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Abstract: 

Purpose: To determine the clinical relevance of reduced order model (ROM) aortic 

hemodynamic imaging-derived phenotypes (IDPs) for a range of flow conditions applied to 

computed tomography (CT) scan data in the Penn Medicine Biobank (PMBB). 

Methods: The human thoracic aorta was automatically segmented in 3,204 chest CT scans from 

patients in the Penn Medicine Biobank (PMBB) patients using deep learning. Thoracic aorta 

anatomic IDPs such as aortic diameter and length were computed. Resistance, and flow 

boundary conditions, were varied, resulting in 125,000 ROM simulations, producing a 

fingerprint of aortic hemodynamics IDPs for a range of flow conditions. To determine the 

clinical relevance of the aortic hemodynamic fingerprint, untargeted phenome wide association 

studies (PheWAS) for disease conditions were performed using aortic geometries and pulse 

pressure as IDPs. 

Results: By utilizing patient metadata from the PMBB, the human aortic radius for different age 

groups over a normalized radius was visualized, showing how the vessel deforms with age, as 

well as other characteristic geometric information. The average radius of the ascending thoracic 

aortic data set was 26.6 ± 3.1 mm, with an average length of 310 ± 37 mm. A combination of 

pathology codes (phecodes) and hemodynamic simulations were utilized to develop a 

relationship between them, showing a strong relationship between the resulting pulse pressure 

and diseases relating to aortic aneurysms and heart valve disorders. The average pulse pressure 

calculated by the model was 22.5 ± 8.5 mmHg, with the maximum pressure modeled by the 

system being 201 mmHg, with the minimum being 63.6 mmHg. The pulse pressures of the most 

significant phecodes were examined for patients with and without the condition, showing a slight 
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separation between the two cases. The pulse pressure was also slightly negatively correlated with 

the calculated tapering angle of the ascending thoracic aorta. 

Conclusions: ROM hemodynamic simulations can be applied to aortic imaging traits from 

thoracic imaging data in a medical biobank. The derived hemodynamic fingerprint, describing 

the response of the aorta to a range of flow conditions, shows clinically relevant associations 

with disease.  
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Introduction: 

 The aorta is the main delivery conduit for oxygenated blood from the left ventricle to the 

rest of the body. Aortic diseases can affect how well the blood is distributed, thus affecting the 

oxygenation of tissues all throughout the body. Aortic diseases affect at least 5.7% of 

individuals, the more common diseases being aortic dissection, aortic aneurysm, and 

atherosclerotic plaque [1, 2]. Ascending Thoracic Aortic Aneurysms (ATAAs) are a widening of 

the aorta due to the weakening of the aortic wall [3]. There is evidence that variations in 

hemodynamic properties such as flow velocity and pressure contribute to the development of 

ATTAs [3, 4]. Therefore, the ability to quickly model hemodynamic properties of the aorta for 

any given patient could potentially allow for clinical predictions on the progression of aortic 

diseases.  

 Longitudinal population-based studies have been used to determine the progression of 

aortic disease. The Multi-Ethnic Study of Atherosclerosis (MESA) is a prospective 

epidemiologic study of the incidence, risk factors and progression of atherosclerosis. A subset of 

these participants had CT imaging of abdominal aortic calcium in addition to coronary calcium, 

ventricular mass and function, flow-mediated brachial artery endothelial vasodilation, carotid 

intimal-medial wall thickness and distensibility of the carotid arteries [5]. MESA examined the 

role arterial pressure wave reflections played as a risk factor for critical heart failure, and 

discovered patients with a larger reflected wave magnitude were at a higher risk for heart failure 

[6]. Another study with similar aims was the Framingham Heart Study (FHS), which consisted of 

1230 subjects with the goal to determine whether left ventricular mass is associated with an 

increased risk for stroke [7]. The subjects in the FHS are examined with echocardiography at 8-
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year intervals to measure left ventricular mass, as well as blood pressure, cholesterol levels and 

left atrial size.  

 Hemodynamic measurements in the aorta could provide additional information about 

subclinical disease preceding the development of ATAAs. While FHS and MESA measured the 

progression of atherosclerosis and other important geometric quantities for aortic disease, 

technological limitations prevented these studies from directly assessing high-resolution 

hemodynamic characteristics of the aorta (pressure and volumetric flow measurements). Such 

measurements could be obtained using invasive catheterization procedures. Alternatively, given 

appropriate boundary conditions, they could be obtained using computational fluid dynamics 

(CFD), a tool that utilizes computers and the governing equations of fluid motion to perform 

calculations. CFD could be used to obtain hemodynamic properties such as wall shear stress 

(WSS), pressure and velocity waveforms that would be clinically useful in understanding the 

development of aortic pathologies [8, 9]. 

