

1 PAbFold: Linear Antibody Epitope Prediction using AlphaFold2

2
3 Jacob DeRoo^A, James S. Terry^B, Ning Zhao^E, Timothy J. Stasevich^D, Christopher D. Snow^{A,C*} and Brian J.
4 Geiss^{A,B*}

5
6
7 ^ASchool of Biomedical Engineering, Colorado State University, Fort Collins CO USA

8 ^BDepartment of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins CO USA

9 ^CDepartment of Chemical & Biological Engineering, Colorado State University, Fort Collins CO USA

10 ^DDepartment of Biochemistry and Molecular Biology, Colorado State University, Fort Collins CO USA

11 ^EDepartment of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus,
12 Aurora, CO USA

13
14 *Corresponding Authors: Brian.Geiss@colostate.edu and Christopher.Snow@colostate.edu

15
16 Keywords: AlphaFold2, antibody, linear epitope, epitope-prediction, scFv, competition ELISA

17
18 **Abstract**

19 Defining the binding epitopes of antibodies is essential for understanding how they bind to their antigens
20 and perform their molecular functions. However, while determining linear epitopes of monoclonal
21 antibodies can be accomplished utilizing well-established empirical procedures, these approaches are
22 generally labor- and time-intensive and costly. To take advantage of the recent advances in protein
23 structure prediction algorithms available to the scientific community, we developed a calculation pipeline
24 based on the localColabFold implementation of AlphaFold2 that can predict linear antibody epitopes by
25 predicting the structure of the complex between antibody heavy and light chains and target peptide
26 sequences derived from antigens. We found that this AlphaFold2 pipeline, which we call PAbFold, was able
27 to accurately flag known epitope sequences for several well-known antibody targets (HA / Myc) when the
28 target sequence was broken into small overlapping linear peptides and antibody complementarity
29 determining regions (CDRs) were grafted onto several different antibody framework regions in the single-
30 chain antibody fragment (scFv) format. To determine if this pipeline was able to identify the epitope of a
31 novel antibody with no structural information publicly available, we determined the epitope of a novel anti-
32 SARS-CoV-2 nucleocapsid targeted antibody using our method and then experimentally validated our
33 computational results using peptide competition ELISA assays. These results indicate that the AlphaFold2-
34 based PAbFold pipeline we developed is capable of accurately identifying linear antibody epitopes in a
35 short time using just antibody and target protein sequences. This emergent capability of the method is
36 sensitive to methodological details such as peptide length, AlphaFold2 neural network versions, and
37 multiple-sequence alignment database. PAbFold is available at <https://github.com/jbderoo/PAbFold>.

38
39 **Introduction**

40 Understanding where and how an antibody binds to its target protein is important for understanding how
41 the antibody performs its function, whether that function is neutralizing a pathogen during an immune
42 response, binding an epitope in immunoassays, or labeling a target molecule in a live-cell imaging
43 experiment. However, determining the binding epitope of an antibody can be a time and labor-intensive

endeavor with significant expense. Traditionally, antibody epitopes on target proteins have been identified by performing deletion analysis on the target protein to determine if the antibody loses reactivity for the deletion mutants in various immunoassays, which provides the general region of the target protein the antibody binds to. With the advent of widely available chemical peptide synthesis, sequence-specific synthetic peptides can be used for competitive immunoassays (such as enzyme-linked immunosorbent assays (ELISA)) to establish sequences that can effectively compete with the antigen for antibody binding. Peptide mapping experiments are a powerful method for determining the fine sequence of linear antibody epitopes, but these experiments can be relatively expensive and the time between experimental design and data acquisition can be weeks to months due to the need to design and chemically synthesize peptides. Once a peptide has been identified that binds with high affinity and specificity to an antibody antigen binding fragment (Fab), crystal structures can be determined that demonstrate intermolecular interactions between the peptide and antibody. These can then provide a molecular-level explanation for an antibody's binding mode. Finally, with the advent of rapid single B-cell sequencing technologies to analyze humoral immune responses towards vaccination or infection, determining where specific antibody clones bind on an antigen becomes even more challenging due to the need to isolate or synthesize specific antibody genes, produce antibodies, and then perform deletion or epitope mapping experiments described above to fully understand how and where antibodies bind. These challenges make determining antibody epitopes expensive and time-consuming and limit the number of antibodies that are characterized in detail.

Antibodies that bind to linear epitopes represent an important subset to molecular biology, as they can be added to recombinant proteins for use in various types of immunoassays. By definition, a linear epitope is a binding site on an antigen that is recognized by the primary structure or contiguous linear sequence of amino acids. A number of linear epitope specific antibodies have been developed for use in various immunoassays (ELISA, western blot, immunofluorescence, etc.). The development of computational methods for linear epitope determination could increase the number and quality of new linear epitopes available to the field. Most epitope prediction tools (such as BepiPred (1), ElliPro (2), and ABCpred (3)) are generally designed to predict regions of an antigen that could be recognized by any antibody rather than a specific antibody. These programs also provide no insight into the structural match of the epitope and antibody, potentially making decisions without key structural information that otherwise may be relevant. The challenge in predicting epitopes for a *specific* antibody lies in the complexity of protein-protein interaction dynamics, which includes conformational changes, binding affinities, and thermodynamic stability. Structure based approaches including HADDOCK (4, 5) and ZDOCK (4, 6) can be used to dock peptides into antibody structures, but these require known peptides for binding. Significant progress has been made to address this problem via deep learning: some of the new and exciting tools are GearBind (7), PALM and A2binder (8), and DSMBind (9). We point the reader to this review for an excellent overview of some of the tools that have existed for some time, along with a comparison of these tools (10).

Determining antibody-epitope interactions is, at its most basic level, a structural biology problem. Determining what molecular interactions are present between an antibody and its antigen can define the epitope, determine what portions of the epitope and CDR sequences are responsible for molecular interactions, and provide clues to antibody specificity and affinity. With the advent of highly accurate structural predictions, including the AlphaFold2 (AF2) neural networks (11, 12), the ability to accurately predict protein structures, and potential protein-protein interactions, has dramatically increased. AlphaFold2 was trained on existing protein structures and can effectively model new protein structures.

89 Numerous antibodies, antibody Fab regions, and other related constructs with bound target peptides or
90 proteins have been crystalized and deposited into the Protein Data Bank (PDB) (for example (13–16)).
91 These PDB entries represent a valuable training set that may increase the likelihood that AlphaFold2 can
92 successfully predict the structure for antibody-epitope complexes (12, 17–19). The authors of AlphaFold2
93 multimer (12) comment on the difficulty of predicting antibody-epitope complexes, and results for this are
94 indeed mixed at best (17–19). One way in which this current report is distinct is our focus on linear
95 epitopes. We hypothesize that the lack of strong competing structure within the short peptide may boost
96 AF2 prediction of scFv-epitope binding predictions relative to conformational epitopes. This problem has
97 precedent, as AlphaFold2 has previously been used to study the interactions between proteins and peptides
98 (17, 18). AlphaFold2’s ability to correctly dock independent protein chains can be repurposed to predict
99 how strongly two proteins interact together and extends to predicting the interaction between an antibody
100 and short flexible peptides (linear epitopes) drawn from a larger protein antigen.
101
102 To maximize compute efficiency, it is helpful to minimize the size of the system subject to structure
103 prediction. The computational expense of AlphaFold2 scales with the square of the length of the
104 concatenated sequences involved. Fortunately, with respect to epitope specificity, antibody constant
105 domains are less critical than the CDR loops and the remainder of the variable domain framework regions.
106 Antigen binding by antibodies is primarily dictated by the antigen binding fragment (Fab) containing the
107 variable light (V_L) and variable heavy (V_H) fragments. Conversion of full antibody sequences into single chain
108 variable fragments (scFv) can significantly reduce structure prediction complexity and compute time. A
109 wildtype scFv sequence can easily be generated directly from translated antibody heavy and light chain DNA
110 sequences. Briefly, the sequences are first divided into framework and complementarity determining
111 regions (CDRs) using Kabat (20) or IMGT (21) nomenclature. A flexible linker sequence
112 (GGGGSGGGGGSGGGGS, 15 a.a.) is then added between the new C-terminus of the truncated light chain and
113 the original N-terminus of the shortened heavy chain to generate a single protein sequence that
114 incorporates both antigen-binding chains. The resulting fusion protein often functions in a similar fashion to
115 the original antibody. Another well-known protein engineering strategy for antibodies is “loop grafting”,
116 where the CDR loops from one antibody are grafted onto a different framework region. We have recently
117 used this approach to develop scFvs with improved *in vivo* performance (22). The structures of the novel
118 scFv chimeras can be rapidly and confidently predicted by AlphaFold2 due to their small size and the
119 extensive immunoglobulin representation within sequence databases and the PDB. Excluding the time
120 needed to obtain a multiple sequence alignment (MSA), predicting the structure for a single scFv in complex
121 with a 10-a.a. peptide requires only 1.5 minutes on an NVIDIA A5000 graphics processing unit (GPU). This
122 modest compute time allows a GPU-laden server or workstation to handle large-scale structure prediction
123 of hundreds of related systems. As for the MSA input, a high quality MSA can quickly be obtained via
124 ColabFold (23), which relies on the MMseqs2 MSA server. In our workflow, we repeatedly predict the
125 structure for a fixed single scFv sequence in complex with varying peptide partners. In this case, we do not
126 expect the peptide portion of the MSA to be useful. Therefore, to avoid sending hundreds of nearly
127 identical MSA requests to MMseqs2 MSA server, and to avoid varying information in the MSA, we slightly
128 modified the LocalColabFold code to include the option to cache the MSA (install available on the GitHub).
129 We generate one cached MSA per epitope scan, where each residue in the query peptide is a glycine.
130
131 Several recent papers have attempted to use AlphaFold2 to identify antibody epitopes (24–26), but have
132 primarily focused on computational identification and have not verified their results using new antibodies

133 that are not within the PDB training set. While there are many other structure prediction models other than
134 AlphaFold2 (27, 28), including some specifically dedicated to predicting antibodies or antibody-like
135 structures (29–32), we chose AlphaFold2 to directly test its ability to correctly identify and place epitopes
136 into an antibody binding cleft. We selected AlphaFold2 due to its widespread use throughout the literature,
137 as well as its ease of installation and modification via the LocalColabFold implementation (23). Another
138 reason for selecting AF2 is to attempt to quantify its abilities the compare simple linear epitopes, since the
139 team behind AF-multimer reported that conformational antibody complexes were difficult to predict
140 accurately (12). In this project we test a method we call PAbFold, a LocalColabFold-based pipeline to
141 identify epitopes for several well-known linear-epitope antibodies from sequence information only. There
142 was a strong correlation between AlphaFold2's confidence in the peptide structure (pLDDT) (33) and the
143 experimentally verified epitope binding sequence. Additionally, we found that AlphaFold2 very accurately
144 predicted the linear epitope of a novel SARS-CoV-2 nucleocapsid-specific antibody (mBG17) with minimal
145 prior epitope information. The molecular interactions predicted by AlphaFold2 were experimentally
146 validated using peptide mapping ELISA experiments. Overall, this work demonstrates that AlphaFold2 has
147 compelling promise for linear antibody epitope discovery from sequence information alone. We also have
148 observed that this emergent linear epitope prediction ability is sensitive to the peptide length and that the
149 performance was optimal when using AlphaFold2-multimer version 2 and older MSAs generated by
150 MMSEQS version 2202 server, rather than the more recent AlphaFold2-multimer version 3 models and
151 MMSEQS version 2302 server.

152

153 **Materials and Methods:**

154 **Software:**

155 All structure predictions were completed on a single AMD EPYC 7443 server with two NVIDIA RTX A5000
156 GPU cards. PAbFold code was written in Python 3.7 and Bash. The only extra Python dependencies are
157 NumPy and Matplotlib. AlphaFold2 calculations were run using an installation of LocalColabFold (23).
158 Briefly, PAbFold contains 3 stages. In the first stage, a python script
159 'A_PeptideMapping_prep_submission_files.py' writes FASTA input files for ColabFold. Each FASTA file
160 contains the entire sequence of the subject scFv, a colon ":", and then the candidate linear epitope which
161 represents a small section of the target antigen protein that changes dependent upon both the epitope
162 length (default 10 a.a.) and a sliding window (default 1 a.a.).

163 After completion of the ColabFold jobs, two different analysis methods are presented in this paper,
164 and both are accessible via the 'B_PeptideMapping_plddt_perres_analysis.py' python script. The first is the
165 'Simple Max' method, which assesses each peptide window with only the output model that is top ranked
166 by ColabFold (on the basis of ipTM). The AlphaFold2 confidence pLDDT (33) is recorded for each residue
167 within the peptide. Other than the N- and C-terminal residues, each residue is observed within multiple
168 windows. We proceed to calculate (and plot) the maximum pLDDT observed for each residue across the set
169 of sliding window peptides that contain that residue. Thus, in the 'Simple Max' method each residue is
170 considered independently. To obtain aggregate scores for each peptide window, we sum the maximum
171 pLDDT associated with each member residue. This method is sensitive in that any isolated high-confidence
172 residue placements in the top ranked AlphaFold2 peptide prediction can increase the score, but a high
173 aggregate peptide score could arise from multiple, mutually inconsistent peptide binding poses. Our
174 second, complementary analysis method instead focuses on recognizing full peptide poses of elevated

175 AlphaFold2 confidence. We refer to the second method as the ‘Consensus method’ because it begins by
176 averaging the per-residue pLDDT across the five AlphaFold2 models. We then compute the average pLDDT
177 for each peptide. For visual inspection, scripts output a heat map for the average per-residue pLDDT and a
178 bar-chart that for the subsequent per-peptide average pLDDT. In this case, we simply rank top peptides
179 based on the per-peptide average pLDDT. Scripts are available at <https://github.com/jbderoo/PAbFold>.
180

181 **Antibody sequences:** Sequences and references for antibodies, scFvs, and antigens can be found in
182 **Supplemental Table 1A.** To create an scFv, the complementarity determining regions or loops of an
183 antibody are identified via the Kabat numbering scheme. The loops are then spliced onto the scFv
184 backbones of the 15F11 and 2E2 as previously described by our group (22). The scFv sequences are aligned
185 with their CDR loops and flexible linkers highlighted in **Supplemental Table 1B.**
186

187 **Monoclonal Antibody Production:**

188 Anti-SARS-CoV-2 nucleocapsid protein (NP) monoclonal mouse antibody mBG17 was previously developed
189 and characterized (34). Briefly, two BALB/c mice immunized with recombinant NP were sacrificed and
190 primary splenocytes isolated. Splenocytes were fused with Sp2/0 Ag14 myeloma cells and individual
191 hybridoma clones were isolated after eleven days. Hybridoma clones were tested for antibody production
192 against NP via enzyme-linked immunosorbent assay (ELISA) and western blot. Clones were further tested for
193 isotype and cross-reactivity, and V_H and V_L sequences were determined. The hybridoma clone mBG17 was
194 identified as a SARS-CoV-2 nucleocapsid-specific antibody targeting linear epitope via ELISA and western
195 blot (34). Generation of recombinant mBG17 and production of recombinant antibody in 293F cells was
196 previously described (34). The approximate epitope region for mBG17 was determined via western blot
197 with modified recombinant NP proteins containing 40 to 50 amino acid deletions. The epitope location was
198 determined to reside between SARS-CoV-2 nucleocapsid residues a.a. 381-419 based on loss of western blot
199 signal with the a.a. 381-419 deletion (34).
200

201 **Peptide Competition ELISA:**

202 The anti-SARS-CoV-2 nucleocapsid protein mBG17 antibody epitope was experimentally identified using
203 competition enzyme-linked immunosorbent assay (ELISA). Using the previously determined 39 nucleocapsid
204 protein amino acid range for the mBG17 epitope as a starting point, seven overlapping peptides were
205 synthesized (Thermo Scientific) spanning the 39 amino acid region with overlaps of 5 amino. These peptides
206 were termed Fragment 1 through 7 (**Table 1**). A 96-well ELISA plate was coated with 0.1ug/ml of
207 recombinant SARS-CoV-2 NP (34) overnight at 4°C. The plate was blocked with 4% (w/v) dry non-fat milk in
208 1X PBS with 0.1% (v/v) Tween-20 for 1 h shaking at room temperature. While blocking, inhibited
209 recombinant mBG17 antibody samples were produced by incubating 40 μ L of antibody with 40 μ g
210 (approximately 30 nMol) of a single peptide fragment for one hour at room temperature. Following this,
211 peptide-incubated mBG17 was applied to the blocked nucleocapsid protein coated plate in triplicate and
212 allowed to incubate for 1 h at room temperature while shaking. The plate was rinsed with 0.1% (v/v) Tween-
213 20 in 1X PBS and washed three more times for 5 minutes shaking at room temperature. The plate was then
214 incubated with HRP-conjugated goat anti-mouse polyclonal antibody solution diluted at 1:20,000 in 1X PBS
215 for 1 h shaking at room temperature. After another rinse and three more washes the plate was developed
216 with 1-Step™ Ultra TMB-ELISA Solution (ThermoFisher) before stopping the reaction with an equal volume
217 of 2M H_2SO_4 . Solution absorbance at 450 nm was measured using a PerkinElmer Victor X5 multilabel plate

218 reader. Absorbances were averaged within fragment-inhibited sample groups and corrected with the
219 average value of the negative control. These absorbances were then normalized against the absorbance
220 from the group with the highest value before multiplying by 100 to obtain percentage of potential signal.
221

222 The effect of single alanine substitutions on fragment 5 (DDFSKQLQQS) peptide binding was
223 determined by competition ELISA using a series of ten alanine-substituted peptides (**Table 1**) at a range of
224 concentrations to determine relative competition activity. A modified version of the previously described
225 inhibition ELISA was performed using the unmodified Fragment 5 peptide and the ten alanine-substituted
226 peptides. During the mBG17 inhibition step, the mBG17 antibody solution was incubated with a 4-fold serial
227 dilution of peptides beginning at 40 µg and continuing to ~2.5 ng before being applied to the NP coated
228 plates in triplicate. The remainder of the competition ELISA was carried out as described above.
229

Table 1:

Peptide Name	Peptide Sequence
Nucleocapsid a. a. 381-390 (Frag 1)	ALPQRQKKQQ
Nucleocapsid a. a. 386-395 (Frag 2)	QKKQQTVTLL
Nucleocapsid a. a. 391-400 (Frag 3)	TVTLLPAADL
Nucleocapsid a. a. 396-405 (Frag 4)	PAADLDDFSK
Nucleocapsid a. a. 401-410 (Frag 5)	DDFSKQLQQS
Nucleocapsid a. a. 406-415 (Frag 6)	QLQQSMSSAD
Nucleocapsid a. a. 411-419 (Frag 7)	MSSADSTQA
Nucleocapsid D401A	<u>A</u> DFSKQLQQS
Nucleocapsid D402A	D <u>A</u> FSKQLQQS
Nucleocapsid F403A	DD <u>A</u> SKQLQQS
Nucleocapsid S404A	DDFA <u>K</u> QLQQS
Nucleocapsid K405A	DDFS <u>A</u> QLQQS
Nucleocapsid Q406A	DDFS <u>K</u> ALQQS
Nucleocapsid L407A	DDFS <u>K</u> QAQQS
Nucleocapsid Q408A	DDFS <u>K</u> QLAQS
Nucleocapsid Q409A	DDFS <u>K</u> QLQAS
Nucleocapsid S410A	DDFS <u>K</u> QLQQA

230
231 **Assessment of AlphaFold2 generated scFv structures:**
232 We first verified that AlphaFold2 could generate scFv structures that have similar structures to their parent
233 monoclonal antibodies. We chose the 9E10 clone of the anti-Myc antibody as an initial test system, as the
234 scFv sequence is available (35) and has a well-known linear epitope (EQKLISEEDL)(36). We predicted the
235 wild-type Myc scFv structure and aligned this model to the corresponding Fab crystal structure (PDB entry
236 2orb) via the align command in PyMOL (**Supplemental Figure 1A**). The AlphaFold2 predicted scFv was very
237 similar (RMSD value of 0.42 Å) to the anti-Myc Fab structure, suggesting that the predicted scFv structure
238 was a suitable starting point for epitope prediction. We also examined the structures of the Myc CDRs loop

239 grafted onto the 15F11 (37) and 2E2 (22) frameworks, as we have previously observed that loop grafting
240 onto these frameworks can enhance protein folding and solubility (22). The loop-grafted Myc-2E2 and Myc-
241 15F11 and structures were also similar to the Myc Fab structure (PDB 2ORB) (36) with similar RMSD values
242 of 0.45Å (**Supplemental Figure 1B**), indicating that they are also reasonable starting points for epitope
243 prediction.

