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Abstract:

Purpose: To determine the clinical relevance of reduced order model (ROM) aortic
hemodynamic imaging-derived phenotypes (IDPs) for a range of flow conditions applied to

computed tomography (CT) scan data in the Penn Medicine Biobank (PMBB).

Methods: The human thoracic aorta was automatically segmented in 3,204 chest CT scans from
patients in the Penn Medicine Biobank (PMBB) patients using deep learning. Thoracic aorta
anatomic IDPs such as aortic diameter and length were computed. Resistance, and flow
boundary conditions, were varied, resulting in 125,000 ROM simulations, producing a
fingerprint of aortic hemodynamics IDPs for a range of flow conditions. To determine the
clinical relevance of the aortic hemodynamic fingerprint, untargeted phenome wide association
studies (PheWAS) for disease conditions were performed using aortic geometries and pulse

pressure as IDPs.

Results: By utilizing patient metadata from the PMBB, the human aortic radius for different age
groups over a normalized radius was visualized, showing how the vessel deforms with age, as
well as other characteristic geometric information. The average radius of the ascending thoracic
aortic data set was 26.6 £ 3.1 mm, with an average length of 310 £ 37 mm. A combination of
pathology codes (phecodes) and hemodynamic simulations were utilized to develop a
relationship between them, showing a strong relationship between the resulting pulse pressure
and diseases relating to aortic aneurysms and heart valve disorders. The average pulse pressure
calculated by the model was 22.5 £ 8.5 mmHg, with the maximum pressure modeled by the
system being 201 mmHg, with the minimum being 63.6 mmHg. The pulse pressures of the most

significant phecodes were examined for patients with and without the condition, showing a slight
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separation between the two cases. The pulse pressure was also slightly negatively correlated with

the calculated tapering angle of the ascending thoracic aorta.

Conclusions: ROM hemodynamic simulations can be applied to aortic imaging traits from
thoracic imaging data in a medical biobank. The derived hemodynamic fingerprint, describing
the response of the aorta to a range of flow conditions, shows clinically relevant associations

with disease.
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Introduction:

The aorta is the main delivery conduit for oxygenated blood from the left ventricle to the
rest of the body. Aortic diseases can affect how well the blood is distributed, thus affecting the
oxygenation of tissues all throughout the body. Aortic diseases affect at least 5.7% of
individuals, the more common diseases being aortic dissection, aortic aneurysm, and
atherosclerotic plaque [1, 2]. Ascending Thoracic Aortic Aneurysms (ATAAS) are a widening of
the aorta due to the weakening of the aortic wall [3]. There is evidence that variations in
hemodynamic properties such as flow velocity and pressure contribute to the development of
ATTAS [3, 4]. Therefore, the ability to quickly model hemodynamic properties of the aorta for
any given patient could potentially allow for clinical predictions on the progression of aortic

diseases.

Longitudinal population-based studies have been used to determine the progression of
aortic disease. The Multi-Ethnic Study of Atherosclerosis (MESA) is a prospective
epidemiologic study of the incidence, risk factors and progression of atherosclerosis. A subset of
these participants had CT imaging of abdominal aortic calcium in addition to coronary calcium,
ventricular mass and function, flow-mediated brachial artery endothelial vasodilation, carotid
intimal-medial wall thickness and distensibility of the carotid arteries [5]. MESA examined the
role arterial pressure wave reflections played as a risk factor for critical heart failure, and
discovered patients with a larger reflected wave magnitude were at a higher risk for heart failure
[6]. Another study with similar aims was the Framingham Heart Study (FHS), which consisted of
1230 subjects with the goal to determine whether left ventricular mass is associated with an

increased risk for stroke [7]. The subjects in the FHS are examined with echocardiography at 8-
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year intervals to measure left ventricular mass, as well as blood pressure, cholesterol levels and

left atrial size.

Hemodynamic measurements in the aorta could provide additional information about
subclinical disease preceding the development of ATAAs. While FHS and MESA measured the
progression of atherosclerosis and other important geometric quantities for aortic disease,
technological limitations prevented these studies from directly assessing high-resolution
hemodynamic characteristics of the aorta (pressure and volumetric flow measurements). Such
measurements could be obtained using invasive catheterization procedures. Alternatively, given
appropriate boundary conditions, they could be obtained using computational fluid dynamics
(CFD), a tool that utilizes computers and the governing equations of fluid motion to perform
calculations. CFD could be used to obtain hemodynamic properties such as wall shear stress
(WSS), pressure and velocity waveforms that would be clinically useful in understanding the

development of aortic pathologies [8, 9].