 While CFD can provide useful information on the hemodynamic properties of the aorta, 

there are limitations to its usefulness in a clinical setting. Performing a three-dimensional CFD 

analysis on a network of blood vessels has significant computation and time costs, making it sub-

optimal for clinical use [10, 11]. This is the main reason as to why 3D CFD has not yet been 

employed to measure hemodynamic properties in large cohorts. However, there are alternative 

approaches.  

 This study will utilize computed tomography (CT) scans that are currently present in the 

PMBB. There have been previous studies that have utilized biobanks to gather a large cohort of 

subjects. One such study utilized magnetic resonance imaging (MRI) and neural networks to 

improve automatic segmentation of aortas in atypical pathologic cases. This study utilized MRI 
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scans from the UK biobank, which allowed for a large and diverse dataset for the study [12]. For 

this study, the basic pipeline is that aortas will be segmented from CT scans contained in the 

PMBB, then geometric properties required for the 1D model will be extracted and input into the 

ROM with varying initial conditions for measurement of hemodynamic properties. While some 

information from a 3D CFD simulation may be lost, a ROM approach allows for significantly 

more simulations to be performed in the same amount of time, allowing for a whole 

characterization of an individual’s aortic flow response. 

This paper utilizes a one-dimensional Windkessel model, which considerably reduces 

both the computational power and time required to perform CFD modeling, reducing the time 

required from hours to seconds [13]. Using this reduced order model (ROM) would then allow 

for a large-scale application of hemodynamic modeling of the aorta, which is the focus of this 

study. There has been previous work involving ROMs of blood vessels, however, these studies 

either have small datasets, making them only proofs of concepts, or they attempt to address the 

issue by generating synthetic datasets for their studies in the form of geometries and inflow data 

[14, 15]. This allows for a novel approach of modeling hemodynamic properties on a large scale 

using non-synthetic geometries gathered from the Penn Medicine Biobank (PMBB).   
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Materials and Methods: 

Penn Medicine Biobank: 

The PMBB recruits participants at Penn Medicine Health System (Philadelphia, PA) by 

enrolling them at the time of outpatient visits. Patients complete a questionnaire, donate a blood 

sample, and agree to future recontact. It is an ethnically diverse cohort with black patients 

composing of nearly 25% of participants. This study was approved by the Institutional Review 

Board of the University of Pennsylvania and all patients have given informed consent to 

participate in this study. All methods were performed in accordance with the relevant guidelines 

and regulations. 

Scan Acquisition and Preprocessing: 

 From the PMBB, scans were selected from those being thoracic CT scans with the ability 

to have machine learning segmentation applied. The manufacturers of the CT scanners were 

Siemens, GE Medical Systems, Toshiba, and Siemens Healthineers, with slice thickness ranging 

from 0.5-1.5 mm. Each of these images were then segmented using TotalSegmentator to allow 

for collection of geometric parameters for the model [16]. Before acquiring geometric quantities 

from the segmentation, all aorta segmentations were clipped so that only the thoracic aorta was 

utilized. To select only the thoracic aorta, the segmentation was clipped at the center point of the 

T12 vertebrae. This location was chosen as the documented point where the descending thoracic 

aorta ends, and the abdominal aorta begins [17].  

Segmentations to Geometries: 
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 To apply the reduced order model to the segmentations, various geometric quantities had 

to be extracted from them. The program used to do this was the Vascular Modeling Toolkit 

(VMTK 1.4.0). First, we identified the aorta segmentation from the result of TotalSegmentator, 

and then generating a deformable model from this. An approximated centerline was then 

generated from this model, and then used to locate the source and target points which were next 

utilized for generating a more accurate centerline. This centerline in conjunction with the 

deformable model was then applied for generating various properties of the thoracic aorta 

including the length, average and max diameter, average and max curvature, and average and 

max torsion. To apply the diameter along the length of the thoracic aorta to the model, a 

polynomial fit of order 20 was applied to it, the resulting equation be used by the model. This 

was done in order to supply the model with a continuous equation, as that was what was required 

for it to run. The tapering angle of each ascending thoracic aorta was also calculated. The taper 

of a vessel is the rate at which the vessel reduces its diameter along its length. The tapering angle 

can be calculated from the equation below. Where Dmax is the maximum diameter of the vessel, 

Dmin is the minimum diameter of the vessel and L is the length of the vessel. 

