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Abstract 19 
Defining the binding epitopes of antibodies is essential for understanding how they bind to their antigens 20 
and perform their molecular functions. However, while determining linear epitopes of monoclonal 21 
antibodies can be accomplished utilizing well-established empirical procedures, these approaches are 22 
generally labor- and time-intensive and costly. To take advantage of the recent advances in protein 23 
structure prediction algorithms available to the scientific community, we developed a calculation pipeline 24 
based on the localColabFold implementation of AlphaFold2 that can predict linear antibody epitopes by 25 
predicting the structure of the complex between antibody heavy and light chains and target peptide 26 
sequences derived from antigens. We found that this AlphaFold2 pipeline, which we call PAbFold, was able 27 
to accurately flag known epitope sequences for several well-known antibody targets (HA / Myc) when the 28 
target sequence was broken into small overlapping linear peptides and antibody complementarity 29 
determining regions (CDRs) were grafted onto several different antibody framework regions in the single-30 
chain antibody fragment (scFv) format. To determine if this pipeline was able to identify the epitope of a 31 
novel antibody with no structural information publicly available, we determined the epitope of a novel anti-32 
SARS-CoV-2 nucleocapsid targeted antibody using our method and then experimentally validated our 33 
computational results using peptide competition ELISA assays. These results indicate that the AlphaFold2-34 
based PAbFold pipeline we developed is capable of accurately identifying linear antibody epitopes in a 35 
short time using just antibody and target protein sequences. This emergent capability of the method is 36 
sensitive to methodological details such as peptide length, AlphaFold2 neural network versions, and 37 
multiple-sequence alignment database. PAbFold is available at https://github.com/jbderoo/PAbFold.  38 
 39 
Introduction 40 
Understanding where and how an antibody binds to its target protein is important for understanding how 41 
the antibody performs its function, whether that function is neutralizing a pathogen during an immune 42 
response, binding an epitope in immunoassays, or labeling a target molecule in a live-cell imaging 43 
experiment. However, determining the binding epitope of an antibody can be a time and labor-intensive 44 
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endeavor with significant expense. Traditionally, antibody epitopes on target proteins have been identified 45 
by performing deletion analysis on the target protein to determine if the antibody loses reactivity for the 46 
deletion mutants in various immunoassays, which provides the general region of the target protein the 47 
antibody binds to. With the advent of widely available chemical peptide synthesis, sequence-specific 48 
synthetic peptides can be used for competitive immunoassays (such as enzyme-linked immunosorbent 49 
assays (ELISA)) to establish sequences that can effectively compete with the antigen for antibody binding. 50 
Peptide mapping experiments are a powerful method for determining the fine sequence of linear antibody 51 
epitopes, but these experiments can be relatively expensive and the time between experimental design 52 
and data acquisition can be weeks to months due to the need to design and chemically synthesize 53 
peptides.  Once a peptide has been identified that binds with high affinity and specificity to an antibody 54 
antigen binding fragment (Fab), crystal structures can be determined that demonstrate intermolecular 55 
interactions between the peptide and antibody. These can then provide a molecular-level explanation for 56 
an antibody’s binding mode. Finally, with the advent of rapid single B-cell sequencing technologies to 57 
analyze humoral immune responses towards vaccination or infection, determining where specific antibody 58 
clones bind on an antigen becomes even more challenging due to the need to isolate or synthesize specific 59 
antibody genes, produce antibodies, and then perform deletion or epitope mapping experiments described 60 
above to fully understand how and where antibodies bind. These challenges make determining antibody 61 
epitopes expensive and time-consuming and limit the number of antibodies that are characterized in detail. 62 
 63 
Anhbodies that bind to linear epitopes represent an important subset to molecular biology, as they can be 64 
added to recombinant proteins for use in various types of immunoassays. By definihon, a linear epitope is a 65 
binding site on an anhgen that is recognized by the primary structure or conhguous linear sequence of 66 
amino acids. A number of linear epitope specific anhbodies have been developed for use in various 67 
immunoassays (ELISA, western blot, immunofluorescence, etc.). The development of computahonal 68 
methods for linear epitope determinahon could increase the number and quality of new linear epitopes 69 
available to the field.  Most epitope predichon tools (such as BepiPred (1), ElliPro (2), and ABCpred (3)) are 70 
generally designed to predict regions of an anhgen that could be recognized by any anhbody rather than a 71 
specific anhbody. These programs also provide no insight into the structural match of the epitope and 72 
anhbody, potenhally making decisions without key structural informahon that otherwise may be relevant. 73 
The challenge in predichng epitopes for a specific anhbody lies in the complexity of protein-protein 74 
interachon dynamics, which includes conformahonal changes, binding affinihes, and thermodynamic 75 
stability. Structure based approaches including HADDOCK (4, 5) and ZDOCK (4, 6) can be used to dock 76 
pephdes into anhbody structures, but these require known pephdes for binding. Significant progress has 77 
been made to address this problem via deep learning: some of the new and excihng tools are GearBind (7), 78 
PALM and A2binder (8), and DSMBind (9). We point the reader to this review for an excellent overview of 79 
some of the tools that have existed for some hme, along with a comparison of these tools (10). 80 
 81 
Determining antibody-epitope interactions is, at its most basic level, a structural biology problem. 82 
Determining what molecular interactions are present between an antibody and its antigen can define the 83 
epitope, determine what portions of the epitope and CDR sequences are responsible for molecular 84 
interactions, and provide clues to antibody specificity and affinity. With the advent of highly accurate 85 
structural predictions, including the AlphaFold2 (AF2) neural networks (11, 12), the ability to accurately 86 
predict protein structures, and potential protein-protein interactions, has dramatically increased. 87 
AlphaFold2 was trained on existing protein structures and can effectively model new protein structures. 88 
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Numerous antibodies, antibody Fab regions, and other related constructs with bound target peptides or 89 
proteins have been crystalized and deposited into the Protein Data Bank (PDB) (for example (13–16)). 90 
These PDB entries represent a valuable training set that may increase the likelihood that AlphaFold2 can 91 
successfully predict the structure for antibody-epitope complexes (12, 17–19). The authors of AlphaFold2 92 
multimer (12) comment on the difficulty of predicting antibody-epitope complexes, and results for this are 93 
indeed mixed at best (17–19). One way in which this current report is distinct is our focus on linear 94 
epitopes. We hypothesize that the lack of strong competing structure within the short peptide may boost 95 
AF2 prediction of scFv-epitope binding predictions relative to conformational epitopes. This problem has 96 
precedent, as AlphaFold2 has previously been used to study the interachons between proteins and pephdes 97 
(17, 18). AlphaFold2’s ability to correctly dock independent protein chains can be repurposed to predict 98 
how strongly two proteins interact together and extends to predichng the interachon between an anhbody 99 
and short flexible pephdes (linear epitopes) drawn from a larger protein anhgen.  100 
 101 
To maximize compute efficiency, it is helpful to minimize the size of the system subject to structure 102 
predichon. The computahonal expense of AlphaFold2 scales with the square of the length of the 103 
concatenated sequences involved. Fortunately, with respect to epitope specificity, anhbody constant 104 
domains are less crihcal than the CDR loops and the remainder of the variable domain framework regions. 105 
Anhgen binding by anhbodies is primarily dictated by the anhgen binding fragment (Fab) containing the 106 
variable light (VL) and variable heavy (VH) fragments. Conversion of full anhbody sequences into single chain 107 
variable fragments (scFv) can significantly reduce structure predichon complexity and compute hme. A 108 
wildtype scFv sequence can easily be generated directly from translated anhbody heavy and light chain DNA 109 
sequences. Briefly, the sequences are first divided into framework and complementarity determining 110 
regions (CDRs) using Kabat (20) or IMGT (21) nomenclature. A flexible linker sequence 111 
(GGGGSGGGGSGGGGS, 15 a.a.) is then added between the new C-terminus of the truncated light chain and 112 
the original N-terminus of the shortened heavy chain to generate a single protein sequence that 113 
incorporates both anhgen-binding chains. The resulhng fusion protein omen funchons in a similar fashion to 114 
the original anhbody. Another well-known protein engineering strategy for anhbodies is “loop graming”, 115 
where the CDR loops from one anhbody are gramed onto a different framework region. We have recently 116 
used this approach to develop scFvs with improved in vivo performance (22). The structures of the novel 117 
scFv chimeras can be rapidly and confidently predicted by AlphaFold2 due to their small size and the 118 
extensive immunoglobin representahon within sequence databases and the PDB. Excluding the hme 119 
needed to obtain a mulhple sequence alignment (MSA), predichng the structure for a single scFv in complex 120 
with a 10-a.a. pephde requires only 1.5 minutes on an NVIDIA A5000 graphics processing unit (GPU). This 121 
modest compute hme allows a GPU-laden server or workstahon to handle large-scale structure predichon 122 
of hundreds of related systems. As for the MSA input, a high quality MSA can quickly be obtained via 123 
ColabFold (23), which relies on the MMseqs2 MSA server. In our workflow, we repeatedly predict the 124 
structure for a fixed single scFv sequence in complex with varying pephde partners. In this case, we do not 125 
expect the pephde porhon of the MSA to be useful. Therefore, to avoid sending hundreds of nearly 126 
idenhcal MSA requests to MMseqs2 MSA server, and to avoid varying informahon in the MSA, we slightly 127 
modified the LocalColabFold code to include the ophon to cache the MSA (install available on the GitHub). 128 
We generate one cached MSA per epitope scan, where each residue in the query pephde is a glycine. 129 
 130 
Several recent papers have aqempted to use AlphaFold2 to idenhfy anhbody epitopes (24–26), but have 131 
primarily focused on computahonal idenhficahon and have not verified their results using new anhbodies 132 
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that are not within the PDB training set. While there are many other structure prediction models other than 133 
AlphaFold2 (27, 28), including some specifically dedicated to predicting antibodies or antibody-like 134 
structures (29–32), we chose AlphaFold2 to directly test its ability to correctly idenhfy and place epitopes 135 
into an anhbody binding clem. We selected AlphaFold2 due to its widespread use throughout the literature, 136 
as well as its ease of installahon and modificahon via the LocalColabFold implementation (23). Another 137 
reason for selechng AF2 is to aqempt to quanhfy its abilihes the compare simple linear epitopes, since the 138 
team behind AF-mulhmer reported that conformahonal anhbody complexes were difficult to predict 139 
accurately (12). In this project we test a method we call PAbFold, a LocalColabFold-based pipeline to 140 
identify epitopes for several well-known linear-epitope antibodies from sequence information only. There 141 
was a strong correlation between AlphaFold2’s confidence in the peptide structure (pLDDT) (33) and the 142 
experimentally verified epitope binding sequence. Additionally, we found that AlphaFold2 very accurately 143 
predicted the linear epitope of a novel SARS-CoV-2 nucleocapsid-specific antibody (mBG17) with minimal 144 
prior epitope information. The molecular interactions predicted by AlphaFold2 were experimentally 145 
validated using peptide mapping ELISA experiments. Overall, this work demonstrates that AlphaFold2 has 146 
compelling promise for linear antibody epitope discovery from sequence information alone. We also have 147 
observed that this emergent linear epitope prediction ability is sensitive to the peptide length and that the 148 
performance was optimal when using AlphaFold2-multimer version 2 and older MSAs generated by 149 
MMSEQS version 2202 server, rather than the more recent AlphaFold2-multimer version 3 models and 150 
MMSEQS version 2302 server. 151 
 152 
Materials and Methods: 153 
So#ware: 154 
All structure predichons were completed on a single AMD EPYC 7443 server with two NVIDIA RTX A5000 155 
GPU cards. PAbFold code was wriqen in Python 3.7 and Bash. The only extra Python dependencies are 156 
NumPy and Matplotlib. AlphaFold2 calculahons were run using an installahon of LocalColabFold (23). 157 
Briefly, PAbFold contains 3 stages. In the first stage, a python script 158 
‘A_PephdeMapping_prep_submission_files.py’ writes FASTA input files for ColabFold. Each FASTA file 159 
contains the enhre sequence of the subject scFv, a colon “:”, and then the candidate linear epitope which 160 
represents a small sechon of the target anhgen protein that changes dependent upon both the epitope 161 
length (default 10 a.a.) and a sliding window (default 1 a.a.).  162 

