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Model reduction is the construction of simple yet predictive descriptions of the dynamics of
many-body systems in terms of a few relevant variables. A prerequisite to model reduction is
the identification of these relevant variables, a task for which no general method exists. Here,
we develop a systematic approach based on the information bottleneck to identify the relevant
variables, defined as those most predictive of the future. We elucidate analytically the relation
between these relevant variables and the eigenfunctions of the transfer operator describing
the dynamics. Further, we show that in the limit of high compression, the relevant variables are
directly determined by the slowest-decaying eigenfunctions. Our information-based approach
indicates when to optimally stop increasing the complexity of the reduced model. Furthermore,
it provides a firm foundation to construct interpretable deep learning tools that perform model
reduction. We illustrate how these tools work in practice by considering uncurated videos
of atmospheric flows from which our algorithms automatically extract the dominant slow
collective variables, as well as experimental videos of cyanobacteria colonies in which we
discover an emergent synchronization order parameter.

Model reduction | Information theory | Dynamical systems

he exhaustive description of a biological or physical system is usually impractical

due to the sheer volume of information involved. As an example, the air in your
office may be described by a 10?"—dimensional state vector containing the positions
and momenta of every particle in the room. Yet, for most practical purposes, it can
be effectively described using only a small number of quantities such as pressure
and temperature. Similar reductions can be achieved for systems ranging from
diffusing particles to biochemical molecules and complex networks. In all cases,
certain relevant variables can be predicted far into the future even though individual
degrees of freedom in the system are effectively unpredictable.

The process by which one goes from the complete description of a system to a
simpler one is known as model reduction. Diverse procedures for model reduction
exist across the natural sciences. They range from analytical methods, such as
adiabatic elimination and multiple-scale analysis (1-9), to data-driven methods such
as independent component analysis (10), dynamic mode decomposition (11-13),
diffusion maps (14), spectral submanifolds (15, 16), and deep encoder-decoder
neural networks (17-24).

The success of these approaches is limited by a fundamental difficulty: before
performing any reduction, one has to identify a decomposition of the full system
into relevant and irrelevant variables. In the absence of prior knowledge and
intuition (e.g. a clear separation of scales), identifying such a decomposition is an
open problem (4). It may not even be clear a priori when to stop increasing the
complexity of a simplified model or, conversely, when to stop reducing the amount
of information needed to represent the dynamical state of a complex system. In
both cases one must first determine the minimal number of relevant variables that
are needed. The answer to this question depends in fact on how precisely and how
far in the future you wish to forecast. Nonetheless, this answer should be compatible
with fundamental constraints on forecasting set by external perturbations and finite
measurement accuracy (25, 26).

In order to address the difficulty identified in the previous paragraph, we develop
an information-theoretic framework for model reduction. Very much like MP3
compression is about retaining information that matters most to the human ear
(27), model reduction is about keeping information that matters most to predict
the future (28, 29). Inspired by this simple insight, we formalize model reduction as
a lossy compression problem known as the information bottleneck (IB) (307 , 31).
This formal step allows us to give a precise answer to the question of how to identify
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Fig. 1. Interpretable dynamical variables in reduced models via the information bottleneck. (a) The information bottleneck compresses high-dimensional state variables
¢, into simpler encoding variables h; providing a controllable trade-off between the degree of compression and the predictive power about the system’s future. With deep
neural networks, the encoding can be computed directly from data of observed fluid flows (left) or biological datasets, such as fluorescently labeled bacteria colonies (right).
In general, the state of the variable 2, may comprise time-lagged variables of the intensity field, z+ = {I;, I, 1 a+} (right). The amount of compression is determined by
the “width” of the bottleneck 3 [see Eq. (1))]. The resulting compressed, or encoded, variables h: represent collective variables most predictive of the system’s future. (b)
Schematic evolution of the encoder p(h|z+) for varying compression strength 3. For low 3 (high compression), the encoder is trivial and forgets everything about the input ;.
After the first IB transition at 31, the encoder becomes non-trivial by gaining some dependence on x+; some features of the input are able to pass through the bottleneck. At
subsequent IB transitions, additional features are learned. (c) The point spectrum of the transfer operator contains several slowly decaying modes (red). We show that the most
predictive variables that IB systematically extracts correspond to the slowest eigenfunctions of the transfer operator, associated to eigenvalues A; with |A;| = 1. In fluid flows,
the slowest-decaying eigenfunctions typically represent large-scale coherent patterns of the flow field, while faster-decaying eigenfunctions correspond to variations over shorter
length scales.

relevant and irrelevant variables. We show how and under We seek a way to “encode” each state x; into a simple,
what conditions the standard operator-theoretic formalism of lower-dimensional representation h: in a way that isolates
dynamical systems (19, 32), which underlies most methods of these relevant features of the input x;. For instance, in Fig. la,
model reduction, naturally emerges from optimal compression. both the velocity field of a fluid flow and the images of a
Crucially, our framework systematically answers the question dynamic cyanobacteria colony (upper row) may be encoded
of when to stop increasing the complexity of a minimal model. as a point in a 2D space (lower row). The encoding is given
Further, it provides a firm foundation to address a practical by a probabilistic mapping p(h:|z:) which can be thought
problem: the construction of deep learning tools to perform of as a machine which takes a state x: and assigns it to a
model reduction that are guaranteed to be interpretable. We value h;. The fact that this mapping is probabilistic simply
illustrate our approach on benchmark dynamical systems means we may have some uncertainty about the true value
and demonstrate that it works even on uncurated datasets, of h; even given a measurement of the state. Whether or
such as satellite movies of atmospheric flows downloaded not some encoding is extracting “relevant” features of the
directly from YouTube and biological datasets composed state x; is determined by the extent to which we can use it to
of microscopy videos of cyanobacteria colonies in which we predict the future. This predictive power can be quantified
discover an emergent synchronization order parameter. by the mutual information between the encoding and the

future state, I(H¢, Xi1a¢), which tells us how much the
1. Model reduction as a compression problem knowledge of H; reduces our uncertainty about the future

