

Evolution of frost and drought responses in cool season grasses (Pooideae): was drought tolerance a precursor to frost tolerance?

1

2

3 ¹Sylvia Pal Stolsmo, ¹Camilla Lorange Lindberg, ¹Rebekka Eriksen Ween, ^{2,3}Laura Schat, ⁴Jill
4 Christine Preston, ^{2,3*}Aelys Muriel Humphreys, ^{1*}Siri Fjellheim

5

6 ¹Department of Plant Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway

7 ²Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91
8 Stockholm, Sweden

9 ³Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden

10 ⁴Department of Plant Biology, The University of Vermont, Burlington, VT 05405, USA

11 *Corresponding authors: aelys.humphreys@su.se, siri.fjellheim@nmbu.no

12 Running title: Evolution of frost and drought responses in cool season grasses

Highlight

13 We tested whether drought tolerance was an evolutionary precursor to frost tolerance in grasses
14 (Pooideae), but found these responses to be negatively correlated, suggesting they evolved
15 independently in different lineages.

16

Abstract

17 Frost tolerance has evolved many times independently across flowering plants. However,
18 conservation of several frost tolerance mechanisms among distant relatives suggests that
19 apparently independent entries into freezing climates may have been facilitated by repeated
20 modification of existing traits ('precursor traits'). One possible precursor trait for freezing
21 tolerance is drought tolerance, because palaeoclimatic data suggest plants were exposed to
22 drought before frost and several studies have demonstrated shared physiological and genetic
23 responses to drought and frost stress. Here, we combine ecophysiological experiments and
24 comparative analyses to test the hypothesis that drought tolerance acted as a precursor to frost
25 tolerance in cool-season grasses (Pooideae). Contrary to our predictions, we measured the highest
26 levels of frost tolerance in species with the lowest ancestral drought tolerance, suggesting that the
27 two stress responses evolved independently in different lineages. We further show that drought
28 tolerance is more evolutionarily labile than frost tolerance. This could limit our ability to

29 reconstruct the order in which drought and frost responses evolved relative to each other. Further
30 research is needed to determine whether our results are unique to Pooideae or general for
31 flowering plants.

32 *Keywords:* ancestral states, drought tolerance, ecophysiology, electrolyte leakage, frost
33 tolerance, leaf dry matter content, phylogeny, Poaceae, Pooideae, precursor trait.

Introduction

34 Two thirds of the global land area experiences frost at least some time during the year
35 (Larcher, 2005). Frost is one of the most severe abiotic stresses plants can experience and the
36 inability to cope with frost is thought to limit the distribution of many species (Donoghue, 2008).
37 Based on this, it is widely held that evolutionary transitions from tropical, frost-free environments
38 to those experiencing freezing are difficult. Despite this, temperate species are found in many
39 angiosperm lineages (ca. 40% of families), and frost tolerance appears to have evolved multiple
40 times independently (Preston and Sandve, 2013; Ricklefs and Renner, 1994; Schubert *et al.*, 2020;
41 Watcharamongkol, Christin and Osborne, 2018) (Kottek *et al.*, 2006; Stevens, 2001). One caveat
42 of this view is that some cold stress responses are conserved across distantly related species and
43 similar ancestral pathways have repeatedly been involved in their evolution (Preston and Sandve,
44 2013; Schubert *et al.*, 2019a). This suggests that the origin of frost tolerance in different lineages
45 may not have been truly independent, but may instead have occurred by repeated modification of
46 the same ancestral stress tolerance responses. Such ancient stress tolerance pathways may
47 therefore have acted as precursors, or exaptations, to the sophisticated frost tolerance responses of
48 many lineages today.

49 The most obvious candidate for an evolutionary precursor to frost tolerance is some form
50 of drought tolerance. In general, strategies for avoiding dehydration are thought to be more
51 ancient than adaptations to low temperature stress. All land plants need some basic mechanism for
52 avoiding dehydration and some drought tolerance responses are ancient, most likely having their
53 origins early during land plant terrestrialisation or the evolution of vascular plants, some 400–500
54 million years ago (Mya) (Bowles, Paps and Bechtold, 2021; Oliver, Tuba and Mishler, 2000;
55 Preston and Sandve, 2013; Sakai and Larcher, 1987a). In contrast, while cool-climate pockets may
56 have been present in Northern Hemisphere mid-latitude mountain areas in the Eocene (56–34 Ma;
57 (Hagen *et al.*, 2019), emergence of cold and freezing environments of today is not thought to have
58 begun until the late Eocene (mainly from ca. 34 My; (Eldrett *et al.*, 2009; Liu *et al.*, 2009; Pound
59 and Salzmann, 2017; Zachos *et al.*, 2001a). Thus, flowering plants are thought to have evolved in
60 a relatively warm world, with traits for dealing with frost stress evolving by independent
61 repurposing of ancestral stress pathways (Preston and Sandve, 2013; Schubert *et al.*, 2019a;
62 Schubert *et al.*, 2020).

63 The idea that there is a mechanistic link between adaptations to frost and drought was first
64 put forward by Ebermayer (Ebermayer, 1873) in his ‘frost desiccation theory’. Ebermayer realized
65 that both drought and frost stress require tolerance of cellular desiccation, and there is now ample
66 evidence supporting the fact that the water deficit caused by both drought and freezing elicits

67 many common physiological responses (Preston and Sandve, 2013; Sakai and Larcher, 1987b;
68 Shinozaki and Yamaguchi-Shinozaki, 2000; Shinozaki, Yamaguchi-Shinozaki and Seki, 2003).
69 For example, both drought and frost can cause cells to collapse. Under freezing conditions, this is
70 caused by ice crystal formation, either intracellularly, leading to mechanical puncturing of cell
71 membranes, or extracellularly, leading to water withdrawal from the cells and causing them to
72 shrink and collapse (Pearce, 2001). During drought, water deficit is the result of little to no
73 available water or moisture. When the protoplast shrinks as a consequence of this, the
74 concentration of cellular solutes increases above normal levels and, when the desiccation has
75 reached a certain point, the cell collapses (Larcher, 2005).

76 Resistance to low water content in the cells can be induced by the synthesis and
77 accumulation of solutes (Monson *et al.*, 2006; Streeter, Lohnes and Fioritto, 2001), as well as
78 through fortification and waterproofing of cell walls to protect the cell membrane against physical
79 damage. These processes cause the intracellular water content to decrease (Vicre, Farrant and
80 Driouich, 2004), which increases the cells' ability to maintain turgor at lower leaf water potential
81 (Monson and Smith, 1982), leading to increased tolerance of both drought (Engelbrecht and
82 Kursar, 2003) and frost (Anisko and Lindstrom, 1996). Furthermore, both accumulation of solutes
83 and increased cell wall thickness raise the plant dry matter content; there is thus often a
84 correlation between leaf dry matter content and resistance to desiccation (Cornelissen *et al.*,
85 2003). Accordingly, a positive relationship between leaf dry matter content and both frost and
86 drought tolerance has been reported in various plants from different environments (Pescador *et al.*,
87 2016) (Liu *et al.*, 2015). However, it is unclear whether high leaf dry matter content specifically
88 confers tolerance of both drought and frost, or whether this is a general effect of greater
89 desiccation resistance.

90 A physiological link between drought and frost stress has also been demonstrated in the
91 field. Plants that have been exposed to drought and then subjected to frost show increased frost
92 tolerance, whereas pre-treatment with heat had no effect on subsequent frost tolerance (Pisek and
93 Larcher, 1954; Sumner *et al.*, 2022). Similarly, acclimation to freezing can result in acclimation to
94 drought, and vice versa (Hussain *et al.*, 2018; Medeiros and Pockman, 2011), and plants from
95 humid mountains often have lower frost tolerance than plants from arid mountains, even though
96 the arid mountains are no colder than the humid ones (Sierra-Almeida, Reyes-Bahamonde and
97 Cavieres, 2016). Together, these studies suggest that stress pathways activated during one type of
98 stress can yield physiological responses that are beneficial during the other. However, there has
99 been little research addressing how the positive relationship between drought and frost responses
100 evolved (see also (Folk, Siniscalchi and Soltis, 2020; Folk *et al.*, 2019)).

101 Pooideae (Poaceae) are a globally distributed clade of cool season grasses dominating
102 arctic, continental and temperate floras (Hartley, 1973; Visser *et al.*, 2014; Zhang *et al.*, 2022).
103 These habitats are characterized by short growing seasons, high temperature and precipitation
104 seasonality, as well as episodic (short term/diurnal) and periodic (seasonal) frost and drought
105 events. Pooideae are also distributed in a range of other environments, including forests, deserts
106 and saline areas, with some lineages (e.g. Meliceae) being found in warmer and moister habitats
107 and others (e.g. Triticeae) in colder and drier habitats (Bennett, Flowers and Bromham, 2013;

108 Kellogg, 2015; Zhang *et al.*, 2022). The global distribution of Pooideae across such divergent
109 habitats makes the group well suited for testing how adaptations to dry and freezing environments
110 evolved relative to each other.

111 The ancestors of Pooideae most likely evolved as forest understory plants during a warm
112 period in the late Cretaceous (77–58 Mya) (Bouchenak-Khelladi *et al.*, 2010; Gallaher *et al.*,
113 2019; Gallaher *et al.*, 2022b; Kellogg, 2001; Schubert *et al.*, 2019b; Zachos *et al.*, 2001b). It is
114 thought that Pooideae transitioned from closed forest environments to open habitats several times
115 independently, but it is unclear exactly how many times and in which lineages. Previous studies
116 suggest at least two independent transitions to open habitats, in the most recent common ancestors
117 of the core Pooideae (Poeae + Triticeae) and Stipeae, or in the lineages leading up to these clades
118 (Elliott *et al.*, 2023; Zhang *et al.*, 2022). Additional independent transitions may also have
119 occurred in other lineages (e.g. in Nardeae and Lygeae). These transitions began 67–58 Mya
120 (Gallaher *et al.*, 2022a; Schubert *et al.*, 2019b; Strömberg, 2011), with the most likely drivers
121 being increased aridity and altered disturbance regimes, e.g. seasonality, fire and herbivory, rather
122 than global cooling (Edwards *et al.*, 2010; Strömberg, 2011). Consequently, multiple lineages of
123 Pooideae must have adapted to arid conditions early in their evolution. It has also been shown that
124 sets of the same drought tolerance genes are expressed by distantly related species of Pooideae in
125 response to short-term cold exposure (Schubert *et al.*, 2019a). This supports the idea that ancient
126 drought responses facilitated the evolution of early frost responses.

127 It is unclear to what extent early Pooideae were exposed to cold conditions. Even though
128 the climate was generally warm, previous reconstructions suggest that Pooideae originated in the
129 Palaeoarctic, in cool-climate pockets in the emerging Eurasian alpine orogeny. They were
130 therefore possibly exposed to short-term cool conditions, but not prolonged winters (Das *et al.*,
131 2023; Gallaher *et al.*, 2022b; Schubert *et al.*, 2019b). However, there remains considerable
132 uncertainty regarding the biogeographical origins and the level of cold exposure experienced by
133 early Pooideae. What is more certain is that from ca. 34 Mya onwards, Pooideae experienced
134 progressively cooler and drier conditions while temperate biomes expanded (Pound and
135 Salzmann, 2017; Zachos *et al.*, 2001b). Accordingly, Pooideae is known to have successively
136 evolved phenological and physiological adaptations to frost and short growing seasons (Fjellheim,
137 Boden and Trevaskis, 2014; Fjellheim *et al.*, 2022; McKeown *et al.*, 2016; Sandve *et al.*, 2011;
138 Zhong *et al.*, 2017), allowing them to diversify in northern temperate regions (Bouchenak-
139 Khelladi *et al.*, 2010; Kellogg, 2001; Schubert *et al.*, 2020).

140 Here, we ask whether drought tolerance could have acted as an evolutionary precursor to
141 frost tolerance during the evolution of Pooideae, by combining ecophysiological experiments with
142 reconstructions of how drought and frost tolerance responses evolved using comparative,
143 phylogenetic analyses. Specifically, we test the predictions that (1) drought and frost responses
144 are positively correlated, (2) leaf dry matter content is positively correlated with drought and/or
145 frost tolerance, (3) frost tolerant species are nested in ancestrally drought tolerant clades, (4) frost
146 tolerance evolved more frequently in ancestrally drought tolerant than drought sensitive clades,
147 and (5) climate conditions in species' natural habitats can explain variation in drought and frost
148 responses. Contrary to predictions, we find that frost and drought tolerance responses are

149 negatively correlated, with frost tolerance being highest in ancestrally drought sensitive clades,
150 high leaf dry matter content is associated with drought tolerance but not frost tolerance, while
151 climate of origin is largely unrelated to either.

Materials and methods

152 Species selection

153 Sixty two accessions representing 61 species were included in the experiment, sampled
154 based on seed availability and their climatic, geographic and phylogenetic diversity. Two
155 accessions of *Phleum pratense* were included, one identified simply as *P. pratense* and one
156 identified as *P. pratense* ssp *nodosum*. The sampled species are mainly perennials and represent
157 six of the ten tribes of Pooideae, including all of the major ones (Table 1) (Soreng *et al.*, 2017)
158 (Clayton *et al.*, 2002 onwards). Species names follow accepted names according to The Plant List
159 (2013).

