

1 **Sexual dimorphism in the tardigrade *Paramacrobiotus metropolitanus***
2 **transcriptome**

3
4 Kenta Sugiura^{1,†} Yuki Yoshida^{2,†}, Kohei Hayashi¹, Kazuharu Arakawa^{3, 4}, Takekazu Kunieda⁵,
5 Midori Matsumoto^{1,*}

6
7 1. Faculty of Science and Technology, Keio University
8 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan.
9 2. Institute of Agrobiological Sciences, National Agriculture and Food Research
10 Organization
11 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
12 3. Institute for Advanced Biosciences, Keio University
13 403-1 Nihonkoku, Daihōjī, Tsuruoka, Yamagata, 997-0017, Japan.
14 4. Exploratory Research Center on Life and Living Systems (ExCELLS), National
15 Institutes of Natural Sciences
16 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
17 5. Department of Biological Science, Graduate School of Science, The University of
18 Tokyo
19 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.

20
21 * Corresponding author
22 † : equally contributed

23
24
25 Kenta Sugiura: kensugiura@keio.jp
26 0000-0002-4264-6737
27 Yuki Yoshida: yoshiday455@affrc.go.jp
28 0000-0003-2749-8171
29 Kohei Hayashi: kohei884tennis@keio.jp
30 Kazuharu Arakawa: gaou@sfc.keio.ac.jp
31 0000-0002-2893-4919
32 Takekazu Kunieda: kunieda@bs.s.u-tokyo.ac.jp
33 0000-0002-6256-1335
34 Midori Matsumoto: midorimatsu@keio.jp
35 0000-0003-4838-6179
36

37

38 **Abstract**

39 *Background*

40 In gonochoristic animals, the sex determination pathway induces different morphological and
41 behavioral features that can be observed between sexes, a condition known as sexual
42 dimorphism. While many components of this sex differentiation cascade shows high levels of
43 diversity, factors such as the Doublesex-Mab-3-related transcription factor (DMRT) are highly
44 conserved throughout animals. Species of the phylum Tardigrada exhibits remarkable
45 diversity in morphology and behavior between sexes, suggesting a pathway regulating such
46 dimorphism. Despite the wealth of genomic and zoological knowledge accumulated in recent
47 studies, the sexual differences in tardigrades genomes have not been identified. In this study,
48 we focused on the gonochoristic species *Paramacrobiotus metropolitanus* and employed
49 omics analyses to unravel the molecular basis of sexual dimorphism.

50

51 *Results*

52 Transcriptome analysis between sex identified numerous differentially expressed genes, of
53 which approximately 2,000 male-biased genes were focused on 29 non-male-specific
54 genomic loci. From these regions, we identified two Macrobiotidae family specific *DMRT*
55 paralogs, which were significantly upregulated in males and lacked sex specific splicing
56 variants. Furthermore, phylogenetic analysis indicated all tardigrade genomes lacks the
57 *doublesex* ortholog, suggesting *doublesex* emerged after the divergence of Tardigrada. In
58 contrast to sex-specific expression, no evidence of genomic difference between the sexes
59 were found. We also identified several anhydrobiosis genes exhibiting sex-biased expression,
60 possibly suggesting a mechanism for protection of sex specific tissues against extreme stress.

61

62 *Conclusions*

63 This study provides a comprehensive analysis for analyzing the genetic differences between
64 sexes in tardigrades. The existence of male-biased, but not male-specific, genomic loci and
65 identification of the family specific male-biased *DMRT* subfamily would provide the foundation
66 for understanding the sex determination cascade. In addition, sex-biased expression of
67 several tardigrade-specific genes which are involved their stress tolerance suggests a
68 potential role in protecting sex-specific tissue and gametes.

69

70 **Key words**

71 sex dimorphism, tardigrade, genome, transcriptome, *DMRT* gene family, *Paramacrobiotus*
72 *metropolitanus*

73

74

75

76 Introduction

77 Reproductive modes in animals are typically categorized into two major categories: asexual
78 and sexual. Sexually reproducing animals produce sex-specific gametes, and genetic
79 exchange between sexes leads to higher genetic diversity (1, 2). Gonochoristic animals
80 usually show sexual dimorphism not only in gametes but also in somatic tissues, physiology,
81 and behavior within a single species, demonstrating the dynamic differentiation observed in
82 intraspecies.

83 Although many aspects of the mechanism for inducing sex differences remain to be
84 elucidated, they are usually regulated by sex differences in the genome and gene expression
85 (3). Gonochoristic animals must undergo sex determination through common well-studied
86 mechanisms to develop sex-specific organs. The physiological systems of sex determination
87 vary among species but are generally categorized into two types: determination by sex-linked
88 chromosomes and environmental cues (4, 5). Species possess sex chromosomes that show
89 different karyotypes depending on their sex. In contrast, environmental cues, including
90 temperature, nutritional status, and population density, act as initial cues for sex determination
91 (6). Regardless of the mode of sex determination, several widely conserved genes play crucial
92 roles in sex-specific organ development. The transcription factor family Doublesex and Mab-
93 3 Related Transcription Factor (DMRT) is a key regulator of somatic tissue development in
94 various animals (7). In animals utilizing sex chromosomal sex determination systems, not only
95 *DMRT* orthologs on the sex chromosome, but also on the autosomes are involved in sex
96 determination cascades to regulate the growth of sex-specific tissues (8, 9). In contrast to the
97 chromosomal sex determination system, environmental cues induce the development of sex-
98 specific tissues in normally parthenogenetic individuals through the expression of *DMRT*
99 orthologs (e.g., *Dsx1* in *Daphnia magna*), leading to genetic exchange through mating (10-
100 12). The interplay between highly diverse and conserved components in generating different
101 sexes to overcome environmental and genetic challenges presents a significant challenge for
102 understanding the sex determination cascade.

103 The phylum Tardigrada, a member of the Ecdysozoa with 1,500 estimated species
104 (13), is divided into three classes: Heterotardigrada, Eutardigrada, and *nomen dubium*
105 Mesotardigrada (14, 15). Tardigrades are renowned for their ability to tolerate extreme
106 environments, and studies have identified tardigrade-specific proteins that mediate tolerance
107 against nearly complete desiccation and anhydrobiosis (16). Asexual (parthenogenesis) and
108 sexual reproduction have been observed within this phylum, with reported instances of both
109 gonochorism and hermaphroditism in sexually reproducing species (17). Sexual dimorphism
110 in morphology and behavior during mating have been observed (18, 19). In contrast, we lack
111 knowledge on the molecular mechanisms that induce sexual dimorphism because most
112 molecular and genomic studies have focused on parthenogenetic species (20).

113 To this end, we conducted genomic and transcriptomic comparisons between males
114 and females of the model gonochoristic tardigrade *Paramacrobiotus metropolitanus* to identify
115 the molecular factors related to sexual dimorphism. This species, which is rich in ecological
116 information, has a reported 170 Mbp genome, is relatively easy to culture, and show a male-
117 biased sex ratio (Male:Female=7:3), but morphological sexual dimorphism excluding
118 testis/ovary has not been described (19, 21-24). The results in this study lay the foundation
119 for subsequent studies aimed at identifying a master regulator of the sex determination
120 cascade and sex-dependent genetic differences in tardigrades.

121 Methods

122 *Tardigrade culture condition and specimen preparation*

123 The tardigrade *P. metropolitanus* TYO strain was cultured following methods described in the
124 previous report (23). The specimens were sexed using the method described by Sugiura *et al.*
125 (21). The eggs of *P. metropolitanus* were individually placed in an agar-coated dish, and
126 hatched individuals were separated and reared separately to avoid sex contamination. These
127 specimens were then grown until the development of sexual organs that were used for sexing.
128

129 *RNA extraction and sequencing*

130 Total RNA was extracted as described by Arakawa *et al.* (25). Two hundred and fifty
131 specimens of each sex were placed in a 1.5 ml tube with minimal water, and 100 μ L of TRIzol
132 reagent was added (Thermo Fisher Scientific). Total mRNA was extracted using the Direct-
133 zol RNA kit (Zymo), and the samples were transported to Chemical Dojin for sequencing. The
134 transcriptome sequencing libraries were prepared with poly A selection using the NEBNext
135 Ultra II RNA Library Prep Kit for Illumina (New England Biolabs) and were sequenced using
136 the NovaSeq 6000 instrument (Illumina, 150 bp PE). Four and three replicates were prepared
137 for males and females, respectively.

138

139 *External data and annotation*

140 Genome data for *P. metropolitanus* were obtained from our previous study (22). Raw gDNA-
141 Seq reads used to assemble the genome and RNA-Seq data for the hydrated and desiccated
142 samples (2d) were downloaded from SRA with prefetch and fasterq-dump from the sra-toolkit
143 suite v2.10.1 (<https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software>, Accession ID:
144 DRR144969, DRR146886). We have added additional annotations to the protein sequences
145 using NCBI Conserved Domain Search (26), DeepLoc2 (27), or InterproScan v5.62-94.0(28).
146 Tardigrade specific anhydrobiosis genes were annotated based on previous studies (22, 29-
147 32). Nucleotide sequences for the coding regions were extracted using gffread v0.12.7 (33).
148 Protein structures were predicted by ColabFold2 v1.5.3
149 (https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2_compl_exes.ipynb) (34) with default settings and visualized ChimeraX v.1.7.0 (35). The chromosome-
150 level genome of *Hypsibius exemplaris* was downloaded from DNAzoo (36) and the positions
151 of the gene predictions from our previous study (31) were converted to the new genome with
152 LiftOff v1.6.3. Genome and gene predictions for *Ramazzottius varieornatus* were obtained
153 from our previous report (31).
154

155

156 *Gene expression analysis*

157 Raw RNA-Seq reads were mapped to the coding sequences and quantified using RSEM
158 v1.3.3 (37). The raw counts were then subjected to statistical testing using DESeq2 v1.38.0,
159 within the run_DE.pl from the Trinity pipeline v2.15.1 (38, 39). Transcripts with FDR values <
160 0.05 were identified as differentially expressed genes (DEGs). Gene Ontology Enrichment
161 Analysis (GOEA) was performed based on InterProScan GO annotations using GOstats
162 v2.68.0 and GSEABase v1.64.0 (40, 41). Gene ontologies with *p*-values < 0.05 were
163 considered significant. Singleton terms were removed from the final list of enriched terms.

164 To extract genomic regions enriched in transcripts biased to either sex, we performed
165 enrichment analysis based on the number of DEGs with more than 10x fold change within 200
166 kbp windows (100 kbp steps). Genomic bins were created with BEDtools v2.31.1 (42) and the
167 number of genes fitting the criteria was calculated using BEDtools intersect. An in-house

168 Rscript was used to perform Fisher's exact test for each bin, and *p*-values were corrected by
169 BH method. Regions with Q-value < 0.01 were considered enriched.

170 We also performed transcriptome assembly through Trinity v2.15.1 and StringTie
171 v2.2.1 (39, 43). The RNA-Seq data were mapped to the genome using Hisat2 v2.1.0 (44) and
172 assembled with genome-guided Trinity or StringTie. A non-genome-dependent assembly was
173 also produced with Trinity. The assembled information was passed into PASA v2.5.3 for
174 variant detection and merged with the original gene prediction using EvidenceModeler v2.0.0
175 for a comprehensive gene prediction set (45, 46). This gene set was also subjected to PASA
176 expansion to identify additional splice variants. SAM file conversion was performed using
177 SAMtools v1.16.1(47).

178

179 *Phylogenetic analysis*

180 To identify and analyze the expression patterns of *DMRT* genes, we first performed an
181 exhaustive search for genes harboring Doublesex-Mab-3 related domains (DM domains).
182 Initial candidates were extracted based on the InterProScan searches performed above, and
183 the corresponding amino acid sequences were submitted to a BLASTP v2.2.22 (48) search
184 against *P. metropolitanus*. In addition, the amino acid sequences of *P. metropolitanus* *DMRT*
185 orthologs were subjected to a BLASTP search against amino acid sequences predicted from
186 various tardigrade genomes (32). The amino acid sequences for the tardigrade *DMRT*
187 orthologs, metazoan orthologs provided in a previous study (49), and velvet worm *Dmrt*
188 ortholog were pooled and then aligned with MAFFT v7.450 (50) and subjected to phylogenetic
189 tree construction using IQTREE2 v2.2.2.6 (51). The phylogenetic tree was visualized in
190 FigTree v.1.4.3 (<http://tree.bio.ed.ac.uk/software/figtree>). The expression patterns of *H. exemplaris* and *R. varieornatus* *DMRT*
191 orthologs during developmental stages were obtained from our previous report (52). Additional alignments for the *DMRT* proteins were performed
192 by MAFFT v7.450 and visualized using MView (<https://www.ebi.ac.uk/Tools/msa/mview/>).

193 Similarly, we conducted a phylogenetic analysis of CAHS genes. We obtained
194 annotated CAHS sequences from our previous report (53) and pooled the amino acid
195 sequences of *P. metropolitanus* CAHS candidate orthologs. A phylogenetic tree was
196 constructed using the same procedure.

197

198 *Genome extraction*

199 Virgin *P. metropolitanus* was prepared by the method described above, and a single tardigrade
200 was placed in a 0.2 ml tube after 1% penicillin/streptomycin treatment for 2h to remove
201 contamination. Genomic DNA was extracted and prepared using the method described by
202 Arakawa et al. (25). An individual was crushed by pressing it against a tube wall using a pipette
203 tip. Genomic DNA was extracted with Quick-gDNA MicroPrep kit (Zymo Research) with three
204 freeze-thaw cycles and then following the manufacturer's protocol. The extracted DNA was
205 sheared to 550 bp target fragments with Covaris M220 and a Illumina library was constructed
206 with a ThruPLEX DNA-Seq kit (Takara BioRubicon Genomics). Quantification, quality, and
207 library size selection were performed with Qubit Fluorometer (Life Technologies) and
208 TapeStation D1000 ScreenTape (Agilent Technologies), respectively. Sequencing library
209 fragments in the range of 400–1,000 bp were cut and purified with a NucleoSpin Gel and PCR
210 Clean-up kit (Clontech) and sequenced using a NextSeq500 sequencer with HighOutputMode
211 75 cycles kit (Illumina). The reads were de-multiplexed, and adaptor sequences were removed
212 using the bcl2fastq v2 software (Illumina).

213

214 *Genome reassembly*

216 Previously published ONT raw reads were submitted for reassembly using Canu v2.2 (54),
217 NextDenovo v2.5.2 (55), Shasta v0.11.1 (56), Flye v2.9.2-b1786 (57), redbean v2.5 (wtgbt2)
218 (58), GoldRush v1.1.0 (59), SPADES v3.15.5 (60), Pecat v0.0.3(61), and Raven v1.8.3 (62).
219 Polishing was performed using NextPolish v1.4.1 (63) for the NextDenovo assembly. Each
220 assembly was evaluated using compleasm v0.2.2 (metazoa and eukaryota lineage) or
221 BUSCO v5.5.0 (64, 65). Completeness was also evaluated for *H. exemplaris* and *R.*
222 *varieornatus* published genomes as well (31). The coverage for 10 kbp bins was calculated
223 as previously stated, where we used BWA-MEM2 v2.2.1 (66) instead of BWA-MEM. DMRT
224 orthologs were searched with TBLASTN v2.2.22, using *P. metropolitans* DMRT protein
225 sequences as the query (E-value < 1e-50). Additionally, we co-assembled male and female
226 short reads produced in this study along with the ONT and Illumina datasets using SPADES
227 v3.15.5.