Xitat (see Methods). (In our notation, upper-case X; refers
to the random variable, while x; refers to a particular value
taken by the random variable.) To find a good encoder that
extracts relevant features, we might try to find an encoding
which maximizes this information. However, an encoder
obtained in this way would simply copy the original state,
h: = x, since x; represents all the information we have
about the system. In order to encourage the encoder to
discard irrelevant features, we simultaneously seek an encoder
which maximizes compression by minimizing the information
about the original state, I(H¢, X¢). This prescription for
encoding relevant collective variables can be formalized by
the information bottleneck (IB) method (28, 30, 31). The
information bottleneck objective function combines both of
our stated goals — compression and predictive power — into

We present here a method to extract collective variables
most predictive of the system’s future evolution directly from
data. This data is composed of a time sequence of measured
states x1, x2,...,x7. The system state x; could correspond to
anything from the position of a single particle to an image
of a fluid flow or the fluorescent molecules in a living system
(Fig. 1a). The full state can be very high dimensional, with
a number of dimensions equal to the number of observed
pixels in the case of imaging data. However, the variation
of any individual pixel is often of limited interest to us,
as noise (either inherent or due to measurement) induces
uncertainty about its true value. Individual pixels are, due
to this uncertainty, poor predictors of the future state of the
system. We can say that they are irrelevant for predicting
the future. On the other hand, certain spatially-averaged
collective variables may evolve slowly in time, and the future
state of the system may be reliably estimated from them.

2 — www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX Schmitt et al.

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
208
229
230
231
232
233
234

236
237
238
239
240
241
242
243
244
245
246
247
248


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/2024.04.19.590281
http://creativecommons.org/licenses/by/4.0/

249
250
251
252
253
254
255
256
257

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.19.590281; this version posted April 25, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

one mathematical expression:
ﬁIB[P(htmt)] = I(Xu Ht) - 5I(Xt+m7 Ht)- [1]

Crucially, the parameter S allows one to tune how much
weight to assign to compression versus prediction. For small
[ the compression term dominates and the optimal encoder
is trivial, losing all information about the system. For
intermediate 8 the compression term does not allow X; to
be completely captured by H;, so that features of X; must

“compete” to pass through to the encoding variable (Fig. 1b).

These features are reflected in the form of the encoder
p*(ht|z) = arg min L1 2]

which provides the optimal trade-off between compression
and predictability (29). Our goal is to connect the dynamical
properties of the system to the features learned by the
encoder.

In any realistic experimental setting, the presence of
noise or uncertainty means we cannot predict precisely the
future state of a system but instead can only predict a likely
distribution of possible future states. Our prediction of the
state at At in the future is then represented mathematically
as p(x++a¢|rt), the probability of observing state zi4a+ given
the current state ;. This conditional probability distribution
completely characterizes the dynamics of the system, and
determines how probability distributions evolve in time:

p(Terar) :/p($t+At|37t)p(l’t)dIt- [3]

For Markovian, or “memoryless” dynamics, such an evolution
can be understood as the action of a (linear) transfer
operator U which acts on probability distributions. U can be
decomposed into its right and left eigenvectors as

U= Z |pn> GAHAt <¢n| + Uess [4]

where |pn) are right eigenvectors with eigenvalue A, = ent

and (¢, | are the corresponding left eigenvectors. A, are the
eigenvalues of the infinitesimal generator of U, known as
the Fokker-Planck operator (Fig. 1c). The operator Uess
corresponds to the so-called essential spectrum, and we
assume that it can be neglected. This is usually possible
when the system is subjected to even a small amount of
noise, or when some amount of uncertainty is present in the
measurements (33, 34). The eigenfunctions ¢, in Eq. (4) are
in some sense “natural” features of the dynamics, as they
evolve independently in time.

Our key observation is that the optimal encoder in Eq. (2)
can be expressed in terms of the eigenvalues A, and left
eigenfunctions ¢, of (the generator of) U,

*ht .
pi(hule) = B exp |53 M gn @ fuhe)| 5

where fi,(h:) are factors that do not depend on z;. For an
outline of the mathematical steps leading to this see Methods,
as well as the SI. These factors effectively determine what
the encoder learns about the state x;. In general, there may
be a large number of non-zero factors f,, so that the learned
features are difficult to extract. However, things become
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simple in the limit of small 3, or high compression. When
is small the encoder is trivial: p(h¢|z:) = p(ht). In this case
the value h; is assigned at random with no regard to the state
x; of the system. No feature has been learned, and all factors
fn are equal to zero. As 3 is increased, the encoder undergoes
a series of transitions at 8 = 1 < B2 < f(3... where new
features are allowed to pass through the bottleneck (Fig. 1b)
(35—-38). The first transition happens at a finite value of 34
when the first most predictive feature is learnt.
Surprisingly, we find that at the first IB transition the
vector of f, coefficients is dominated by a single term fi.

5(h
Pl = FE0 ¢

xp (B ¢1(e) fr(he)) (6]

This is our main mathematical result, which we derive by
considering a perturbative expansion of the IB objective for
small f,. A proof of Eq. 6 with clearly specified technical
assumptions may be found in the Methods and SI.

The above statement shows that in the limit of high
compression the encoder’s dependence on z; is given by the
first left eigenfunction ¢1(z¢), which is the slowest-varying
function of the state under dynamics given by U. Therefore,
Eq. 6 makes precise the intuitive statement that slow features
are the most relevant for predicting the future. Our analytical
result, while applying only to the dominant eigenfunction, is
valid for arbitrary non-Gaussian variables. The question of
maximally informative features has additionally been explored
in the context of animal vision, where one seeks to understand
what features of the field of vision are encoded by retinal
neurons (39, 40).