Amer complehon of the ColabFold jobs, two different analysis methods are presented in this paper, 163 
and both are accessible via the ‘B_PephdeMapping_plddt_perres_analysis.py’ python script. The first is the 164 
‘Simple Max’ method, which assesses each pephde window with only the output model that is top ranked 165 
by ColabFold (on the basis of ipTM). The AlphaFold2 confidence pLDDT (33) is recorded for each residue 166 
within the pephde. Other than the N- and C-terminal residues, each residue is observed within mulhple 167 
windows. We proceed to calculate (and plot) the maximum pLDDT observed for each residue across the set 168 
of sliding window pephdes that contain that residue. Thus, in the ‘Simple Max’ method each residue is 169 
considered independently. To obtain aggregate scores for each pephde window, we sum the maximum 170 
pLDDT associated with each member residue. This method is sensihve in that any isolated high-confidence 171 
residue placements in the top ranked AlphaFold2 pephde predichon can increase the score, but a high 172 
aggregate pephde score could arise from mulhple, mutually inconsistent pephde binding poses. Our 173 
second, complementary analysis method instead focuses on recognizing full pephde poses of elevated 174 
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AlphaFold2 confidence. We refer to the second method as the ‘Consensus method’ because it begins by 175 
averaging the per-residue pLDDT across the five AlphaFold2 models. We then compute the average pLDDT 176 
for each pephde. For visual inspechon, scripts output a heat map for the average per-residue pLDDT and a 177 
bar-chart that for the subsequent per-pephde average pLDDT. In this case, we simply rank top pephdes 178 
based on the per-pephde average pLDDT.  Scripts are available at hqps://github.com/jbderoo/PAbFold. 179 
 180 
An+body sequences: Sequences and references for anhbodies, scFvs, and anhgens can be found in 181 
Supplemental Table 1A. To create an scFv, the complementarity determining regions or loops of an 182 
anhbody are idenhfied via the Kabat numbering scheme. The loops are then spliced onto the scFv 183 
backbones of the 15F11 and 2E2 as previously described by our group (22). The scFv sequences are aligned 184 
with their CDR loops and flexible linkers highlighted in Supplemental Table 1B. 185 
 186 
Monoclonal An+body Produc+on: 187 
Anh-SARS-CoV-2 nucleocapsid protein (NP) monoclonal mouse anhbody mBG17 was previously developed 188 
and characterized (34). Briefly, two BALB/c mice immunized with recombinant NP were sacrificed and 189 
primary splenocytes isolated. Splenocytes were fused with Sp2/0 Ag14 myeloma cells and individual 190 
hybridoma clones were isolated amer eleven days. Hybridoma clones were tested for anhbody produchon 191 
against NP via enzyme-linked immunosorbent assay (ELISA) and western blot. Clones were further tested for 192 
isotype and cross-reachvity, and VH and VL sequences were determined. The hybridoma clone mBG17 was 193 
idenhfied as a SARS-CoV-2 nucleocapsid-specific anhbody targehng linear epitope via ELISA and western 194 
blot (34). Generahon of recombinant mBG17 and produchon of recombinant anhbody in 293F cells was 195 
previously described (34). The approximate epitope region for mBG17 was determined via western blot 196 
with modified recombinant NP proteins containing 40 to 50 amino acid delehons. The epitope locahon was 197 
determined to reside between SARS-CoV-2 nucleocapsid residues a.a. 381-419 based on loss of western blot 198 
signal with the a.a. 381-419 delehon (34). 199 
 200 
Pep+de Compe++on ELISA:  201 
The anh-SARS-CoV-2 nucleocapsid protein mBG17 anhbody epitope was experimentally idenhfied using 202 
compehhon enzyme-linked immunosorbent assay (ELISA). Using the previously determined 39 nucleocapsid 203 
protein amino acid range for the mBG17 epitope as a starhng point, seven overlapping pephdes were 204 
synthesized (Thermo Scienhfic) spanning the 39 amino acid region with overlaps of 5 amino. These pephdes 205 
were termed Fragment 1 through 7 (Table 1). A 96-well ELISA plate was coated with 0.1ug/ml of 206 
recombinant SARS-CoV-2 NP (34) overnight at 4oC. The plate was blocked with 4% (w/v) dry non-fat milk in 207 
1X PBS with 0.1% (v/v) Tween-20 for 1 h shaking at room temperature. While blocking, inhibited 208 
recombinant mBG17 anhbody samples were produced by incubahng 40 μL of anhbody with 40 μg 209 
(approximately 30 nMol) of a single pephde fragment for one hour at room temperature. Following this, 210 
pephde-incubated mBG17 was applied to the blocked nucleocapsid protein coated plate in triplicate and 211 
allowed to incubate for 1 h at room temperature while shaking. The plate was rinsed with 0.1% (v/v) Tween-212 
20 in 1X PBS and washed three more hmes for 5 minutes shaking at room temperature. The plate was then 213 
incubated with HRP-conjugated goat anh-mouse polyclonal anhbody soluhon diluted at 1:20,000 in 1X PBS 214 
for 1 h shaking at room temperature. Amer another rinse and three more washes the plate was developed 215 
with 1-Step™ Ultra TMB-ELISA Soluhon (ThermoFisher) before stopping the reachon with an equal volume 216 
of 2M H2SO4. Soluhon absorbance at 450 nm was measured using a PerkinElmer Victor X5 mulhlabel plate 217 
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reader. Absorbances were averaged within fragment-inhibited sample groups and corrected with the 218 
average value of the negahve control. These absorbances were then normalized against the absorbance 219 
from the group with the highest value before mulhplying by 100 to obtain percentage of potenhal signal. 220 
  221 

The effect of single alanine subshtuhons on fragment 5 (DDFSKQLQQS) pephde binding was 222 
determined by compehhon ELISA using a series of ten alanine-subshtuted pephdes (Table 1) at a range of 223 
concentrahons to determine relahve compehhon achvity. A modified version of the previously described 224 
inhibihon ELISA was performed using the unmodified Fragment 5 pephde and the ten alanine-subshtuted 225 
pephdes. During the mBG17 inhibihon step, the mBG17 anhbody soluhon was incubated with a 4-fold serial 226 
diluhon of pephdes beginning at 40 μg and conhnuing to ~2.5 ng before being applied to the NP coated 227 
plates in triplicate. The remainder of the compehhon ELISA was carried out as described above. 228 
 229 
Table 1: 
 
Peptide Name Peptide Sequence 
Nucleocapsid a. a. 381-390 (Frag 1) ALPQRQKKQQ  
Nucleocapsid a. a. 386-395 (Frag 2) QKKQQTVTLL 
Nucleocapsid a. a. 391-400 (Frag 3) TVTLLPAADL 
Nucleocapsid a. a. 396-405 (Frag 4) PAADLDDFSK 
Nucleocapsid a. a. 401-410 (Frag 5) DDFSKQLQQS 
Nucleocapsid a. a. 406-415 (Frag 6) QLQQSMSSAD 
Nucleocapsid a. a. 411-419 (Frag 7) MSSADSTQA 
Nucleocapsid D401A ADFSKQLQQS 

