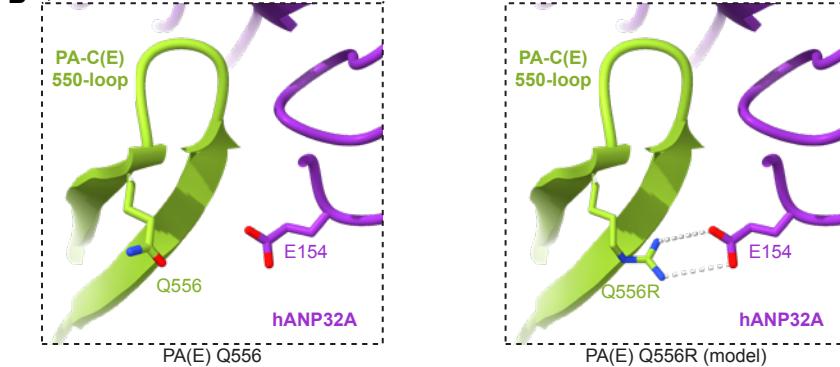
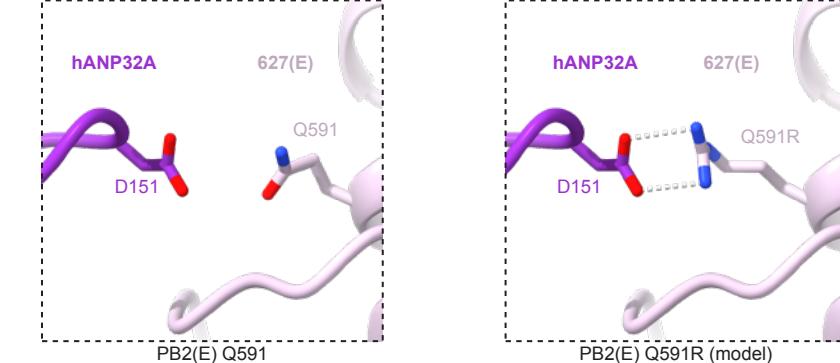