228

229 *Sex specific region analysis*

230 To identify candidate sex chromosome regions, we employed the Y chromosome genome
231 scan (YGS) method (67), which was previously used to identify *Drosophila melanogaster* sex
232 chromosome contigs. Briefly, reads from the same sex were pooled, and 15-mers were
233 extracted with jellyfish count v2.2.4 or v2.2.10 (68). Scripts from the YGS method v.11b (8 Oct
234 2012 10AM) were then used to calculate the percentage of validated single-copy unique *k*-
235 mers (P_VSC_UK) for each contig. This was performed for the previously published genome,
236 as well as for the SPADES assembly performed above. We also tested the coverage for both
237 sexes calculated from the gDNA-Seq data. The raw gDNA-Seq reads were mapped to the
238 genome using BWA-mem2 v2.2.1 and converted into BAM files using SAMtools v1.17. The
239 genome was split into 10 kbp bins and the average coverage for each bin was calculated using
240 BEDtools v2.31.0. The values were then normalized by the median of all bins for that sample,
241 and the average for males and females was computed.

242 For gene-level synteny analysis, we employed the Python version of McScan in the
243 JCVI suite v1.2.7 (69). Gene prediction and coding sequences were prepared for *H.*
244 *exemplaris* and *P. metropolitans* and syntenic regions were identified and visualized using
245 default settings. To identify the *Dsup* ortholog, candidates were identified using gene-level
246 synteny. Disorderness was analyzed using DISOPRED (<http://bioinf.cs.ucl.ac.uk/psipred/>) and
247 IUPRED3 (<https://iupred3.elte.hu/>) and the protein structure predicted ColabFold v.1.5.3 (34,
248 70, 71).

249

250 *Genotyping for male specific regions*

251 Virgin specimens were replaced with single-worm lysis buffer (50 mM KCl, 10 mM Tris pH8.2,
252 2.5 mM MgCl₂, 0.45% NP-40, 0.45% Tween20, 0.01% gelatin, 2 µg of Proteinase K) (72). The
253 specimen was then dissolved by freeze-thaw cycles (three times for liquid N₂ and RT) and
254 incubated at 60°C for 1.5 h and 95 °C for 25 min. Genotyping PCR was performed using the
255 following conditions: 94 °C for 3 min; 40 cycles of 94 °C for 30 s, 50 °C for 30 s, and 68 °C for
256 1 min; and a final extension at 68 °C for 5 min. Primer sequences were designed using Primer3
257 (73) from the nucleotide sequences of scaffold Parri_scaffold0000295 (**Supplementary Table**
258 **S1**). Quick-Taq (TOYOBO) was used for the polymerase with the concentrations of each
259 reagent, following the manufacturer's instructions. Electrophoresis was performed at 100V for
260 20 min with 1.2% agarose gel/TAE (NacalaiTesque), and then the gel was strained with
261 ethidium bromide for 20 min. The DNA bands were visualized using ChemiDoc (BioRad).

262

263 **Results**

264 *Transcriptomics of P. metropolitanus sexes*

265 To identify sex-specific gene expression and genomic loci, we produced 10–20 M reads of
266 RNA-Seq data for male and female specimens (**Supplementary Table S2**) that mapped
267 approximately 80–90% of the genome. Based on these data, we quantified and conducted
268 differential gene expression analysis. PCA analysis of the expression profiles indicated a clear
269 distinction between the male and female samples (**Figure 1A**). A total of 9,015 transcripts
270 were differentially expressed, with 4,685 and 4,329 transcripts showing higher expression in
271 females and males, respectively (**Figure 1B**). Gene ontology enrichment analysis of each
272 gene set indicated enrichment of various pathways (**Supplementary Figure S1**). For females,
273 we observed enrichment of RNA processing, cellular component biogenesis, and negative
274 regulation of biological processes. In contrast, terms related to cyclic nucleotide biosynthetic
275 processes, aminoglycan metabolic processes, and monatomic ion transport were enriched.

276 The sex determination cascade comprises multiple genes, forming a signaling cascade
277 that causes differentiation between the sexes. We first focused on *DMRT*, a well-conserved
278 gene family that regulates sex-specific tissue development and behavior. Initial BLAST
279 analysis identified five *DMRT* orthologs (PARRI_0009851, PARRI_0001169, PARRI_0005877,
280 PARRI_0003090, and PARRI_0003093). We observed that three genes, PARRI_0003090,
281 PARRI_0003090, and PARRI_0005877, were upregulated in males, whereas
282 PARRI_0003090 was moderately expressed (TPM>30) in males. Although we could not
283 determine *sxl* and *fru* orthologs, we identified possible sex specific variants for the *tra2*
284 ortholog (**Supplementary Figure S2**).

285 A diverse array of lineage-specific upstream signaling factors (e.g., *tra2*, *nix*, *fem*)
286 induce sex-specific splicing variants of the *doublesex* gene, transmitting signals to the
287 downstream sex development cascade (6). Although the master regulator of sex determination
288 is highly variable, several components of the cascade are highly conserved, such as the
289 *DMRT* orthologs. Likewise, the *Transformer-2* (*Tra2*) gene is a DNA-binding protein coupled
290 with the *Tra* protein, causing sex-specific splicing of *dsx* in insects (6). The *P. metropolitanus*
291 *Tra2* (*PmTra2*; PARRI_0000692) exhibited sex-specific variants with different splicing sites in
292 the second exon (**Supplementary Figure S2**). The female variant of *PmTra2* (*PmTra2F*,
293 *evm.model.Parri_scaffold0000002.194*) has an extra transcribed region at the 5' end, whereas
294 the start site for the male variant (*PmTra2M*,
295 *evm.model.Parri_scaffold0000002.194.3.65434fff*) is located on the third exon.

296 We also attempted to identify genes participating in the sex cascade in *Drosophila*,
297 e.g., *fruitless* (*fru*) and *sex/lethal* (*sxl*) genes. BLAST searches identified two candidates for *sxl*
298 orthologs (PARRI_0002227 and PARRI_0007430) which showed contrasting expression
299 profiles. However, a phylogenetic analysis indicated that these genes could not determine
300 whether these orthologs were *sxl* or a gene family with relatively high similarity; therefore, we
301 cannot conclude whether these genes are *sxl* orthologs (data not shown). No hits were found
302 for *fru* in *P. metropolitanus* nor any tardigrade genomes. Thus, we concluded that *fru* is missing
303 and *sxl* remains questionable in *P. metropolitanus*.

304 Taken together, we conclude that sex-specific *tra2* and *DMRT* exist and may be
305 functional in the *P. metropolitanus* sex determination cascade; however, several factors of this
306 cascade may be lost in this lineage. The *Bombyx mori* *sxl* gene induces dimorphism of the
307 sperm, not sex determination (74); therefore, it is possible that the lack of *sxl* may imply a
308 different regulatory pathway than is known.

310 *Genomic loci of the male-biased genes*

311 We detected a peculiar population of genes that were approximately >25 higher expressed in
312 males (**Figure 1B**). Hypothesizing that these male-biased expressed transcripts may be sex-
313 specific genes located on the sex chromosome, we conducted a genomic enrichment analysis
314 to determine genomic loci enriched in these highly biased genes. Using a genomic bin of 200
315 kbp (corresponding to roughly 30 genes per bin) against differentially expressed transcripts
316 that had over 10x fold change than the other sex (Female: 674, Male: 1724), we detected 325
317 (29 scaffolds) and 12 (3 scaffolds) bins for males and females, respectively (**Figure 2A**). We
318 noted that approximately 2% of the male-biased genes had more than TPM 10 in females
319 (11% for male-expression of female-biased genes), thus implying the specificity of male-
320 biased genes. Gene ontology enrichment analysis of genes located in these bins indicated a
321 high enrichment of transcripts related to sperm function (**Supplementary Table S3, S4**).
322 Interestingly, two out of the three male-induced *DMRT* paralogs (PARRI_0003090 and
323 PARRI_0003093) were located within a bin enriched for male-biased genes on the scaffold
324 Parri_scaffold0000005 (**Figure 2B**). We also observed that the genes within and in the
325 surrounding regions of these bins were also expressed in females, suggesting that these
326 genomic loci may not be male-specific (**Figure 2C**).

327 To evaluate whether these genomic loci enriched for male-biased genes were on the
328 same chromosome, we preformed synteny analysis with the recently reported chromosome-
329 level genome assembly of *H. exemplaris*. *Paramacrobiotus metropolitanus* has been observed
330 to have 2n=10 karyotypes, similar to that of *H. exemplaris* (21, 75). While the queried 29 male-
331 biased scaffolds did not focus on a particular chromosome, we observed a slight bias toward
332 chromosomes 1, 2, and 5 (**Figure 2D**). Furthermore, we observed that the paralogous *DMRT*
333 loci and the surrounding region on Parri_scaffold0000005 were missing in *H. exemplaris*, and
334 different loci on the same chromosome were inserted into the corresponding region (**Figure**
335 **2E**). These data suggest that this genomic region may have emerged in the *P. metropolitanus*
336 lineage.

337

338 *Emergence of a novel dmrt93B-like subfamily specific to Macrobiotidae*

339 Considering the importance of paralogous *DMRT* genes located on Parri_scaffold0000005,
340 we focused on the characterization of the orthologs to determine the characteristics of these
341 paralogs.

342 First, we submitted the amino acid sequences of the *P. metropolitanus* *DMRT* family
343 for phylogenetic analysis, incorporating various tardigrade *DMRT* orthologs from genome and
344 transcriptome assemblies. Careful examination of the PARRI_0003093 gene structure
345 revealed a misassembly of a single nucleotide insertion, identified through gDNA- and RNA-
346 Seq read mapping. This caused a frameshift in the 3' terminus, leading to a truncated coding
347 sequence. Therefore, manual curation for this gene was performed, resulting in 463 amino
348 acid sequence. Phylogenetic analysis identified *PmDmrt99B* (PARRI_0009851), *PmDmrt93B*
349 (PARRI_0005877), and *PmDmrt11E* (PARRI_0001169) orthologs, as well as two *Dmrt93B*-
350 like paralogs (*PmDmrt3090* PARRI_0003090; *PmDmrt3093* PARRI_0003093; the 3090/3093
351 complex). The 3090/3093 complex contained *DMRT* genes only from Macrobiotidae species,
352 suggesting the acquisition of this subfamily in this lineage (**Figure 3A**). We also observed a
353 phylum-wide loss of the *Doublsex* subfamily. Furthermore, we observed an Echiniscidae-
354 specific *Dmrt93B* subfamily that was not included in the 3090/3093 complex. While the
355 relatively lower bootstrap support of this branch (88) complicated the phylogenetic position of
356 this clade, only the DM domain was found in these subfamily members. Interestingly,
357 phylogenetic analysis indicated that the *dsx*-like gene of the velvet worm branched into a

358 Doublesex clade with arthropods, suggesting that *dsx* emerged after the divergence of
359 Tardigrada. We were unable to detect two copies of the 3090/3093 complex in several other
360 Macrobiotidae species. A direct comparison between *PmDmrt3090* and *PmDmrt3093* amino
361 acid sequences indicated that the first 30–180 aa sequences were extremely similar, but the
362 intron nucleotide sequences were completely different. Furthermore, multiple nanopore reads
363 spanned the entire length of each gene. Together, we suggest that the two copies were not
364 the result of misassembly of these loci. The lack of two copies in other Macrobiotidae species
365 may be the result of misassembly in their genomes; the analyzed genomes are based on
366 Illumina short reads, and the extremely similar 30–180 aa (corresponding to approximately
367 450 bp) may have resulted in a misassembly. We also noted that no ONT reads spanned both
368 *PmDmrt3090* and *PmDmrt3093*. However, the 3090/3093 complex region spanned for more
369 than 30 kbp and the N50 length of the ONT data was approximately 17 kbp. It is possible that
370 there are not ONT reads spanning the entire region. While reassembly of the ONT reads using
371 more recent assembly methods produced a more contiguous assembly (NextDenovo +
372 NextPolish; **Supplementary Table S5**), these two genes were predicted to be two separate
373 genes.

374 Based on these annotations, we identified *PmDmrt3090*, *PmDmrt3093*, and
375 *PmDmrt93B* to be significantly expressed in males; thus, all three induced copies belong to
376 the Dmrt93B clade (**Figure 3B**). To evaluate the expression of *DMRT* orthologs in other
377 tardigrades, we utilized our previously reported single specimen RNA-Seq data of the
378 embryonic and juvenile life stages of the parthenogenetic tardigrades *H. exemplaris* and *R. varieornatus*. Only females have been observed in both species, suggesting the lack of
379 masculinization in these species. All three *Dmrt11E*, *Dmrt93B*, and *Dmrt99B* orthologs in *H. exemplaris* and *R. varieornatus* (RvDmrt11E: g5527, RvDmrt93B: g9000, RvDmrt99B: g7078;
380 HeDmrt11E: BV898_08851, HeDmrt93B: BV898_13063, HeDmrt99B: BV898_01934.) were
381 expressed during embryonic stages (**Supplementary Figure S3**,), where *Dmrt11E* preceded
382 *Dmrt99B* in both species, and the three *DMRT* genes were expressed at lower levels in
383 juvenile and adult stages.

384 We further investigated the functionality of the *DMRT* orthologs by functional domain
385 detection (**Figure 3C**). While all five *DMRT* copies harbored the DM domain at the N-terminus,
386 they did not contain the dimerization domain known to exist in *dsx* proteins required for DNA
387 binding and sex-specific splicing variants. While we detected the DM domain in all five
388 orthologs, we did not find a ubiquitin bidding-related CUE-DMA domain only in *PmDmrt3093*
389 but not in *PmDmrt3090* by sequence-based domain search analysis. Multiple alignment of the
390 five orthologs and the *D. melanogaster* DMRT sequence suggested the conservation of
391 several residues within the region corresponding to the CUE-DMA domain, implying the
392 conservation of this domain. By modeling the protein structure with AlphaFold2 and aligning
393 the *D. melanogaster* Dmrt93B structure, we observed that the C-terminal region showed
394 structural homology with CUE-DMA domain-like helices (RMSD: 0.276–0.574,
395 **Supplementary Figure S4**), suggesting that *PmDmrt3090* may also harbor the CUE-DMA
396 domain. These data and the lack of the *dsx* subfamily suggests that the sex determination
397 cascade may differ from that of the *dsx* paradigm in insects, by utilizing the 3090/3093 complex
398 paralogs(76).