Nucleocapsid D402A DAFSKQLQQS 

Nucleocapsid F403A DDASKQLQQS 

Nucleocapsid S404A DDFAKQLQQS 

Nucleocapsid K405A DDFSAQLQQS 

Nucleocapsid Q406A DDFSKALQQS 

Nucleocapsid L407A DDFSKQAQQS 

Nucleocapsid Q408A DDFSKQLAQS 

Nucleocapsid Q409A DDFSKQLQAS 

Nucleocapsid S410A DDFSKQLQQA 
 230 
Assessment of AlphaFold2 generated scFv structures: 231 
We first verified that AlphaFold2 could generate scFv structures that have similar structures to their parent 232 
monoclonal anhbodies. We chose the 9E10 clone of the anh-Myc anhbody as an inihal test system, as the 233 
scFv sequence is available (35) and has a well-known linear epitope (EQKLISEEDL)(36). We predicted the 234 
wild-type Myc scFv structure and aligned this model to the corresponding Fab crystal structure (PDB entry 235 
2orb) via the align command in PyMOL (Supplemental Figure 1A). The AlphaFold2 predicted scFv was very 236 
similar (RMSD value of 0.42Å) to the anh-Myc Fab structure, suggeshng that the predicted scFv structure 237 
was a suitable starhng point for epitope predichon. We also examined the structures of the Myc CDRs loop 238 
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gramed onto the 15F11 (37) and 2E2 (22) frameworks, as we have previously observed that loop graming 239 
onto these frameworks can enhance protein folding and solubility (22). The loop-gramed Myc-2E2 and Myc-240 
15F11 and structures were also similar to the Myc Fab structure (PDB 2ORB) (36) with similar RMSD values 241 
of 0.45Å (Supplemental Figure 1B), indicahng that they are also reasonable starhng points for epitope 242 
predichon. 243 
 244 
Results: 245 
 246 
Development of Python-based scripts for automated scFv:pep;de structure predic;on. We developed a 247 
series of Python scripts that automate the process of epitope predichon and analysis with AF2. 248 
A_Pephde_Mapping_prep_submission_files.py accepts a linear scFv sequence and a linear full-length 249 
anhgen sequence, and processes the anhgen sequence into a series of short pephdes with custom pephde 250 
length and sliding window sizes (default parameters are 10 amino acid pephdes with a 1 amino acid sliding 251 
window). It then adds lines for each scFv:pephde pair to a FASTA file. Structures are then predicted via 252 
LocalColabFold for each scFv:pephde pair with AlphaFold2 in parallel on two NVIDIA RTX A5000 GPUs. The 253 
python script B_PephdeMapping_plddt_perres_analysis.py parses the AlphaFold2 output structures to 254 
extract per-residue pLDDT for the pephde residues in each scFv:pephde pair. Conf_plot_and_top10.py will 255 
plot the maximum pLDDT (across all host pephdes) scores as a funchon of amino acid posihon within the 256 
anhgen sequence and ranks predicted pephdes based on ΣpLDDT scores for the ‘Simple max’ method. To 257 
use the ‘Consensus’ method, include the –all-models flag when running 258 
B_PephdeMapping_plddt_perres_analysis.py. We also supply a python script that replicates how we 259 
present the data called all_model_analysis.py for use. 260 

An overview of the method is shown in Figure 1. AF2’s failure to predict whole anhgen structure 261 
coupled with the scFv is highlighted in Supplemental Figure 2. Both the ‘Simple Max’ and ‘Consensus’ 262 
methods were calculated first by parsing every pLDDT score received by every residue in the anhgen 263 
sequence sliding window output structures. From the resulhng data structure, the Simple Max method 264 
simply finds the maximum pLDDT value ever seen for a single residue (across all sliding windows and AF2 265 
models). For the Consensus method, per-residue pLDDT was first averaged across the 5 AF2 models. These 266 
averages are reported in the heatmap view and further averaged per sliding window for the bar chart 267 
below. In principle, the strategy behind the Consensus method is to take into account agreement across the 268 
5 AF2 models and provide insight into the confidence of enhre epitopes (whole sliding windows of n=10 269 
default) instead of disconnected, per-residue pLDDT maxima. Having two scoring metrics is useful because 270 
the selechon of predicted hits can differ. As shown in Figure 2, part of the Myc epitope makes it into the top 271 
5 pephdes when selechon is based on summing per-residue maximum pLDDT (despite there being no 272 
requirement that these values originate in the same physical predichon). In contrast, a Consensus method 273 
score more directly reports on a specific sliding window, and the strength of the highest confidence 274 
pephdes is more directly revealed with superior signal to noise as shown in Figure 3. Variability in the 275 
ranking of top hits between the two methods arises from the fundamental difference in strategy (pephde-276 
centric or residue-centric scoring) as well as close compehhon between the raw AF2 confidence in the 277 
known pephde and compehng decoy sequences. 278 
 279 
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Figure 1. PAbFold pipeline for linear epitope predic6on. A) An#body VH and VL protein sequences are used to generate scFv 281 
sequences, either based on the na#ve an#body sequences or loop gra:ing complementarity determining regions (CDRs) onto 282 
either the 2E2 or 15F11 an#body framework regions (2E2 shown). B) The target an#gen sequence is parsed into a list of small 283 
overlapping pep#de sequences, with pep#de step and window size parameters adjusted as needed. Rank ordered pep#des are 284 
output, and par#al epitope sequences are underlined manually to highlight the iden#fica#on of the correct sequence. C) The scFv 285 
sequences from Panel A are co-folded with each of the pep#de sequences derived from the target an#gen in parallel batch mode 286 
on a GPU server. pLDDT scores from each structure predic#on experiment are collected and scores are presented in their sliding 287 
window, both as a heat map organized along the length of the target an#gen sequence and a bar chart that shows the per-288 
pep#de average pLDDT (Consensus Method). Addi#onally, the Simple Max data is presented in the third and final panel. 289 
 290 
Tes;ng of scFv:pep;de structure predic;on method using the Myc Epitope. We first tested the PAbFold 291 
method with the anh-Myc-scFv described in (38), using the full-length human Myc proto-oncogene protein 292 
sequence as the anhgen. We inihally used an anhgen pephde length of 10 and a 1 amino acid sliding 293 
window. Given these parameters, the 9 a.a. Myc epitope mohf (EQKLISEEDL) appeared intact within one of 294 
the 10-mer pephdes, with subsets of the 8, 9, 11, and 12 a.a. appearing in neighboring sliding pephde 295 
windows. PAbFold generated predicted structures, each of which took an average of ~200 seconds to 296 
process. The enhre process took approximately 12 hours on our GPU server. AlphaFold2 placed all pephdes 297 
into or near the tradihonal anhgen binding site between the CDR loops (Supplemental Figure 3). The 298 
average confidence (mean pLDDT across residues) for these pephdes ranged from 20 to 90. When we 299 
inspect the consensus confidence for each residue in each sliding window (Figure 2A), the expected Myc 300 
pephde epitope (EQKLISEEDL) was one of several pephdes with high average pLDDT. The second highest 301 
ranked pephde in this analysis (QKLISEEDLL) was a near perfect match for the expected epitope. We 302 
consider this window to be a successful predichon. Perhaps surprisingly, the pephde window with the exact 303 
match (EQKLISEEDL) did not score parhcularly well due to its average pLDDT of 51.0. In this instance, the 304 
expected epitope sequence did not stand out when plo~ng the maximum observed per-residue pLDDT for 305 
each residue (Figure 2A, boFom). 306 

We proceeded to test predichons with two engineered scFv chimeras where loop graming was used 307 
to place the Myc recognihon CDRs onto two anhbody framework regions with high in vivo performance, 308 
generahng Myc-15F11 and Myc-2E2 scFv sequences. Epitope predichon performance was markedly 309 
improved with the chimeric scFvs (Figure 2B and 2C). Specifically, the QKLISEEDLL pephde window became 310 
the top ranked pephde on the basis of average consensus pLDDT. In the case of Myc-2E2 (Figure 2C), the 311 
average confidence for the correctly predicted epitope was parhcularly high compared to alternate pephde 312 
windows, and another close match to the expected epitope (EEQKLISEED) was ranked within the top 5 313 
pephdes (Figure 2D). Ranking epitopes using the Simple Max analysis was similar; the region containing the 314 
correct epitope was nearly top ranked for Myc-15F11 and was top ranked for Myc-2E2 (Figure 2E).  Thus, 315 
AlphaFold2 was able to more clearly detect authenhc Myc anhbody epitope using CDRs loop gramed onto 316 
the 2E2 or 15F11 frameworks, relahve to the nahve Myc scFv framework. 317 

To inveshgate the superior epitope recognihon performance of the chimeric Myc scFvs, we aligned 318 
the Cα coordinates for the predicted scFv structures (predicted with and without the target epitope) to the 319 
reference crystal structure and calculated the RMSD for all backbone posihons (N, Cα, C, O) and the loops 320 
(Supplemental Figure 4).  Notably, regardless of the Myc scFv variant, the CDR loop RMSD improved by 321 
more than 1Å when the epitope was present. Secondly, consistent with the improved epitope predichon 322 
performance for the chimeric scFvs (15F11 and 2E2), the epitope pephde QKLISEEDL was placed more 323 
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accurately for those predicted structures than in the WT scFv (Supplemental Figure 4). We could not 324 
discern an obvious structural difference between the WT and chimeric scFvs that explains the structure 325 
predichon performance gap. 326 
  327 