FIGURE S5


A

B

C

D

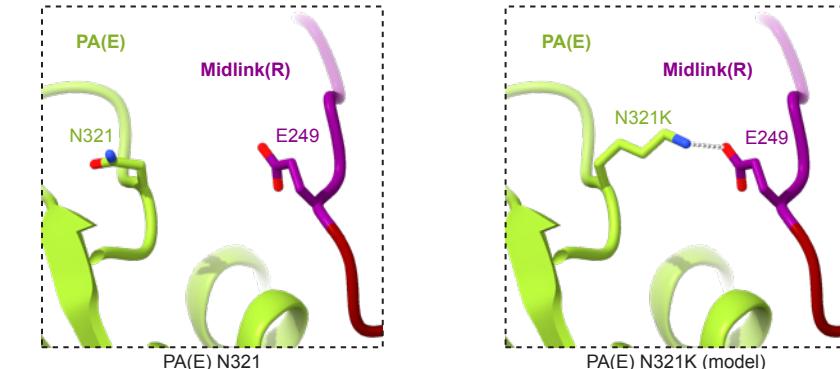


FIGURE S6

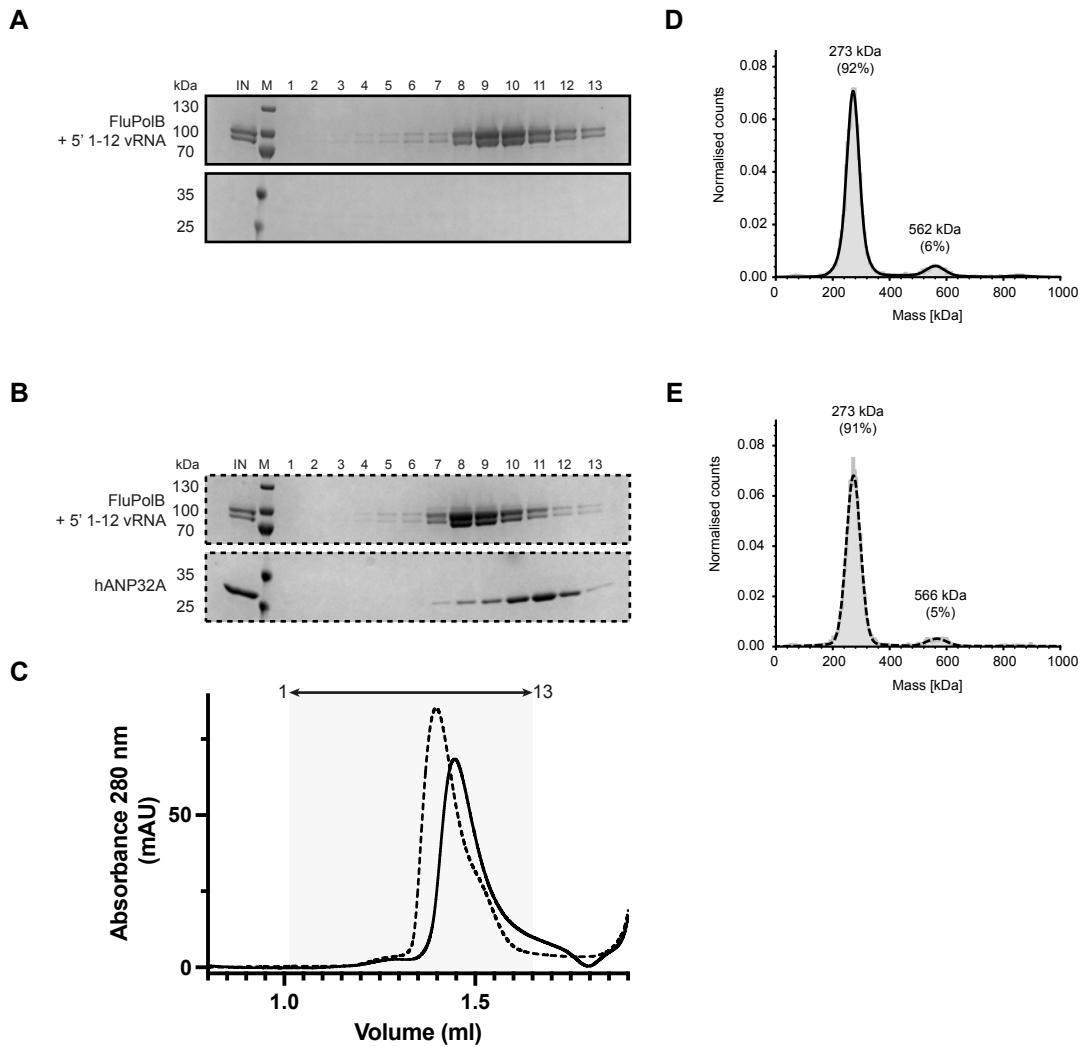


FIGURE S7