244

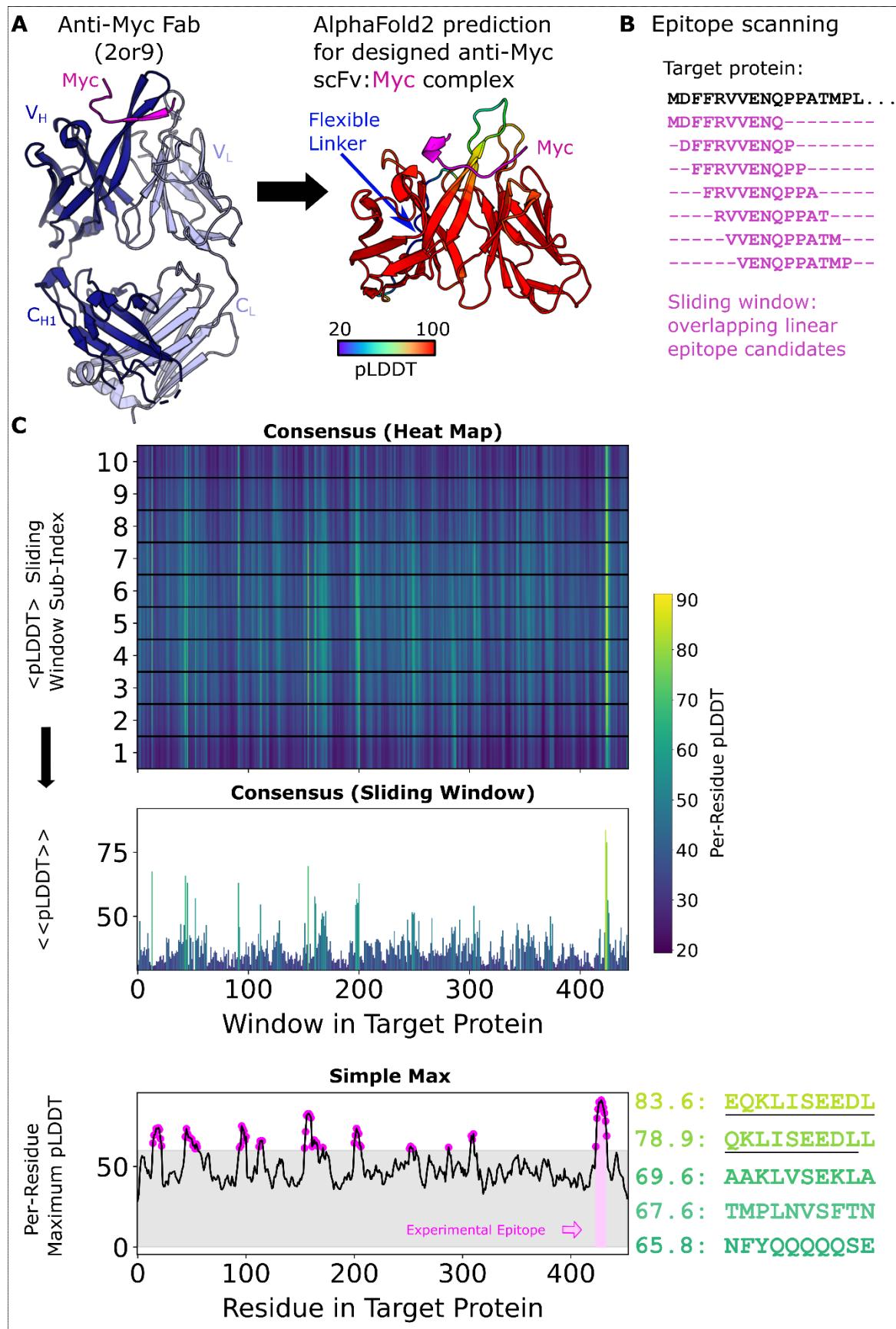
245 **Results:**

246

247 *Development of Python-based scripts for automated scFv:peptide structure prediction.* We developed a
248 series of Python scripts that automate the process of epitope prediction and analysis with AF2.
249 A_Peptide_Mapping_prep_submission_files.py accepts a linear scFv sequence and a linear full-length
250 antigen sequence, and processes the antigen sequence into a series of short peptides with custom peptide
251 length and sliding window sizes (default parameters are 10 amino acid peptides with a 1 amino acid sliding
252 window). It then adds lines for each scFv:peptide pair to a FASTA file. Structures are then predicted via
253 LocalColabFold for each scFv:peptide pair with AlphaFold2 in parallel on two NVIDIA RTX A5000 GPUs. The
254 python script B_PeptideMapping_pLDDT_perres_analysis.py parses the AlphaFold2 output structures to
255 extract per-residue pLDDT for the peptide residues in each scFv:peptide pair. Conf_plot_and_top10.py will
256 plot the maximum pLDDT (across all host peptides) scores as a function of amino acid position within the
257 antigen sequence and ranks predicted peptides based on Σ pLDDT scores for the 'Simple max' method. To
258 use the 'Consensus' method, include the --all-models flag when running
259 B_PeptideMapping_pLDDT_perres_analysis.py. We also supply a python script that replicates how we
260 present the data called all_model_analysis.py for use.

261 An overview of the method is shown in **Figure 1**. AF2's failure to predict whole antigen structure
262 coupled with the scFv is highlighted in **Supplemental Figure 2**. Both the 'Simple Max' and 'Consensus'
263 methods were calculated first by parsing every pLDDT score received by every residue in the antigen
264 sequence sliding window output structures. From the resulting data structure, the Simple Max method
265 simply finds the maximum pLDDT value ever seen for a single residue (across all sliding windows and AF2
266 models). For the Consensus method, per-residue pLDDT was first averaged across the 5 AF2 models. These
267 averages are reported in the heatmap view and further averaged per sliding window for the bar chart
268 below. In principle, the strategy behind the Consensus method is to take into account agreement across the
269 5 AF2 models and provide insight into the confidence of entire epitopes (whole sliding windows of n=10
270 default) instead of disconnected, per-residue pLDDT maxima. Having two scoring metrics is useful because
271 the selection of predicted hits can differ. As shown in Figure 2, part of the Myc epitope makes it into the top
272 5 peptides when selection is based on summing per-residue maximum pLDDT (despite there being no
273 requirement that these values originate in the same physical prediction). In contrast, a Consensus method
274 score more directly reports on a specific sliding window, and the strength of the highest confidence
275 peptides is more directly revealed with superior signal to noise as shown in Figure 3. Variability in the
276 ranking of top hits between the two methods arises from the fundamental difference in strategy (peptide-
277 centric or residue-centric scoring) as well as close competition between the raw AF2 confidence in the
278 known peptide and competing decoy sequences.

279



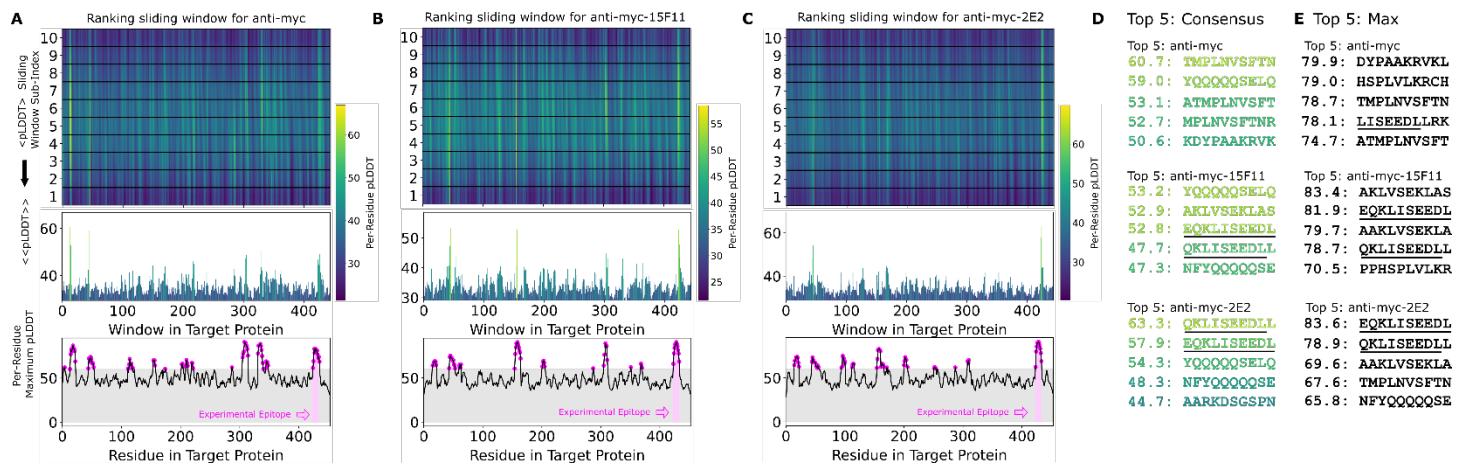
281 **Figure 1. PAbFold pipeline for linear epitope prediction.** **A)** Antibody V_H and V_L protein sequences are used to generate scFv
282 sequences, either based on the native antibody sequences or loop grafting complementarity determining regions (CDRs) onto
283 either the 2E2 or 15F11 antibody framework regions (2E2 shown). **B)** The target antigen sequence is parsed into a list of small
284 overlapping peptide sequences, with peptide step and window size parameters adjusted as needed. Rank ordered peptides are
285 output, and partial epitope sequences are underlined manually to highlight the identification of the correct sequence. **C)** The scFv
286 sequences from Panel A are co-folded with each of the peptide sequences derived from the target antigen in parallel batch mode
287 on a GPU server. pLDDT scores from each structure prediction experiment are collected and scores are presented in their sliding
288 window, both as a heat map organized along the length of the target antigen sequence and a bar chart that shows the per-
289 peptide average pLDDT (Consensus Method). Additionally, the Simple Max data is presented in the third and final panel.
290

291 *Testing of scFv:peptide structure prediction method using the Myc Epitope.* We first tested the PAbFold
292 method with the anti-Myc-scFv described in (38), using the full-length human Myc proto-oncogene protein
293 sequence as the antigen. We initially used an antigen peptide length of 10 and a 1 amino acid sliding
294 window. Given these parameters, the 9 a.a. Myc epitope motif (EQKLISEEDL) appeared intact within one of
295 the 10-mer peptides, with subsets of the 8, 9, 11, and 12 a.a. appearing in neighboring sliding peptide
296 windows. PAbFold generated predicted structures, each of which took an average of ~200 seconds to
297 process. The entire process took approximately 12 hours on our GPU server. AlphaFold2 placed all peptides
298 into or near the traditional antigen binding site between the CDR loops (**Supplemental Figure 3**). The
299 average confidence (mean pLDDT across residues) for these peptides ranged from 20 to 90. When we
300 inspect the consensus confidence for each residue in each sliding window (**Figure 2A**), the expected Myc
301 peptide epitope (EQKLISEEDL) was one of several peptides with high average pLDDT. The second highest
302 ranked peptide in this analysis (QKLISEEDLL) was a near perfect match for the expected epitope. We
303 consider this window to be a successful prediction. Perhaps surprisingly, the peptide window with the exact
304 match (EQKLISEEDL) did not score particularly well due to its average pLDDT of 51.0. In this instance, the
305 expected epitope sequence did not stand out when plotting the maximum observed per-residue pLDDT for
306 each residue (**Figure 2A, bottom**).

307 We proceeded to test predictions with two engineered scFv chimeras where loop grafting was used
308 to place the Myc recognition CDRs onto two antibody framework regions with high *in vivo* performance,
309 generating Myc-15F11 and Myc-2E2 scFv sequences. Epitope prediction performance was markedly
310 improved with the chimeric scFvs (**Figure 2B and 2C**). Specifically, the QKLISEEDLL peptide window became
311 the top ranked peptide on the basis of average consensus pLDDT. In the case of Myc-2E2 (**Figure 2C**), the
312 average confidence for the correctly predicted epitope was particularly high compared to alternate peptide
313 windows, and another close match to the expected epitope (EEQKLISEED) was ranked within the top 5
314 peptides (**Figure 2D**). Ranking epitopes using the Simple Max analysis was similar; the region containing the
315 correct epitope was nearly top ranked for Myc-15F11 and was top ranked for Myc-2E2 (**Figure 2E**). Thus,
316 AlphaFold2 was able to more clearly detect authentic Myc antibody epitope using CDRs loop grafted onto
317 the 2E2 or 15F11 frameworks, relative to the native Myc scFv framework.

318 To investigate the superior epitope recognition performance of the chimeric Myc scFvs, we aligned
319 the $C\alpha$ coordinates for the predicted scFv structures (predicted with and without the target epitope) to the
320 reference crystal structure and calculated the RMSD for all backbone positions (N, $C\alpha$, C, O) and the loops
321 (**Supplemental Figure 4**). Notably, regardless of the Myc scFv variant, the CDR loop RMSD improved by
322 more than 1 \AA when the epitope was present. Secondly, consistent with the improved epitope prediction
323 performance for the chimeric scFvs (15F11 and 2E2), the epitope peptide QKLISEEDL was placed more

324 accurately for those predicted structures than in the WT scFv (**Supplemental Figure 4**). We could not
325 discern an obvious structural difference between the WT and chimeric scFvs that explains the structure
326 prediction performance gap.
327



328

329 **Figure 2. The AlphaFold2-based PAbFold method predicted the Myc linear epitope in different scFv backbones.** The anti-Myc V_H
330 and V_L antibody sequences were used to generate either **A**) wild-type Myc scFv or loop grafted chimeric **B**) Myc-15F11 or **C**) Myc-
331 2E2 scFv variants. The Myc proto-oncogene protein sequence (Genbank NP_001341799.1) was used as the target antigen and
332 processed into 10 amino acid overlapping peptides with a 1 amino acid sliding window. The structure for each scFv:peptide pair
333 was predicted with AlphaFold2 in batch mode on two NVIDIA A5000 GPUs. Average consensus pLDDT values for each
334 scFv:peptide window are illustrated, as well as the maximum pLDDT observed for each residue in any window (bottom). **D**) Top
335 ranking binding peptides based on average consensus pLDDT. **E**) Top ranked binding peptides based on summing per-residue
336 maximum pLDDT. For D and E, underlining represents overlap with the reported Myc epitope (EQKLISEEDL).
337

338 *Assessment of peptide length, sliding window size, and position on AlphaFold2 scFv:peptide structure*
339 *prediction.* Our initial selection of the 10 a.a. window was intended to match or slightly exceed the size of
340 known epitopes such as Myc and HA. We next assessed how different peptide sizes and sliding window
341 lengths would affect epitope prediction accuracy and run time. We re-ran the Myc-2E2-scFv:peptide
342 complex prediction calculations varying peptide size between 8, 9, 10, and 11 (with a fixed sliding window
343 size of 2) or varying the sliding window size to 1 or 5 (with a fixed peptide size of 10). We observed that
344 using a sliding window of 2 a.a. provided nearly the same level of accuracy and resolution as the 1 a.a.
345 Ultimately, we determined that our original peptide size of 10 amino acids and sliding window of 1 a.a.
346 provided highest resolution data possible (**Supplemental Figure 5**) and therefore maintained a peptide size
347 of 10 and a sliding window length of 1 for our remaining experiments.
348

349 We then predicted the complex structure for Myc-2E2 with various negative control peptides: A₁₀, (GS)₅,
350 (GGGGS)₂, and G₁₀ to determine how non-binding peptides are docked and scored (**Supplemental Figure 5I**
351 and **5J**). We again observed that AlphaFold2 placed all peptides into the traditional antigen binding
352 between the CDR loops, but the reported peptide scores for the negative controls were particularly low (29
353 – 41). These results indicate that AlphaFold2 “knows” where antigens bind in antibody or scFv structures
354 and attempts to model any peptide partner into this region, but the low pLDDT scores indicate confidence
355 in the interactions are quite low.
356

357 We also tested if AlphaFold2 could detect the Myc epitope if it was inserted as an epitope tag within
358 different positions of a heterologous protein. We created a synthetic antigen by adding the Myc epitope
359 within the 99-a.a. unrelated HIV-1 Gag protease protein sequence at either the N- or C-terminus or in the
360 middle of the protein sequence, and used PAbFold to detect the Myc peptide (**Supplemental Figure 6**). In
361 each case, the average consensus pLDDT was highest for the inserted epitope, such that the authentic
362 epitope would be top ranked and prioritized for testing. Thus, as expected for a sliding window analysis, the
363 epitope position within the antigen was no barrier to detection.

