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Abstract:  17 

Most studies of local adaptation substitute the correlation between spatial distance and 18 
environmental heterogeneity for the temporal dynamics over which local adaptation evolves. 19 
The availability of detailed ecological and genomic information from lake sediments provides an 20 
opportunity to study local adaptation with unparalleled clarity from the temporal perspective. 21 
Inference can be further enhanced by including multiple lakes along ecological axes to further 22 
isolate the effects of ecological change in driving local adaptation. Lakes throughout the world 23 
face the impact of numerous anthropogenically induced environmental changes. Top among 24 
these is the eutrophication of freshwaters from agriculture, development and land-use change. 25 
Here we use the genetic information recorded in lake sediments of two lakes experiencing 26 
contrasting histories of land-use change to study the evolution of local adaptation in the lakes’ 27 
Daphnia pulicaria populations. Utilizing nextRAD derived Single Nucleotide Polymorphisms 28 
(SNPs), we studied the evolutionary trajectories of Daphnia pulicaria in both lakes. Using gene-29 
environment correlations and Fst tests for selection we found SNPs that appear to be under 30 
selection in both lakes. Specifically, we found more outlier SNPs in the highly impacted lake 31 
using Fst-based tests for selection. Conversely, gene-environment tests revealed the reverse 32 
pattern. We discuss numerous facets of experimental design that must be considered when 33 
using resurrection ecology to study local adaptation and critically evaluate how they may have 34 
impacted the results of this investigation.  35 

Keywords:  36 

Daphnia, Genomics, RAD-Seq, Natural Selection, Resurrection Ecology, Limnology, 37 
Eutrophication 38 

Lay Summary:  39 

Resurrection ecology, the resuscitation or hatching of decades or centuries old dormant eggs, 40 
seeds or cysts provides the opportunity to study evolution in action. Here, we use resurrection 41 
ecology paired with Single Nucleotide Polymorphism (SNP) genotyping to study the evolutionary 42 
responses of two populations of Daphnia pulicaria to contrasting changes in the nutrient 43 
dynamics of their respective lakes. In the lake with more drastic changes in nutrient pollution, 44 
we find a stronger shift in allele frequencies through time and at a larger number of affected 45 
genomic positions compared with the environmentally more stable lake. However, Bayesian 46 
gene-environment correlations were stronger in the more stable lake reflecting higher power to 47 
detect correlations among allele frequency change and paleo-environmental variables in this 48 
location. Our results suggest that numerous factors might impact the ability to use different 49 
methodologies to detect local adaptation over time using resurrection ecology.  50 
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Introduction: 51 

In his 1859 novel, A Tale of Two Cities, Charles Dickens compares the cities of London and 52 

Paris in the late 18th century. Juxtaposition is the central literary device Dickens uses in his 53 

novel. While bi-directional comparison is useful in literature, it can also be illustrative in 54 

biology. Specifically, in evolutionary biology, the availability of two or more populations 55 

experiencing contrasting selection regimes provides the basis for demonstrating local adaptation 56 

(Kawecki and Ebert, 2004). The occurrence of local adaptation and spatial structuring of habitats 57 

provides the basis for the diversification of lineages and the origin of biodiversity by the 58 

exploitation of ecological opportunity (Rainey and Travisano, 1998). 59 

Studies of local adaptation typically compare two or more contemporaneous populations arrayed 60 

in space across a measurable environmental gradient. Differences in allele frequencies (e.g., Fst) 61 

between populations sampled from divergent environments can be used to pinpoint the genes 62 

responsible for local adaptation by finding those that deviate from the expectation of neutrality 63 

(Lewontin and Krakauer, 1973). More recently, studies of local adaptation have also sought to 64 

find correlations between genetic markers and environmental variables to better understand the 65 

connection between measures of genetic distance and the relation these have with the 66 

environment (Günther and Coop, 2013; Rellstab et al., 2015). Regardless of the approach used, 67 

these methods universally rely on the assumption that studies of local adaptation can substitute 68 

spatial distance and its correlation with environmental distance as a proxy for the operational 69 

timeframe of evolutionary dynamics in the system. This paradigm, called “space-for-time 70 

substitutions,” is not without merit, however data interpretation may be confounded by other 71 

factors such as non-equilibrium population histories, historical contingencies and genetic drift or 72 

mutation that influence the genetics of the study populations (Lovell et al., 2023; Vermeij, 2006). 73 