𝜃 = arctan⁡(
𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛

2𝐿
) 

(1) 

Reduced Order Model Overview: 

 The reduced order model is based on a 3 element Windkessel model, which is commonly 

used in the reduced order modeling of blood vessels, in conjunction with the fluid-structure 

interactions that occur from the distensibility of the aortic vessel wall [12]. This system requires 

three equations, mass conservation, momentum conservation and a relationship between 
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pressure, area and distensibility of the vessel. These can be seen in equations 2, 3 and 4 

respectively. 

𝜕𝐴(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝑄(𝑙, 𝑡)

𝜕𝑥
=
𝜕𝐴(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝑢𝐴(𝑥, 𝑡)

𝜕𝑥
 

(2) 

𝜕𝑄(𝑙, 𝑡)

𝜕𝑡
+
𝜕(𝛼𝑄(𝑙, 𝑡)𝑢)

𝜕𝑥
= −

𝐴(𝑥, 𝑡)

𝜌

𝜕𝜌

𝜕𝑥
+
𝑓

𝜌
 

(3) 

𝑝 = 𝑝𝑒𝑥𝑡 + ⁡𝛽(√𝐴(𝑥) − √𝐴𝑜) 

(4) 

 In these equations A describes the cross-sectional area of the vessel, Q describes the 

volumetric flow rate, α is a momentum flux correction factor set to 1.1 for parabolic flow, u is 

the flow velocity, ρ is the density of the fluid, f represents the force of friction in this system, p is 

the pressure inside the vessel pext is the external pressure and Ao is the area of the vessel at 

equilibrium. β is a term that is a property of the vessel and is calculated from equation 5. 

𝛽(𝑥) =

(𝑘1 exp(𝑘2 ∗
√𝐴𝑜𝜋
𝜋 ) + 𝑘3)√𝐴𝑜

𝐴𝑜(1 − 𝑣)2
 

(5) 

 This beta term is described by k1, k2, and k3, which are constants that experimentally fit 

for calculating the ratio between the Young’s modulus and the dimensions of the vessel [18]. 

This system of equations describes the pulse wave propagation down the vessel. To transform 

the input waveform into a physiologically accurate waveform a 3-element Windkessel model is 
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utilized. A Windkessel model describes fluid flow through a blood vessel in terms of an 

electronic circuit governed by equation 5 [19]. 

𝑝 + 𝑅𝐶
𝑑𝑝

𝑑𝑡
− (𝑅 + 𝑍)𝑄 − 𝑝𝑖𝑛𝑓 − 𝑅𝐶𝑍

𝑑𝑄

𝑑𝑡
= 0 

(6) 

R being the peripheral resistance of the vessels, C being the vessel compliance and Z 

being the characteristic impedance of the vessel, which was calculated as from a Tau ratio, being 

the ratio of the peripheral resistance to the characteristic impedance (τ=R/Z), the Tau ratio was 

calculated from a previous study [20]. The tapering angle of each aorta was calculated by 

dividing the difference between the max and minimum aortic diameter by the length and taking 

the arctangent of that value. 

Parameter Variation: 

 To generate the hemodynamic fingerprint, various parameters can be varied from the 

model. These include the peripheral resistance, vessel compliance and the input volumetric flow 

waveform. The peripheral resistance and vessel compliance values were gathered from previous 

literature discussing measurements of these through a range of patients [20-22].  The peripheral 

resistances varied between 710 dynes*s/cm5 to 2900 dynes*s/cm5, while the compliance 

remained constant. The basic flow used was a pulse sine wave that peaks at 200 cm3/s during 

systole and goes to 0 cm3 during diastole. This was varied by increasing and decreasing the peak 

flow rate by 10%, leading to a range of 180 cm3/s to 220 cm3/s. For the purposes of this study, 

the model was used by only varying the peripheral resistance and keeping the compliance at a 

constant value. The compliance was not varied to determine the effect of only parameter at a 

time. The entire pipeline from CT scan to ROM output can be seen in figure 1, the physical 
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representation of the reduced order model can be found in figure 2. Simulated measurements 

were taken at the end of the aorta, at the T12 vertebrae.  

 

Figure 1. Processing pipeline from CT scan data in the PMBB to machine learning segmentation 

to geometry calculations and finally hemodynamic calculations from the ROM. Including an 

example VMTK geometry as well as the three element Windkessel model. 

 

Figure 2. Representation of ROM in physical elements. V(t) corresponds to the pulsatile nature 

of the pressure waveform, Zc represents the characteristic impedance of the vessel, C represents 

the compliance of the vessel and finally Rp is the peripheral resistance. 