We further observe numerically that this picture holds
true more generally: also at successive IB transitions, the
learned features correspond to successive modes of the transfer
operator. This picture is consistent with the exact results
known for Gaussian 1B, where the encoder learns eigenvectors
of a matrix (related to the covariance of the joint X, Xiyas
distribution) in a step-wise fashion at each IB transition
(37). Together, this shows that the most informative features
extracted by IB, an agnostic information-theoretic approach,
correspond to physically-interpretable quantities — namely
transfer operator eigenfunctions. As we show later, the insight
above can be leveraged to systematically learn these slow
variables directly from data with neural networks (41).

2. Information decay and the spectrum of the transfer
operator

To develop intuition for information in a dynamical system,
we turn to the simple example of a Brownian particle trapped
in a confining double-well potential. This might represent,
for example, a molecule with a single degree of freedom that
transitions between two metastable configurations (42). In
the overdamped limit the state of the particle is completely
determined by its position X; € R, with dynamics given by
the Langevin equation

i’t = *8IV(ZE75) + ant. [73,]

-2 [7b]

V() =4

Here, 7, is unit-variance white noise, o controls its strength,
and p controls the shape of the potential V().

PNAS — April 15,2024 — vol. XXX — no. XX — 3

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

361
362
363
364
365
366
367
368
369
370

372


https://doi.org/10.1101/2024.04.19.590281
http://creativecommons.org/licenses/by/4.0/

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.19.590281; this version posted April 25, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Present-Future

Information
—~2Ff 8.0
3 Information ﬂAt
i Loss 0.2
*|  StableFP z* =0 5?3 !
xr P
=
V(I) V(l’) \ V(:E) _00_75 /IL 0.75
- - —d e Spectral pile-up
~0.5 0.0 0.5 1.0
: ) /
/<
0 0.9F
~
0.8}
-0.75 ,u 0.75
Retained
f information
Loss of information in time ok Ny
- 00
A &
S
~
Ok 1
0 At 10 0 At 10 0 At 10 -0.75 m 0.75

Fig. 2. Information loss of a Brownian particle in a double well potential. (a) Fixed point (FP) diagram of the dynamics given by Eq. 7 for zero noise. There is a bifurcation
at 1 = 0 where the stable FP at = = 0 becomes unstable and two new stable FPs appear at +, /1. Insets show the evolution of the corresponding potential V' (), with the
emergence of a double-well structure for o > 0. (b) Dynamics of the system Eq. 7 for varying values of p corresponding to the potential insets in (a), with uniformly-distributed
initial conditions. (c) Loss of information between the initial condition and the future state. Inset shows scaling given by the first eigenvalue of the transfer operator. (d)
Mutual information between the present and future state for varying time delay At and bifurcation parameter 1. (€) Spectrum of the transfer operator U, showing a pile-up of

eigenvalues for o 2> 0. These are related to the eigenvalues of its infinitesimal generator by A; = e

Ai At (f) Maximal mutual information which can be encoded into a discrete

variable of N values, for a fixed time delay At = 1.0. Black dashed line shows I (X, X;1 a+) for reference. Information is provided in units of bits.

The deterministic dynamical system undergoes a bifurca-
tion at u = 0 (Fig. 2a). Sample trajectories, with noise, for a
uniform initial distribution of particles are shown in Fig. 2b.
For negative u, the trajectories all converge to a fixed point
at x = 0, while for u > 0 they fluctuate around the fixed
points at ¥ = £,/p.

To quantify the amount of information about the future
state Xi+a: contained in the initial state X: we compute
their mutual information (Fig. 2c¢; see SI for details). The
dynamics of X; are Markovian, so that for any sequence of
times to < t1 < t2, p(Xts| Xy, Xtg) = p(Xi5| X4, ). From the
data processing inequality, one has (43)

I( Xy, Xtg) < I( Xy, Xig)s

which implies that information can only decrease in time.

What governs the rate at which information decays? Here
we can already see the role of the spectrum of the dynamics’
transfer operator. By exploiting the spectral expansion of the
conditional distribution p(x4a¢|z¢) one finds that for long
times the information decays as

I(Xe, Xevae) = €M1 (07 /) + O(e*22Y) (8]

4 — www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

where expectations are taken over the steady state distribu-
tion (see SI). Asymptotically, the information decay is set
by the value of A1, the rate of decay of the slowest-varying
function ¢1(z) under the dynamics of U. In the limit of
infinite time, for any value of u even weak noise will cause
the mutual information to become zero as there is a non-zero
probability of hopping between the wells, though this rate of
hopping is exponentially small (33).

The loss of information in time depends on the bifurcation
parameter p as summarized in Fig. 2d. Note the peak in
I(X:, Xty ar) for small, positive u. This corresponds to
dynamics where observation of X; strongly informs the future
state; recall that the mutual information is maximized when
the conditional entropy S(Xi+a¢|X:) = 0 (see Methods).
In contrast, for large positive or negative u, X, is not as
informative of X;a; even for small times: the initial state
is quickly forgotten as the particle approaches the bottom of
the single (for p < 0) or double (for p > 0) well.

This phenomenon is reminiscent of critical slowing down,
which occurs in the noise-free system as p passes through
the bifurcation at ;4 = 0. For the deterministic dynamics,
the slowing down is reflected in the spectrum as a “pile
up” of eigenvalues to form a continuous spectrum (33). In
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2

to an energy scale E, = o~. (b) Information contained in the encoding variable H; about the future state X, o for varying levels of noise and alphabet sizes N . (c)
Information gain achieved by increasing the alphabet size by a single variable. This is the discrete derivative of the curve in (b). (d) Spectrum of the transfer operator for

changing values of noise amplitude.

the presence of noise, although the continuous spectrum
becomes discrete (33, 34) there is still a pile-up of eigenvalues
characterized by several eigenvalues becoming close to 1
(Fig. 2e). This pile-up gives rise to the information peak
seen in Fig. 2d. The peak is not solely due to the closing
spectral gap A1 — A2, but is also impacted by the subdominant
eigenvalues which accumulate at p ~ 0.2 (SI Fig. S4).