An approach that may ameliorate these factors would be to study a population in situ during 74 

evolution by sampling individuals across different points in time.  75 
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The availability of extended allele frequency trajectories together with contemporaneous habitat 76 

conditions affords a unique opportunity to observe evolutionary change through time. When 77 

combined together, there is the potential to develop insights in the evolution of local adaptation 78 

by the identification of underlying genetic variants responsible for phenotypic change (Wersebe 79 

and Weider, 2023). Such inference may be further heightened when considered within the 80 

context of larger spatial and temporal heterogeneity. Specifically, comparing one population 81 

experiencing significant ecological disruption to one experiencing relatively stable conditions 82 

may provide the ability to specifically account for patterns of local versus global adaptive 83 

variation. Such data can be collected for Daphnia, a keystone microcrustacean grazer in 84 

freshwater environments, either by direct sequencing of dormant eggs deposited in the layered 85 

sediment of lakes (Lack et al., 2018; O’Grady et al., 2022) or by sequencing the extracted DNA 86 

of ‘resurrected’ Daphnia isolates (Kerfoot et al., 1999; Kerfoot and Weider, 2004). Here we use 87 

the second approach to obtain genomic information on historic and extant populations of 88 

Daphnia pulicaria in two lakes located in Minnesota, USA. 89 

Daphnia are considered keystone species in lake food webs, connecting the flow of energy from 90 

algal primary producers to higher-level consumers such as fish (Lampert, 2011). Additionally, 91 

large-bodied Daphnia species such as D. pulicaria, provision key ecosystem services including 92 

the maintenance of water clarity by reducing the standing crop of algae and supporting 93 

recreational fisheries (Walsh et al., 2016). Previous work in two lakes in Minnesota (U.S.A.), 94 

South Center (SC) Lake and Hill Lake (Frisch et al., 2014, 2017) demonstrated that since 95 

widespread Western European colonization of North America, SC Lake has experienced cultural 96 

eutrophication, transitioning to eutrophic conditions within the last 600 years with a marked shift 97 

in phosphorus conditions and lake productivity which peaked between the 1970s and 1990s 98 

(Frisch et al., 2014, 2017). In contrast, Hill Lake has not experienced strong shifts in nutrient 99 

loading, and its environmental conditions have remained relatively stable across the past ~250 100 

years (Frisch et al., 2017). 101 
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Extending the opening metaphor, Dickens, in a Tale of Two Cities highlighted the divergence of 102 

revolutionary Paris to 18th century London, a hallmark of conservative stability. Here, we utilize 103 

RADseq derived SNPs to uncover the genetic tale of local adaptation of two populations of 104 

Daphnia pulicaria experiencing contrasting environmental regimes. Specifically, we 105 

hypothesized that: (1) more genetic markers experience extreme changes in allele frequency over 106 

time in the population under stronger anthropogenic pressure in SC Lake compared to that of the 107 

relatively more stable Hill Lake because more drastic changes in environmental conditions 108 

would necessarily spur local adaptation; (2) the lake populations have diverging evolutionary 109 

trajectories (different gene families are impacted) due to different selection regimes; (3) genomic 110 

adaptation in each lake can be attributed to environmental history of a selection of proxies 111 

reconstructed from lake sediments. 112 

Methods  113 

Study area and sampling:  114 

Sediment cores were extracted from South Center (SC) Lake (45°22.645′ N, 92°49.215′ W) and 115 

Hill Lake (47°1.1520N, 93°5.9000W), Minnesota, USA in July 2010 and 2011. For a detailed 116 

methodology of coring and radiometric dating see Frisch et al. (2014, 2017). For this study, we 117 

isolated a total of 95 clones from lake water in 2010/2011 or resurrected them from sediment 118 

layers. In SC Lake they represent five temporal subpopulations of the years 2011, 2007, 2001, 119 

1977 (10 clones each) and 1530 (date is midpoint between two time periods that were merged - 120 

two clones from 1648 and two clones from 1418), and six temporal subpopulations in Hill Lake 121 

of the years 2010 (10 clones), 2007 (12 clones), 2002, 1997 (10 clones each),1990 (6 clones) and 122 

1974 (date is midpoint between three time periods that were merged - one clone each from 1983, 123 

1976 and 1962). We hatched all clones from dormant eggs collected in the sediment as described 124 

in Frisch et al. (2014) except those of the years 2010 and 2011, which were directly sampled 125 

from the lake population.  126 
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 127 

Molecular:  128 

DNA extraction and Radseq sequencing:  129 

For each of the 95 clones, genomic DNA was extracted from 10 adult Daphnia pulicaria ( 130 

Forbes 1893) raised as isoclonal cultures, using a modified CTAB protocol (Doyle & Doyle, 131 

1987).  Genomic DNA was converted into nextRAD genotyping-by-sequencing libraries 132 

(SNPsaurus LLC) as in Russello et al. (2015). Briefly, genomic DNA was first fragmented with 133 