While CFD can provide useful information on the hemodynamic properties of the aorta,
there are limitations to its usefulness in a clinical setting. Performing a three-dimensional CFD
analysis on a network of blood vessels has significant computation and time costs, making it sub-
optimal for clinical use [10, 11]. This is the main reason as to why 3D CFD has not yet been
employed to measure hemodynamic properties in large cohorts. However, there are alternative

approaches.

This study will utilize computed tomography (CT) scans that are currently present in the
PMBB. There have been previous studies that have utilized biobanks to gather a large cohort of
subjects. One such study utilized magnetic resonance imaging (MRI) and neural networks to

improve automatic segmentation of aortas in atypical pathologic cases. This study utilized MRI
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scans from the UK biobank, which allowed for a large and diverse dataset for the study [12]. For
this study, the basic pipeline is that aortas will be segmented from CT scans contained in the
PMBB, then geometric properties required for the 1D model will be extracted and input into the
ROM with varying initial conditions for measurement of hemodynamic properties. While some
information from a 3D CFD simulation may be lost, a ROM approach allows for significantly
more simulations to be performed in the same amount of time, allowing for a whole

characterization of an individual’s aortic flow response.

This paper utilizes a one-dimensional Windkessel model, which considerably reduces
both the computational power and time required to perform CFD modeling, reducing the time
required from hours to seconds [13]. Using this reduced order model (ROM) would then allow
for a large-scale application of hemodynamic modeling of the aorta, which is the focus of this
study. There has been previous work involving ROMs of blood vessels, however, these studies
either have small datasets, making them only proofs of concepts, or they attempt to address the
issue by generating synthetic datasets for their studies in the form of geometries and inflow data
[14, 15]. This allows for a novel approach of modeling hemodynamic properties on a large scale

using non-synthetic geometries gathered from the Penn Medicine Biobank (PMBB).
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Materials and Methods:

Penn Medicine Biobank:

The PMBB recruits participants at Penn Medicine Health System (Philadelphia, PA) by
enrolling them at the time of outpatient visits. Patients complete a questionnaire, donate a blood
sample, and agree to future recontact. It is an ethnically diverse cohort with black patients
composing of nearly 25% of participants. This study was approved by the Institutional Review
Board of the University of Pennsylvania and all patients have given informed consent to
participate in this study. All methods were performed in accordance with the relevant guidelines

and regulations.
Scan Acquisition and Preprocessing:

From the PMBB, scans were selected from those being thoracic CT scans with the ability
to have machine learning segmentation applied. The manufacturers of the CT scanners were
Siemens, GE Medical Systems, Toshiba, and Siemens Healthineers, with slice thickness ranging
from 0.5-1.5 mm. Each of these images were then segmented using TotalSegmentator to allow
for collection of geometric parameters for the model [16]. Before acquiring geometric quantities
from the segmentation, all aorta segmentations were clipped so that only the thoracic aorta was
utilized. To select only the thoracic aorta, the segmentation was clipped at the center point of the
T12 vertebrae. This location was chosen as the documented point where the descending thoracic

aorta ends, and the abdominal aorta begins [17].

Segmentations to Geometries:
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To apply the reduced order model to the segmentations, various geometric quantities had
to be extracted from them. The program used to do this was the Vascular Modeling ToolKkit
(VMTK 1.4.0). First, we identified the aorta segmentation from the result of TotalSegmentator,
and then generating a deformable model from this. An approximated centerline was then
generated from this model, and then used to locate the source and target points which were next
utilized for generating a more accurate centerline. This centerline in conjunction with the
deformable model was then applied for generating various properties of the thoracic aorta
including the length, average and max diameter, average and max curvature, and average and
max torsion. To apply the diameter along the length of the thoracic aorta to the model, a
polynomial fit of order 20 was applied to it, the resulting equation be used by the model. This
was done in order to supply the model with a continuous equation, as that was what was required
for it to run. The tapering angle of each ascending thoracic aorta was also calculated. The taper
of a vessel is the rate at which the vessel reduces its diameter along its length. The tapering angle
can be calculated from the equation below. Where Dmax is the maximum diameter of the vessel,

Dnmin is the minimum diameter of the vessel and L is the length of the vessel.