399
400
401
402 *Contradicting data between whole genome sequencing and PCR based genotyping*
403 Based on our observations of several male-biased but not male-specific genomic regions, we
404 hypothesized that these regions were not sex-specific chromosome structures. To evaluate
405 this, we sequenced the genomes of both sexes at low coverage. We produced approximately

406 50–60M reads, corresponding to roughly 20–25x coverage (**Supplementary Table S1**).
407 Approximately 80–90% of the reads were mapped to the genome, resulting in roughly 15–20x
408 coverage.

409 We first calculated the coverage of the 10 kbp bins genome wide. Initial PCA of the
410 coverage profiles did not show a clear difference between males and females (**Figure 4A**).
411 We identified several bins with half of the average genome-wide coverage that were not found
412 in females (**Figure 4B**). These characteristics are similar to those of heterozygotic
413 chromosomes, particularly the X chromosome of males in the XY sex determination system.
414 All of the bins that were identified as male-biased by the transcriptome analysis had genome-
415 wide average coverage, suggesting that all regions exist in females (**Figure 4C**). We also
416 evaluated whether we could detect male or female specific regions through *k*-mer based
417 analysis using the YGS method. Scaffolds that have a high number of “percent validated
418 single-copy unmatched *k*-mers” (P_VSC_UK) indicate sex specificity. Although no scaffolds
419 had a P_VSC_UK ratio of 100, we detected five scaffolds fitting the XY sex chromosome
420 structure rather than the ZW scheme with an arbitrary threshold of P_VSC_UK > 80 (**Figure**
421 **4D, E, F**). Similar profiles were observed by SPADES reassembly using all gDNA-Seq data
422 from our and previous studies (**Figure 4G, H, I**). We also noticed that many scaffolds from
423 both assemblies had P_VSC_UK values of approximately 50% in both female-to-male (XY)
424 and male-to-female (ZW) analyses (**Figure 4F, I**), which indicates that the corresponding
425 region is both male- and female-specific.

426 To evaluate the male specificity observed in the *in-silico* analysis, we designed several
427 primers to amplify regions in the scaffold Parri_scaffold0000295 that were identified as male-
428 specific (**Figure 4J, Supplementary Table S1**). Evaluating individual genomic coverage
429 indicated that in this scaffold, a single male sample had near-zero coverage, in contradiction
430 with the other two male samples (**Figure 4J**). However, PCR genotyping indicated the
431 existence of this region in females as well, which contradicted the results obtained from the
432 *in-silico* analysis (**Figure 4K**). Thus, we concluded that we could not derive sex chromosomes
433 or male-specific regions, and the male-specific regions detected above may have been an
434 artifact of differences between individuals. We also evaluated the male-specificity of the
435 paralogous DMRT loci on Parri_scaffold0000005, where coverage analysis suggested that
436 this region was not male-specific (**Figure 4L**).

437 We noticed relatively low level of RNA-Seq mappability to the reported genome (~90%),
438 which lead us to re-evaluate the current genome. Completeness analysis indicated 72.9%
439 completeness which the most recent version of BUSCO. Furthermore, we observed several
440 scaffolds with inconsistent coverage distribution in our sex-separated data, but not in Hara *et*
441 *al.* Illumina data. Therefore, we tested if recent assemblers would result in a more contiguous
442 and complete assembly, compared to the Canu assembled current genome. However, we
443 were not able to obtain a more complete genome, with the maximum being a 0.4% increase
444 for the assembly derived with NextDenovo + NextPolish (**Supplementary Table S5**). Other
445 statistics had a large increase; N50 from 1.0M to 1.3M, longest scaffold length 4.48M to 9.23M.
446 For comparison, we evaluated completeness of other high-quality tardigrades genomes,
447 namely *R. varieornatus* and *H. exemplaris*. Both BUSCO and compleasm resulted in
448 completeness values similar to *P. metropolitana*; *R. varieornatus* (C:74.6%) and *H.*
449 *exemplaris* (C:73.3%). These data suggests either tardigrade genomes may lack some
450 BUSCO genes, or the gene detection algorithm of the current BUSCO software may not fit the
451 genome of tardigrades, resulting in lower BUSCO scores. Therefore, we used the current
452 genome for *P. metropolitana* for later analysis.

453

454

455 *Sex-bias in anhydrobiosis related genes*

456 A major feature of tardigrades is their ability to survive the extremities, a phenomenon known
457 as cryptobiosis (77). Tolerance to near-complete desiccation is known as anhydrobiosis (78).
458 Several tardigrade-specific gene families, *i.e.* cytosolic-abundant heat soluble (CAHS) and
459 Secretory Abundant Heat Soluble (SAHS), have been implicated in anhydrobiosis protection
460 (20). A recent study observed tissue-specific expression of anhydrobiosis genes (79). Both
461 males and females are capable of anhydrobiosis, in which protective genes are expressed in
462 sex-specific organs, such as the testes or ovaries. Therefore, we hypothesized the presence
463 of sex-biased anhydrobiosis genes.

464 We used our previously reported RNA-Seq data for the hydrated active state and the
465 tun state, desiccated for two days, to identify genes induced during anhydrobiosis. We
466 detected approximately 4,500 differentially expressed transcripts, slightly fewer than in our
467 previous report, possibly due to the different methods used for differential expression analysis.
468 We then compared the expression profiles of anhydrobiosis and between sexes and observed
469 approximately 1,800 transcripts that were differentially expressed under both conditions
470 (**Figure 5A**). As hypothesized, we observed that three CAHS and one SAHS ortholog were
471 sex-biased, possibly implying tissue specificity (**Figure 5A**). Interestingly, all three CAHS
472 orthologs induced in males were the only three among the 13 CAHS orthologs that were not
473 differentially expressed during anhydrobiosis (**Supplementary Table S6**). Phylogenetic
474 analysis indicated that these CAHS orthologs were CAHS1 (PARRI_0016931), putative
475 CAHS5 (PARRI_0006576), and CAHS5 (PARRI_0002229) orthologs, following the proposed
476 naming scheme of Fleming *et al.* (53). In contrast, the SAHS ortholog, detected as differentially
477 expressed, was induced in the females. We also found six orthologs of tardigrade-specific
478 manganese-dependent peroxidase (32) to be highly expressed in males but not in females.
479 Only four genes were found to be induced during anhydrobiosis.

480 Based on the identification of the *H. exemplaris* ortholog of the *Damage suppressor*
481 (*Dsup*, BV898_01301) gene, we also searched for a *P. metropolitana* *Dsup* ortholog through
482 gene synteny with *H. exemplaris* (30, 80). We identified PARRI_0005796 as a *Dsup* ortholog
483 candidate (**Figure 5B**). This protein was annotated as “transcriptional regulatory protein AlgP”
484 in NCBI; however, (1) no functional domains were identified by InterProScan, (2) no BLAST
485 hits to known proteins (E-value < 1e-5), (3) highly disordered throughout the whole protein
486 (**Figure 5C**), and (4) a predicted nuclear localization signal (DeepLoc2, 0.7715 probability),
487 suggesting that this protein may be a *Dsup* ortholog. The AlphaFold2 structure prediction also
488 implied a lack of globular structure (**Figure 5D**). *PmDsup* was significantly upregulated in
489 females (TPM, female: 280, male: 82, FDR = 1.31 x 10⁻⁶, **Figure 5E**), implying the importance
490 of this gene in females.

491 **Discussion**

492 In this study, we focused on gonochoristic tardigrade *P. metropolitana* to identify
493 possible factors that affect sexual dimorphism. Cytological studies have not identified definitive
494 sex-linked chromosomes in tardigrades (81, 82) and multiple reports have observed biased
495 sex ratios in tardigrades (21, 83-86). These observations suggests that the sex determination
496 of tardigrades may not depend on the random distribution of sex chromosomes (or the
497 existence of a sex chromosome). Even in the absence of sex chromosomes, as hypothesized
498 in tardigrades, genomic loci affecting sexual dimorphism would exist, which may be detected
499 by comprehensive omics methods.

500 Therefore, we aimed to characterize the molecular basis of sexual dimorphism in
501 tardigrades by comparing the transcriptome and the genome between *P. metropolitanus* sex.
502 We hypothesized that sex-linked genes may be related to sex determination or dimorphism,
503 and if focused on a small genomic region, may imply a sex-determining region, such as the M
504 factor found in many eukaryotes (87). Transcriptome analysis of both sexes indicated a large
505 number of sex-biased genes, despite the small morphological sex-linked differences in
506 Macrobiotidae, with the exception of their germline (18). We observed upregulation of genes
507 related to spermatogenesis in males, which reflects the activation of spermatogenesis, and
508 large amounts of sperm are continuously produced in adult males (21, 84). In contrast to that
509 in males, DNA replication- and meiosis-related genes were highly expressed in females.
510 Females undergo DNA replication not only to produce oocytes through meiosis (21) but also
511 to shed the cuticular shell during the last stage of the reproductive process (simplex stage)
512 (21). Mitotic cells are generally observed in the post-simplex stage (88). Together, the
513 regulation of DNA replication and meiosis is consistent with the production of mitotic cells and
514 extensive replication of the epidermal layer (88, 89).

515 We identified a small gene set highly biased toward males but missing in females,
516 which we hypothesized may be related to sexual dimorphism. Genome loci enrichment
517 analysis of this gene set identified approximately 325 bins spanning 29 scaffolds as male-
518 biased. This region was enriched in sperm and ion transport-related genes, which is consistent
519 with the production of sperm at the adult male life stage. To evaluate sex specificity, we
520 produced low-coverage genome sequencing data to evaluate sex-specific regions and
521 observed that most regions were present in the genomes of both sexes. Genome-wide
522 analysis revealed several male-specific regions; however, PCR evaluation produced
523 contradictory results. We used a laboratory-cultured TYO strain of *P. metropolitanus* for
524 genome and transcriptome sequencing, therefore, we anticipated low levels of heterozygosity
525 within the culture population. However, the results obtained at this stage implied that the
526 genomic differences we detected as sex-linked can be explained as individual variability.
527 Additionally, during the YGS analysis, we observed a high number of contigs that showed
528 approximately 50% P_VSC_UK, suggesting that there are a large number of contigs that
529 contain sequences specific for both sexes, which we hypothesize that individual variability may
530 have caused this abnormal distribution. Together, the lack of sex specific regions may imply
531 that the difference between sexes may be due to epigenetic modifications.

532 One of the key findings of this study is the accumulation of knowledge for sex
533 determination cascade-related genes, particularly the *DMRT* gene family. The *DMRT* family
534 is a highly conserved transcription factor that plays an important role in sex differentiation in
535 many animals and has been studied extensively in insects (7). Several studies have identified
536 *DMRT* orthologs to be located on the sex chromosomes and regulate the growth of sex-
537 specific tissues (8, 9). The evolutionary background of this gene family has been extensively
538 analyzed in other lineages (7); however, such analysis has been overlooked. In our analysis,
539 we identified a Macrobiotidae-specific *DMRT93B* subfamily located in a male-biased region,
540 which we termed the 3090/3093 complex in addition to the *Dmrt99E*, *Dmrt93B*, and *Drmt11E*
541 subfamilies. Orthologs of this subfamily have been found in Macrobiotidae and several
542 Echiniscidae. While conservation in Echiniscidae complicates the evolution of this subfamily,
543 the identification of orthologs in various Macrobiotidae species suggests that this is an
544 important *DMRT* subfamily. In fact, the two 3090/3093 complex paralogs were expressed
545 higher in males, similar to *Daphnia* *Dsx1* (11, 12), suggesting that these subfamily orthologs
546 may inhibit feminization or progress musculation. Furthermore, we did not find any orthologs
547 of the *dsx* subfamily in any of the tardigrade genomes analyzed, and did not identify splicing

548 variants in any of the *P. metropolitanus* *DMRT* orthologs, suggesting a sex differentiation
549 cascade different from those that rely on sex-specific *dsx* splicing variants like those observed
550 in insects.

551 Tardigrades are renowned for their ability to tolerate extreme stress (20), and *P. metropolitanus* also shows a high tolerance to desiccation stress (22). Interestingly, we
552 observed sex-biased expression of several anhydrobiosis genes, hypothesized to play
553 protective roles during anhydrobiosis (29-32, 90). For instance, CAHS genes are tardigrade-
554 specific proteins that form gel filaments that possibly protect cells (91-93). Recent studies have
555 observed tissue/organelle specificity for these proteins, which further implies the existence of
556 orthologs with sex-specific expression (79). Therefore, we hypothesized that orthologs of such
557 genes may exhibit sex-specific expression to protect sex-specific organs. Indeed, we identified
558 CAHS, SAHS, and AMNP orthologs with sex-specific expression. Two of the three male-
559 induced CAHS orthologs were highly expressed but were not induced between active and
560 anhydrobiotic conditions. This may imply that these CAHS orthologs participate in the
561 protection of male-specific tissues or sperm. Furthermore, we identified a *P. metropolitanus*
562 *Dsup* ortholog that is highly expressed in females. Coupled with the observation of the
563 enrichment of meiosis-related genes from transcriptome analysis, we suggest that *Dsup* may
564 actively function to accommodate the production of oocytes/oogenesis rather than
565 spermatozoa/spermatogenesis. In contrast, AMNP, a tardigrade-specific peroxidase, was
566 highly expressed in males, suggesting enhanced protection against oxidative stress. Similar
567 observations have been made in the sperm of many animals (94, 95). Together, the sex-
568 biased expression of anhydrobiosis genes may provide protection for sex-specific tissues.
569

570 **Conclusions**

571 In this study, we identified male-biased regions that may harbor potential candidates
572 that regulate sexual dimorphism in the gonochoristic tardigrade *P. metropolitanus*.
573 Simultaneously, these data denied the sex-chromosome-based sex determination scheme.
574 We also provide evidence for a new *DMRT* subfamily that may contribute to sex differentiation
575 in this family. The 3090/3093 complex *DMRT* paralogs may be initial candidates for disruption
576 or gene editing for evaluation their relationships with sex determination (79, 96-98). Future
577 studies utilizing high-quality genomes and careful physiological experiments are required to
578 reveal sex determination cues not only in this species but also in other tardigrades.

579 **Declarations**

580 *Ethics approval and consent to participate*

581 Tardigrades (invertebrate) were used for this study. Any vertebrates, human, and their
582 tissues were not applicable. The laws and regulations set forth by the Ethics Committees of
583 Keio University and the University of Tokyo were followed.

584

585 *Consent for publication*

586 Not applicable.

587

588 *Availability of data and materials*

589 The raw reads for genome DNA-Seq were submitted to NCBI SRA under Bioproject
590 PRJNA1063779. The raw reads and processed expression profiles were uploaded to NCBI

591 GEO under the accession ID GSE253242. Other datasets analyzed in this study have been
592 uploaded to figshare (10.6084/m9.figshare.25097525).