Nextera reagent (Illumina, Inc), which also ligates short adapter sequences to the ends of the 134 

fragments. The Nextera reaction was scaled for fragmenting 2 ng of genomic DNA, although 135 

2.25 ng of genomic DNA was used for input. Fragmented DNA was then amplified for 25 cycles 136 

at 73 °C, with one of the primers matching the adapter and extending seven nucleotides into the 137 

genomic DNA with the selective sequence GTATAGG. Thus, only fragments starting with a 138 

sequence that can be hybridized by the selective sequence of the primer were efficiently 139 

amplified. The nextRAD libraries were sequenced on one lane of an Illumina HiSeq 2000 to 140 

generate single-end sequencing reads (University of Oregon, USA). 141 

 142 

Bioinformatic processing:  143 

We first de-multiplexed and quality-filtered the Illumina sequencing reads using the 144 

process_radtags command in the STACKS program (Catchen et al., 2013). We aligned the de-145 

multiplexed RAD sequencing libraries to the Daphnia pulicaria reference genome (Wersebe et 146 

al. 2022; RefSeq: GCF_021234035.1) using the BWA mem algorithm (Li and Durbin, 147 

2009).The resulting alignments were piped to SAMtools (Li et al., 2009) to mark PCR 148 

duplicates, sort the alignments and write BAM files. Next, we passed the BAM files to BCFtools 149 

to call SNPs using the mpileup and call subcommands (Danecek et al., 2021). We called SNPs in 150 

the data set in a population-specific manner (e.g., Hill and SC). We filtered both resulting VCF 151 
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files to a set of high confidence bi-allelic SNPs using BCFtools, excluding loci with a read depth 152 

<10, phred quality < 30, mapping quality < 10 and a missing rate >0.4.  153 

 154 

Population Structure:  155 

For each lake, we grouped samples into ‘temporal subpopulations’ based on the sediment depth 156 

from which they were hatched. We determined the approximate age of each subpopulation using 157 

the radiometric dating model (see above). We computed PCAs to evaluate the structure of 158 

temporal populations, separately for each lake. To produce the SNP set for this analysis, we 159 

pruned the set of high quality bi-allelic SNPs available for each lake for linkage disequilibrium 160 

using PLINK (Chang et al., 2015). PCAs were computed with the R package SNPrelate (Zheng 161 

et al., 2012), and visualized with ggplot2 version 3.4.2 (Wickham, 2016). 162 

We further explored population genetic structure with a discriminant analysis of principle 163 

components (DAPC) with the R package adegenet version 2.1.10 (Jombart, 2008; Jombart et al., 164 

2010). We used the function `xvalDAPC()` to estimate how many axes should be retained for the 165 

final discriminant analysis (South Center Lake: 15, Hill Lake:10).  166 

PCA and DAPC were computed on the R platform version 4.2.2 (R Core Team 2022). 167 

 168 

Outlier Analysis:  169 

We used two methods per lake to identify outlier SNPs present in the data set. The first method, 170 

relied on the framework proposed by Wersebe and Weider (2023), which searches for SNPs with 171 

Fst outside the neutral expectations determined by demography. As mentioned above, for each 172 

lake, we grouped samples into ‘temporal subpopulations’ based on the sediment depth from 173 

which they were hatched. We determined the approximate age of each subpopulation using the 174 

radiometric dating model (see above) and we calculated the number of generations between each 175 

subpopulation using a fixed 5 generations per year. For both lakes, the clones isolated from the 176 

water column (e.g., lake-clones) represented generation 0 with generation estimates for older 177 
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subpopulations relative to this benchmark. Next, we pruned the set of high quality bi-allelic 178 

SNPs available for each lake for linkage disequilibrium using PLINK (Chang et al. 2015). Using 179 

these LD-pruned SNPs, we estimated two-dimensional folded site frequency spectra (SFS) for 180 

each pairwise subpopulation comparison using the program easySFS (GitHub: 181 

https://github.com/isaacovercast/easySFS) formatted for the program FastSimCoal2. We fit a 182 

simple demographic scenario for each lake, where we estimated the effective population size 183 

(Ne), a growth rate parameter and historical sampling using the observed SFS in the maximum-184 

likelihood framework provided in FastSimCoal2. Briefly, we estimated the best fitting 185 

parameters by launching 100 independent simulations using 1-million coalescent simulations and 186 

40 Brent maximization cycles. We found the best fitting parameters by extracting the simulation 187 

run with the highest estimated likelihood from the 100 simulation runs. We conducted this 188 

process for both Hill and South Center separately. From South Center (SC) Lake we excluded 189 

the two oldest sub-populations (60-64 cm & 52-56 cm) from this analysis because the 60-64-3X 190 

clone had low overall coverage resulting in few recovered loci and the inaccuracy of estimating 191 

