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Abstract. This paper provides comparisons between microstructure and two-
dimensional fiber orientations measured optically using polarization sensitive
optical coherence tomography (PS-OCT) and those estimated from ultra-high-
field diffuson MRI (dMRI) at 10.5T in the macaque brain. The PS-OCT
imaging is done a an in-plane resolution of ~10 microns in and around the
thalamus. Whole brain dMRI is acquired at an isotropic resolution of 0.75 mm.
We provide comparisons between cross-polarization and optical orientation
from PS-OCT with the fractional anisotropy and two-dimensional orientations
extracted from dMRI using a diffusion tensor model. The orientations from PS-
OCT are also extracted computationally using a structure tensor. Additionally,
we demonstrate the utility of mesoscale, PS-OCT imaging in improving the
MRI resolution by learning the mapping between these contrasts using a super-
resolution Generative Adversarial Network.

Keywords: polarization sensitive optical coherence tomography, serial optica
coherence scanning, optic axis orientation, diffusion MRI, transfer learning.

1 | ntroduction

Optical coherence tomography (OCT), which produces depth-resolved images at
micrometer resolution, has been used to visualize cortical layers and neurons [1-3].
Reflectivity is the conventional contrast used in OCT which portrays the tissue
morphology. The birefringence property of myelinated nerve fibers is used in
polarization-sensitive OCT (PS-OCT) [4] to create additional contrasts such as cross-
polarization and retardance that better distinguish white matter from gray matter, and
to visualize axonal tracts[5].

Diffusion MRI (dMRY) is currently the only imaging modality to map axon bundles
and whole brain structural connections in-vivo at macroscale resolutions [6,7].
Despite the submillimeter resolution of dMRI available with state-of-the-art ultra-
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high-field imaging [8], the imaging resolution needs further refinement to capture the
complex neura connections formed by the ~86 billion neurons present in a heathy
human brain, and to detect abnormalities in these neuronal connections. One of the
ways to improve the resolution is through post processing by applying a previously
learned mapping between the (macroscale) MRI data and (microscale) microscopy
data[9].

Microscopic methods such as histological staining and polarized light imaging are
traditionally used to validate neuronal parameters like the fiber orientation and axon
dendty edstimated from dMRI [10-12]. The factors that limit the use of machine
learning for learning the structural mapping between dMRI and microscopy data
include the lack of large area of coverage in microscopy and the lack of one-on-one
correspondence between MRI and (group of) microscopy pixels. To increase the area
of coverage a tissue slicer has been integrated into PS-OCT to make a serial optical
coherence scanner (SOCS) [13,14] which is used to validate dMRI and PS-OCT-
based in-plane fiber orientation estimations [15].

In this work, we present the acquisition and processing of high-resolution PS-OCT
data (~10 micron lateral; ~5.5 micron axial) using SOCS, from alarge block of tissue
(25x25x15 mm?®) around the left thalamus and adjacent regions of the macaque brain.
This is made feasible by imaging each dice (the lateral plane of the block) in tiles
(4x4) and subsequently combining them through image stitching in post-processing.
Multiple imaging contrasts are calculated from the amplitudes and phases of two PS-
OCT channels. This includes two-dimensional (2D) optic axis orientation, which
gives the in-plane orientation of the axon fibers. The 2D orientations are also
computed with a dructure tensor analyss of the cross-polarization contrast.
Resemblance of the cross-polarization from PS-OCT and fractional anisotropy (FA)
from diffusion tensor imaging (DTI) help registering these two datasets, which allows
for comparing the PS-OCT-based orientations and 2D orientations extracted from
DTI. Finally, we demonstrate the utility of such high-resolution microscopy data in
improving the MRI resolution using a Generative Adversarial Network (GAN). We
conclude with a discussion of the next steps including the extension to 3D fiber
orientations and designing custom deep network models for such data.

