O oo NOOULSA, WN B

B ADADDWWWWWWWWWWNRNNNNNNNNNRREPPRPRRRRRPR R
BWNRPOOONODUDNWNRPRPROOONOODUDNWNRPOWOVONOODUDNWNIEPRO

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.19.590298; this version posted December 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

PAbFold: Linear Antibody Epitope Prediction using AlphaFold2

Jacob DeRoo*, James S. Terry®, Ning Zhaof, Timothy J. Stasevich®, Christopher D. Snow”¢" and Brian J.
Geiss™B”

ASchool of Biomedical Engineering, Colorado State University, Fort Collins CO USA

BDepartment of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins CO USA
“Department of Chemical & Biological Engineering, Colorado State University, Fort Collins CO USA
PDepartment of Biochemistry and Molecular Biology, Colorado State University, Fort Collins CO USA
EDepartment of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus,
Aurora, CO USA

*Corresponding Authors: Brian.Geiss@colostate.edu and Christopher.Snow@colostate.edu

Keywords: AlphaFold2, antibody, linear epitope, epitope-prediction, scFv, competition ELISA

Abstract

Defining the binding epitopes of antibodies is essential for understanding how they bind to their antigens
and perform their molecular functions. However, while determining linear epitopes of monoclonal
antibodies can be accomplished utilizing well-established empirical procedures, these approaches are
generally labor- and time-intensive and costly. To take advantage of the recent advances in protein
structure prediction algorithms available to the scientific community, we developed a calculation pipeline
based on the localColabFold implementation of AlphaFold2 that can predict linear antibody epitopes by
predicting the structure of the complex between antibody heavy and light chains and target peptide
sequences derived from antigens. We found that this AlphaFold2 pipeline, which we call PAbFold, was able
to accurately flag known epitope sequences for several well-known antibody targets (HA / Myc) when the
target sequence was broken into small overlapping linear peptides and antibody complementarity
determining regions (CDRs) were grafted onto several different antibody framework regions in the single-
chain antibody fragment (scFv) format. To determine if this pipeline was able to identify the epitope of a
novel antibody with no structural information publicly available, we determined the epitope of a novel anti-
SARS-CoV-2 nucleocapsid targeted antibody using our method and then experimentally validated our
computational results using peptide competition ELISA assays. These results indicate that the AlphaFold2-
based PAbFold pipeline we developed is capable of accurately identifying linear antibody epitopes in a
short time using just antibody and target protein sequences. This emergent capability of the method is
sensitive to methodological details such as peptide length, AlphaFold2 neural network versions, and
multiple-sequence alignment database. PAbFold is available at https://github.com/jbderoo/PAbFold.

Introduction

Understanding where and how an antibody binds to its target protein is important for understanding how
the antibody performs its function, whether that function is neutralizing a pathogen during an immune
response, binding an epitope in immunoassays, or labeling a target molecule in a live-cell imaging
experiment. However, determining the binding epitope of an antibody can be a time and labor-intensive
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endeavor with significant expense. Traditionally, antibody epitopes on target proteins have been identified
by performing deletion analysis on the target protein to determine if the antibody loses reactivity for the
deletion mutants in various immunoassays, which provides the general region of the target protein the
antibody binds to. With the advent of widely available chemical peptide synthesis, sequence-specific
synthetic peptides can be used for competitive immunoassays (such as enzyme-linked immunosorbent
assays (ELISA)) to establish sequences that can effectively compete with the antigen for antibody binding.
Peptide mapping experiments are a powerful method for determining the fine sequence of linear antibody
epitopes, but these experiments can be relatively expensive and the time between experimental design
and data acquisition can be weeks to months due to the need to design and chemically synthesize
peptides. Once a peptide has been identified that binds with high affinity and specificity to an antibody
antigen binding fragment (Fab), crystal structures can be determined that demonstrate intermolecular
interactions between the peptide and antibody. These can then provide a molecular-level explanation for
an antibody’s binding mode. Finally, with the advent of rapid single B-cell sequencing technologies to
analyze humoral immune responses towards vaccination or infection, determining where specific antibody
clones bind on an antigen becomes even more challenging due to the need to isolate or synthesize specific
antibody genes, produce antibodies, and then perform deletion or epitope mapping experiments described
above to fully understand how and where antibodies bind. These challenges make determining antibody
epitopes expensive and time-consuming and limit the number of antibodies that are characterized in detail.

Antibodies that bind to linear epitopes represent an important subset to molecular biology, as they can be
added to recombinant proteins for use in various types of immunoassays. By definition, a linear epitope is a
binding site on an antigen that is recognized by the primary structure or contiguous linear sequence of
amino acids. A number of linear epitope specific antibodies have been developed for use in various
immunoassays (ELISA, western blot, immunofluorescence, etc.). The development of computational
methods for linear epitope determination could increase the number and quality of new linear epitopes
available to the field. Most epitope prediction tools (such as BepiPred (1), ElliPro (2), and ABCpred (3)) are
generally designed to predict regions of an antigen that could be recognized by any antibody rather than a
specific antibody. These programs also provide no insight into the structural match of the epitope and
antibody, potentially making decisions without key structural information that otherwise may be relevant.
The challenge in predicting epitopes for a specific antibody lies in the complexity of protein-protein
interaction dynamics, which includes conformational changes, binding affinities, and thermodynamic
stability. Structure based approaches including HADDOCK (4, 5) and ZDOCK (4, 6) can be used to dock
peptides into antibody structures, but these require known peptides for binding. Significant progress has
been made to address this problem via deep learning: some of the new and exciting tools are GearBind (7),
PALM and A2binder (8), and DSMBind (9). We point the reader to this review for an excellent overview of
some of the tools that have existed for some time, along with a comparison of these tools (10).

Determining antibody-epitope interactions is, at its most basic level, a structural biology problem.
Determining what molecular interactions are present between an antibody and its antigen can define the
epitope, determine what portions of the epitope and CDR sequences are responsible for molecular
interactions, and provide clues to antibody specificity and affinity. With the advent of highly accurate
structural predictions, including the AlphaFold2 (AF2) neural networks (11, 12), the ability to accurately
predict protein structures, and potential protein-protein interactions, has dramatically increased.
AlphaFold2 was trained on existing protein structures and can effectively model new protein structures.
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Numerous antibodies, antibody Fab regions, and other related constructs with bound target peptides or
proteins have been crystalized and deposited into the Protein Data Bank (PDB) (for example (13-16)).
These PDB entries represent a valuable training set that may increase the likelihood that AlphaFold2 can
successfully predict the structure for antibody-epitope complexes (12, 17-19). The authors of AlphaFold2
multimer (12) comment on the difficulty of predicting antibody-epitope complexes, and results for this are
indeed mixed at best (17-19). One way in which this current report is distinct is our focus on linear
epitopes. We hypothesize that the lack of strong competing structure within the short peptide may boost
AF2 prediction of scFv-epitope binding predictions relative to conformational epitopes. This problem has
precedent, as AlphaFold2 has previously been used to study the interactions between proteins and peptides
(17, 18). AlphaFold2’s ability to correctly dock independent protein chains can be repurposed to predict
how strongly two proteins interact together and extends to predicting the interaction between an antibody
and short flexible peptides (linear epitopes) drawn from a larger protein antigen.

To maximize compute efficiency, it is helpful to minimize the size of the system subject to structure
prediction. The computational expense of AlphaFold2 scales with the square of the length of the
concatenated sequences involved. Fortunately, with respect to epitope specificity, antibody constant
domains are less critical than the CDR loops and the remainder of the variable domain framework regions.
Antigen binding by antibodies is primarily dictated by the antigen binding fragment (Fab) containing the
variable light (VL) and variable heavy (V) fragments. Conversion of full antibody sequences into single chain
variable fragments (scFv) can significantly reduce structure prediction complexity and compute time. A
wildtype scFv sequence can easily be generated directly from translated antibody heavy and light chain DNA
sequences. Briefly, the sequences are first divided into framework and complementarity determining
regions (CDRs) using Kabat (20) or IMGT (21) nomenclature. A flexible linker sequence
(GGGGSGGGGSGGGGS, 15 a.a.) is then added between the new C-terminus of the truncated light chain and
the original N-terminus of the shortened heavy chain to generate a single protein sequence that
incorporates both antigen-binding chains. The resulting fusion protein often functions in a similar fashion to
the original antibody. Another well-known protein engineering strategy for antibodies is “loop grafting”,
where the CDR loops from one antibody are grafted onto a different framework region. We have recently
used this approach to develop scFvs with improved in vivo performance (22). The structures of the novel
scFv chimeras can be rapidly and confidently predicted by AlphaFold2 due to their small size and the
extensive immunoglobin representation within sequence databases and the PDB. Excluding the time
needed to obtain a multiple sequence alignment (MSA), predicting the structure for a single scFv in complex
with a 10-a.a. peptide requires only 1.5 minutes on an NVIDIA A5000 graphics processing unit (GPU). This
modest compute time allows a GPU-laden server or workstation to handle large-scale structure prediction
of hundreds of related systems. As for the MSA input, a high quality MSA can quickly be obtained via
ColabFold (23), which relies on the MMseqs2 MSA server. In our workflow, we repeatedly predict the
structure for a fixed single scFv sequence in complex with varying peptide partners. In this case, we do not
expect the peptide portion of the MSA to be useful. Therefore, to avoid sending hundreds of nearly
identical MSA requests to MMseqgs2 MSA server, and to avoid varying information in the MSA, we slightly
modified the LocalColabFold code to include the option to cache the MSA (install available on the GitHub).
We generate one cached MSA per epitope scan, where each residue in the query peptide is a glycine.