Fst from small sample sizes (i.e., two clones). A similar approach was used for Hill as well, 192 

where singleton clones sampled from the oldest layers were removed.   193 

Next, we used FastSimCoal2’s coalescent simulator to generate genetic markers under the 194 

inferred demographic parameters using 100 independent simulations. The SNPs simulated under 195 

the inferred demographic model were used to calculate empirical p-values for the SNPs observed 196 

in the actual populations. For each set of simulated SNPs, we converted the native FastSimCoal2 197 

format (arlequin) to VCF using PGDSpider (Lischer and Excoffier, 2012). We calculated an 198 

estimate of site-wise Fst in R using the package heirfstat using the function basic.stats (Goudet, 199 

2005). The simulated Fst values were used to construct a distribution for Fst-values expected 200 

under neutral demography. We tested each of the estimated Fst values for the observed SNPs and 201 

determined the presence of outliers by extracting SNPs with false discovery rate (FDR) corrected 202 

Fst p-values above a p = 0.05 threshold.  203 
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 204 

In addition to the simulation-based approach, we used as a second approach the outlier detection 205 

program Bayenv2 (Günther & Coop 2013) to detect SNPs potentially correlated with 206 

environmental variables inferred from the sediment cores. This program requires three input 207 

matrices that were constructed according to the Bayenv2 manual: an environmental matrix, a 208 

SNPs matrix and a covariance matrix. The environmental matrix for both lakes contained proxies 209 

for lake productivity that were estimated by paleolimnological methods using 210Pb-dated 210 

sediment (for details see Frisch et al. 2017): sediment age, accumulation rates (flux) of organic 211 

carbon (OC), calcium carbonates (CaCO3), and ortho-phosphorus (P) for both SC and Hill lakes, 212 

estimated for the 6 and 5 subpopulations in SC and Hill, respectively.  213 

The covariance matrix implemented by Bayenv2 was estimated from a set of putatively neutral 214 

intergenic SNPs to account for changes in allele frequencies related to population history and 215 

sampling bias. To fit the required population covariance matrix, we extracted all intergenic SNPs 216 

present in the lake-specific and jointly called VCF files using the R packages GenomicRanges 217 

1.50.1 and GenomicFeatures 1.50.4 (Lawrence et al., 2013). Briefly, we intersected the Daphnia 218 

pulicaria RefSeq gff3 (NCBI RefSeq assembly GCF_021234035.1) containing only gene 219 

annotations with the above described VCF file of high confidence SNPs to extract intergenic 220 

SNPs. This SNP set was then filtered using the R package SNPrelate to obtain biallelic LD 221 

pruned SNPs with a minimum allele frequency of 0.05, missing rate of 0.25, yielding 3509 SNPs 222 

for SC Lake and 2636 SNPs for Hill Lake. The covariance matrix was estimated using 500,000 223 

iterations. SNP sets for each lake were tested against the respective covariance matrix to test 224 

their correlation with the environmental matrix with 500,000 iterations and was repeated five 225 

times. We set the criteria for SNPs significantly correlated with one of the tested environmental 226 

factors as at least a median Bayes factor across the five runs of 2.0 or higher, or at least two runs 227 

with Bayes factors of 2.0 or higher.   228 

 229 
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Power assessment and false positive rates for Bayenv2 analysis:  230 

The two sets of intergenic SNPs (one per lake) as well as the covariance matrices estimated from 231 

them were used to conduct simulations for assessing power and false positive rates of Bayenv2 232 

under different criteria. Out of all intergenic SNPs, we randomly picked 1000 SNPs to create 233 

Bayenv2 input files with a simulated environmental effect on their allele frequency. For each 234 

SNP and each population i, the empirical allele frequency was calculated by dividing the total 235 

number of chromosomes carrying the allele ni by the total number of genotyped chromosomes 236 

for population and site Ni. Using the normalized environmental variable Y (mean 0, standard 237 

deviation 1) as well as an effect strength β, the simulated allele frequency fi was calculated by 238 

adding a linear environmental effect �� � ��  to the the empirical point estimate ��

��

 of the allele 239 

frequency. If the result fell below 0 or was greater than 1, the simulated frequency was set to 0.0 240 

or 1.0, respectively. The calculation of fi is described in Equation (1) below. 241 