 328 
Figure 2. The Alphafold2-based PAbFold method predicted the Myc linear epitope in different scFv backbones. The an#-Myc VH 329 
and VL an#body sequences were used to generate either A) wild-type Myc scFv or loop gra:ed chimeric B) Myc-15F11 or C) Myc-330 
2E2 scFv variants. The Myc proto-oncogene protein sequence (Genbank NP_001341799.1) was used as the target an#gen and 331 
processed into 10 amino acid overlapping pep#des with a 1 amino acid sliding window. The structure for each scFv:pep#de pair 332 
was predicted with AlphaFold2 in batch mode on two NVIDIA A5000 GPUs. Average consensus pLDDT values for each 333 
scFv:pep#de window are illustrated, as well as the maximum pLDDT observed for each residue in any window (bo^om).  D) Top 334 
ranking binding pep#des based on average consensus pLDDT. E) Top ranked binding pep#des based on summing per-residue 335 
maximum pLDDT. For D and E, underlining represents overlap with the reported Myc epitope (EQKLISEEDL).  336 
 337 
Assessment of pep;de length, sliding window size, and posi;on on AlphaFold2 scFv:pep;de structure 338 
predic;on. Our inihal selechon of the 10 a.a. window was intended to match or slightly exceed the size of 339 
known epitopes such as Myc and HA. We next assessed how different pephde sizes and sliding window 340 
lengths would affect epitope predichon accuracy and run hme. We re-ran the Myc-2E2-scFv:pephde 341 
complex predichon calculahons varying pephde size between 8, 9, 10, and 11 (with a fixed sliding window 342 
size of 2) or varying the sliding window size to 1 or 5 (with a fixed pephde size of 10). We observed that 343 
using a sliding window of 2 a.a. provided nearly the same level of accuracy and resoluhon as the 1 a.a. 344 
Ulhmately, we determined that our original pephde size of 10 amino acids and sliding window of 1 a.a. 345 
provided highest resoluhon data possible (Supplemental Figure 5) and therefore maintained a pephde size 346 
of 10 and a sliding window length of 1 for our remaining experiments. 347 
 348 
We then predicted the complex structure for Myc-2E2 with various negahve control pephdes: A10, (GS)5, 349 
(GGGGS)2, and G10 to determine how non-binding pephdes are docked and scored (Supplemental Figure 5I 350 
and 5J). We again observed that AlphaFold2 placed all pephdes into the tradihonal anhgen binding 351 
between the CDR loops, but the reported pephde scores for the negahve controls were parhcularly low (29 352 
– 41). These results indicate that AlphaFold2 “knows” where anhgens bind in anhbody or scFv structures 353 
and aqempts to model any pephde partner into this region, but the low pLDDT scores indicate confidence 354 
in the interachons are quite low.  355 
 356 
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We also tested if AlphaFold2 could detect the Myc epitope if it was inserted as an epitope tag within 357 
different posihons of a heterologous protein. We created a synthehc anhgen by adding the Myc epitope 358 
within the 99-a.a. unrelated HIV-1 Gag protease protein sequence at either the N- or C-terminus or in the 359 
middle of the protein sequence, and used PAbFold to detect the Myc pephde (Supplemental Figure 6). In 360 
each case, the average consensus pLDDT was highest for the inserted epitope, such that the authenhc 361 
epitope would be top ranked and priorihzed for teshng. Thus, as expected for a sliding window analysis, the 362 
epitope posihon within the anhgen was no barrier to detechon. 363 
 364 
Tes;ng of the PAbFold method using the HA Epitope. Based on our success detechng the Myc epitope, we 365 
sought to determine if our method could detect a different well-known linear pephde, HA, derived from 366 
posihons 114-126 within the Influenza A virus hemaggluhnin protein (YDVPDYASLR). Using an anh-HA scFv 367 
sequence that had been previously generated (22, 38), we generated new HA-15F11 and HA-2E2 scFvs loop 368 
gramed sequences. We used the same procedure described above to predict structures for influenza A virus 369 
HA derived pephdes on HA-scFv (Supplemental Figure 7A), HA-15F11-scFv (Supplemental Figure 7B) and 370 
HA-2E2-scFv (Supplemental Figure 7C). In the HA case, the expected epitope was ranked highly for all three 371 
scFv variants, but when assessing enhre pephdes by average consensus pLDDT was only ranked in the top 5 372 
for the HA-15F11-scFv. These results, in combinahon with the Myc results described above, indicate that 373 
AlphaFold2 can accurately detect linear anhbody epitopes in anhgen sequences, and that graming CDR 374 
loops onto alternahve scFv backbones may increase the noise-to-signal raho, making the idenhficahon of 375 
correct epitopes more accurate. 376 

Like the Myc system, trends are observed with the HA system regarding loop placement. Although 377 
not as extreme, the loops for all HA scFvs undergo movement that make it more closely match the crystal 378 
structure (PDB entry 1frg). Again, the epitope placement of predicted structures of the chimeric scFvs more 379 
closely mimicked the deposited crystal structure than the WT scFv (Supplemental Figure 4B).  380 
 381 
Determina;on and experimental valida;on of a novel linear an;body epitope. The Myc and HA monoclonal 382 
anhbodies are well known and several crystal structures (Myc PDB: 2or9, pephde bound (2009) | HA 383 
PDB:1frg, pephde bound (1994)) have been solved (22, 36, 38, 39), raising the possibility that AlphaFold2 384 
has incorporated these anhbody or epitope structures into its training set. The AlphaFold2 training set was 385 
reported to exclude chains of less than 10, which would eliminate the myc and HA epitope pephdes.  386 
Nonetheless, to guard against the possibility that the AlphaFold2 models have incorporated specific 387 
knowledge into the training set thereby directly probing if PAbFold epitope scanning can predict a linear 388 
anhbody epitope without a priori knowledge of the anhbody or anhgen sequence, we tested if PAbFold can 389 
predict the epitope sequence of a recently developed anhbody lacking structural informahon available in 390 
the Protein Data Bank. The mBG17 mouse monoclonal anhbody was generated in response to the COVID-19 391 
pandemic, the anhbody VH and VL sequences were determined, and the epitope was localized to a. a. 381-392 
419 via Western blot analysis of delehon mutants of the nucleocapsid protein (34). mBG17 was not 393 
included in AlphaFold2’s training or test set, making it an ideal test case for de novo epitope predichon.   394 
 395 
The mBG17 monoclonal anhbody was converted to wild-type scFv, 15F11-scFv, and 2E2-scFv using the same 396 
procedures used for Myc and HA scFv. As an addihonal control calculahon (labeled “3-body"), we used 397 
AlphaFold2 to predict the structure for a 3-protein complex (the pephde, and the disconnected 398 
nontruncated mBG17 VH and VL variable domain sequences). All 4 Fab variants (WT scFv mBG17, 15F11-399 
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mBG17 scFv, 2E2-mBG17 scFv, and 3-body mBG17) were screened against all 10 a.a. pephdes with a 1 a.a. 400 
sliding window, as with Myc and HA. In all 4 cases, AlphaFold2 predicted that the top ranked pephdes were 401 
located in the a.a. 381-419 region of the SARS-CoV-2 nucleocapsid protein, and more specifically residues 402 
a.a.  400-415 (Figure 3A, 3B, 3C, and 3D). The top scoring pephde for all three scFv variants was the 402-403 
411 window (DFSKQLQQSM) (Figure 3E and 3F). The strong AF2 preference for pephdes from this C-404 
terminal segment was parhcularly evident in the average consensus pLDDT analysis. 405 
 406 
We next sought to experimentally verify the minimal linear epitope for mBG17 to determine how closely 407 
the AlphaFold2 predichon corresponded to our experimental data. Seven 10 a.a. pephdes that overlapped 408 
by 5 a.a. each were synthesized and used in compehhon ELISAs with mBG17 monoclonal anhbody and 409 
recombinant SARS-CoV-2 nucleocapsid protein (Figure 3G and 3H). The pephde corresponding to a.a. 401-410 
410 showed almost complete compehhon of mBG17 binding to the SARS-CoV-2 nucleocapsid protein in the 411 
ELISA, whereas none of the other pephdes were able to compete for mBG17 binding to nucleocapsid. 412 
Pephdes a.a. 296-405 and a.a. 406-415 overlap a.a. 401-410 at the N- and C-terminus, respechvely, but 413 
neither was able to compete, indicahng that mBG17 binds a.a. 401-410 on both sides of a.a. 405 and a.a. 414 
406.  An alignment of all the pephdes used in the overlapping pephde compehhon ELISA experiments 415 
showed that pephde sequence DDFSKQLQQS represents the experimentally determined epitope for 416 
mBG17, nearly idenhcal to the epitope predicted by AlphaFold2 (Figure 3H: DDFSKQLQQS). These results 417 
demonstrate that the PAbFold pipeline was able to very accurately predict the region that an anhbody binds 418 
to a novel linear epitope that is not present in AlphaFold2’s training set.  419 
 420 
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 421 
Figure 3: The AlphaFold2-driven PAbFold epitope scan method can accurately iden6fy a linear epitope for a novel SARS-CoV-2 422 
an6body.  An#body VH and VL sequences for SARS-CoV-2 nucleocapsid protein targeted an#body were used to generate scFv 423 
sequences A) WT, B) 15F11, C) 2E2 or na#ve VH and VL sequences D) 3 body). Variant scFv sequence in complex with pep#de 424 
windows from the SARS-CoV-2 nucleocapsid protein (Genbank Accession: YP_009724397) were subjected to AlphaFold2 structure 425 
predic#on. The top 5 pep#des ranked by either the E) Consensus method or the F) Simple Max method, with the underlined 426 
sequence highligh#ng the experimentally verified sequences and a cartoon schema#c for each system shown. G) Compe##on 427 
ELISA schema#c for assessing the ability of synthe#c pep#des derived from the SARS-CoV-2 nucleocapsid protein. H) Amino acid 428 
windows showing binding interference, with mBG17 binding to SARS-CoV-2 nucleocapsid protein (n = 3). Percentage of binding 429 
values were calculated from the no-pep#de control. Alignment of synthe#c pep#des corresponding to SARS-CoV-2 nucleocapsid 430 
a. a. 381-419. Pep#de a. a. 401-410, which demonstrated mBG17 compe##on. 431 
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Fine-characteriza;on of the mBG17 epitope and comparison to the predicted AlphaFold2 model. To further 432 
experimentally characterize the binding of the mBG17 to the a.a. 401-410 (DDFSKQLQQS) pephde and 433 
compare experimental data with the predicted AlphaFold2 model, we designed and synthesized ten 434 
addihonal pephdes, each containing an alanine point mutahon at one posihon in the a.a. 401-410 pephde. 435 
The pephdes are labeled D1A, D2A, F3A, S4A, K5A, Q6A, L7A, Q8A, Q9A, and S10A. Compehhon ELISAs 436 
were performed using increasing concentrahons of each pephde to beqer assess differenhal binding (Figure 437 
4A). As expected, WT (a.a. 401-410) pephde showed strong compehhon, although Q9A showed slightly 438 
beqer compehhon. This could be aqributed to alanine’s propensity to be in an alpha-helical coil (PropA, AHC  439 
= 0) vs glutamine’s propensity to escape it (PropQ, AHC  = 0.39) (40), thus further stabilizing the Q9A alpha 440 
helix. D1A showed no change in compehhon, indicahng that D1 was not involved in binding. Pephdes with 441 
subshtuhons K5A, Q6A, and S10A showed minor reduchons in compehhon, S4A showed a moderate 442 
reduchon on compehhon, whereas resides D2A, F3A, L7A, and Q8A all showed strong reduchons in 443 
compehhon. These data indicate that the key interachons between mBG17 and the a.a. 401-410 pephde 444 
are residues D2, F3, L7, and Q8, with S4 playing a moderate role and D1, K5, Q6, Q9 and S10 playing 445 
negligible roles in binding.  446 
 447 
Finally, we compared the experimental data shown above with the best scoring mBG17:DDFSKQLQQ model 448 
generated by AlphaFold2 (Figure 4B and 4C). The AlphaFold2 model suggests that residue D2 forms a 449 
hydrogen bond with mBG17 a.a. Y34, residue F3 forms a hydrophobic interachon with mBG17 a.a. L185, 450 
residue S4 lacks a hydrogen bond partner, residue L7 forms a hydrophobic interachon at the base of the 451 
binding clem with mBG17 a.a. A104, and residue Q8 hydrogen bonds with the backbone carbonyl of Y34 and 452 
the backbone amide of W35. Residues that experimentally showed no or minimal effects on compehhon 453 
(D1, K5, Q6, Q9) are all predicted to interact primarily with the solvent and lacked visible interachons 454 
between the pephde and scFv sequence. In summary, the AlphaFold2-driven PAbFold predichon was 455 
remarkably consistent with the experimental alanine scanning data, suggeshng that the predichon of the 456 
mBG17 linear epitope locahon was accurate due to the correct predichon of the structural details for how 457 
that linear epitope binds to the anhbody. 458 
 459 
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 460 
 461 
Figure 4. The Alphafold2-Driven PAbFold method accurately predicts molecular interac6ons between a linear epitope and a 462 
scFv  A) Compe##on ELISA assessing the ability of synthe#c alanine mutant pep#des derived from the SARS-CoV-2 nucleocapsid 463 
protein (a. a. 401-410: DDFSKQLQQS) to interfere with mBG17 binding to SARS-CoV-2 nucleocapsid protein (n = 3). Percentage of 464 
binding values were calculated from the no-pep#de control. B) AlphaFold2 model for mBG17-15F11 scFv bound to a. a. 401-410 465 
pep#de (the average pep#de pLDDT was 83.5). Residues that display sharply reduced binding to mBG17 upon muta#on to 466 
alanine in compe##on ELISAs (D2, F3, S4, L7, Q8) are shown as warm-colored thick s4cks. Predicted hydrogen bonds between the 467 
pep#de and the scFv are depicted by yellow bars. Sites where muta#on to alanine was less disrup#ve to binding (Q6A, K5A, S10A, 468 
D1A, and Q9A) are depicted as thin s#cks with cool colors. The carbon atoms of residues in panel B are colored according to the 469 
corresponding data in panel A. C) The same AlphaFold2 model for the mBG17-15F11 scFv bound to a.a. 401-410 colored with 470 
confidence (pLDDT) as predicted by AF2. 471 
 472 
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Discussion 473 
In this project we assessed the ability of an AlphaFold2-based linear epitope scan pipeline we call PAbFold 474 
(Pephde:Anhbody Fold) to predict linear anhbody epitopes using just anhbody and anhgen sequences. We 475 
first assessed the quality of scFv models produced by AlphaFold2. We then developed a series of Python 476 
scripts that accept scFv and whole anhgen protein sequences as inputs, parse the anhgen protein 477 
sequences into short overlapping pephdes, run batch predichons for each scFv:pephde pair, and output two 478 
pephde scoring schemes based on the pephde per-residue pLDDT scores as a metric for AlphaFold2 model 479 
confidence. 480 
Binding of the expected epitope to the WT-Myc scFv could only be detected via the consensus method, but 481 
either analysis method could readily detect the expected epitope bound to the chimeric Myc scFvs. 482 
Conversely, the alternate analysis method (Simple Max) performed beqer with respect to ranking the 483 
expected HA epitope binding to the WT and chimeric anh-HA scFv variants. In the HA case, performance 484 
was comparable for both the WT and chimeric scFv variants. 485 