160 Germination and growth

161 The experiment took place in a greenhouse at Vollebekk, Ås, Norway (59°39'42.4"N
162 10°45'01.5"E) from 14th of September until 14th of December 2018. The greenhouse held an
163 average temperature of 17 °C and long day conditions with 16 hours of light. The light (200
164 mmol) was a mix of natural light through the windows and light from metal halide lamps with
165 both Philips MASTER HPI-T Plus (400W/645 E40 1SL) and Osram POWERSTAR HQI-BT
166 (400W/ D PRO) light bulbs.

167 To promote synchronized germination, seeds were stratified in humid soil at 4 °C for four
168 days and then transferred to 25 °C for 24 hours, all in darkness. The seeds were then transferred to
169 the greenhouse for germination. When plants were large enough (~5 cm, approximately two to
170 three weeks after germination), single tillers were pricked out in 8x8 cm² pots filled with standard
171 potting soil ("Gartner jord", Tjerbo Torvfabrikk, Rakkestad, Norway). Forty-eight individuals per
172 species were used in the experiment where possible (Table S1). Eighteen species had fewer than
173 48 individuals (n=29–47), which resulted in a total of 2,870 plants in the experiment (Table S1).

174 After pricking out, plants were watered once with fertilised water containing a mix of 800
175 g/100L YaraTera Kristalon Indigo (9 % N + 5 % P + 25 % K, Yara, Oslo, Norway) and 600 g/10L
176 YaraLiva Calcinit (15.5 % N + 19 % Ca, Yara), in a solution with a conductivity of 1.7 mS/cm.
177 Then, plants were grown for two weeks without fertilizer and then for one more week with daily
178 watering with the fertiliser solution. Fertilisation was done to ensure that plants were robust at the
179 start of the experiment and nutrients were not limiting regrowth after treatment. Plants were
180 randomly rotated among the tables every week.

181 After the initial three-week growth period, plants were randomly divided into four
182 treatment groups: (1) sudden frost at -1 °C, (2) sudden frost at -3 °C, (3) drought, and (4) control.
183 Plants receiving sudden frost were moved directly from the 17 °C greenhouse to the frost
184 conditions without acclimation. For most species, there were ten individuals in each treatment

185 group, and four individuals each for initial electrolyte leakage and leaf dry matter content
186 measurements (Table S1). Plants were randomly distributed in trays. Both the drought and frost
187 treatments started on October 22nd 2018.

188 Drought treatment

189 The drought treatment took place in the greenhouse at Vollebekk with the light and
190 temperature conditions described above. Since species have different rates of water uptake (Taiz
191 *et al.*, 2015) and the soil content might differ slightly between pots, soil moisture was measured in
192 all pots during the drought treatment. The drought zone was defined as $\leq 5\%$ soil moisture. A
193 HH2 Moisture Meter (Delta-T Devices Ltd, Cambridge, UK) with a Wet-2-sensor was used to
194 measure soil moisture by placing it in the soil. To avoid taking measurements in the holes in the
195 soil left from the previous measurement, which could influence the moisture reading, repeat
196 measurements in the same pot were taken on opposite sides. In the case of large variation between
197 the two measurements, a measure was taken at a third corner of the pot and the average was used.

198 Soil moisture was measured at the onset of the drought treatment and then every fourth day
199 until the end of the treatment. To determine when the plants entered the drought zone, we the soil
200 moisture decline rate, estimated using the initial and last soil moisture measurement of $\leq 20\%$ in
201 formula (1):

202 Formula (1) $Soil\ moisture\ decline\ rate\ (r) = \frac{MS - ML}{n}$

203

204 where MS is the starting moisture, ML is the last moisture recorded and n is number of days.
205 The soil moisture decline rate was then used to estimate an approximate date when soil moisture
206 was $\leq 5\%$ (formula (2)).

207 Formula (2) $Remaining\ days\ until\ drought\ zone\ is\ reached = ML\% - r \frac{\%}{day} * x\ day = 5\%$

209 where r is the soil moisture decline rate found by using formula (1) and x is the number of
210 days until the species hits the drought zone. Plants stayed in the drought zone for 4-5 days.

211 After the end of the drought treatment, leaves of 10 individuals per species were harvested
212 for conductivity measurements (see below) and the plants were watered and cut down to
213 approximately 2-4 cm height. Regrowth was scored after two and three weeks (see below).

214 Sudden frost treatment

215 The sudden frost treatment took place in frost chambers (Weiss Umwelttechnik GMBH,
216 model KWP 1000/55-10DU-S) at “Centre for Plant Research in Controlled Climate”, Ås, Norway
217 ($59^{\circ}40'08.7''N$ $10^{\circ}46'07.6''E$) without additional light other than from the windows in the
218 chambers. Minimum temperatures for mild and severe sudden frost were $-1\ ^{\circ}C$ and $-3\ ^{\circ}C$,
219 respectively. Following the protocol of Alm *et al.* (2011), the starting temperature was set to $0\ ^{\circ}C$
220 for 12 hours and then lowered by $1\ ^{\circ}C$ per hour to the minimum temperature, where it was kept
221 for 24 hours. Then the temperature was increased by $1\ ^{\circ}C$ per hour back to $0\ ^{\circ}C$. The plants

222 remained at 0 °C for 24 (-1°C treatment) or 28 (-3 °C treatment) hours. Thereafter, the plants were
223 watered and placed in a room at +3 °C to thaw. Leaves from four individuals per species were
224 sampled and electrolyte leakage was measured (see below). After 24 hours at +3 °C, plants were
225 moved back to the greenhouse and cut down to approximately 2-4 cm in height. Regrowth was
226 scored after two and three weeks (see below).

227 **Control**

228 Sudden frost and drought treatments were carried out simultaneously, which allowed for
229 the use of the same control for both treatments. Control plants were kept in the greenhouse, under
230 the conditions described above. Plants randomized on the tables and watered every week. Control
231 plants were cut down to 2-4 cm, their regrowth was scored after two and three weeks, and their
232 electrolyte leakage measured (see below).

233 **Ecophysiological measurements**

234 **Leaf dry matter content (LDMC)**

235 To be able to correlate drought and frost tolerance responses with LDMC, four individuals
236 per species were used to measure LDMC on the same day as the drought and frost treatment
237 started. Fresh aboveground biomass was weighed for each plant, before being placed in individual
238 paper bags, dried in a Unitherm drying oven (Russell-Lindsey Engineering Ltd., Birmingham,
239 UK) at 90 °C for 14 hours and weighed again. LDMC was calculated as

240 Formula (3)
$$LDMC = \frac{DW}{WW} * 100 \%$$

241 where WW is wet weight and DW is dry weight.

242 **Electrolyte leakage and conductivity measurements**

243 To assess the damage caused by the treatments, electrolyte leakage/conductivity was
244 measured before and after the drought and frost treatments for all plants, including controls. When
245 a cell gets damaged, it will release electrolytes (Hincha *et al.*, 1987). Conductivity (mS) is a
246 measure of amount of electrolytes released by a damaged leaf. High conductivity indicates high
247 cell damage. Approximately 1 cm² of a representative leaf was cut and placed in a tube with 10
248 mL distilled water. The samples were shaken at room temperature for ten hours before the
249 conductivity was measured with a CWO Volmatic Mesur EC (Senmatic A/S DGT Volmatic,
250 Søndersø, Denmark). The conductivity of the shaken samples was then divided by the maximum
251 conductivity (formula (4)). To obtain the maximum electrolyte leakage per species for
252 comparison, leaf samples were then boiled at approximately 97 °C for 11 minutes and the
253 conductivity was measured again when the tubes had cooled down to room temperature (25 °C).
254 To get percentage conductivity after each treatment, formula (4) was used per individual per
255 species:

256 Formula (4)
$$Percentage\ conductivity = \frac{CS}{CB} * 100 \%$$

257 where CS is conductivity after shaking and CB is conductivity after boiling. To see if the
258 treatments had any effect compared to the control group, formula (5) was used (Fujikawa and
259 Miura, 1986):

260 Formula (5)
$$\text{Percentage damage} = \frac{100(\% CT - \% CC)}{100 - \% CC}$$

261 where $\% CT$ and $\% CC$ are the percentage conductivity obtained using formula (4) for the
262 treatment and control groups respectively.

263 **Fluorescence measurements**

264 Fluorescence was measured on the control and drought plants before the start of the
265 treatment and every fourth day until the plants had stayed in the drought zone for 4-5 days. The
266 drought and control groups were measured on the same day for all species. Fluorescence
267 measurements were carried out using FluorPen FP100 (Photon Systems Instruments, Drasov,
268 Czech Republic) with the OJIP fluorescence transient analysis program. This program measures
269 Fv/Fm , which represents the maximum quantum yield of photosynthetic efficiency in
270 photosystem II. If the value of Fv/Fm is low, it can indicate that the plant is damaged due to low
271 photosynthesis (Gilbert and Medina, 2016). The measurements were taken in the middle of a
272 representative leaf per plant. To ensure an accurate measure of photosynthesis and to avoid light
273 contamination, plants were placed in a dark room for 25-35 minutes before the fluorescence
274 measurements were made in the dark. The plants were transferred to the dark three hours after
275 dawn. Formula (6) was used to get the fluorescence of drought plants in relation to the control
276 plants:

277
278 Formula (6)

$$\text{Percentage fluorescence} = \frac{Fv/Fm_{FD}}{Fv/Fm_{FC}} * 100\%$$

279 where Fv/Fm_{FD} is the last measurement of the plant in the drought zone for each species before it
280 was cut and Fv/Fm_{FC} is the average measurements of the control for each species throughout the
281 whole experiment.

282 **Regrowth**

283 Regrowth was assessed visually on a scale from 0 – 9, where 0 is dead and 9 is normal
284 growth (Larsen, 1978). Formula (7) was used to obtain an estimate for the treatment plants in
285 relation to the control plants:

286
287 Formula (7)
$$\text{Percentage regrowth} = \frac{RT}{RC} * 100\%$$

288 where RT is the average regrowth per species after two and three weeks for the treatment ($RT =$

290 $(RT_{2\text{weeks}} + RT_{3\text{weeks}})/2$) and RC is the average regrowth per species after two and three weeks for
291 the control plants ($RC = (RC_{2\text{weeks}} + RC_{3\text{weeks}})/2$).

292 **Statistical and phylogenetic analyses**

293 **Phylogenetic data**

294 To analyse the experimental results in an evolutionary framework, information on the
295 phylogenetic relationships among species was taken from Schubert *et al.* (Schubert *et al.*, 2019b).
296 The phylogenetic tree was pruned to retain only the species included in the experiment. Species in
297 the experiment but not in the phylogeny (20 species) were assigned to the tips of their closest
298 relatives (see Supplementary data 1). Phylogenies by Hamasha, von Hagen and Röser (2012) and
299 Cialdella *et al.* (2007) were used to place species in tribe Stipeae, Grebenstein *et al.* (1998) was
300 used for *Helictotrichon* and Gillespie, Archambault and Soreng (2007) for *Poa*. If no published
301 phylogeny containing the species from both the experiment and its closest relative in the Schubert
302 tree was found, the species in the experiment was assigned to a randomly selected tip within its
303 respective genus (see Supplementary data 1). The species mean for each experimental variable
304 (i.e. the seven measurements of drought and frost responses; Supplementary Data 1) was used to
305 represent each species. All analyses were done with Rstudio version 1.1.383 (RStudio Team,
306 2016) and/or R version 3.5.2 (R Core Team, 2018).

307 **Covariation and correlation among experimental variables**

308 To visualise patterns of covariation among the seven experimental variables
309 (Supplementary Data 1), we used a principal component analysis (PCA), performed using
310 *ggbiplots* (Vu, 2011). Next, to test which experimental variables are statistically correlated with
311 each other, pairwise regressions were performed using Pearson's correlation test and the function
312 'cor.test'. We also tested for autocorrelation among the residuals and, if detected, instead used a
313 phylogenetic least-squares regression (PGLS), implemented with the 'pgls' function in *caper*
314 (Orme *et al.*, 2018). All pairwise trait combinations were tested.

315 **Phylogenetic signal (λ)**

316 To test whether closely related species showed more similar drought and frost responses
317 than expected for a random sample of species, we estimated the phylogenetic signal of each trait.
318 This information was used to select experimental variables for the evolutionary analyses below.
319 Because Principal Component (PC) axes 2 and 3 showed interesting patterns suggesting
320 covariation between frost and drought tolerance responses, we also tested whether there was
321 phylogenetic signal in either of these variables. Phylogenetic signal was estimated by comparing
322 the fit of different models with distinct assumptions for the variable Pagel's λ (Pagel (1999). The
323 Brownian Motion (BM) model assumes $\lambda = 1$, i.e. that the observed trait variance is completely
324 correlated with the phylogenetic distance among species. The 'white-noise' model assumes $\lambda = 0$,
325 i.e. that trait variance is independent of phylogeny. Finally, the 'lambda' model allows the value
326 of λ to be estimated from the observed data, assuming a value between 0 and 1. The best model
327 was determined based on the sample-size corrected Akaike Information Criterion (AICc (Akaike,

328 1974)), using a difference in AICc ≥ 2 to reject an inferior model (Anderson and Burnham, 2004).
329 Models were fitted using *geiger* (Harmon *et al.*, 2008).