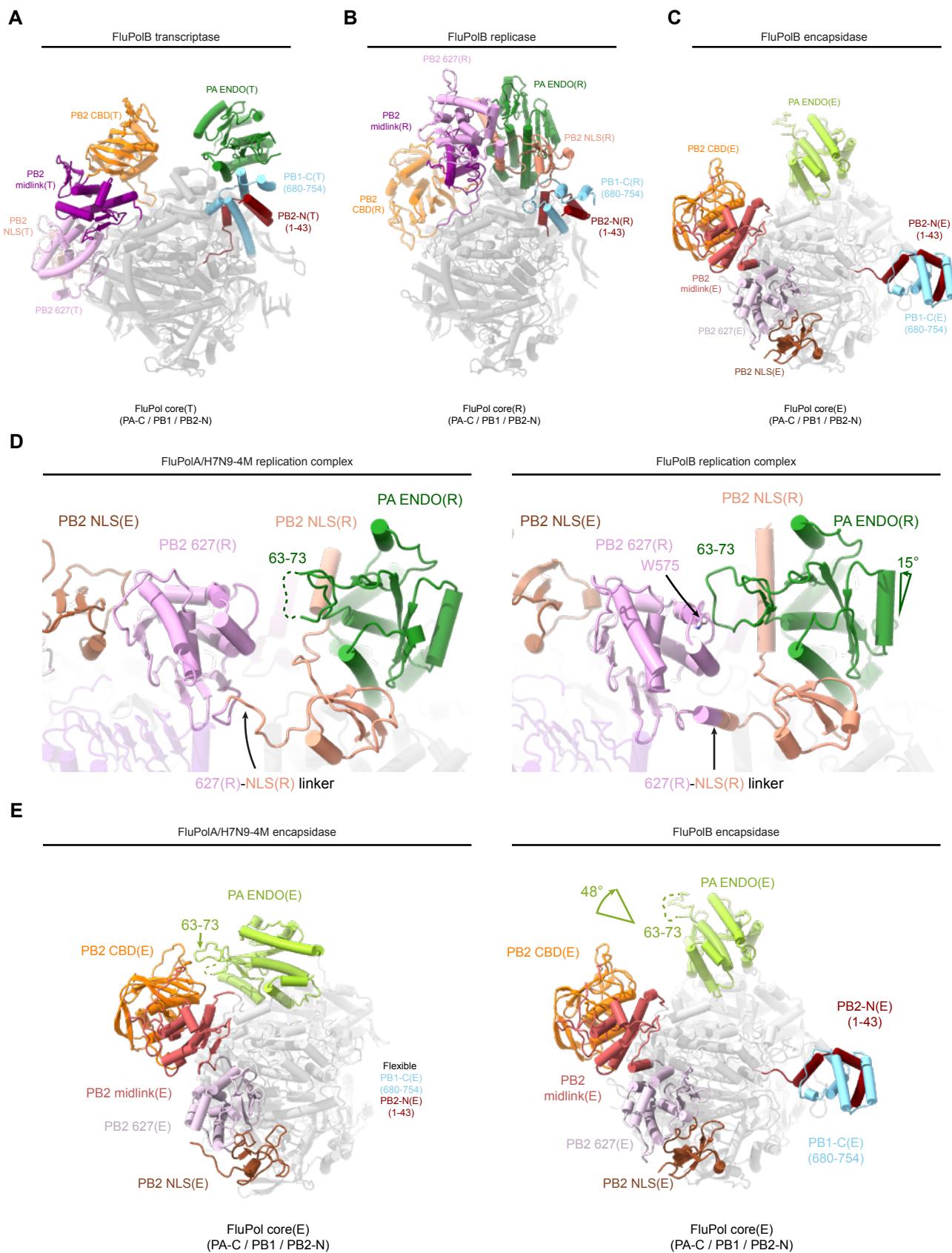
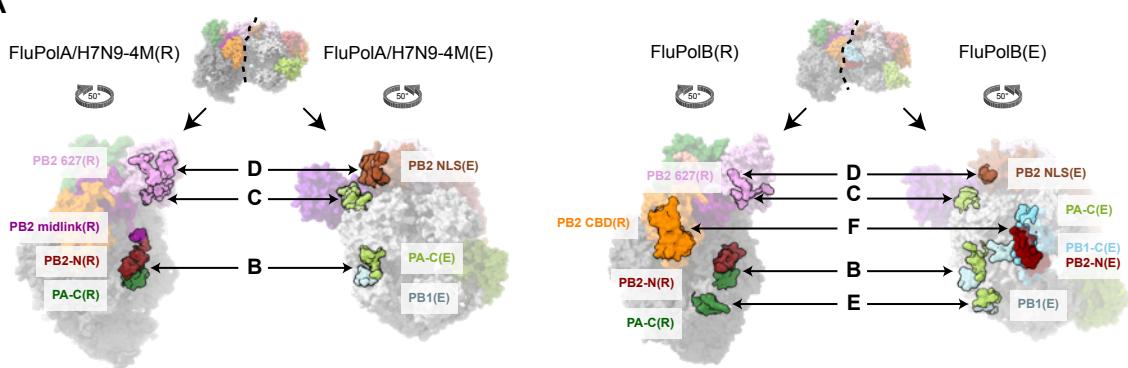
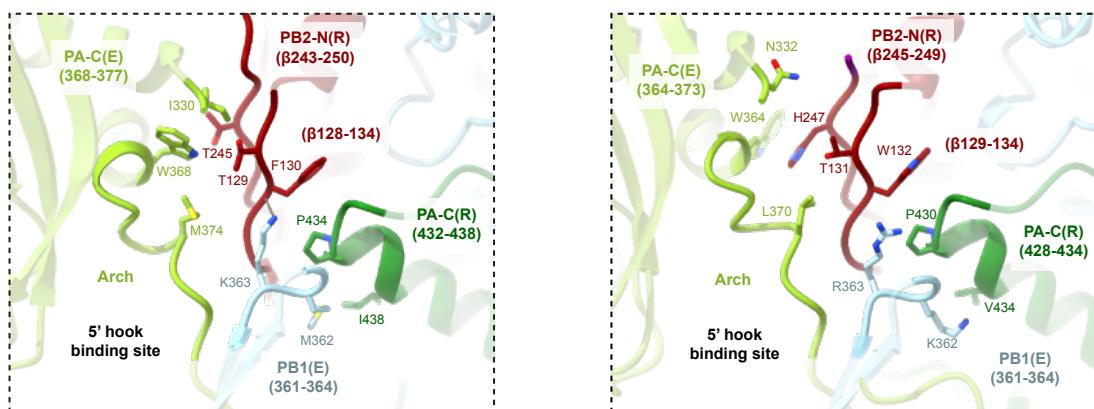
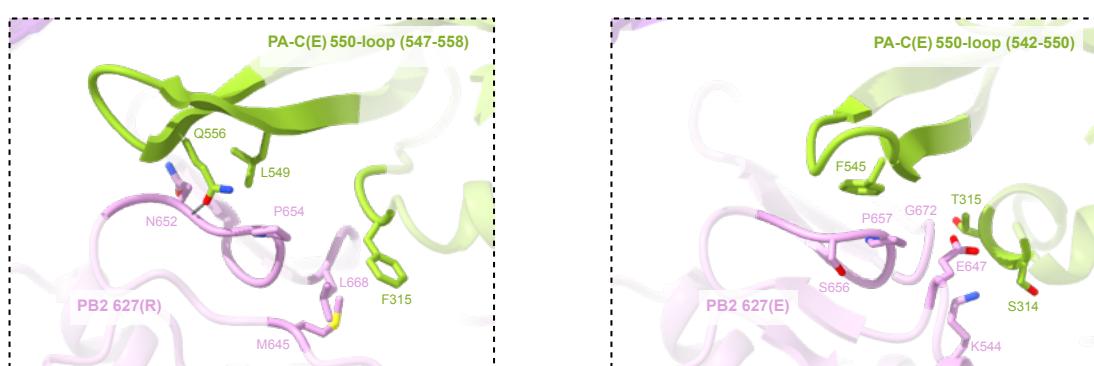