3. Knowing when to stop

For discrete encoding variables h, the information bottleneck
partitions state space and reduces the dynamics on x to a
discrete dynamics on h. Such reductions of complex systems
to symbolic sequences via partitioning of state space has
attracted attention for more than half a century in both the-
oretical and data-driven contexts(44-50). Several works have
approached this partition problem from a dynamical systems
perspective, linking “optimal” partitions to eigenfunctions
of the (adjoint) transfer operator (25, 51). In this setting, a
central question is “when to stop” (25, 26, 48, 49): how many
states does h need in order to capture statistical properties
of the original dynamics?

We consider this question by finding the optimal IB
encoder in the limit of low compression, § > 1, but fixed
encoding capacity Ny (where H; € {0, ..., Ng — 1}), i.e. the
encoder is only restricted by the number of symbols it can
use. An analogous setup was used in the context of renor-
malization group (RG) transformations in (52-54), which
results in effective model reduction due to the “sloppiness”,
or irrelevance, of certain system variables (55, 56). In this
regime, the encoder learned by IB is deterministic; we are
learning an optimal hard partition of state space. This can be
seen by noting that I(I‘I,g7 Xt+At) = S(Ht) - S(Ht|Xt+At) is
maximized when the latter term is zero, which happens when
z¢ unambiguously determines hy, i.e. when p(h¢|z:) € {0,1}
for all x;. The details of how the encoder is computed are
discussed in the next section.

Fig. 2f shows that the number of states necessary to
describe the system depends strongly on the value of u. For
|p| > 0, a two-state discrete variable h, € {0,1} suffices
to describe the system’s future. Increasing the number of
reduced variables Np does not allow more information to be
captured. Near the information peak at p & 0.2 this changes:

Schmitt et al.

predicting the future state of the system requires a more
complex hidden variable of up to Ng = 10 values. Above,
we saw that this peak arises due to the pile-up of eigenvalues
at pu =~ 0.2. The content of the transfer operator spectrum is
thus directly reflected in the number of encoding variables
needed to capture the system’s statistics.

Noise can have a similarly dramatic impact on the reduced
model complexity. Indeed, noise in some form, either inherent
to the dynamics or due to measurement error, is necessary
for a model to be reducible. In purely deterministic systems
where the future state is a bijective function of the present
state, information does not decay and complete knowledge of
the state is required to predict the future.

Consider a fluctuating Brownian particle as above, where
now each of the wells is split into two smaller wells, giving
a total of four potential minima (Fig. 3a). As the system is
in steady state, the standard deviation of the fluctuations o
corresponds to an energy scale F, = o2 = 2kgT. For small
FE,, the system rarely transitions between the four potential
minima. In this case, knowledge of the initial minimum
is very informative of the future state of the particle. In
contrast, for large fluctuations the particle can spontaneously
jump between shallow minima in each large well, so that
the system immediately forgets about the precise potential
minimum it was in. Information about the shallow minima
has been “washed out”, and only the information about the
larger double-well structure remains.

To see this reflected in the information, we again consider
an encoding of the initial state into a discrete variable
Hy € {0,...,Ng — 1}. In both the small and large noise
scenarios, a variable with Ng = 2 encodes approximately one
bit of information (Fig. 3b), corresponding to an H; which
distinguishes the two large wells for # < 0. For large noise
this is essentially all the information that can be learned;
increasing the capacity of the encoding variable beyond this
provides only marginally more information about the future
state (Fig. 3c). In the small noise case, the information
between the encoding and the future state continues to
increase to approximately two bits at Ny = 4, after which
it plateaus. The encoding has learned to distinguish each
of the four potential wells. These observations are reflected
in the transfer operator spectrum shown in Fig. 3d. For
small noise, the eigenvalue A = 1 is four-fold degenerate
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which indicates the existence of four regions that can evolve
independently under U, giving rise to four steady state
distributions satisfying Up = p. These regions correspond to
the potential minima. Hops between the separate minima are
exceedingly rare, so that the dynamics essentially take place in
the four minima independently. With larger o the degeneracy
is lifted, resulting in one dominant subleading eigenvalue
followed by a gap. The corresponding eigenfunction is one
which is positive (negative) on the right (left) side of the
large potential barrier at z = 0: the only relevant piece of
information is which of the large wells the initial condition is
contained in, and all other information is lost exponentially
quickly.

4. Transfer operator eigenfunctions are most informa-
tive features

Until now we have concerned ourselves with encodings whose
capacity is limited only by the number of variables, rather
than by the compression imposed by a small value of 5. In the
regime of small 3, or high compression, features of the state
x; are forced to compete to make it through the bottleneck
h:. By studying the behavior of the encoder in this regime,
in particular its dependence on z;, we may identify the most
relevant features of the state variable and show that they
coincide with left eigenfunctions of the transfer operator.

We return to the simple example of a particle in a double
well with dynamics given by Eq. (7) which we map to a
discrete variable Hy € {0, ..., Ng — 1}. In this system the IB
loss function Eq. (1) can be optimized directly, as shown in
Ref. (30), using an iterative scheme known as the Blahut-
Arimoto algorithm (43) (see SI).

To focus on the properties of encodings for varying degrees
of compression 3, we consider a fixed set of dynamical
parameters p and o. Increasing [ reduces the amount of
compression, i.e. “widens” the bottleneck, allowing more
information to pass into the encoder. This leads to a
series of IB transitions which are sketched in Fig. 1b and
shown quantitatively in Fig. 4a. The form of the optimal
encoder changes qualitatively at these transitions. Before
B1, the optimal encoder has no dependence on x so that
p(H; = hi|z:) = const for all h;. After the first transition,
the encoder begins to associate regions of x to particular
values of h. We are interested in the form of the encoder
at 8 2 (1, just above the first IB transition, as this reflects
the most informative features of the full state variable x
(Fig. 4a). The dependence of p(ht|x:) on x can be explained
by a stability analysis of the IB Lagrangian (see Methods and
SI). Stability is governed by the eigenvalues 7; of the Hessian
of the IB Lagrangian with respect to the parameters f,(h¢)
in Eq. 5. These parameters tell us how much the encoder
“weights” each transfer operator eigenfunction; f,(h:) = 0
(for n > 0) corresponds to the uniform, or trivial encoder
p(he|we) = p(he).