330 Choosing experimental variables as proxies for drought and frost tolerance

331 We used the results of the pairwise correlations and estimates of phylogenetic signal to
332 select experimental variables as proxies for drought and frost tolerance for further evolutionary
333 analysis. We selected variables that were significantly correlated with other variables and that
334 showed phylogenetic signal, because they convey information about several experimental
335 responses and are more evolutionarily relevant. In this way “conductivity following drought
336 treatment” was selected as a proxy for drought tolerance and “regrowth following the sudden frost
337 treatment at -3 °C” as a proxy for frost tolerance. Leaf dry matter content (LDMC) was also
338 analysed separately to test for a correlation with each proxy for drought and frost tolerance.

339 Ancestral state reconstruction

340 To visualise how drought and frost responses have evolved in Pooideae, ancestral states
341 for the two proxy variables plus LDMC were reconstructed using the level of phylogenetic signal
342 for each trait found above. This was achieved with the BM model, having first rescaled the
343 phylogenetic branch lengths according to the phylogenetic signal of the trait in question (Table 2).
344 Ancestral states were reconstructed under maximum likelihood (ML), using the ‘ace’ function in
345 *ape* (Paradis and Schliep, 2018), and branches were rescaled using ‘rescale’ in *geiger* (Harmon *et*
346 *al.*, 2008). Finally, the reconstructed ancestral states were visualized using *ggtree* (Yu *et al.*,
347 2017), *cowplot* (Wilke, 2019) and *ggplot2* (Wickham, 2016). Evidence for the expected patterns
348 of drought tolerance evolving first and frost tolerance originating within ancestrally drought
349 tolerant clades was assessed by eye.

350 Relating species drought and frost responses and leaf dry matter content to local climate 351 conditions

352 Finally, we tested whether species’ drought and frost responses and LDMC correlate with
353 the climatic conditions in each species’ native environment. Because drought and frost responses
354 may not only reflect adaptation to the local climatic conditions but can also bear signatures of
355 species’ evolutionary and biogeographical histories (Coelho *et al.*, 2019; Freckleton and Jetz,
356 2009; Humphreys and Linder, 2013; Lancaster and Humphreys, 2020), we included information
357 on species’ phylogenetic relatedness and spatial proximity in these tests.

358 We used generalized least squares models, in which the variance in a response variable is
359 partitioned into phylogenetic, spatial and independent components (denoted λ' , φ and γ , in turn)
360 (Freckleton and Jetz, 2009). The phylogenetic (λ) and spatial (φ) components are estimated during
361 model fitting. The relative contribution of phylogeny, λ' , is calculated from ML estimates of λ and
362 φ , as $(1 - \varphi) \times (1 - \lambda)$. A high value (approaching 1) of either λ' or φ indicates a large effect of
363 phylogenetic relatedness or geographical proximity, respectively. If the relative contributions of
364 spatial and phylogenetic distances do not sum to 1, then the remainder of the interspecific

365 variation is independent of either geographical proximity or phylogenetic relatedness and can be
366 related to other explanatory variables, such as local climatic variation.

367 We implemented a series of mixed effect linear regressions with phylogenetic and/or
368 spatial distances as random effects and climate predictors as fixed effects. We defined drought
369 tolerance (“conductivity following drought treatment”), frost tolerance (“regrowth following frost
370 treatment at -3 °C”) and LDMC as response variables. As predictors we used four temperature
371 (bio1, bio4, bio5 and bio6) and four precipitation (bio12, bio13, bio14 and bio15) variables from
372 WorldClim2 (Fick and Hijmans, 2017), based on geographical occurrence data obtained from the
373 Global Biodiversity Information Facility (GBIF). The eight BioClim variables were chosen to
374 represent (average) annual conditions (bio1 – average annual temperature; bio12 – annual
375 precipitation), upper and lower extremes (bio5 – maximum temperature of the warmest month,
376 bio13 – precipitation of the wettest month, bio6 – minimum temperature of the coldest month,
377 bio14 – precipitation of the driest month), and annual variation (bio4 – temperature seasonality,
378 bio15 – precipitation seasonality). Geographical data were compiled by Schat et al. (unpublished;
379 (GBIF.org, 2022a) see Supplementary Data S1), supplemented with data downloaded directly
380 from GBIF for three species (*Achnatherum calamagrostis*, (GBIF.org, 2022b); *Lolium*
381 *arundinaceum*, (GBIF.org, 2022c); and *Lolium pratense*, (GBIF.org, 2022d). GBIF occurrence
382 records were filtered following Schat et al. (unpublished). From these we extracted the median
383 latitude and longitude across each species range to represent the geographical centroids and
384 median values for the BioClim variables to represent the climatic conditions in each species’
385 native range.

386 A spatial distance matrix was calculated using the ‘earth.dist’ function in the R package
387 *fossil* (Vavrek, 2011) and a phylogenetic variance-covariance matrix was calculated using
388 ‘vcv.phylo’ in *ape*. Moran’s *I* was also calculated using ‘Moran.I’ in *ape* to separately assess any
389 spatial patterns in the data. Moran’s *I* is a correlation coefficient that ranges from -1 to 1, where 1
390 denotes perfect clustering of similar values, 0 is no autocorrelation (perfect randomness) and -1 is
391 perfect clustering of *dissimilar* values (akin to perfect dispersion).

392 First, we fitted normal univariate linear regressions for each predictor and response
393 variable to assess each climate variable’s effect on each predictor using the ‘lm’ function in R.
394 Next, we fitted univariate mixed effect linear models, with phylogenetic and spatial distances as
395 random effects and each climate variable as a fixed effect, partitioning the variance among
396 phylogenetic, spatial and independent components. Finally, we proceeded with multivariate mixed
397 effect models including just the predictors with the strongest effects in the univariate tests and
398 calculating the variance partitioning into random effects as before. Mixed effect models were
399 fitted using the ‘regress’ function in the R package *regress* (Clifford and McCullagh, 2006, 2014)
400 and code from (Cardillo and Skeels, 2016). For the multivariate models we used AIC scores to
401 compare the fit of a full model (including the predictors and spatial and phylogenetic distances)
402 with the fit of a series of reduced models (including any combination of phylogenetic distance,
403 spatial distance and predictors). We note that this approach does not allow estimation of how
404 much of the *total* trait variance that can be attributed to phylogenetic and spatial distances relative
405 to the local climate (equivalent to the R^2 for a linear regression; see (Ives, 2018) and *cf.* (Lancaster

406 and Humphreys, 2020)), but it does allow quantification of the importance of phylogeny and
407 geography for explaining drought and frost responses, as well as assessment of whether there is an
408 effect of the local climate when any phylogenetic and spatial effects are accounted for.

Results

409 Variation in drought and frost tolerance responses

410 Almost all individuals showed full regrowth after sudden frost at -1 °C and the drought
411 treatment, whereas there was much more variation in regrowth after sudden frost at -3 °C,
412 including no regrowth at all (Supplementary Data, S2). Conductivity following drought and
413 sudden frost at -3 °C also showed a range of values, whereas most plants had low conductivity
414 following frost at -1 °C. The maximum quantum yield after drought measured between 0-0.95,
415 with most plants having intermediate fluorescence (mean=0.55, SD=0.29).

416 Principal component analysis

417 The PCA showed covariation among several of the experimental variables (Fig. 1). The
418 first four PCs explained 86 % of the variance. Overall, there were clear patterns of covariation
419 among the different drought response measures and among the different frost response measures,
420 but mixed patterns regarding how the drought and frost responses covaried with each other (they
421 do for PC2, partly for PC3 but not for PC1). PC1 explained 33% of the variance and primarily
422 depicted the expected pattern of covariation between conductivity and fluorescence following
423 drought treatment (Fig. 1a). In addition, PC1 showed that drought tolerant species (low
424 conductivity, high fluorescence) are less frost tolerant (low regrowth and high conductivity
425 following frost treatment). PC2 (24% of the variance) had similar loadings from all experimental
426 variables and showed that the three conductivity measures increase with increasing PC2, while all
427 other measures decrease. Thus, species at the lower extreme of PC2 had high tolerance of both
428 frost and drought. All the traits covaried in the same direction with the third PC (18 % of the
429 variance; albeit with very low loadings for fluorescence and conductivity following drought
430 treatment; Fig. 1b). Thus, lower extremes of PC3 mainly group frost tolerant species that are
431 somewhat drought tolerant as well. The fourth PC (11 % of the variance; Fig. 1b) mainly covaried
432 with regrowth after drought.

433 Pairwise correlation tests

434 Five pairwise correlation tests were significant: regrowth after sudden frost at -1 °C and -3
435 °C (PGLS, $P << 0.001$, $R^2 = 0.32$); conductivity after sudden frost at -1 °C and -3 °C ($P < 0.05$,
436 Pearson's $r = 0.39$); regrowth following sudden frost (-3 °C) and conductivity following drought
437 treatment ($P < 0.05$, Pearson's $r = 0.27$); conductivity and fluorescence following drought
438 treatment ($P << 0.001$, Pearson's $r = -0.90$); and LDMC and conductivity following drought
439 treatment (PGLS, $P < 0.05$, $R^2 = 0.16$). Two further tests were marginally significant: regrowth
440 following -1 °C and drought treatment ($P=0.062$) and LDMC and regrowth following -3 °C
441 ($P=0.072$); we do not consider these tests any further. Thus, the only test suggesting a significant

442 correlation between drought and frost responses indicates decreasing drought tolerance
443 (increasing conductivity) with increasing frost tolerance (increasing regrowth). LDMC increased
444 with increasing drought tolerance (decreasing conductivity) but showed no relationship with frost
445 tolerance.

446 Phylogenetic signal

447 The strongest phylogenetic signal was found for regrowth following frost treatment at both
448 -1 and -3 °C ($\lambda = 0.47$ in both cases) and LDMC ($\lambda = 0.45$; Table 2). Some evidence for
449 phylogenetic signal was also found for conductivity following frost (-3 °C, $\lambda = 0.63$) and drought
450 ($\lambda = 0.11$) treatment but the lambda and white models were statistically indistinguishable for these
451 variables (Table 2). No other variable showed phylogenetic signal.

452 Ancestral state reconstruction

453 Conductivity following drought treatment and regrowth following frost treatment at -3 °C
454 were used as proxies for drought and frost tolerance, respectively. Frost treatment at -3 °C
455 distinguished the species responses better than treatment at -1 °C, resulting in a response measure
456 with greater variance. The ancestral state reconstruction for drought tolerance showed that tribes
457 Stipeae and Lygeae were ancestrally more drought tolerant (lower conductivity; yellower internal
458 nodes; Fig. 2), compared to the rest of the Pooideae (Meliceae, Brachypodieae, Triticeae and
459 Poeae; greener internal nodes; Fig. 2). Stipeae and Lygeae were also inferred to have lower
460 ancestral frost tolerance (less regrowth; blue internal nodes; Fig. 2) compared to the rest of
461 Pooideae (green internal nodes; Fig. 2), with slightly higher ancestral frost tolerance in Triticeae
462 and the Poeae chloroplast 2 clade (sensu (Soreng *et al.*, 2017; Soreng *et al.*, 2015) relative to other
463 clades (yellower-green ancestral shades; Fig. 2). Finally, Stipeae and Lygeae were inferred to
464 have higher ancestral LDMC compared to core Pooideae (Poeae and Triticeae; Fig. 3).

465 Spatial, phylogenetic and climatic correlates of drought tolerance, frost tolerance and leaf 466 dry matter content

467 There was no evidence for a significant spatial signal in the analysed data. All values of
468 Moran's I were below zero, i.e. showing some degree of dispersion. This was significant for frost
469 and drought tolerance (Moran's $I = -0.12 \pm 0.0133$, $P < 0.001$ [frost]; -0.075 ± 0.0132 , $P < 0.001$
470 [drought]), but not LDMC (i.e. no spatial autocorrelation; Moran's $I = -0.029 \pm 0.0133$, $P = 0.33$).

471 The univariate linear regressions suggested that average climate conditions across each
472 species range are poor predictors of how species responded to the drought and frost treatments.
473 For frost tolerance, one climate variable had a significant effect (Bio15, precipitation seasonality;
474 $P = 0.032$, $R^2 = 0.075$), whereas for drought tolerance and LDMC none was significant ($P > 0.05$,
475 results not shown). No adjustments for multiple testing were made.

476 The univariate mixed effect models with the variance partitioned into spatial, phylogenetic
477 and independent components revealed that phylogeny explained almost all of the variance for all
478 three response variables ($\lambda' > 0.999$; Table 3). For frost tolerance, the strongest predictor effects

479 were for three temperature variables (bio1, bio5 and bio6) but no test remained significant after
480 correction for multiple testing (Table 3a). For drought tolerance, the strongest predictor effects
481 were for three temperature variables (bio1, bio4 and bio6) and one precipitation variable (bio15),
482 with all but bio1 remaining significant after correction for multiple testing (Table 3b). Finally, for
483 LDMC, the strongest predictor effects were for one temperature (bio4) and two precipitation
484 parameters (bio14 and bio15) but none remained significant after adjustment for multiple testing
485 (Table 3c).

486 The best multivariate mixed effect model for frost tolerance included just the predictors
487 and the phylogeny ($\Delta\text{AIC} \geq 12.6$ compared to all other models; Table 4). Under this model, $\lambda' =$
488 0.50 and $\gamma = 0.50$, meaning that half the variance is attributed to phylogenetic distance and half is
489 independent of either phylogenetic or spatial distance. However, none of the predictors, bio1, bio5
490 and bio6, showed a significant effect ($P = 0.09, 0.08, 0.08$, respectively; not shown) but removing
491 the predictors from the model completely led to a much worse model ($\Delta\text{AIC} = 15.6$; or $\Delta\text{AIC} =$
492 12.4 for the full model vs. the spatial+phylogeny model; Table 4).