Several recent papers have attempted to use AlphaFold2 to identify antibody epitopes (24—26), but have
primarily focused on computational identification and have not verified their results using new antibodies
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that are not within the PDB training set. While there are many other structure prediction models other than
AlphaFold2 (27, 28), including some specifically dedicated to predicting antibodies or antibody-like
structures (29-32), we chose AlphaFold2 to directly test its ability to correctly identify and place epitopes
into an antibody binding cleft. We selected AlphaFold2 due to its widespread use throughout the literature,
as well as its ease of installation and modification via the LocalColabFold implementation (23). Another
reason for selecting AF2 is to attempt to quantify its abilities the compare simple linear epitopes, since the
team behind AF-multimer reported that conformational antibody complexes were difficult to predict
accurately (12). In this project we test a method we call PAbFold, a LocalColabFold-based pipeline to
identify epitopes for several well-known linear-epitope antibodies from sequence information only. There
was a strong correlation between AlphaFold2’s confidence in the peptide structure (pLDDT) (33) and the
experimentally verified epitope binding sequence. Additionally, we found that AlphaFold2 very accurately
predicted the linear epitope of a novel SARS-CoV-2 nucleocapsid-specific antibody (mBG17) with minimal
prior epitope information. The molecular interactions predicted by AlphaFold2 were experimentally
validated using peptide mapping ELISA experiments. Overall, this work demonstrates that AlphaFold2 has
compelling promise for linear antibody epitope discovery from sequence information alone. We also have
observed that this emergent linear epitope prediction ability is sensitive to the peptide length and that the
performance was optimal when using AlphaFold2-multimer version 2 and older MSAs generated by
MMSEQS version 2202 server, rather than the more recent AlphaFold2-multimer version 3 models and
MMSEQS version 2302 server.

Materials and Methods:

Software:

All structure predictions were completed on a single AMD EPYC 7443 server with two NVIDIA RTX A5000
GPU cards. PAbFold code was written in Python 3.7 and Bash. The only extra Python dependencies are
NumPy and Matplotlib. AlphaFold2 calculations were run using an installation of LocalColabFold (23).
Briefly, PAbFold contains 3 stages. In the first stage, a python script
‘A_PeptideMapping_prep_submission_files.py’ writes FASTA input files for ColabFold. Each FASTA file
contains the entire sequence of the subject scFv, a colon “:”, and then the candidate linear epitope which
represents a small section of the target antigen protein that changes dependent upon both the epitope
length (default 10 a.a.) and a sliding window (default 1 a.a.).

After completion of the ColabFold jobs, two different analysis methods are presented in this paper,
and both are accessible via the ‘B_PeptideMapping_plddt_perres_analysis.py’ python script. The first is the
‘Simple Max’ method, which assesses each peptide window with only the output model that is top ranked
by ColabFold (on the basis of ipTM). The AlphaFold2 confidence pLDDT (33) is recorded for each residue
within the peptide. Other than the N- and C-terminal residues, each residue is observed within multiple
windows. We proceed to calculate (and plot) the maximum pLDDT observed for each residue across the set
of sliding window peptides that contain that residue. Thus, in the ‘Simple Max’ method each residue is
considered independently. To obtain aggregate scores for each peptide window, we sum the maximum
pLDDT associated with each member residue. This method is sensitive in that any isolated high-confidence
residue placements in the top ranked AlphaFold2 peptide prediction can increase the score, but a high
aggregate peptide score could arise from multiple, mutually inconsistent peptide binding poses. Our
second, complementary analysis method instead focuses on recognizing full peptide poses of elevated
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AlphaFold2 confidence. We refer to the second method as the ‘Consensus method’ because it begins by
averaging the per-residue pLDDT across the five AlphaFold2 models. We then compute the average pLDDT
for each peptide. For visual inspection, scripts output a heat map for the average per-residue pLDDT and a
bar-chart that for the subsequent per-peptide average pLDDT. In this case, we simply rank top peptides
based on the per-peptide average pLDDT. Scripts are available at https://github.com/jbderoo/PAbFold.

Antibody sequences: Sequences and references for antibodies, scFvs, and antigens can be found in
Supplemental Table 1A. To create an scFv, the complementarity determining regions or loops of an
antibody are identified via the Kabat numbering scheme. The loops are then spliced onto the scFv
backbones of the 15F11 and 2E2 as previously described by our group (22). The scFv sequences are aligned
with their CDR loops and flexible linkers highlighted in Supplemental Table 1B.

Monoclonal Antibody Production:

Anti-SARS-CoV-2 nucleocapsid protein (NP) monoclonal mouse antibody mBG17 was previously developed
and characterized (34). Briefly, two BALB/c mice immunized with recombinant NP were sacrificed and
primary splenocytes isolated. Splenocytes were fused with Sp2/0 Agl4 myeloma cells and individual
hybridoma clones were isolated after eleven days. Hybridoma clones were tested for antibody production
against NP via enzyme-linked immunosorbent assay (ELISA) and western blot. Clones were further tested for
isotype and cross-reactivity, and V4 and V. sequences were determined. The hybridoma clone mBG17 was
identified as a SARS-CoV-2 nucleocapsid-specific antibody targeting linear epitope via ELISA and western
blot (34). Generation of recombinant mBG17 and production of recombinant antibody in 293F cells was
previously described (34). The approximate epitope region for mBG17 was determined via western blot
with modified recombinant NP proteins containing 40 to 50 amino acid deletions. The epitope location was
determined to reside between SARS-CoV-2 nucleocapsid residues a.a. 381-419 based on loss of western blot
signal with the a.a. 381-419 deletion (34).

Peptide Competition ELISA:

The anti-SARS-CoV-2 nucleocapsid protein mBG17 antibody epitope was experimentally identified using
competition enzyme-linked immunosorbent assay (ELISA). Using the previously determined 39 nucleocapsid
protein amino acid range for the mBG17 epitope as a starting point, seven overlapping peptides were
synthesized (Thermo Scientific) spanning the 39 amino acid region with overlaps of 5 amino. These peptides
were termed Fragment 1 through 7 (Table 1). A 96-well ELISA plate was coated with 0.1ug/ml of
recombinant SARS-CoV-2 NP (34) overnight at 4°C. The plate was blocked with 4% (w/v) dry non-fat milk in
1X PBS with 0.1% (v/v) Tween-20 for 1 h shaking at room temperature. While blocking, inhibited
recombinant mBG17 antibody samples were produced by incubating 40 uL of antibody with 40 pg
(approximately 30 nMol) of a single peptide fragment for one hour at room temperature. Following this,
peptide-incubated mBG17 was applied to the blocked nucleocapsid protein coated plate in triplicate and
allowed to incubate for 1 h at room temperature while shaking. The plate was rinsed with 0.1% (v/v) Tween-
20 in 1X PBS and washed three more times for 5 minutes shaking at room temperature. The plate was then
incubated with HRP-conjugated goat anti-mouse polyclonal antibody solution diluted at 1:20,000 in 1X PBS
for 1 h shaking at room temperature. After another rinse and three more washes the plate was developed
with 1-Step™ Ultra TMB-ELISA Solution (ThermoFisher) before stopping the reaction with an equal volume
of 2M H,S0.a. Solution absorbance at 450 nm was measured using a PerkinElmer Victor X5 multilabel plate
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reader. Absorbances were averaged within fragment-inhibited sample groups and corrected with the
average value of the negative control. These absorbances were then normalized against the absorbance
from the group with the highest value before multiplying by 100 to obtain percentage of potential signal.

The effect of single alanine substitutions on fragment 5 (DDFSKQLQQS) peptide binding was
determined by competition ELISA using a series of ten alanine-substituted peptides (Table 1) at a range of
concentrations to determine relative competition activity. A modified version of the previously described
inhibition ELISA was performed using the unmodified Fragment 5 peptide and the ten alanine-substituted
peptides. During the mBG17 inhibition step, the mBG17 antibody solution was incubated with a 4-fold serial
dilution of peptides beginning at 40 pug and continuing to ~2.5 ng before being applied to the NP coated
plates in triplicate. The remainder of the competition ELISA was carried out as described above.

Table 1:

Peptide Name Peptide Sequence

Nucleocapsid a. a. 381-390 (Frag 1) | ALPQRQKKQQ
Nucleocapsid a. a. 386-395 (Frag 2) | QKKQQTVTLL

Nucleocapsid a. a. 391-400 (Frag 3) | TVTLLPAADL

Nucleocapsid a. a. 396-405 (Frag 4) | PAADLDDFSK
Nucleocapsid a. a. 401-410 (Frag 5) | DDFSKQLQQS
Nucleocapsid a. a. 406-415 (Frag 6) | QLQQSMSSAD
Nucleocapsid a. a. 411-419 (Frag 7) | MSSADSTQA

Nucleocapsid D401A ADFSKQLQQS
Nucleocapsid D402A DAFSKQLQQS
Nucleocapsid F403A DDASKQLQQS
Nucleocapsid S404A DDFAKQLQQS
Nucleocapsid K405A DDFSAQLQQS
Nucleocapsid Q406A DDFSKALQQS
Nucleocapsid L407A DDFSKQAQQS
Nucleocapsid Q408A DDFSKQLAQS
Nucleocapsid Q409A DDFSKQLQAS
Nucleocapsid S410A DDFSKQLQQA

Assessment of AlphaFold2 generated scFv structures:

We first verified that AlphaFold2 could generate scFv structures that have similar structures to their parent
monoclonal antibodies. We chose the 9E10 clone of the anti-Myc antibody as an initial test system, as the
scFv sequence is available (35) and has a well-known linear epitope (EQKLISEEDL)(36). We predicted the
wild-type Myc scFv structure and aligned this model to the corresponding Fab crystal structure (PDB entry
2orb) via the align command in PyMOL (Supplemental Figure 1A). The AlphaFold2 predicted scFv was very
similar (RMSD value of 0.42A) to the anti-Myc Fab structure, suggesting that the predicted scFv structure
was a suitable starting point for epitope prediction. We also examined the structures of the Myc CDRs loop
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grafted onto the 15F11 (37) and 2E2 (22) frameworks, as we have previously observed that loop grafting
onto these frameworks can enhance protein folding and solubility (22). The loop-grafted Myc-2E2 and Myc-
15F11 and structures were also similar to the Myc Fab structure (PDB 20RB) (36) with similar RMSD values
of 0.45A (Supplemental Figure 1B), indicating that they are also reasonable starting points for epitope
prediction.