For small g all eigenvalues 7; are positive, indicating that
the uniform encoder is a stable minimum of the IB Lagrangian.
In Fig. 4b we show the smallest two eigenvalues of the IB
Hessian when evaluated at the uniform encoder. At the
first transition one eigenvalue becomes negative, so that the
uniform encoder is unstable. The eigenvector corresponding
to the unstable eigenvalue 71 indicates how the weights fy, (h¢)
should be adjusted to lower the value of the IB Lagrangian.
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Fig. 4. IB learns eigenfunctions of the adjoint transfer operator. (a) When
the relative weight 8 between both constraints in Eq. 1 is changed, more and
more information can go through the encoder. This occurs in steps, where the
spectral content of the transfer operator is included starting from eigenvalues with
largest magnitude (i.e., the slowest ones). (b) Transitions are characterized by
the appearance of negative eigenvalues in the spectrum of the Hessian of the 1B
loss function. Here we consider the Hessian evaluated at the uniform encoder
p(h|z) = N;l. The IB transitions 3; ~ 1.1 and 82 &~ 1.8 correspond to the
appearence of negative eigenvalues of the Hessian. (c) The unstable directions are
dominated by single components (note the color scale is logarithmic). (d) At the first
transition, the logarithm of the encoder is given by the eigenfunction ¢ (x), up to
rescaling (y-axis is shown in arbitrary units). (e) Likewise, at the second transition
the encoder is given by ¢ ().

Our numerics confirm that these weights are dominated by
f1 as expected from our analytical result (Fig. 4c, top). By
taking the logarithm of the encoder after the transition, we
can independently confirm that the encoder depends only on
¢1(z) (Fig. 4d).

Our stability analysis predicts that a second mode becomes
unstable at the second IB transition 8 ~ B2 (Fig. 4b). Here
we see that this unstable mode selects fa2, and that the encoder
correspondingly gains dependence on ¢2(z) (Fig. 4d). Note
that in general, 72 must not necessarily become negative
precisely at B2 because the stability analysis is performed
at the uniform encoder while the true optimal encoder has
already deviated from uniformity. In the SI, we perform the
same analysis for a triple-well potential where this difference
is more apparent.

5. Data-driven discovery of slow variables

IB finds transfer operator eigenfunctions by optimizing an
information theoretic-objective that makes no reference to
physics or dynamics. This suggests it may be used for the
discovery of slow variables in situations where one lacks
physical intuition. The utility of exact IB for this purpose is
limited because it requires knowledge of the exact conditional
distribution p(z¢+a¢|z:) which is difficult to estimate in
many real-world scenarios. Fortunately however, the IB
optimization problem can be replaced by an approximate
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Fig. 5. Variational IB for high-dimensional simulated fluid flow. (a) A fluid flows into the system with uniform velocity v¢ in the z-direction and passes a disk-shaped
obstacle, which perturbs the fluid and causes vortex shedding behind the object in a so-called von Karman street. The state of the system is given by a spatially varying
two-component vector field v(x). (b) The dynamics in latent space (blue) are very regular, traversing a nearly circular trajectory. For comparison we show the evolution of the
mode amplitudes obtained by projecting the velocity field onto the first DMD mode (green). (c) Time evolution of one component of the latent variable (h1, blue) as well as the
DMD mode amplitude (green). (d) Comparison of the first Koopman mode obtained from DMD (m(l)) and from VIB (m('B)). Koopman modes from VIB are computed as
gradients of the latent encoding variables as described in the main text. Red corresponds to positive values and blue to negative; the magnitudes of the modes are not directly

comparable.

variational objective introduced in Ref. (41) that can be
solved with neural networks. We refer to this as variational
IB. In the remainder of this paper, we show how to implement
these networks for the discovery of slow variables directly
from data.

First we show numerically that the results of the previous
sections remain valid for high-dimensional systems by con-
sidering a simulated data of fluid flow past a disk (57). The
state of the system is given by a two-dimensional velocity field
v(x) € R¥*Npixels - where Npixels ~ O(10°) (Fig. 5a). Fluid
flows in from the left boundary with a constant velocity voéy
past a disk of unit diameter. At Reynolds number Re 2 150,
the fluid undergoes periodic vortex shedding behind the disk,
forming what is known as a von Kérmén street.

What do the true eigenfunctions look like in this system?
Because it is well approximated by linear dynamics, eigen-
functions of the adjoint transfer operator are linear functions
of the state variable,

$nlv] = (v(x), m"™ (x)), (9]

Schmitt et al.

where m™ is the n-th mode (often referred to as a Koopman

mode (19)) and angled brackets denote integration over space.

The true eigenfunction and corresponding modes can be
computed via dynamic mode decomposition (DMD) (11, 12),
as described in the SI. The eigenfunctions for this system are
in general complex, and come in conjugate pairs: ¢2(z) =
@1 (x). In this situation any linear combination of ¢1 and ¢
will decay at the same rate, and hence we expect to learn some
arbitrary combination of the two dominant eigenfunctions, or
equivalently a combination of the real and imaginary parts of
¢1. We therefore take a two-dimensional encoding variable
[ho, h1], so that it can represent the full complex eigenfunction
rather than only the real or imaginary part.

Our learned latent variables are oscillatory with the correct
frequency as shown in Fig. 5b-c. A more stringent test is
whether we are also learning the correct mode m™. From the
true eigenfunctions, the modes can be extracted by computing
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the gradient
Opn _ )

10
av; J [10]
As the learned function hlv] is a neural network, we can
efficiently compute gradients of the network with respect to
the input field

S = ™ 4 e (V00) 1]
where we have separated the part of the gradient which is
independent of v from a residual part which is dependent on
v. If h corresponds to the true eigenfunction, we expect that
m™) ig approximately equal to the Koopman mode m® and
that gres is small. We indeed find this to be the case; Fig. 5d
shows these gradients averaged over several instantiations
of the neural network, which corresponds strongly to the
true mode. Details concerning both the averaging procedure
and the residuals gres can be found in the SI. This shows
that variational IB not only recovers the essential oscillatory
nature of the dynamics, but does so by learning the correct
slowly varying functions of the state variable given by the
adjoint transfer operator eigenfunctions.