493 For drought tolerance, three models were statistically indistinguishable from each other
494 ($0.30 < \Delta\text{AIC} < 2.00$; Table 4), the model including the predictors and just spatial distance, the
495 model including the predictors and phylogenetic distance, and the model including only the
496 predictors. However, under the spatial model, $\gamma = 1.00$ (i.e. all variance is independent of spatial
497 distance) and under the phylogenetic model, $\lambda' = 0.30$ and $\gamma = 0.70$ (i.e. most variance is
498 independent of phylogeny). Accordingly, the best model overall (albeit not significantly so) is the
499 model including only the predictors (Table 4). Under this model, there is a significant effect of
500 bio1 ($P=0.035$, slope= -6.64 ± 3.59 , $t=-1.85$) and bio6 ($P=0.024$, slope= 7.36 ± 3.65 , $t=2.02$).

501 For LDMC, the best model was the one including the predictors and just the phylogeny
502 ($\Delta\text{AIC} \geq 4.2$, Table 4). Under this model, $\lambda' = 0.56$ and $\gamma = 0.44$, meaning that just over half the
503 variance is attributed to phylogenetic distance and the rest is independent of either phylogenetic or
504 spatial distance. None of the predictors showed a significant effect ($P > 0.05$, not shown).
505 Accordingly, removing the predictors resulted in only a slightly worse model ($\Delta\text{AIC} = 4.2$).

Discussion

506 Present-day drought responses are negatively correlated with responses to episodic frost

507 In keeping with our predictions, we found that responses to drought and frost are
508 correlated in Pooideae. However, in contrast to our predictions, the nature of this correlation
509 shows that the species most tolerant of episodic (short-term) frost were the least tolerant of
510 drought. This is evident from the pairwise correlations among the experimental variables and the
511 PCA, which showed that species with high levels of damage following drought treatment were the
512 least damaged by the frost treatments (Fig. 1). We assessed frost tolerance using the whole-plant
513 responses survival and regrowth. However, because all species grew well following drought
514 treatment, we were not able to use similar whole-plant responses for drought tolerance. Instead,
515 we used electrolyte leakage, as previous studies have shown that this is a good proxy for drought

516 tolerance measured as survival and regrowth (Bajji, Kinet and Lutts (2002). Therefore, the
517 different measures of drought and frost responses are comparable. Furthermore, we found
518 negative correlations between electrolyte leakage (conductivity) and photosynthetic capacity
519 following drought treatment and between electrolyte leakage and regrowth following frost
520 exposure at both -1 °C and -3 °C. The PCA plots also show covariation among different measured
521 responses to frost and drought treatments, respectively (Fig. 1). Thus, there are expected and
522 reliable signals in our experimental data, meaning that the negative correlation between frost and
523 drought tolerance found is unlikely to be an artefact of the experimental variables used. Instead
524 these results reflect different adaptations to different environments in different species.

525 Is leaf dry matter the link between frost and drought tolerance?

526 We found a significant negative relationship between leaf dry matter content and
527 electrolyte leakage in response to drought, indicating that the former may confer drought tolerance
528 in Pooideae. These results are in line with Liu *et al.*, (Liu *et al.*, 2015), who found leaf dry matter
529 content to be positively correlated with drought tolerance in *Magnolia*. We did not, however, find
530 any relationship between leaf dry matter content and regrowth following frost treatment. This
531 indicates that leaf dry matter content is not a component of short term frost responses in
532 Pooideae. This contrasts with Watcharamongkol (Watcharamongkol, 2019), who found a
533 correlation between episodic frost tolerance and water content (the inverse of dry matter content)
534 in the predominantly (sub)tropical PACMAD grasses. One explanation for these contrasting
535 results could be that if high dry matter content was an exaptation to frost tolerance, such that it
536 facilitated adaptation to freezing climates in drought tolerant plants, the signature of that
537 exaptation may be masked by the more sophisticated and complex freezing adaptations of present
538 day temperate clades like Pooideae (Schubert *et al.*, 2019b). Thus, it is still possible that the first
539 responses to episodic frost in an ancestor of Pooideae utilised early desiccation tolerance traits,
540 including high dry matter content. Further study of the role of leaf dry matter content in the
541 evolution of drought and frost responses at broader phylogenetic scales and tests for shared gene
542 expression patterns linked to early dehydration traits, including dry matter content, is needed.

543 Evolutionary trajectories of drought and frost responses

544 If drought tolerance had acted as a precursor for frost tolerance, we would have expected
545 drought tolerance to have evolved first in lineages tolerant of episodic (short-term/diurnal) frost,
546 and/or frost tolerance to have evolved more frequently in ancestrally drought tolerant lineages.
547 This is not what we found (Fig. 2). Instead, we found a mirrored phylogenetic pattern for drought
548 and frost tolerance, with the lineage with the highest inferred ancestral drought tolerance (Stipeae)
549 being the least frost tolerant and the highest frost tolerance being measured for species with the
550 lowest ancestral drought tolerance (Poeae + Triticeae). This would suggest that the sophisticated
551 drought and frost tolerance responses of extant species have evolved as independent evolutionary
552 trajectories. These results corroborate findings from a comparative analysis of frost and drought
553 tolerance inferred from Köppen-Geiger zones across all grasses (Schat *et al.*, unpubl.) and
554 previous work suggesting that present-day grasses tend to be either frost or drought specialists

555 (Visser *et al.*, 2014). These findings are also in line with the idea that there is a tradeoff among
556 abiotic stress responses, such that plants cannot be equally well adapted to multiple stressors, in
557 particular both low temperature and drought (Puglielli, Hutchings and Laanisto, 2021). Finally,
558 our results mean that the evolutionary origins of shared genetic responses to cold and drought
559 remain largely unknown. Gene expression patterns suggest some kind of shared ancestral response
560 to both cold and drought in Pooideae (Schubert *et al.*, 2019a). These may have originated even
561 further back in time, outside the Pooideae. Further research in a phylogenetic framework, with
562 species sampled from across broad clades, will be needed to test this further.

563 Interestingly, we inferred the ancestor of Pooideae to have low frost tolerance, with higher
564 levels being reconstructed only in core Pooideae (Triticeae and Poeae; Fig. 2). This contrasts with
565 other reconstructions, suggesting frost tolerance at deeper nodes, e.g. as far back as the ancestor of
566 all Pooideae except *Brachyelytrum* and *Nardus* plus *Lygeum* (Schubert *et al.*, 2019b)(Schat *et al.*
567 unpubl.). The use of an experimentally measured frost response here has thus provided a more
568 nuanced view of how frost tolerance evolved in Pooideae, compared to studies relying on binary
569 coding of this trait (frost sensitive/tolerant). Our reconstruction suggests frost tolerance increased
570 only after transitions to open habitats occurred (Elliott *et al.*, 2023; Zhang *et al.*, 2022) and
571 coincidentally with the novel expansion of gene families involved in low temperature stress
572 responses in core Pooideae (Sandve and Fjellheim, 2010; Schubert *et al.*, 2019a).

573 We found higher phylogenetic signal to frost than drought tolerance (Table 2), i.e., a
574 higher signature of shared ancestry in frost tolerance than drought tolerance. This holds true even
575 when the effects of phylogeny, geography and the local climate are modelled together (Table 4),
576 meaning it is not an artefact of not accounting for other potentially confounding variables
577 (Freckleton and Jetz, 2009) (Coelho *et al.*, 2019; Humphreys and Linder, 2013; Lancaster and
578 Humphreys, 2020). The high phylogenetic signal in frost tolerance is consistent with other studies
579 in grasses (Edwards and Smith, 2010; Humphreys and Linder, 2013)(Schat *et al.* unpubl.) and
580 land plants (Lancaster and Humphreys, 2020) and suggests that rare evolutionary events structure
581 frost responses in plants.

582 The low phylogenetic and geographical signals in drought responses (Tables 2 and 4)
583 could indicate that Pooideae rely on general stress tolerance mechanisms to cope with drought,
584 rather than being drought specialists. Alternatively, the low phylogenetic signal suggests that
585 drought tolerance is evolutionarily labile in Pooideae. This is supported by other similarly shallow
586 reconstructions of drought tolerance in Pooideae, with xerophytes arising multiple times
587 independently, only being reconstructed ancestrally in Triticeae (Zhang *et al.*, 2022), and drought
588 tolerance being reconstructed at deeper ancestral nodes only in Stipeae and Triticeae (Schat *et al.*
589 unpubl.). Our results together with these previous reconstructions suggest that origins of modern-
590 day drought tolerance are decoupled from the transitions from closed to open habitats in Pooideae.

591 Evolutionary lability of drought tolerance is supported by other lines of evidence. Some
592 form of drought tolerance is assumed to have been a key factor in the early evolution of land
593 plants (Oliver, Tuba and Mishler, 2000; Zhao *et al.*, 2019), but since then various forms of
594 adaptations for avoiding dehydration have evolved, been lost and regained several times (Bowles,

595 Paps and Bechtold, 2021). Some gene families (e.g. C-REPEAT BINDING FACTORS (CBFs)
596 anddehydrins) are expressed in response to a range of stressors, including drought, frost and
597 salinity (Chew and Halliday, 2011). These gene families are present in all plants at all times and
598 are often larger and more flexible (undergoing expansions and contractions) than gene families
599 not involved in stress responses (Panchy, Lehti-Shiu and Shiu, 2016; Schubert *et al.*, 2019a)
600 (Chew and Halliday, 2011). Such flexibility serves as a basis for adaptation, allowing individual
601 genes to be co-opted into different stress responses in certain lineages (Schubert *et al.*, 2019a). If
602 this is the genetic basis of drought tolerance in Pooideae, then this evolutionary lability will limit
603 our ability to reconstruct the order in which drought tolerance traits evolved relative to other stress
604 responses and assess their putative roles as evolutionary precursors (Bromham, 2014).

605 Local climate conditions do not explain measured drought and frost responses

606 We found at best a weak correlation between experimentally measured drought and frost
607 tolerance and aspects of the local climate in species' native ranges (Tables 3, S2). There was no
608 effect of the local climate for frost tolerance or leaf dry matter content but for drought tolerance
609 there was a weak effect of mean annual temperature and minimum temperature of the coldest
610 month. In other words, these results indicate that the most drought tolerant species are from areas
611 that are warm on average but with cold winters. Weak trait-environment relationships are
612 consistent with previous findings for a range of plant traits (upper and lower thermal tolerances,
613 plant height, leaf size, seed size; (Moles *et al.*, 2014); (but see (Das *et al.*, 2021; Lancaster and
614 Humphreys, 2020)). In ours and previous studies, local temperature conditions explained more of
615 the variation in functional or experimentally determined response variables than local
616 precipitation conditions but neither explained very much. This suggests either that plants in
617 general show only weak signatures of local adaptation and/or that air temperatures expressed by
618 the BioClim variables at coarse geographical scales do not capture the (micro)climatic conditions
619 plants are naturally exposed to (Greiser *et al.*, 2020). In support of the latter, land surface
620 temperatures based on satellite measurements of radiative temperatures capture more differences
621 in occupied thermal environments between closely related C3 and C4 grasses than air
622 temperatures (Still, Pau and Edwards, 2014). Another factor not considered here is the stability of
623 trait-environment relationships over time (Cui, 2024; Famiglietti *et al.*, 2023). Since our study
624 concerns change in plant traits over evolutionary timescales, incorporating climate fluctuations
625 through time should strengthen trait-environment relationships.

626

Conclusion

627 We conclude that there is little evidence in our data for a positive correlation between
628 drought and frost responses or that drought tolerance acted as a precursor to frost tolerance.
629 Instead, our reconstructions suggest that present-day drought and frost responses are the result of
630 independent evolutionary trajectories in different Pooideae lineages, or that their shared origins
631 occurred outside the Pooideae. Either way, the evolutionary origins of the known physiological

632 and genetic links between frost and drought responses remain unclear. Our results also suggest
633 that origins of modern-day drought tolerance are decoupled from the transitions from closed to
634 open habitats in Pooideae – but also that drought tolerance is more evolutionarily labile than frost
635 tolerance. This lability could limit our ability to reconstruct the relative order in which drought
636 and frost responses originated, potentially hampering assessment of their putative roles as
637 evolutionary precursors. Further research is needed to discern whether our findings are unique to
638 the cool season grasses, or whether signatures of shared evolutionary origins among diverse
639 abiotic stress tolerance responses are no longer detectable on the long timescales studied here.

Supplementary data

640 **Supplementary table 1.** Summary of number of plants in experiments.

641 **Supplementary data 1.** The data input for analyses.

642 **Supplementary data 2.** Raw data from the experiments.

643

Acknowledgements

644 We are grateful to Mika Kirkhus, Martine Molland, Ane Charlotte Hjertaas, Martin
645 Paliocha, Darshan Young and Øyvind Jørgensen for help with the growth experiment and to two
646 anonymous reviewers for comments on an earlier version of the manuscript.

Author contributions

647 SF, JCP and AMH conceived and designed the study; SPS, RW and CLL performed the
648 experiments; SPS, RW, LS and AMH compiled and analyzed the data; all authors interpreted the
649 data; SPS, AMH and SF wrote the paper with input from all authors.