2 M ethods

2.1 In-vivo MRI acquisition and processing

The data acquisition in the study was approved by the Institutional Animal Care and
Use Committee (IACUC) at our institution. Whole brain dMRI data of the macague
was acquired using a Siemens MAGNETOM whole body 10.5T MRI scanner. The
data were acquired at a resolution of 0.75x0.75x0.75 mm?®, with two b-values 1000
and 2000 mm?, and 107 diffusion gradient directions with 8 b0 volumes equally
interleaved, using a 2D spin echo EPI acquisition with monopolar diffuson
weighting. Echo time (TE) and repetition time (TR) used are 65.8 ms and 6000 ms
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respectively. Two sets of data were collected with reversed phase encoding directions
(head to foot and foot to head).

The data were first denoised with the NORDIC algorithm [16] and corrected for
distortions due to eddy currents, susceptibility-induced off-resonance artifacts, and
subject motion using FSL software [17,18]. A DTI model was subsequently fit to the
data using FSL. A mask corresponding to the block of tissue imaged with PS-OCT
was created and the FA and primary fiber orientation (v1) maps were extracted from
the slices in this block. The 3D orientations were projected to the 2D imaging plane
used in PS-OCT.

2.2 Ex-vivo PS-OCT acquisition and processing

Perfused and paraformaldehyde-fixed tissue of the macague brain was blocked in and
around the left thalamus resulting in a tissue sample of 25x25x15 mm?®. This sample
was then mounted to a motorized stage with an agar gel support and imaged with the
PS-OCT scanner. The exposed face was imaged from the anterior to posterior
direction in the coronal plane using 4x4 tiles, each tile approximately 7x7 mm?, with
15% overlap. After imaging the slice, a 100-micron thick tissue was removed from
the surface to access deeper regions. This resulted in 156 total slices. We excluded the
data from a few dices that had light focusing and partial coverage issues, and used the
data from 135 slices for subsequent analysis.

The PS-OCT data were processed to extract co- and cross-polarization channel
amplitudes that were used to calculate the reflectivity, R(2), and phase retardance,
8(2), contrasts.

R(2) xA1(2)* + 4;(2)*, (D)

Aq(2)
Ay (2)

where A denotes the amplitude as a function of depth z and the subscripts represent
the polarization channels 1 and 2. Here, A,(z)? is the cross-polarization contrast. The

relative axis orientation, 6'(z), on the other hand, is obtained by using phase (¢ )
information of these PS-OCT channels.

6(z) = arctan{

L @

7 { z)— Z}
0'(z) :%4_90 (3)

For our polarization-maintaining fiber based system, this measurement has an offset
Bowhich can be removed by utilizing a calibration line [14] or by determining the
offset as explained in the next subsection.

For all the contrasts, en-face images are calculated with a lateral resolution of 10x10
microns and a dice thickness of 100 microns. A set of 4x4 image tiles per dice is
stitched together to one slice using linear blendingin MATLAB.
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2.3 Optical and structuretensor-based orientation estimation

The optical fiber orientations were calculated using Eq.(3). The difference in phase of
the two channels provides the relative orientation at each pixel. The offset 8, is an
arbitrary angle resulting from fluctuations in the system (due to fiber movement,
temperature variations etc.) during data acquisition. To obtain 8, (which is constant
for aslice), local fiber orientations relative to the horizontal axis were estimated using
morphological processing of intensty in each en-face slice. A linear structural
element with a known length and angle, centered on each pixel, is used for the
morphological processing. The angle of this structural element was then varied from 0
to 180 degrees in 5-degree increments. The angle with the maximum number of pixels
with an intensity > 0.3 within the length of the structural element was selected as the
estimated local fiber orientation. The difference between the estimated orientation and
the measured relative optical orientation in a slice forms a Gaussian distribution of
offsets. The peak of the digtribution was used as the offset 9, for the given slice.

The fiber orientations are also calculated with structure tensor analysis [19-21]. The
analysis relies on finding the directionality of textures by using the neighboring
gradients of pixels. The gradients are calculated using a derivative-of-gaussian filter
with a standard deviation of 0.27. The structure tensor of the gradients and its
eigenvalues are calculated next. The eigenvalues represent the local gradients of the
image intensity and the eigenvectors represent the gradient directions. The
eigenvector corresponding to the smallest eigenvalue is taken as the fiber orientation
as the fiber axis has the smallest gradient (that is lesser intensity variation along the
fiber than across the fiber).