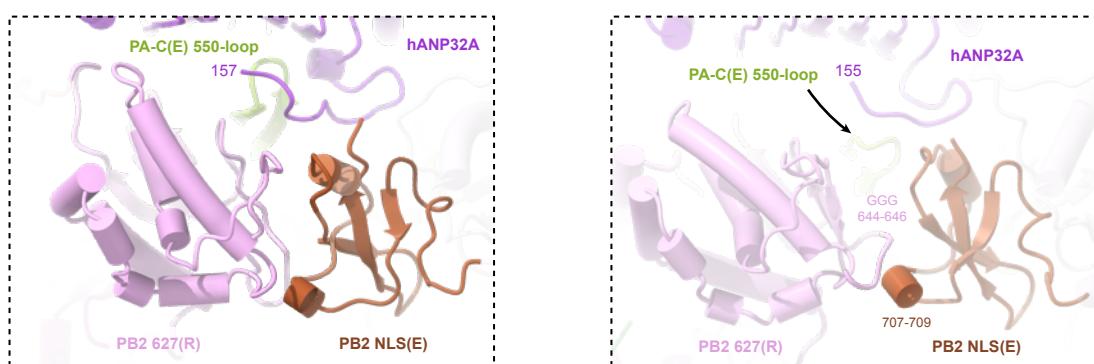
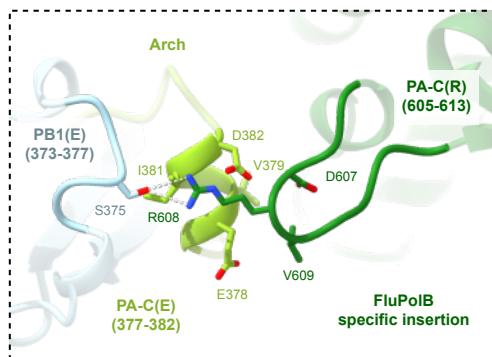
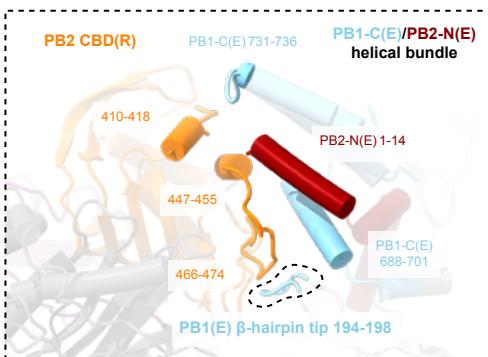