Conflict of interest

650 The authors declare that they have no conflicts of interest.

Data availability

651 The input for analyses can be found in Supplementary data 1 and the raw data from the
652 experiments can be found in Supplementary data 2.

References

653 **Akaike H.** 1974. A new look at the statistical model identification. *Selected Papers of Hirotugu*
654 *Akaike*: Springer, 215-222.

655 **Alm V, Busso CS, Ergon Å, Rudi H, Larsen A, Humphreys MW, Rognli OA.** 2011. QTL
656 analyses and comparative genetic mapping of frost tolerance, winter survival and drought
657 tolerance in meadow fescue (*Festuca pratensis* Huds.). *Theoretical and Applied Genetics* **123**,
658 369-382.

659 **Anderson D, Burnham K.** 2004. Model selection and multi-model inference. Second. NY:
660 Springer-Verlag, 63.

661 **Anisko T, Lindstrom OM.** 1996. Cold hardiness and water relations parameters in
662 *Rhododendron* cv. *Catawbiense* Boursault subjected to drought episodes. **98**, 147-155.

663 **Bajji M, Kinet J-M, Lutts S.** 2002. The use of the electrolyte leakage method for assessing cell
664 membrane stability as a water stress tolerance test in durum wheat. *Plant growth regulation* **36**,
665 61-70.

666 **Bennett TH, Flowers TJ, Bromham L.** 2013. Repeated evolution of salt-tolerance in grasses.
667 *Biology Letters* **9**, 20130029.

668 **Bouchenak-Khelladi Y, Verboom AG, Savolainen V, Hodkinson TR.** 2010. Biogeography of
669 the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical
670 space and geological time. *Botanical Journal of the Linnean Society* **162**, 543-557.

671 **Bowles AMC, Paps J, Bechtold U.** 2021. Evolutionary Origins of Drought Tolerance in
672 Spermatophytes. *Frontiers in Plant Science* **12**.

673 **Bromham L.** 2014. Macroevolutionary patterns of salt tolerance in angiosperms. *Annals of*
674 *Botany* **115**, 333-341.

675 **Cardillo M, Skeels A.** 2016. Spatial, Phylogenetic, Environmental and Biological Components of
676 Variation in Extinction Risk: A Case Study Using Banksia. *Plos One* **11**, e0154431.

677 **Chew YH, Halliday KJ.** 2011. A stress-free walk from *Arabidopsis* to crops. *Current Opinion in*
678 *Biotechnology* **22**, 281-286.

679 **Cialdella AM, Giussani LM, Aagesen L, Zuloaga FO, Morrone O.** 2007. A phylogeny of
680 *Piptochaetium* (Poaceae: Pooideae: Stipeae) and related genera based on a combined analysis
681 including *trnL-F*, *rpl16*, and morphology. *Systematic Botany* **32**, 545-559.

682 **Clayton WD, Vorontsova MS, Harman KT, Williamson H.** 2002 onwards. *World Grass*
683 Species: Synonymy., Vol. 2019.

684 **Clifford D, McCullagh P.** 2006. The regress function. *R News* **6**, 6-10.

685 **Clifford D, McCullagh P.** 2014. The Rggress Package. R package version 1.3-15.

686 **Coelho MTP, Rodrigues JFM, Diniz-Filho JAF, Rangel TF.** 2019. Biogeographical history
687 constrains climatic niche diversification without adaptive forces driving evolution. *Journal of*
688 *Biogeography* **46**, 1020-1028.

689 **Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter**
690 **Steege H, Morgan HD, Van Der Heijden MGA, Pausas JG, Poorter H.** 2003. A handbook of
691 protocols for standardised and easy measurement of plant functional traits worldwide. *Australian*
692 *Journal of Botany* **51**, 335-380.

693 **Cui E.** 2024. Trait-environment relationships are timescale dependent. *New Phytologist*.

694 **Das A, Dedon N, Enders DJ, Fjellheim S, Preston JC.** 2023. Testing the chilling- before
695 drought-tolerance hypothesis in Pooideae grasses. *Molecular Ecology* **32**, 772-785.

696 **Das A, Prakash A, Dedon N, Doty A, Siddiqui M, Preston JC.** 2021. Variation in climatic
697 tolerance, but not stomatal traits, partially explains Pooideae grass species distributions. *Annals of*
698 *Botany*.

699 **Donoghue MJ.** 2008. A phylogenetic perspective on the distribution of plant diversity.
700 Proceedings of the National Academy of Sciences **105**, 11549-11555.

701 **Ebermayer E.** 1873. *Die physikalischen einwirkungen des waldes auf luft und boden und seine*
702 *klimatologische und hygienische bedeutung, begründet durch die beobachtungen der forst.-*
703 *meteorolog. stationen im königreich Bayern.* Aschaffenburg: C. Krebs.

704 **Edwards EJ, Osborne CP, Strömbberg CAE, Smith SA, Consortium CG.** 2010. The Origins of
705 C4 Grasslands: Integrating Evolutionary and Ecosystem Science. *Science* **328**, 587-591.

706 **Edwards EJ, Smith SA.** 2010. Phylogenetic analyses reveal the shady history of C₄ grasses.
707 Proceedings of the National Academy of Sciences of the United States of America **107**, 2532-
708 2537.

709 **Eldrett JS, Greenwood DR, Harding IC, Huber M.** 2009. Increased seasonality through the
710 Eocene to Oligocene transition in northern high latitudes. *Nature* **459**, 969-U991.

711 **Elliott TL, Spalink D, Larridon I, Zuntini AR, Escudero M, Hackel J, Barrett RL, Martín-
712 *Bravo S, Márquez-Corro JI, Granados Mendoza C, Mashau AC, Romero-Soler KJ, Zhigila*
713 *DA, Gehrke B, Andrino CO, Crayn DM, Vorontsova MS, Forest F, Baker WJ, Wilson KL,*
714 *Simpson DA, Muasya AM.* 2023. Global analysis of Poales diversification – parallel evolution in
715 space and time into open and closed habitats. *New Phytologist*.**

716 **Engelbrecht BMJ, Kursar TAJO.** 2003. Comparative drought-resistance of seedlings of 28
717 species of co-occurring tropical woody plants. *136*, 383-393.

718 **Famiglietti CA, Worden M, Anderegg LDL, Konings AG.** 2023. Impacts of climate timescale
719 on the stability of trait–environment relationships. *New Phytologist*.

720 **Fick SE, Hijmans RJ.** 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for
721 global land areas. *International Journal of Climatology* **37**, 4302-4315.

722 **Fjellheim S, Boden S, Trevaskis B.** 2014. The role of seasonal flowering responses in adaptation
723 of grasses to temperate climates. *Frontiers in plant science* **5**, 431.

724 **Fjellheim S, Young DA, Paliocha M, Johnsen SS, Schubert M, Preston JC.** 2022. Major niche
725 transitions in Pooideae correlate with variation in photoperiodic flowering and evolution of CCT
726 domain genes. *J Exp Bot* **73**, 4079-4093.

727 **Folk RA, Siniscalchi CM, Soltis DE.** 2020. Angiosperms at the edge: Extremity, diversity, and
728 phylogeny. *Plant, Cell & Environment* **43**, 2871-2893.

729 **Folk RA, Stubbs RL, Mort ME, Cellinese N, Allen JM, Soltis PS, Soltis DE, Guralnick RP.**
730 2019. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation.
731 *116*, 10874-10882.

732 **Freckleton RP, Jetz W.** 2009. Space versus phylogeny: disentangling phylogenetic and spatial
733 signals in comparative data. *Proceedings of the Royal Society B: Biological Sciences* **276**, 21-30.

734 **Fujikawa S, Miura K.** 1986. Plasma membrane ultrastructural changes caused by mechanical
735 stress in the formation of extracellular ice as a primary cause of slow freezing injury in fruit-
736 bodies of Basidiomycetes (*Lyophyllum ulmarium* (Fr.) Kühner). *Cryobiology* **23**, 371-382.

737 **Gallaher TJ, Adams DC, Attigala L, Burke SV, Craine JM, Duvall MR, Klahs PC, Sherratt
738 *E, Wysocki WP, Clark LG.* 2019. Leaf shape and size track habitat transitions across forest–
739 grassland boundaries in the grass family (Poaceae). *Evolution* **73**, 927-946.**

740 **Gallaher TJ, Peterson PM, Soreng RJ, Zuloaga FO, Li D-Z, Clark LG, Tyrrell CD, Welker
741 *CAD, Kellogg EA, Teisher JK.* 2022a. Grasses through space and time: an overview of the
742 biogeographical and macroevolutionary history of Poaceae. *Journal of Systematics and Evolution*
743 *n/a*.**

744 **Gallaher TJ, Peterson PM, Soreng RJ, Zuloaga FO, Li D-Z, Clark LG, Tyrrell CD, Welker
745 *CAD, Kellogg EA, Teisher JK.* 2022b. Grasses through space and time: An overview of the
746 biogeographical and macroevolutionary history of Poaceae. *Journal of Systematics and Evolution*
747 *60*, 522-569.**

748 **GBIF.org.** 2022a. GBIF Occurrence Download <https://doi.org/10.15468/dl.26b2o8>.

749 **GBIF.org.** 2022b. GBIF Occurrence Download. <https://doi.org/10.15468/dl.3ybten>
750 **GBIF.org.** 2022c. GBIF Occurrence Download. <https://doi.org/10.15468/dl.t3yqgc>
751 **GBIF.org.** 2022d. GBIF Occurrence Download. <https://doi.org/10.15468/dl.w6a4dr>
752 **Gilbert ME, Medina V.** 2016. Drought adaptation mechanisms should guide experimental
753 design. *Trends in Plant Science* **21**, 639-647.
754 **Gillespie LJ, Archambault A, Soreng RJ.** 2007. Phylogeny of Poa (Poaceae) based on trnT–
755 trnF sequence data: major clades and basal relationships. *Aliso: A Journal of Systematic and*
756 *Evolutionary Botany* **23**, 420-434.
757 **Grebenein B, Röser M, Sauer W, Hemleben V.** 1998. Molecular phylogenetic relationships
758 in Aveneae (Poaceae) species and other grasses as inferred from ITS1 and ITS2 rDNA sequences.
759 *Plant Systematics and Evolution* **213**, 233-250.
760 **Greiser C, Ehrlén J, Meineri E, Hylander K.** 2020. Hiding from the climate: Characterizing
761 microrefugia for boreal forest understory species. *Global Change Biology* **26**, 471-483.
762 **Hagen O, Vaterlaus L, Albouy C, Brown A, Leugger F, Onstein RE, de Santana CN, Scotesi
763 CR, Pellissier L.** 2019. Mountain building, climate cooling and the richness of cold-adapted
764 plants in the Northern Hemisphere. *Journal of Biogeography* **46**, 1792-1807.
765 **Hamasha HR, von Hagen KB, Röser M.** 2012. *Stipa* (Poaceae) and allies in the Old World:
766 molecular phylogenetics realigns genus circumscription and gives evidence on the origin of
767 American and Australian lineages. *Plant Systematics and Evolution* **298**, 351-367.
768 **Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W.** 2008. GEIGER: investigating
769 evolutionary radiations. *Bioinformatics* **24**, 129-131.
770 **Hartley W.** 1973. Studies on the origin, evolution, and distribution of the Gramineae. V. The
771 subfamily Festucoideae. *Australian Journal of Botany* **21**, 201-234.
772 **Hincha DK, Höfner R, Schwab KB, Heber U, Schmitt JM.** 1987. Membrane rupture is the
773 common cause of damage to chloroplast membranes in leaves injured by freezing or excessive
774 wilting. *Plant Physiology* **83**, 251-253.
775 **Humphreys AM, Linder HP.** 2013. Evidence for recent evolution of cold tolerance in grasses
776 suggests current distribution is not limited by (low) temperature. *New Phytologist* **198**, 1261-
777 1273.
778 **Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L.** 2018. Chilling and
779 Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management
780 Opportunities. *Frontiers in Plant Science* **9**.
781 **Ives AR.** 2018. R²s for Correlated Data: Phylogenetic Models, LMMs, and GLMMs. *Systematic
782 Biology* **68**, 234-251.
783 **Kellogg E.** 2015. Flowering plants, monocots: Poaceae. In: Kubitzki K, ed. *The families and
784 genera of vascular plants*, Vol. 13. Cham, Switzerland: Springer International, 1-416.
785 **Kellogg EA.** 2001. Evolutionary History of the Grasses. *Plant Physiology* **125**, 1198-1205.
786 **Kottek M, Grieser J, Beck C, Rudolf B, Rubel F.** 2006. World map of the Köppen-Geiger
787 climate classification updated. *Meteorologische Zeitschrift* **15**, 259-263.
788 **Lancaster LT, Humphreys AM.** 2020. Global variation in the thermal tolerances of plants.
789 *Proceedings of the National Academy of Sciences* **117**, 13580-13587.
790 **Larcher W.** 2005. Climatic Constraints Drive the Evolution of Low Temperature Resistance in
791 Woody Plants. *Journal of Agricultural Meteorology* **61**, 189-202.
792 **Larsen A.** 1978. Freezing tolerance in grasses—methods for testing in controlled environments.
793 *Meldinger fra Norges Landbrukshøgskole* **57**, 2-56.
794 **Liu H, Xu Q, He P, Santiago LS, Yang K, Ye Q.** 2015. Strong phylogenetic signals and
795 phylogenetic niche conservatism in ecophysiological traits across divergent lineages of
796 Magnoliaceae. *Scientific Reports* **5**, 12246-12246.