�� �
��
�
�	
� �

��
� � � � ��� � 0: 0,

� ���
� � � � ��� � 1: 1,

���� ��
� � � � ��
� 

Equation (1):  242 

Allele counts for the Bayenv2 input files were then calculated by rounding fi·Ni to the nearest 243 

integer. The remaining chromosomes for each population were assumed to carry the alternative 244 

allele. 245 

This resulted in 1000 SNPs per combination of environmental variable, effect strength β and test 246 

case. For each simulated SNP, Bayenv2 was then used to estimate Bayes factors with five 247 

different random seeds using the empirical covariance matrix. Two criteria were considered for 248 

the identification of outlier SNPs: a median Bayes factor across the five runs of 2.5 or higher, or 249 

at least three runs with Bayes factors of 2.0 or higher (Fig. S1 and S3 for SC Lake and Hill Lake, 250 

respectively). The estimates for the power to detect such outliers were then calculated as the 251 
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proportion of the simulated SNPs exceeding those criteria. Similarly, the false positive rate was 252 

estimated as the proportion of the original intergenic (i.e. presumably neutral) SNPs exceeding 253 

these criteria across five independent runs of Bayenv2 (Fig. S2 and S4 for SC Lake and Hill 254 

Lake, respectively) . 255 

 256 

Functional Enrichment: 257 

We sought to understand the functional context of regions hosting outlier SNPs identified with 258 

both outlier detection methods. We accomplished this by identifying enriched Gene Ontology 259 

(GO) terms for the genes related to outlier SNPs. We annotated the effects of all SNPs identified 260 

in both lakes using the program Variant Effect Predictor (VEP; (McLaren et al., 2016)), which 261 

provides both an effect of a SNP and the genes it is plausibly related to. Using this context, we 262 

were able to annotate which genes were related to the SNPs identified as outliers using the 263 

RefSeq Daphnia pulicaria annotation. After extracting the genes related to outlier SNPs, we 264 

annotated these genes with their PantherDB generic mappings. Using the PantherDB generic 265 

mappings for outlier-associated genes, we identified enriched GO terms via the PantherDB 266 

webtool using Daphnia pulex genes as a reference (Mi et al., 2021).  267 

 268 

Results: 269 

Our sequencing efforts produced 95 single-end NextRAD libraries. In total, we sequenced 44 270 

distinct clones from the South Center (SC) population and called 9505 high confidence bi-allelic 271 

SNPs from the five temporal subpopulations of this lake. We sequenced 51 samples from the six 272 

Hill temporal subpopulations, which yielded 6939 high confidence bi-allelic SNPs in the 273 

population.  274 

Population genetic structure across time: 275 
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Using LD pruned SNP sets for both lakes, we computed graphic representations of PCAs and 276 

DAPCs (Fig. 1A-1C). For both lakes, the PCAs show a minor population structure with a 277 

variance between 5 and 7% on PC1, and around 5% on PC2 (Fig. 1, top panels). In SC Lake, 278 

much of this variation can be explained by the 1970 subpopulation that forms a separate cluster279 

In Hill Lake, none of the populations cluster distinctly from the others, and the variance is 280 

related to individuals from several temporal subpopulations. The discriminant analysis for SC 281 

resulted in distinct groupings of the subpopulations, assigning most of the individuals clearly to282 

the sediment depth from which they were resurrected. The results of the DAPC for Hill were le283 

distinct with mixed assignments of individuals for several subpopulations, indicating less 284 

differentiation between the Hill temporal subpopulations. 285 

286 

Figure 1: Population Genetic Structure. A) South Center (SC) Lake individual PCA Biplot. B) 287 

Hill Lake individual PCA Biplot. C) Discriminant Analysis of Principle Components (DAPC) 288 

posterior membership probabilities for SC Lake individuals. D) DAPC posterior membership 289 

probabilities for Hill Lake individuals. 290 

FSC Outliers: 291 

ter. 

C 

 to 

 less 

 

) 
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We estimated Fst for all sites recovered from the populations of each lake. We compared these 292 

against our simulated estimates for expected neutral Fst and estimated empirical p-values (Fig. 2-293 

L & R). For the SC Lake population, observed Fst ranged from -0.1054 to a high of 0.7703 (Fig. 294 

3-L). The mean Fst across all sites was low overall at 0.032. In total, we identified 122 outlier 295 

SNPs with FDR adjusted p-values above a significance threshold of 0.05, these SNPs all had Fst 296 

estimates at or above 0.2547.  297 

For the Hill Lake population, the dynamics of outliers diverged significantly from those 298 

observed in the SC population. Observed site-wise estimates of Fst ranged from a low of -0.1219 299 

to a high of 0.519 (Fig. 3-R). The mean Fst across the subpopulations was also relatively low at 300 

0.016. In total, however, we observed just 29 outlier loci in the entire data set, all of which had 301 

estimated Fst at or above 0.2839.  302 

 303 

Figure 2: Fst  outliers. Left) Fst outliers identified in South Center (SC) Lake. Right) Fst outliers 304 

identified in Hill Lake. Grey points are SNPs without significant Fst values based on simulation 305 
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Gold points are SNPs with significant Fst values based on simulations. Vertical bars denote p =306 