593

594 *Competing interests*

595 The authors declare that they have no competing interests.

596

597 *Funding*

598 Grant-in-aid KAKENHI (JP18J21345) to KS, (21H05279) to KA, grant for Research Project
599 from Research and Education Center for Natural Science, Keio University for MM and KS.
600 Joint Research of the 13 Exploratory Research Centers on Life and Living Systems (ExCELLS
601 program 19-501, 22EXC601) to KA.

602

603 *Author contributions*

604 KS, KH, and MM prepared specimens. KA performed the genome sequencing. KS, TK, and
605 MM performed RNA-seq. KS and YY analyzed the data. KS and YY drafted the manuscript.
606 AK, TK, and MM improved the manuscript. KS, YY, AK, TK, and MM designed this study.

607

608 *Acknowledgements*

609 We thank Yuki Takai and Naoko Ishii (Keio University) for experimental support. For giving us
610 many helpful comments, we also thank Dr. Hajime Watanabe (University of Osaka), Dr.
611 Yasuhiko Kato (University of Osaka), Dr. Atsushi C. Suzuki (Keio University), Yu Saito (Keio
612 University), and Ryo Ogushi (Keio University). RNA-seq was performed by Chemical Dojin Co.
613 Ltd. We also thank the members of the Japanese Society for Tardigradology for fruitful
614 discussions.

615

616 **References**

- 617 1. Hamilton WD, Axelrod R, Tanese R. Sexual reproduction as an adaptation to resist
618 parasites (a review). *Proc Natl Acad Sci U S A*. 1990;87(9):3566-73.
- 619 2. Crow JF. Advantages of sexual reproduction. *Dev Genet*. 1994;15(3):205-13.
- 620 3. Hopkins BR, Kopp A. Evolution of sexual development and sexual dimorphism in
621 insects. *Curr Opin Genet Dev*. 2021;69:129-39.
- 622 4. Marin I, Baker BS. The evolutionary dynamics of sex determination. *Science*.
623 1998;281(5385):1990-4.
- 624 5. Zarkower D. Establishing sexual dimorphism: conservation amidst diversity? *Nat Rev
625 Genet*. 2001;2(3):175-85.
- 626 6. Haag ES, Doty AV. Sex determination across evolution: connecting the dots. *PLoS
627 Biol*. 2005;3(1):e21.
- 628 7. Matson CK, Zarkower D. Sex and the singular DM domain: insights into sexual
629 regulation, evolution and plasticity. *Nat Rev Genet*. 2012;13(3):163-74.
- 630 8. Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, et al. A
631 W-linked DM-domain gene, DM-W, participates in primary ovary development in *Xenopus
632 laevis*. *Proc Natl Acad Sci U S A*. 2008;105(7):2469-74.
- 633 9. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, et al. DMY
634 is a Y-specific DM-domain gene required for male development in the medaka fish. *Nature*.
635 2002;417(6888):559-63.
- 636 10. Kleiven OT, Larsson P, Hobæk A. Sexual Reproduction in *Daphnia magna* Requires
637 Three Stimuli. *Oikos*. 1992;65(2):197-206.

638 11. Kato Y, Kobayashi K, Watanabe H, Iguchi T. Environmental sex determination in the
639 branchiopod crustacean *Daphnia magna*: deep conservation of a Doublesex gene in the sex-
640 determining pathway. *PLoS Genet.* 2011;7(3):e1001345.

641 12. Kato Y, Perez CAG, Mohamad Ishak NS, Nong QD, Sudo Y, Matsuura T, et al. A 5'
642 UTR-Overlapping LncRNA Activates the Male-Determining Gene *doublesex1* in the
643 Crustacean *Daphnia magna*. *Curr Biol.* 2018;28(11):1811-7 e4.

644 13. Actual checklist of Tardigrada species [Internet]. 2023 [cited Jan 24th, 2024]. Available
645 from: <https://iris.unimore.it/retrieve/bf8e14a4-625f-4cdd-8100-347e5cbc5f63/Actual%20checklist%20of%20Tardigrada%2042th%20Edition%2009-01-23.pdf>.

646 14. Rahm PG. A NEW ORDOR OF TARDIGRADES FROM THE HOT SPRINGS
647 OF JAPAN(FURU-YUSECTION, UNZEN. *Zool Sci.* 1937;16(4):345-52.

648 15. Grothman GT, Johansson C, Chilton G, Kagoshima H, Tsujimoto M, Suzuki AC. Gilbert
649 Rahm and the Status of Mesotardigrada Rahm, 1937. *Zoolog Sci.* 2017;34(1):5-10.

650 16. Arakawa K. Examples of Extreme Survival: Tardigrade Genomics and Molecular
651 Anhydrobiology. *Annu Rev Anim Biosci.* 2022;10:17-37.

652 17. Altiero T, Suzuki AC, Rebecchi L. Reproduction, Development and Life Cycles. Water
653 Bears: The Biology of Tardigrades. *Zoological Monographs.* 2: Zoological Monographs; 2018.
654 p. 211-47.

655 18. Nelson DR, Guidetti R, Rebecchi L. Phylum Tardigrada. Ecology and General Biology,
656 Vol I: Thorp and Covich's Freshwater Invertebrates, 4th Edition. 2015:347-80.

657 19. Sugiura K, Matsumoto M. Sexual reproductive behaviours of tardigrades: a review.
658 *Invertebr Reprod Dev.* 2021;65(4):279-87.

659 20. Yoshida Y, Tanaka S. Deciphering the Biological Enigma-Genomic Evolution
660 Underlying Anhydrobiosis in the Phylum Tardigrada and the Chironomid *Polypedilum*
661 *vanderplanki*. *Insects.* 2022;13(6).

662 21. Sugiura K, Minato H, Suzuki AC, Arakawa K, Kunieda T, Matsumoto M. Comparison
663 of Sexual Reproductive Behaviors in Two Species of Macrobiotidae (Tardigrada:
664 Eutardigrada). *Zoolog Sci.* 2019;36(2):120-7.

665 22. Hara Y, Shibahara R, Kondo K, Abe W, Kunieda T. Parallel evolution of trehalose
666 production machinery in anhydrobiotic animals via recurrent gene loss and horizontal transfer.
667 *Open Biol.* 2021;11(7):200413.

668 23. Sugiura K, Matsumoto M, Kunieda T. Description of a model tardigrade
669 *Paramacrobiotus metropolitanus* sp. nov. (Eutardigrada) from Japan with a summary of its life
670 history, reproduction and genomics. *Zootaxa.* 2022;5134(1):92-112.

671 24. Sugiura K, Shiba K, Inaba K, Matsumoto M. Morphological differences in tardigrade
672 spermatozoa induce variation in gamete motility. *BMC Zool.* 2022;7(1):8.

673 25. Arakawa K, Yoshida Y, Tomita M. Genome sequencing of a single tardigrade
674 *Hypsibius dujardini* individual. *Sci Data.* 2016;3:160063.

675 26. Wang J, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu S, et al. The
676 conserved domain database in 2023. *Nucleic Acids Res.* 2023;51(D1):D384-D8.

677 27. Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc
678 2.0: multi-label subcellular localization prediction using protein language models. *Nucleic*
679 *Acids Res.* 2022;50(W1):W228-W34.

680 28. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5:
681 genome-scale protein function classification. *Bioinformatics.* 2014;30(9):1236-40.

682 29. Yamaguchi A, Tanaka S, Yamaguchi S, Kuwahara H, Takamura C, Imajoh-Ohmi S, et
683 al. Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic
684 tardigrade. *PLoS One.* 2012;7(8):e44209.

685 30. Hashimoto T, Horikawa DD, Saito Y, Kuwahara H, Kozuka-Hata H, Shin IT, et al.
686 Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by
687 tardigrade-unique protein. *Nat Commun.* 2016;7:12808.

688 31. Yoshida Y, Koutsovoulos G, Laetsch DR, Stevens L, Kumar S, Horikawa DD, et al.
689 Comparative genomics of the tardigrades *Hypsibius dujardini* and *Ramazzottius varieornatus*.
690 *PLoS Biol.* 2017;15(7):e2002266.

691

692

693 32. Yoshida Y, Satoh T, Ota C, Tanaka S, Horikawa DD, Tomita M, et al. Time-series
694 transcriptomic screening of factors contributing to the cross-tolerance to UV radiation and
695 anhydrobiosis in tardigrades. *BMC Genomics*. 2022;23(1):405.

696 33. Pertea G, Pertea M. GFF Utilities: GffRead and GffCompare. *F1000Res*. 2020;9.

697 34. Mirdita M, Schütze K, Moriaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold:
698 making protein folding accessible to all. *Nature Methods*. 2022;19(6):679-+.

699 35. Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, Ferrin TE.
700 UCSF ChimeraX: Tools for structure building and analysis. *Protein Sci*. 2023;32(11):e4792.

701 36. Hoencamp C, Dudchenko O, Elbatsh AMO, Brahmachari S, Raaijmakers JA, van
702 Schaik T, et al. 3D genomics across the tree of life reveals condensin II as a determinant of
703 architecture type. *Science*. 2021;372(6545):984-9.

704 37. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or
705 without a reference genome. *BMC Bioinformatics*. 2011;12:323.

706 38. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
707 RNA-seq data with DESeq2. *Genome Biol*. 2014;15(12):550.

708 39. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length
709 transcriptome assembly from RNA-Seq data without a reference genome. *Nat Biotechnol*.
710 2011;29(7):644-52.

711 40. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association.
712 *Bioinformatics*. 2007;23(2):257-8.

713 41. Morgan M, Falcon S, Gentleman R. GSEABase: Gene set enrichment data structures
714 and methods 2023 [Available from: <https://bioconductor.org/packages/GSEABase>].

715 42. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
716 features. *Bioinformatics*. 2010;26(6):841-2.

717 43. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie
718 enables improved reconstruction of a transcriptome from RNA-seq reads. *Nat Biotechnol*.
719 2015;33(3):290-5.

720 44. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory
721 requirements. *Nat Methods*. 2015;12(4):357-60.

722 45. Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Jr., Hannick LI, et al.
723 Improving the *Arabidopsis* genome annotation using maximal transcript alignment assemblies.
724 *Nucleic Acids Res*. 2003;31(19):5654-66.

725 46. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic
726 gene structure annotation using EVidenceModeler and the Program to Assemble Spliced
727 Alignments. *Genome Biol*. 2008;9(1):R7.

728 47. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
729 Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25(16):2078-9.

730 48. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped
731 BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic
732 Acids Res*. 1997;25(17):3389-402.

733 49. Toyota K, Kato Y, Sato M, Sugiura N, Miyagawa S, Miyakawa H, et al. Molecular
734 cloning of doublesex genes of four cladocera (water flea) species. *BMC Genomics*.
735 2013;14:239.

736 50. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
737 improvements in performance and usability. *Mol Biol Evol*. 2013;30(4):772-80.

738 51. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A,
739 Lanfear R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the
740 Genomic Era. *Mol Biol Evol*. 2020;37(5):1530-4.

741 52. Yoshida Y, Sugiura K, Tomita M, Matsumoto M, Arakawa K. Comparison of the
742 transcriptomes of two tardigrades with different hatching coordination. *BMC Dev Biol*.
743 2019;19(1):24.

744 53. Fleming JF, Pisani D, Arakawa K. The Evolution of Temperature and Desiccation-
745 Related Protein Families in Tardigrada Reveals a Complex Acquisition of Extremotolerance.
746 *Genome Biol Evol*. 2024;16(1).

747 54. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable
748 and accurate long-read assembly via adaptive k-mer weighting and repeat separation.
749 *Genome Res.* 2017;27(5):722-36.

750 55. Hu J, Wang Z, Sun Z, Hu B, Ayoola AO, Liang F, et al. An efficient error correction and
751 accurate assembly tool for noisy long reads. *bioRxiv*. 2023;2023.03.09.531669.

752 56. Shafin K, Pesout T, Lorig-Roach R, Haukness M, Olsen HE, Bosworth C, et al.
753 Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven
754 human genomes. *Nat Biotechnol.* 2020;38(9):1044-53.

755 57. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using
756 repeat graphs. *Nat Biotechnol.* 2019;37(5):540-6.

757 58. Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. *Nat Methods*.
758 2020;17(2):155-8.

759 59. Wong J, Coombe L, Nikolic V, Zhang E, Nip KM, Sidhu P, et al. Linear time complexity
760 de novo long read genome assembly with GoldRush. *Nat Commun.* 2023;14(1):2906.

761 60. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes:
762 a new genome assembly algorithm and its applications to single-cell sequencing. *J Comput
763 Biol.* 2012;19(5):455-77.

764 61. Nie F, Huang N, Zhang J, Ni P, Wang Z, Xiao C, et al. de novo diploid genome
765 assembly using long noisy reads via haplotype-aware error correction and inconsistent overlap
766 identification. *bioRxiv*. 2023;2022.09.25.509436;.

767 62. Vaser R, Sikic M. Time- and memory-efficient genome assembly with Raven. *Nat
768 Comput Sci.* 2021;1(5):332-6.

769 63. Hu J, Fan J, Sun Z, Liu S. NextPolish: a fast and efficient genome polishing tool for
770 long-read assembly. *Bioinformatics*. 2020;36(7):2253-5.

771 64. Huang N, Li H. compleasm: a faster and more accurate reimplementation of BUSCO.
772 *Bioinformatics*. 2023;39(10).

773 65. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO:
774 assessing genome assembly and annotation completeness with single-copy orthologs.
775 *Bioinformatics*. 2015;31(19):3210-2.

776 66. Vasimuddin M, Misra S, Li H, Aluru S. Efficient Architecture-Aware Acceleration of
777 BWA-MEM for Multicore Systems. 2019 IEEE International Parallel and Distributed
778 Processing Symposium (IPDPS)2019. p. 314-24.

779 67. Carvalho AB, Clark AG. Efficient identification of Y chromosome sequences in the
780 human and *Drosophila* genomes. *Genome Res.* 2013;23(11):1894-907.

781 68. Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of
782 occurrences of k-mers. *Bioinformatics*. 2011;27(6):764-70.

783 69. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. Synteny and collinearity
784 in plant genomes. *Science*. 2008;320(5875):486-8.

785 70. Jones DT, Cozzetto D. DISOPRED3: precise disordered region predictions with
786 annotated protein-binding activity. *Bioinformatics*. 2015;31(6):857-63.

787 71. Erdos G, Pajkos M, Dosztanyi Z. IUPred3: prediction of protein disorder enhanced with
788 unambiguous experimental annotation and visualization of evolutionary conservation. *Nucleic
789 Acids Res.* 2021;49(W1):W297-W303.

790 72. Ahringer J. Reverse genetics. *WormBook*. 2006.

791 73. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG.
792 Primer3--new capabilities and interfaces. *Nucleic Acids Res.* 2012;40(15):e115.

793 74. Sakai H, Oshima H, Yuri K, Gotoh H, Daimon T, Yaginuma T, et al. Dimorphic sperm
794 formation by Sex-lethal. *Proc Natl Acad Sci U S A.* 2019;116(21):10412-7.