364

365 *Testing of the PAbFold method using the HA Epitope.* Based on our success detecting the Myc epitope, we
366 sought to determine if our method could detect a different well-known linear peptide, HA, derived from
367 positions 114-126 within the Influenza A virus hemagglutinin protein (YDVPDYASLR). Using an anti-HA scFv
368 sequence that had been previously generated (22, 38), we generated new HA-15F11 and HA-2E2 scFvs loop
369 grafted sequences. We used the same procedure described above to predict structures for influenza A virus
370 HA derived peptides on HA-scFv (**Supplemental Figure 7A**), HA-15F11-scFv (**Supplemental Figure 7B**) and
371 HA-2E2-scFv (**Supplemental Figure 7C**). In the HA case, the expected epitope was ranked highly for all three
372 scFv variants, but when assessing entire peptides by average consensus pLDDT was only ranked in the top 5
373 for the HA-15F11-scFv. These results, in combination with the Myc results described above, indicate that
374 AlphaFold2 can accurately detect linear antibody epitopes in antigen sequences, and that grafting CDR
375 loops onto alternative scFv backbones may increase the noise-to-signal ratio, making the identification of
376 correct epitopes more accurate.

377 Like the Myc system, trends are observed with the HA system regarding loop placement. Although
378 not as extreme, the loops for all HA scFvs undergo movement that make it more closely match the crystal
379 structure (PDB entry 1frg). Again, the epitope placement of predicted structures of the chimeric scFvs more
380 closely mimicked the deposited crystal structure than the WT scFv (**Supplemental Figure 4B**).

381

382 *Determination and experimental validation of a novel linear antibody epitope.* The Myc and HA monoclonal
383 antibodies are well known and several crystal structures (Myc PDB: 2or9, peptide bound (2009) | HA
384 PDB:1frg, peptide bound (1994)) have been solved (22, 36, 38, 39), raising the possibility that AlphaFold2
385 has incorporated these antibody or epitope structures into its training set. The AlphaFold2 training set was
386 reported to exclude chains of less than 10, which would eliminate the myc and HA epitope peptides.
387 Nonetheless, to guard against the possibility that the AlphaFold2 models have incorporated specific
388 knowledge into the training set thereby directly probing if PAbFold epitope scanning can predict a linear
389 antibody epitope without *a priori* knowledge of the antibody or antigen sequence, we tested if PAbFold can
390 predict the epitope sequence of a recently developed antibody lacking structural information available in
391 the Protein Data Bank. The mBG17 mouse monoclonal antibody was generated in response to the COVID-19
392 pandemic, the antibody V_H and V_L sequences were determined, and the epitope was localized to a. a. 381-
393 419 via Western blot analysis of deletion mutants of the nucleocapsid protein (34). mBG17 was not
394 included in AlphaFold2's training or test set, making it an ideal test case for *de novo* epitope prediction.

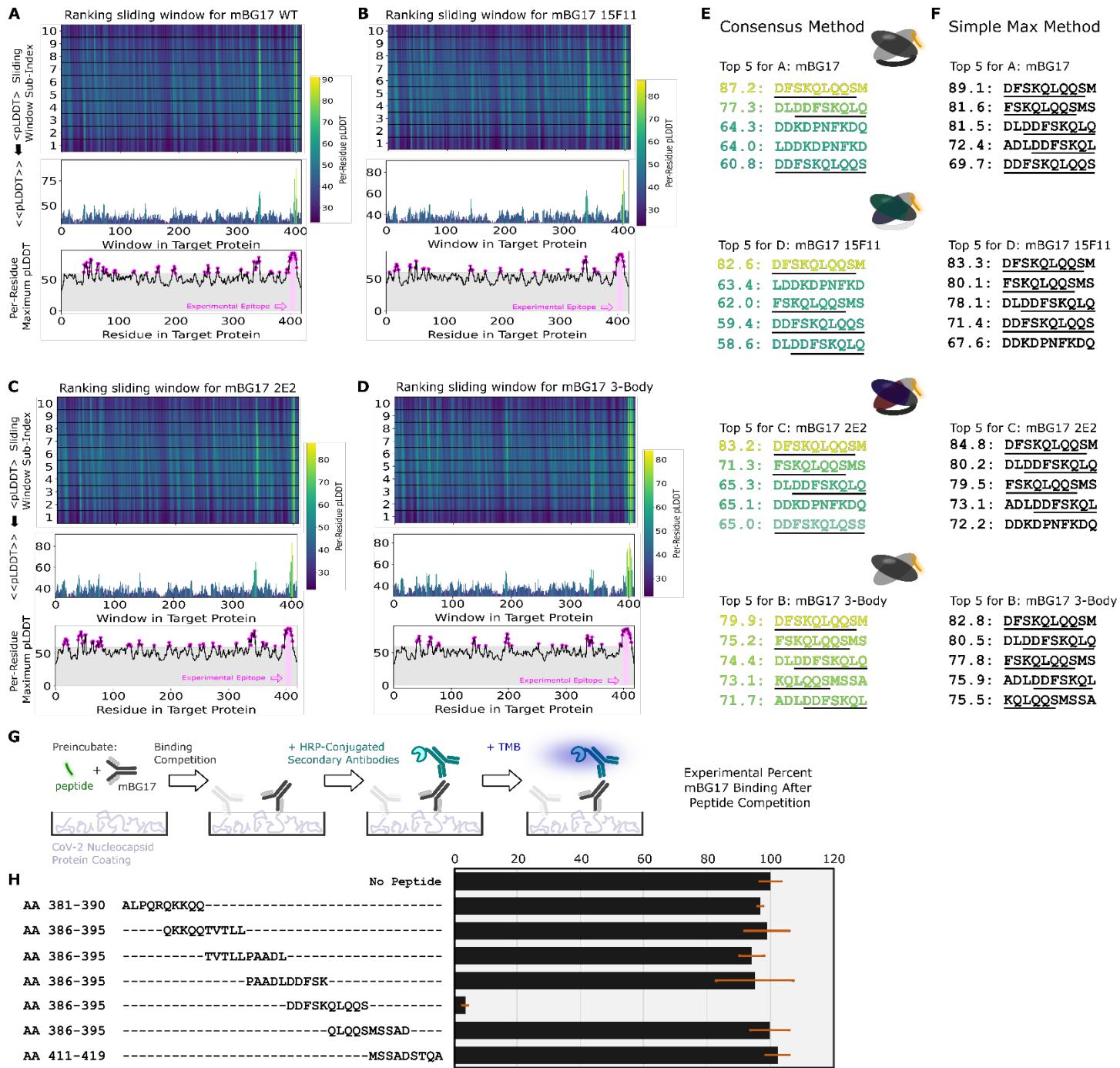
395

396 The mBG17 monoclonal antibody was converted to wild-type scFv, 15F11-scFv, and 2E2-scFv using the same
397 procedures used for Myc and HA scFv. As an additional control calculation (labeled "3-body"), we used
398 AlphaFold2 to predict the structure for a 3-protein complex (the peptide, and the disconnected
399 nontruncated mBG17 V_H and V_L variable domain sequences). All 4 Fab variants (WT scFv mBG17, 15F11-

400 mBG17 scFv, 2E2-mBG17 scFv, and 3-body mBG17) were screened against all 10 a.a. peptides with a 1 a.a.
401 sliding window, as with Myc and HA. In all 4 cases, AlphaFold2 predicted that the top ranked peptides were
402 located in the a.a. 381-419 region of the SARS-CoV-2 nucleocapsid protein, and more specifically residues
403 a.a. 400-415 (**Figure 3A, 3B, 3C, and 3D**). The top scoring peptide for all three scFv variants was the 402-
404 411 window (DFSKQLQQSM) (**Figure 3E and 3F**). The strong AF2 preference for peptides from this C-
405 terminal segment was particularly evident in the average consensus pLDDT analysis.

406
407 We next sought to experimentally verify the minimal linear epitope for mBG17 to determine how closely
408 the AlphaFold2 prediction corresponded to our experimental data. Seven 10 a.a. peptides that overlapped
409 by 5 a.a. each were synthesized and used in competition ELISAs with mBG17 monoclonal antibody and
410 recombinant SARS-CoV-2 nucleocapsid protein (**Figure 3G and 3H**). The peptide corresponding to a.a. 401-
411 410 showed almost complete competition of mBG17 binding to the SARS-CoV-2 nucleocapsid protein in the
412 ELISA, whereas none of the other peptides were able to compete for mBG17 binding to nucleocapsid.
413 Peptides a.a. 296-405 and a.a. 406-415 overlap a.a. 401-410 at the N- and C-terminus, respectively, but
414 neither was able to compete, indicating that mBG17 binds a.a. 401-410 on both sides of a.a. 405 and a.a.
415 406. An alignment of all the peptides used in the overlapping peptide competition ELISA experiments
416 showed that peptide sequence DDFSKQLQQS represents the experimentally determined epitope for
417 mBG17, nearly identical to the epitope predicted by AlphaFold2 (**Figure 3H: DDFSKQLQQS**). These results
418 demonstrate that the PAbFold pipeline was able to very accurately predict the region that an antibody binds
419 to a novel linear epitope that is not present in AlphaFold2's training set.

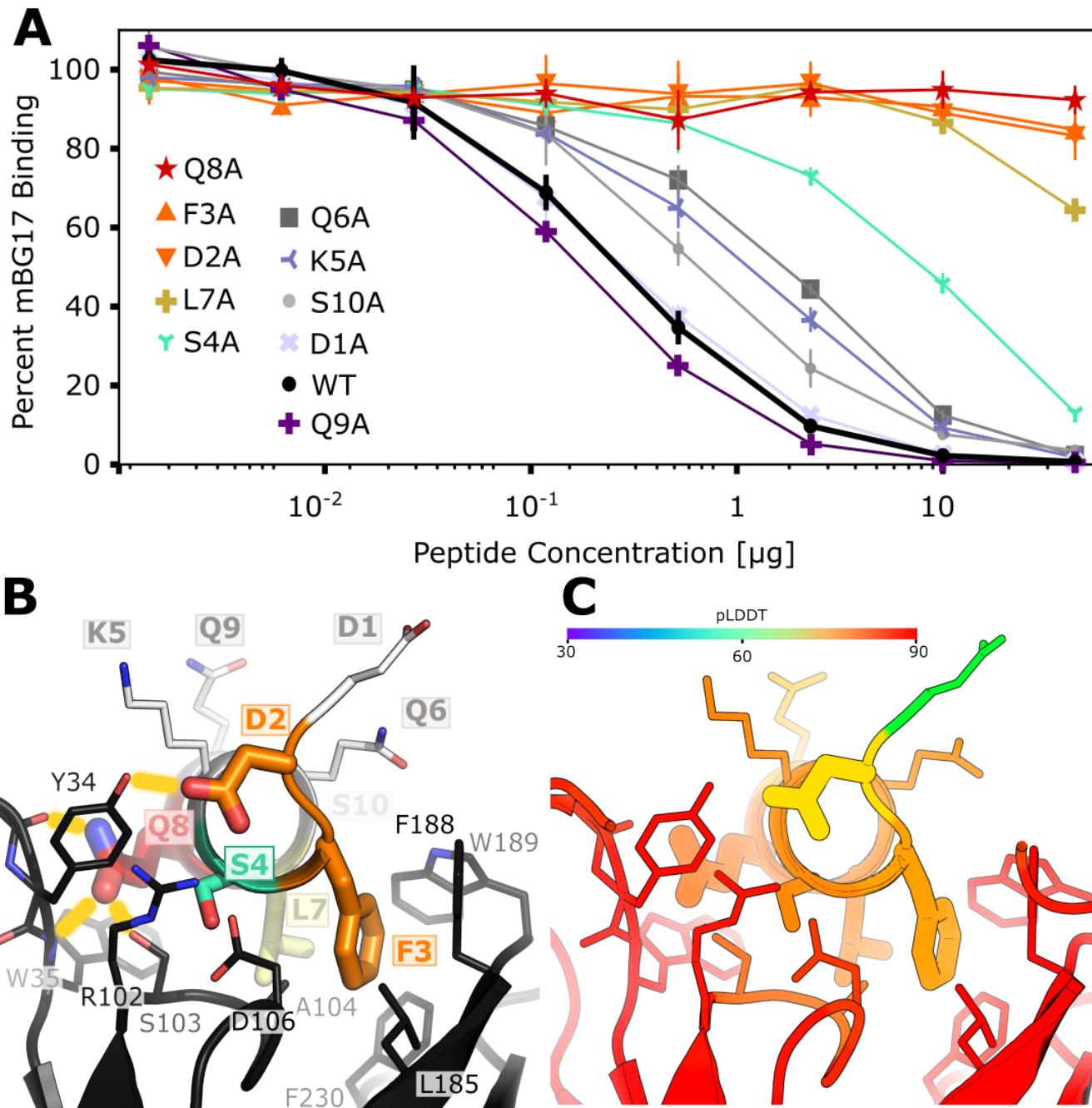
420



421
422 **Figure 3: The AlphaFold2-driven PAbFold epitope scan method can accurately identify a linear epitope for a novel SARS-CoV-2**
423 **antibody.** Antibody VH and VL sequences for SARS-CoV-2 nucleocapsid protein targeted antibody were used to generate scFv
424 sequences **A)** WT, **B)** 15F11, **C)** 2E2 or native VH and VL sequences **D)** 3 body). Variant scFv sequence in complex with peptide
425 windows from the SARS-CoV-2 nucleocapsid protein (Genbank Accession: YP_009724397) were subjected to AlphaFold2 structure
426 prediction. The top 5 peptides ranked by either the **E)** Consensus method or the **F)** Simple Max method, with the underlined
427 sequence highlighting the experimentally verified sequences and a cartoon schematic for each system shown. **G)** Competition
428 ELISA schematic for assessing the ability of synthetic peptides derived from the SARS-CoV-2 nucleocapsid protein (n = 3). Percentage of binding
429 values were calculated from the no-peptide control. Alignment of synthetic peptides corresponding to SARS-CoV-2 nucleocapsid
430 a. a. 381-419. Peptide a. a. 401-410, which demonstrated mBG17 competition.

432 *Fine-characterization of the mBG17 epitope and comparison to the predicted AlphaFold2 model.* To further
433 experimentally characterize the binding of the mBG17 to the a.a. 401-410 (DDFSKQLQQS) peptide and
434 compare experimental data with the predicted AlphaFold2 model, we designed and synthesized ten
435 additional peptides, each containing an alanine point mutation at one position in the a.a. 401-410 peptide.
436 The peptides are labeled D1A, D2A, F3A, S4A, K5A, Q6A, L7A, Q8A, Q9A, and S10A. Competition ELISAs
437 were performed using increasing concentrations of each peptide to better assess differential binding (**Figure**
438 **4A**). As expected, WT (a.a. 401-410) peptide showed strong competition, although Q9A showed slightly
439 better competition. This could be attributed to alanine's propensity to be in an alpha-helical coil ($Prop_{A, AHC} = 0$) vs glutamine's propensity to escape it ($Prop_{Q, AHC} = 0.39$) (40), thus further stabilizing the Q9A alpha
440 helix. D1A showed no change in competition, indicating that D1 was not involved in binding. Peptides with
441 substitutions K5A, Q6A, and S10A showed minor reductions in competition, S4A showed a moderate
442 reduction on competition, whereas residues D2A, F3A, L7A, and Q8A all showed strong reductions in
443 competition. These data indicate that the key interactions between mBG17 and the a.a. 401-410 peptide
444 are residues D2, F3, L7, and Q8, with S4 playing a moderate role and D1, K5, Q6, Q9 and S10 playing
445 negligible roles in binding.
446

447
448 Finally, we compared the experimental data shown above with the best scoring mBG17:DDFSKQLQQ model
449 generated by AlphaFold2 (**Figure 4B and 4C**). The AlphaFold2 model suggests that residue D2 forms a
450 hydrogen bond with mBG17 a.a. Y34, residue F3 forms a hydrophobic interaction with mBG17 a.a. L185,
451 residue S4 lacks a hydrogen bond partner, residue L7 forms a hydrophobic interaction at the base of the
452 binding cleft with mBG17 a.a. A104, and residue Q8 hydrogen bonds with the backbone carbonyl of Y34 and
453 the backbone amide of W35. Residues that experimentally showed no or minimal effects on competition
454 (D1, K5, Q6, Q9) are all predicted to interact primarily with the solvent and lacked visible interactions
455 between the peptide and scFv sequence. In summary, the AlphaFold2-driven PAbFold prediction was
456 remarkably consistent with the experimental alanine scanning data, suggesting that the prediction of the
457 mBG17 linear epitope location was accurate due to the correct prediction of the structural details for how
458 that linear epitope binds to the antibody.
459



460
461
462 **Figure 4. The AlphaFold2-Driven PAbFold method accurately predicts molecular interactions between a linear epitope and a**
463 **scFv** **A)** Competition ELISA assessing the ability of synthetic alanine mutant peptides derived from the SARS-CoV-2 nucleocapsid
464 protein (a. a. 401-410: DDFSKQLQQS) to interfere with mBG17 binding to SARS-CoV-2 nucleocapsid protein (n = 3). Percentage of
465 binding values were calculated from the no-peptide control. **B)** AlphaFold2 model for mBG17-15F11 scFv bound to a. a. 401-410
466 peptide (the average peptide pLDDT was 83.5). Residues that display sharply reduced binding to mBG17 upon mutation to
467 alanine in competition ELISAs (D2, F3, S4, L7, Q8) are shown as warm-colored thick sticks. Predicted hydrogen bonds between the
468 peptide and the scFv are depicted by yellow bars. Sites where mutation to alanine was less disruptive to binding (Q6A, K5A, S10A,
469 D1A, and Q9A) are depicted as thin sticks with cool colors. The carbon atoms of residues in panel B are colored according to the
470 corresponding data in panel A. **C)** The same AlphaFold2 model for the mBG17-15F11 scFv bound to a.a. 401-410 colored with
471 confidence (pLDDT) as predicted by AF2.
472

473 **Discussion**

474 In this project we assessed the ability of an AlphaFold2-based linear epitope scan pipeline we call PAbFold
475 (Peptide:Antibody Fold) to predict linear antibody epitopes using just antibody and antigen sequences. We
476 first assessed the quality of scFv models produced by AlphaFold2. We then developed a series of Python
477 scripts that accept scFv and whole antigen protein sequences as inputs, parse the antigen protein
478 sequences into short overlapping peptides, run batch predictions for each scFv:peptide pair, and output two
479 peptide scoring schemes based on the peptide per-residue pLDDT scores as a metric for AlphaFold2 model
480 confidence.

481 Binding of the expected epitope to the WT-Myc scFv could only be detected via the consensus method, but
482 either analysis method could readily detect the expected epitope bound to the chimeric Myc scFvs.
483 Conversely, the alternate analysis method (Simple Max) performed better with respect to ranking the
484 expected HA epitope binding to the WT and chimeric anti-HA scFv variants. In the HA case, performance
485 was comparable for both the WT and chimeric scFv variants.

