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Abstract. This paper provides comparisons between microstructure and two-
dimensional fiber orientations measured optically using polarization sensitive 
optical coherence tomography (PS-OCT) and those estimated from ultra-high-
field diffusion MRI (dMRI) at 10.5T in the macaque brain.  The PS-OCT 
imaging is done at an in-plane resolution of ~10 microns in and around the 
thalamus. Whole brain dMRI is acquired at an isotropic resolution of 0.75 mm. 
We provide comparisons between cross-polarization and optical orientation 
from PS-OCT with the fractional anisotropy and two-dimensional orientations 
extracted from dMRI using a diffusion tensor model. The orientations from PS-
OCT are also extracted computationally using a structure tensor. Additionally, 
we demonstrate the utility of mesoscale, PS-OCT imaging in improving the 
MRI resolution by learning the mapping between these contrasts using a super-
resolution Generative Adversarial Network.  

Keywords: polarization sensitive optical coherence tomography, serial optical 
coherence scanning, optic axis orientation, diffusion MRI, transfer learning. 

1 Introduction 

Optical coherence tomography (OCT), which produces depth-resolved images at 
micrometer resolution, has been used to visualize cortical layers and neurons [1-3]. 
Reflectivity is the conventional contrast used in OCT which portrays the tissue 
morphology. The birefringence property of myelinated nerve fibers is used in 
polarization-sensitive OCT (PS-OCT) [4] to create additional contrasts such as cross-
polarization and retardance that better distinguish white matter from gray matter, and 
to visualize axonal tracts [5].  
 
Diffusion MRI (dMRI) is currently the only imaging modality to map axon bundles 
and whole brain structural connections in-vivo at macroscale resolutions [6,7]. 
Despite the submillimeter resolution of dMRI available with state-of-the-art ultra-

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2024. ; https://doi.org/10.1101/2024.04.19.590326doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.19.590326
http://creativecommons.org/licenses/by-nc/4.0/


2  F. Author and S. Author 

high-field imaging [8], the imaging resolution needs further refinement to capture the 
complex neural connections formed by the ~86 billion neurons present in a healthy 
human brain, and to detect abnormalities in these neuronal connections. One of the 
ways to improve the resolution is through post processing by applying a previously 
learned mapping between the (macroscale) MRI data and (microscale) microscopy 
data [9].   
 
Microscopic methods such as histological staining and polarized light imaging are 
traditionally used to validate neuronal parameters like the fiber orientation and axon 
density estimated from dMRI [10-12]. The factors that limit the use of machine 
learning for learning the structural mapping between dMRI and microscopy data 
include the lack of large area of coverage in microscopy and the lack of one-on-one 
correspondence between MRI and (group of) microscopy pixels. To increase the area 
of coverage a tissue slicer has been integrated into PS-OCT to make a serial optical 
coherence scanner (SOCS) [13,14] which is used to validate dMRI and PS-OCT-
based in-plane fiber orientation estimations [15].  
 
In this work, we present the acquisition and processing of high-resolution PS-OCT 
data (~10 micron lateral; ~5.5 micron axial) using SOCS, from a large block of tissue 
(25x25x15 mm3) around the left thalamus and adjacent regions of the macaque brain. 
This is made feasible by imaging each slice (the lateral plane of the block) in tiles 
(4x4) and subsequently combining them through image stitching in post-processing. 
Multiple imaging contrasts are calculated from the amplitudes and phases of two PS-
OCT channels. This includes two-dimensional (2D) optic axis orientation, which 
gives the in-plane orientation of the axon fibers. The 2D orientations are also 
computed with a structure tensor analysis of the cross-polarization contrast. 
Resemblance of the cross-polarization from PS-OCT and fractional anisotropy (FA) 
from diffusion tensor imaging (DTI) help registering these two datasets, which allows 
for comparing the PS-OCT-based orientations and 2D orientations extracted from 
DTI. Finally, we demonstrate the utility of such high-resolution microscopy data in 
improving the MRI resolution using a Generative Adversarial Network (GAN). We 
conclude with a discussion of the next steps including the extension to 3D fiber 
orientations and designing custom deep network models for such data.         