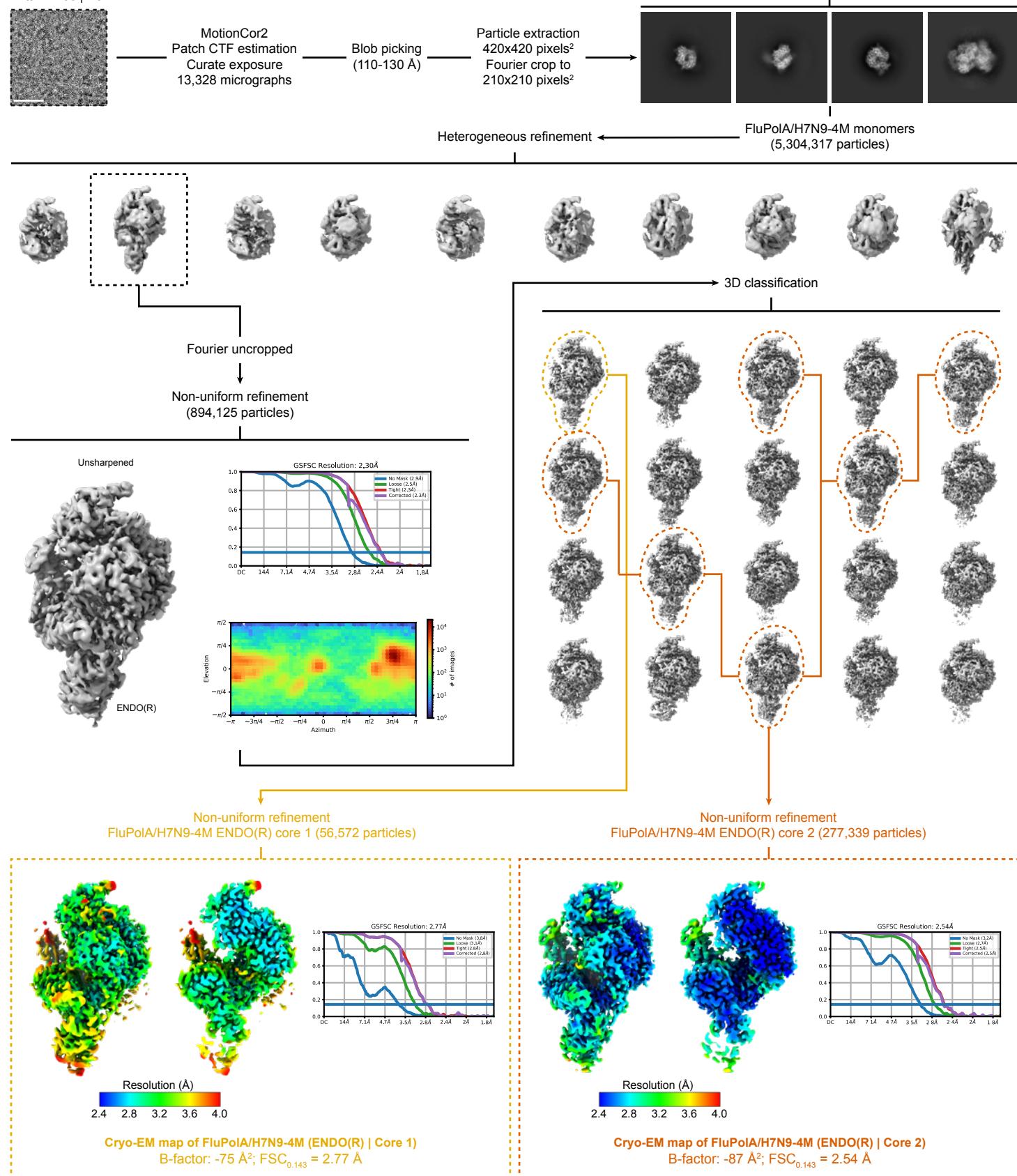
FIGURE S8


A

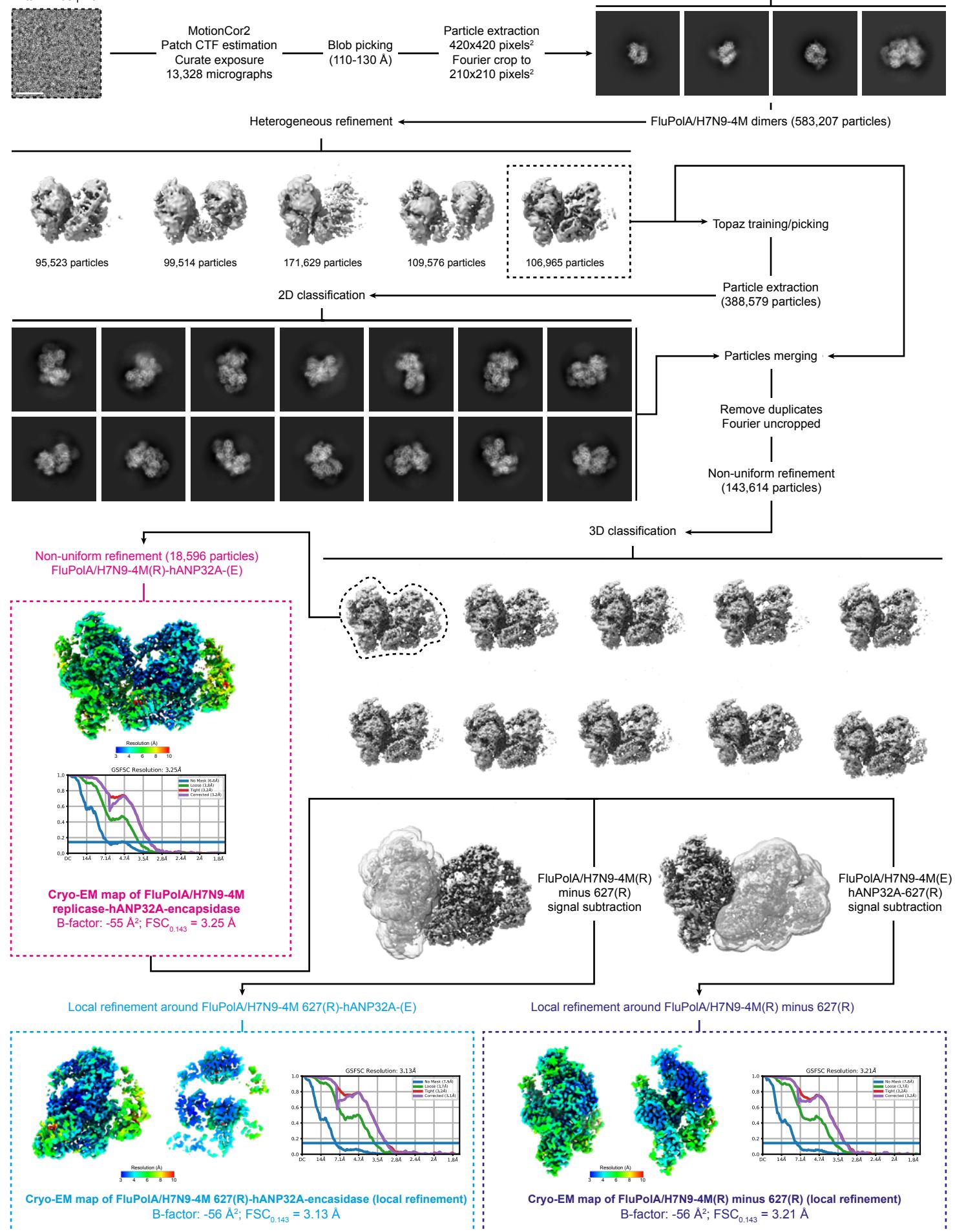

B

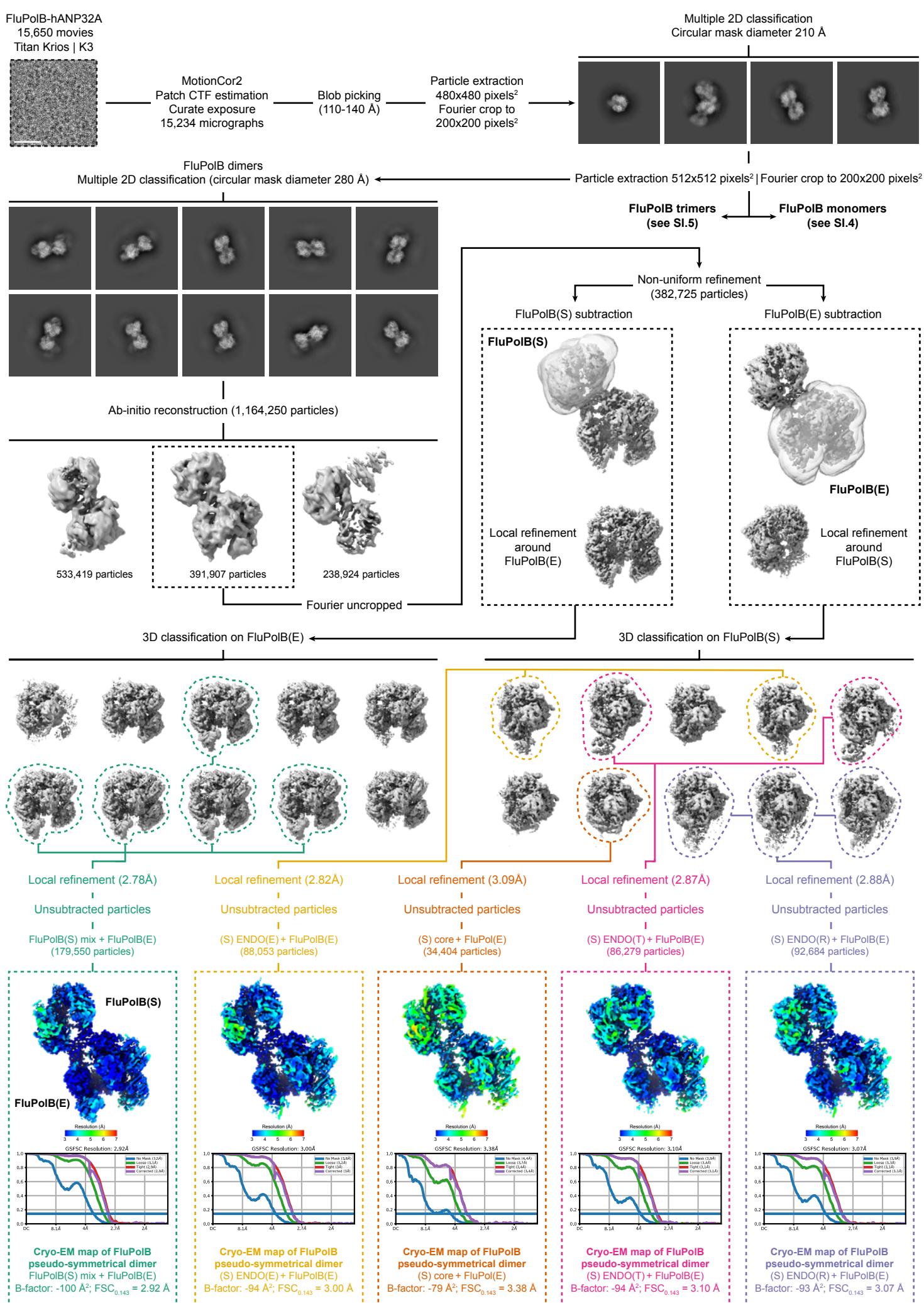

C


D

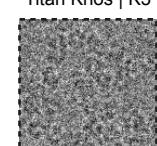

E

F



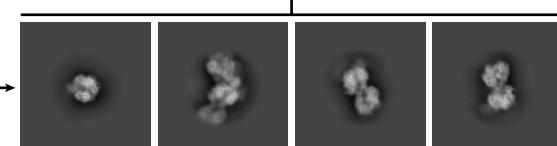

FluPolA-hANP32A
14,001 movies
Titan Krios | K3

SUPPLEMENTAL INFORMATION 3


FluPolA-hANP32A
14,001 movies
Titan Krios | K3

SUPPLEMENTAL INFORMATION 4

FluPolB-hANP32A
15,650 movies
Titan Krios | K3



MotionCor2
Patch CTF estimation
Curate exposure
15,234 micrographs