Results:

Development of Python-based scripts for automated scFv:peptide structure prediction. We developed a
series of Python scripts that automate the process of epitope prediction and analysis with AF2.
A_Peptide_Mapping_prep_submission_files.py accepts a linear scFv sequence and a linear full-length
antigen sequence, and processes the antigen sequence into a series of short peptides with custom peptide
length and sliding window sizes (default parameters are 10 amino acid peptides with a 1 amino acid sliding
window). It then adds lines for each scFv:peptide pair to a FASTA file. Structures are then predicted via
LocalColabFold for each scFv:peptide pair with AlphaFold2 in parallel on two NVIDIA RTX A5000 GPUs. The
python script B_PeptideMapping_plddt_perres_analysis.py parses the AlphaFold2 output structures to
extract per-residue pLDDT for the peptide residues in each scFv:peptide pair. Conf_plot_and_top10.py will
plot the maximum pLDDT (across all host peptides) scores as a function of amino acid position within the
antigen sequence and ranks predicted peptides based on XpLDDT scores for the ‘Simple max’ method. To
use the ‘Consensus’ method, include the —all-models flag when running
B_PeptideMapping_plddt_perres_analysis.py. We also supply a python script that replicates how we
present the data called all_model_analysis.py for use.

An overview of the method is shown in Figure 1. AF2’s failure to predict whole antigen structure
coupled with the scFv is highlighted in Supplemental Figure 2. Both the ‘Simple Max’ and ‘Consensus’
methods were calculated first by parsing every pLDDT score received by every residue in the antigen
sequence sliding window output structures. From the resulting data structure, the Simple Max method
simply finds the maximum pLDDT value ever seen for a single residue (across all sliding windows and AF2
models). For the Consensus method, per-residue pLDDT was first averaged across the 5 AF2 models. These
averages are reported in the heatmap view and further averaged per sliding window for the bar chart
below. In principle, the strategy behind the Consensus method is to take into account agreement across the
5 AF2 models and provide insight into the confidence of entire epitopes (whole sliding windows of n=10
default) instead of disconnected, per-residue pLDDT maxima. Having two scoring metrics is useful because
the selection of predicted hits can differ. As shown in Figure 2, part of the Myc epitope makes it into the top
5 peptides when selection is based on summing per-residue maximum pLDDT (despite there being no
requirement that these values originate in the same physical prediction). In contrast, a Consensus method
score more directly reports on a specific sliding window, and the strength of the highest confidence
peptides is more directly revealed with superior signal to noise as shown in Figure 3. Variability in the
ranking of top hits between the two methods arises from the fundamental difference in strategy (peptide-
centric or residue-centric scoring) as well as close competition between the raw AF2 confidence in the
known peptide and competing decoy sequences.
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Figure 1. PAbFold pipeline for linear epitope prediction. A) Antibody Vy and V| protein sequences are used to generate scFv
sequences, either based on the native antibody sequences or loop grafting complementarity determining regions (CDRs) onto
either the 2E2 or 15F11 antibody framework regions (2E2 shown). B) The target antigen sequence is parsed into a list of small
overlapping peptide sequences, with peptide step and window size parameters adjusted as needed. Rank ordered peptides are
output, and partial epitope sequences are underlined manually to highlight the identification of the correct sequence. C) The scFv
sequences from Panel A are co-folded with each of the peptide sequences derived from the target antigen in parallel batch mode
on a GPU server. pLDDT scores from each structure prediction experiment are collected and scores are presented in their sliding
window, both as a heat map organized along the length of the target antigen sequence and a bar chart that shows the per-
peptide average pLDDT (Consensus Method). Additionally, the Simple Max data is presented in the third and final panel.

Testing of scFv:peptide structure prediction method using the Myc Epitope. We first tested the PAbFold
method with the anti-Myc-scFv described in (38), using the full-length human Myc proto-oncogene protein
sequence as the antigen. We initially used an antigen peptide length of 10 and a 1 amino acid sliding
window. Given these parameters, the 9 a.a. Myc epitope motif (EQKLISEEDL) appeared intact within one of
the 10-mer peptides, with subsets of the 8, 9, 11, and 12 a.a. appearing in neighboring sliding peptide
windows. PAbFold generated predicted structures, each of which took an average of ~200 seconds to
process. The entire process took approximately 12 hours on our GPU server. AlphaFold2 placed all peptides
into or near the traditional antigen binding site between the CDR loops (Supplemental Figure 3). The
average confidence (mean pLDDT across residues) for these peptides ranged from 20 to 90. When we
inspect the consensus confidence for each residue in each sliding window (Figure 2A), the expected Myc
peptide epitope (EQKLISEEDL) was one of several peptides with high average pLDDT. The second highest
ranked peptide in this analysis (QKLISEEDLL) was a near perfect match for the expected epitope. We
consider this window to be a successful prediction. Perhaps surprisingly, the peptide window with the exact
match (EQKLISEEDL) did not score particularly well due to its average pLDDT of 51.0. In this instance, the
expected epitope sequence did not stand out when plotting the maximum observed per-residue pLDDT for
each residue (Figure 2A, bottom).

We proceeded to test predictions with two engineered scFv chimeras where loop grafting was used
to place the Myc recognition CDRs onto two antibody framework regions with high in vivo performance,
generating Myc-15F11 and Myc-2E2 scFv sequences. Epitope prediction performance was markedly
improved with the chimeric scFvs (Figure 2B and 2C). Specifically, the QKLISEEDLL peptide window became
the top ranked peptide on the basis of average consensus pLDDT. In the case of Myc-2E2 (Figure 2C), the
average confidence for the correctly predicted epitope was particularly high compared to alternate peptide
windows, and another close match to the expected epitope (EEQKLISEED) was ranked within the top 5
peptides (Figure 2D). Ranking epitopes using the Simple Max analysis was similar; the region containing the
correct epitope was nearly top ranked for Myc-15F11 and was top ranked for Myc-2E2 (Figure 2E). Thus,
AlphaFold2 was able to more clearly detect authentic Myc antibody epitope using CDRs loop grafted onto
the 2E2 or 15F11 frameworks, relative to the native Myc scFv framework.

To investigate the superior epitope recognition performance of the chimeric Myc scFvs, we aligned
the Ca coordinates for the predicted scFv structures (predicted with and without the target epitope) to the
reference crystal structure and calculated the RMSD for all backbone positions (N, Ca, C, O) and the loops
(Supplemental Figure 4). Notably, regardless of the Myc scFv variant, the CDR loop RMSD improved by
more than 1A when the epitope was present. Secondly, consistent with the improved epitope prediction
performance for the chimeric scFvs (15F11 and 2E2), the epitope peptide QKLISEEDL was placed more
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accurately for those predicted structures than in the WT scFv (Supplemental Figure 4). We could not
discern an obvious structural difference between the WT and chimeric scFvs that explains the structure

prediction performance gap.
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Figure 2. The Alphafold2-based PAbFold method predicted the Myc linear epitope in different scFv backbones. The anti-Myc Vy
and V, antibody sequences were used to generate either A) wild-type Myc scFv or loop grafted chimeric B) Myc-15F11 or C) Myc-
2E2 scFv variants. The Myc proto-oncogene protein sequence (Genbank NP_001341799.1) was used as the target antigen and
processed into 10 amino acid overlapping peptides with a 1 amino acid sliding window. The structure for each scFv:peptide pair
was predicted with AlphaFold2 in batch mode on two NVIDIA A5000 GPUs. Average consensus pLDDT values for each
scFv:peptide window are illustrated, as well as the maximum pLDDT observed for each residue in any window (bottom). D) Top
ranking binding peptides based on average consensus pLDDT. E) Top ranked binding peptides based on summing per-residue
maximum pLDDT. For D and E, underlining represents overlap with the reported Myc epitope (EQKLISEEDL).
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Assessment of peptide length, sliding window size, and position on AlphaFold2 scFv:peptide structure
prediction. Our initial selection of the 10 a.a. window was intended to match or slightly exceed the size of
known epitopes such as Myc and HA. We next assessed how different peptide sizes and sliding window
lengths would affect epitope prediction accuracy and run time. We re-ran the Myc-2E2-scFv:peptide
complex prediction calculations varying peptide size between 8, 9, 10, and 11 (with a fixed sliding window
size of 2) or varying the sliding window size to 1 or 5 (with a fixed peptide size of 10). We observed that
using a sliding window of 2 a.a. provided nearly the same level of accuracy and resolution as the 1 a.a.
Ultimately, we determined that our original peptide size of 10 amino acids and sliding window of 1 a.a.
provided highest resolution data possible (Supplemental Figure 5) and therefore maintained a peptide size
of 10 and a sliding window length of 1 for our remaining experiments.

We then predicted the complex structure for Myc-2E2 with various negative control peptides: A1, (GS)s,
(GGGGS),, and Gip to determine how non-binding peptides are docked and scored (Supplemental Figure 5l
and 5J). We again observed that AlphaFold2 placed all peptides into the traditional antigen binding
between the CDR loops, but the reported peptide scores for the negative controls were particularly low (29
—41). These results indicate that AlphaFold2 “knows” where antigens bind in antibody or scFv structures
and attempts to model any peptide partner into this region, but the low pLDDT scores indicate confidence
in the interactions are quite low.
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We also tested if AlphaFold2 could detect the Myc epitope if it was inserted as an epitope tag within
different positions of a heterologous protein. We created a synthetic antigen by adding the Myc epitope
within the 99-a.a. unrelated HIV-1 Gag protease protein sequence at either the N- or C-terminus or in the
middle of the protein sequence, and used PAbFold to detect the Myc peptide (Supplemental Figure 6). In
each case, the average consensus pLDDT was highest for the inserted epitope, such that the authentic
epitope would be top ranked and prioritized for testing. Thus, as expected for a sliding window analysis, the
epitope position within the antigen was no barrier to detection.