 486 
It is important to note that binding of scFv variants to sequences other than the expected epitopes 487 

may be stahshcally unlikely but not impossible. For example, consider the pephde ATMPLNVSFT near the N-488 
terminus of the Myc proto-oncogene protein sequence. In the context of the WT anh-Myc scFv this pephde 489 
had slightly higher average consensus pLDDT (52.4 rather than 51.0) than a pephde (QKLISEEDLL) that 490 
closely matched the expected epitope. In the absence of direct experimental evidence, predicted affinity for 491 
this unexpected sequence is not necessarily incorrect, though the lack of comparable predicted binding to 492 
the 15F11 and 2E2 chimeric scFv variants further decreases the likelihood. In the future, it might be useful 493 
to assess pephde binding via consensus across scFv variants. 494 
 495 

Lastly, we tested this process on a novel anhbody generated by our group targehng the SARS-CoV-2 496 
nucleocapsid protein (mBG17) and found the method performed significantly beqer than with Myc and HA. 497 
Either analysis method could very easily flag pephde windows containing the authenhc experimentally 498 
validated epitope. This worked for the WT scFv, the chimeric scFv variants, and even a structure with 499 
disconnected heavy and light chain domains. Experimentally, we cleanly validated the AlphaFold2 predichon 500 
using a pephde compehhon ELISA assay to experimentally determine the mBG17 epitope. Confidence in the 501 
AlphaFold2 predichon was further buoyed via alanine scanning pephde compehhon ELISAs that verified the 502 
importance of the key binding interachons predicted by AlphaFold2. 503 
 504 

Idenhficahon of anhbody VH and VL sequences from monoclonal B-cells has become a rouhne task, 505 
with sequence informahon obtainable via various sequencing technologies such as next generahon 506 
sequencing and nanopore sequencing for a relahvely low cost. As a result, the determinahon of the epitope 507 
in service of a deeper understanding of how anhbodies bind their anhgen is an increasingly notable 508 
boqleneck. An experimental epitope determinahon campaign can take weeks or months of work, but with 509 
the advent of AlphaFold2 and the epitope predichon method we describe here, an anhbody and its anhgen 510 
could be sequenced in a few days (omen through contract research organizahons for low cost) and accurate 511 
linear epitope predichons generated within less than a day, dramahcally epitope validahon throughput as 512 
well as providing detailed predichons for the molecular features of anhbody-epitope interachon. 513 
 514 
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Conformahonal epitopes are structured anhgens that are found during many immune responses, 515 
and predichon of these epitopes from anhbody and anhgen sequences would be a significant boon to the 516 
field of biology. For example, conformahonal epitope predichon coupled with single-cell B-cell sequencing 517 
would allow for detailed analysis of anhbody maturahon during immune responses to vaccines or pathogen 518 
infechon, helping beqer define how the immune response to infechon evolves over hme and how evoluhon 519 
of anhgen sequences affects the anhbody response. In this work we did not focus on using AlphaFold2 to 520 
predict conformahonal epitopes primarily because of the complex structures that conformahonal epitopes 521 
possess. Literature reports suggest that predichon of the complexes between anhbodies and both whole 522 
anhgens and conformahonal epitope proteins has proven to be very difficult for AlphaFold2, and indeed the 523 
authors themselves make this observahon (12, 41, 42). Notably, the structures that proved most difficult to 524 
predict for AF2 and other tools in the CASP15-CAPRI154 challenges were anhbody-anhgen complexes (43). 525 
Reports suggest that a mix of both stahshcs-based approaches (neural networks like AF2) and physics-based 526 
approaches (such as Roseqa) predict ophmal anhbody-anhgen complexes (44). Indeed, if we aqempt to 527 
predict binding of our scFvs to intact anhgen proteins (Supplemental Figure 2), we find no predichve 528 
capability. When predichng scFv:pephde complexes, it may be the case that AlphaFold2 is able to 529 
thoroughly evaluate an induced fit for the pephde due to both its length (small sample space) and its 530 
propensity to not adopt a strong compehng structure. In contrast, embedding the epitope within a larger 531 
and more complicated structure appears to degrade the ability of AlphaFold2 to sample a comparable 532 
bound structure within the alloqed recycle steps. Addihonal complexihes may arise in extreme induced 533 
conformahonal changes during docking. Recent reports indicate that progress is being made in predichng 534 
the binding locahons of conformahonal epitopes (45, 46). 535 