Statistical Analysis:  

 To examine the effects that geometric data has on different phecodes, a unique identifier 

for different pathological traits, a phenome wide association study (PheWAS) was applied. R 

Studio was used for all statistical analysis. This PheWAS consisted of a logistic regression of 

each phecode with multiple parameters for correction. We used a logistic regression to look at 

the association of the different phecodes with max aortic diameter, correction for thoracic aortic 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2024. ; https://doi.org/10.1101/2024.04.19.590260doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.19.590260
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

length, patient age, and patient sex. A second PheWAS was applied, this time looking at the 

results of the ROM. This logistic regression looked at the association between the different 

phecodes and the pulse pressure of the model divided by thoracic aortic length, correcting for 

patient age, patient sex, and max aortic diameter. Phecodes that had an occurrence of more than 

100 times were plotted in each PheWAS.  
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Results: 

Thoracic aorta anatomic imaging traits and their association with disease 

 The investigators identified 3,216 thoracic CT scans from the Penn Medicine Biobank. 

After ML-derived aortic segmentation and ROM analysis, only 12 thoracic CTs were unable to 

be processed, resulting in a final data set of 3,204 thoracic CTs with imaging traits. The 

distribution of patient age among the CT scans is shown in Table 1, with most patients between 

40 and 79 years old. To examine changes in aortic geometry, we investigated the aortic radius 

among participants by age (Figure 3A). The average thoracic aortic diameter was 26.6 ± 3.1 mm, 

and the average length was 310 ± 37 mm. (Figures 3B and 3C, respectively). Correlation 

between imaging traits is shown in Figure 3D. The most closely related imaging traits were 

aortic diameter and length. PheWAS associations between maximum aortic radius and disease 

are shown in Figure 4. The four phecodes that showed the highest association with aortic radius 

were aortic aneurysm (p = 2.29E-24), other aneurysms (p = 1.21E-18), nonrheumatic aortic valve 

disorders (p = 6.28E-13) and heart valve disorders (p = 8.22E-9) (Figure 3B). 
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Table 1. Description of the dataset including, age, sex and top 10 most prevalent phecodes for 

scans containing that information. 
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Figure 3. A) The average diameter versus the normalized length of each thoracic aorta for the 

different age groups (n = 3204). B) Max thoracic aorta diameter distribution (n = 3204). C) 

Thoracic aorta length distribution (n = 3204) D) Correlation graph between imaging traits 

between max thoracic aortic diameter, average thoracic aortic diameter, ascending thoracic aortic 

length, patient sex, and patient age. 
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Figure 4. Phenome wide association study analyzing the effect max aortic diameter has on 

phecodes response (n = 1934)  
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ROM hemodynamic imaging traits and their association with disease 

 CFD simulations were performed with 8 different resistances, and 5 different inflow 

waveforms, resulting in over 125,000 simulations in 3,204 aortas. Figure 5 shows the time-

varying aortic pressure for one cardiac cycle and its change with resistance. The peak pressure 

for the dataset was 201 mmHg, and the minimum pressure calculated by the model through the 

range of parameters was 63.6 mmHg. Figure 6A shows the pulse pressure with resistance and the 

input flow boundary conditions. Finally, figure 6B shows the pulse pressure distribution for the 

median resistance and flow boundary conditions. The average pulse pressure for this data set was 

22.5 ± 8.5 mmHg. 

 

Figure 5. (n = 3204 for all) Pressure versus time curve for increasing resistances with a peak 

inflow value of 200 cm3/s. Showing variability between different geometries at each point. (n = 

3204) 
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Figure 6. A) Surface plot showing how the average pulse pressure for each geometry changes 

with resistance and peak flow rate. B) Pulse Pressure distribution for all geometries for the 

median resistance and flow rate (n = 3204). 

 

 A PheWAS was performed between disease (phecodes) and aortic hemodynamic imaging 

trait pulse pressure, normalized by aortic length (Figure 7). The PheWAS showed that aortic 

aneurysm, nonrheumatic aortic heart valve disorders, heart valve disorders and other aneurysm 

were significantly associated with pulse pressure. 
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Figure 7. PHEWAS for Pulse Pressure normalized by thoracic aorta length, showing the most 

significant phecodes (n = 1934). 

 

 To further investigate the relationship between pulse pressure and significantly associated 

disease, the pulse pressure distribution, for a given resistance and flow rate, was examined by 

comparing patients with aortic aneurysm, other aneurysm, heart valve disorders, and aortic valve 

disorders to other PMBB patients (Figure 8). Patients with significantly associated aortic 

pathology showed a lower pulse pressure under the same boundary conditions. 