0.05 cutoff.  307 

308 

Figure 3) Observed Fst distbution. Left) South Center (SC) Lake. Several sites reach Fst near 309 

0.77. Right) Hill Lake. Fst reaches a high of 0.55.  310 

 311 

Functional Enrichment: 312 

To better understand the genomic context of outlier regions, we extracted the genes related to 313 

high Fst SNPs and annotated them with Gene Ontology (GO) terms. 314 

Fst Outliers: 315 

 = 
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We extracted a total of 120 unique genes that were related to high Fst SNPs identified in the SC 316 

population. We were able to annotate 118 of these genes with functional family information 317 

while searching against the Panther database. This list of genes yielded 32 GO terms for 318 

Molecular Function that appeared enriched after using a Fisher exact test against the Daphnia 319 

pulex gene list available on PantherDB webtool and correcting for FDR. Enriched GO terms 320 

were related to several molecular functions; however, transmembrane transport proteins for both 321 

organic molecules and ions and molecule-specific binding made up many of the enriched terms. 322 

Meanwhile, for the Hill Lake population, we only identified 24 genes related to outlier SNPs. 323 

This yielded no enriched terms for molecular function, and the gene list contained only two 324 

genes that were found in South Center.  325 

Bayenv2 Outliers: 326 

We identified only five outlier loci in the SC population, which were related to six genes. This 327 

relatively small number reflects the low power of Bayenv2 to detect environmental outliers in 328 

South Center (Fig. S1 and S3), likely originating from the strong correlation between the main 329 

axis of population structure (Fig 1A) and the environmental variables which caused Bayenv2 to 330 

over-correct for this structure. The six genes resulted in no enriched GO terms for molecular 331 

function. The Hill population had loci correlated with age, CaCO3, Organic Carbon (OrgC) and 332 

phosphorus (P) ranging from a high of 43 loci correlated with OrgC content to 5 loci correlated 333 

with P (Table S1). The small number of genes related to outlier SNPs from age, P, and CaCO3 334 

did not result in any enriched GO terms. However, SNPs associated with organic carbon were 335 

related to a total of 58 genes. This gene list resulted in 10 enriched GO terms which were related 336 

to several transcription factors including binding and regulation.  337 

 338 
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339 

Figure 4) Outlier SNP GO term Enrichment. Left) PANTHERDB GO term for molecular 340 

function enriched among Fst outlier SNPs identified in SC Lake. Right) PANTHERDB GO term341 

for molecular function enriched among Bayenv outlier SNPs identified in Hill Lake. The GO 342 

terms corresponding to IDs here are present in tables S2 (L) and S3 (R).  343 

Discussion: 344 

Our data support our first hypothesis - that significant anthropogenic changes within a lakes’ 345 

watershed would result in more genetic markers experiencing dramatic changes in allele 346 

frequency. We found only limited support for our other two hypotheses that lake populations 347 

would have diverging evolutionary trajectories related to different selection regimes and that 348 

genomic adaptation can be attributed to selected environmental proxies. In many cases, similar349 

GO terms for molecular function were enriched in both lakes and few SNPs had measurable 350 

gene-environment correlations.  351 

 

erm 
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Human impacts leave measurable signatures in the genome: 352 

The identification of Fst outliers revealed more than four times the number of outliers in SC Lake 353 

compared to those observed in Hill Lake (i.e., 122 sites vs 29 sites). This supports our hypothesis 354 

that more sites would be under selection in the Daphnia population of SC Lake, resulting from 355 

the dramatic environmental changes in this lake. The SC lake watershed is dominated largely by 356 

pastureland and row-crop agriculture encompassing 38% and 23% of the watershed area, 357 

respectively (MNPCA, 2009a). As noted previously (Frisch et al. 2014, 2017) this has created a 358 

set of novel environmental conditions in SC Lake, particularly because of nutrient loading (N & 359 

P) from agricultural run-off. The watershed of Hill Lake, by contrast, is largely dominated by 360 

forest covering approximately 75% of the watershed whereas 14% of the land is used by 361 

agriculture resulting in mesotrophic conditions (MNPCA, 2009b). This provides further evidence 362 

of the enormous adaptive capacity of Daphnia populations at the genomic level. Previous studies 363 

have shown that resurrected individuals from the SC population have evolved phenotypic 364 

plasticity in their phosphorus (P) physiology that allows them to regulate the retention of P 365 

according to availability in the environment (Frisch et al., 2014; Chowdhury and Jeyasingh, 366 