We observed that the ability of AlphaFold2 to successfully predict the epitope pephde binding is 536 
quite delicate. First, epitope predichon was highly sensihve to the pephde length (Supplemental Figure 5), 537 
with minimal predichve power for pephde length other than 10 a.a. Further inveshgahon of this sensihvity 538 
would be a useful avenue for future research. Perhaps with enhanced sampling, epitopes can be detected 539 
within longer pephdes (e.g. 11 a.a., 12 a.a., etc.). Methodological tuning of this type could ulhmately help 540 
illuminate the path to increasingly difficult protein-protein binding predichon problems. Similarly, we have 541 
likewise determined that epitope scanning performance was sensihve to changes in the underlying 542 
AlphaFold2 neural networks and the MSA. Specifically, unless otherwise noted, all data in this report was 543 
obtained using ColabFold version 1.5.2 and the 5 neural networks that comprise AlphaFold2 mulhmer 544 
version 2 (mm2). Likewise, the MSAs we use were obtained from the MMSEQS server (and cached) when 545 
the default sequence databases were UniRef30 2202 and PDB70 220313. They have since been updated to 546 
PDB30 2302 and PDB100 230517. For a complete descriphon, see the change logs on the github for 547 
ColabFold (hqps://github.com/sokrypton/ColabFold#colabfold---v152). 548 

 549 
Insofar as protein-pephde predichon is an emergent “off-label” capability for AlphaFold2 that is not 550 

part of the training sets, further training of the models or other changes can degrade performance. 551 
Benchmarking performance can be difficult when there are mulhple moving targets. The most recent 552 
calculahons we have analyzed were using ColabFold version 1.5.2 which was current as of February 19, 553 
2023. The changes from ColabFold 1.5.2 to 1.5.5 (current as of this wrihng) are limited to version control 554 
and ensuring ColabFold shll works on Google Colab and therefore will not change the calculahon 555 
performance. Relahve to ColabFold 1.3 (the current method at the outset of this project), ColabFold 1.5.2 556 
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embodied two substanhal changes. First, ColabFold 1.5.2 used the updated AlphaFold mulhmer (mm) 557 
version 3 by default. Second, the backend server MMSEQS ((47) and 558 
(hqps://github.com/soedinglab/MMseqs2 )) that supplies MSAs also underwent updates, namely the 559 
database updates. Upon evaluahon, we found that the recent default methods (ColabFold 1.5.2) shll 560 
predicted the epitope successfully for the mBG17 system (Supplemental Figure 8). However, the ColabFold 561 
1.5.2 default methods had a pronounced decline in PAbFold performance for the HA and Myc systems. 562 
Specifically, the combinahon of mm3 and the revamped ColabFold MSA server tended to be less 563 
discriminahng compared to the default se~ngs for ColabFold 1.3 (ColabFold 1.3 was the most up to date 564 
version when this project was inihalized). The updated configurahon flagged diverse pephde sequences 565 
with elevated pLDDT values (Supplemental Figures 9 and 10) resulhng in the loss of successful epitope 566 
predichve power. While teshng ColabFold 1.5.2 with the most recent MSA server, but reverhng the 567 
AlphaFold2 models to mm2, the outcome improved, with experimentally validated sequences rising to the 568 
top more frequently than when using mm3 but shll falling short in ranking the experimentally validated 569 
epitope sequence embedded within the anhgen. However, when previously cached MSAs were paired with 570 
mm2 (using ColabFold 1.5.2), performance was maximized. Furthermore, we aqempted to recreate the 571 
MSA databases locally with similar but not idenhcal results to queueing the server with databases UniRef30 572 
2202 and PDB70 220313 (Supplemental Figure 11). Addihonally, the MMSEQS team ((47) and 573 
(hqps://github.com/soedinglab/MMseqs2 )) graciously rebuilt a server we could query using LocalColabFold 574 
that mimicked the original UniRef30 2202 and PDB70 220313 database set up as closely as possible on their 575 
end. The MSA that was generated from these databases was used, and shll did not perform as well as the 576 
original MSAs that were generated upon first retrieval and generahon (Supplemental Figure 12). As a 577 
negahve control, we repeated all calculahons without using any MSAs and only relying upon the sequence 578 
to make a structural predichon. As expected, all epitopes were scored very poorly (Supplemental Figure 579 
13). Despite our significant efforts, it is unclear why our inihal results cannot be perfectly recapitulated, but 580 
the difference has been traced to detailed MSA contents (Supplemental Figure 14), resulhng in differences 581 
in correct epitope idenhficahon. These results are summarized in (Supplemental Figure 15). These 582 
challenges are presumably compounded by the incredible diversity of the CDR loops in anhbodies which 583 
could decrease the useful signal from the MSA as well as drive inconsistent MSA-dependent performance 584 

 585 
One key lesson of this research effort is that caching the MSAs proved to be very useful as a method to 586 
guard against changes in the performance of 3rd party tools. We recommend that future methods 587 
development work using LocalColabFold adopt the strategy of caching MSAs when feasible. It is also our 588 
hope that by describing the latent ability of AlphaFold2 to predict scFv-binding epitopes that this ability will 589 
be preserved and enhanced in future iterahons. 590 
  591 
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 754 
Supplemental Table 1A 755 
>mBG17 scFv 756 
MAEVKLEESGGGLVQPGGSMKFSCVASGFTFSDYWMNWVRQSPDKGLEWVAEIRLKSNNYATHYAASVKGRFTISRDDSK757 
SSVYLQMNNLRAEDSGIYYCTRSAMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVMSQSPSSLAVSVGEKITMSCKSS758 
QSLLYTSDQKNYLAWFQQKPGQSPKLLIFWASTRDSGVPDRFTGSGSGTDFTLTISSVKAEDLAVYYCQQFYNYPRTFGGGT759 
KLEI 760 
 761 
>mBG17-15F11 762 
MAEVKLVESGGGLVKPGGSLKLSCAASGFTFSDYWMNWVRQTPEKRLEWVAEIRLKSNNYATHYAASVKGRFTISRDNAK763 
NTLYLQMSSLRSEDTAIYYCARSAMDYWGQGTTLTVSSGGGGSGGGGSGGGGSDIVLTQSPASLTVSLGQRATISCKSSQSLL764 
YTSDQKNYLAWYQQKPGQPPKLLIYWASTRDSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQFYNYPRTFGAGTKLEI 765 
 766 
>mBG17-2E2 767 
MAEVQLVESGGDLVKPGGSLKLSCAASGFTFSDYWMNWVRQTPDKRLEWVAEIRLKSNNYATHYAASVKGRFTISRDNAK768 
NTLYLQMSSLKSEDTAMYYCARSAMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLAVSLGQRATISCKSSQS769 
LLYTSDQKNYLAWYQQKPGQPPKLLIYWASTRDSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQFYNYPRTFGGGTKLE770 
I 771 
 772 
>mBG17 Fab VH:VL 773 
MYLGLNCVFIVFLLKGVQSEVKLEESGGGLVQPGGSMKFSCVASGFTFSDYWMNWVRQSPDKGLEWVAEIRLKSNNYATH774 
YAASVKGRFTISRDDSKSSVYLQMNNLRAEDSGIYYCTRSAMDYWGQGTSVTVSS:MDSQAQVLMLLLLWVSGTCGDIVM775 
SQSPSSLAVSVGEKITMSCKSSQSLLYTSDQKNYLAWFQQKPGQSPKLLIFWASTRDSGVPDRFTGSGS 776 
 777 
>mBG17 epitope 778 
DDFSKQLQQS 779 
 780 
>mBG17 target protein sequence – SARS CoV-2 Nucleocapsid protein 781 
MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTASWFTALTQHGKEDLKFPRGQGVPINTNSS782 
PDDQIGYYRRATRRIRGGDGKMKDLSPRWYFYYLGTGPEAGLPYGANKDGIIWVATEGALNTPKDHIGTRNPANNAAIVLQ783 
LPQGTTLPKGFYAEGSRGGSQASSRSSSRSRNSSRNSTPGSSRGTSPARMAGNGGDAALALLLLDRLNQLESKMSGKGQQ784 
QQGQTVTKKSAAEASKKPRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRI785 
GMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKADETQALPQRQKKQQTVTLLPAADLDD786 
FSKQLQQSMSSADSTQA 787 
 788 
>HA scFv 789 
MAEVKLVESGGDLVKPGGSLKLSCAASGFTFSSYGMSWVRQTPDKRLEWVATISRGGSYTYYPDSVKGRFTISRDNAKNTLY790 
LQMSSLKSEDTAMYYCARRETYDEKGFAYWGQGTTVTVSSGGGGSGGGGSGGGGSDIELTQSPSSLTVTAGEKVTMSCKSS791 
QSLLNSGNQKNYLTWYQQKPGQPPKLLIYWASTRESGVPDRFTGSGSGRDFTLTISSVQAEDLAVYYCQNDNSHPLTFGAG792 
TKLEL 793 
 794 
>HA-15F11 795 
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MEVKLVESGGGLVKPGGSLKLSCAASGFTFSSYGMSWVRQTPEKRLEWVATISRGGSYTYYPDSVKGRFTISRDNAKNTLYL796 
QMSSLRSEDTAIYYCARRETYDEKGFAYWGQGTTLTVSSGGGGSGGGGSGGGGSDIVLTQSPASLTVSLGQRATISCKSSQSL797 
LNSGNQKNYLTWYQQKPGQPPKLLIYWASTRESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQNDNSHPLTFGAGTKLEI 798 
 799 
>HA-2E2 800 
MAEVQLVESGGDLVKPGGSLKLSCAASGFTFSSYGMSWVRQTPDKRLEWVATISRGGSYTYYPDSVKGRFTISRDNAKNTLY801 
LQMSSLKSEDTAMYYCARRETYDEKGFAYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLAVSLGQRATISCKSS802 
QSLLNSGNQKNYLTWYQQKPGQPPKLLIYWASTRESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQNDNSHPLTFGGGT803 
KLEI 804 
 805 
>HA target protein sequence – influenza hemmaglutanin A  806 
MKTIIALSYILCLVSAQKLPGSENRTATLCLGHHAVQNGTLVKTITNDQIEVTNATELVQSSSTGRICDNPHRVLDGRDCTLIDA807 
LLGDPHCDSFQNKEWDLFIERSKAYSNCYPYDVPDYASLRSLVASSGTLEFTTEGFDWTGVTQNGTSYSCKRGSANSFFSRLN808 
WLHKLNYKYPAQNVTMPNDDKFDKLYIWGVHHPSTDNDQTSLYVQTSGRVTVSTKRSQQTVVPDIGSRPWVRGISSRISIH809 
WTIVKPGDILLINSTGNLIAPRGYFKIRNGKSSIMKSDALIGNCNSECITPNGSIPNDKPFQNVNRITYGDCPRYVKQSTLKLAT810 
GMRNVPEKQTRGIFGAIAGFIENGWEGMVDGWYGFRHRNSEGTGQAADLKSTQAAIDQINGKLNRLIKKTNEKFHQIEKE811 
FSEVEGRIQDLEKYVEDTKVDLWSYNAELLVALENQHTIDLTDSEMNKLFERTRKQLRENAEDMGNGCFKIYHRCDNACIGS812 
IRNGTYNHNVYRDEALNNRFKIKGVELKSGYKDWILWISFAISCFLLCVGLMGLIMWTCQKGNIRCIRCNICH 813 
 814 
>HA epitope 815 
YPYDVPDYA 816 
 817 
>Myc scFv 818 
MEVKLVESGGDLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPDKRLEWVATIGSRGTYTHYPDSVKGRFTISRDNDKNALY819 
LQMNSLKSEDTAMYYCARRSEFYYYGNTYYYSAMDYWGQGASVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLAVSLGQ820 
RATISCRASESVDNYGFSFMNWFQQKPGQPPKLLIYAISNRGSGVPARFSGSGSGTDFSLNIHPVEEDDPAMYFCQQTKEVP821 
WTFGGGTKLEI 822 
 823 
>Myc-15F11 824 
MEVKLVESGGGLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPEKRLEWVATIGSRGTYTHYPDSVKGRFTISRDNAKNTLYL825 
QMSSLRSEDTAIYYCARRSEFYYYGNTYYYSAMDYWGQGTTLTVSSGGGGSGGGGSGGGGSDIVLTQSPASLTVSLGQRATI826 
SCRASESVDNYGFSFMNWYQQKPGQPPKLLIYAISNRGSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQTKEVPWTFG827 
AGTKLEI 828 
 829 
>Myc-2E2 830 
MAEVQLVESGGDLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPDKRLEWVATIGSRGTYTHYPDSVKGRFTISRDNAKNTL831 
YLQMSSLKSEDTAMYYCARRSEFYYYGNTYYYSAMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLAVSLGQ832 
RATISCRASESVDNYGFSFMNWYQQKPGQPPKLLIYAISNRGSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQTKEVP833 
WTFGGGTKLEI 834 
 835 
>Myc target protein sequence  836 
MDFFRVVENQPPATMPLNVSFTNRNYDLDYDSVQPYFYCDEEENFYQQQQQSELQPPAPSEDIWKKFELLPTPPLSPSRRS837 
GLCSPSYVAVTPFSLRGDNDGGGGSFSTADQLEMVTELLGGDMVNQSFICDPDDETFIKNIIIQDCMWSGFSAAAKLVSEKL838 
ASYQAARKDSGSPNPARGHSVCSTSSLYLQDLSAAASECIDPSVVFPYPLNDSSSPKSCASQDSSAFSPSSDSLLSSTESSPQGS839 
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PEPLVLHEETPPTTSSDSEEEQEDEEEIDVVSVEKRQAPGKRSESGSPSAGGHSKPPHSPLVLKRCHVSTHQHNYAAPPSTRK840 
DYPAAKRVKLDSVRVLRQISNNRKCTSPRSSDTEENVKRRTHNVLERQRRNELKRSFFALRDQIPELENNEKAPKVVILKKATA841 
YILSVQAEEQKLISEEDLLRKRREQLKHKLEQLRNSCA   842 
 843 
>Myc epitope 844 
EQKLISEEDL 845 
 846 
Supplemental Table 1B 847 
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 848 
                  849 
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 850 
Supplemental Figure 1. Alignment of AlphaFold2 predicted scFv structures to an an6-c-Myc Fab crystal structure. A) Alignments 851 
of AlphaFold2-derived wild-type Myc scFv, Myc-2E2 scFv, and Myc-15F11 scFv structures with a Myc Fab crystal structure (PDB: 852 
2orb). Predicted scFv structures are shown in dark blue, 2orb Myc Fab structures are shown in light blue. B) RMSD values 853 
comparing structural similari#es between the wild-type Myc scFv, Myc-2E2 scFv, and Myc-15F11 scFv structures with a Myc Fab 854 
crystal structure (PDB: 2orb) were computed by the PyMOL align command. 855 
  856 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.04.19.590298doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.19.590298
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