2 Methods 

2.1 In-vivo MRI acquisition and processing 

The data acquisition in the study was approved by the Institutional Animal Care and 
Use Committee (IACUC) at our institution. Whole brain dMRI data of the macaque 
was acquired using a Siemens MAGNETOM whole body 10.5T MRI scanner. The 
data were acquired at a resolution of 0.75x0.75x0.75 mm3, with two b-values 1000 
and 2000 s/mm2, and 107 diffusion gradient directions with 8 b0 volumes equally 
interleaved, using a 2D spin echo EPI acquisition with monopolar diffusion 
weighting. Echo time (TE) and repetition time (TR) used are 65.8 ms and 6000 ms 
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respectively. Two sets of data were collected with reversed phase encoding directions 
(head to foot and foot to head).  
 
The data were first denoised with the NORDIC algorithm [16] and corrected for 
distortions due to eddy currents, susceptibility-induced off-resonance artifacts, and 
subject motion using FSL software [17,18]. A DTI model was subsequently fit to the 
data using FSL. A mask corresponding to the block of tissue imaged with PS-OCT 
was created and the FA and primary fiber orientation (v1) maps were extracted from 
the slices in this block. The 3D orientations were projected to the 2D imaging plane 
used in PS-OCT.      
2.2 Ex-vivo PS-OCT acquisition and processing 

Perfused and paraformaldehyde-fixed tissue of the macaque brain was blocked in and 
around the left thalamus resulting in a tissue sample of 25x25x15 mm3. This sample 
was then mounted to a motorized stage with an agar gel support and imaged with the 
PS-OCT scanner. The exposed face was imaged from the anterior to posterior 
direction in the coronal plane using 4x4 tiles, each tile approximately 7x7 mm2, with 
15% overlap. After imaging the slice, a 100-micron thick tissue was removed from 
the surface to access deeper regions. This resulted in 156 total slices. We excluded the 
data from a few slices that had light focusing and partial coverage issues, and used the 
data from 135 slices for subsequent analysis.   
 
The PS-OCT data were processed to extract co- and cross-polarization channel 
amplitudes that were used to calculate the reflectivity, R(z), and phase retardance, 
δ(z), contrasts.  
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where A denotes the amplitude as a function of depth z and the subscripts represent 
the polarization channels 1 and 2. Here, �����

� is the cross-polarization contrast. The 
relative axis orientation, θ′(z), on the other hand, is obtained by using phase (� �  
information of these PS-OCT channels.  
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For our polarization-maintaining fiber based system, this measurement has an offset 
��which can be removed by utilizing a calibration line [14] or by determining the 
offset as explained in the next subsection.  
 
For all the contrasts, en-face images are calculated with a lateral resolution of 10x10 
microns and a slice thickness of 100 microns. A set of 4x4 image tiles per slice is 
stitched together to one slice using linear blending in MATLAB.  
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2.3 Optical and structure tensor-based orientation estimation  

The optical fiber orientations were calculated using Eq.(3). The difference in phase of 
the two channels provides the relative orientation at each pixel. The offset �� is an 
arbitrary angle resulting from fluctuations in the system (due to fiber movement, 
temperature variations etc.) during data acquisition. To obtain �� (which is constant 
for a slice), local fiber orientations relative to the horizontal axis were estimated using 
morphological processing of intensity in each en-face slice. A linear structural 
element with a known length and angle, centered on each pixel, is used for the 
morphological processing. The angle of this structural element was then varied from 0 
to 180 degrees in 5-degree increments. The angle with the maximum number of pixels 
with an intensity > 0.3 within the length of the structural element was selected as the 
estimated local fiber orientation. The difference between the estimated orientation and 
the measured relative optical orientation in a slice forms a Gaussian distribution of 
offsets. The peak of the distribution was used as the offset �� for the given slice. 
 
The fiber orientations are also calculated with structure tensor analysis [19-21]. The 
analysis relies on finding the directionality of textures by using the neighboring 
gradients of pixels. The gradients are calculated using a derivative-of-gaussian filter 
with a standard deviation of 0.27. The structure tensor of the gradients and its 
eigenvalues are calculated next. The eigenvalues represent the local gradients of the 
image intensity and the eigenvectors represent the gradient directions. The 
eigenvector corresponding to the smallest eigenvalue is taken as the fiber orientation 
as the fiber axis has the smallest gradient (that is lesser intensity variation along the 
fiber than across the fiber). 
 