486

487 It is important to note that binding of scFv variants to sequences other than the expected epitopes
488 may be statistically unlikely but not impossible. For example, consider the peptide ATAMPLNVSFT near the N-
489 terminus of the Myc proto-oncogene protein sequence. In the context of the WT anti-Myc scFv this peptide
490 had slightly higher average consensus pLDDT (52.4 rather than 51.0) than a peptide (QKLISEEDLL) that
491 closely matched the expected epitope. In the absence of direct experimental evidence, predicted affinity for
492 this unexpected sequence is not necessarily incorrect, though the lack of comparable predicted binding to
493 the 15F11 and 2E2 chimeric scFv variants further decreases the likelihood. In the future, it might be useful
494 to assess peptide binding via consensus across scFv variants.

495

496 Lastly, we tested this process on a novel antibody generated by our group targeting the SARS-CoV-2
497 nucleocapsid protein (mBG17) and found the method performed significantly better than with Myc and HA.
498 Either analysis method could very easily flag peptide windows containing the authentic experimentally
499 validated epitope. This worked for the WT scFv, the chimeric scFv variants, and even a structure with
500 disconnected heavy and light chain domains. Experimentally, we cleanly validated the AlphaFold2 prediction
501 using a peptide competition ELISA assay to experimentally determine the mBG17 epitope. Confidence in the
502 AlphaFold2 prediction was further buoyed via alanine scanning peptide competition ELISAs that verified the
503 importance of the key binding interactions predicted by AlphaFold2.

504

505 Identification of antibody V_H and V_L sequences from monoclonal B-cells has become a routine task,
506 with sequence information obtainable via various sequencing technologies such as next generation
507 sequencing and nanopore sequencing for a relatively low cost. As a result, the determination of the epitope
508 in service of a deeper understanding of how antibodies bind their antigen is an increasingly notable
509 bottleneck. An experimental epitope determination campaign can take weeks or months of work, but with
510 the advent of AlphaFold2 and the epitope prediction method we describe here, an antibody and its antigen
511 could be sequenced in a few days (often through contract research organizations for low cost) and accurate
512 linear epitope predictions generated within less than a day, dramatically epitope validation throughput as
513 well as providing detailed predictions for the molecular features of antibody-epitope interaction.

514

515 Conformational epitopes are structured antigens that are found during many immune responses,

516 and prediction of these epitopes from antibody and antigen sequences would be a significant boon to the
517 field of biology. For example, conformational epitope prediction coupled with single-cell B-cell sequencing
518 would allow for detailed analysis of antibody maturation during immune responses to vaccines or pathogen
519 infection, helping better define how the immune response to infection evolves over time and how evolution
520 of antigen sequences affects the antibody response. In this work we did not focus on using AlphaFold2 to
521 predict conformational epitopes primarily because of the complex structures that conformational epitopes
522 possess. Literature reports suggest that prediction of the complexes between antibodies and both whole
523 antigens and conformational epitope proteins has proven to be very difficult for AlphaFold2, and indeed the
524 authors themselves make this observation (12, 41, 42). Notably, the structures that proved most difficult to
525 predict for AF2 and other tools in the CASP15-CAPRI154 challenges were antibody-antigen complexes (43).
526 Reports suggest that a mix of both statistics-based approaches (neural networks like AF2) and physics-based
527 approaches (such as Rosetta) predict optimal antibody-antigen complexes (44). Indeed, if we attempt to
528 predict binding of our scFvs to intact antigen proteins (**Supplemental Figure 2**), we find no predictive
529 capability. When predicting scFv:peptide complexes, it may be the case that AlphaFold2 is able to
530 thoroughly evaluate an induced fit for the peptide due to both its length (small sample space) and its
531 propensity to not adopt a strong competing structure. In contrast, embedding the epitope within a larger
532 and more complicated structure appears to degrade the ability of AlphaFold2 to sample a comparable
533 bound structure within the allotted recycle steps. Additional complexities may arise in extreme induced
534 conformational changes during docking. Recent reports indicate that progress is being made in predicting
535 the binding locations of conformational epitopes (45, 46).

536 We observed that the ability of AlphaFold2 to successfully predict the epitope peptide binding is
537 quite delicate. First, epitope prediction was highly sensitive to the peptide length (**Supplemental Figure 5**),
538 with minimal predictive power for peptide length other than 10 a.a. Further investigation of this sensitivity
539 would be a useful avenue for future research. Perhaps with enhanced sampling, epitopes can be detected
540 within longer peptides (e.g. 11 a.a., 12 a.a., etc.). Methodological tuning of this type could ultimately help
541 illuminate the path to increasingly difficult protein-protein binding prediction problems. Similarly, we have
542 likewise determined that epitope scanning performance was sensitive to changes in the underlying
543 AlphaFold2 neural networks and the MSA. Specifically, unless otherwise noted, all data in this report was
544 obtained using ColabFold version 1.5.2 and the 5 neural networks that comprise AlphaFold2 multimer
545 version 2 (mm2). Likewise, the MSAs we use were obtained from the MMSEQS server (and cached) when
546 the default sequence databases were UniRef30 2202 and PDB70 220313. They have since been updated to
547 PDB30 2302 and PDB100 230517. For a complete description, see the change logs on the github for
548 ColabFold (<https://github.com/sokrypton/ColabFold#colabfold--v152>).

549
550 Insofar as protein-peptide prediction is an emergent “off-label” capability for AlphaFold2 that is not
551 part of the training sets, further training of the models or other changes can degrade performance.
552 Benchmarking performance can be difficult when there are multiple moving targets. The most recent
553 calculations we have analyzed were using ColabFold version 1.5.2 which was current as of February 19,
554 2023. The changes from ColabFold 1.5.2 to 1.5.5 (current as of this writing) are limited to version control
555 and ensuring ColabFold still works on Google Colab and therefore will not change the calculation
556 performance. Relative to ColabFold 1.3 (the current method at the outset of this project), ColabFold 1.5.2

557 embodied two substantial changes. First, ColabFold 1.5.2 used the updated AlphaFold multimer (mm)
558 version 3 by default. Second, the backend server MMSEQS ((47) and
559 (<https://github.com/soedinglab/MMseqs2>)) that supplies MSAs also underwent updates, namely the
560 database updates. Upon evaluation, we found that the recent default methods (ColabFold 1.5.2) still
561 predicted the epitope successfully for the mBG17 system (**Supplemental Figure 8**). However, the ColabFold
562 1.5.2 default methods had a pronounced decline in PAbFold performance for the HA and Myc systems.
563 Specifically, the combination of mm3 and the revamped ColabFold MSA server tended to be less
564 discriminating compared to the default settings for ColabFold 1.3 (ColabFold 1.3 was the most up to date
565 version when this project was initialized). The updated configuration flagged diverse peptide sequences
566 with elevated pLDDT values (**Supplemental Figures 9 and 10**) resulting in the loss of successful epitope
567 predictive power. While testing ColabFold 1.5.2 with the most recent MSA server, but reverting the
568 AlphaFold2 models to mm2, the outcome improved, with experimentally validated sequences rising to the
569 top more frequently than when using mm3 but still falling short in ranking the experimentally validated
570 epitope sequence embedded within the antigen. However, when previously cached MSAs were paired with
571 mm2 (using ColabFold 1.5.2), performance was maximized. Furthermore, we attempted to recreate the
572 MSA databases locally with similar but not identical results to queueing the server with databases UniRef30
573 2202 and PDB70 220313 (**Supplemental Figure 11**). Additionally, the MMSEQS team ((47) and
574 (<https://github.com/soedinglab/MMseqs2>)) graciously rebuilt a server we could query using LocalColabFold
575 that mimicked the original UniRef30 2202 and PDB70 220313 database set up as closely as possible on their
576 end. The MSA that was generated from these databases was used, and still did not perform as well as the
577 original MSAs that were generated upon first retrieval and generation (**Supplemental Figure 12**). As a
578 negative control, we repeated all calculations without using any MSAs and only relying upon the sequence
579 to make a structural prediction. As expected, all epitopes were scored very poorly (**Supplemental Figure**
580 **13**). Despite our significant efforts, it is unclear why our initial results cannot be perfectly recapitulated, but
581 the difference has been traced to detailed MSA contents (**Supplemental Figure 14**), resulting in differences
582 in correct epitope identification. These results are summarized in (**Supplemental Figure 15**). These
583 challenges are presumably compounded by the incredible diversity of the CDR loops in antibodies which
584 could decrease the useful signal from the MSA as well as drive inconsistent MSA-dependent performance
585

586 One key lesson of this research effort is that caching the MSAs proved to be very useful as a method to
587 guard against changes in the performance of 3rd party tools. We recommend that future methods
588 development work using LocalColabFold adopt the strategy of caching MSAs when feasible. It is also our
589 hope that by describing the latent ability of AlphaFold2 to predict scFv-binding epitopes that this ability will
590 be preserved and enhanced in future iterations.
591

592 **Acknowledgements**

593 The authors would like to thank members of the Snow, Stasevich, and Geiss groups for helpful discussions at
594 TagTeam meetings. This project was funded in part by NIH R01AI132668 (Geiss) and NIH R56AI155897 and
595 R01AI168459 (Snow, Stasevich, Geiss). The authors would also like to thank Dr. Milot Mirdita for being our
596 point of contact for the ColabFold and MMSEQS teams and assisting us with setting up databases and
597 generating MSAs for our use.

598

599 **References Cited**

- 600 1. Larsen JEP, Lund O, Nielsen M. 2006. Improved method for predicting linear B-cell epitopes.
601 *Immunome Res* 2:2.
- 602 2. Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B. 2008. ElliPro: A new
603 structure-based tool for the prediction of antibody epitopes. *BMC Bioinformatics* 9:1–8.
- 604 3. Saha S, Raghava GPS. 2006. Prediction of continuous B-cell epitopes in an antigen using recurrent
605 neural network. *Proteins* 65:40–8.
- 606 4. Ambrosetti F, Jiménez-García B, Roel-Touris J, Bonvin AMJJ. 2020. Modeling Antibody-Antigen
607 Complexes by Information-Driven Docking. *Structure* 28:119–129.e2.
- 608 5. Dominguez C, Boelens R, Bonvin AMJJ. 2003. HADDOCK: A protein-protein docking approach based
609 on biochemical or biophysical information. *J Am Chem Soc* 125:1731–1737.
- 610 6. Chen R, Li L, Weng Z. 2003. ZDOCK: an initial-stage protein-docking algorithm. *Proteins* 52:80–7.
- 611 7. Cai H, Zhang Z, Wang M, Wu Y, Ying T, Tang J. 2021. Pretrainable Geometric Graph Neural Network
612 for Antibody Affinity Maturation.
- 613 8. He H, He B, Guan L, Zhao Y, Chen G, Zhu Q, Yu-chian C. 2023. De novo generation of antibody CDRH3
614 with a pre-trained generative large language model.
- 615 9. Jin W, Chen X, Vetticaden A, Sarzikova S, Raychowdhury R, Uhler C, Hacohen N. 2023. DSMBind:
616 SE(3) denoising score matching for unsupervised binding energy prediction and nanobody design.
617 *bioRxiv* 1–24.
- 618 10. Jaszczyzyn I, Bielska W, Gawlowski T, Dudzic P, Satława T, Kończak J, Wilman W, Janusz B, Wróbel S,
619 Chomicz D, Galson JD, Leem J, Kelm S, Krawczyk K. 2023. Structural modeling of antibody variable
620 regions using deep learning—progress and perspectives on drug discovery. *Front Mol Biosci* 10:1–8.
- 621 11. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek
622 A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S,
623 Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M,
624 Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D.
625 2021. Highly accurate protein structure prediction with AlphaFold. *Nature* 596:583–589.
- 626 12. Evans R, O'Neill M, Pritzel A, Antropova N, Senior A, Green T, Žídek A, Bates R, Blackwell S, Yim J,
627 Ronneberger O, Bodenstein S, Zielinski M, Bridgland A, Potapenko A, Cowie A, Tunyasuvunakool K,
628 Jain R, Clancy E, Kohli P, Jumper J, Hassabis D. 2022. Protein complex prediction with AlphaFold-
629 Multimer. *bioRxiv* 2021.10.04.463034.
- 630 13. Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, Wyatt R, Kwong PD. 2004. Structure and
631 Mechanistic Analysis of the Anti-Human Immunodeficiency Virus Type 1 Antibody 2F5 in Complex
632 with Its gp41 Epitope. *J Virol* 78:10724–10737.
- 633 14. Ekiert DC, Bhabha G, Elsliger M, Friesen RHE, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA.
634 2009. Antibody recognition of a highly conserved influenza virus epitope : implications for universal
635 prevention and therapy. *Science* (80-) 324:246–251.

636 15. Stanfield RL, Gorny MK, Williams C, Zolla-Pazner S, Wilson IA. 2004. Structural Rationale for the
637 Broad Neutralization of HIV-1 by Human Monoclonal Antibody 447-52D. *Structure* 12:193–204.

638 16. Zhou T, Xu L, Dey B, Hessell AJ, Van Ryk D, Xiang SH, Yang X, Zhang MY, Zwick MB, Arthos J, Burton
639 DR, Dimitrov DS, Sodroski J, Wyatt R, Nabel GJ, Kwong PD. 2007. Structural definition of a conserved
640 neutralization epitope on HIV-1 gp120. *Nature* 445:732–737.

641 17. Ko J, Lee J. 2021. Can AlphaFold2 predict protein-peptide complex structures accurately? *bioRxiv*
642 2021.07.27.453972.

643 18. Tsaban T, Varga JK, Avraham O, Ben-Aharon Z, Khramushin A, Schueler-Furman O. 2022. Harnessing
644 protein folding neural networks for peptide–protein docking. *Nat Commun* 13:1–12.

645 19. Ghani U, Desta I, Jindal A, Khan O, Jones G, Hashemi N, Kotelnikov S, Padhorny D, Vajda S, Kozakov D.
646 2022. Improved Docking of Protein Models by a Combination of AlphaFold2 and ClusPro. *bioRxiv*
647 2021.09.07.459290.

648 20. Johnson G, Wu T Te. 2000. Kabat Database and its applications: 30 years after the first variability
649 plot. *Nucleic Acids Res* 28:214–218.

650 21. Warr GW, Clem LW, Söderhäll K. 2003. The international imMunoGeneTics database IMGT. *Dev
651 Comp Immunol* 27:1.

652 22. Zhao N, Kamijo K, Fox PD, Oda H, Morisaki T, Sato Y, Kimura H, Stasevich TJ. 2019. A genetically
653 encoded probe for imaging nascent and mature HA-tagged proteins in vivo. *Nat Commun* 10.

654 23. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. ColabFold: making
655 protein folding accessible to all. *Nat Methods* 19:679–682.

656 24. Desta IT, Kotelnikov S, Jones G, Ghani U, Abyzov M, Kholodov Y, Standley DM, Beglov D, Vajda S,
657 Kozakov D. 2023. The ClusPro AbEMap web server for the prediction of antibody epitopes. *Nat
658 Protoc* 18.

659 25. Zeng Y, Wei Z, Yuan Q, Chen S, Yu W, Lu Y, Gao J, Yang Y. 2023. Identifying B-cell epitopes using
660 AlphaFold2 predicted structures and pretrained language model. *Bioinformatics* 39.

661 26. Desta IT, Kotelnikov S, Jones G, Ghani U, Abyzov M, Kholodov Y, Standley DM, Sabitova M, Beglov D,
662 Vajda S, Kozakov D. 2023. Mapping of antibody epitopes based on docking and homology modeling.
663 *Proteins Struct Funct Bioinforma* 91:171–182.

664 27. Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil R, Kabeli O, Shmueli Y, dos Santos Costa
665 A, Fazel-Zarandi M, Sercu T, Candido S, Rives A. 2023. Evolutionary-scale prediction of atomic-level
666 protein structure with a language model. *Science* (80-) 379:1123–1130.

667 28. Ahdritz G, Bouatta N, Kadyan S, Xia Q, Gerecke W, O TJ, Berenberg D, Fisk I, Zanichelli N, Zhang B,
668 Nowaczynski A, Wang B, Stepniewska-Dziubinska MM, Zhang S, Ojewole A, Efe Guney M, Biderman
669 S, Watkins AM, Ra S, Ribalta Lorenzo P, Nivon L, Weitzner B, Andrew Ban Y-E, Sorger PK, Mostaque E,
670 Zhang Z, Bonneau R, AlQuraishi M, Allen Hamilton B, Bio C. 2022. OpenFold: Retraining AlphaFold2
671 yields new insights into its learning mechanisms and capacity for generalization. *bioRxiv*
672 2022.11.20.517210.

673 29. Lee JH, Yadollahpour P, Watkins A, Frey NC, Leaver-Fay A, Ra S, Cho K, Gligorijević Gligorijević V,
674 Regev A, Bonneau R. 2023. EquiFold: Protein Structure Prediction with a Novel Coarse-Grained
675 Structure Representation. *bioRxiv* 2022.10.07.511322.

676 30. Ruffolo JA, Gray JJ. 2022. Fast, accurate antibody structure prediction from deep learning on massive
677 set of natural antibodies. *Biophys J* 121:155a-156a.

678 31. Abanades B, Wong WK, Boyles F, Georges G, Bujotzek A, Deane CM. 2023. ImmuneBuilder: Deep-
679 Learning models for predicting the structures of immune proteins. *Commun Biol* 6:575.

680 32. Ruffolo JA, Sulam J, Gray JJ. 2022. Antibody structure prediction using interpretable deep learning. Patterns 3:100406.

681 33. Mariani V, Biasini M, Barbato A, Schwede T. 2013. IDDT: A local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 29:2722–2728.

682 34. Terry JS, Anderson LB, Scherman MS, McAlister CE, Perera R, Schountz T, Geiss BJ. 2021. Development of a SARS-CoV-2 nucleocapsid specific monoclonal antibody. Virology 558:28–37.

683 35. Interactions P. 2002. A Single-Chain Antibody / Epitope System for Functional Analysis of. Society 12729–12738.

684 36. Krauß N, Wessner H, Welfle K, Welfle H, Scholz C, Seifert M, Zubow K, Aÿ J, Hahn M, Scheerer P, Skerra A, Höhne W. 2008. The structure of the anti-c-myc antibody 9E10 Fab fragment/epitope peptide complex reveals a novel binding mode dominated by the heavy chain hypervariable loops. Proteins Struct Funct Genet 73:552–565.

685 37. Sato Y, Kujirai T, Arai R, Asakawa H, Ohtsuki C, Horikoshi N, Yamagata K, Ueda J, Nagase T, Haraguchi T, Hiraoka Y, Kimura A, Kurumizaka H, Kimura H. 2016. A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation. J Mol Biol 428:3885–3902.