2.4  Structural mapping using deep learning

We investigated the potential enhancement of dM RI-derived metrics, particularly FA
maps, through the integration of high-resolution PS-OCT data. We used the cross-
polarization en-face images as it provided a good contrast that resembles the FA
images. We used the PS-OCT imaged block of the brain as the region of interest
(RQI) to facilitate direct comparison and analyss. The ROl comprises 27 x 20
pixels/voxels in the dMRI dataset and 2810 x 2740 pixels in the PS-OCT dataset
within the corresponding area, with the PS-OCT data possessing 104 x 137 times
greater pixel resolution compared to the dMRI data.

With the significantly higher resolution of PS-OCT data, there emerges a promising
opportunity to enhance the resolution of FA images. However, the limited dataset
comprising only 18 sample MRI slices (corresponding to 135 PS-OCT dlices, which
are resized to 18 slices using bicubic interpolation in MATLAB) presents a challenge
for conventional deep learning methods such as Deep Neural Networks (DNNs) and
Convolutional Neural Networks (CNNs), which typically require larger datasets for
effective training. To address this limitation, we employed multiple strategies. Firstly,
we focused on enhancing FA only by a factor of 8 using down-sampled PS-OCT
images. Secondly, we did transfer learning of a pre-trained Enhanced Super-
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Resolution Generative Adversarial Networks (ESRGAN) [22] model, which was
initially designed for a maximum of 4 times super-resolution, to adapt it to achieve 8
times enhancement in FA maps using high-resolution PS-OCT data.

The model architecture is the pre-trained ESRGAN [22] as a base, in a frozen state,
and a new super-resolution layer comprising a convolutional layer with 3 filters of
3x3 kernd size. With 3 input channels, this layer incorporated 27 trainable weights
per channel along with 3 bias terms per filter, totaling 84 trainable parameters. For
optimization, a perceptua loss function computed from features extracted by a pre-
trained VGG16 [23] convolutional neural network was employed, alongside the
Adam optimizer [24] with a learning rate set at 0.1. Training was conducted on 20
epochs with a batch size of 6 high- and low-resolution images, using a 10% validation
split for performance monitoring, achieving a minimum training loss of 0.0816.
Evaluation included assessing Structural Similarity Index Measure (SSIM) loss, with
afinal value of -0.0109 indicating a favorable resemblance between generated and the
PS-OCT images. The implementation was done using the TensorFlow framework,
without data augmentation in training.

3 Results

3.1 PS-OCT dataand its comparison to MRI

Anterior

-

Posterior

Fig. 1. PS-OCT en-face cross-polarization images acquired from aregion of interest around the
left thalamus of the macague brain, from anterior (top left) to posterior (bottom right). The
order of the dicesis|eft to right and top to bottom.

Figure 1 shows the en-face cross-polarization images that are calculated by averaging
the 3D dlices in the axial (z) direction. The results are selected from the sample slices
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imaged anterior to posterior. In-plane resolution is 10x10 microns and the dice
thickness of en-faced images is 100 microns. We used the cross-polarization images
for the structure tensor-based orientation estimation and to demonstrate the
enhancement of FA images. A movie showing the cross-polarization in all the slices
areincluded in the supplementary material.

Figure 2 presents the en-face PS-OCT images including the cross-polarization,
retardance, reflectivity and optical orientation, as well as the structure tensor-based
orientations that are calculated from the cross-polarization images. The figure also
shows a comparison to FA and DTl-based orientation estimates. There is an
agreement between the optical orientation and the structure tensor-based orientation,
but the optical orientation has higher resolution and appears to be more accurate as it
does not depend on imaging features or gradients, which is the case for structure
tensor computation. Cross-polarization and retardance contrasts compare well with
FA despite the big difference in image resolution (>100x). A second movie showing
the optical orientation in all the slices are included in the supplementary material.