 857 
Supplemental Figure 2: Alphafold2’s best a^empt to dock whole sequences with the respec#ve sequence’s scFv. A) The whole HA 858 
protein structure and scFv complex as predicted by AF2, with the correct epitope sequence highlighted in magenta. B) Shows the 859 
same structure by highlighted by confidence (pLDDT) of the structure with AF2. Similarly, the en#re Myc protein-scFv complex are 860 
shown with C) the correct epitope highlighted in magenta and D) the confidence of the structure shown, and again for the 861 
mBG17 N-protein-scFv complex in E) and F). 862 
  863 
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 864 
Supplemental Figure 3: AlphaFold2 places all pep6des near the CDR loops. The predicted Cα coordinates for all scFv (excluding 865 
the flexible linker) were extracted, and all were aligned together using the Kabsch algorithm (48, 49). With the scFvs structurally 866 
aligned, an all-against-all RMSD was calculated for the epitope pep#des. To visually represent each pep#de as a single point, the 867 
coordinates for all epitope atoms were averaged. The “central” exemplar epitope (cyan) is the pep#de with the smallest sum of 868 
RMSD to all other pep#des. A) The average and quar#le for pep#de placement rela#ve to the central pep#de via Box-and-869 
Whisker plot reveals that AlphaFold2 largely places all epitopes in the same area. The Myc CDRH3 runs through the middle of a 870 
tradi#onal paratope pocket, it isn’t a “cradle” for the epitope to sit on. AlphaFold2 places pep#des on both sides of the CDRH3, 871 
causing significant spread in the pep#de placement. B) An example of an exemplar, most-central predicted pep#de structure 872 
(cyan) for the pep#de PKSCASQDSS (cyan) bound to the Myc-2E2 scFv (green) that is distant from an example outlier pep#de 873 
(magenta, pep#de PHSPLVLKRC, center-to-center distance 14.8 Å). All pep#de placements are s#ll in contact with CDRH3, 874 
consistent with a strong AlphaFold2 bias to place pep#des in a typical an#body binding site. C) The Myc-2E2 scFv (pale-green) and 875 
the average epitope placement (cyan) pep#de alongside the crystal structure solu#on of the Myc epitope (grey). Remaining 876 
pep#de placements are represented as a cloud of spheres at the mean pep#de posi#on. Each pep#de sphere is colored and sized 877 
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by epitope pLDDT (ranging from 20 to 90). Although AlphaFold2 frequently placed pep#des on the opposite side of the CDRH3 878 
from the Myc epitope (grey), it was not confident in these pep#de placements (low, small, blue pLDDT spheres). In contrast, some 879 
of the pep#des placed around the CDRH3, and in posi#ons similar to the na#ve epitope (grey) were placed with higher pLDDT 880 
confidence (increasingly large spheres trending from green to yellow to orange and red). D) The top ranked pep#de as predicted 881 
by PAbFold with sequence QKLISEEDLL (red) and the crystal structure solu#on of the Myc epitope (grey).  882 
  883 
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 884 

 885 
 886 
Supplemental Figure 4: RMSD comparison (all numbers have units of Å) for AlphaFold2 predicted scFv structures compared to 887 
reference crystal structures, A) 2or9 (Myc) and B) 1frg (HA), respec#vely. The loops of the scFv more closely mimic the crystal 888 
structure when the epitope pep#de is present. The backbone also undergoes subtle changes during docking that make it slightly 889 
more similar to the crystal structure. These structures were aligned by iden#fying the framework residues in all structures, then 890 
aligning the framework region Cα with the Kabsch algorithm  (48, 49). Specifically excluded from this process were the heavy and 891 
light CDR loops of the structures, as well as the flexible linker structure that connects the heavy and light chains due to the 892 
inherent floppy, unstructured nature of this region. A:er aligning the framework regions of the AlphaFold2 predicted structures 893 
and the crystal structures (2or9 and 1frg respec#vely), an RMSD of these Cα was calculated and is reported as the first column 894 
‘BB Cα RMSD’. Without further alignment, loop placement was analyzed with an all backbone RMSD by calcula#ng the RMSD 895 
between the C, Cα, N, and O along the backbone of all residues in the scFv that were not used for the framework 896 
superimposi#on. This RMSD is reported in the second column as ‘Loop all backbone RMSD’. Finally, to inves#gate pep#de 897 
predicted placement and poten#al scFv:epitope interac#ons, an all-atom RMSD was calculated between the crystal structure and 898 
the AF2 predicted pep#de structure (no addi#onal alignment). Because the apo structure lacks a pep#de posi#on, this is only 899 
reported in the ‘Docked’ category and is in the 3rd column labeled ‘Epitope all atom RMSD’. One script was wri^en for each scFv 900 
(Myc and HA), and can be found in the Zenodo deposi#on of our data (h^ps://zenodo.org/records/10884181) because this 901 
analysis is not a key part of PAbFold. Briefly this analysis reveals that all three HA scFv variants have predicted framework regions 902 
and loop regions in the apo structures that closely match the reference structure (0.56-0.58 Å and 1.21-1.39 Å). Accordingly, 903 
when the cognate epitope pep#de is present, it can be placed with rela#vely high accuracy for all three scFvs (3.1-3.2 Å), with 904 
only small changes in the loops (1.39 Å to 1.25 Å, 1.32 Å to 1.26 Å, and 1.21 Å to 1.27 Å). In contrast, the apo structures for the 905 
three Myc scFvs have a much higher devia#on in the loop regions (2.87 to 3.06 Å). When the epitope pep#de is added, there is 906 
significant mo#on in the loops consistent with an “induced fit” descrip#on. In the two chimeric Myc scFvs (Myc-15F11 and Myc-907 
2E2) the final loop RMSD is reduced to 1.51-1.61 Å, and the epitope pep#de is successfully predicted (2.45-2.68 Å). However, 908 
despite a lower apo-state loop RMSD (2.87 Å), the loop RMSD for the wild-type Myc scFv only drops to 1.75 Å, and the epitope 909 
pep#de placement does not match the experimental structure (6.69 Å). This is consistent with the failure of the wild-type Myc 910 
scFv AlphaFold2 predic#ons in main text Figure 2. 911 
  912 