795 75. Ammermann D. [The cytology of parthenogenesis in the tardigrade *Hypsibius
796 dujardini*]. *Chromosoma*. 1967;23(2):203-13.

797 76. Bayrer JR, Zhang W, Weiss MA. Dimerization of doublesex is mediated by a cryptic
798 ubiquitin-associated domain fold: implications for sex-specific gene regulation. *J Biol Chem*.
799 2005;280(38):32989-96.

800 77. Keilin D. The problem of anabiosis or latent life: history and current concept. *Proc R
801 Soc Ser B-Bio.* 1959;150(939):149-91.

802 78. Bertolani R, Guidetti R, Jönsson Kl, Altiero T, Boschini D, Rebecchi L. Experiences
803 with dormancy in tardigrades. *J Limnol.* 2004;63(Supplement 1):16-25.

804 79. Tanaka S, Aoki K, Arakawa K. In vivo expression vector derived from anhydrobiotic
805 tardigrade genome enables live imaging in Eutardigrada. *Proc Natl Acad Sci U S A.*
806 2023;120(5):e2216739120.

807 80. Chavez C, Cruz-Becerra G, Fei J, Kassavetis GA, Kadonaga JT. The tardigrade
808 damage suppressor protein binds to nucleosomes and protects DNA from hydroxyl radicals.
809 *Elife.* 2019;8.

810 81. Rebecchi L, Altiero T, Bertolani R. Banding techniques on tardigrade chromosomes:
811 the karyotype of *Macrobiotus richtersi* (Eutardigrada, Macrobiotidae). *Chromosome Res.*
812 2002;10(6):437-43.

813 82. Altiero T, Rebecchi L. First evidence of achiasmatic male meiosis in the water bears
814 *Richtersius coronifer* and *Macrobiotus richtersi* (Eutardigrada, Macrobiotidae). *Hereditas.*
815 2003;139(2):116-20.

816 83. Bertolani R, Rebecchi L, Beccaccioli G. Dispersal of *Ramazzottius* and Other
817 Tardigrades in Relation to Type of Reproduction. *Invertebr Reprod Dev.* 1990;18(3):153-7.

818 84. Rebecchi L, Bertolani R. Maturative pattern of ovary and testis in eutardigrades of
819 freshwater and terrestrial habitats. *Invertebr Reprod Dev.* 1994;26(2):107-17.

820 85. Rebecchi L, Rossi V, Altiero T, Bertolani R, Menozzi P. Reproductive modes and
821 genetic polymorphism in the tardigrade
(Eutardigrada, Macrobiotidae). *Invertebr Biol.* 2003;122(1):19-27.

822 86. Suzuki AC. Appearance of males in a thelytokous strain of *Milnesium* cf. *tardigradum*
823 (Tardigrada). *Zoolog Sci.* 2008;25(8):849-53.

825 87. Davey J. Mating pheromones of the fission yeast *Schizosaccharomyces pombe*:
826 purification and structural characterization of M-factor and isolation and analysis of two genes
827 encoding the pheromone. *EMBO J.* 1992;11(3):951-60.

828 88. Czernekova M, Jönsson Kl. Mitosis in storage cells of the eutardigrade. *Zool J Linn
829 Soc.* 2016;178(4):888-96.

830 89. Gross V, Bahrle R, Mayer G. Detection of cell proliferation in adults of the water bear
831 *Hypsibius dujardini* (Tardigrada) via incorporation of a thymidine analog. *Tissue Cell.*
832 2018;51:77-83.

833 90. Tanaka S, Tanaka J, Miwa Y, Horikawa DD, Katayama T, Arakawa K, et al. Novel
834 mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve
835 osmotic tolerance of human cells. *PLoS One.* 2015;10(2):e0118272.

836 91. Tanaka A, Nakano T, Watanabe K, Masuda K, Honda G, Kamata S, et al. Stress-
837 dependent cell stiffening by tardigrade tolerance proteins through reversible formation of
838 cytoskeleton-like filamentous network and gel-transition. *bioRxiv.* 2022.

839 92. Yagi-Utsumi M, Aoki K, Watanabe H, Song C, Nishimura S, Satoh T, et al. Desiccation-
840 induced fibrous condensation of CAHS protein from an anhydrobiotic tardigrade. *Sci Rep.*
841 2021;11(1):21328.

842 93. Malki A, Teulon JM, Camacho-Zarco AR, Chen SW, Adamski W, Maurin D, et al.
843 Intrinsically Disordered Tardigrade Proteins Self-Assemble into Fibrous Gels in Response to
844 Environmental Stress. *Angew Chem Int Ed Engl.* 2022;61(1):e202109961.

845 94. O'Flaherty C, Scarlata E. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION:
846 The protection of mammalian spermatozoa against oxidative stress. *Reproduction.*
847 2022;164(6):F67-F78.

848 95. Tsai Y, Lin YC, Lee YH. Octopamine-MAPK-SKN-1 signaling suppresses mating-
849 induced oxidative stress in *Caenorhabditis elegans* gonads to protect fertility. *iScience.*
850 2023;26(3):106162.

851 96. Tenlen JR, McCaskill S, Goldstein B. RNA interference can be used to disrupt gene
852 function in tardigrades. *Dev Genes Evol.* 2013;223(3):171-81.

853 97. Kumagai H, Kondo K, Kunieda T. Application of CRISPR/Cas9 system and the
854 preferred no-indel end-joining repair in tardigrades. *Biochem Biophys Res Commun.*
855 2022;623:196-201.

856 98. Kondo K, Tanaka A, Kunieda T. Single-step generation of homozygous knock-
857 out/knock-in individuals in an extremotolerant parthenogenetic tardigrade using DIPA-
858 CRISPR. bioRxiv. 2024;10.1101/2024.01.10.575120.
859

860 **Figure legends**

861 **Figure 1. Transcriptomic analysis of both sex**

862 [A] PCA analysis of expression profiles. [B] Scatterplot of the expression profiles. Red dots
863 indicate differentially expressed transcripts (FDR<0.05).

864

865 **Figure 2. Multiple male-biased regions within the *P. metropolitanus* genome and their
866 synteny**

867 [A] Genome-wide enrichment analysis of male- or female-biased transcripts. Scaffolds were
868 ordered by size and colored green and purple to visualize the scaffolds. The threshold of FDR
869 < 0.01 was used. [BC] Characteristics of scaffold Parri_scaffold0000005 harboring the *DMRT*
870 paralogs. [B] FDR values from the genomic loci enrichment analysis plotted against the bin's
871 position. Blue and red indicate the values for males and females, respectively. [C] Expression
872 fold-change $\log_2(\text{male} + 0.1 / \text{female} + 0.1)$ of the genes plotted against their location along
873 the scaffold. Colors indicate whether the gene was differentially expressed. [D] Macro-scale
874 synteny analysis to identify orthologous genomic loci in male-biased scaffolds. Gray lines
875 indicate syntenic blocks between *H. exemplaris* and *P. metropolitanus* scaffolds. The synteny
876 block highlighted in green indicates the location of *DMRT* paralog loci. The numbers on the
877 bar indicate the chromosome number or scaffold ID for each genome assembly. [E] Synteny
878 region of the *DMRT* paralog loci on *P. metropolitanus* scaffold Parri_scaffold0000005 and *H.*
879 *exemplaris* Chromosome 1.

880

881 **Figure 3. Phylogenetic analysis and the expression of *DMRT* orthologs**

882 [A] Phylogenetic analysis of *DMRT* orthologs detected in the tardigrade genomes. The *DMRT*
883 families were classified based on the orthologs of the model species. Bootstrap values of less
884 than 90% are shown on the branch. [B] Expression of *PmDmrt* orthologs. Triangle points
885 indicate differentially expressed genes and circles indicate non-significant changes. The gray
886 line indicates x=y. [C] Multiple alignments of DM and CUE-DMA domains. *Dm* indicates *D.*
887 *melanogaster*.

888

889 **Figure 4. *P. metropolitanus* lacks sex specific regions for both sex**

890 [A] PCA of genomic coverage profiles for male and female gDNA-Seq data. [B] Average
891 coverage for 10kbp bins, normalized by the median of all bins. The brown and red lines
892 indicate the whole-genome average and half-genome average for males and females,
893 respectively. The range between the 0x and 10x coverage ratio to the median is shown. [C]
894 Genome coverage of male-biased bins. [DEGH] YGS analysis for [DG] female-to-male (XY
895 system) and [EH] male-to-female (ZW system) based on the [DE] published *P. metropolitanus*
896 assembly and [GH] SPADES reassembly. The red line indicates a P-VSC-UK threshold of 80.
897 [F] Scatter plot for P-VSC-UK values for male-to-female and female-to-male analysis for the
898 [F] published genome and the [I] SPADES reassembly. Contigs shorter than 1,000 bp were
899 removed from the SPADES plot. [J] gDNA-Seq coverage for all samples and the location of
900 genotyping primers within contig Parri_scaffold0000295. Blue and red correspond to male and
901 female samples, respectively. [K] Electrophoresis of genotyping primers designed for male

902 specificity. Male specificity was not observed for any primer set. **[L]** gDNA-Seq coverage of
903 *PmDmrt3090/PmDmrt3093* harboring scaffold Parri_scaffold0000005 for all samples. Colors
904 indicate samples for each sex.

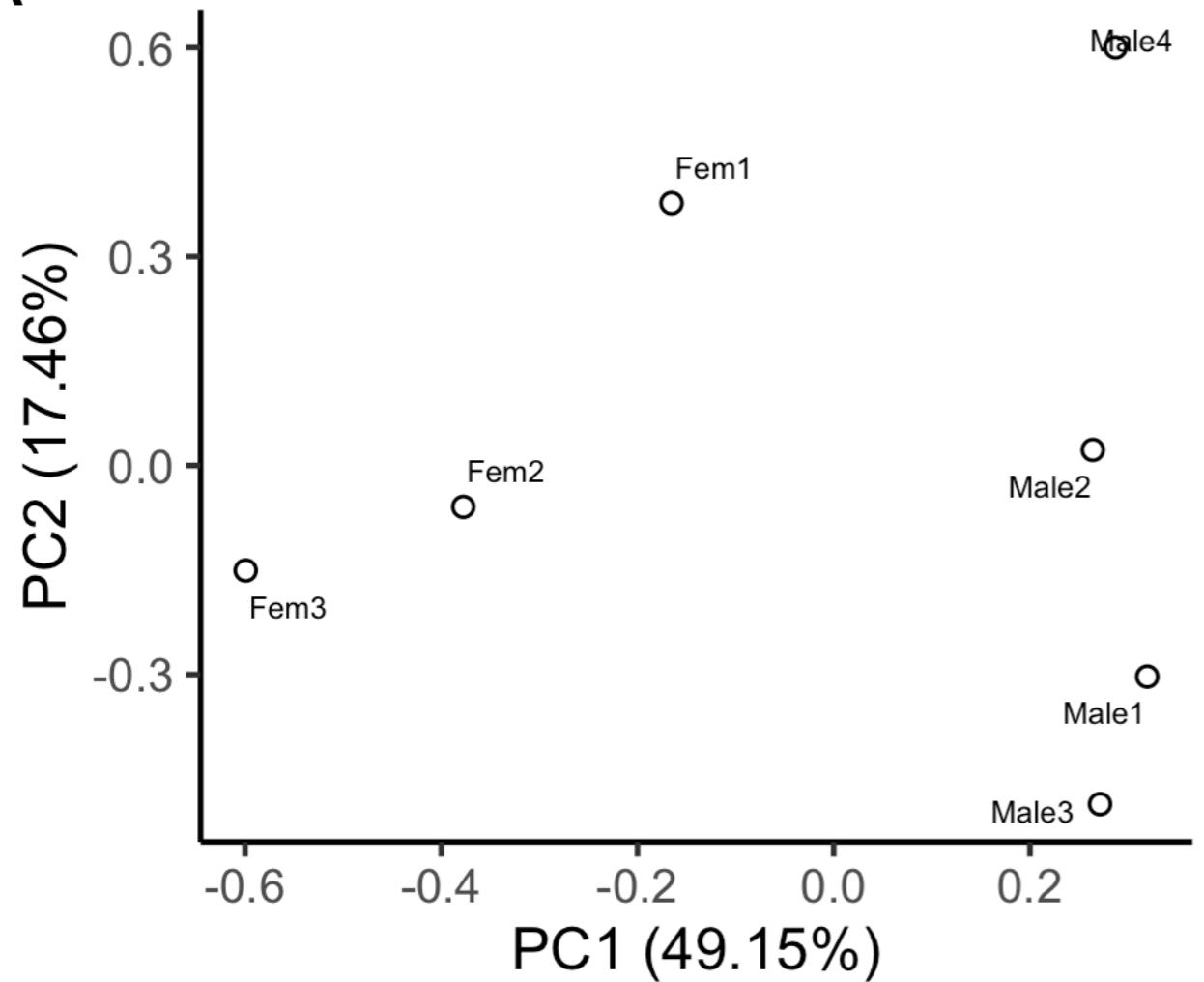
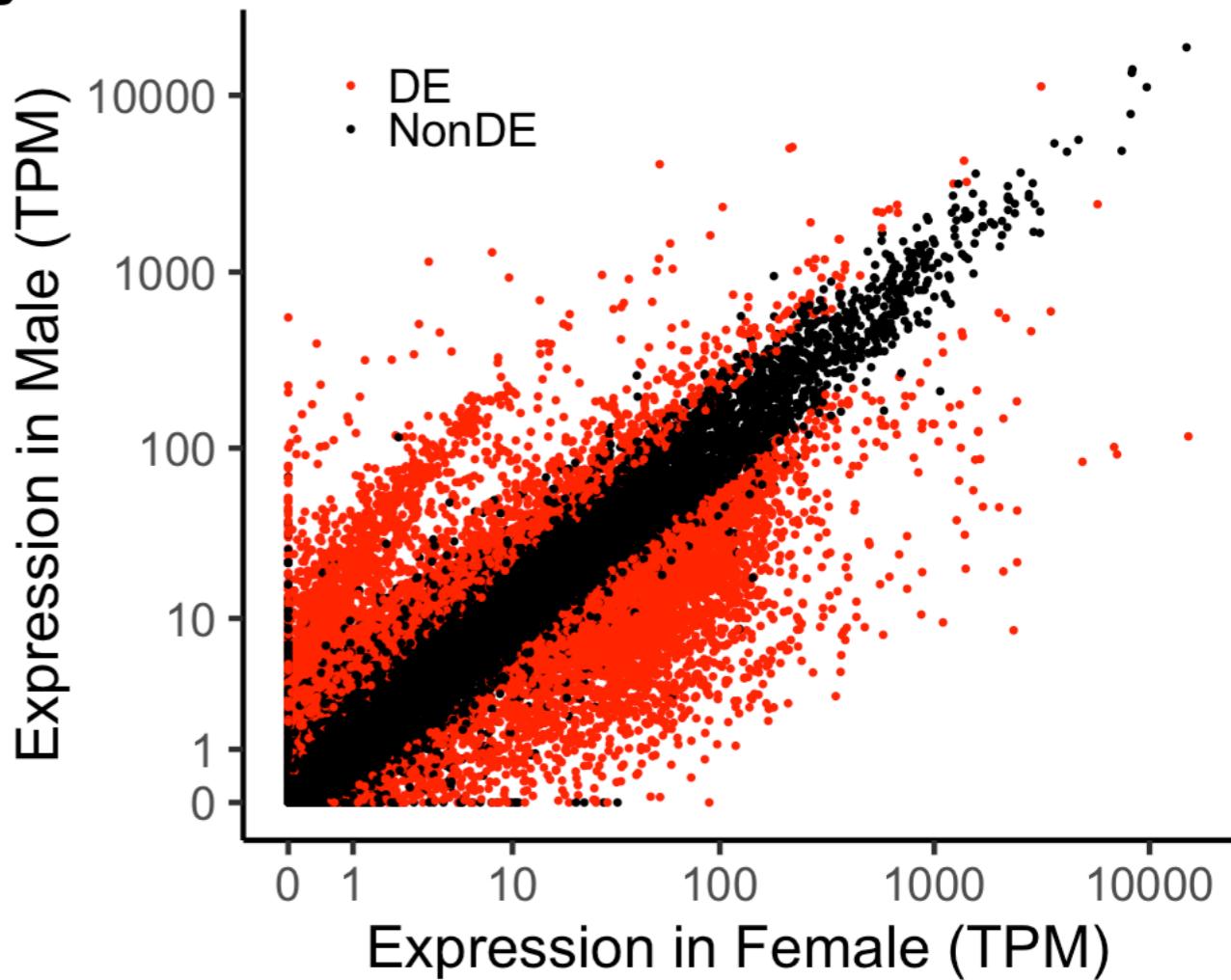
905
906 **Figure 5. Sexual bias in anhydrobiosis genes and identification of *PmDsup* ortholog**
907 **[A]** Comparison of gene expression profiles between the sexes during anhydrobiosis. Log2
908 (Tun +0.1) / (Active + 0.1) were plotted for the x-axis and for the y-axis log2 (Male + 0.1) /
909 (Female + 0.1). Red dots indicate transcripts detected as differentially expressed in both
910 comparisons and the number in each quadrant is indicated in blue text. **[B]** Synteny analysis
911 to identify orthologous genomic loci in *H. exemplaris* and *P. metropolitana*. **[C]** Disopred and
912 IUPRED3 scores **[D]** Protein structure predicted by ColabFold. The N-terminus to the C-
913 terminus shows gradient colors from blue to red. **[E]** Expression of *PmDsup* in both sexes.
914