6. Relevant variable identification in
generated and atmospheric flows

laboratory-

The scenario above is characterized by high-dimensional data
and few samples; training was performed with only ~ 400
samples. We now demonstrate that our framework continues
to hold approximately and yield interpretable latent spaces
even for real-world fluid flow datasets scraped directly from
videos on Youtube (58, 59) (Supplementary Movie 1).

The first shows a von Karman street which forms as water
passes by a cylindrical obstacle at Reynolds number 171, with
flow visualized by a dye injected at the site of the obstacle
(58). We take a background-subtracted grayscale image of
the flow field as our input (Fig. 5e) and task VIB with
learning a two-dimensional latent variable as above. Also
here, variational 1B learns oscillatory dynamics of the latent
variables (Fig. 5f). We visualize the function learned by
the encoder by considering gradients of the latent variables,
which show the same structure as those obtained for the x
component of the simulated data (Fig. 5g). This is expected,
as the z-component of the velocity field has similar glide
reflection symmetry as the intensity image.

Next, we apply variational IB to a von Karman street
arising due to flow around Guadalupe Island, which was
imaged by a National Oceanic and Atmospheric Adminis-
tration (NOAA) satellite (59) (Fig. 5h). The video consists
of only 62 frames, and the von Karmén street undergoes a
single oscillation. Even with this small amount of data, the
variational IB neural network learns latent variables which
capture this oscillation and have the expected dependence on
the input variables (Fig. 5i-j). As in the first experimental
example, the gradients of the encoding variables show the
glide symmetry of m, due to the symmetry of the intensity
pattern in Fig. 5d. This symmetry is less clear in the
component 86%(;), which is likely due to the fact that the
von Kérman street is not as fully formed in this data as in
our previous examples.

8 — www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

7. Relevant variable discovery in cyanobacterial popu-
lations

We now demonstrate how variational IB may be used as an aid
for collective variable discovery in situations where physical
intuition may not be a useful guide — collective behavior of
biological organisms (Supplementary Movie 2). Here, we
ask what the most predictive variables are for predicting the
evolution of populations of cyanobacteria (Synechococcus
elongatus). The dynamics of the colonies are driven by
several factors: growth and division of individual bacteria,
translational motion of groups of bacteria as they are pushed
by their neighbors, as well as the circadian oscillations within
each bacterium (Fig. 6a). These oscillations are controlled
by three Kai proteins (60) and depend in particular on the
ratios of the copy number of these proteins which can be
tuned experimentally (61).

We were provided with videos of 10 cyanobacteria colonies
that were grown under various conditions that impact their
dynamics. However, as a test of our method, we were blinded
to these conditions until we had performed our analysis. The
videos are sequences of fluorescent images, taken once per
hour, which show the clock state of each individual bacteria
visualized with a fluorescent marker EYFP driven by the
kaiBC promoter. Here, we focus on collective variables which
are predictive of the state of the interior of the colony and
not the growth in area of the colonies. We therefore crop
the images to the interiors of each colony (SI Fig. S9). This
allows us to isolate the motion of individual bacteria and
fluorescence oscillations (Fig. 6b).

Our input to the variational IB neural network are these
cropped images augmented with a time-lagged image of the
same region (Fig. 6¢). The purpose of this time lag is to make
the dynamics Markovian: due to the oscillatory intensity
field, if one observes only a single time point it is unclear
whether the intensity is currently increasing or decreasing.
These time lagged pairs comprise our system state, X; =
{I(x,t),I(x,t+ 7)}, where 7 is the duration of the time lag.
Here we take 7 = 3 hr and a prediction time horizon At = 8
hr, but find that choosing different At or 7 does not change
our results (SI Fig. S9).

With variational IB we compress the state X: into a
latent variable h of variable dimension (Fig. 6d-f). We train
the neural network on the entire dataset of all 10 colonies
simultaneously. The dynamics in latent space undergo clear
oscillations, indicating that the relevant variables encode
primarily the intensity fluctuations rather than, for example,
the spatial locations of the bacteria. Notably, the trajectories
are essentially two-dimensional, even when the encoding space
is higher dimensional. This is reflected in the information
retained about the future state, I(Xi+a¢, Ht). We see that
increasing the dimension of the embedding space beyond two
leads only to marginal increases in I(X;4a¢, He); this tells
us “when to stop” (Fig. 6f). We independently verify this
by using principal component analysis to characterize the
geometry of embedded trajectories, and find that even in
higher dimensions the trajectories occupy a two dimensional
subspace (SI Fig. S10). In the following, we therefore restrict
our focus to the dim H = 2 case.

We noticed that there were notable differences in the radius
of latent space oscillations from colony to colony, two of which
are highlighted in (Fig. 6g). To understand this difference, we
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Fig. 6. Discovering slow collective variables in cyanobacteria populations (a) Fluorescent images of cyanobacteria colonies labeled with EYFP driven by the kaiBC
promoter, allowing the visualization of Kai protein transcription. The colonies are imaged as they undergo cell growth and oscillations in Kai expression associated with the
circadian rhythm. (b) Time series of one cropped section of an individual colony (see Sl Fig. S9 for details). (c) The “state” used for variational IB is the time-lagged intensity
field with lag time 7. (d) Variational IB embeddings of time-lagged images into two dimensions. Every line corresponds to one colony’s evolution in time. Note the apparent
oscillations of different radii. (€) Embedding into three dimensions. We orient our axes to correspond to the three principal components of the data. Thus, the projection onto the
h2 = 0 plane corresponds to a projection along the dominant two principal components. In this subspace, we see a similar structure as in the 2D embedding. (f) Mutual
information between the future state and the encoding, given by I(X:4 ¢, H¢), for varying dimension of the latent space. Increasing the dimension of the embedding space
beyond two leads only to marginal increases in I(X ;4 a+, H+); this tells us “when to stop.” Each small point represents one training instance of the variational IB model, while
the large point shows the maximum estimated value. Because the InfoNCE estimator is a lower bound on the true information, we consider the maximum as the estimated
mutual information. The value of Imax = I(X¢, X¢4a¢) is the mutual information estimated for the true dynamics. (g) Selected trajectories in latent space with large and
small radii. (h) Time-average latent radius of all colonies. (i) Mean synchronization order parameter of the intensity images; see Sl for computation details. (j) Mean radius
versus synchronization parameter for each colony. VIB identifies clusters of cells characterized by high (blue) or low (black) synchronization. As revealed to us after our analysis,
this clustering corresponds to differing theophylline concentrations across experiments. Within each experimental movie (each of which contains 2-3 colonies) the radii are
mostly constant. (k) Sample time series of weakly (black) and highly (blue) synchronized colonies. We apply a slight Gaussian blur to better visualize the bacteria boundaries.