Testing of the PAbFold method using the HA Epitope. Based on our success detecting the Myc epitope, we
sought to determine if our method could detect a different well-known linear peptide, HA, derived from
positions 114-126 within the Influenza A virus hemagglutinin protein (YDVPDYASLR). Using an anti-HA scFv
sequence that had been previously generated (22, 38), we generated new HA-15F11 and HA-2E2 scFvs loop
grafted sequences. We used the same procedure described above to predict structures for influenza A virus
HA derived peptides on HA-scFv (Supplemental Figure 7A), HA-15F11-scFv (Supplemental Figure 7B) and
HA-2E2-scFv (Supplemental Figure 7C). In the HA case, the expected epitope was ranked highly for all three
scFv variants, but when assessing entire peptides by average consensus pLDDT was only ranked in the top 5
for the HA-15F11-scFv. These results, in combination with the Myc results described above, indicate that
AlphaFold2 can accurately detect linear antibody epitopes in antigen sequences, and that grafting CDR
loops onto alternative scFv backbones may increase the noise-to-signal ratio, making the identification of
correct epitopes more accurate.

Like the Myc system, trends are observed with the HA system regarding loop placement. Although
not as extreme, the loops for all HA scFvs undergo movement that make it more closely match the crystal
structure (PDB entry 1frg). Again, the epitope placement of predicted structures of the chimeric scFvs more
closely mimicked the deposited crystal structure than the WT scFv (Supplemental Figure 4B).

Determination and experimental validation of a novel linear antibody epitope. The Myc and HA monoclonal
antibodies are well known and several crystal structures (Myc PDB: 20r9, peptide bound (2009) | HA
PDB:1frg, peptide bound (1994)) have been solved (22, 36, 38, 39), raising the possibility that AlphaFold2
has incorporated these antibody or epitope structures into its training set. The AlphaFold2 training set was
reported to exclude chains of less than 10, which would eliminate the myc and HA epitope peptides.
Nonetheless, to guard against the possibility that the AlphaFold2 models have incorporated specific
knowledge into the training set thereby directly probing if PAbFold epitope scanning can predict a linear
antibody epitope without a priori knowledge of the antibody or antigen sequence, we tested if PAbFold can
predict the epitope sequence of a recently developed antibody lacking structural information available in
the Protein Data Bank. The mBG17 mouse monoclonal antibody was generated in response to the COVID-19
pandemic, the antibody Vu and V. sequences were determined, and the epitope was localized to a. a. 381-
419 via Western blot analysis of deletion mutants of the nucleocapsid protein (34). mBG17 was not
included in AlphaFold2’s training or test set, making it an ideal test case for de novo epitope prediction.

The mBG17 monoclonal antibody was converted to wild-type scFv, 15F11-scFv, and 2E2-scFv using the same
procedures used for Myc and HA scFv. As an additional control calculation (labeled “3-body"), we used
AlphaFold2 to predict the structure for a 3-protein complex (the peptide, and the disconnected
nontruncated mBG17 Vyand Vi variable domain sequences). All 4 Fab variants (WT scFv mBG17, 15F11-
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mMBG17 scFv, 2E2-mBG17 scFv, and 3-body mBG17) were screened against all 10 a.a. peptides with a 1 a.a.
sliding window, as with Myc and HA. In all 4 cases, AlphaFold2 predicted that the top ranked peptides were
located in the a.a. 381-419 region of the SARS-CoV-2 nucleocapsid protein, and more specifically residues
a.a. 400-415 (Figure 3A, 3B, 3C, and 3D). The top scoring peptide for all three scFv variants was the 402-
411 window (DFSKQLQQSM) (Figure 3E and 3F). The strong AF2 preference for peptides from this C-
terminal segment was particularly evident in the average consensus pLDDT analysis.

We next sought to experimentally verify the minimal linear epitope for mBG17 to determine how closely
the AlphaFold2 prediction corresponded to our experimental data. Seven 10 a.a. peptides that overlapped
by 5 a.a. each were synthesized and used in competition ELISAs with mBG17 monoclonal antibody and
recombinant SARS-CoV-2 nucleocapsid protein (Figure 3G and 3H). The peptide corresponding to a.a. 401-
410 showed almost complete competition of mBG17 binding to the SARS-CoV-2 nucleocapsid protein in the
ELISA, whereas none of the other peptides were able to compete for mBG17 binding to nucleocapsid.
Peptides a.a. 296-405 and a.a. 406-415 overlap a.a. 401-410 at the N- and C-terminus, respectively, but
neither was able to compete, indicating that mBG17 binds a.a. 401-410 on both sides of a.a. 405 and a.a.
406. An alignment of all the peptides used in the overlapping peptide competition ELISA experiments
showed that peptide sequence DDFSKQLQQS represents the experimentally determined epitope for
mBG17, nearly identical to the epitope predicted by AlphaFold2 (Figure 3H: DDFSKQLQQS). These results
demonstrate that the PAbFold pipeline was able to very accurately predict the region that an antibody binds
to a novel linear epitope that is not present in AlphaFold2’s training set.
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Figure 3: The AlphaFold2-driven PAbFold epitope scan method can accurately identify a linear epitope for a novel SARS-CoV-2
antibody. Antibody VH and VL sequences for SARS-CoV-2 nucleocapsid protein targeted antibody were used to generate scFv
sequences A) WT, B) 15F11, C) 2E2 or native VH and VL sequences D) 3 body). Variant scFv sequence in complex with peptide
windows from the SARS-CoV-2 nucleocapsid protein (Genbank Accession: YP_009724397) were subjected to AlphaFold2 structure
prediction. The top 5 peptides ranked by either the E) Consensus method or the F) Simple Max method, with the underlined
sequence highlighting the experimentally verified sequences and a cartoon schematic for each system shown. G) Competition
ELISA schematic for assessing the ability of synthetic peptides derived from the SARS-CoV-2 nucleocapsid protein. H) Amino acid
windows showing binding interference, with mBG17 binding to SARS-CoV-2 nucleocapsid protein (n = 3). Percentage of binding
values were calculated from the no-peptide control. Alignment of synthetic peptides corresponding to SARS-CoV-2 nucleocapsid
a. a. 381-419. Peptide a. a. 401-410, which demonstrated mBG17 competition.
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Fine-characterization of the mBG17 epitope and comparison to the predicted AlphaFold2 model. To further
experimentally characterize the binding of the mBG17 to the a.a. 401-410 (DDFSKQLQQS) peptide and
compare experimental data with the predicted AlphaFold2 model, we designed and synthesized ten
additional peptides, each containing an alanine point mutation at one position in the a.a. 401-410 peptide.
The peptides are labeled D1A, D2A, F3A, S4A, K5A, Q6A, L7A, Q8A, Q9A, and S10A. Competition ELISAs
were performed using increasing concentrations of each peptide to better assess differential binding (Figure
4A). As expected, WT (a.a. 401-410) peptide showed strong competition, although Q9A showed slightly
better competition. This could be attributed to alanine’s propensity to be in an alpha-helical coil (Propa, ac
= 0) vs glutamine’s propensity to escape it (Propq, anc = 0.39) (40), thus further stabilizing the Q9A alpha
helix. D1A showed no change in competition, indicating that D1 was not involved in binding. Peptides with
substitutions K5A, Q6A, and S10A showed minor reductions in competition, S4A showed a moderate
reduction on competition, whereas resides D2A, F3A, L7A, and Q8A all showed strong reductions in
competition. These data indicate that the key interactions between mBG17 and the a.a. 401-410 peptide
are residues D2, F3, L7, and Q8, with S4 playing a moderate role and D1, K5, Q6, Q9 and S10 playing
negligible roles in binding.

Finally, we compared the experimental data shown above with the best scoring mBG17:DDFSKQLQQ model
generated by AlphaFold2 (Figure 4B and 4C). The AlphaFold2 model suggests that residue D2 forms a
hydrogen bond with mBG17 a.a. Y34, residue F3 forms a hydrophobic interaction with mBG17 a.a. L185,
residue S4 lacks a hydrogen bond partner, residue L7 forms a hydrophobic interaction at the base of the
binding cleft with mBG17 a.a. A104, and residue Q8 hydrogen bonds with the backbone carbonyl of Y34 and
the backbone amide of W35. Residues that experimentally showed no or minimal effects on competition
(D1, K5, Q6, Q9) are all predicted to interact primarily with the solvent and lacked visible interactions
between the peptide and scFv sequence. In summary, the AlphaFold2-driven PAbFold prediction was
remarkably consistent with the experimental alanine scanning data, suggesting that the prediction of the
mBG17 linear epitope location was accurate due to the correct prediction of the structural details for how
that linear epitope binds to the antibody.
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Figure 4. The Alphafold2-Driven PAbFold method accurately predicts molecular interactions between a linear epitope and a
scFv A) Competition ELISA assessing the ability of synthetic alanine mutant peptides derived from the SARS-CoV-2 nucleocapsid
protein (a. a. 401-410: DDFSKQLQQS) to interfere with mBG17 binding to SARS-CoV-2 nucleocapsid protein (n = 3). Percentage of
binding values were calculated from the no-peptide control. B) AlphaFold2 model for mBG17-15F11 scFv bound to a. a. 401-410
peptide (the average peptide pLDDT was 83.5). Residues that display sharply reduced binding to mBG17 upon mutation to
alanine in competition ELISAs (D2, F3, S4, L7, Q8) are shown as warm-colored thick sticks. Predicted hydrogen bonds between the
peptide and the scFv are depicted by yellow bars. Sites where mutation to alanine was less disruptive to binding (Q6A, K5A, S10A,
D1A, and Q9A) are depicted as thin sticks with cool colors. The carbon atoms of residues in panel B are colored according to the
corresponding data in panel A. C) The same AlphaFold2 model for the mBG17-15F11 scFv bound to a.a. 401-410 colored with
confidence (pLDDT) as predicted by AF2.
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Discussion

In this project we assessed the ability of an AlphaFold2-based linear epitope scan pipeline we call PAbFold
(Peptide:Antibody Fold) to predict linear antibody epitopes using just antibody and antigen sequences. We
first assessed the quality of scFv models produced by AlphaFold2. We then developed a series of Python
scripts that accept scFv and whole antigen protein sequences as inputs, parse the antigen protein
sequences into short overlapping peptides, run batch predictions for each scFv:peptide pair, and output two
peptide scoring schemes based on the peptide per-residue pLDDT scores as a metric for AlphaFold2 model
confidence.