797 **Liu Z, Pagani M, Zinniker D, Deconto R, Huber M, Brinkhuis H, Shah SR, Leckie RM, Pearson A.** 2009. Global cooling during the Eocene-Oligocene climate transition. *Science* **323**, 1187-1190.

800 **McKeown M, Schubert M, Marcussen T, Fjellheim S, Preston JC.** 2016. Evidence for an early 801 origin of vernalization responsiveness in temperate Pooideae grasses. *Plant physiology* **172**, 416- 802 426.

803 **Medeiros JS, Pockman WT.** 2011. Drought increases freezing tolerance of both leaves and 804 xylem of *Larrea tridentata*. *Plant, Cell and Environment* **34**, 43-51.

805 **Moles AT, Perkins SE, Laffan SW, Flores-Moreno H, Awasthy M, Tindall ML, Sack L, Pitman A, Kattge J, Aarssen LW, Anand M, Bahn M, Blonder B, Cavender-Bares J, Cornelissen JHC, Cornwell WK, Diaz S, Dickie JB, Freschet GT, Griffiths JG, Gutierrez AG, Hemmings FA, Hickler T, Hitchcock TD, Keighery M, Kleyer M, Kurokawa H, Leishman MR, Liu KW, Niinemets U, Onipchenko V, Onoda Y, Penuelas J, Pillar VD, Reich PB, Shiodera S, Siefert A, Sosinski EE, Soudzilovskaia NA, Swaine EK, Swenson NG, van Bodegom PM, Warman L, Weiher E, Wright IJ, Zhang HX, Zobel M, Bonser SP.** 2014. 812 Which is a better predictor of plant traits: temperature or precipitation? *Journal of Vegetation 813 Science* **25**, 1167-1180.

814 **Monson RK, Rosenstiel TN, Forbis TA, Lipson DA, Jaeger CH, III.** 2006. Nitrogen and 815 carbon storage in alpine plants. *Integrative and Comparative Biology* **46**, 35-48.

816 **Monson RK, Smith SD.** 1982. Seasonal Water Potential Components of Sonoran Desert Plants. 817 **63**, 113-123.

818 **Oliver MJ, Tuba Z, Mishler BD.** 2000. The evolution of vegetative desiccation tolerance in land 819 plants. *Plant Ecology* **151**, 85-100.

820 **Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W.** 2018. caper: 821 Comparative Analyses of Phylogenetics and Evolution in R. R package version 1.0.1.

822 **Pagel M.** 1999. Inferring the historical patterns of biological evolution. *Nature* **401**, 877.

823 **Panchy N, Lehti-Shiu MD, Shiu S-H.** 2016. Evolution of gene duplication in plants. *Plant 824 Physiology* **171**, pp.00523.02016.

825 **Paradis E, Schliep K.** 2018. ape 5.2: an environment for modern phylogenetics and evolutionary 826 analyses in R. *Bioinformatics*.

827 **Pearce RS.** 2001. Plant Freezing and Damage. *Annals of Botany* **87**, 417-424.

828 **Pescador DS, Sierra-Almeida Á, Torres PJ, Escudero A.** 2016. Summer Freezing Resistance: 829 A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains. *Frontiers in 830 Plant Science* **7**, 194-194.

831 **Pisek A, Larcher W.** 1954. Zusammenhang zwischen austrocknungsresistenz und frosthärté bei 832 immergrünen. *Protoplasma* **44**, 30-46.

833 **Pound MJ, Salzmann U.** 2017. Heterogeneity in global vegetation and terrestrial climate change 834 during the late Eocene to early Oligocene transition. *Scientific Reports* **7**, 43386.

835 **Preston JC, Sandve SR.** 2013. Adaptation to seasonality and the winter freeze. *Frontiers in Plant 836 Science* **4**, 167.

837 **Puglielli G, Hutchings MJ, Laanisto L.** 2021. The triangular space of abiotic stress tolerance in 838 woody species: a unified trade-off model. *New Phytologist* **229**, 1354-1362.

839 **R Core Team.** 2018. R: A language and environment for statistical computing. R Foundation for 840 Statistical Computing, Vienna, Austria.

841 **Ricklefs RE, Renner SS.** 1994. Species richness within families of flowering plants. *Evolution* 842 **48**, 1619-1636.

843 **RStudio Team.** 2016. RStudio: Integrated Development for R. Inc., Boston, MA.

844 **Sakai A, Larcher W.** 1987a. *Frost survival of plants: responses and adaptation to freezing 845 stress*. Heidelberg: Springer Verlag Berlin.

846 **Sakai A, Larcher W.** 1987b. *Frost Survival of Plants: Responses and Adaptation to Freezing*
847 *Stress*. Berlin: Springer-Verlag

848 **Sandve SR, Fjellheim S.** 2010. Did gene family expansions during the Eocene–Oligocene
849 boundary climate cooling play a role in Pooideae adaptation to cool climates? *Molecular Ecology*
850 **19**, 2075-2088.

851 **Sandve SR, Kosmala A, Rudi H, Fjellheim S, Rapacz M, Yamada T, Rognli OA.** 2011.
852 Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates.
853 *Plant Science* **180**, 69-77.

854 **Schubert M, Grønvold L, Sandve SR, Hvidsten TR, Fjellheim S.** 2019a. Evolution of cold
855 acclimation and its role in niche transition in the temperate grass subfamily Pooideae. *Plant*
856 *Physiology* **180**, 404-419.

857 **Schubert M, Humphreys AM, Lindberg CL, Preston JC, Fjellheim S.** 2020. To coldly go
858 where no grass has gone before: A multidisciplinary review of cold adaptation in Poaceae. *Annual*
859 *Plant Reviews online*, 523-562.

860 **Schubert M, Marcussen T, Meseguer AS, Fjellheim S.** 2019b. The grass subfamily Pooideae:
861 Cretaceous–Palaeocene origin and climate-driven Cenozoic diversification. *Global Ecology and*
862 *Biogeography* **28**, 1168-1182.

863 **Shinozaki K, Yamaguchi-Shinozaki K.** 2000. Molecular responses to dehydration and low
864 temperature: differences and cross-talk between two stress signaling pathways. *Current Opinion in*
865 *Plant Biology* **3**, 217-223.

866 **Shinozaki K, Yamaguchi-Shinozaki K, Seki M.** 2003. Regulatory network of gene expression
867 in the drought and cold stress responses. *Current opinion in plant biology* **6**, 410-417.

868 **Sierra-Almeida A, Reyes-Bahamonde C, Cavieres LA.** 2016. Drought increases the freezing
869 resistance of high-elevation plants of the Central Chilean Andes. *Oecologia* **181**, 1011-1023.

870 **Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barberá P,**
871 **Gillespie LJ, Zuloaga FO.** 2017. A worldwide phylogenetic classification of the Poaceae
872 (Gramineae) II: An update and a comparison of two 2015 classifications. *Journal of Systematics*
873 *and Evolution* **55**, 259-290.

874 **Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ,**
875 **Filgueiras TS, Davis JI, Morrone O.** 2015. A worldwide phylogenetic classification of the
876 Poaceae (Gramineae). *Journal of Systematics and Evolution* **53**, 117-137.

877 **Stevens P.** 2001. Angiosperm Phylogeny Website. Version 14, July 2017

878 **Still CJ, Pau S, Edwards EJ.** 2014. Land surface skin temperature captures thermal
879 environments of C3 and C4 grasses. *Global Ecology and Biogeography* **23**, 286-296.

880 **Streeter JG, Lohnes DG, Fioritto RJ.** 2001. Patterns of pinitol accumulation in soybean plants
881 and relationships to drought tolerance. *Plant Cell and Environment* **24**, 429-438.

882 **Strömborg CAE.** 2011. Evolution of grasses and grassland ecosystems. In: Jeanloz R, Freeman
883 KH, eds. *Annual Review of Earth and Planetary Sciences*, Vol. 39, 517-544.

884 **Sumner EE, Williamson VG, Gleadow RM, Wevill T, Venn SE.** 2022. Acclimation to water
885 stress improves tolerance to heat and freezing in a common alpine grass. *Oecologia* **199**, 831-843.

886 **Taiz L, Zeiger E, Møller IM, Murphy AS.** 2015. *Plant physiology and development*.

887 **The Plant List.** 2013. Version 1.1. Vol. 2019.

888 **Vavrek M.** 2011. fossil: Palaeoecological and palaeogeographical analysis tools. *Palaeontologia*
889 *Electronica*.

890 **Vicre M, Farrant JM, Driouich A.** 2004. Insights into the cellular mechanisms of desiccation
891 tolerance among angiosperm resurrection plant species. *27*, 1329-1340.

892 **Visser V, Clayton WD, Simpson DA, Freckleton RP, Osborne CP.** 2014. Mechanisms driving
893 an unusual latitudinal diversity gradient for grasses. *Global Ecology and Biogeography* **23**, 61-75.

894 **Vu VQ.** 2011. ggbiplot: A ggplot2 based biplot. R package version 0.55.

895 **Watcharamongkol T.** 2019. Migration to colder climates in grasses involves pre-existing and
896 adaptive traits, University of Sheffield.

897 **Watcharamongkol T, Christin P-A, Osborne CP.** 2018. C4 photosynthesis evolved in warm
898 climates but promoted migration to cooler ones. *Ecology Letters* **21**, 376-383.

899 **Wickham H.** 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

900 **Wilke CO.** 2019. *cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2'*. R package
901 version 0.9.4.

902 **Yu G, Smith D, Zhu H, Guan Y, Lam TT-Y.** 2017. *ggtree: an R package for visualization and*
903 *annotation of phylogenetic trees with their covariates and other associated data*. *Methods in*
904 *Ecology and Evolution* **8**, 28-36.

905 **Zachos J, Pagani M, Sloan L, Thomas E, Billups K.** 2001a. Trends, rhythms, and aberrations in
906 global climate 65 Ma to present. *Science* **292**, 686-693.

907 **Zachos J, Pagani M, Sloan L, Thomas E, Billups K.** 2001b. Trends, rhythms, and aberrations in
908 global climate 65 Ma to present. *Science* **292**, 686-693.

909 **Zhang L, Zhu X, Zhao Y, Guo J, Zhang T, Huang W, Huang J, Hu Y, Huang C-H, Ma H.**
910 2022. Phylotranscriptomics resolves the phylogeny of Pooideae and uncovers factors for their
911 adaptive evolution. *Molecular Biology and Evolution* **39**.

912 **Zhao C, Wang Y, Chan KX, Merchant DB, Franks PJ, Randall D, Tee EE, Chen G, Ramesh**

913 **S, Phua SY, Zhang B, Hills A, Dai F, Xue D, Gillham M, Tyerman S, Nevo E, Wu F, Zhang**
914 **G, Wong GK-S, Leebens-Mack JH, Melkonian M, Blatt MR, Soltis PS, Soltis DE, Pogson**
915 **BJ, Chen Z-H.** 2019. Evolution of chloroplast retrograde signaling facilitates green plant
916 adaptation to land. *116*, 5015-5020.

917 **Zhong J, Robbett M, Poire A, Preston JC.** 2017. Successive evolutionary steps drove Pooideae
918 grasses from tropical to temperate regions. *New Phytologist* **217**, 925-938.

Tables

Table 1. Species analysed in the experiment. The table shows the experimental population number, tribe, accepted scientific name, species from (Schubert *et al.*, 2019b) used as phylogenetic placeholders in phylogenetic analyses, seed ID, source of the seeds and the country of origin. Tribes are abbreviated as: POE = Poeae, TRI = Triticeae, BRA = Brachypodieae, MEL = Meliceae, LYG = Lygeae, and STI = Stipeae.