Synchronized Not synchronized

examined the original microscopy time series corresponding
to both large and small latent radius (Fig. 6k) and found that
while the large-radius sample showed clear, nearly uniform
oscillations in intensity, the small-radius samples appeared
much more heterogeneous.

To quantify this we consider each pixel to be an indepen-
dent oscillator, akin to a spatial Kuramoto model (62-64),

Schmitt et al.

and compute a global synchronization order parameter r(t)
(see SI). For each colony we calculate the time-averaged
synchronization (r(t)): and find that two clusters emerge
corresponding to high and low synchronization (Fig. 6i).
These clusters are precisely those representing trajectories
of large and small latent radius (Fig. 6j), suggesting that
variational IB learns to encode the synchronization of the
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colony in the latent variable radius. As a check, we perform
IB on a simulated locally-coupled Kuramoto model as a
system which shares many features of the experimental
system. Here we also learn an encoding in which the latent
radius corresponds to the synchronization order parameter
(SI Fig. S11).

In the SI we compare the performance of variational IB
to several other model reduction methods and find that IB
delivers more interpretable and well-behaved features. This
is likely due to the fact that many standard methods for
data-driven model reduction rely on assumptions about the
dynamics which may not be appropriate in the case at hand,
such as linearity. Even among deep learning methods such as
time-lagged autoencoders that are free of such assumptions,
the variables learned by IB appear more interpretable. This
increased interpretability is likely due to the compression term
which effectively regularizes the latent space by encouraging
the network to learn slow transfer operator eigenfunctions.
While there are many specific use variants of DMD (13,
65-68) or autoencoders for dynamics (20-22, 69) that may
outperform variational IB in some cases, we find that in
this real-world example it yields the smoothest and most
interpretable latent variables without requiring tailored pre-
processing steps (SI Fig. S12).

By using variational IB we could reduce a complex system
with multiple dynamical components — cell growth, division,
and gene expression fluctuations — into a low dimensional
form that retains only the most relevant information for
the future. In addition to the insight that the dynamics
are dominated by oscillations in two dimensions, the latent
variables clearly distinguished trajectories into two groups
that were not apparent a priori. We were provided this
data as a “blind” test with no knowledge of the underlying
system. After we performed our analysis, it was revealed
to us that these bacterial colonies have been engineered to
control the translational efficiency of the Kai proteins by
varying theophylline concentration (61). The synchronization
order parameter discovered by variational IB corresponds to
differing experimental concentrations of theophylline, which
is in agreement with the findings in Ref. (61). IB can thus
serve as a way to connect experimental control parameters
to effective changes in dynamics.

8. Conclusion

We have related information-theoretical properties of dy-
namical systems to the spectrum of the transfer operator.
We illustrate our findings on several simple and analytically
tractable systems, and turn them into a practical tool using
variational IB, which learns an encoding variable with a
neural network. The latent variables of these networks can be
interpreted as transfer operator eigenfunctions even though
the network was not explicitly constructed to learn these:
it optimizes a purely information-theoretic objective that
contains no knowledge of a transfer operator or dynamics.
This allows one to harness the power of neural networks
to learn physically-relevant latent variables. Biological
systems are an ideal setting for such methods: despite their
apparent complexity, they can often be captured by low-
dimensional descriptions which are difficult to identify by
physical considerations alone (47, 70-72). We have shown
that variational IB is a potentially powerful tool for these

10 — www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

cases, and can discover slow variables even directly from
image data without significant preprocessing.

Materials and Methods

Mutual information and entropy. Let X be a random variable which
takes values x that are observed with probability p(z). The entropy
of this distribution measures the predictability of the outcome of
a measurement of X and is given by (43)

S(X) = —/dmp(x) log p(x).

Given another random variable Y, such that X and Y have a
joint distribution p(z,y), we can ask how much information is
shared between these two variables. This is given by the mutual
information

I(X,Y) = S(X) — S(X]|Y) [12]
= DxL(p(z,y)llp(z)p(y)) (13]

This can be interpreted as quantifying how much (on average) a
measurement of Y can reduce our uncertainty about the value of
X (Eq. (12)).

The information bottleneck. The information bottleneck (30) is an
example of a rate-distortion problem which seeks to find an optimal
compression which minimizes some distortion measure with the
original signal (43). Concretely, we call X the source signal, and
let H denote the compressed signal. In IB, rather than using an
a priori unknown distortion function, one seeks to ensure that
the compression retains information about an additional relevance
variable Y. As noted in the main text, the IB optimization objective
is given by the Lagrangian

Lig[p(hlz)] = I(X, H) — BI(Y, H), [14]

where in our case the source signal X is the state of the system
X¢ at time t, and the relevance variable is the state of the system
Xty ar at a future time ¢ + At. The encoder which optimizes this
objective can be solved for exactly and is given by (30)

i) = 22

exp [-BDx 1 (p(ylo)llp(ylh))] - (15]

Encoder in terms of transfer operator eigenfunctions. To connect the
optimal encoder to the transfer operator, we first rewrite Eq. (15)
in terms of the transition probabilities,

p(h
b(ht) ex

philze) = N(ze)

P [6/d$t+At7’($t+Atxt)logp($t+At|ht)):|

(16]
where we have absorbed terms in the exponent which depend
only on ht or z+ into the normalization factors. Into the above

equation, we replace the transition probability with the spectral
decomposition

P(Tryatlre) = Z eAnAtpn(xt+At)¢n(ﬂ7t)~ [17]

n

From this, the Eq. (5) of the main text immediately follows, where

fn(ht)=/dwm—Atﬂn(zH-At)IOgP(xH-AtVLt) (18]

which may be interpreted as a sort of cross entropy (pr is generally
not a probability distribution) between each right eigenfunction
and the decoding of h; into the future state x4 A¢.