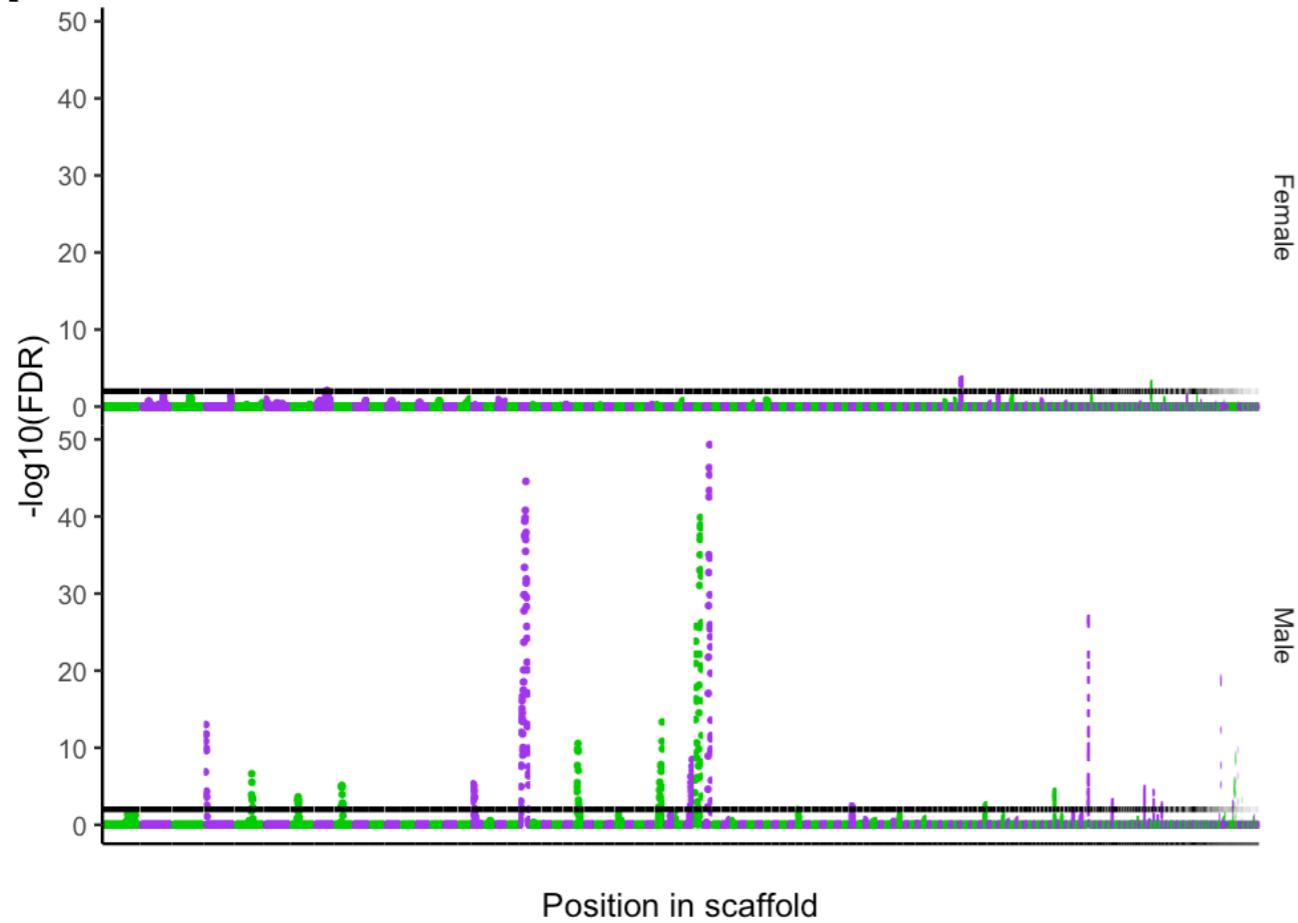
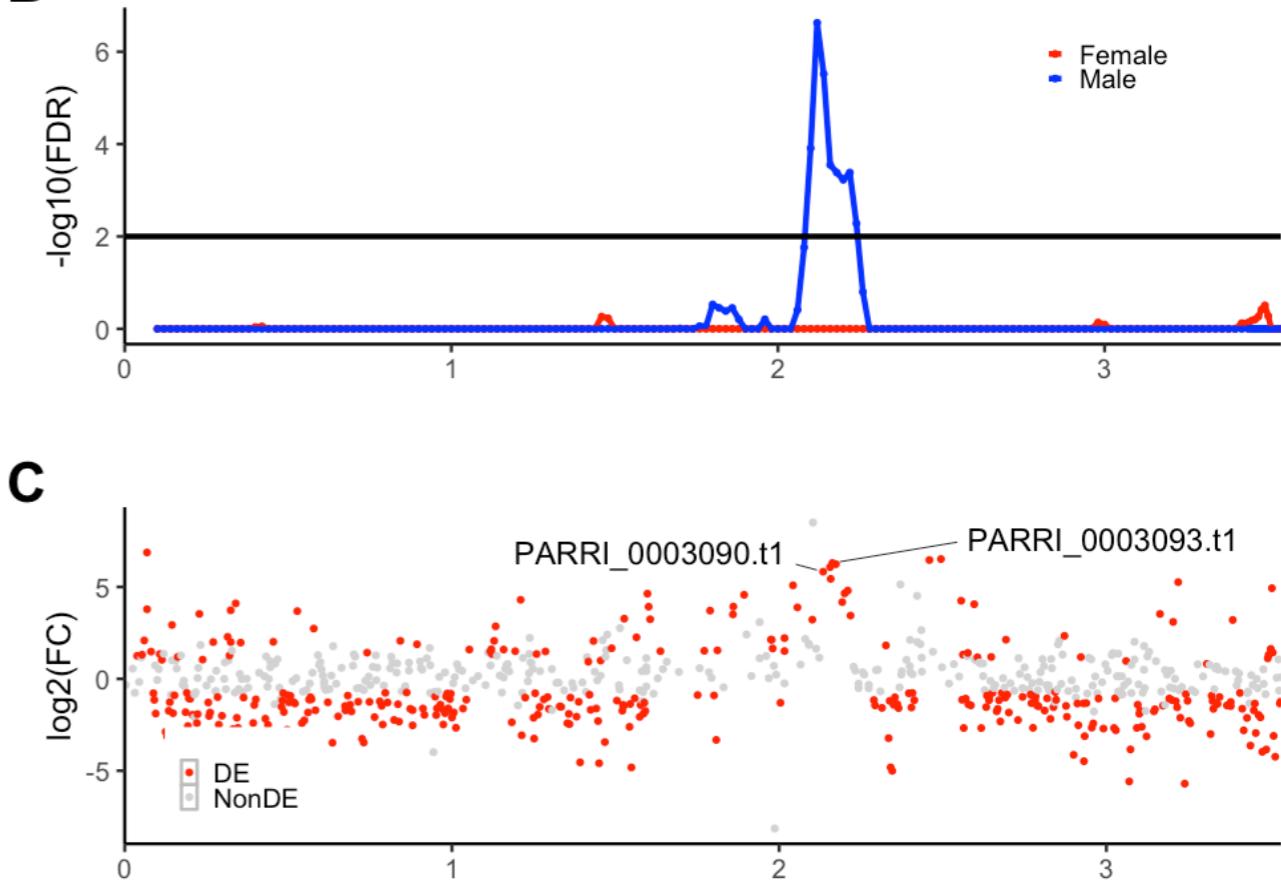
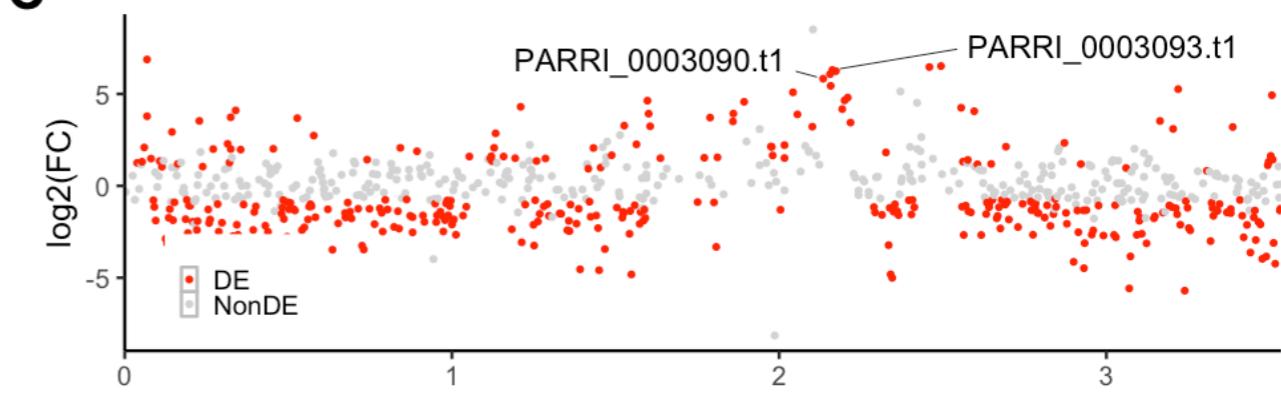
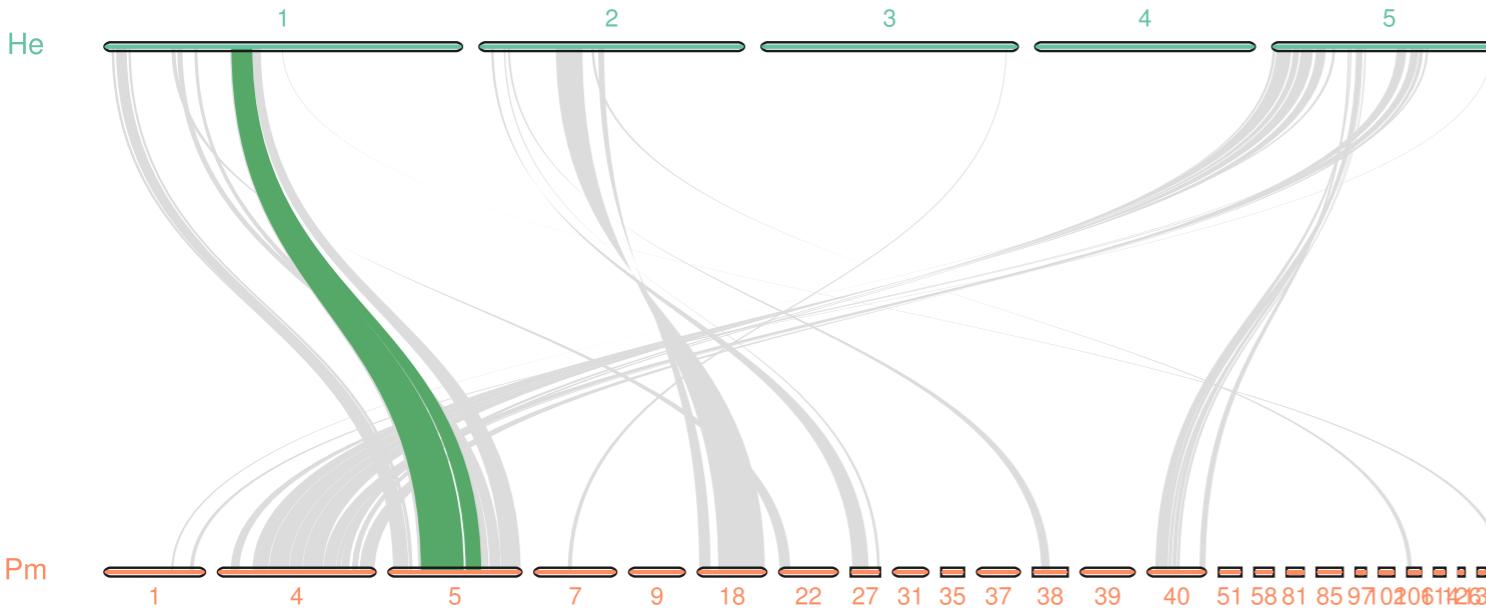
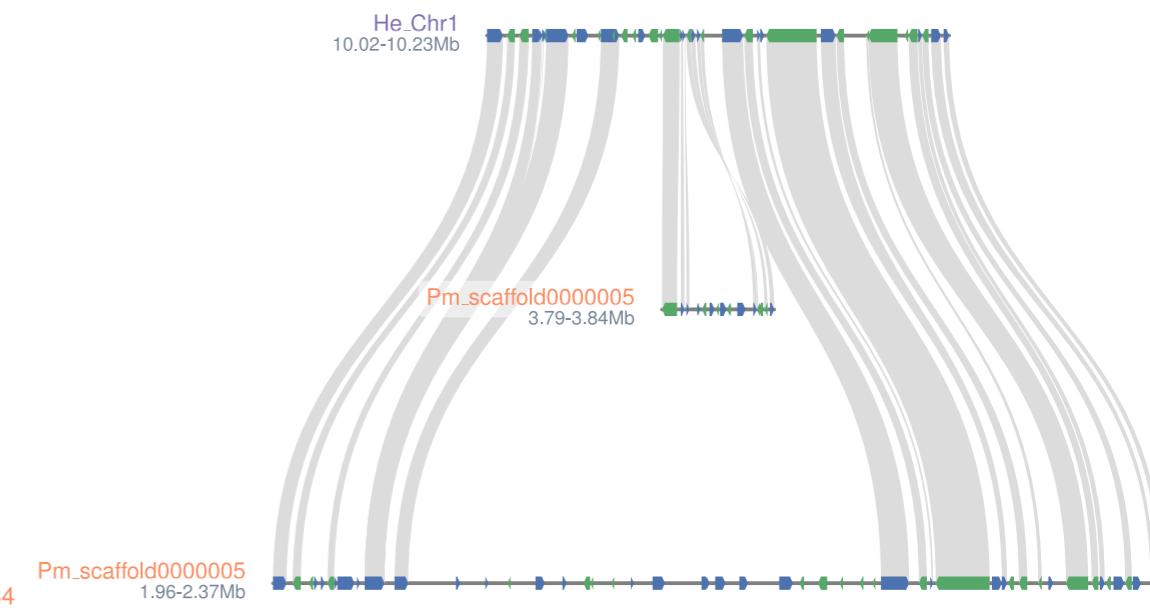
915 **Supplementary Figure S1. Gene ontology enrichment analysis of differentially**
916 **expressed genes between females and males.**