686 38. Fujiwara K, Poikonen K, Aleman L, Valtavaara M, Saksela K, Mayer BJ. 2002. A single-chain antibody/epitope system for functional analysis of protein-protein interactions. Biochemistry 41:12729–38.

687 39. Churchill MEA, Stura EA, Pinilla C, Appel JR, Houghten RA, Kono DH, Balderas RS, Fieser GG, Schulze-Gahmen U, Wilson IA. 1994. Crystal structure of a peptide complex of anti-influenza peptide antibody Fab 26/9: Comparison of two different antibodies bound to the same peptide antigen. J Mol Biol.

688 40. Pace CN, Scholtz JM. 1998. A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75:422–427.

689 41. Polonsky K, Pupko T, Freund NT. 2023. Evaluation of the Ability of AlphaFold to Predict the Three-Dimensional Structures of Antibodies and Epitopes. J Immunol 211:1578–1588.

690 42. Guarra F, Colombo G. 2023. Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens. J Chem Theory Comput 19:5315–5333.

691 43. Giulini M, Schneider C, Cutting D, Desai N, Deane CM, Bonvin AMJJ. 2023. Towards the accurate modelling of antibody-antigen complexes from sequence using machine learning and information-driven docking. bioRxiv 2023.11.17.567543.

692 44. Hummer AM, Abanades B, Deane CM. 2022. Advances in computational structure-based antibody design. Curr Opin Struct Biol 74:102379.

693 45. Shashkova TI, Umerenkov D, Salnikov M, Strashnov P V., Konstantinova A V., Lebed I, Shcherbinin DN, Asatryan MN, Kardymon OL, Ivanisenko N V. 2022. SEMA: Antigen B-cell conformational epitope prediction using deep transfer learning. Front Immunol 13:1–11.

694 46. Lo YT, Shih TC, Pai TW, Ho LP, Wu JL, Chou HY. 2021. Conformational epitope matching and prediction based on protein surface spiral features. BMC Genomics 22:1–16.

695 47. Mirdita M, Steinegger M, Breitwieser F, Söding J, Levy Karin E. 2021. Fast and sensitive taxonomic assignment to metagenomic contigs. Bioinformatics 37:3029–3031.

696 48. Kabsch W. 1978. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr Sect A 34:827–828.

697 49. Lawrence J, Bernal J, Witzgall C. 2019. A purely algebraic justification of the Kabsch-Umeyama

724 algorithm. *J Res Natl Inst Stand Technol* 124:1–6.
725
726

727 **Supporting Information**

728

729

730 **Contents:**

731 Table 1A: Full sequence information for all scFv and antigen proteins

732 Table 1B: MSA for the scFv chimera variants, with loop and linker region annotation

733 Figure 1: Comparison of AlphaFold2 Myc scFv predictions to Fab crystal structure

734 Figure 2: AlphaFold2 predictions for scFv interacting with full length antigen proteins

735 Figure 3: Illustration of AlphaFold2 peptide predicted placements and confidence thereof

736 Figure 4: Structure superposition analysis for Myc and HA scFv variants relative to reference crystal
737 structures

738 Figure 5: In the context of Myc, testing prediction performance versus sliding peptide window parameters

739 Figure 6: Testing detection of Myc epitope inserted into three locations in an unrelated 3rd-party protein

740 Figure 7: HA epitope prediction for three anti-HA scFvs

741 Figure 8: Comparing prediction performance for mBG17 using multimer-v2 and multimer-v3

742 Figure 9: Comparing prediction performance for Myc using multimer-v2 and multimer-v3 and the new MSA

743 Figure 10: Comparing prediction performance for HA using multimer-v2 and multimer-v3 and the new MSA

744 Figure 11: Comparison of 9 major systems after recreating MSAs locally with downloaded databases

745 Figure 12: Comparison of 9 major systems after recreating MSAs with colabfold after MMSEQS rebuilt the
746 old databases for our use

747 Figure 13: Comparison of the 9 major systems without using any MSA, using only the single sequence

748 Figure 14: Comparison of the contents of the MSA for Myc-2E2 after being generated by the 4 major
749 methods: old generation, new generation, local generation, and MMSEQS rebuilt specialty server.

750 Figure 15: Overview table of whether or not each MSA generation type could accurately detect the
751 experimentally determined epitope in each of the 9 major systems.

752

753

754

755 **Supplemental Table 1A**

756 >mBG17 scFv

757 MAEVKLEESGGGLVQPGGSMKFSCVASGFTFS DYWMN WVRQSPDKGLEWVAEIRLKSNNYATHYAA SVKGRFTISRDDSK
758 SSVYLQMNNLRAEDSGIYYCTRSAMDYWGQGTSVTSSGGGGGGGGGGSDIVMSQSPSSLAVSGEKITMSCKSS
759 QSLLYTDQK NYLAWFQQKPGQSPKLLIFWASTRDSGV PDRFTGSGSGTDFLTISSVKAEDLAVYYCQQFYNPRTFGGGT
760 KLEI

761

762 >mBG17-15F11

763 MAEVKLVESGGGLVKPGGSLKLSCAASGFTFS DYWMN WVRQTP EKRLEWVAEIRLKSNNYATHYAA SVKGRFTISRDNAK
764 NTLYLQMSSLRSED TAIYYCARSAMDYWGQGTTLVSSGGGGGGGGGGSDIVLTQSPASLT VSLGQRATISCKSSQSL
765 YTSDQK NYLAWYQQKPGQPPKLLIYWA STRDSGIPARFSGSGSGTDFLTNIHPVEEDAATYYCQQFYNPRTFGAGTKLEI
766 I

767

768 >mBG17-2E2

769 MAEVQLVESGGDLVKPGGSLKLSCAASGFTFS DYWMN WVRQTPDKRLEWVAEIRLKSNNYATHYAA SVKGRFTISRDNAK
770 NTLYLQMSSLKSED TAMYYCARSAMDYWGQGTSVTSSGGGGGGGGGGSDIVLTQSPASLA VSLGQRATISCKSSQSL
771 LLYTSDQK NYLAWYQQKPGQPPKLLIYWA STRDSGIPARFSGSGSGTDFLTNIHPVEEDAATYYCQQFYNPRTFGGGTKLE
772 I

773

774 >mBG17 Fab VH:VL

775 MYLGLNCV FIVFLLKG VQSEVKLEESGGGLVQPGGSMKFSCVASGFTFS DYWMN WVRQSPDKGLEWVAEIRLKSNNYATH
776 YAASVKG RFTISRDDSKSSVYLQMNNLRAEDSGIYYCTRSAMDYWGQGTSVTSS:MD SQAQVLMLLLW VSGTCGDIVM
777 SQSPSSLAVSGEKITMSCKSSQSLYTSDQK NYLAWFQQKPGQSPKLLIFWASTRDSGV PDRFTGSGS

778

779 >mBG17 epitope

780 DDFSKQLQQS

781

782 >mBG17 target protein sequence – SARS CoV-2 Nucleocapsid protein

783 MSDNGPQNQRNAPRITFGG PSDSTGSNQNGERSGARSKQRRPQGLPNNTASWFTALTQHGKEDLK FPRGQGV PINTNSS
784 PDDQI GYYRRATRRIRGGDGKMKDLS PRWYFYYLGTGPEAGLPY GANKDGIWVATE GALNTPKD HIGTRNPANNAI VLQ
785 LPQGTTLPKGFYAE GSRGGSQASSRSSRSRN STPGSSRG TSPARMAGNGGDA ALALLLDRLNQLESKMSGKGQQ
786 QQGQTVTKSAAEASKKPRQKRTATKAYNVTQAFGRGPEQTQGNFGDQELIRQGTDYKHW P QIAQFAPSASAFFGMSRI
787 GMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKA DETQALPQRQKKQQVTLLPAADLDD
788 FSKQLQQSMSSADSTQA

789

790 >HA scFv

791 MAEVKLVESGGDLVKPGGSLKLSCAASGFTFSSYGM SWVRQTPDKRLEWVATISRGGSY TYPDSVKG RFTISRDNAKNTLY
792 LQMSSLKSED TAMYYCARRETYDEKG FAYWGQGTTVSSGGGGGGGGGGGGSDIELTQSPSSLVTAGEKVTMSCKSS
793 QSLLNSGNQK NYLTWYQQKPGQPPKLLIYWA STRRESGV PDRFTGSGSGRDFLTISSVQAEDLAVYYCQNDNSHPLTFGAG
794 TKLEI

795

>HA-15F11

796 MEVKLVESGGGLVKPGGSLKLSAASGFTFSSYGMSWVRQTPKRLEWVATISRGGSYTYYPDSVKGRFTISRDNAKNTLYL
797 QMSSLRSEDTAIYYCARRETYDEKGFAYWGQGTTLVSSGGGSGGGGSGGGSDIVLTQSPASLTSGQRATISCKSSQL
798 LNSGNQKNYLTWYQQKPGQPPKLLIYWASTRESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQNDNSHPLTFGAGTKLEI
799
800 >HA-2E2
801 MAEVQLVESGGDLVKPGGSLKLSAASGFTFSSYGMSWVRQTPDKRLEWVATISRGGSYTYYPDSVKGRFTISRDNAKNTLY
802 LQMSSLKSEDTAMYYCARRETYDEKGFAYWGQGTSVTSSGGGSGGGGSGGGSDIVLTQSPASLAWSLGQRATISCKSS
803 QSLLNSGNQKNYLTWYQQKPGQPPKLLIYWASTRESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQNDNSHPLTFGGGT
804 KLEI
805
806 >HA target protein sequence – influenza hemmaglutinin A
807 MKTIIALSYILCLVSAQKLPGSENRTATLCLGHHAVQNGTLVKTITNDQIEVTNATELVQSSSTGRICDNPHRVLGDRCTLIDA
808 LLGDPHCDSFQNKEWDLFIERSKAYSNCYPDVPDYASLRLVASSGTLEFTTEGFDWTGVTQNGTSYSCKRGSANSFFSRLN
809 WLHKLNYKYPQNVTMPNDDKFDLYIWGVHPSTDNDQTSLYVQTSGRVTSTKRSQQTVDIGSRPWRGISSRISH
810 WTIVKPGDILLINSTGNLIAPRGYFKIRNGKSSIMKSDALIGNCNSECITPNGSIPNDKPFQNVNRITYGDCPRYVKQSTLKLAT
811 GMRNVPEKQTRGIFGAIAGFIENGWEGMVDGWYGRHRNSEGTTGQAADLKSTQAAIDQINGKLNRLIKKNEKFHQIEKE
812 FSEVEGRIQDLEKYVEDTKVWLWSYNAELLENQHTIDLTDSEMNLKFERTRKQLRENAEDMGNGCFKIYHRCDNACIGS
813 IRNGTYNHNVYRDEALNNRFKIKGVELKSGYKDWLWISFAISCFLCVGLMGLIMWTCQKGNIRCNCICH
814
815 >HA epitope
816 YPYDVPDYA
817
818 >Myc scFv
819 MEVKLVESGGDLVKPGGSLKLSAASGFTSHYGMWSVRQTPDKRLEWVATIGSRGTYTHYPDSVKGRFTISRDNDKNALY
820 LQMNSLKSEDTAMYYCARRSEFYYGNTYYYSAMDYWGQGASVTVSSGGGSGGGGSGGGSDIVLTQSPASLAWSLGQ
821 RATISCRASESVDNYGFSFMNWFFQQKPGQPPKLLIYAIRNGSGVPARFSGSGSGTDFSLNIHPVEEEDPAMYFCQQTKEV
822 WTFGGGTKEI
823
824 >Myc-15F11
825 MEVKLVESGGGLVKPGGSLKLSAASGFTSHYGMWSVRQTPDKRLEWVATIGSRGTYTHYPDSVKGRFTISRDNAKNTLY
826 QMSSLRSEDTAIYYCARRSEFYYGNTYYYSAMDYWGQGTTLVSSGGGSGGGGSGGGSDIVLTQSPASLTSGQRATI
827 SCRASESVDNYGFSFMNWYQQKPGQPPKLLIYAIRNGSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQTKEVP
828 AGTKLEI
829
830 >Myc-2E2
831 MAEVQLVESGGDLVKPGGSLKLSAASGFTSHYGMWSVRQTPDKRLEWVATIGSRGTYTHYPDSVKGRFTISRDNAKNTL
832 YLQMSSLKSEDTAMYYCARRSEFYYGNTYYYSAMDYWGQGTSVTSSGGGSGGGGSGGGSDIVLTQSPASLAWSLGQ
833 RATISCRASESVDNYGFSFMNWYQQKPGQPPKLLIYAIRNGSGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQTKEVP
834 WTFGGGTKEI
835
836 >Myc target protein sequence
837 MDFFRVVENCQPPATMPLNVSFTNRYDLDYDSVQPYFYCDEEENFYQQQQSELQPPAPSEDIWKKFELLPTPPLSPSRRS
838 GLCSPSYVAVTPFSLRGDNDGGGGSFADQLEMVTELLGGDMVNQSFICDPDDETFIKNIQDCMWSGFSAAAKLVSEKL
839 ASYQAARKDSGSPNPARGHSVCSTSSLYLQDLSAAASECIDPSVVFPYPLNDSSPKSCASQDSSAFSPSSDSLLSSTESSPQGS

840 PEPLVLHEETPPTTSSDSEEEQEDEEEIDVVSVEKRQAPGKRSESGSPSAGGHSKPPHSPLVKRCHVSTHQHNYAAPPSTRK
841 DYPAAKRVKLDUSRVLRQISNNRKCTSPRSSDTEENVKRRTHNVLERQRRNELKRSFFALRDQIPELENNEKAPKVVILKKATA
842 YILSVQAEEQKLISEEDLLRKRRREQLKHKLEQLRNSCA
843
844 >Myc epitope
845 EQKLISEEDL
846
847 **Supplemental Table 1B**

Kabat numbering

MYC	-----10-----20-----30-----40-----50-----
MYC-2E2	-MEVKLVESGGDLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPDKRLEWVATIG--SRGT
MYC-15F11	MAEVQLVESGGDLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPDKRLEWVATIG--SRGT
mBG17	-MEVKLVESGGGLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPDKRLEWVATIG--SRGT
mBG17-2E2	MAEVKLEESGGGLVQPGGSMKFSCVASGFTFSHYGMSWVRQTPDKRLEWVATIG--SRGT
mBG17-15F11	MAEVQLVESGGDLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPDKRLEWVATIG--SRGT
HA-scFv	MAEVKLVESGGGLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPDKRLEWVATIG--SRGT
HA-2E2	MAEVQLVESGGDLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPDKRLEWVATIG--GS
HA-15F11	-MEVKLVESGGGLVKPGGSLKLSCAASGFTFSHYGMSWVRQTPDKRLEWVATIG--GS

Kabat numbering

MYC	-----65-----70-----80-----90-----95-----102-----
MYC-2E2	YTHYPDSVKGRFTISRDNDKNALYLOMNSLKS
MYC-15F11	YTHYPDSVKGRFTISRDNAKNTLYLQMSSLK
mBG17	YTHYPDSVKGRFTISRDNAKNTLYLQMSSLR
mBG17-2E2	ATHYAASVKGRTISRDDSKSSVYLQMNNLRAEDSGIYYCTRS-----AMDY
mBG17-15F11	ATHYAASVKGRTISRDNAKNTLYLQMSSLK
HA-scFv	ATHYAASVKGRTISRDNAKNTLYLQMSSLR
HA-2E2	YTYYPDSVKGRFTISRDNAKNTLYLQMSSLK
HA-15F11	YTYYPDSVKGRFTISRDNAKNTLYLQMSSLR

MYC	-----110-----1-----10-----24-----
MYC-2E2	WGQGASVTVSSGGGGSGGGGSDIVLTQSPASLAVSLGQRATISCRASESVDNYG-
MYC-15F11	WGQGTSVTVSSGGGGSGGGGSDIVLTQSPASLAVSLGQRATISCRASESVDNYG-
mBG17	WGQGTTLTVSSGGGGSGGGGSDIVLTQSPASLTVSLGQRATISCRASESVDNYG-
mBG17-2E2	WGQGTSVTVSSGGGGSGGGGSDIVMSQSPSSLAVSVGEKITMSCKSSQSLLYTS
mBG17-15F11	WGQGTTLTVSSGGGGSGGGGSDIVLTQSPASLAVSLGQRATISCKSSQSLLYTS
HA-scFv	WGQGTTVTVSSGGGGSGGGGSDIELTQSPSSLTVTAGEKVTMSCKSSQSLLNSGN
HA-2E2	WGQGTSVTVSSGGGGSGGGGSDIVLTQSPASLAVSLGQRATISCKSSQSLLNSGN
HA-15F11	WGQGTTLTVSSGGGGSGGGGSDIVLTQSPASLTVSLGQRATISCKSSQSLLNSGN

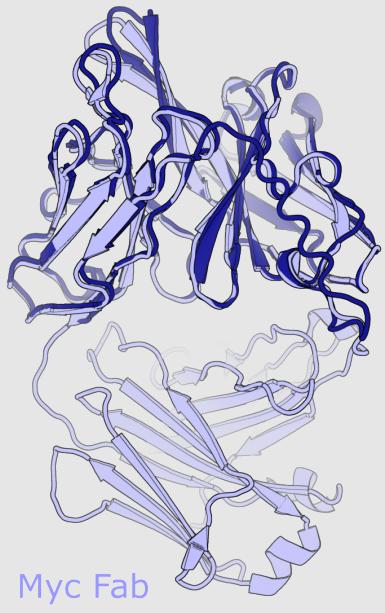
MYC	-----34-----40-----50-----60-----70-----80-----
MYC-2E2	-FSFMNWFQQKPGQPPKLLIYAI
MYC-15F11	-FSFMNWYQQKPGQPPKLLIYAI
mBG17	-FSFMNWYQQKPGQPPKLLIYAI
mBG17-2E2	QKNYLAWFQQKPGQSPKLLIYWA
mBG17-15F11	QKNYLAWYQQKPGQPPKLLIYWA
HA-scFv	QKNYLAWYQQKPGQPPKLLIYWA
HA-2E2	QKNYLAWYQQKPGQPPKLLIYWA
HA-15F11	QKNYLAWYQQKPGQPPKLLIYWA

MYC	-----90-----100-----
MYC-2E2	QQTKEVPWTFGGGKTKLEI
MYC-15F11	QQTKEVPWTFGGGKTKLEI
mBG17	QQFYNYPRTFGGGKTKLEI
mBG17-2E2	QQFYNYPRTFGGGKTKLEI
mBG17-15F11	QQFYNYPRTFGGGKTKLEI
HA-scFv	QNDNSHPLTFGAGTKLEL
HA-2E2	QNDNSHPLTFGGGKTKLEI
HA-15F11	QNDNSHPLTFGAGTKLEI