 

 
Figure 8. Example pulse pressure histogram for the four most significant phecodes resulting 

from the PheWAS. (aortic aneurysm n = 123, other aneurysm n = 158, heart valve disorders n = 

293, aortic valve disorders n = 181) 

 

 To further examine how the geometry of the patient’s aorta affects the flow simulations, 

the tapering angle for the dataset was calculated for all 1934 patients present with pheCode data. 

The tapering angle is a parameter which characterizes the rate at which the aortic radius reduces 

over its length. A linear regression was then performed between the calculated pulse pressures 

and the tapering angle. There was a significant, but weakly negative correlation between the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2024. ; https://doi.org/10.1101/2024.04.19.590260doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.19.590260
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

tapering angle and the pulse pressures calculated from the fluid simulations (p=0.048). The 

average tapering angle for this data set was 0.12 ± 0.04̊. 
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Discussion: 

 This work provides a non-invasive approach of determining arterial hemodynamics from 

geometries gathered from medical imaging data. This was done at-scale by first calculating the 

geometries of 3,204 unique thoracic CT scans from a large-scale medical biobank using deep 

learning, then performing hemodynamic simulations across a range of wide range of clinically 

relevant hemodynamic parameters to generate a hemodynamic fingerprint of each aorta, when 

invasive measurements of flow and pressure are unknown. This proof-of-concept study shows 

the feasibility of applying ROMs to biobank patients at this scale of thousands of patients. An 

additional novel aspect of this work was to incorporate ROM hemodynamic analysis with 

clinical diagnostic data (phenome codes), showing that, when normalizing this calculated pulse 

pressure by the thoracic aorta length, specific, relevant phecodes for aortic disease are 

significantly associated with the derived hemodynamic parameters from the ROM.  

While previous studies have incorporated patient-specific ROMs, these studies have not 

been applied on a large scale, as is possible with the PMBB [23]. There have also been large 

scale studies to examine geometric measurements such as coronary calcium and ventricular 

mass, to show how these lead to aortic disease [5]. However, these have not incorporated 

hemodynamic measurements into the studies. There have also been studies that aim to develop 

methodologies for quickly calculating CFD results using ROMs. A study by Biancolini et al. 

utilized 3D simulations calculated in ANSYS to develop a methodology for generating a digital 

twin for patient specific results [24]. This methodology is a similar approach to this study; 

however, this paper uses a variation of parameters was used to characterize an individual 

geometry. The UK Biobank has also been used to characterize aortic geometries previously, this 

was done to calculate parameters such as aortic distensibility, or genetic associations between 
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different aortic valve diseases [25, 26]. By utilizing a ROM for flow simulations, we are able to 

quickly characterize an array of aortic geometries. By combining this approach with more 

classical examples of imaging characteristics, such as calcification of the aorta, novel 

observations can be made on a large scale. 

By calculating the tapering angle of the ascending thoracic aortic dataset, a statistically 

significant but weakly negative correlation was determined between the calculated pulse pressure 

from the ROM and the tapering angle. Future work can examine further how the results of the 

reduce order model are related to the tapering angle, or other properties of thoracic aortic 

geometry. 

This study attempted to examine the effects of aortic geometry on ROM hemodynamic 

measurements. There is potential for it to be used for other aortic diseases as well, for example in 

atherosclerosis. Atherosclerosis is an inflammatory disease that leads to plaque buildup on 

vasculature walls and often goes undiagnosed until a cardiac event occurs [24]. There is evidence 

that hemodynamic measurements like pulse wave velocity and pressure magnitude have a 

relevant impact on the formation of atherosclerotic plaques [9]. In the future, this work could be 

applied to examining the effects that ROM hemodynamic measurements have on formation of 

atherosclerotic plaque and could potentially supply an opportunistic screening method for early 

detection. 

The major limitation of this study is the lack of inflow data due to using CT scans. If this 

methodology were incorporated for an imaging modality that does provide flow data, like 4D 

MRI, the process could become more patient specific by fitting the Windkessel parameters for 

that specific patient. In that case other parameters could be varied, such as the ones controlling 

the pulse wave propagation down the vessel. This study also only examined the simulated 
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hemodynamics at a single point in the vessel. More work can be done by examining the pulse 

wave propagation as it progresses down the aorta. Another result of the ROM that can be 

examined in the future is pulse wave reflections, as there is evidence to them being clinically 

significant [25].  

This work provided a methodology for gathering ROM hemodynamic information at a 

large scale and provided a basis for analyzing these results together with clinical information. 

This was done by first taking CT scan data from the PMBB, converting it to geometries that can 

be utilized by a ROM, and then simulating through a range of parameters. In the future work can 

be done to examine different outputs of the ROM, such as reflected waveforms and perform 

analysis on the clinical significance of them in the PMBB. 
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