Dmax - Dmin

6 = arctan ( oL )

Reduced Order Model Overview:

The reduced order model is based on a 3 element Windkessel model, which is commonly
used in the reduced order modeling of blood vessels, in conjunction with the fluid-structure
interactions that occur from the distensibility of the aortic vessel wall [12]. This system requires

three equations, mass conservation, momentum conservation and a relationship between
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pressure, area and distensibility of the vessel. These can be seen in equations 2, 3 and 4

respectively.

d0A(x,t) N aQ(L,t) B J0A(x,t) N OJuA(x,t)
ot dx Ot 0x

()

2Q(l,t) d(aQ(l,tyu) A(x,t)dp f
+ =— —+=
Jat dx p Ox p

®)
p = pext + B(JA(x) —Ao)

4)

In these equations A describes the cross-sectional area of the vessel, Q describes the
volumetric flow rate, o is a momentum flux correction factor set to 1.1 for parabolic flow, u is
the flow velocity, p is the density of the fluid, f represents the force of friction in this system, p is
the pressure inside the vessel pex: is the external pressure and A, is the area of the vessel at

equilibrium. g is a term that is a property of the vessel and is calculated from equation 5.

/A

(k exp (kz Y AO”) +k3),/4,

Pl = Ao(1= )7

()

This beta term is described by ki, k2, and ks, which are constants that experimentally fit
for calculating the ratio between the Young’s modulus and the dimensions of the vessel [18].
This system of equations describes the pulse wave propagation down the vessel. To transform

the input waveform into a physiologically accurate waveform a 3-element Windkessel model is
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utilized. A Windkessel model describes fluid flow through a blood vessel in terms of an

electronic circuit governed by equation 5 [19].

dp aq
—2 = (R+2)Q = ping — RCZ—== 0

RC
p+ dt

R being the peripheral resistance of the vessels, C being the vessel compliance and Z
being the characteristic impedance of the vessel, which was calculated as from a Tau ratio, being
the ratio of the peripheral resistance to the characteristic impedance (t=R/Z), the Tau ratio was
calculated from a previous study [20]. The tapering angle of each aorta was calculated by
dividing the difference between the max and minimum aortic diameter by the length and taking

the arctangent of that value.
Parameter Variation:

To generate the hemodynamic fingerprint, various parameters can be varied from the
model. These include the peripheral resistance, vessel compliance and the input volumetric flow
waveform. The peripheral resistance and vessel compliance values were gathered from previous
literature discussing measurements of these through a range of patients [20-22]. The peripheral
resistances varied between 710 dynes*s/cm® to 2900 dynes*s/cm?®, while the compliance
remained constant. The basic flow used was a pulse sine wave that peaks at 200 cm®/s during
systole and goes to 0 cm® during diastole. This was varied by increasing and decreasing the peak
flow rate by 10%, leading to a range of 180 cm®/s to 220 cm®/s. For the purposes of this study,
the model was used by only varying the peripheral resistance and keeping the compliance at a
constant value. The compliance was not varied to determine the effect of only parameter at a

time. The entire pipeline from CT scan to ROM output can be seen in figure 1, the physical
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representation of the reduced order model can be found in figure 2. Simulated measurements

were taken at the end of the aorta, at the T12 vertebrae.

PMBB EHR Data

PheWAS

Reduced
Order

Ao Model

Figure 1. Processing pipeline from CT scan data in the PMBB to machine learning segmentation
to geometry calculations and finally hemodynamic calculations from the ROM. Including an
example VMTK geometry as well as the three element Windkessel model.

Figure 2. Representation of ROM in physical elements. V(t) corresponds to the pulsatile nature
of the pressure waveform, Z. represents the characteristic impedance of the vessel, C represents
the compliance of the vessel and finally Ry is the peripheral resistance.

Statistical Analysis:

To examine the effects that geometric data has on different phecodes, a unique identifier
for different pathological traits, a phenome wide association study (PheWAS) was applied. R
Studio was used for all statistical analysis. This PheWAS consisted of a logistic regression of
each phecode with multiple parameters for correction. We used a logistic regression to look at

the association of the different phecodes with max aortic diameter, correction for thoracic aortic
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length, patient age, and patient sex. A second PheWAS was applied, this time looking at the
results of the ROM. This logistic regression looked at the association between the different
phecodes and the pulse pressure of the model divided by thoracic aortic length, correcting for
patient age, patient sex, and max aortic diameter. Phecodes that had an occurrence of more than

100 times were plotted in each PheWAS.
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Results:

Thoracic aorta anatomic imaging traits and their association with disease

The investigators identified 3,216 thoracic CT scans from the Penn Medicine Biobank.
After ML-derived aortic segmentation and ROM analysis, only 12 thoracic CTs were unable to
be processed, resulting in a final data set of 3,204 thoracic CTs with imaging traits. The
distribution of patient age among the CT scans is shown in Table 1, with most patients between
40 and 79 years old. To examine changes in aortic geometry, we investigated the aortic radius
among participants by age (Figure 3A). The average thoracic aortic diameter was 26.6 £ 3.1 mm,
and the average length was 310 + 37 mm. (Figures 3B and 3C, respectively). Correlation
between imaging traits is shown in Figure 3D. The most closely related imaging traits were
aortic diameter and length. PheWAS associations between maximum aortic radius and disease
are shown in Figure 4. The four phecodes that showed the highest association with aortic radius
were aortic aneurysm (p = 2.29E-24), other aneurysms (p = 1.21E-18), nonrheumatic aortic valve

disorders (p = 6.28E-13) and heart valve disorders (p = 8.22E-9) (Figure 3B).
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Age
<20-39 213 (6.6%)
40-59 881 (27.5%)
60-79 1914 (52.7%)
>79 196 (6.1%)

Sex
Male 1617 (50.4%)
Female 1587 (49.5%)

Top 10 Phecodes N=1934
Hypertension 1147 (59.3%)
Essential Hypertension 1117 (57.8%)
Disorders of Lipid Metabolism 1022 (52.8%)
Hyperlipidemia 1021 (52.8%)
Symptoms of Respiratory System 827 (42.8%)
Diseases of Esophagus 767 (39.7%)
Esophagitis 730 (37.7%)
GERD 684 (35.4%)
Cardiac Dysrhythmias 618 (32.0%)
Overweight/Obesity 609 (31.5%)

Table 1. Description of the dataset including, age, sex and top 10 most prevalent phecodes for
scans containing that information.
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Figure 3. A) The average diameter versus the normalized length of each thoracic aorta for the
different age groups (n = 3204). B) Max thoracic aorta diameter distribution (n = 3204). C)
Thoracic aorta length distribution (n = 3204) D) Correlation graph between imaging traits
between max thoracic aortic diameter, average thoracic aortic diameter, ascending thoracic aortic
length, patient sex, and patient age.
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PHEWAS for Normalized Max Aorta Diameter (Length + Age + Sex + maxDiam)
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Figure 4. Phenome wide association study analyzing the effect max aortic diameter has on
phecodes response (n = 1934)
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ROM hemodynamic imaging traits and their association with disease

CFD simulations were performed with 8 different resistances, and 5 different inflow
waveforms, resulting in over 125,000 simulations in 3,204 aortas. Figure 5 shows the time-
varying aortic pressure for one cardiac cycle and its change with resistance. The peak pressure
for the dataset was 201 mmHg, and the minimum pressure calculated by the model through the
range of parameters was 63.6 mmHg. Figure 6A shows the pulse pressure with resistance and the
input flow boundary conditions. Finally, figure 6B shows the pulse pressure distribution for the
median resistance and flow boundary conditions. The average pulse pressure for this data set was

22.5 £ 8.5 mmHg.

Average Pressure vs Time for Varying Resistances
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Figure 5. (n = 3204 for all) Pressure versus time curve for increasing resistances with a peak
inflow value of 200 cm®/s. Showing variability between different geometries at each point. (n =
3204)
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Figure 6. A) Surface plot showing how the average pulse pressure for each geometry changes
with resistance and peak flow rate. B) Pulse Pressure distribution for all geometries for the
median resistance and flow rate (n = 3204).

A PheWAS was performed between disease (phecodes) and aortic hemodynamic imaging
trait pulse pressure, normalized by aortic length (Figure 7). The PheWAS showed that aortic
aneurysm, nonrheumatic aortic heart valve disorders, heart valve disorders and other aneurysm

were significantly associated with pulse pressure.

PHEWAS for Normalized Pulse Pressure (Pulse_Pressure/Length + Age + Sex + maxDiam)
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Figure 7. PHEWAS for Pulse Pressure normalized by thoracic aorta length, showing the most
significant phecodes (n = 1934).

To further investigate the relationship between pulse pressure and significantly associated
disease, the pulse pressure distribution, for a given resistance and flow rate, was examined by
comparing patients with aortic aneurysm, other aneurysm, heart valve disorders, and aortic valve
disorders to other PMBB patients (Figure 8). Patients with significantly associated aortic

pathology showed a lower pulse pressure under the same boundary conditions.