Binding of the expected epitope to the WT-Myc scFv could only be detected via the consensus method, but
either analysis method could readily detect the expected epitope bound to the chimeric Myc scFvs.
Conversely, the alternate analysis method (Simple Max) performed better with respect to ranking the
expected HA epitope binding to the WT and chimeric anti-HA scFv variants. In the HA case, performance
was comparable for both the WT and chimeric scFv variants.

It is important to note that binding of scFv variants to sequences other than the expected epitopes
may be statistically unlikely but not impossible. For example, consider the peptide ATMPLNVSFT near the N-
terminus of the Myc proto-oncogene protein sequence. In the context of the WT anti-Myc scFv this peptide
had slightly higher average consensus pLDDT (52.4 rather than 51.0) than a peptide (QKLISEEDLL) that
closely matched the expected epitope. In the absence of direct experimental evidence, predicted affinity for
this unexpected sequence is not necessarily incorrect, though the lack of comparable predicted binding to
the 15F11 and 2E2 chimeric scFv variants further decreases the likelihood. In the future, it might be useful
to assess peptide binding via consensus across scFv variants.

Lastly, we tested this process on a novel antibody generated by our group targeting the SARS-CoV-2
nucleocapsid protein (mBG17) and found the method performed significantly better than with Myc and HA.
Either analysis method could very easily flag peptide windows containing the authentic experimentally
validated epitope. This worked for the WT scFv, the chimeric scFv variants, and even a structure with
disconnected heavy and light chain domains. Experimentally, we cleanly validated the AlphaFold2 prediction
using a peptide competition ELISA assay to experimentally determine the mBG17 epitope. Confidence in the
AlphaFold2 prediction was further buoyed via alanine scanning peptide competition ELISAs that verified the
importance of the key binding interactions predicted by AlphaFold2.

Identification of antibody V4 and V. sequences from monoclonal B-cells has become a routine task,
with sequence information obtainable via various sequencing technologies such as next generation
sequencing and nanopore sequencing for a relatively low cost. As a result, the determination of the epitope
in service of a deeper understanding of how antibodies bind their antigen is an increasingly notable
bottleneck. An experimental epitope determination campaign can take weeks or months of work, but with
the advent of AlphaFold2 and the epitope prediction method we describe here, an antibody and its antigen
could be sequenced in a few days (often through contract research organizations for low cost) and accurate
linear epitope predictions generated within less than a day, dramatically epitope validation throughput as
well as providing detailed predictions for the molecular features of antibody-epitope interaction.
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Conformational epitopes are structured antigens that are found during many immune responses,
and prediction of these epitopes from antibody and antigen sequences would be a significant boon to the
field of biology. For example, conformational epitope prediction coupled with single-cell B-cell sequencing
would allow for detailed analysis of antibody maturation during immune responses to vaccines or pathogen
infection, helping better define how the immune response to infection evolves over time and how evolution
of antigen sequences affects the antibody response. In this work we did not focus on using AlphaFold2 to
predict conformational epitopes primarily because of the complex structures that conformational epitopes
possess. Literature reports suggest that prediction of the complexes between antibodies and both whole
antigens and conformational epitope proteins has proven to be very difficult for AlphaFold2, and indeed the
authors themselves make this observation (12, 41, 42). Notably, the structures that proved most difficult to
predict for AF2 and other tools in the CASP15-CAPRI154 challenges were antibody-antigen complexes (43).
Reports suggest that a mix of both statistics-based approaches (neural networks like AF2) and physics-based
approaches (such as Rosetta) predict optimal antibody-antigen complexes (44). Indeed, if we attempt to
predict binding of our scFvs to intact antigen proteins (Supplemental Figure 2), we find no predictive
capability. When predicting scFv:peptide complexes, it may be the case that AlphaFold2 is able to
thoroughly evaluate an induced fit for the peptide due to both its length (small sample space) and its
propensity to not adopt a strong competing structure. In contrast, embedding the epitope within a larger
and more complicated structure appears to degrade the ability of AlphaFold2 to sample a comparable
bound structure within the allotted recycle steps. Additional complexities may arise in extreme induced
conformational changes during docking. Recent reports indicate that progress is being made in predicting
the binding locations of conformational epitopes (45, 46).

We observed that the ability of AlphaFold2 to successfully predict the epitope peptide binding is
quite delicate. First, epitope prediction was highly sensitive to the peptide length (Supplemental Figure 5),
with minimal predictive power for peptide length other than 10 a.a. Further investigation of this sensitivity
would be a useful avenue for future research. Perhaps with enhanced sampling, epitopes can be detected
within longer peptides (e.g. 11 a.a., 12 a.a., etc.). Methodological tuning of this type could ultimately help
illuminate the path to increasingly difficult protein-protein binding prediction problems. Similarly, we have
likewise determined that epitope scanning performance was sensitive to changes in the underlying
AlphaFold2 neural networks and the MSA. Specifically, unless otherwise noted, all data in this report was
obtained using ColabFold version 1.5.2 and the 5 neural networks that comprise AlphaFold2 multimer
version 2 (mm?2). Likewise, the MSAs we use were obtained from the MMSEQS server (and cached) when
the default sequence databases were UniRef30 2202 and PDB70 220313. They have since been updated to
PDB30 2302 and PDB100 230517. For a complete description, see the change logs on the github for
ColabFold (https://github.com/sokrypton/ColabFold#colabfold---v152).

Insofar as protein-peptide prediction is an emergent “off-label” capability for AlphaFold2 that is not
part of the training sets, further training of the models or other changes can degrade performance.
Benchmarking performance can be difficult when there are multiple moving targets. The most recent
calculations we have analyzed were using ColabFold version 1.5.2 which was current as of February 19,
2023. The changes from ColabFold 1.5.2 to 1.5.5 (current as of this writing) are limited to version control
and ensuring ColabFold still works on Google Colab and therefore will not change the calculation
performance. Relative to ColabFold 1.3 (the current method at the outset of this project), ColabFold 1.5.2
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embodied two substantial changes. First, ColabFold 1.5.2 used the updated AlphaFold multimer (mm)
version 3 by default. Second, the backend server MMSEQS ((47) and
(https://github.com/soedinglab/MMseqgs2 )) that supplies MSAs also underwent updates, namely the
database updates. Upon evaluation, we found that the recent default methods (ColabFold 1.5.2) still
predicted the epitope successfully for the mBG17 system (Supplemental Figure 8). However, the ColabFold
1.5.2 default methods had a pronounced decline in PAbFold performance for the HA and Myc systems.
Specifically, the combination of mm3 and the revamped ColabFold MSA server tended to be less
discriminating compared to the default settings for ColabFold 1.3 (ColabFold 1.3 was the most up to date
version when this project was initialized). The updated configuration flagged diverse peptide sequences
with elevated pLDDT values (Supplemental Figures 9 and 10) resulting in the loss of successful epitope
predictive power. While testing ColabFold 1.5.2 with the most recent MSA server, but reverting the
AlphaFold2 models to mm2, the outcome improved, with experimentally validated sequences rising to the
top more frequently than when using mm3 but still falling short in ranking the experimentally validated
epitope sequence embedded within the antigen. However, when previously cached MSAs were paired with
mm?2 (using ColabFold 1.5.2), performance was maximized. Furthermore, we attempted to recreate the
MSA databases locally with similar but not identical results to queueing the server with databases UniRef30
2202 and PDB70 220313 (Supplemental Figure 11). Additionally, the MMSEQS team ((47) and
(https://github.com/soedinglab/MMseqs2 )) graciously rebuilt a server we could query using LocalColabFold
that mimicked the original UniRef30 2202 and PDB70 220313 database set up as closely as possible on their
end. The MSA that was generated from these databases was used, and still did not perform as well as the
original MSAs that were generated upon first retrieval and generation (Supplemental Figure 12). As a
negative control, we repeated all calculations without using any MSAs and only relying upon the sequence
to make a structural prediction. As expected, all epitopes were scored very poorly (Supplemental Figure
13). Despite our significant efforts, it is unclear why our initial results cannot be perfectly recapitulated, but
the difference has been traced to detailed MSA contents (Supplemental Figure 14), resulting in differences
in correct epitope identification. These results are summarized in (Supplemental Figure 15). These
challenges are presumably compounded by the incredible diversity of the CDR loops in antibodies which
could decrease the useful signal from the MSA as well as drive inconsistent MSA-dependent performance

One key lesson of this research effort is that caching the MSAs proved to be very useful as a method to
guard against changes in the performance of 3™ party tools. We recommend that future methods
development work using LocalColabFold adopt the strategy of caching MSAs when feasible. It is also our
hope that by describing the latent ability of AlphaFold2 to predict scFv-binding epitopes that this ability will
be preserved and enhanced in future iterations.
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Supplemental Table 1A

>mBG17 scFv
MAEVKLEESGGGLVQPGGSMKFSCVASGFTFSDYWMNWVRQSPDKGLEWVAEIRLKSNNYATHYAASVKGRFTISRDDSK
SSVYLQMNNLRAEDSGIYYCTRSAMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVMSQSPSSLAVSVGEKITMSCKSS
QSLLYTSDQKNYLAWFQQKPGQSPKLLIFWASTRDSGVPDRFTGSGSGTDFTLTISSVKAEDLAVYYCQQFYNYPRTFGGGT
KLEI