Legend: Heavy chain loops linker Light chain loops

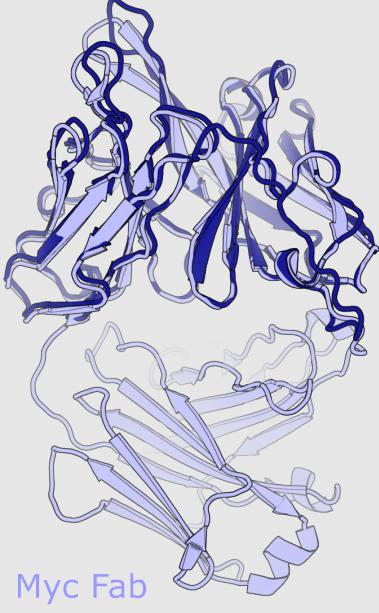
A

Myc scFv WT



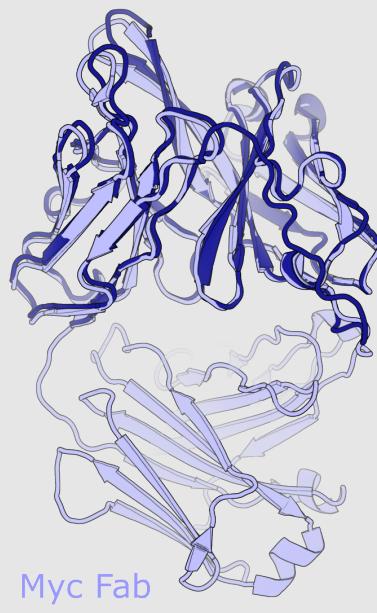
Myc Fab
PDB entry 2orb

Myc scFv 15F11



Myc Fab
PDB entry 2orb

Myc scFv 2E2



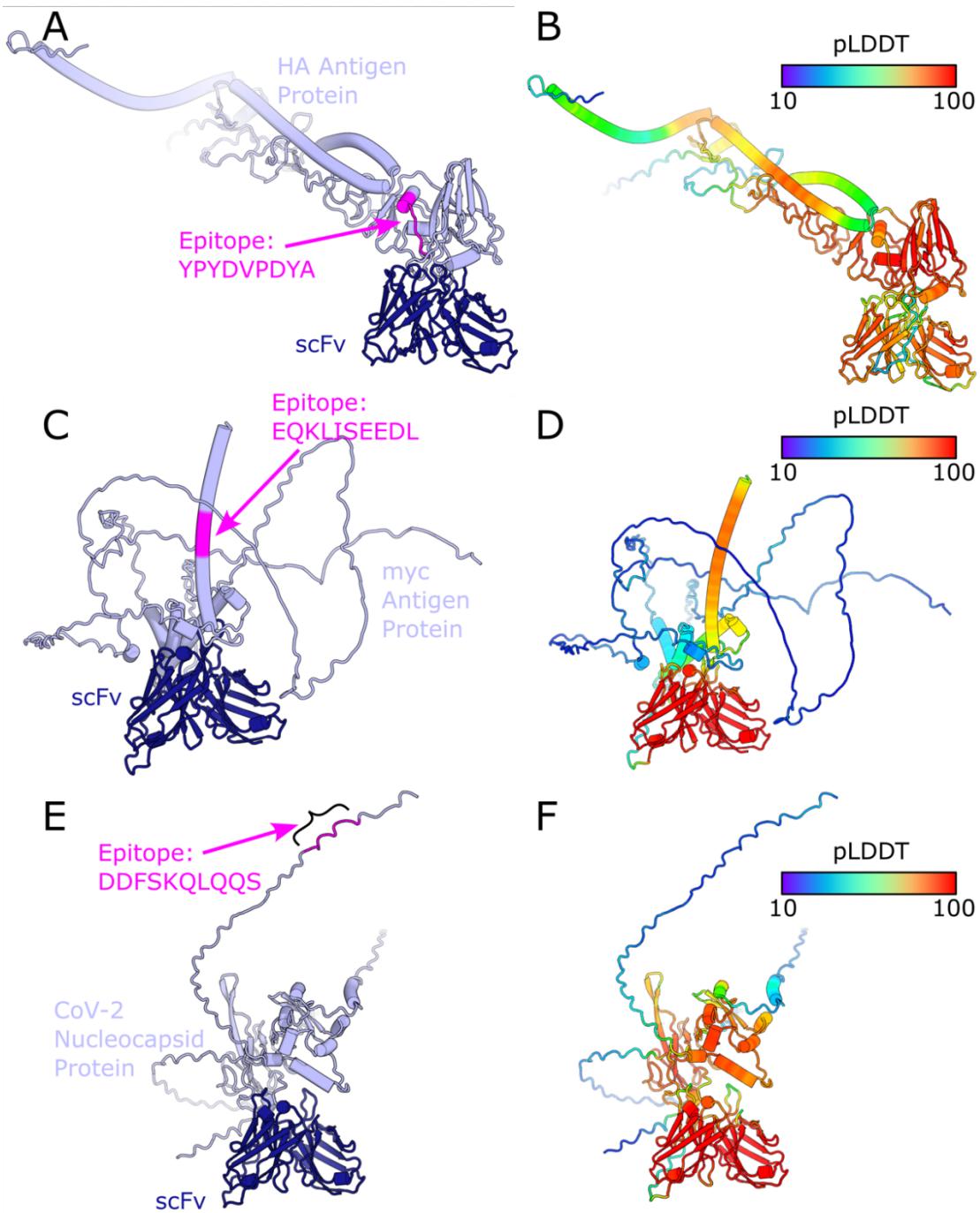
Myc Fab
PDB entry 2orb

B

Structure	RMSD C_α [\AA] vs 2orb
Myc scFv WT	0.42
Myc scFv 15F11	0.45
Myc scFv 2E2	0.45

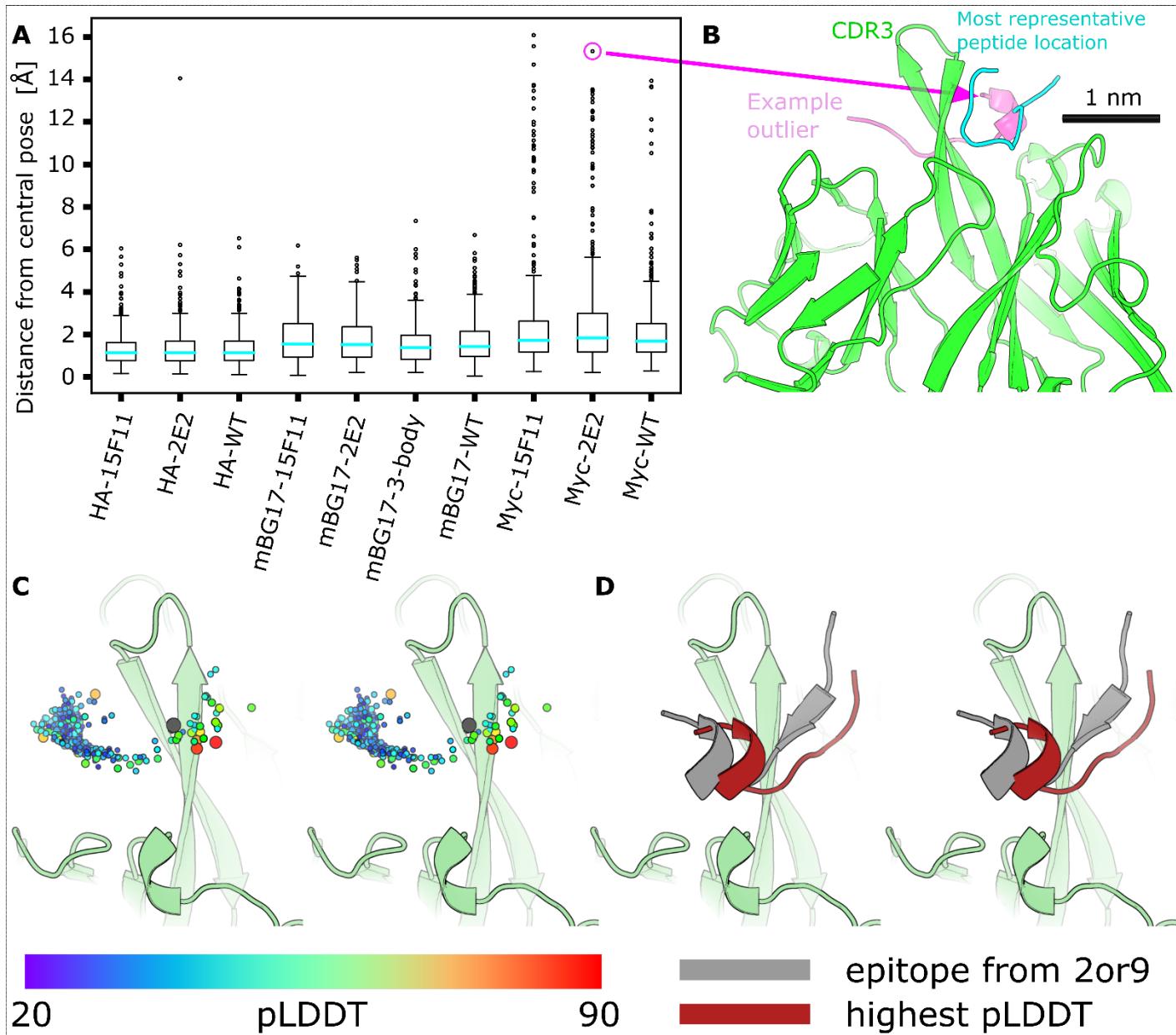
850
851
852
853
854
855
856

Supplemental Figure 1. Alignment of AlphaFold2 predicted scFv structures to an anti-c-Myc Fab crystal structure. A) Alignments of AlphaFold2-derived wild-type Myc scFv, Myc-2E2 scFv, and Myc-15F11 scFv structures with a Myc Fab crystal structure (PDB: 2orb). Predicted scFv structures are shown in dark blue, 2orb Myc Fab structures are shown in light blue. **B)** RMSD values comparing structural similarities between the wild-type Myc scFv, Myc-2E2 scFv, and Myc-15F11 scFv structures with a Myc Fab crystal structure (PDB: 2orb) were computed by the PyMOL align command.



857
858
859
860
861
862
863

Supplemental Figure 2: AlphaFold2's best attempt to dock whole sequences with the respective sequence's scFv. **A)** The whole HA protein structure and scFv complex as predicted by AF2, with the correct epitope sequence highlighted in magenta. **B)** Shows the same structure by highlighted by confidence (pLDDT) of the structure with AF2. Similarly, the entire Myc protein-scFv complex are shown with **C)** the correct epitope highlighted in magenta and **D)** the confidence of the structure shown, and again for the mBG17 N-protein-scFv complex in **E)** and **F)**.



864
865
866
867
868
869
870
871
872
873
874
875
876
877

Supplemental Figure 3: AlphaFold2 places all peptides near the CDR loops. The predicted Ca coordinates for all scFv (excluding the flexible linker) were extracted, and all were aligned together using the Kabsch algorithm (48, 49). With the scFvs structurally aligned, an all-against-all RMSD was calculated for the epitope peptides. To visually represent each peptide as a single point, the coordinates for all epitope atoms were averaged. The “central” exemplar epitope (cyan) is the peptide with the smallest sum of RMSD to all other peptides. **A)** The average and quartile for peptide placement relative to the central peptide via Box-and-Whisker plot reveals that AlphaFold2 largely places all epitopes in the same area. The Myc CDRH3 runs through the middle of a traditional paratope pocket, it isn’t a “cradle” for the epitope to sit on. AlphaFold2 places peptides on both sides of the CDRH3, causing significant spread in the peptide placement. **B)** An example of an exemplar, most-central predicted peptide structure (cyan) for the peptide PKSCASQDSS (cyan) bound to the Myc-2E2 scFv (green) that is distant from an example outlier peptide (magenta, peptide PHSPLVLKRC, center-to-center distance 14.8 Å). All peptide placements are still in contact with CDRH3, consistent with a strong AlphaFold2 bias to place peptides in a typical antibody binding site. **C)** The Myc-2E2 scFv (pale-green) and the average epitope placement (cyan) peptide alongside the crystal structure solution of the Myc epitope (grey). Remaining peptide placements are represented as a cloud of spheres at the mean peptide position. Each peptide sphere is colored and sized

878 by epitope pLDDT (ranging from 20 to 90). Although AlphaFold2 frequently placed peptides on the opposite side of the CDRH3
879 from the Myc epitope (grey), it was not confident in these peptide placements (low, small, blue pLDDT spheres). In contrast, some
880 of the peptides placed around the CDRH3, and in positions similar to the native epitope (grey) were placed with higher pLDDT
881 confidence (increasingly large spheres trending from green to yellow to orange and red). **D**) The top ranked peptide as predicted
882 by PAbFold with sequence QKLISEEDLL (red) and the crystal structure solution of the Myc epitope (grey).
883

884

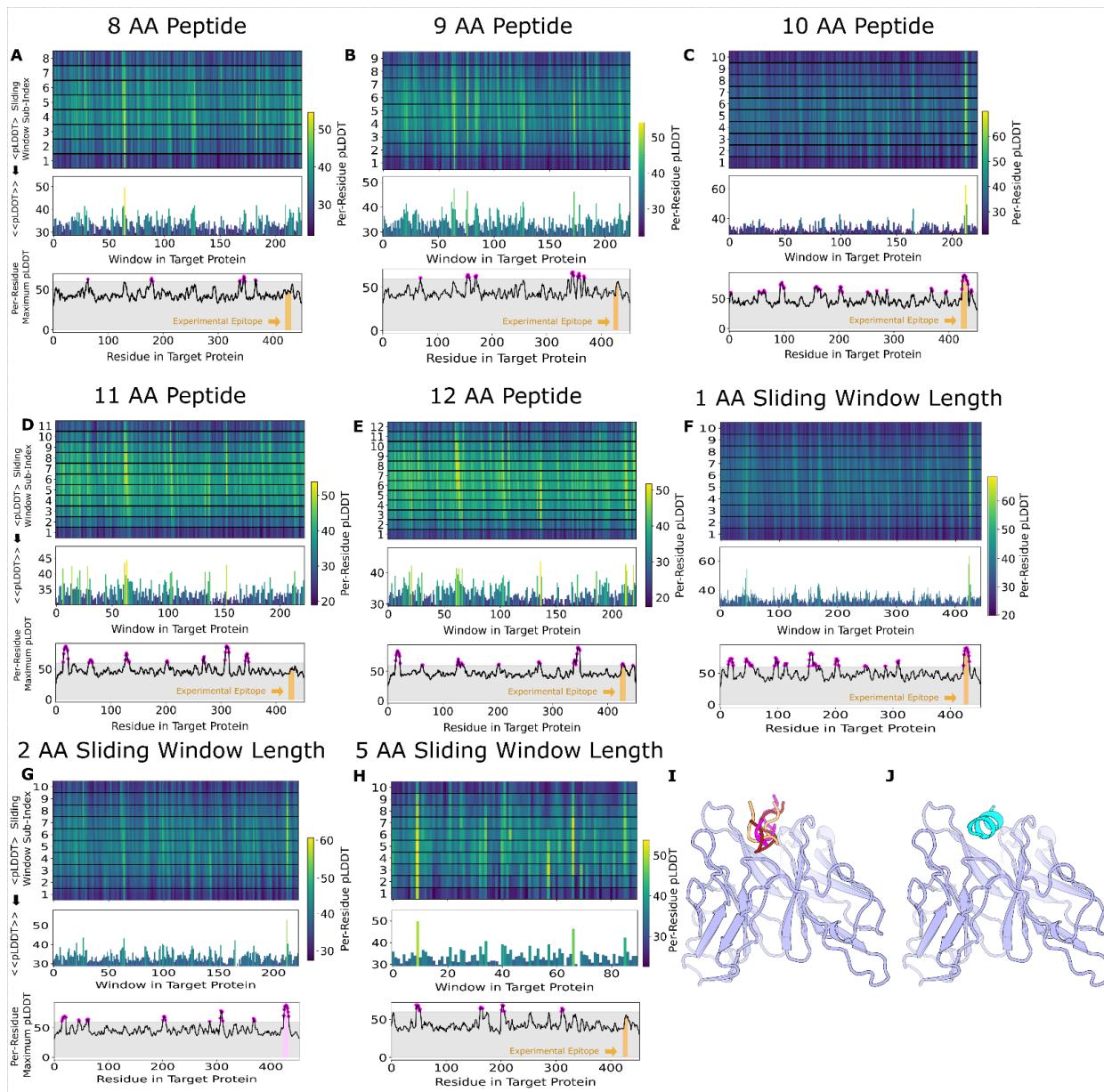
scFv	Apo			Docked		
	BB Ca RMSD	Loop all backbone RMSD	Epitope all atom RMSD	BB Ca RMSD	Loop all backbone RMSD	Epitope all atom RMSD
Myc	0.65	2.87	NA	0.47	1.75	6.69
Myc-15F11	0.62	3.06	NA	0.51	1.51	2.45
Myc-2E2	0.61	2.96	NA	0.51	1.61	2.68

885

scFv	Apo			Docked		
	BB Ca RMSD	Loop all backbone RMSD	Epitope all atom RMSD	BB Ca RMSD	Loop all backbone RMSD	Epitope all atom RMSD
HA	0.56	1.39	NA	0.58	1.25	3.2
HA-15F11	0.56	1.32	NA	0.6	1.26	3.1
HA-2E2	0.58	1.21	NA	0.6	1.27	3.1