2.4 Structural mapping using deep learning 

We investigated the potential enhancement of dMRI-derived metrics, particularly FA 
maps, through the integration of high-resolution PS-OCT data. We used the cross-
polarization en-face images as it provided a good contrast that resembles the FA 
images. We used the PS-OCT imaged block of the brain as the region of interest 
(ROI) to facilitate direct comparison and analysis. The ROI comprises 27 x 20 
pixels/voxels in the dMRI dataset and 2810 x 2740 pixels in the PS-OCT dataset 
within the corresponding area, with the PS-OCT data possessing 104 x 137 times 
greater pixel resolution compared to the dMRI data.  
 
With the significantly higher resolution of PS-OCT data, there emerges a promising 
opportunity to enhance the resolution of FA images. However, the limited dataset 
comprising only 18 sample MRI slices (corresponding to 135 PS-OCT slices, which 
are resized to 18 slices using bicubic interpolation in MATLAB) presents a challenge 
for conventional deep learning methods such as Deep Neural Networks (DNNs) and 
Convolutional Neural Networks (CNNs), which typically require larger datasets for 
effective training. To address this limitation, we employed multiple strategies. Firstly, 
we focused on enhancing FA only by a factor of 8 using down-sampled PS-OCT 
images. Secondly, we did transfer learning of a pre-trained Enhanced Super-
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Resolution Generative Adversarial Networks (ESRGAN) [22] model, which was 
initially designed for a maximum of 4 times super-resolution, to adapt it to achieve 8 
times enhancement in FA maps using high-resolution PS-OCT data. 
 
The model architecture is the pre-trained ESRGAN [22] as a base, in a frozen state, 
and a new super-resolution layer comprising a convolutional layer with 3 filters of 
3x3 kernel size. With 3 input channels, this layer incorporated 27 trainable weights 
per channel along with 3 bias terms per filter, totaling 84 trainable parameters. For 
optimization, a perceptual loss function computed from features extracted by a pre-
trained VGG16 [23] convolutional neural network was employed, alongside the 
Adam optimizer [24] with a learning rate set at 0.1. Training was conducted on 20 
epochs with a batch size of 6 high- and low-resolution images, using a 10% validation 
split for performance monitoring, achieving a minimum training loss of 0.0816. 
Evaluation included assessing Structural Similarity Index Measure (SSIM) loss, with 
a final value of -0.0109 indicating a favorable resemblance between generated and the 
PS-OCT images. The implementation was done using the TensorFlow framework, 
without data augmentation in training.  

3 Results 

3.1 PS-OCT data and its comparison to MRI 

 
Fig. 1. PS-OCT en-face cross-polarization images acquired from a region of interest around the 
left thalamus of the macaque brain, from anterior (top left) to posterior (bottom right).  The 
order of the slices is left to right and top to bottom.      

Figure 1 shows the en-face cross-polarization images that are calculated by averaging 
the 3D slices in the axial (z) direction. The results are selected from the sample slices 
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imaged anterior to posterior. In-plane resolution is 10x10 microns and the slice 
thickness of en-faced images is 100 microns. We used the cross-polarization images 
for the structure tensor-based orientation estimation and to demonstrate the 
enhancement of FA images. A movie showing the cross-polarization in all the slices 
are included in the supplementary material.  
 
Figure 2 presents the en-face PS-OCT images including the cross-polarization, 
retardance, reflectivity and optical orientation, as well as the structure tensor-based 
orientations that are calculated from the cross-polarization images. The figure also 
shows a comparison to FA and DTI-based orientation estimates. There is an 
agreement between the optical orientation and the structure tensor-based orientation, 
but the optical orientation has higher resolution and appears to be more accurate as it 
does not depend on imaging features or gradients, which is the case for structure 
tensor computation. Cross-polarization and retardance contrasts compare well with 
FA despite the big difference in image resolution (>100x). A second movie showing 
the optical orientation in all the slices are included in the supplementary material.       
 