Number	Tribe	Accepted name in The Plant List (2013)	Species used for phylogenetic analysis	Seed ID	Source	Country
SR3	POE	<i>Poa trivialis</i>	<i>Poa pratensis</i>	18304,1	NGB	Finland
SR4	POE	<i>Deschampsia cespitosa</i>		11127,2	NGB	Norway
SR5	POE	<i>Poa alpina</i>		1197,2	NGB	Sweden
SR6	POE	<i>Phleum alpinum</i>		1342,3	NGB	Sweden
SR7	POE	<i>Lolium perenne</i>		4262,2	NGB	Norway
SR8	POE	<i>Dactylis glomerata</i>		7723,1	NGB	Norway
SR9	POE	<i>Poa alopecurus</i>	<i>Poa billardierei</i>	0662293	RBG Kew	Falkland Islands
SR10	POE	<i>Poa bulbosa</i>	<i>Poa annua</i>	0176493	RBG Kew	Jordan
SR11	POE	<i>Festuca pratensis</i>		0055789	RBG Kew	Switzerland
SR13	POE	<i>Sesleria autumnalis</i>		GRA3624	IPK	Germany
SR14	POE	<i>Vulpia myuros</i>		GRA2908	IPK	Spain
SR15	POE	<i>Phleum pratense</i>	<i>Phleum arenarium</i>	PI319076	Grin	Spain
SR16	POE	<i>Puccinellia distans</i>		PI502580	Grin	Russian Federation
SR17	POE	<i>Festuca rubra</i>		PI595056	Grin	Norway
SR18	POE	<i>Festuca arundinacea</i>		PI601418	Grin	USA
SR19	POE	<i>Phleum pratense</i>		PI321682	Grin	France
SR20	POE	<i>Holcus lanatus</i>		PI442500	Grin	Belgium
SR21	POE	<i>Festuca ovina</i>		PI676237	Grin	Germany
SR22	POE	<i>Cynosurus cristatus</i>		16615,2	NGB	Sweeden
SR23	POE	<i>Alopecurus pratensis</i>		13377,1	NGB	Norway
SR24	POE	<i>Lolium multiflorum</i>		13320,1	NGB	Denmark
SR25	POE	<i>Deschampsia atropurpurea</i>		-	Sampled in wild	Norway
SR26	POE	<i>Poa glauca</i>	<i>Poa palustris</i>	-	Sampled in wild	Norway
SR28	POE	<i>Anthoxanthum odoratum</i>		18256,2	NGB	Finland
SR29	POE	<i>Phalaris arundinacea</i>		4199,3	NGB	Norway
SR30	POE	<i>Calamagrostis purpurea</i>	<i>Calamagrostis canadensis</i>	2172,1	NGB	Norway
SR31	POE	<i>Agrostis canina</i>		4356,2	NGB	Sweden
SR32	POE	<i>Polypogon viridis</i>		0081773	RBG Kew	Lesotho
SR33	POE	<i>Helictotrichon pratense</i>		GRA513	IPK	Germany
SR35	POE	<i>Koeleria glauca</i>	<i>Koeleria albida</i>	W613215	Grin	Kazakhstan
SR36	POE	<i>Trisetum flavescens</i>		PI422495	Grin	Germany
SR37	POE	<i>Briza minor</i>		PI204410	Grin	Turkey

SR38	POE	<i>Briza media</i>		PI350681	Grin	Netherlands
SR39	POE	<i>Agrostis capillaris</i>		4209,2	NGB	Norway
SR40	POE	<i>Trisetum spicatum</i>		-	Sampled in wild	Norway
SR41	POE	<i>Agrostis mertensii</i>	<i>Agrostis vinealis</i>	-	Sampled in wild	Norway
SR43	TRI	<i>Elymus repens</i>		90282.2	NGB	Former Soviet Union
SR44	TRI	<i>Triticum turgidum</i>		22751,1	NGB	Sweden
SR45	TRI	<i>Aegilops triuncialis</i>	<i>Aegilops cylindrica</i>	AE1557	IPK	Unknown
SR47	TRI	<i>Hystrich patula</i>	<i>Elymus trachycaulus</i>	W649580	Grin	USA
SR48	TRI	<i>Hordeum jubatum</i>		-	Impincta	Unknown
SR50	TRI	<i>Dasypyrum villosum</i>		6594,1	NGB	Greece
SR52	TRI	<i>Agropyron cristatum</i>		90257,1	NGB	Former Soviet Union
SR54	BRA	<i>Brachypodium pinnatum</i>		PI440172	Grin	Russian Federation
SR57	MEL	<i>Melica nutans</i>		GRA512	IPK	Germany
SR58	MEL	<i>Glyceria striata</i>	<i>Glyceria fluitans</i>	W650682	Grin	USA
SR61	MEL	<i>Glyceria occidentalis</i>		Ames31334	USDA ISU	USA
SR62	STI	<i>Nassella hyalina</i>	<i>Nassella viridula</i>	PI 289543	Grin	Argentina
SR64	STI	<i>Stipa capillata</i>	<i>Stipa juncea</i>	ZA394	Jelitto Perennial Seeds	Unknown
SR65	STI	<i>Stipa pekinense</i>		ZA398	Jelitto Perennial Seeds	Unknown
SR66	STI	<i>Stipa gigantea</i>	<i>Stipa lagascae</i>	ZA400	Jelitto Perennial Seeds	Unknown
SR67	STI	<i>Stipa ichu</i>		ZA399	Jelitto Perennial Seeds	Unknown
SR70	STI	<i>Nassella tenuissima</i>		ZA407	Jelitto Perennial Seeds	Unknown
SR71	STI	<i>Nassella trichotoma</i>	<i>Jarava media</i>	ZA406	Jelitto Perennial Seeds	Unknown
SR73	STI	<i>Piptochaetium fimbriatum</i>	<i>Piptochaetium avenaceum</i>	0093527	RBG Kew	USA
SR79	STI	<i>Nassella cernua</i>	<i>Nassella clarazii</i>	0527992	RBG Kew	USA
SR82	STI	<i>Stipa calamagrostis</i>		GRA2848	IPK	Spain
SR89	STI	<i>Stipa caragana</i>	<i>Stipa barbata</i>	0775014	RBG Kew	Kyrgyzstan
SR92	LYG	<i>Lygeum spartum</i>		0185109	RBG Kew	Egypt
SR99	STI	<i>Nassella pubiflora</i>	<i>Nassella filiculmis</i>	PI478575	Grin	Peru
SR100	MEL	<i>Melica ciliata</i>	<i>Melica minuta</i>	PI494705	Grin	Romania
SR101	STI	<i>Piptatherum miliaceum</i>		PI207772	Grin	Israel

Table 2: AICc values for the Brownian Motion (BM), ‘white’ (phylogenetically independent) and ‘lambda’ models and the value of lambda (λ) inferred under the best fitting model(s). The best fitting model(s) for each trait, with lowest AICc, is shown in bold. Models are considered indistinguishable if the difference in AICc < 2.

MODEL/ VARIABLE		AICc		λ
	BM	WHITE	LAMBDA	(best estimate)
SUDDEN FROST -1 °C				
Regrowth	-28	-51	-61	0.47
Conductivity	513	447	449	0
SUDDEN FROST -3 °C				
Regrowth	31	19	5	0.47
Conductivity	561	551	550	0 / 0.63
DROUGHT				
Regrowth	-50	-64	-62	0
Conductivity	640	602	603	0 / 0.11
Fluorescence	83	38	40	0
PRINCIPAL COMPONENT				
PC2	240	211	213	0
PC3	241	193	195	0
LEAF DRY MATTER	343	327	318	0.45

919 **Table 3. Univariate mixed effect linear models with the variance partitioned into spatial (ϕ),**
 920 **phylogenetic (λ') and independent (γ) components** and testing the effect of each BioClim
 921 predictor variable separately for a) frost tolerance (regrowth following -3 °C frost treatment), b)
 922 drought tolerance (conductivity following drought treatment) and c) leaf dry matter content.
 923 Significant tests are shown in bold.

Bioclim	Phylogeny (λ')	Spatial (ϕ)	Independent (γ)	Slope estimate	Slope standard error	P	P (Holm adjusted)
<i>a) Frost tolerance</i>							
BIO1	>0.9999	0.00	0.00	1.36	0.70	0.029	0.20
BIO4	>0.9999	0.00	0.00	-0.0035	0.016	0.41	1.00
BIO5	>0.9999	0.00	0.00	1.47	0.72	0.022	0.18
BIO6	>0.9999	0.00	0.00	0.84	0.50	0.049	0.30
BIO12	>0.9999	0.00	0.00	-0.017	0.016	0.15	0.59
BIO13	>0.9999	0.00	0.00	-0.15	0.10	0.076	0.38
BIO14	>0.9999	0.00	0.00	-0.079	0.25	0.38	1.00
BIO15	>0.9999	0.00	0.00	-0.053	0.16	0.37	1.00
<i>b) Drought tolerance</i>							
BIO1	>0.9999	0.00	0.00	1.92	0.94	0.022	0.11
BIO4	>0.9999	0.00	0.00	-0.071	0.020	0.00032	0.0025
BIO5	>0.9999	0.00	0.00	0.072	0.99	0.47	0.65
BIO6	>0.9999	0.00	0.00	1.85	0.64	0.0027	0.019
BIO12	>0.9999	0.00	0.00	-0.017	0.021	0.22	0.65
BIO13	>0.9999	0.00	0.00	0.072	0.14	0.30	0.65
BIO14	>0.9999	0.00	0.00	-0.47	0.33	0.079	0.32
BIO15	>0.9999	0.00	0.00	0.52	0.20	0.0058	0.035
<i>c) Leaf dry matter content</i>							
Bioclim	Phylogeny (λ')	Spatial (ϕ)	Independent (γ)	Slope estimate	Slope standard error	P	P (Holm adjusted)
BIO1	1.00	0.00	0.00	-0.030	0.088569894	0.38	0.81
BIO4	1.00	0.00	0.00	0.0032	0.001931794	0.051	0.31
BIO5	1.00	0.00	0.00	0.056	0.090769901	0.27	0.81
BIO6	1.00	0.00	0.00	-0.055	0.062410979	0.19	0.77
BIO12	1.00	0.00	0.00	-0.000065	0.001961684	0.49	0.81
BIO13	1.00	0.00	0.00	-0.020	0.012576533	0.061	0.31
BIO14	1.00	0.00	0.00	0.058	0.029725438	0.028	0.20
BIO15	1.00	0.00	0.00	-0.041	0.018356698	0.015	0.12

924

925

Table 4. Multivariate mixed effect linear models testing the effect of species' local environment on measured frost and drought responses and leaf dry matter content (LDMC). Variance in the models is partitioned into some combination of spatial (ϕ), phylogenetic (λ') and independent (γ) components. Predictors refers to several bioclimatic variables (see Methods). a) Frost tolerance (regrowth following -3 °C frost treatment). b) Drought tolerance (conductivity following drought treatment). c) LDMC. Best-fitting model(s) are shown in bold.

	LL	AIC	ΔAIC	ϕ (spatial)	λ' (phylogeny)	γ (independent)
<i>a) Frost tolerance</i>						
Predictor + phylogeny + spatial	-225.7	465.3	27.0	0.00	>0.9999	<0.00001
Predictor + spatial	-220.5	452.9	14.6	0.00	–	1.00
Predictor + phylogeny	-213.2	438.3	0.00	–	0.50	0.50
Spatial + phylogeny	-237.6	483.2	44.9	0.00	>0.9999	0.0000006
Phylogeny only	-223.9	453.9	15.6	–	0.50	0.50
Spatial only	-233.0	472.0	33.7	0.00	–	1.00
Predictor only	-220.5	450.9	12.6	–	–	–
<i>b) Drought tolerance</i>						
Predictor + phylogeny + spatial	-233.9	483.9	26.6	0.00	>0.9999	0.0000014
Predictor + spatial	-222.6	459.3	2.00	0.00	–	1.00
Predictor + phylogeny	-221.8	457.6	0.30	–	0.30	0.70
Spatial + phylogeny	-238.7	485.4	28.1	0.00	0.0000028	>0.9999
Phylogeny only	-237.8	481.6	24.3	–	0.19	0.81
Spatial only	-238.7	483.4	26.1	0.00	–	1.00
Predictor only	-222.6	457.3	0.00	–	–	–
<i>c) Leaf dry matter content</i>						
Predictor + phylogeny + spatial	103.5	221.1	25.3	0.00	1.00	0.00
Predictor + spatial	-99.0	210.0	14.2	0.00	–	1.00
Predictor + phylogeny	-91.9	195.8	0.00	–	0.56	0.44
Spatial + phylogeny	-109.7	227.4	31.6	0.00	>0.9999	<0.0001

Phylogeny only	-97.0	200.0	4.2	–	0.49	0.51
Spatial only	-103.7	213.0	17.2	<0.0001	–	>0.9999
Predictor only	-99.0	208.0	12.2	–	–	–

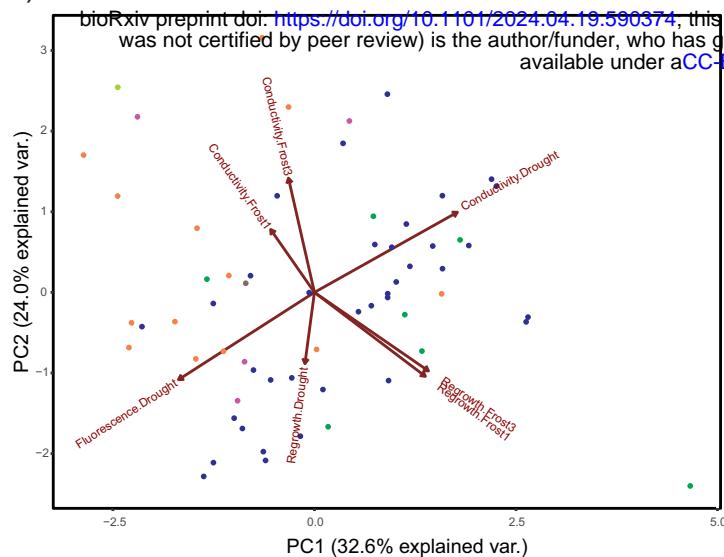

Figure legends

Figure 1. Principal component analysis (PCA) of the experimental variables. These plots are visualisations of the patterns of covariation in the data, as a means of data exploration. A) The first two principal components (PC1 and PC2), which together explain 57% of the variance. B) The third and fourth principal components (PC3 and PC4), which together explain 29% of the variance. Each dot represents an accession/species (n=62), coloured according to the tribe in which it is classified. The arrows labelled with the experimental variables show in which direction and by how much (length of the arrow) each variable contributes to the distribution of the species, in relation to the other traits. The direction of each arrow in relation to each PC axis also shows which variables contribute most strongly to each PC. The seven experimental variables included are: regrowth, fluorescence and conductivity following drought treatment and regrowth and conductivity following frost treatment at -1 and -3 °C (Supplementary Data 1). Overall, these plots show mixed patterns regarding how the drought and frost response measures covary with each other but species in the bottom left part of A) show high tolerance of both drought and frost.