886

887 **Supplemental Figure 4:** RMSD comparison (all numbers have units of Å) for AlphaFold2 predicted scFv structures compared to
888 reference crystal structures, **A**) 2or9 (Myc) and **B**) 1frg (HA), respectively. The loops of the scFv more closely mimic the crystal
889 structure when the epitope peptide is present. The backbone also undergoes subtle changes during docking that make it slightly
890 more similar to the crystal structure. These structures were aligned by identifying the framework residues in all structures, then
891 aligning the framework region Cα with the Kabsch algorithm (48, 49). Specifically excluded from this process were the heavy and
892 light CDR loops of the structures, as well as the flexible linker structure that connects the heavy and light chains due to the
893 inherent floppy, unstructured nature of this region. After aligning the framework regions of the AlphaFold2 predicted structures
894 and the crystal structures (2or9 and 1frg respectively), an RMSD of these Cα was calculated and is reported as the first column
895 'BB Cα RMSD'. Without further alignment, loop placement was analyzed with an all backbone RMSD by calculating the RMSD
896 between the C, Cα, N, and O along the backbone of all residues in the scFv that were not used for the framework
897 superimposition. This RMSD is reported in the second column as 'Loop all backbone RMSD'. Finally, to investigate peptide
898 predicted placement and potential scFv:epitope interactions, an all-atom RMSD was calculated between the crystal structure and
899 the AF2 predicted peptide structure (no additional alignment). Because the apo structure lacks a peptide position, this is only
900 reported in the 'Docked' category and is in the 3rd column labeled 'Epitope all atom RMSD'. One script was written for each scFv
901 (Myc and HA), and can be found in the Zenodo deposition of our data (<https://zenodo.org/records/10884181>) because this
902 analysis is not a key part of PAbFold. Briefly this analysis reveals that all three HA scFv variants have predicted framework regions
903 and loop regions in the apo structures that closely match the reference structure (0.56-0.58 Å and 1.21-1.39 Å). Accordingly,
904 when the cognate epitope peptide is present, it can be placed with relatively high accuracy for all three scFvs (3.1-3.2 Å), with
905 only small changes in the loops (1.39 Å to 1.25 Å, 1.32 Å to 1.26 Å, and 1.21 Å to 1.27 Å). In contrast, the apo structures for the
906 three Myc scFvs have a much higher deviation in the loop regions (2.87 to 3.06 Å). When the epitope peptide is added, there is
907 significant motion in the loops consistent with an "induced fit" description. In the two chimeric Myc scFvs (Myc-15F11 and Myc-
908 2E2) the final loop RMSD is reduced to 1.51-1.61 Å, and the epitope peptide is successfully predicted (2.45-2.68 Å). However,
909 despite a lower apo-state loop RMSD (2.87 Å), the loop RMSD for the wild-type Myc scFv only drops to 1.75 Å, and the epitope
910 peptide placement does not match the experimental structure (6.69 Å). This is consistent with the failure of the wild-type Myc
911 scFv AlphaFold2 predictions in main text Figure 2.
912



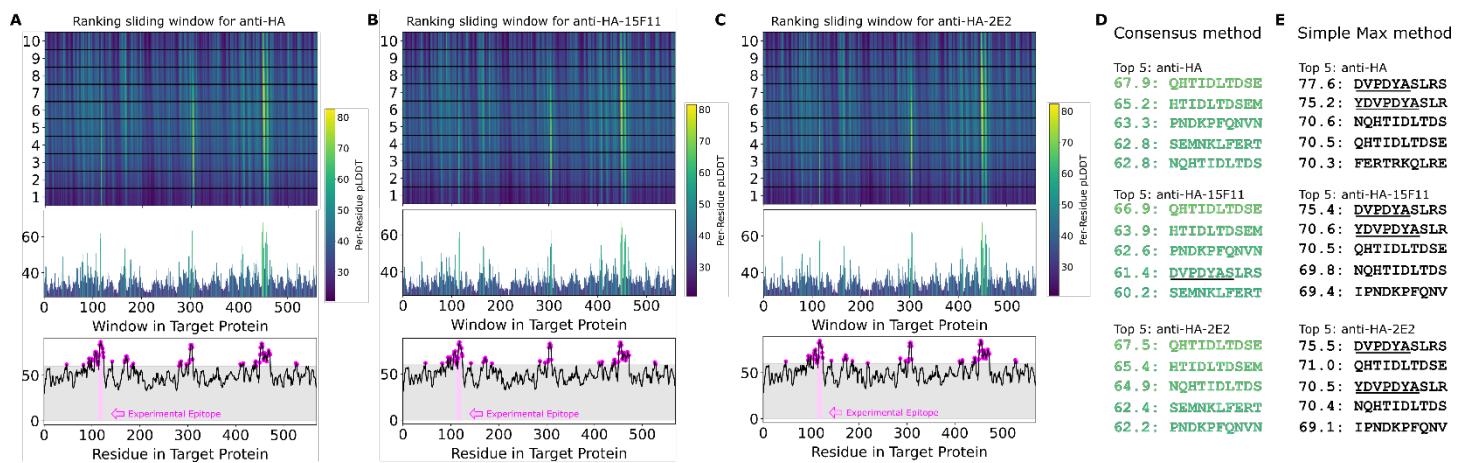
914

915

916 **Supplemental Figure 5. Assessment of peptide size and sliding window sizes on epitope prediction efficacy.** Myc-2E2

917 scFv:peptide structures were predicted with peptides of 8 (A), 9 (B), 10 (C), 11 (D), and 12 (E) amino acid lengths derived from the
 918 Myc protein with a sliding window of 2 amino acids, and pLDDT scores from each predicted structure were plotted against the
 919 Myc amino acid position and sliding window length target. F) Negative control peptides bind to antibody binding sites, but with
 920 poor pLDDT scores. Similarly, with a fixed peptide length of 10 and a sliding window step size of 1 (F), 2 (G), and 5 (H), we can see
 921 the practical epitope detection outcome was similar for a sliding window of 1 and 2, but resolution and accuracy were reduced
 922 for a sliding window step size of 5. To more fully illustrate the strong learned bias that AlphaFold2 has for placing any peptides
 923 among the CDR loops, we predicted the structure of Myc-2E2 in complex with several control peptides. These negative control
 924 peptides bind to the generally expected antibody binding site, but with poor pLDDT. I) GSx5 in magenta (GSGSGSGSGS) had a
 925 score (mean peptide from Simple Max method pLDDT) of 29.5. (GGGGS)₂ in orange (GGGGSGGGGS) had a score of 31.9. G₁₀ in
 926 red (GGGGGGGGGG) had a score of 33. Lastly, J) A₁₀ in cyan (AAAAAAAAAA) had a score of 41 and is the only negative control
 927 peptide to have an alpha-helical secondary structure (presumably due to the increased alpha helical propensity of alanine).

938



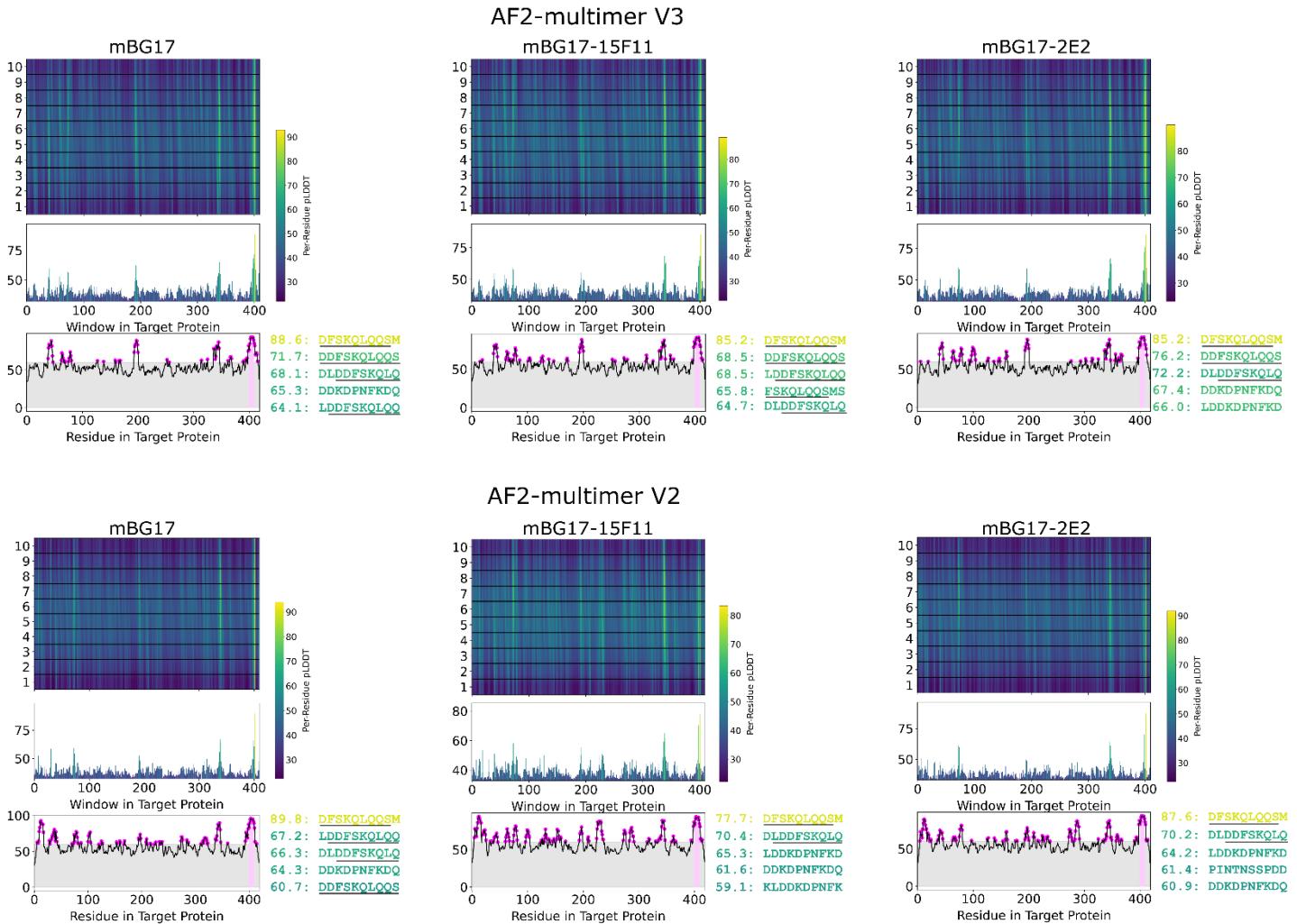
939

940

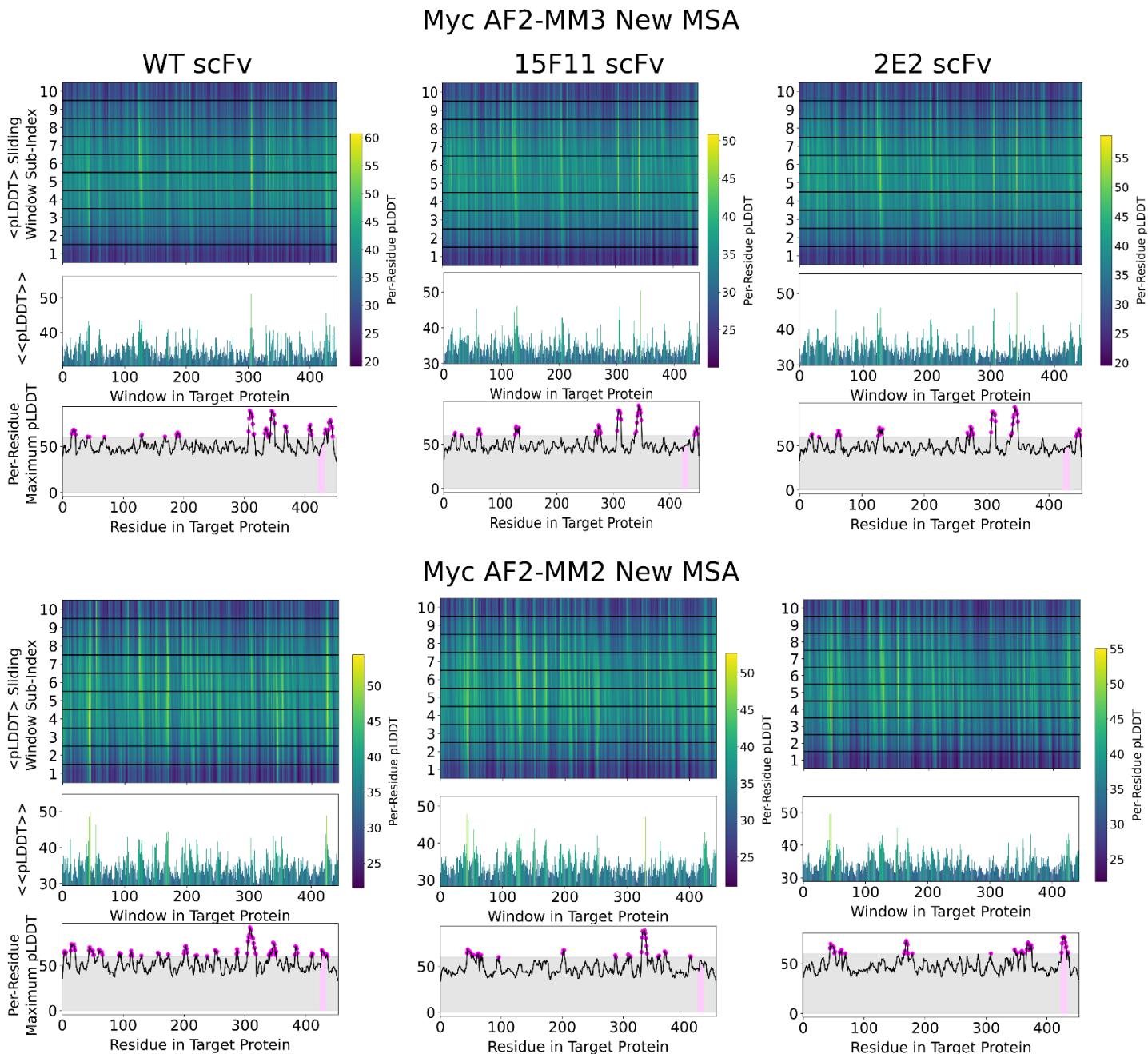
941 **Supplemental Figure 7: AlphaFold2 can accurately predict the HA linear epitope in different scFv backbones.** The anti-HA VH
942 and VL antibody sequences were used to generate either **A**) wild-type scFv or CDR loop grafted onto the **B**) 15F11 or **C**) 2E2
943 antibody backbones. The Influenza A virus hemagglutinin protein sequence (Genbank AUT17530.1) was used as the target
944 antigen and processed into 10 amino acid overlapping peptides with a 1 amino acid sliding window. The structures for each
945 scFv:peptide pair were predicted with AlphaFold2, and pLDDT values for each scFv:peptide pair are shown. **D**) The top-ranking
946 epitope sequences via pLDDT scores are reported via the consensus method. Sequence underlining represents overlap with the
947 known HA epitope (HA a.a. 114-125: YDVPDYASL). **E**) The top-ranking epitope sequences via pLDDT scores are reported via the
948 simple max method.