>mBG17-15F11
MAEVKLVESGGGLVKPGGSLKLSCAASGFTFSDYWMNWVRQTPEKRLEWVAEIRLKSNNYATHYAASVKGRFTISRDNAK
NTLYLQMSSLRSEDTAIYYCARSAMDYWGQGTTLTVSSGGGGSGGGGSGGGGSDIVLTQSPASLTVSLGQRATISCKSSQSLL
YTSDOQKNYLAWYQQKPGQPPKLLIYWASTRDSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQFYNYPRTFGAGTKLEI

>mBG17-2E2
MAEVQLVESGGDLVKPGGSLKLSCAASGFTFSDYWMNWVRQTPDKRLEWVAEIRLKSNNYATHYAASVKGRFTISRDNAK
NTLYLQMSSLKSEDTAMYYCARSAMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLAVSLGQRATISCKSSQS
LLYTSDQKNYLAWYQQKPGQPPKLLIYWASTRDSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQFYNYPRTFGGGTKLE
|

>mBG17 Fab VH:VL
MYLGLNCVFIVFLLKGVQSEVKLEESGGGLVQPGGSMKFSCVASGFTFSDYWMNWVRQSPDKGLEWVAEIRLKSNNYATH
YAASVKGRFTISRDDSKSSVYLOMNNLRAEDSGIYYCTRSAMDYWGQGTSVTVSS:MDSQAQVLMLLLLWVSGTCGDIVM
SQSPSSLAVSVGEKITMSCKSSQSLLYTSDOQKNYLAWFQQKPGQSPKLLIFWASTRDSGVPDRFTGSGS

>mBG17 epitope
DDFSKQLQQS

>mBG17 target protein sequence — SARS CoV-2 Nucleocapsid protein
MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTASWFTALTQHGKEDLKFPRGQGVPINTNSS
PDDQIGYYRRATRRIRGGDGKMKDLSPRWYFYYLGTGPEAGLPYGANKDGIIWVATEGALNTPKDHIGTRNPANNAAIVLQ
LPQGTTLPKGFYAEGSRGGSQASSRSSSRSRNSSRNSTPGSSRGTSPARMAGNGGDAALALLLLDRLNQLESKMSGKGQQ
QQAQGQATVTKKSAAEASKKPROQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRI
GMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKADETQALPQRQKKQQTVTLLPAADLDD
FSKQLQQSMSSADSTQA

>HA scFv
MAEVKLVESGGDLVKPGGSLKLSCAASGFTFSSYGMSWVRQTPDKRLEWVATISRGGSYTYYPDSVKGRFTISRDNAKNTLY
LOMSSLKSEDTAMYYCARRETYDEKGFAYWGQGTTVTVSSGGGGSGGGGSGGGGSDIELTQSPSSLTVTAGEKVTMSCKSS
QSLLNSGNQKNYLTWYQQKPGQPPKLLIYWASTRESGVPDRFTGSGSGRDFTLTISSVQAEDLAVYYCONDNSHPLTFGAG
TKLEL

>HA-15F11
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MEVKLVESGGGLVKPGGSLKLSCAASGFTFSSYGMSWVRQTPEKRLEWVATISRGGSYTYYPDSVKGRFTISRDNAKNTLYL
QMSSLRSEDTAIYYCARRETYDEKGFAYWGQGTTLTVSSGGGGSGGGGSGGGGSDIVLTQSPASLTVSLGQRATISCKSSQSL
LNSGNQKNYLTWYQQKPGQPPKLLIYWASTRESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQNDNSHPLTFGAGTKLEI

>HA-2E2
MAEVQLVESGGDLVKPGGSLKLSCAASGFTFSSYGMSWVRQTPDKRLEWVATISRGGSYTYYPDSVKGRFTISRDNAKNTLY
LQMSSLKSEDTAMYYCARRETYDEKGFAYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLAVSLGQRATISCKSS
QSLLNSGNQKNYLTWYQQKPGQPPKLLIYWASTRESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCOQNDNSHPLTFGGGT
KLEI

>HA target protein sequence — influenza hemmaglutanin A
MKTIIALSYILCLVSAQKLPGSENRTATLCLGHHAVQNGTLVKTITNDQIEVTNATELVQSSSTGRICDNPHRVLDGRDCTLIDA
LLGDPHCDSFQNKEWDLFIERSKAYSNCYPYDVPDYASLRSLVASSGTLEFTTEGFDWTGVTQNGTSYSCKRGSANSFFSRLN
WLHKLNYKYPAQNVTMPNDDKFDKLYIWGVHHPSTDNDQTSLYVQTSGRVTVSTKRSQQTVVPDIGSRPWVRGISSRISIH
WTIVKPGDILLINSTGNLIAPRGYFKIRNGKSSIMKSDALIGNCNSECITPNGSIPNDKPFQNVNRITYGDCPRYVKQSTLKLAT
GMRNVPEKQTRGIFGAIAGFIENGWEGMVDGWYGFRHRNSEGTGQAADLKSTQAAIDQINGKLNRLIKKTNEKFHQIEKE
FSEVEGRIQDLEKYVEDTKVDLWSYNAELLVALENQHTIDLTDSEMNKLFERTRKQLRENAEDMGNGCFKIYHRCDNACIGS
IRNGTYNHNVYRDEALNNRFKIKGVELKSGYKDWILWISFAISCFLLCVGLMGLIMWTCQKGNIRCIRCNICH

>HA epitope
YPYDVPDYA

>Myc scFv
MEVKLVESGGDLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPDKRLEWVATIGSRGTYTHYPDSVKGRFTISRDNDKNALY
LOMNSLKSEDTAMYYCARRSEFYYYGNTYYYSAMDYWGQGASVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLAVSLGQ
RATISCRASESVDNYGFSFMNWFQQKPGQPPKLLIYAISNRGSGVPARFSGSGSGTDFSLNIHPVEEDDPAMYFCQQTKEVP
WTFGGGTKLEI

>Myc-15F11
MEVKLVESGGGLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPEKRLEWVATIGSRGTYTHYPDSVKGRFTISRDNAKNTLYL
QMSSLRSEDTAIYYCARRSEFYYYGNTYYYSAMDYWGQGTTLTVSSGGGGSGGGGSGGGGSDIVLTQSPASLTVSLGQRATI
SCRASESVDNYGFSFMNWYQQKPGQPPKLLIYAISNRGSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQTKEVPWTFG
AGTKLEI

>Myc-2E2
MAEVQLVESGGDLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPDKRLEWVATIGSRGTYTHYPDSVKGRFTISRDNAKNTL
YLQMSSLKSEDTAMYYCARRSEFYYYGNTYYYSAMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLAVSLGQ
RATISCRASESVDNYGFSFMNWYQQKPGQPPKLLIYAISNRGSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQTKEVP
WTFGGGTKLEI

>Myc target protein sequence

MDFFRVVENQPPATMPLNVSFTNRNYDLDYDSVQPYFYCDEEENFYQQQQQSELQPPAPSEDIWKKFELLPTPPLSPSRRS
GLCSPSYVAVTPFSLRGDNDGGGGSFSTADQLEMVTELLGGDMVNQSFICDPDDETFIKNIIIQDCMWSGFSAAAKLVSEKL
ASYQAARKDSGSPNPARGHSVCSTSSLYLQDLSAAASECIDPSVVFPYPLNDSSSPKSCASQDSSAFSPSSDSLLSSTESSPQGS
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PEPLVLHEETPPTTSSDSEEEQEDEEEIDVVSVEKRQAPGKRSESGSPSAGGHSKPPHSPLVLKRCHVSTHQHNYAAPPSTRK
DYPAAKRVKLDSVRVLRQISNNRKCTSPRSSDTEENVKRRTHNVLERQRRNELKRSFFALRDQIPELENNEKAPKVVILKKATA
YILSVQAEEQKLISEEDLLRKRREQLKHKLEQLRNSCA

>Myc epitope
EQKLISEEDL

Supplemental Table 1B
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Kabat numbering

MYC
MYC-2E2
MYC-15F11
mBG17
mBG1l7-2E2
mBG17-15F11
HA-scEv
HA-2E2
HA-15F11

FKabat numbering

available under aCC-BY 4.0 International license.

-MEVELVESGGDLVEPGGSLRLSCAASGFTFSHYGMSWVRQTPDRRLEWVATIG——SRGT
MRAEVOLVESGGDLVEPGGSLRLSCAASGFTFSHYGMSWVRQTPDERLEWVATIG——SRGT
-MEVELVESGGGLVEPGGSLRLSCAASGFTFSHYGMSWVROQTPERRLEWVATIG——SRGT
MAEVELEESGGGLVQOPGGSMRFSCVASGFTFSDYWMNWVROSPDRGLEWVAEIRLESNNY
MAEVOLVESGGDLVEPGGSLELSCAASGFTFSDYWMNWVRQTPDERLEWVAEIRLEKSNNY
MAEVRLVESGGGLVEPGGSLRLSCAASGFTFSDYWMNWVRQTPERRLEWVAEIRLESNNY
MAEVELVESGGDLVEPGGSLRELSCAASGFTFSSYGMSWVRQTPDERLEWVATISRG——GS
MAEVOLVESGGDLVEPGGSLRLSCAASGFTFSSYGMSWVRQTPDERRLEWVATISRG——GS
-MEVELVESGGGLVEPGGSLRLSCAASGFTFSSYGMSWVRQTPERRLEWVATISRG——GS

MYC
MYC-2E2
MYC-15F11
mBG17
mBG1l7-2E2
mBG17-15F11
HA-scEv
HA-2E2
Ha-15F11

MYC
MYC-2E2
MYC-15F11
mBG17
mBG1l7-2E2
mBG17-15F11
HA-scEv
HA-2E2
HA-15F11

MYC
MYC-2E2
MYC-15F11
mBG17
mBG1l7-2E2
mBG17-15F11
HA-scEv
HA-2E2
HA-15F11

MYC

MYC-2E2
MYC-15F11
mBG17
mBG17-2E2
mBG17-15F11
HA-scFEv
HA-2E2
Ha-15F11

Legend:

Heavy chain loops

YTHYPDSVEGRFTISRDNDENALYLOMNSLRSEDTAMYYCARRSEFYYYGNTYYYSAMDY
YTEYPDSVEGRFTISRDNARNTLYLOMSSLRKSEDTAMYYCARRSEFYYYGNTYYYSAMDY
YTEYPDSVEGRFTISRDNARNTLYLOMSSLRSEDTAIYYCARRSEFYYYGNTYYYSAMDY

ATHYRASVREGRFTISRDDSKSSVYLOMNNLRAEDSGIYYCTRS————————————— AMDY
ATHYRASVEGRFTISRDNARNTLYLOMSSLRSEDTAMYYCARS————————————— AMDY
ATHYRASVREGRFTISRDNARNTLYLOMSSLRSEDTAIYYCARS————————————— AMDY
YTYYPDSVEGRFTISRDNARNTLYLOMSSLRKSEDTAMYYCARRET——————— YDERGFAY
YTYYPDSVEGRFTISRDNARNTLYLOMSSLRKSEDTAMYYCARRET——————— YDERGFAY
YTYYPDSVEGRFTISRDNARNTLYLOMSSLRSEDTAIYYCARRET——————— YDERGFAY
——————— 110- 1--————10----————----24————————-

NWGQGASVTIVSSGGGGEGGGEGEGEGGGSDIVLTQSPASLAVSLGORATISCRASESVDNYG—
WGOGTSVIVSSGGGGEEGGGEGEESGEGEGGSDIVLTQSPASLAVSLGORATISCRASESVDNYG—
NGOGTTLTVSSGGGGEGGGGSGGGGSDIVLTQSPASLTVSLGORATISCRASESVDNYG—
WGQGTSVIVSSGGGGEGEGGGEESGEGEGGSDIVMSQSPSSLAVSVGERITMSCRKSSQSLLYTSD
WGQGTSVTVSSGGGEGESGGEGGEGGGGSDIVLTOSPASLAVSLGOQRATISCRSSQSLLYTSD
NWGOGTTLTVSSGGGGEGGGGESGGEGGSDIVLTQSPASLTVSLGORATISCRSSQSLLYTSD
NWGOGTTVIVSSGGGGEGGEEGSGGEGGSDIELTQSPSSLTVTAGERVTMSCRKSSQSLLNSGN
WGQGTSVTVSSGGGGSGGEGEGGGGSDIVLTOSPASLAVSLGOQRATISCRSSQSLLNSGN
WGOGTTLTVSSGGGGEGGGGESGGEGGSDIVLTQSPASLTVSLGORATISCRKSSQSLLNSGN

—FSFMNWFQORPGQOPPRLLIYAISNRGSGVPARFSGSGSGTDFSLNIHPVEEDDPAMYFC
—FSFMNWYQORPGOPPRLLIYAISNRGSGIPARFSGSGSGTDFTLNIHPVEEEDRAATYYC
—FSFMNWYQORPGOPPRLLIYAISNRGSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYC
QENYLAWFQORPGOSPRLLIFWASTRDSGVPDRFTGSGSGTDFTLTISSVRRAEDLAVYYC
QRNYLAWYQORPGOPPRLLIYWASTRDSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYC
QENYLAWYQQORPGOPPRLLIYWASTRDSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYC
QENYLTWYQQORPGOPPRLLIYWASTRESGVPDRFTGSGSGRDFTLTISSVQAREDLAVYYC
QRENYLTWYQQORPGOPPRLLIYWASTRESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYC
QENYLTWYQQORPGOPPRLLIYWASTRESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYC

QOTREVPWTEFGGGTRLEIL
QOTREVPWTEFGGGTRLEIL
QOTREVPWTEFGAGTELETL
QOFYNYPRTFGGGTRLEI
QOFYNYPRTFGGGTRLEI
QOFYNYPRTFGAGTELEIL
ONDNSHPLTEFGAGTELEL
ONDNSHPLTEFGGGTELEI
ONDNSHPLTFGAGTELEI

linker Light chain loops
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A Myc scFv WT Myc scFv 15F11 Myc scFv 2E2

“Structure | RMSD q [A] vs 20rb

Myc scFv WT 0.42
Myc scFv 15F11 0.45
Myc scFv 2E2 0.45

Supplemental Figure 1. Alignment of AlphaFold2 predicted scFv structures to an anti-c-Myc Fab crystal structure. A) Alignments
of AlphaFold2-derived wild-type Myc scFv, Myc-2E2 scFv, and Myc-15F11 scFv structures with a Myc Fab crystal structure (PDB:
2orb). Predicted scFv structures are shown in dark blue, 2orb Myc Fab structures are shown in light blue. B) RMSD values
comparing structural similarities between the wild-type Myc scFv, Myc-2E2 scFv, and Myc-15F11 scFv structures with a Myc Fab
crystal structure (PDB: 2orb) were computed by the PyMOL align command.
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Supplemental Figure 2: Alphafold2’s best attempt to dock whole sequences with the respective sequence’s scFv. A) The whole HA
protein structure and scFv complex as predicted by AF2, with the correct epitope sequence highlighted in magenta. B) Shows the
same structure by highlighted by confidence (pLDDT) of the structure with AF2. Similarly, the entire Myc protein-scFv complex are
shown with C) the correct epitope highlighted in magenta and D) the confidence of the structure shown, and again for the
mBG17 N-protein-scFv complex in E) and F).
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Most representative
peptide location

Distance from central pose [A

1R mmmmm epitope from 20r9

20 pLDDT 90 mmmmmm highest pLDDT

Supplemental Figure 3: AlphaFold2 places all peptides near the CDR loops. The predicted Ca coordinates for all scFv (excluding
the flexible linker) were extracted, and all were aligned together using the Kabsch algorithm (48, 49). With the scFvs structurally
aligned, an all-against-all RMSD was calculated for the epitope peptides. To visually represent each peptide as a single point, the

|n

coordinates for all epitope atoms were averaged. The “central” exemplar epitope (cyan) is the peptide with the smallest sum of
RMSD to all other peptides. A) The average and quartile for peptide placement relative to the central peptide via Box-and-
Whisker plot reveals that AlphaFold2 largely places all epitopes in the same area. The Myc CDRH3 runs through the middle of a
traditional paratope pocket, it isn’t a “cradle” for the epitope to sit on. AlphaFold2 places peptides on both sides of the CDRH3,
causing significant spread in the peptide placement. B) An example of an exemplar, most-central predicted peptide structure
(cyan) for the peptide PKSCASQDSS (cyan) bound to the Myc-2E2 scFv (green) that is distant from an example outlier peptide
(magenta, peptide PHSPLVLKRC, center-to-center distance 14.8 A). All peptide placements are still in contact with CDRH3,
consistent with a strong AlphaFold2 bias to place peptides in a typical antibody binding site. C) The Myc-2E2 scFv (pale-green) and
the average epitope placement (cyan) peptide alongside the crystal structure solution of the Myc epitope (grey). Remaining
peptide placements are represented as a cloud of spheres at the mean peptide position. Each peptide sphere is colored and sized
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by epitope pLDDT (ranging from 20 to 90). Although AlphaFold2 frequently placed peptides on the opposite side of the CDRH3
from the Myc epitope (grey), it was not confident in these peptide placements (low, small, blue pLDDT spheres). In contrast, some
of the peptides placed around the CDRH3, and in positions similar to the native epitope (grey) were placed with higher pLDDT
confidence (increasingly large spheres trending from green to yellow to orange and red). D) The top ranked peptide as predicted
by PAbFold with sequence QKLISEEDLL (red) and the crystal structure solution of the Myc epitope (grey).
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Apo Docked
sckv BB Ca RMSD | Loop all backbone RMSD | Epitope all atom RMSD | BB Ca RMSD | Loop all backbone RMSD | Epitope all atom RMSD
Myc 0.65 2.87 NA 0.47 1.75 6.69
Myc-15F11 0.62 3.06 NA 0.51 1.51 2.45
Myc-2E2 0.61 2.96 NA 0.51 1.61 2.68
scFv Apo Docked
BB Ca RMSD | Loop all backbone RMSD | Epitope all atom RMSD | BB Ca RMSD | Loop all backbone RMSD | Epitope all atom RMSD
HA 0.56 1.39 NA 0.58 1.25 3.2
HA-15F11 0.56 1.32 NA 0.6 1.26 3.1
HA-2E2 0.58 1.21 NA 0.6 1.27 3.1