Pulse Pressure Histograms for Aortic Aneurysm, Other Aneurysm, Heart Valve Disorder, and Aortic Valve Disorder
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Figure 8. Example pulse pressure histogram for the four most significant phecodes resulting
from the PheWAS. (aortic aneurysm n = 123, other aneurysm n = 158, heart valve disorders n =
293, aortic valve disorders n = 181)

To further examine how the geometry of the patient’s aorta affects the flow simulations,
the tapering angle for the dataset was calculated for all 1934 patients present with pheCode data.
The tapering angle is a parameter which characterizes the rate at which the aortic radius reduces
over its length. A linear regression was then performed between the calculated pulse pressures

and the tapering angle. There was a significant, but weakly negative correlation between the
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tapering angle and the pulse pressures calculated from the fluid simulations (p=0.048). The

average tapering angle for this data set was 0.12 + 0.04.
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Discussion:

This work provides a non-invasive approach of determining arterial hemodynamics from
geometries gathered from medical imaging data. This was done at-scale by first calculating the
geometries of 3,204 unique thoracic CT scans from a large-scale medical biobank using deep
learning, then performing hemodynamic simulations across a range of wide range of clinically
relevant hemodynamic parameters to generate a hemodynamic fingerprint of each aorta, when
invasive measurements of flow and pressure are unknown. This proof-of-concept study shows
the feasibility of applying ROMs to biobank patients at this scale of thousands of patients. An
additional novel aspect of this work was to incorporate ROM hemodynamic analysis with
clinical diagnostic data (phenome codes), showing that, when normalizing this calculated pulse
pressure by the thoracic aorta length, specific, relevant phecodes for aortic disease are

significantly associated with the derived hemodynamic parameters from the ROM.

While previous studies have incorporated patient-specific ROMs, these studies have not
been applied on a large scale, as is possible with the PMBB [23]. There have also been large
scale studies to examine geometric measurements such as coronary calcium and ventricular
mass, to show how these lead to aortic disease [5]. However, these have not incorporated
hemodynamic measurements into the studies. There have also been studies that aim to develop
methodologies for quickly calculating CFD results using ROMs. A study by Biancolini et al.
utilized 3D simulations calculated in ANSYS to develop a methodology for generating a digital
twin for patient specific results [24]. This methodology is a similar approach to this study;
however, this paper uses a variation of parameters was used to characterize an individual
geometry. The UK Biobank has also been used to characterize aortic geometries previously, this

was done to calculate parameters such as aortic distensibility, or genetic associations between
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different aortic valve diseases [25, 26]. By utilizing a ROM for flow simulations, we are able to
quickly characterize an array of aortic geometries. By combining this approach with more
classical examples of imaging characteristics, such as calcification of the aorta, novel

observations can be made on a large scale.

By calculating the tapering angle of the ascending thoracic aortic dataset, a statistically
significant but weakly negative correlation was determined between the calculated pulse pressure
from the ROM and the tapering angle. Future work can examine further how the results of the
reduce order model are related to the tapering angle, or other properties of thoracic aortic

geometry.

This study attempted to examine the effects of aortic geometry on ROM hemodynamic
measurements. There is potential for it to be used for other aortic diseases as well, for example in
atherosclerosis. Atherosclerosis is an inflammatory disease that leads to plaque buildup on
vasculature walls and often goes undiagnosed until a cardiac event occurs [24]. There is evidence
that hemodynamic measurements like pulse wave velocity and pressure magnitude have a
relevant impact on the formation of atherosclerotic plagues [9]. In the future, this work could be
applied to examining the effects that ROM hemodynamic measurements have on formation of
atherosclerotic plaque and could potentially supply an opportunistic screening method for early

detection.

The major limitation of this study is the lack of inflow data due to using CT scans. If this
methodology were incorporated for an imaging modality that does provide flow data, like 4D
MRI, the process could become more patient specific by fitting the Windkessel parameters for
that specific patient. In that case other parameters could be varied, such as the ones controlling

the pulse wave propagation down the vessel. This study also only examined the simulated
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hemodynamics at a single point in the vessel. More work can be done by examining the pulse
wave propagation as it progresses down the aorta. Another result of the ROM that can be
examined in the future is pulse wave reflections, as there is evidence to them being clinically

significant [25].

This work provided a methodology for gathering ROM hemodynamic information at a
large scale and provided a basis for analyzing these results together with clinical information.
This was done by first taking CT scan data from the PMBB, converting it to geometries that can
be utilized by a ROM, and then simulating through a range of parameters. In the future work can
be done to examine different outputs of the ROM, such as reflected waveforms and perform

analysis on the clinical significance of them in the PMBB.
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