2016; Frisch et al., 2020). Other resurrection studies have shown an adaptive capacity to a 367 

variety of environmental challenges including salt pollution (Wersebe and Weider 2023) or 368 

rising temperatures (Geerts et al  2015). This suggests that Daphnia populations will continue to 369 

support aquatic food webs and maintain the ecosystem services they provide (Walsh et al. 2016) 370 

as long as the pace or strength of environmental stress does not overwhelm their adaptive 371 

capacity.  372 

Many SNPs, no coherent genes: 373 

Our results from the SC population Fst-tests are congruent with other recent studies which have 374 

used resurrection ecology paired with genome-wide markers to study local adaptation. Both 375 

Chaturvedi et al. (2021) and Wersebe and Weider (2023) found that a large number of SNPs may 376 
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rapidly change in allele frequency in Daphnia populations experiencing novel environmental 377 

conditions. However, these studies employed whole-genome sequencing to identify SNPs 378 

segregating in the study populations over time. For example, Wersebe and Weider (2023) were 379 

able to use their data set to identify genes and mutations with known functions that were related 380 

to the physiology of the trait (i.e., salinity tolerance) they suspected to be under selection in the 381 

study population. In contrast, Chaturvedi et al. (2021) did not attempt to identify the genes or 382 

functional implications of the SNPs detected in their study.  383 

Here, our effort to identify genes associated with the Fst-outlier SNPs did not reveal distinct 384 

physiological functions that might be plausibly related to eutrophication. For instance Weider et 385 

al. (1997), proposed that allozyme variation at the phosphoglucose isomerase (PGI, EC 5.3.1.9) 386 

gene was related to micro-evolutionary changes associated with eutrophication in the Lake 387 

Constance (Bodensee, Germany) Daphnia population. Further experimental work has suggested 388 

that PGI-genotype may indeed play a role in the competitive ability of Daphnia under 389 

contrasting phosphorus supply (Jeyasingh et al., 2009). Despite the lack of a single locus of large 390 

effect with a clear physiological connection, we did find similar sets of genes enriched as those 391 

detected by Muñoz et al. (2016).  These authors analyzed SNPs detected with genotype-by-392 

sequencing from several Daphnia pulicaria populations in Minnesota including SC and Hill 393 

Lakes.  394 

Many of the outlier SNPs detected here were enriched in GO terms related to regulation of 395 

transcription, but not immediately connected to nutrient physiology. The lack of a coherent list 396 

of genes may be related to several factors. We employed a variant of RADseq which is known as 397 

a reduced representation method. RAD genotyping only samples loci in the genome near enzyme 398 

cut sites and as a result, only samples a small portion of the DNA (Andrews et al., 2016). Some 399 

have questioned this method for studying local adaptation (Lowry et al., 2016), because the RAD 400 

approach lacks sufficient marker density to sample sites in tight linkage disequilibrium with a 401 

selected site. As such, we may have lost some power to detect selection in the genome. 402 
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Furthermore, since coverage is restricted to RAD tags, we were unable to search regions 403 

surrounding outliers for SNPs within genes causing missense mutations or premature stop 404 

codons. Such non-neutral variation is the target of selection, which might narrow a list of nearby 405 

candidate genes when examined more closely.  406 

Paleo-environmental correlations with allele frequency change: 407 

While the Fst analysis supported our hypothesis, the Bayenv analysis did not produce congruent 408 

results. This analysis detected most outlier SNPs in the Hill Lake population, while a much lower 409 

number was found in the SC Lake population. As demonstrated by the Bayenv simulations (Fig. 410 

S1,S2,S3, S4), the power of detecting outlier loci in SC Lake was very low due to the strong 411 

correlation between variation in the SNP data and environmental variables. While Bayenv2 is 412 

designed to avoid false positives due to background population structure, it might over-correct if 413 

the population structure is highly correlated with the environmental variables reducing the 414 

chances of finding loci involved in environmental adaptation. This strong correlation between 415 

genomic and environmental variation across time might explain why more SNPs with high Fst 416 

could be detected when applying an Fst approach without considering environmental data.  417 

For Hill Lake, this correlation was less pronounced, allowing a greater power of detecting 418 

outliers associated with environmental variables. In this lake, the only environmental factor with 419 

many correlated outliers was organic carbon (OrgC) flux. This OrgC paleo-environmental record 420 

tracks the burial of organic matter in lake sediments (Tranvik et al., 2009). Studies of Minnesota 421 

Lakes have revealed that one of the primary controls of lake OrgC burial is a change in land use 422 

within a lake’s watershed (Anderson et al., 2013). As noted previously, land use is strikingly 423 

different between Hill and South Center, with the most dramatic changes occurring within South 424 