To study the behavior of the encoder in the limit of high
compression, we consider a transfer operator U with infinitesimal
generator Ly. For Ly with a discrete spectrum with eigenvalues
satisfying 0 = Ag > A1 > A2 > Az... and for 8 just above the
first IB transition 1, we show that the optimal encoder is given
approximately by

P (hlz) = ﬁpg(m exp (813 ()1 (k) [19]
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with corrections due to the second eigenfunction given by f2(h) ~

fi(h)e=TAt L O(e=2T'At) where I' = A1 — A2 > 0 denotes the

spectral gap. To see this, we compute the Hessian of the IB
Lagrangian

692

H A

(p,n),(v,m) 8fﬁ(hu)8fm(hu)

Here we assume a finite alphabet of size Ny, i.e. h, with p €

{1, ..., Ng}. At the uniform encoder, i.e. fn(h) =0, the Hessian
decomposes into a tensor product

L1B-

Hyin),(,m) = A ® Cuw

where AP depends only on the indices of the coefficients and G
captures the dependence on h,. The only part which depends on
Bis AP.

We are concerned with the sign of the eigenvalues of H. A
negative eigenvalue indicates that £ is unstable to a perturbation
in f, which means the loss can be lowered by changing f away
from the trivial encoder at f, = 0. Because the eigenvalues of a
tensor product of matrices are products of the eigenvalues of the
component matrices, the eigenvalues of H change sign when those
of AP do. AP and its spectrum can be computed, which we do in
the SI. The result of this calculation is that the first eigenvalue to
become negative is associated with the eigenvector v = (1,0,0,...).
This computation is exact for equilibrium systems, which are those
in which the steady-state flux vanishes, but in nonequilibrium
systems there may generally be a correction proportional to the
flux. In summary, this means that in the limit of high-compression
only the first component f; becomes non-zero, hence the encoder
has the form given in Eq. (19).

Variational IB compared to other dimensionality reduction tech-
niques. Variational IB (VIB) is by no means the only numerical
method for performing data-driven model reduction. Here we
provide a brief overview of the benefits and shortcomings of VIB
with respect to other methods; an extended discussion can be
found in the SI.

One class of methods is based on linear projections, such as
principal component analysis (PCA), dynamic mode decomposition
(DMD) (11, 12), or (time-lagged) independent component analysis
(TICA) (10) (which is equivalent to DMD (73)). These methods
can be extended to take into account non-linearity by introducing
a library of non-linear terms on which one then applies the above
methods, such as in kernel PCA (74) or extended DMD (eDMD)
(13). These methods have the advantages, relative to VIB, that
their optimization (even for the extended algorithms) relies only on
linear projections which are fast and interpretable. However, the
success of these methods depends on the choice of an appropriate
library of functions so that the projection onto this space is closed
under the dynamics. Choosing an appropriate library is not always
possible (75, 76).

A second category of non-linear dimensionality reduction
techniques are graph-based or similarity-based methods, which
typically assume that the data is distributed on a low-dimensional
manifold embedded in a higher-dimensional space (77, 78). One
prominent example is diffusion maps (14), which starts from a set
of data snapshots and, assuming the system evolves diffusively
on short times, constructs an approximate transition matrix from
which one can compute eigenfunctions to parameterize the data
manifold. The assumption of diffusive dynamics can be violated
when data is not sampled sufficiently frequently. This likely
explains our finding that VIB produced more well-behaved low-
dimensional embeddings on the cyanobacteria dataset (SI Fig. S12).
VIB has the additional advantage, relative to this and similar
methods, that it explicitly takes dynamics into account without
the strong assumptions required by diffusion maps.

Finally, deep neural networks can be used for model reduction
through encoder-decoder architectures that attempt to reconstruct
the data from a low-dimensional latent space; VIB falls into this
class of methods. Some standard neural network architectures from
this class include autoencoders (AEs) and variational autoencoders
(VAEs). For dynamical systems in particular, extensions to these
methods have been proposed which impose constraints on the
latent dynamics, such as linearity (20-22, 69). Autoencoders

Schmitt et al.

often produce poorly-behaved latent spaces that distribute the
latent variables on a narrow manifold with sharp features, see for
example (69). By regularizing the latent embedding to encourage
smoothness, variational autoencoders can remedy some of these
issues. We note that the VIB loss is very similar to a VAE loss
with the contrastive InfoNCE loss replacing the reconstruction
loss, so we expect that for many problems these should perform
similarly. Other dynamically-constrained architectures such as in
(20-22) work well for deterministic systems but it is unclear what
effect stochasticity has on their performance. In our examples we
have seen that VIB works well on noisy data.

In general when investigating a new system it is good practice
to start by attempting to perform dimensionality reduction with
linear methods such as PCA or DMD because they are fast,
straightforward to implement, and easy to interpret. In situations
where linear techniques are not sufficient, VIB may be preferable to
other methods because it is guaranteed to find dynamically relevant
variables (in contrast to diffusion maps, t-SNE, AEs, VAEs, etc.)
and it does not require that one performs the carefully tailored
preprocessing steps that are required by eDMD or kernel PCA,
or other variants of DMD (65-68). Additionally, it works well
even when the dynamics are highly stochastic as shown in the
cyanobacteria dataset.
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