Blob picking
(110-140 Å)

Particle extraction
480x480 pixels²
Fourier crop to
200x200 pixels²

Multiple 2D classification
Circular mask diameter 210 Å

FluPolB dimers

Particle extraction 512x512 pixels² | Fourier crop to 200x200 pixels²

FluPolB trimers
(see SI.5)

FluPolB monomers

Ab-initio reconstruction (1,164,250 particles)

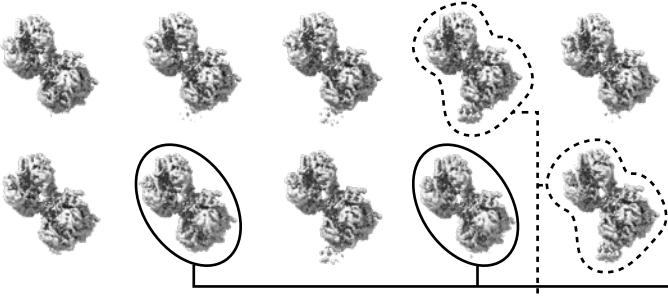
Ab-initio reconstruction (1,999,398 particles)

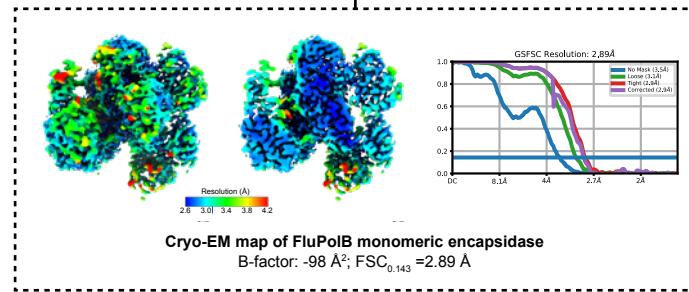
Non-uniform refinement (1,620,551 particles)