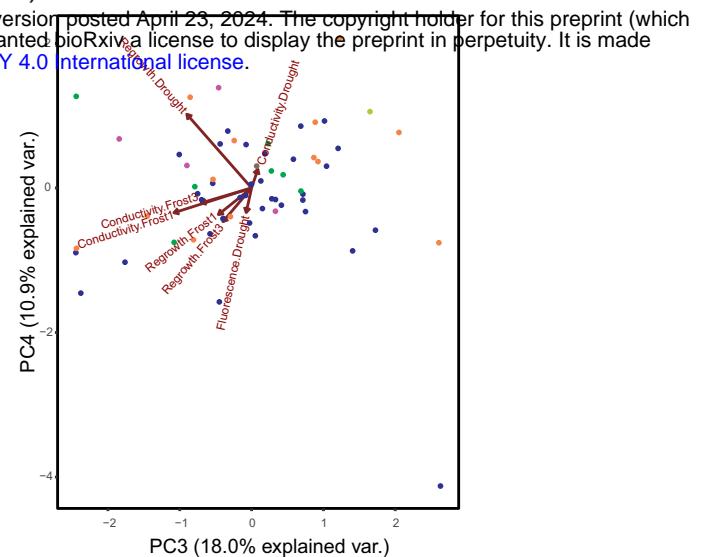
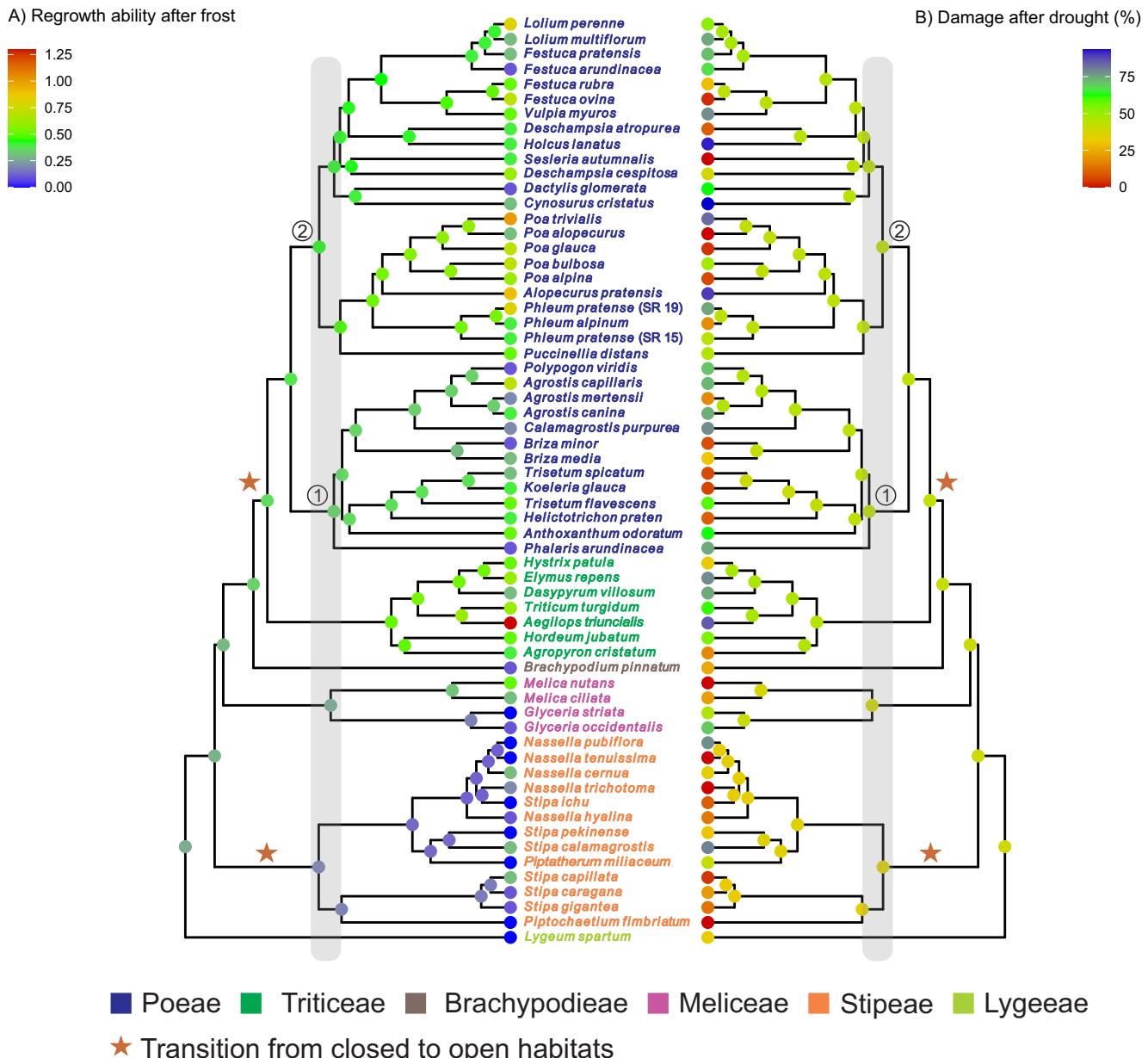
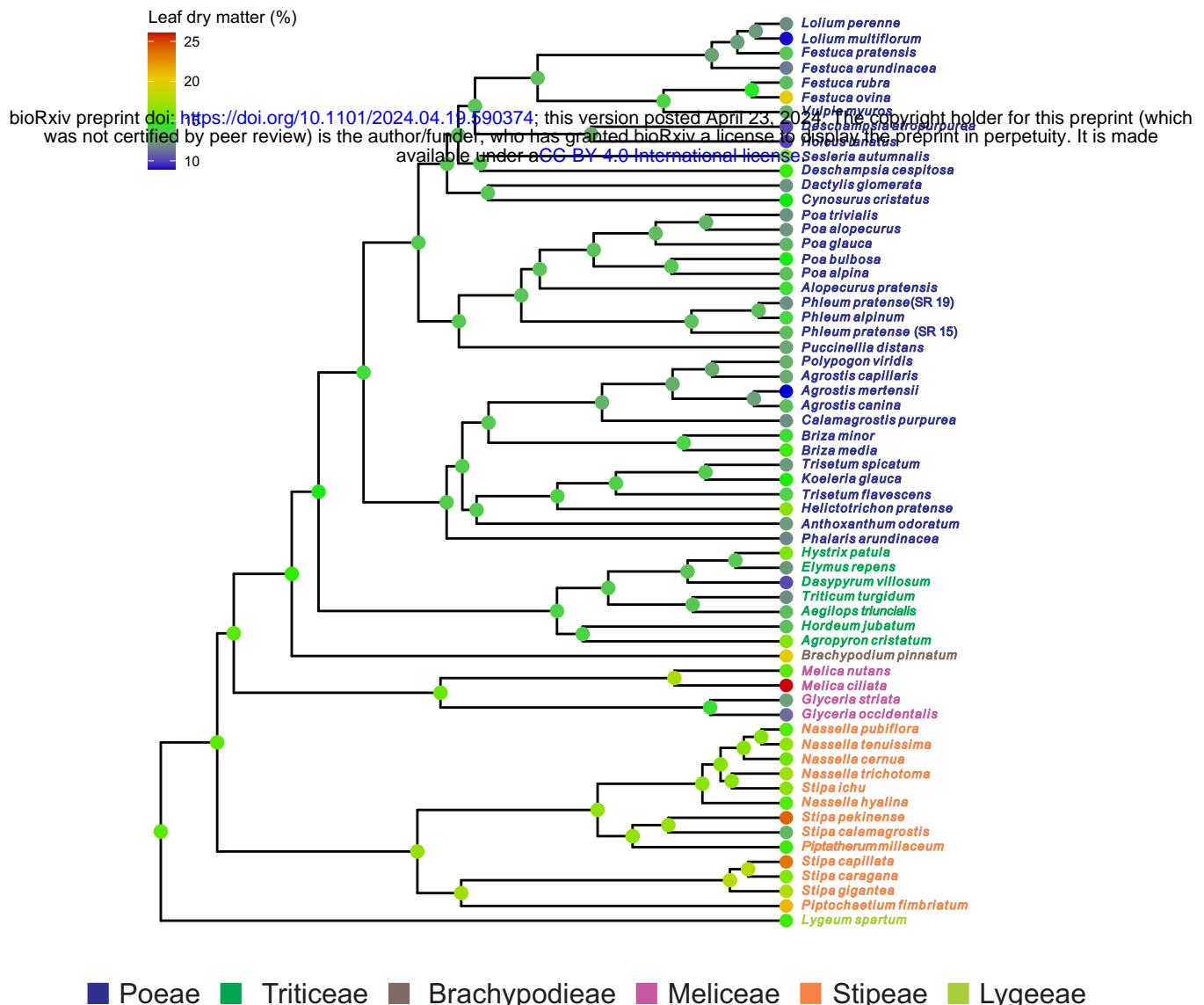

Figure 2: Ancestral state reconstructions of measured responses to frost and drought treatment based on a phylogenetic tree including all accessions/species in the experiment (n=62). A) Regrowth ability following frost treatment at -3 °C. B) Leaf damage (conductivity) following drought treatment. Values are expressed relative to the control. Node colours: reds indicate high levels of regrowth and low levels of damage/conductivity (i.e. high tolerance of frost and drought, respectively); blues indicate high levels of damage/conductivity and low levels of regrowth (i.e. poor tolerance of frost and drought, respectively). Overall, the ancestral state reconstructions show that high levels of frost tolerance (warmer colours, in A) evolved in clades that were ancestrally more drought sensitive (cooler colours, in B). Species names are coloured according to the tribe in which they are classified. Circled numbers indicate clades (“chloroplast subgroups”) as defined by Soreng *et al.* (Soreng *et al.*, 2017). Grey shading indicates approximately the Eocene-Oligocene boundary at 34 Mya (molecular dates from (Schubert *et al.*, 2019b)). Stars indicate putative transitions from closed to open habitats (Elliott *et al.*, 2023; Zhang *et al.*, 2022).

Figure 3. Ancestral state reconstruction for leaf dry matter content (LDMC) based on a phylogenetic tree including all accessions/species in the experiment (n=62). Node colours: reds indicate high LDMC; blues indicate low LDMC. Overall, the ancestral state reconstruction shows that the highest LDMC is found in clades that are the most drought tolerant, not frost tolerant (*cf.* Fig. 2). Species names are coloured according to the tribe in which they are classified.

A)



B)



■ Pooeae ■ Triticeae ■ Brachypodieae ■ Meliceae ■ Stipeae ■ Lygeae

Figure 1. Principal component analysis (PCA) of the experimental variables. These plots are visualisations of the patterns of covariation in the data, as a means of data exploration. A) The first two principal components (PC1 and PC2), which together explain 57% of the variance. B) The third and fourth principal components (PC3 and PC4), which together explain 29% of the variance. Each dot represents an accession/species ($n=62$), coloured according to the tribe in which it is classified. The arrows labelled with the experimental variables show in which direction and by how much (length of the arrow) each variable contributes to the distribution of the species, in relation to the other traits. The direction of each arrow in relation to each principal component axis also shows which variables contribute most strongly to each principal component. The seven experimental variables included are: regrowth, fluorescence and conductivity following drought treatment and regrowth and conductivity following frost treatment at -1 and -3 °C (Supplementary Data 1). Overall, these plots show mixed patterns regarding how the drought and frost response measures covary with each other but species in the bottom left part of A) show high tolerance of both drought and frost.

Figure 2: Ancestral state reconstructions of measured responses to frost and drought treatment based on a phylogenetic tree including all accessions/species in the experiment (n=62). A) Regrowth ability following frost treatment at -3 °C. B) Leaf damage (conductivity) following drought treatment. Values are expressed relative to the control. Node colours: reds indicate high levels of regrowth and low levels of damage/conductivity (i.e. high tolerance of frost and drought, respectively); blues indicate high levels of damage/conductivity and low levels of regrowth (i.e. poor tolerance of frost and drought, respectively). Overall, the ancestral state reconstructions show that high levels of frost tolerance (warmer colours, in A) evolved in clades that were ancestrally more drought sensitive (cooler colours, in B). Species names are coloured according to the tribe in which they are classified. Circled numbers indicate clades (“chloroplast subgroups”) as defined by Soreng *et al.* (Soreng *et al.*, 2017). Grey shading indicates approximately the Eocene -Oligocene boundary at 34 Mya (molecular dates from (Schubert *et al.*, 2019b)). Stars indicate putative transitions from closed to open habitats (Elliott *et al.*, 2023; Zhang *et al.*, 2022).

■ Poeae ■ Triticeae ■ Brachypodieae ■ Meliceae ■ Stipeae ■ Lygeae

Figure 3. Ancestral state reconstruction for leaf dry matter content (LDMC) based on a phylogenetic tree including all accessions/species in the experiment (n=62). Node colours: reds indicate high LDMC; blues indicate low LDMC. Overall, the ancestral state reconstruction shows that the highest LDMC is found in clades that are the most drought tolerant, not frost tolerant (cf. Fig. 2). Species names are coloured according to the tribe in which they are classified.