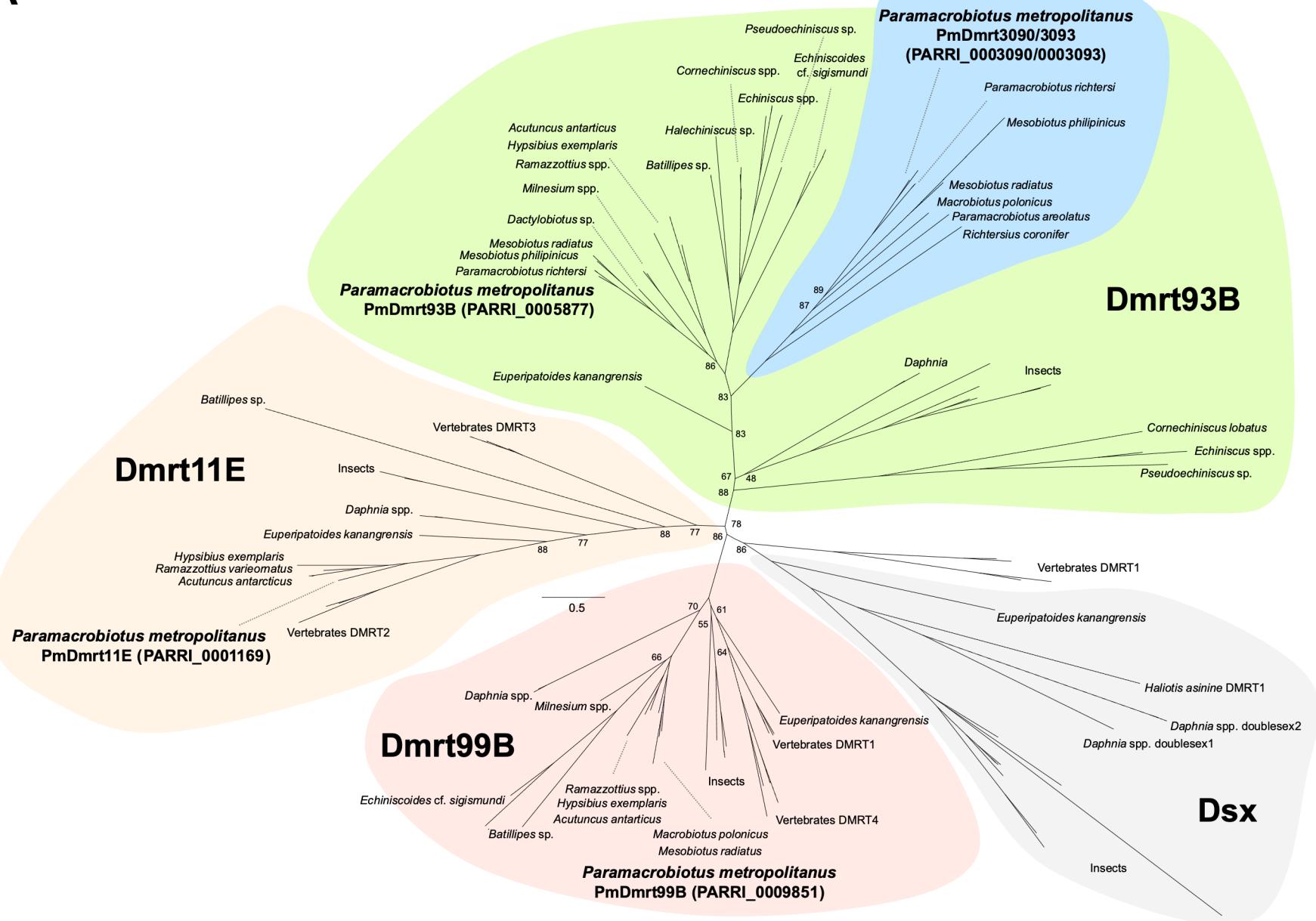
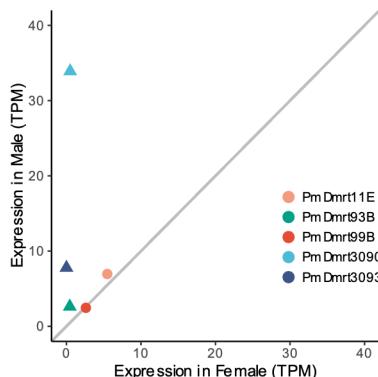
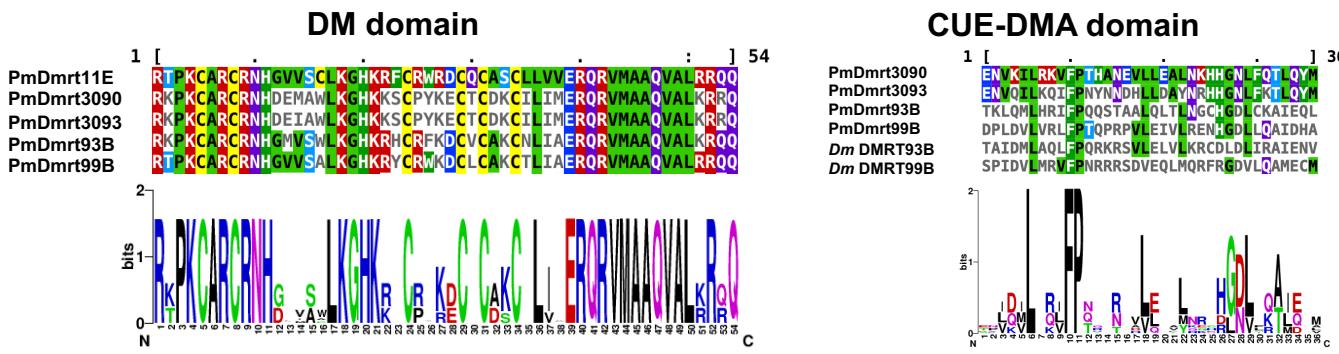
917 Gene ontology terms enriched in genes higher expressed in **[A]** females and **[B]** males.

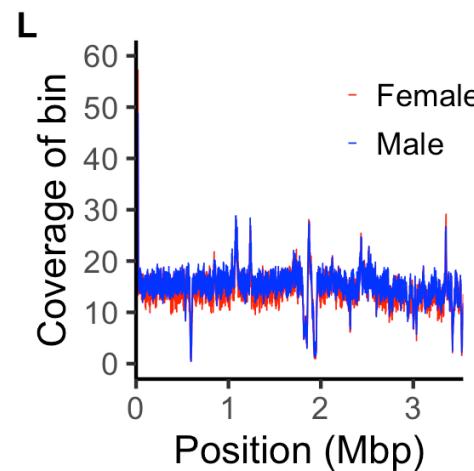
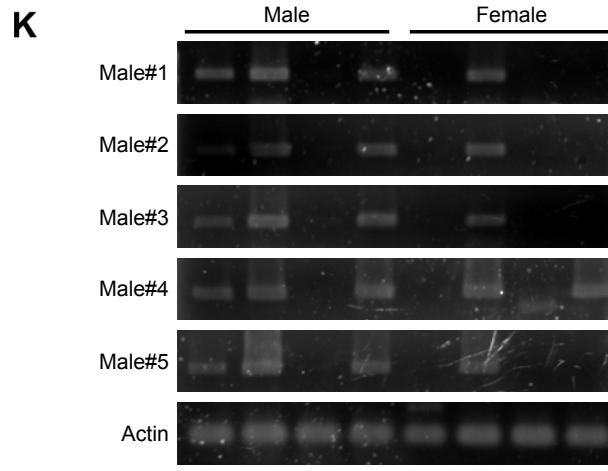
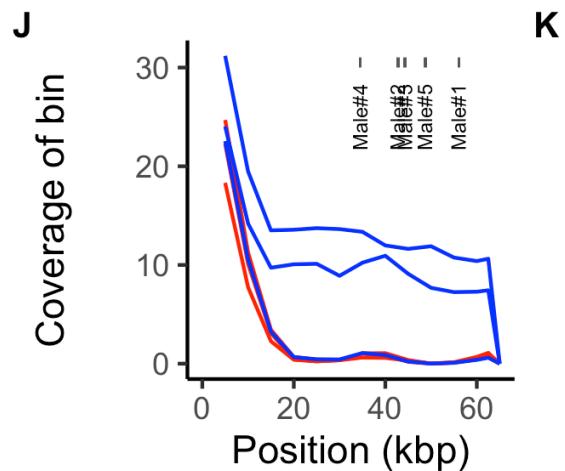
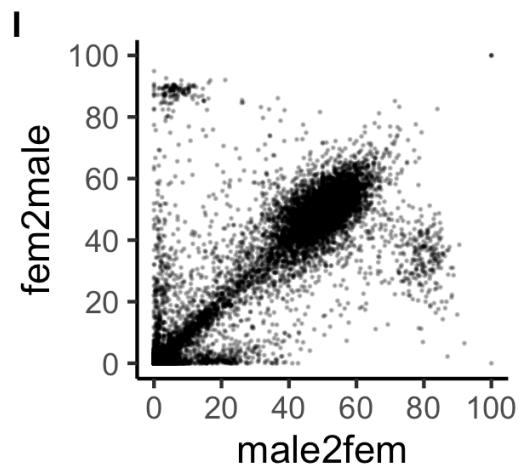
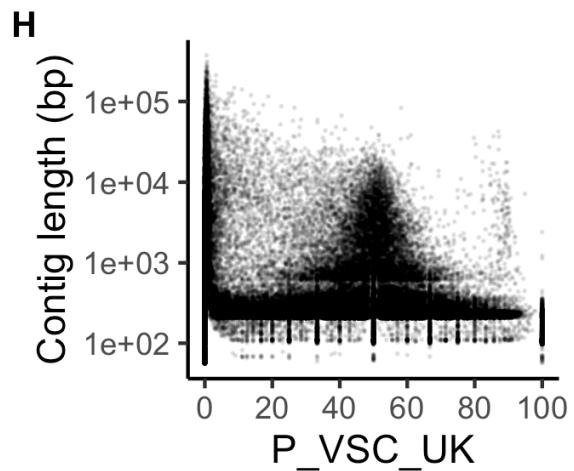
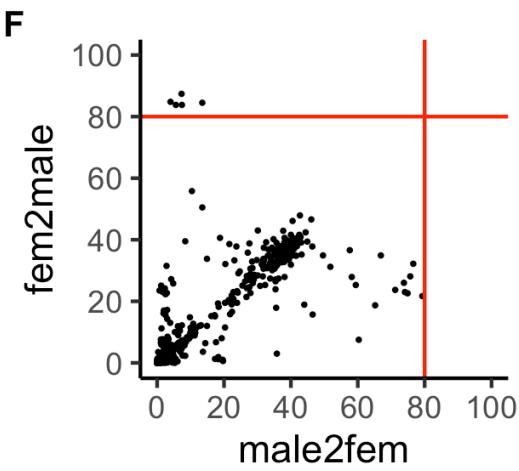
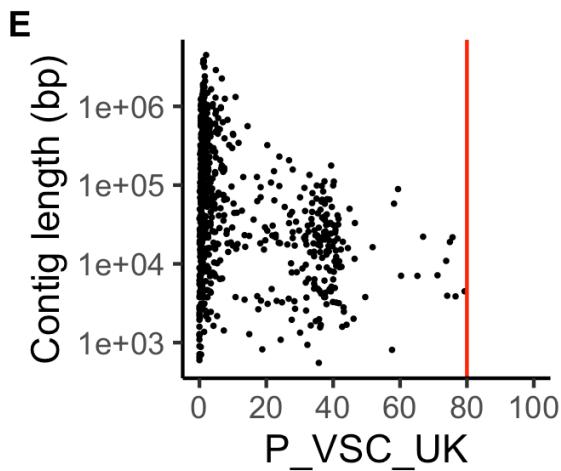
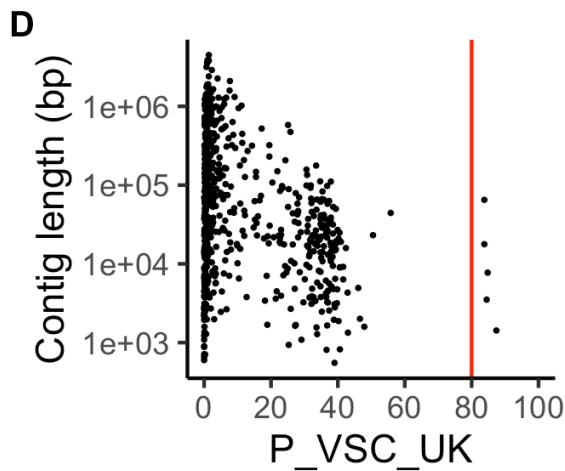
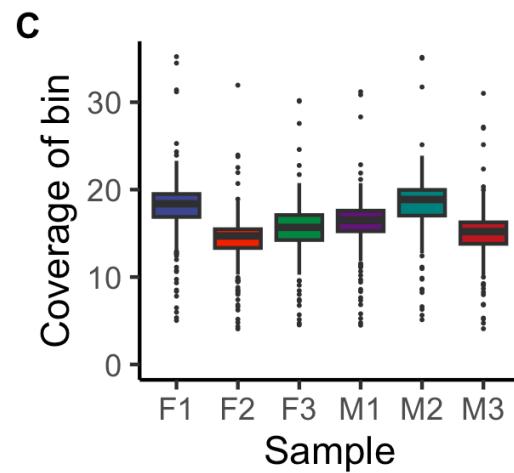
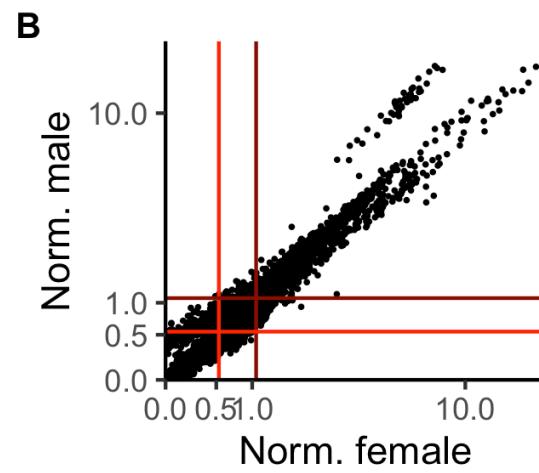
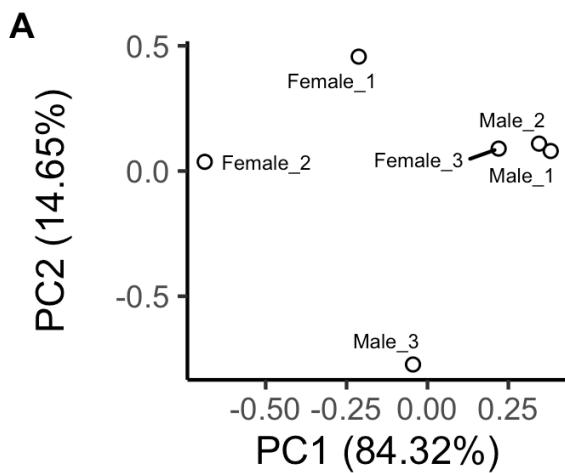
918
919 **Supplementary Figure S2. *Tra2* genes of *P. metropolitana*.**