3D classification

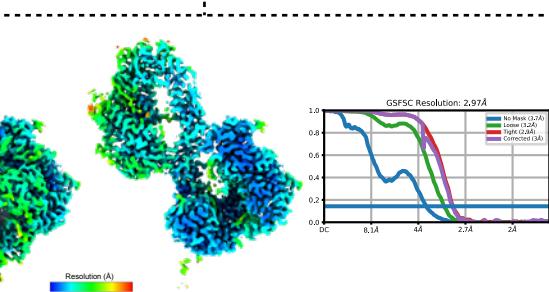
533,419 particles

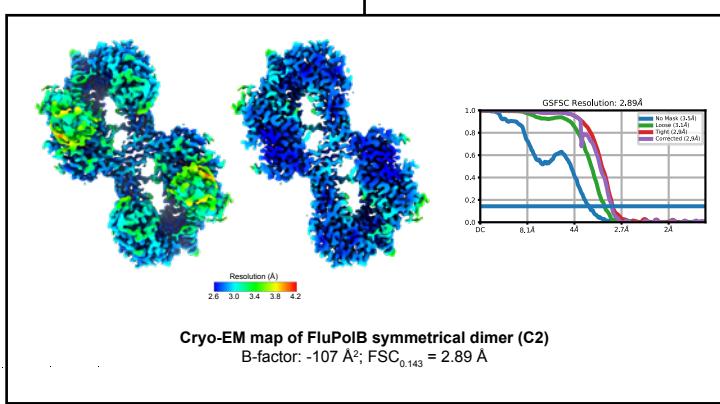
391,907 particles

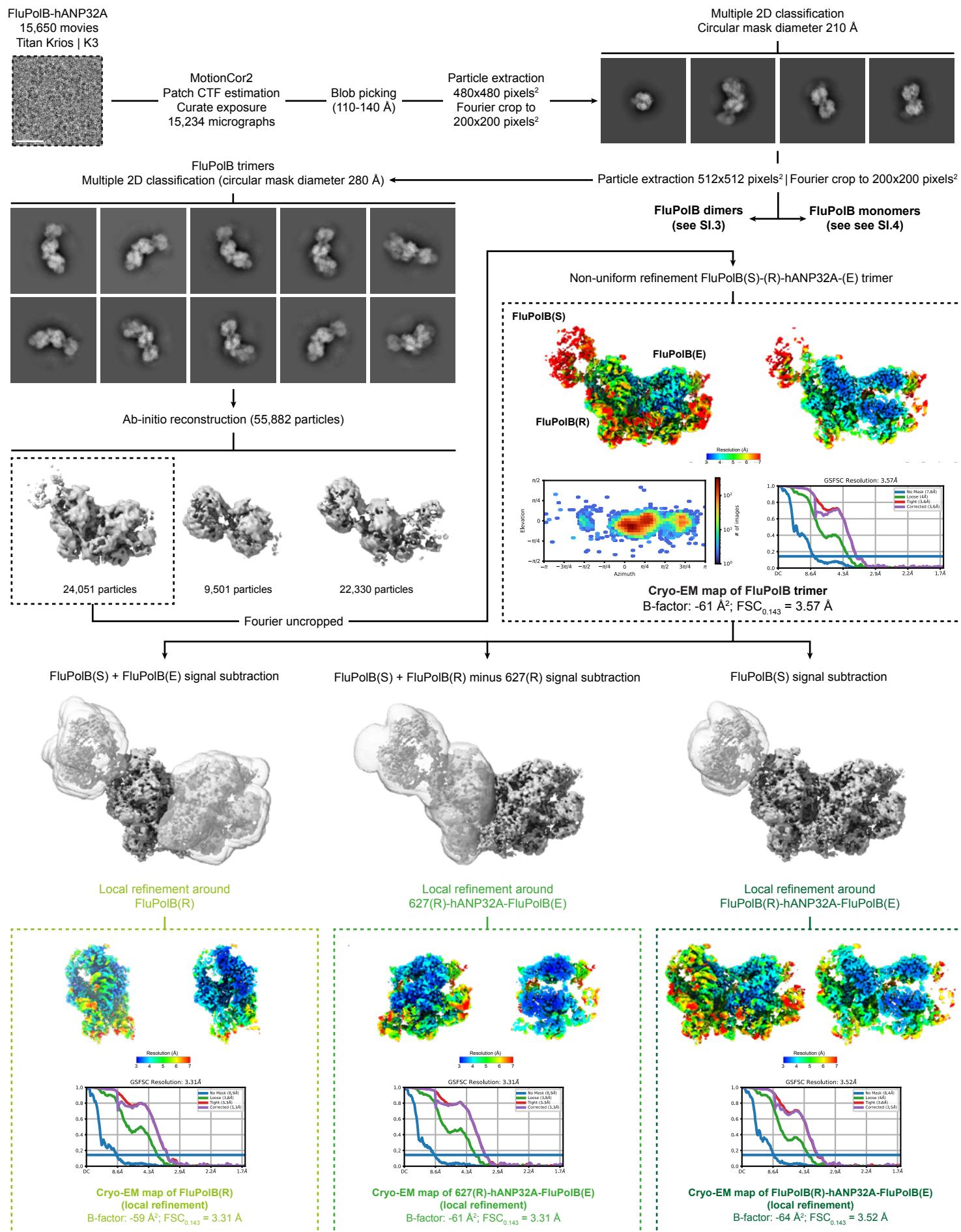

238,924 particles

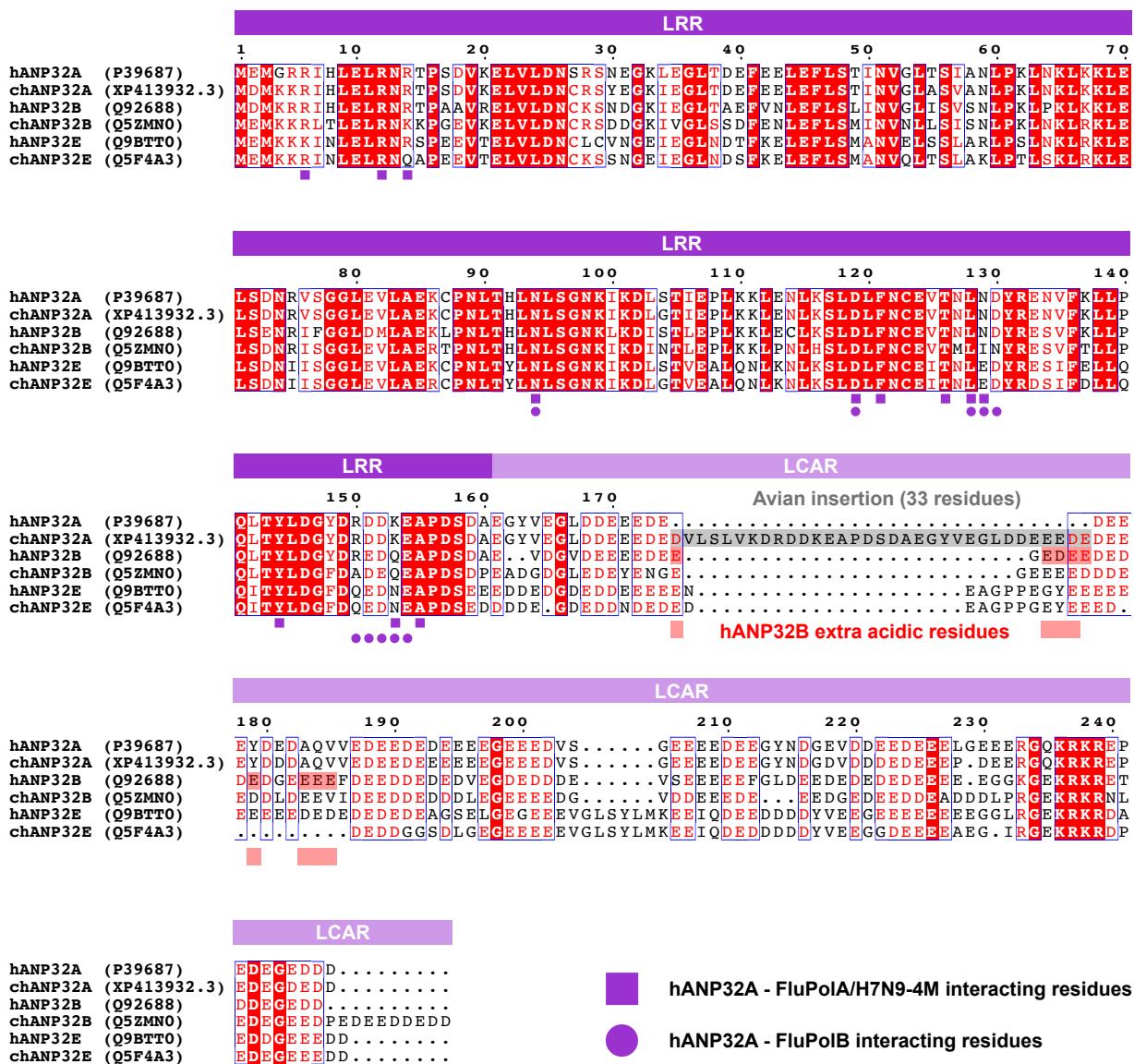

Non-uniform refinement
(526,653 particles)

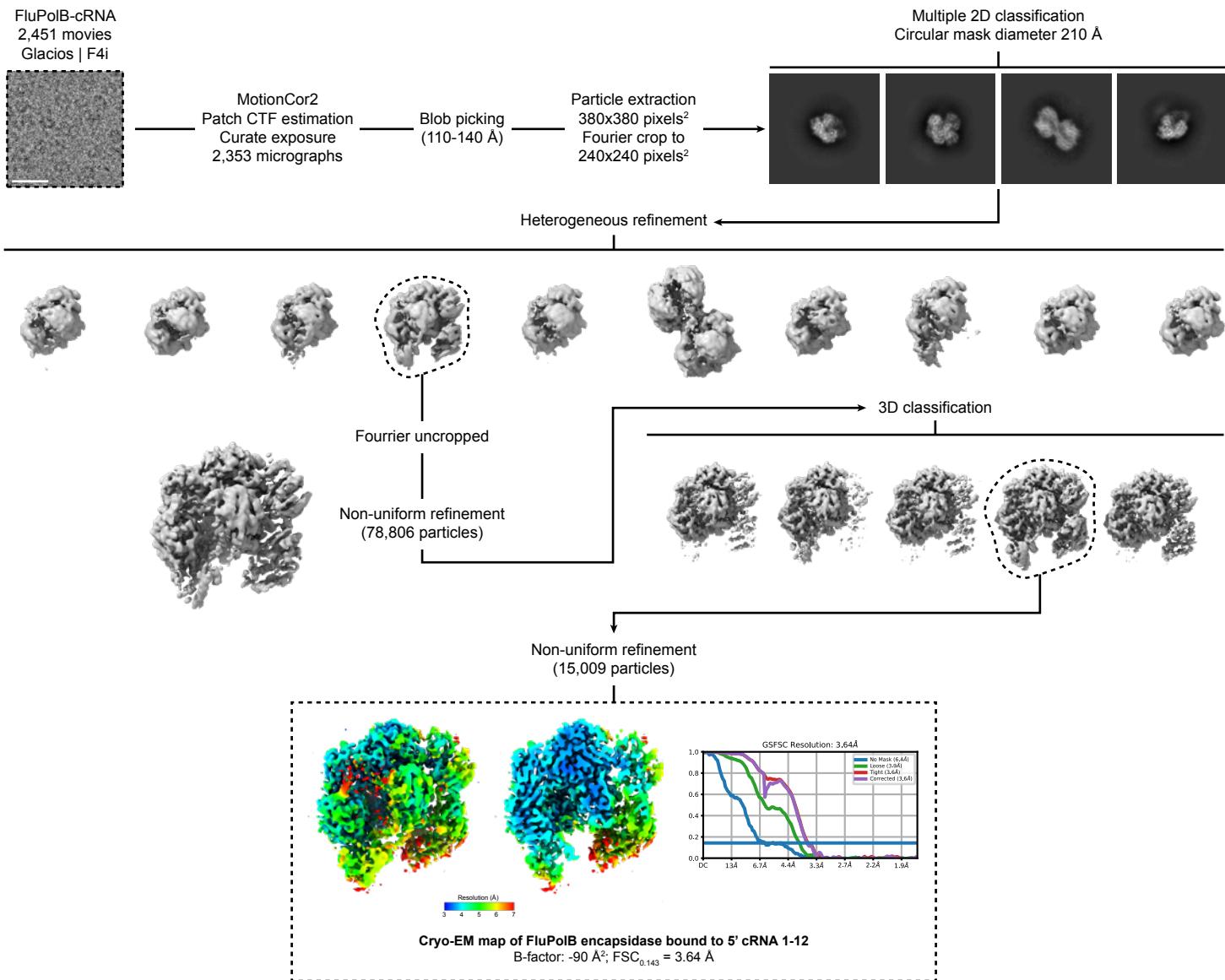
3D classification


Non-uniform refinement apo-FluPolB(E) monomeric
(167,036 particles)


FluPolB(S) + FluPolB ENDO(T)
(95,848 particles)


FluPolB symmetrical dimer (C2 symmetry imposed)
(102,007 particles)




Cryo-EM map of FluPolB symmetrical dimer (C2)
B-factor: -107 Å²; FSC_{0.143} = 2.89 Å

SUPPLEMENTAL INFORMATION 5