BB Ca RMSD Loop all backbone RMSD Epitope all atom RMSD BB Ca RMSD Loop all backbone RMSD Epitope all atom RMSD
Myc 0.65 2.87 NA 0.47 1.75 6.69
Myc-15F11 0.62 3.06 NA 0.51 1.51 2.45
Myc-2E2 0.61 2.96 NA 0.51 1.61 2.68

BB Ca RMSD Loop all backbone RMSD Epitope all atom RMSD BB Ca RMSD Loop all backbone RMSD Epitope all atom RMSD
HA 0.56 1.39 NA 0.58 1.25 3.2
HA-15F11 0.56 1.32 NA 0.6 1.26 3.1
HA-2E2 0.58 1.21 NA 0.6 1.27 3.1

scFv Apo Docked

scFv Apo Docked
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 913 

 914 
 915 
Supplemental Figure 5. Assessment of pep6de size and sliding window sizes on epitope predic6on efficacy. Myc-2E2 916 
scFv:pep#de structures were predicted with pep#des of 8 (A), 9 (B), 10 (C), 11 (D), and 12 (E) amino acid lengths derived from the 917 
Myc protein with a sliding window of 2 amino acids, and pLDDT scores from each predicted structure were plo^ed against the 918 
Myc amino acid posi#on and sliding window length target. F) Nega#ve control pep#des bind to an#body binding sites, but with 919 
poor pLDDT scores. Similarly, with a fixed pep#de length of 10 and a sliding window step size of 1 (F), 2 (G), and 5 (H), we can see 920 
the prac#cal epitope detec#on outcome was similar for a sliding window of 1 and 2, but resolu#on and accuracy were reduced 921 
for a sliding window step size of 5. To more fully illustrate the strong learned bias that AlphaFold2 has for placing any pep#des 922 
among the CDR loops, we predicted the structure of Myc-2E2 in complex with several control pep#des. These nega#ve control 923 
pep#des bind to the generally expected an#body binding site, but with poor pLDDT. I) GSx5 in magenta (GSGSGSGSGS) had a 924 
score (mean pep#de from Simple Max method pLDDT) of 29.5. (GGGGS)2 in orange (GGGGSGGGGS) had a score of 31.9. G10 in 925 
red (GGGGGGGGGG) had a score of 33. Lastly, J) A10 in cyan (AAAAAAAAAA) had a score of 41 and is the only nega#ve control 926 
pep#de to have an alpha-helical secondary structure (presumably due to the increased alpha helical propensity of alanine).  927 
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 928 
 929 
Supplemental Figure 6: PAbFold epitope detec6on is independent of posi6on within target sequence. The Myc epitope 930 
(EQKLISEEDL) was added into the beginning, middle, or end of the 99-a.a. HIV protease sequence (Genbank Accession: 931 
NP_705926.1) prior to epitope scanning structure predic#on. Posi#ons of the Myc epitope sequence added to in the A) N-932 
terminus B) middle and C) C-terminus of the HIV protease sequence. D) Highlights the ranked sequences recovered from each 933 
experiment in A, B, and C.  934 
 935 
 936 
  937 
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 938 

 939 
 940 
Supplemental Figure 7: Alphafold2 can accurately predict the HA linear epitope in different scFv backbones. The an#-HA VH 941 
and VL an#body sequences were used to generate either A) wild-type scFv or CDR loop gra:ed onto the B) 15F11 or C) 2E2 942 
an#body backbones. The Influenza A virus hemagglu#nin protein sequence (Genbank AUT17530.1) was used as the target 943 
an#gen and processed into 10 amino acid overlapping pep#des with a 1 amino acid sliding window. The structures for each 944 
scFv:pep#de pair were predicted with Alphafold2, and pLDDT values for each scFv:pep#de pair are shown. D) The top-ranking 945 
epitope sequences via pLDDT scores are reported via the consensus method. Sequence underlining represents overlap with the 946 
known HA epitope (HA a.a. 114-125: YDVPDYASL). E) The top-ranking epitope sequences via pLDDT scores are reported via the 947 
simple max method. 948 
 949 
  950 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.04.19.590298doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.19.590298
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

 951 
 952 
Supplemental Figure 8: A comparison of Alphafold2 mul#mer version 3 and mul#mer version 2 applied to the mBG17 system. 953 
The experimental epitope, DDFSKQLQQS, is s#ll easily iden#fied with all three scFv backbones (wildtype, 15F11, and 2E2). 954 
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 955 
Supplemental Figure 9: Myc comparison of epitope iden6fica6on accuracy, comparing model types. Performance varia#on with 956 
AlphaFold2 model (mul#ple versions 2 and 3) and MSA versions (most up to date version of the ColabFold MSA server uses 957 
UniRef30 (2302) and PDB100 (220517)) vs the old MSA server (when this data was ini#ally generated, ColabFold MSA server used 958 
UniRef30 (2202) and PDB70 (220313)). The le: column is the WT scFv, the middle column is the CDR loops spliced onto the 15F11 959 
backbone, and the right column is the CDR loops spliced onto the 2E2 backbone. Performance was ablated when using MM3 and 960 
the new MSA, and significantly degraded when using MM2 with the new MSA. For AF2-MM2 Old MSA, see Figure 2. 961 
 962 
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 963 
Supplemental Figure 10: HA comparison of epitope iden6fica6on accuracy, comparing model types.  A comparison of the 964 
differing AlphaFold2 models with the Myc system (mul#mer version 3 and 2) along with a comparison of the new MSA (most up 965 
to date version of the ColabFold MSA server uses UniRef30 (2302) amd PDB100 (220517)) vs the old MSA server (when this data 966 
was ini#ally generated, ColabFold MSA server used UniRef30 (2202) and PDB70 (220313)). The le: column is the WT scFv, the 967 
middle column is the CDR loops spliced onto the 15F11 backbone, and the right column is the CDR loops spliced onto the 2E2 968 
backbone. For AF2-MM2 Old MSA, see Supplemental Figure 7. 969 
 970 
 971 
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 972 
Supplemental Figure 11: Local remake of the databases used by the MMSEQS server. Databases were downloaded (UniRef30 973 
(2202) and PDB70 (220313)) and were queried locally to produced MSA’s for tes#ng. These runs all were done with the mul#mer 974 
version 2 model of Alphafold 2. The le: column is the WT scFv, the middle column is the CDR loops spliced onto the 15F11 975 
backbone, and the right column is the CDR loops spliced onto the 2E2 backbone. The first row is the HA system, the second row is 976 
the Myc system, and the final row is the mBG17 system.  977 
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 979 
 980 
Supplemental Figure 12: Server remake of the MMSEQS databases. The databases were rebuilt by the MMSEQS team UniRef30 981 
(2202) and PDB70 (220313)) on the Colabfold MSA server and were queried produced MSA’s for tes#ng. These runs all were done 982 
with the mul#mer version 2 model of Alphafold 2. The le: column is the WT scFv, the middle column is the CDR loops spliced 983 
onto the 15F11 backbone, and the right column is the CDR loops spliced onto the 2E2 backbone. The first row is the HA system, 984 
the second row is the Myc system, and the final row is the mBG17 system.  985 
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 987 
Supplemental Figure 13: Single Sequence mode (no MSA’s) of epitope predic6on with AF2. These runs all were done with the 988 
mul#mer version 2 model of Alphafold 2 in single sequence mode (i.e. no MSA was used) as a nega#ve control, to highlight the 989 
importance of a quality MSA. The le: column is the WT scFv, the middle column is the CDR loops spliced onto the 15F11 990 
backbone, and the right column is the CDR loops spliced onto the 2E2 backbone. The first row is the HA system, the second row is 991 
the Myc system, and the final row is the mBG17 system.  992 
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 998 
Supplemental Figure 14: MSA overlap between the 4 genera6on methods. Here we highlight the number of unique entries that 999 
are shared amongst all of the MSA methods, those being: 1) using the databases right now via colabfold (PDB30 2302 and 1000 
PDB100 230517) (green) 2) the databases a:er they had been accessed via colabfold and cached for repeated use (UniRef30 1001 
(2202) and PDB70 (220313)) (yellow), 3) downloading the databases locally (UniRef30 (2202) and PDB70 (220313)) and 1002 
a^emp#ng to create the MSAs ourselves (red), and 4) querying the databases a:er the MMSEQS team rebuilt them for our use 1003 
via colabfold (UniRef30 (2202) and PDB70 (220313)) (blue).  1004 
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 1007 
Supplemental Figure 15: Comparison of how well each MSA genera6on scheme accurately iden6fied the experimentally 1008 
derived epitope within the top 5 epitope sequences. A green checkmark shows that it was found by both the consensus model 1009 
and the top single model, a yellow “M” means the simple max method correctly iden#fied the experimental epitope in the top 5 1010 
epitopes, and the red dash means both methods failed. The consensus model did not iden#fy the epitope correctly when the 1011 
simple max method failed to. The colored background behind the #tles is the same color as Supplemental Figure 14 to help guide 1012 
the eye.   1013 
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