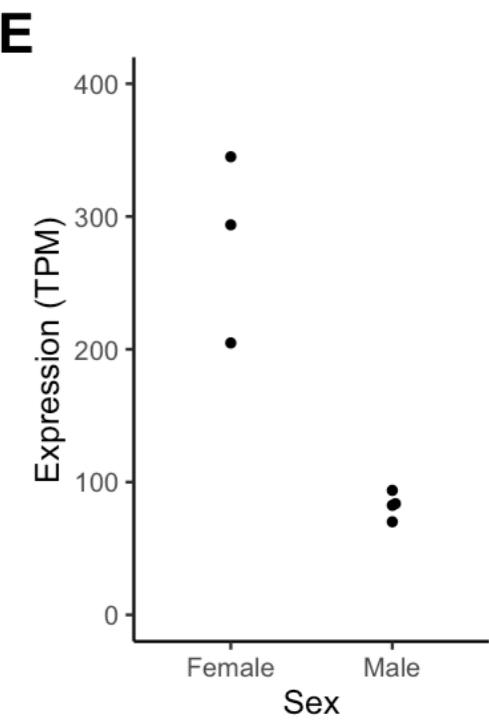
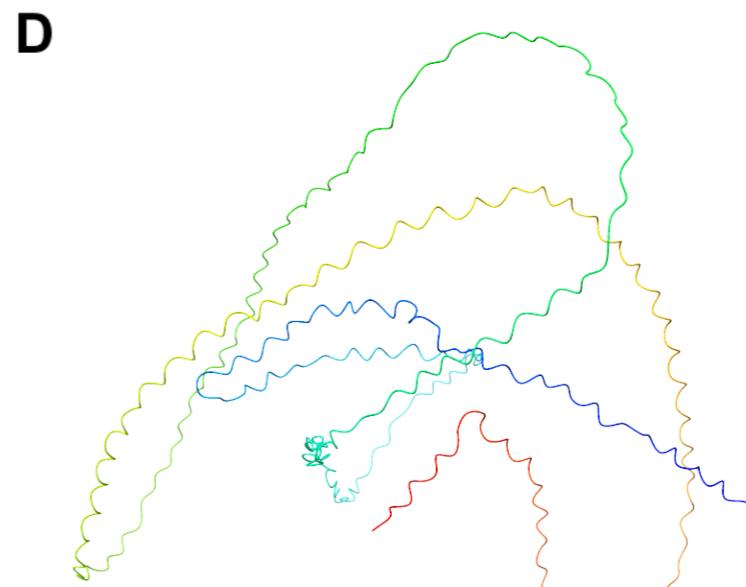
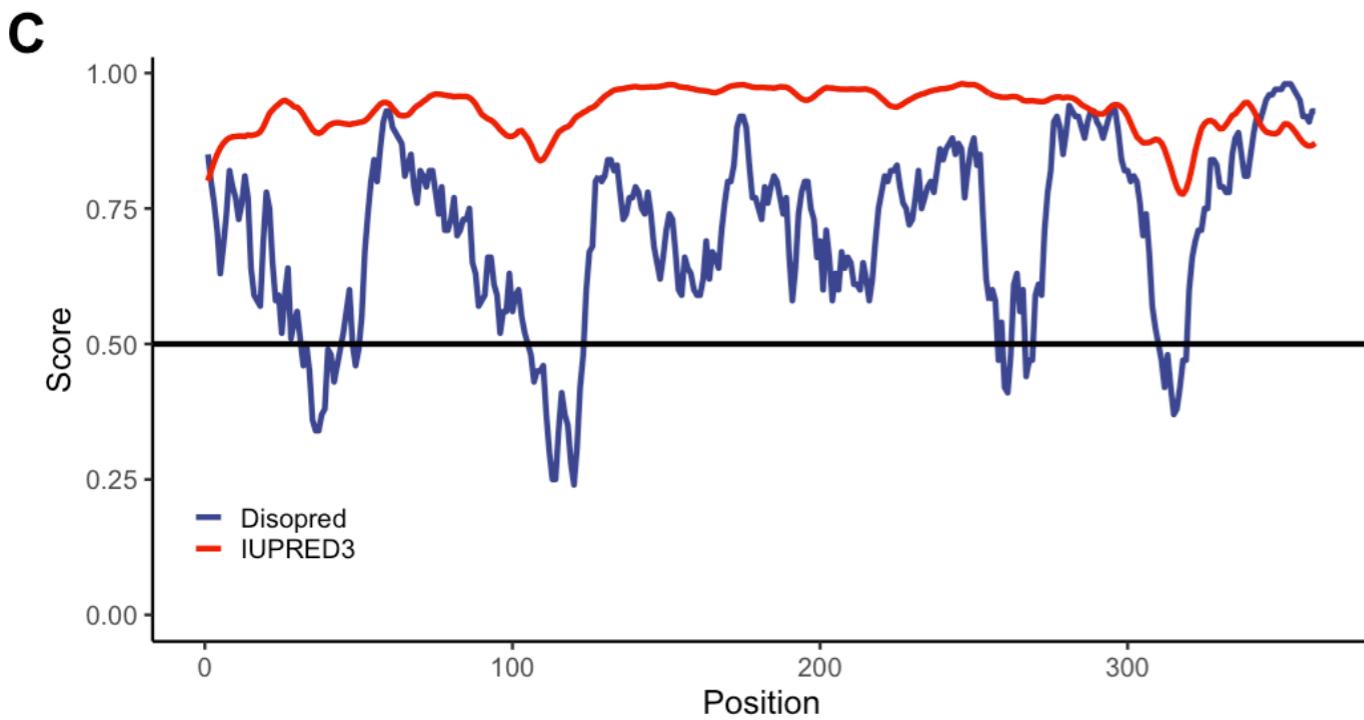
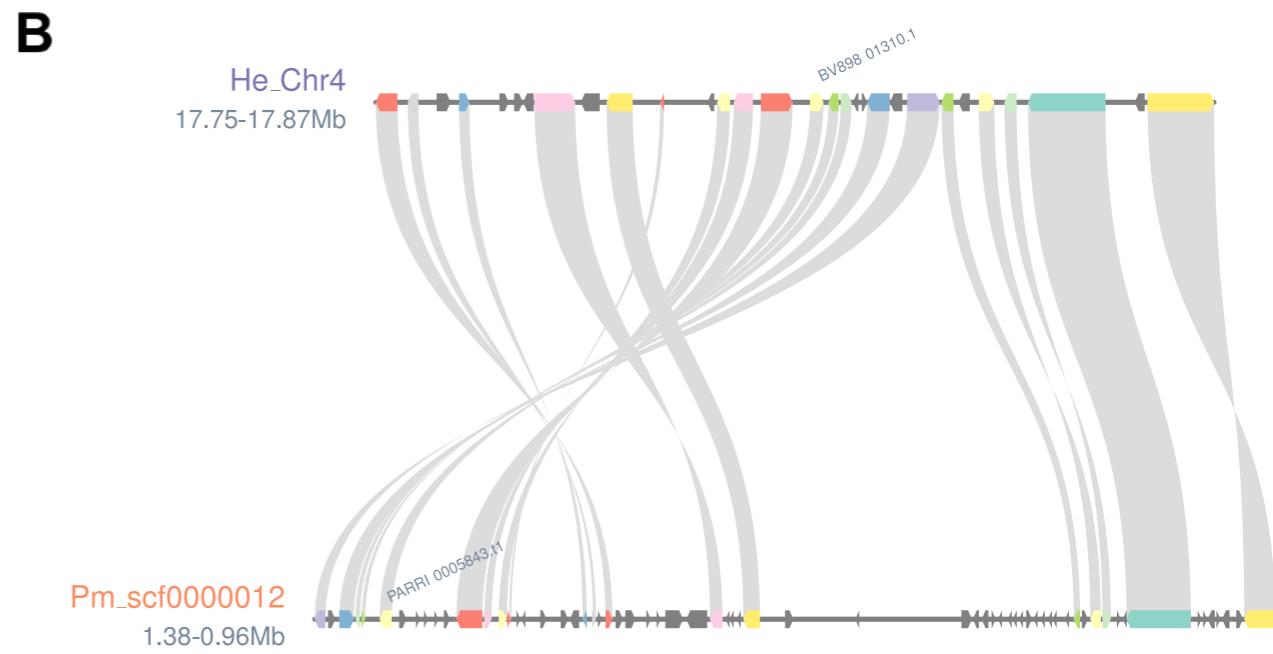
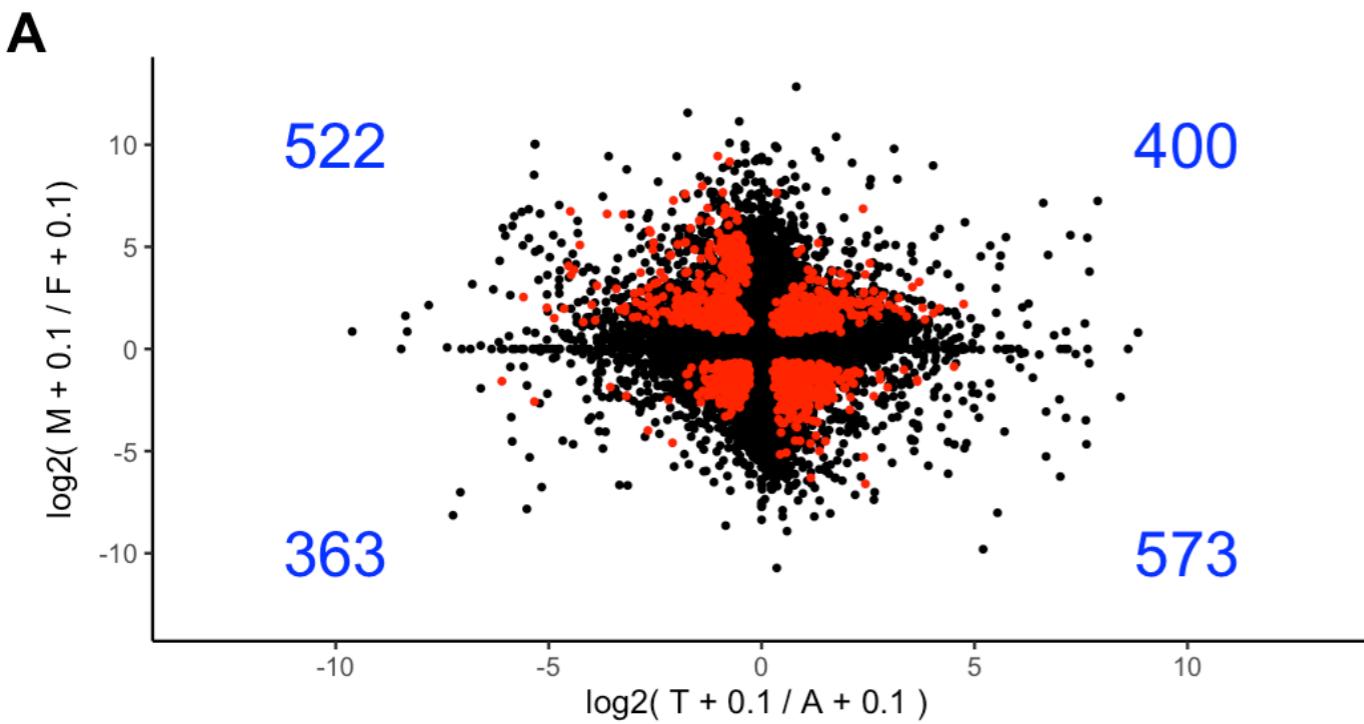
920 Gene structure and RNA-seq-based evidence of intronic regions. From the upper row, (1) the
921 gene structures predicted by Hara *et al.*, (2–4) RNA-Seq read mapping of male samples, (5–
922 8) RNA-Seq read mapping of female samples, and (9) EvidenceModeler and PASA expanded
923 gene structure. These structures were visualized using Jbrowse2 instance.
924



925 **Supplementary Figure S3. Expression of *DMRT* orthologs in *H. exemplaris* and *R. varieornatus*.**






926 Error bars indicate the standard deviation. On the X-axis, E and B time points indicate #day
927 after oviposition (embryo) and #days after hatching (baby), and adults (active and tun).
928




929
930 **Supplementary Figure S4. Structures of *DMRT* orthologs**












931 AlphaFold2 predicted the 3D structure of **[A]** full-length **[B]** DM domain, and **[C]** the CUE-
932 DMA domain. The arrowheads in cyan and magenta indicate the DM and CUE-DMA domains,
933 respectively. *Dm* indicates *D. melanogaster*.
934






935

A**B**

A**B****C****D****E**

A**B****C**