949

950

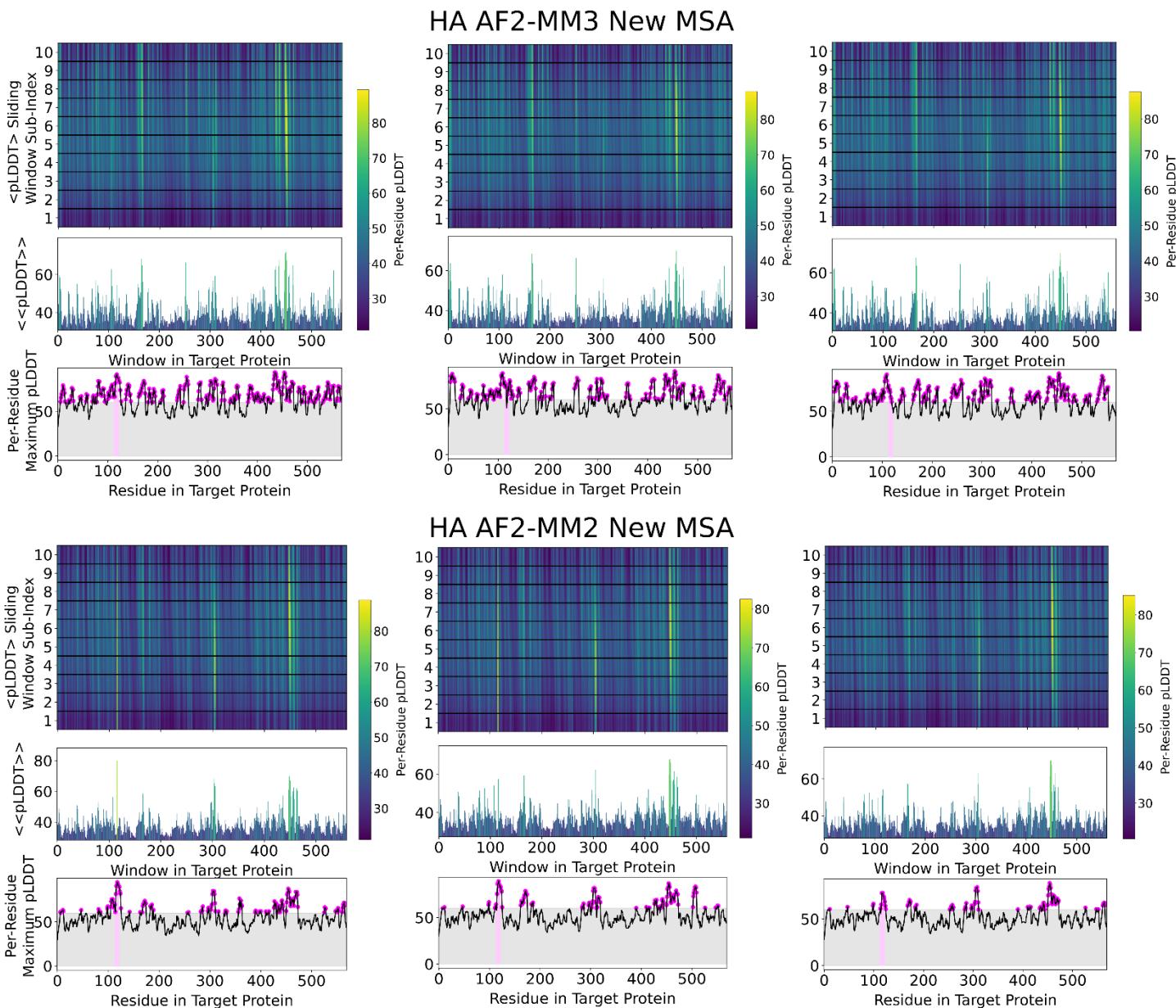


951
952
953
954

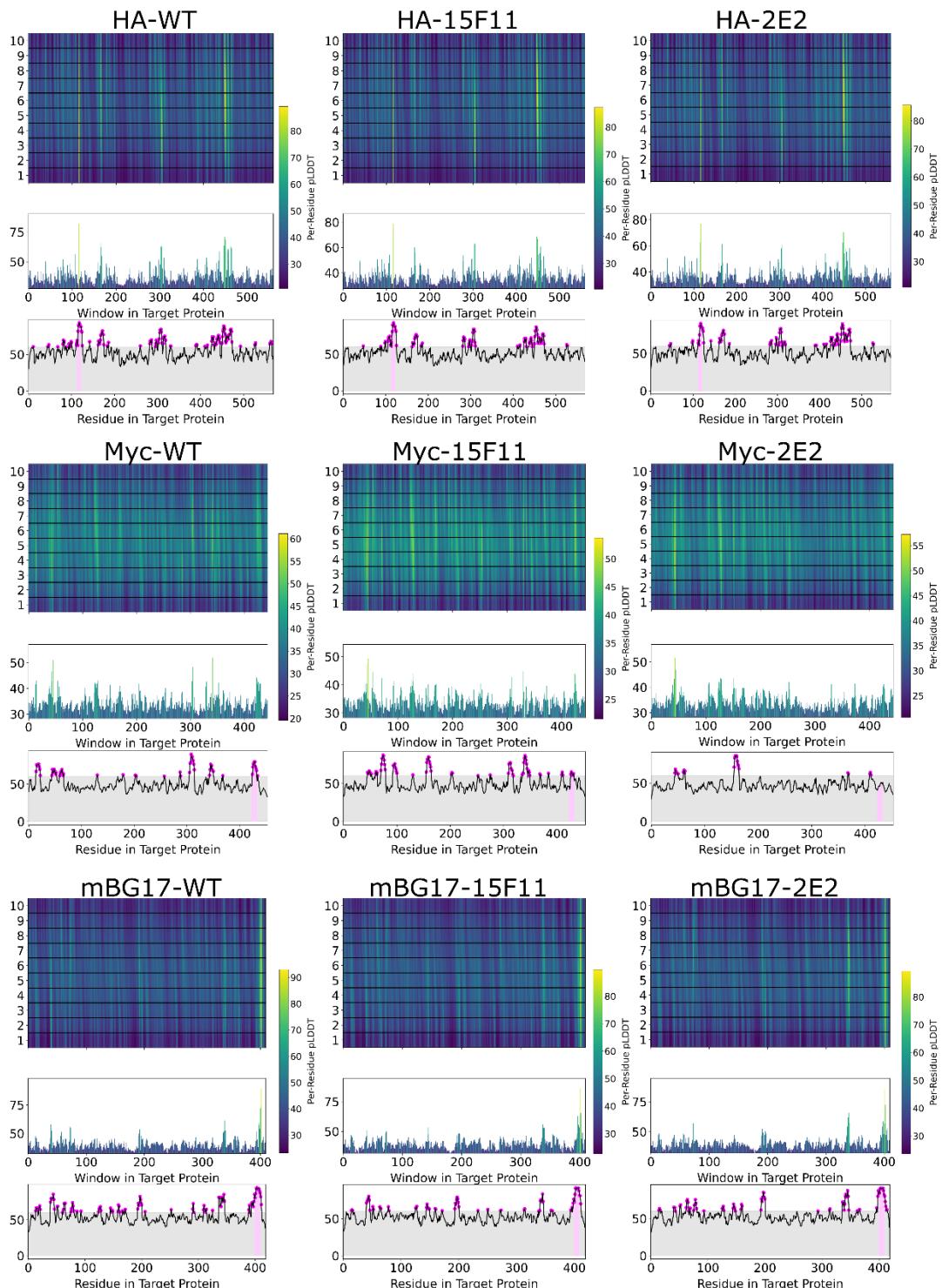


955
956
957
958
959
960
961
962

Supplemental Figure 9: Myc comparison of epitope identification accuracy, comparing model types. Performance variation with AlphaFold2 model (multiple versions 2 and 3) and MSA versions (most up to date version of the ColabFold MSA server uses UniRef30 (2302) and PDB100 (220517)) vs the old MSA server (when this data was initially generated, ColabFold MSA server used UniRef30 (2202) and PDB70 (220313)). The left column is the WT scFv, the middle column is the CDR loops spliced onto the 15F11 backbone, and the right column is the CDR loops spliced onto the 2E2 backbone. Performance was ablated when using MM3 and the new MSA, and significantly degraded when using MM2 with the new MSA. For AF2-MM2 Old MSA, see Figure 2.



Local Fall 2022 remake



972

973

974

975

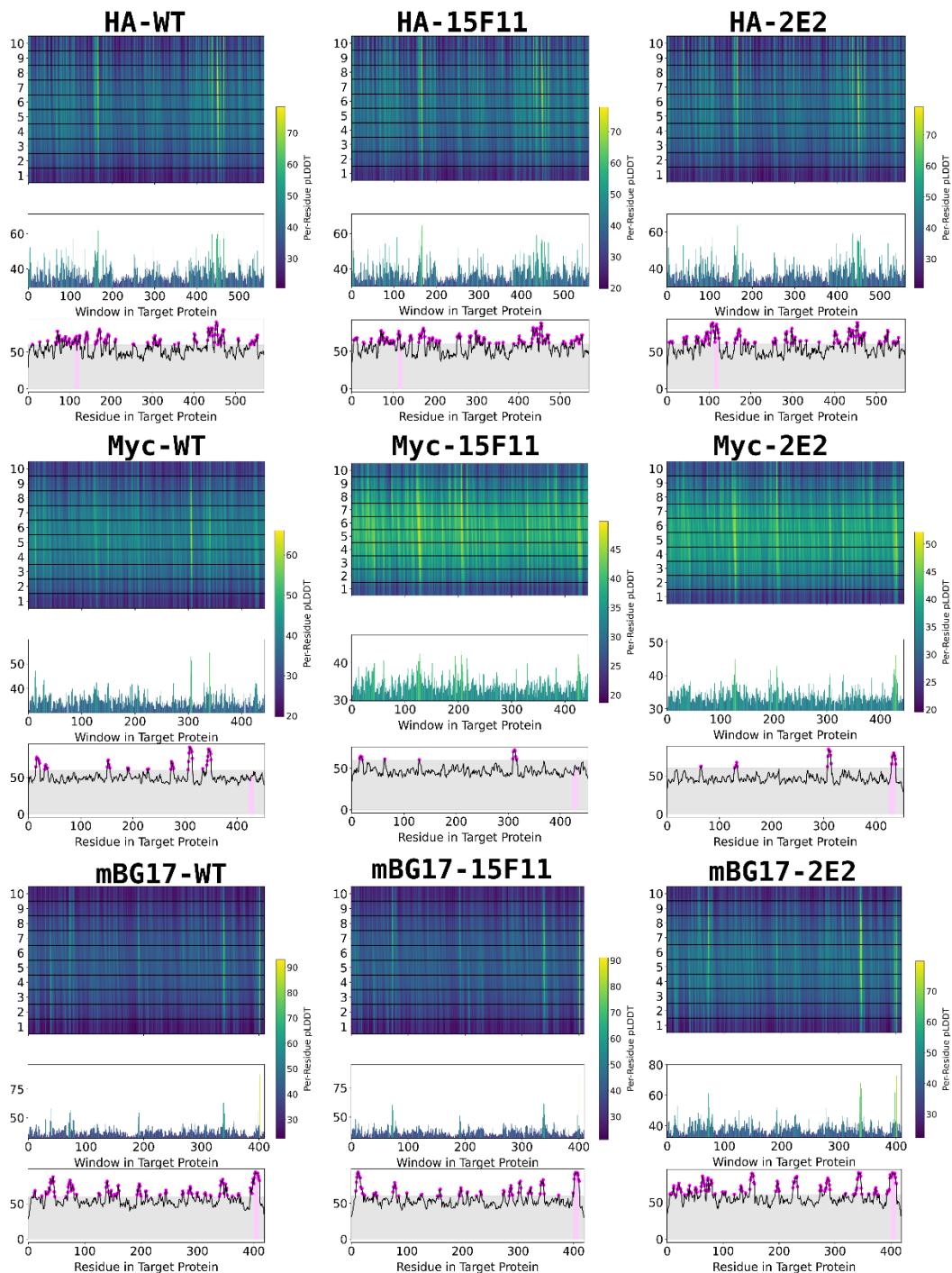
976

977

Supplemental Figure 11: Local remake of the databases used by the MMSEQS server. Databases were downloaded (UniRef30 (2202) and PDB70 (220313)) and were queried locally to produce MSA's for testing. These runs all were done with the multimer version 2 model of AlphaFold 2. The left column is the WT scFv, the middle column is the CDR loops spliced onto the 15F11 backbone, and the right column is the CDR loops spliced onto the 2E2 backbone. The first row is the HA system, the second row is the Myc system, and the final row is the mBG17 system.

978

MMSEQS 2022 Rebuild



979

980

981 **Supplemental Figure 12: Server remake of the MMSEQS databases.** The databases were rebuilt by the MMSEQS team UniRef30 (2202) and PDB70 (220313) on the Colabfold MSA server and were queried produced MSA's for testing. These runs all were done with the multimer version 2 model of AlphaFold 2. The left column is the WT scFv, the middle column is the CDR loops spliced onto the 15F11 backbone, and the right column is the CDR loops spliced onto the 2E2 backbone. The first row is the HA system, the second row is the Myc system, and the final row is the mBG17 system.

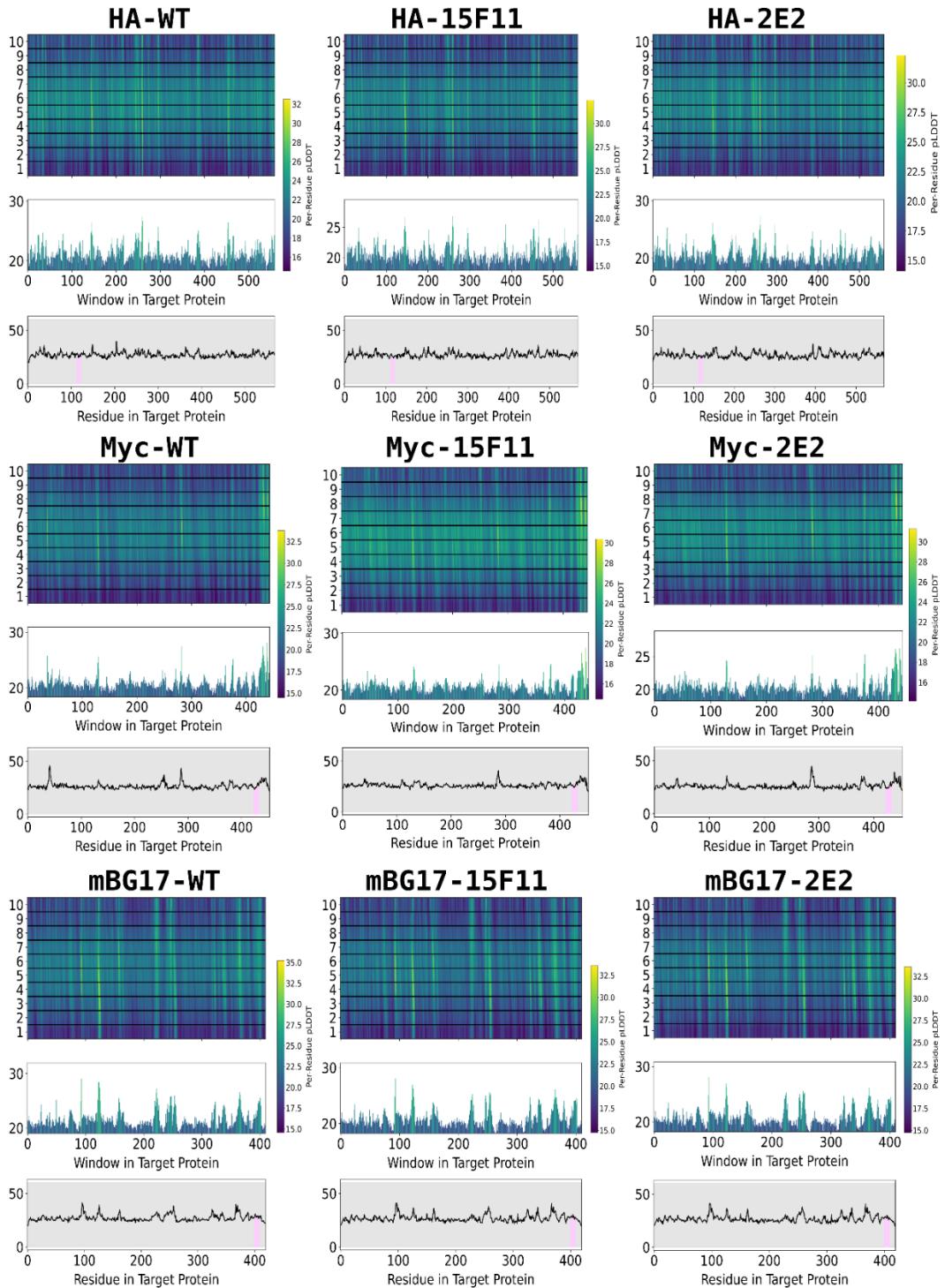
982

983

984

985

Single Sequence

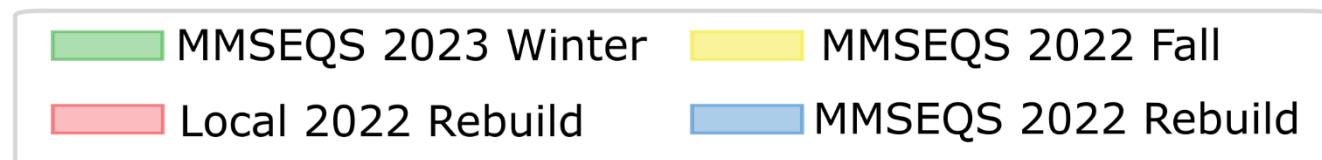
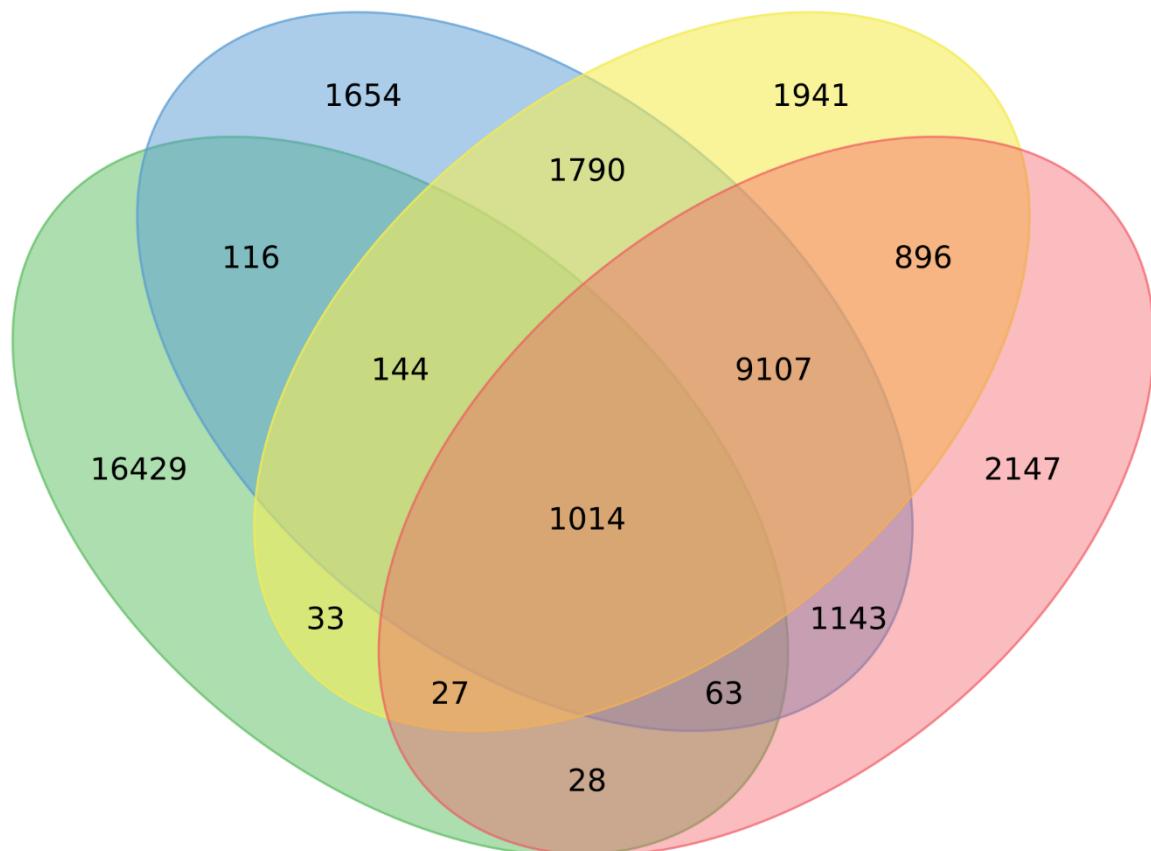


986
987

988 **Supplemental Figure 13: Single Sequence mode (no MSA's) of epitope prediction with AF2.** These runs all were done with the
989 multimer version 2 model of AlphaFold 2 in single sequence mode (i.e. no MSA was used) as a negative control, to highlight the
990 importance of a quality MSA. The left column is the WT scFv, the middle column is the CDR loops spliced onto the 15F11
991 backbone, and the right column is the CDR loops spliced onto the 2E2 backbone. The first row is the HA system, the second row is
992 the Myc system, and the final row is the mBG17 system.

993
994
995

Myc-2E2 MSA Venn Diagram



996

997

998

999

000

001

002

003

004

Supplemental Figure 14: MSA overlap between the 4 generation methods. Here we highlight the number of unique entries that are shared amongst all of the MSA methods, those being: 1) using the databases right now via colabfold (PDB30 2302 and PDB100 230517) (green) 2) the databases after they had been accessed via colabfold and cached for repeated use (UniRef30 (2202) and PDB70 (220313)) (yellow), 3) downloading the databases locally (UniRef30 (2202) and PDB70 (220313)) and attempting to create the MSAs ourselves (red), and 4) querying the databases after the MMSEQS team rebuilt them for our use via colabfold (UniRef30 (2202) and PDB70 (220313)) (blue).

005

		MMSEQS 2022 Fall	Local 2022 Rebuild	MMSEQS 2022 Rebuild	MMSEQS 2023 Winter	Single Sequence
HA	WT	M	✓	-	✓	-
	15F11	✓	✓	-	M	-
	2E2	M	✓	-	-	-
Myc	WT	M	✓	-	-	-
	15F11	✓	-	-	-	-
	2E2	✓	-	✓	✓	-
mBG17	WT	✓	✓	✓	✓	-
	15F11	✓	✓	✓	✓	-
	2E2	✓	✓	✓	✓	-

006

007

008

009

010

011

012

013

Supplemental Figure 15: Comparison of how well each MSA generation scheme accurately identified the experimentally derived epitope within the top 5 epitope sequences. A green checkmark shows that it was found by both the consensus model and the top single model, a yellow "M" means the simple max method correctly identified the experimental epitope in the top 5 epitopes, and the red dash means both methods failed. The consensus model did not identify the epitope correctly when the simple max method failed to. The colored background behind the titles is the same color as Supplemental Figure 14 to help guide the eye.