Fi

>

Optical orientation Structure tensor orientation 2D orientations from DTI

Fig. 2. Different imaging contrasts from PS-OCT and their comparison to DTI measures. A
coronal view of the FA map highlighting the ROI imaged in PS-OCT and the color coding used
for orientation estimates are also shown (second row, third column). CC-corpus calosum, Gpe
- globus pallidus externus, Gpi - globus pallidus internus.

3.2 Super-resolution DTI by lear ning mapping between DTI and
PS-OCT

Here we demonstrate the effectiveness of Generative Adversarial Network (GAN)-
based super-resolution in producing high-quality images from low-resolution DTI
data using transfer learning with PS-OCT data (cross-polarization). We used 18 high-
resolution PS-OCT images (216 x 160 pixels, down sampled from the full resolution,
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see the discussion on thisin the next section) to achieve an 8 times super-resolution of
dMRI data, originally 27 x 20 pixels/voxels.

Figure 3 showsthe original FA map, the super-resolution FA map, and its comparison
to ground truth PS-OCT (cross-polarization) data. In comparison, the transfer learning
of the ESRGAN produced super-resolution FA maps with significant improvement
(8x) in the resolution of original FA maps. Enhanced details are visible within the
internal capsule, pallidum, putamen, and anterior commissure in the super resolution
FA compared to original FA.

Original FA Super resolution FA PSOCT (ground truth

anterior
issure


https://doi.org/10.1101/2024.04.19.590326
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.19.590326; this version posted April 25, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

8 F. Author and S. Author

Fig. 3. Comparisons between original FA map (left column, 27x20 pixels) and super resolution
FA map (middle column, 216x160 pixels) learned through transfer learning of ESRGAN.
Ground truth used is the en-face cross-polarization images from PS-OCT (right column,
216x160 pixels). Gpe - globus pdlidus externus, Gpi - globus pallidus internus.

4 Discussion and Conclusion

We presented preliminary results from the comparison of ex-vivo PS-OCT and in-
vivo dMRI. Both dMRI and PS-OCT data we presented are unique and include high
resolution dMRI acquired at 10.5T with 750 microns isotropic resolution. Also, thisis
the first application of the SOCS technique on a considerable sze of macaque
midbrain.

Our study aimed to enhance the resolution of dMRI-derived metrics by incorporating
information from PSOCT data, rather than attempting to generate PS-OCT images
from dMRI. This strategy was motivated by constraints in data size and the
substantial resolution disparity between the two imaging modalities (>100x).
Therefore, our approach partially leveraged the rich information offered by PS-OCT
data to enhance tissue structural details (up to 8x) in FA maps. We accomplished this
through transfer learning applied to the pre-trained ESRGAN model. This method
enabled us to effectively preserve the anatomical realism in the generated high-
resolution FA maps, through learning from PS-OCT data.

In this work we could not leverage the full benefit of microscopic resolution of PS-
OCT as we increased the resolution of FA maps only by a factor of 8, by using down
sampled version of PS-OCT data. In the future, we plan to enhance the super-
resolution factor by exploring customized GANs and Diffusion-based model
architectures [25] tailored specifically to our dataset. We plan to develop models
capable of achieving super-resolution factors ranging from 10 to 15 times for direct
mapping from dMRI resolution. Moreover, we expect that integrating all the
diffusion-weighted measurements, which consist of 115 volumes, into the training
process will greatly improve model learning. By harnessing the extensive resolution
potential offered by PS-OCT data, we am to generate precise high-resolution
diffusion images, thereby pushing forward the capabilities of imaging techniques in
neuroimaging research.

Additional data from the other hemisphere of the same macague is going to be
acquired to further these experiments and aso to extend the work to fiber
tractography from PS-OCT data. We plan to use a calibration line in this data
acquisition to facilitate dynamic removal of the offset from the orientation
measurement, which will eliminate the need for calculating the orientation offset from
morphological signal processing. Our future studies will involve PS-OCT acquisitions
from an entire hemisphere or whole macaque brain, to support brain-wide
connectome studies at the mesoscale, through hardware and software upgrades. Our
future work would also include estimating 3D orientations from PS-OCT data by
combining the 2D optical orientations with structure tensor-based third angle
(inclination angle) estimation.
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