Supplemental Figure 4: RMSD comparison (all numbers have units of A) for AlphaFold2 predicted scFv structures compared to
reference crystal structures, A) 2or9 (Myc) and B) 1frg (HA), respectively. The loops of the scFv more closely mimic the crystal
structure when the epitope peptide is present. The backbone also undergoes subtle changes during docking that make it slightly
more similar to the crystal structure. These structures were aligned by identifying the framework residues in all structures, then
aligning the framework region Ca with the Kabsch algorithm (48, 49). Specifically excluded from this process were the heavy and
light CDR loops of the structures, as well as the flexible linker structure that connects the heavy and light chains due to the
inherent floppy, unstructured nature of this region. After aligning the framework regions of the AlphaFold2 predicted structures
and the crystal structures (2or9 and 1frg respectively), an RMSD of these Ca was calculated and is reported as the first column
‘BB Ca RMSD’. Without further alignment, loop placement was analyzed with an all backbone RMSD by calculating the RMSD
between the C, Ca, N, and O along the backbone of all residues in the scFv that were not used for the framework
superimposition. This RMSD is reported in the second column as ‘Loop all backbone RMSD'. Finally, to investigate peptide
predicted placement and potential scFv:epitope interactions, an all-atom RMSD was calculated between the crystal structure and
the AF2 predicted peptide structure (no additional alignment). Because the apo structure lacks a peptide position, this is only
reported in the ‘Docked’ category and is in the 3™ column labeled ‘Epitope all atom RMSD’. One script was written for each scFv
(Myc and HA), and can be found in the Zenodo deposition of our data (https://zenodo.org/records/10884181) because this
analysis is not a key part of PAbFold. Briefly this analysis reveals that all three HA scFv variants have predicted framework regions
and loop regions in the apo structures that closely match the reference structure (0.56-0.58 A and 1.21-1.39 A). Accordingly,
when the cognate epitope peptide is present, it can be placed with relatively high accuracy for all three scFvs (3.1-3.2 A), with
only small changes in the loops (1.39 Ato 1.25 A, 1.32 Ato 1.26 A, and 1.21 A to 1.27 A). In contrast, the apo structures for the
three Myc scFvs have a much higher deviation in the loop regions (2.87 to 3.06 A). When the epitope peptide is added, there is
significant motion in the loops consistent with an “induced fit” description. In the two chimeric Myc scFvs (Myc-15F11 and Myc-
2E2) the final loop RMSD is reduced to 1.51-1.61 A, and the epitope peptide is successfully predicted (2.45-2.68 A). However,
despite a lower apo-state loop RMSD (2.87 A), the loop RMSD for the wild-type Myc scFv only drops to 1.75 A, and the epitope
peptide placement does not match the experimental structure (6.69 A). This is consistent with the failure of the wild-type Myc
scFv AlphaFold2 predictions in main text Figure 2.
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Supplemental Figure 5. Assessment of peptide size and sliding window sizes on epitope prediction efficacy. Myc-2E2
scFv:peptide structures were predicted with peptides of 8 (A), 9 (B), 10 (C), 11 (D), and 12 (E) amino acid lengths derived from the
Myc protein with a sliding window of 2 amino acids, and pLDDT scores from each predicted structure were plotted against the
Myc amino acid position and sliding window length target. F) Negative control peptides bind to antibody binding sites, but with
poor pLDDT scores. Similarly, with a fixed peptide length of 10 and a sliding window step size of 1 (F), 2 (G), and 5 (H), we can see
the practical epitope detection outcome was similar for a sliding window of 1 and 2, but resolution and accuracy were reduced
for a sliding window step size of 5. To more fully illustrate the strong learned bias that AlphaFold2 has for placing any peptides
among the CDR loops, we predicted the structure of Myc-2E2 in complex with several control peptides. These negative control
peptides bind to the generally expected antibody binding site, but with poor pLDDT. 1) GSx5 in magenta (GSGSGSGSGS) had a
score (mean peptide from Simple Max method pLDDT) of 29.5. (GGGGS), in orange (GGGGSGGGGS) had a score of 31.9. Gy in
red (GGGGGGGGGG) had a score of 33. Lastly, J) Ajo in cyan (AAAAAAAAAA) had a score of 41 and is the only negative control
peptide to have an alpha-helical secondary structure (presumably due to the increased alpha helical propensity of alanine).
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Supplemental Figure 6: PAbFold epitope detection is independent of position within target sequence. The Myc epitope
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Supplemental Figure 7: Alphafold2 can accurately predict the HA linear epitope in different scFv backbones. The anti-HA VH

and VL antibody sequences were used to generate either A) wild-type scFv or CDR loop grafted onto the B) 15F11 or C) 2E2

antibody backbones. The Influenza A virus hemagglutinin protein sequence (Genbank AUT17530.1) was used as the target

antigen and processed into 10 amino acid overlapping peptides with a 1 amino acid sliding window. The structures for each

scFv:peptide pair were predicted with Alphafold2, and pLDDT values for each scFv:peptide pair are shown. D) The top-ranking
epitope sequences via pLDDT scores are reported via the consensus method. Sequence underlining represents overlap with the
known HA epitope (HA a.a. 114-125: YDVPDYASL). E) The top-ranking epitope sequences via pLDDT scores are reported via the

simple max method.
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Supplemental Figure 8: A comparison of Alphafold2 multimer version 3 and multimer version 2 applied to the mBG17 system.
The experimental epitope, DDFSKQLQQS, is still easily identified with all three scFv backbones (wildtype, 15F11, and 2E2).
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Supplemental Figure 9: Myc comparison of epitope identification accuracy, comparing model types. Performance variation with
AlphaFold2 model (multiple versions 2 and 3) and MSA versions (most up to date version of the ColabFold MSA server uses
UniRef30 (2302) and PDB100 (220517)) vs the old MSA server (when this data was initially generated, ColabFold MSA server used
UniRef30 (2202) and PDB70 (220313)). The left column is the WT scFv, the middle column is the CDR loops spliced onto the 15F11
backbone, and the right column is the CDR loops spliced onto the 2E2 backbone. Performance was ablated when using MM3 and
the new MSA, and significantly degraded when using MM2 with the new MSA. For AF2-MM2 Old MSA, see Figure 2.

Per-Residue pLDDT

Per-Residue pLDDT


https://doi.org/10.1101/2024.04.19.590298
http://creativecommons.org/licenses/by/4.0/

963
964

965
966
967
968
969
970
971

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.19.590298; this version posted December 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

HA AF2-MM3 New MSA

10 10 0
x 9 9 9
238 8 8
z<7 7 7
%) S6 80 6 80 6
A0
5 5 5
'_
ng 1 S
=2c3 4 3 | 3
VE2 0y 2 09 2
1 50 % 1 50 % 1
A - L
A o ]
40
'é 60 0% 60 “ 60
2 30 30
g 40 40 40
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
5 Window in Target Protein Window in Target Protein Window in Target Protein
£9
cTa
v
£%0 0 0
=0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Residue in Target Protein

HA AF2-MM2 New MSA

Residue in Target Protein

10 0
x 9 9
238 8
s<7 7
526 80 6
225 5
Q34 70k 4
(a1 [a)
acs g 3
v 2 60 = 2
1 3 1
k 50 §
80 L
'5 40 g.) 60
% 60 0
v 40 40
- 0 100 200 300 400 500 0 100 200 300 400 500
° 8 Window in Target Protein Window in Target Protein
33
wn
2 éso 50
&=
2o . . - - . 0
0 100 200 300 400 500 0 100 200 300 400 500

Residue in Target Protein Residue in Target Protein

Residue in Target Protein

10
9
8
80 7
6
70 5
5 4
602 3
; 2
50% 1
&
40 3
¢ 60
30
40+
0 100 200 300 400 500
Window in Target Protein
50
0,
0 100 200 300 400 500

Residue in Target Protein

Supplemental Figure 10: HA comparison of epitope identification accuracy, comparing model types. A comparison of the
differing AlphaFold2 models with the Myc system (multimer version 3 and 2) along with a comparison of the new MSA (most up
to date version of the ColabFold MSA server uses UniRef30 (2302) amd PDB100 (220517)) vs the old MSA server (when this data
was initially generated, ColabFold MSA server used UniRef30 (2202) and PDB70 (220313)). The left column is the WT scFy, the
middle column is the CDR loops spliced onto the 15F11 backbone, and the right column is the CDR loops spliced onto the 2E2

backbone. For AF2-MM2 Old MSA, see Supplemental Figure 7.
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973 Supplemental Figure 11: Local remake of the databases used by the MMSEQS server. Databases were downloaded (UniRef30
974 (2202) and PDB70 (220313)) and were queried locally to produced MSA’s for testing. These runs all were done with the multimer
975 version 2 model of Alphafold 2. The left column is the WT scFv, the middle column is the CDR loops spliced onto the 15F11

976 backbone, and the right column is the CDR loops spliced onto the 2E2 backbone. The first row is the HA system, the second row is
977  the Myc system, and the final row is the mBG17 system.
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981 Supplemental Figure 12: Server remake of the MMSEQS databases. The databases were rebuilt by the MMSEQS team UniRef30
982 (2202) and PDB70 (220313)) on the Colabfold MSA server and were queried produced MSA’s for testing. These runs all were done
983 with the multimer version 2 model of Alphafold 2. The left column is the WT scFv, the middle column is the CDR loops spliced
984 onto the 15F11 backbone, and the right column is the CDR loops spliced onto the 2E2 backbone. The first row is the HA system,
985 the second row is the Myc system, and the final row is the mBG17 system.
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987
988 Supplemental Figure 13: Single Sequence mode (no MSA’s) of epitope prediction with AF2. These runs all were done with the
989 multimer version 2 model of Alphafold 2 in single sequence mode (i.e. no MSA was used) as a negative control, to highlight the
990 importance of a quality MSA. The left column is the WT scFv, the middle column is the CDR loops spliced onto the 15F11
991 backbone, and the right column is the CDR loops spliced onto the 2E2 backbone. The first row is the HA system, the second row is
992  the Myc system, and the final row is the mBG17 system.
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999  Supplemental Figure 14: MSA overlap between the 4 generation methods. Here we highlight the number of unique entries that
000 are shared amongst all of the MSA methods, those being: 1) using the databases right now via colabfold (PDB30 2302 and

001 PDB100 230517) (green) 2) the databases after they had been accessed via colabfold and cached for repeated use (UniRef30
002  (2202) and PDB70 (220313)) (yellow), 3) downloading the databases locally (UniRef30 (2202) and PDB70 (220313)) and

003 attempting to create the MSAs ourselves (red), and 4) querying the databases after the MMSEQS team rebuilt them for our use
004  via colabfold (UniRef30 (2202) and PDB70 (220313)) (blue).
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MMSEQS Local MMSEQS MMSEQS Single
2022 Fall 2022 Rebuild 2022 Rebuild 2023 Winter Sequence
HA WT v - v -
15F11 v v 4 - -
2E2 v - - -
Myc  WT v - - -
15F11 v - - = -
2E2 v - v 4 v 4 -
mBG17 Wt v v V4 V4 -
15F11 v v 4 v V4 -
22 v v v v -

Supplemental Figure 15: Comparison of how well each MSA generation scheme accurately identified the experimentally
derived epitope within the top 5 epitope sequences. A green checkmark shows that it was found by both the consensus model
and the top single model, a yellow “M” means the simple max method correctly identified the experimental epitope in the top 5
epitopes, and the red dash means both methods failed. The consensus model did not identify the epitope correctly when the
simple max method failed to. The colored background behind the titles is the same color as Supplemental Figure 14 to help guide

the eye.
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