Center Lake’s watershed. These results remain difficult to explain in the context of the data we 425 

collected.  426 
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There are several factors that might impact studies such as ours, many of them inherent with 427 

difficulties related to the design of resurrection ecology studies. Our sampling of individuals 428 

throughout the core relies solely on Daphnia pulicaria lineages that hatched and survived in 429 

laboratory culture. This may have resulted in a non-representative sampling consisting of those 430 

genotypes that survived extended diapause and laboratory conditions. This produces a bias 431 

termed the “invisible fraction”, which arises when strong correlations exist between propagule 432 

survival and traits of interest for a given genotype (Weis, 2018). However, such biases are not 433 

directly quantifiable without knowledge of the ancestral relationships of hatched propagules. In 434 

previous studies (Frisch et al. 2014, 2017), the sampling design would have alleviated the impact 435 

of the invisible fraction because eggs were recovered from the sediments and genotyped directly. 436 

These studies demonstrated compelling evidence of gene-environment correlations, which we 437 

did not recover despite the larger number of markers employed in the present study. The larger 438 

number of sampled haplotypes in these studies may have improved the ability to detect allele 439 

frequency shifts which underly the reported gene-environment correlations.  440 

Frisch et al. (2014) also observed phenotypic changes in the SC Lake population after profiling 441 

some of the clones included in this present study for phosphorus use efficiency and growth rate 442 

(e.g., fitness) under contrasting nutrient conditions. These observations may be related to 443 

transcriptomic and/or epigenomic changes across time rather than selection on genetic variation 444 

in the genes underlying physiological traits. Further, Frisch et al. (2020) mapped the 445 

transcriptional networks associated with P-use traits in the SC population. While many 446 

transcriptional responses were shared between the ancient and modern clones profiled, a small 447 

number showed novelty in the modern clones under P-limitation. Such a mechanism might 448 

explain in part why here, we uncovered several genes related to regulation and translation rather 449 

than to nutrient physiology. This highlights the importance of designing studies that incorporate 450 

the full complement of functional genomic interrogation including full genome sequences, 451 

transcriptomic and epigenomic profiles and common garden experiments to understand the 452 
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genetic basis of phenotypic change in wild populations. Such a comprehensive and multi-faceted 453 

study using the resurrection approach has yet to be conducted. 454 

 455 

Challenges and Considerations of the “resurrection” approach: 456 

Many studies utilizing the resurrection approach consider the evolutionary trajectory of a single 457 

lake and its target population (see Weider et al. 2018 for an overall review). While this approach 458 

may be powerful, results from a single population are inherently phenomenological without 459 

replication or control. The addition of a “control” population such Hill Lake in our study allows 460 

us to demonstrate a concerted change in South Center Lake. However, there are several 461 

challenges and considerations that any chosen design introduces that complicate a direct 462 

comparison. Specifically, it is important to have sufficient sample sizes across time periods and 463 

lakes to make temporal comparisons meaningful. One of the primary differences between our 464 

analytical approaches was whether the oldest clones recovered were included in the results. 465 

Since it is difficult to accurately determine allele frequencies from such small sample sizes, we 466 

opted not to include these in the Fst-based analysis. However, they were included in the Bayenv 467 

analysis. This may explain in part the contrasting results of these approaches but more 468 

importantly it also highlights the importance of acquiring a large enough sample size from each 469 

temporal subpopulation. Additionally, to allow for a meaningful comparison between two or 470 

more lakes, populations should be sampled on the same temporal scale. With the exclusion of the 471 

oldest samples from both lakes, our data sets spanned a similar timeframe (30 years in SC Lake, 472 

20 years in Hill Lake), but the Hill Lake core was more densely sampled compared to the SC 473 

Lake core. This has unknown effects on the inference that can be gleaned from the data.  474 

Conclusions: 475 
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The South Center and Hill populations tell a tale that spans decades to centuries. However, the 476 

genes in these populations are not easy to read. Ultimately, the Daphnia pulicaria populations in 477 

each lake show distinct patterns of adaptation, which coincide with many more Fst outliers in the 478 

SC Lake population than in Hill Lake. Most outlier SNPs are related to transcriptomic 479 

modification and regulatory genes suggesting that adaptation in these lakes is related to a 480 

complex molecular rewiring rather than one or a few major-effect genes with known 481 

physiological function. However, when conducting resurrection studies, we recommend that care 482 

and attention be paid to sample size. This can help to increase the likelihood that the analyses 483 

produce meaningful results. This is a challenge inherent in resurrection ecology because 484 

idiosyncratic deposition and preservation of eggs within sediment cores are ultimately 485 

unknowable before selecting lakes and the temporal resolution of ephippial sampling. Regardless 486 

of current limitations, the further refinement of resurrection ecological studies has the potential 487 

to provide a powerful means of examining temporal genome-environment interactions that can 488 

complement space-for-time studies (Weider et al., 2018)  489 
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