 
Fig. 2. Different imaging contrasts from PS-OCT and their comparison to DTI measures. A 
coronal view of the FA map highlighting the ROI imaged in PS-OCT and the color coding used 
for orientation estimates are also shown (second row, third column). CC-corpus callosum, Gpe 
- globus pallidus externus, Gpi - globus pallidus internus.   

3.2 Super-resolution DTI by learning mapping between DTI and 
PS-OCT 

Here we demonstrate the effectiveness of Generative Adversarial Network (GAN)-
based super-resolution in producing high-quality images from low-resolution DTI 
data using transfer learning with PS-OCT data (cross-polarization). We used 18 high-
resolution PS-OCT images (216 x 160 pixels, down sampled from the full resolution, 
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see the discussion on this in the next section) to achieve an 8 times super-resolution of 
dMRI data, originally 27 x 20 pixels/voxels.  
 
Figure 3 shows the original FA map, the super-resolution FA map, and its comparison 
to ground truth PS-OCT (cross-polarization) data. In comparison, the transfer learning 
of the ESRGAN produced super-resolution FA maps with significant improvement 
(8x) in the resolution of original FA maps. Enhanced details are visible within the 
internal capsule, pallidum, putamen, and anterior commissure in the super resolution 
FA compared to original FA.  
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Fig. 3. Comparisons between original FA map (left column, 27x20 pixels) and super resolution 
FA map (middle column, 216x160 pixels) learned through transfer learning of ESRGAN. 
Ground truth used is the en-face cross-polarization images from PS-OCT (right column, 
216x160 pixels). Gpe - globus pallidus externus, Gpi - globus pallidus internus. 

4 Discussion and Conclusion  

We presented preliminary results from the comparison of ex-vivo PS-OCT and in-
vivo dMRI. Both dMRI and PS-OCT data we presented are unique and include high 
resolution dMRI acquired at 10.5T with 750 microns isotropic resolution. Also, this is 
the first application of the SOCS technique on a considerable size of macaque 
midbrain.  
 
Our study aimed to enhance the resolution of dMRI-derived metrics by incorporating 
information from PSOCT data, rather than attempting to generate PS-OCT images 
from dMRI. This strategy was motivated by constraints in data size and the 
substantial resolution disparity between the two imaging modalities (>100x). 
Therefore, our approach partially leveraged the rich information offered by PS-OCT 
data to enhance tissue structural details (up to 8x) in FA maps. We accomplished this 
through transfer learning applied to the pre-trained ESRGAN model. This method 
enabled us to effectively preserve the anatomical realism in the generated high-
resolution FA maps, through learning from PS-OCT data. 
 
In this work we could not leverage the full benefit of microscopic resolution of PS-
OCT as we increased the resolution of FA maps only by a factor of 8, by using down 
sampled version of PS-OCT data. In the future, we plan to enhance the super-
resolution factor by exploring customized GANs and Diffusion-based model 
architectures [25] tailored specifically to our dataset. We plan to develop models 
capable of achieving super-resolution factors ranging from 10 to 15 times for direct 
mapping from dMRI resolution. Moreover, we expect that integrating all the 
diffusion-weighted measurements, which consist of 115 volumes, into the training 
process will greatly improve model learning. By harnessing the extensive resolution 
potential offered by PS-OCT data, we aim to generate precise high-resolution 
diffusion images, thereby pushing forward the capabilities of imaging techniques in 
neuroimaging research. 
 
Additional data from the other hemisphere of the same macaque is going to be 
acquired to further these experiments and also to extend the work to fiber 
tractography from PS-OCT data. We plan to use a calibration line in this data 
acquisition to facilitate dynamic removal of the offset from the orientation 
measurement, which will eliminate the need for calculating the orientation offset from 
morphological signal processing. Our future studies will involve PS-OCT acquisitions 
from an entire hemisphere or whole macaque brain, to support brain-wide 
connectome studies at the mesoscale, through hardware and software upgrades. Our 
future work would also include estimating 3D orientations from PS-OCT data by 
combining the 2D optical orientations with structure tensor-based third angle 
(inclination angle) estimation.  
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