

1 **Title:**

2 The Glycolytic Metabolite Methylglyoxal Covalently Inactivates the NLRP3 Inflammasome.

3

4 **Authors:**

5 Caroline Stanton^{1,2}, Chavin Buasakdi², Jie Sun², Ian Levitan², Prerona Bora², Sergei Kutseikin², R. Luke
6 Wiseman^{2,*}, Michael J. Bollong^{1,*}

7

8 **Affiliations:**

9 ¹Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA

10 ²Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA

11

12 *Correspondence:

13 wiseman@scripps.edu; mbollong@scripps.edu

14

15 **Summary:**

16

17 The NLRP3 inflammasome promotes inflammation in disease, yet the full repertoire of mechanisms
18 regulating its activity are not well delineated. Among established regulatory mechanisms, covalent modification
19 of NLRP3 has emerged as a common route for pharmacological inactivation of this protein. Here, we show that
20 inhibition of the glycolytic enzyme PGK1 results in the accumulation of methylglyoxal, a reactive metabolite
21 whose increased levels decrease NLRP3 assembly and inflammatory signaling in cells. We find that
22 methylglyoxal inactivates NLRP3 via a non-enzymatic, covalent crosslinking-based mechanism, promoting inter-
23 and intra-protein MICA posttranslational linkages within NLRP3. This work establishes NLRP3 as capable of
24 sensing a host of electrophilic chemicals, both exogenous small molecules and endogenous reactive
25 metabolites, and suggests a mechanism by which glycolytic flux can moderate the activation status of a central
26 inflammatory signaling pathway.

27

28 **Introduction:**

29

30 Vital to regulating the levels of pro-inflammatory cytokines and ultimately pyroptotic cell death,
31 inflammasomes are large cytosolic protein complexes controlled by pattern recognition receptors. One such
32 inflammasome is nucleated by NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), which responds to
33 various danger and pathogen associated molecular patterns. Activation of the NLRP3 inflammasome requires
34 both priming, activation of the transcription factor NF- κ B to augment transcription of inflammasome components,
35 as well as a secondary activating signal, such as K⁺ efflux, lysosomal signaling, or mitochondrial reactive oxygen
36 species. The presence of both signals promotes assembly of the active NLRP3 inflammasome, a complex
37 formed by association of NLRP3 with NEK7, ASC, and pro-caspase 1. Upon assembly, pro-caspase-1 activation
38 cleaves pro-IL-1 β and pro-IL-18 to active forms. Additionally, caspase 1 cleaves gasdermin D which forms pores
39 in the plasma membrane resulting in pyroptotic cell death. Given the broad array of signals to which NLRP3 can
40 respond, the NLRP3 inflammasome is frequently associated with sterile inflammation in disease¹⁻⁷. For this
41 reason, NLRP3 remains a promising drug target with the potential to mitigate pathology in numerous

42 inflammatory conditions. However, at present, there are no clinically approved NLRP3 inhibitors, though several
43 are being evaluated for efficacy in the clinic^{8,9}.

44 Dapansutile and ZYIL1, inhibitors targeting the NACHT domain of NLRP3 which reduces ATPase activity,
45 have shown promising activity in phase 2 studies⁹⁻¹¹. However, among promising approaches to inhibit NLRP3
46 pharmacologically, covalent inhibitors of NLRP3 have become commonplace in the clinic and in literature. RRx-
47 001, a covalent modifier of C409 which inhibits protein interactions with NEK7, is in phase 3 studies for cancer,
48 but since its identification as an inflammasome inhibitor, is now also being studied for various neurodegenerative
49 diseases¹². Likewise, other NLRP3 inhibitors targeting several reactive sensor cysteines in NLRP3 have been
50 reported in recent years, including oridonin, costunolide, Bay-11-7082, MNS, parthenolide, and Tubocapsanolide
51 A¹³⁻¹⁷. Recently, we performed an unbiased high-throughput screen which resulted in the identification of nine
52 new covalent scaffolds with three of these chemical scaffolds showing robust covalent modification of NLRP3
53 across several of its domains¹⁸. Previously NLRP3 has been shown to be inhibited through covalent modification
54 by several reactive metabolites including diroximel fumarate¹⁸, a fumarate derivative, as well as itaconate at
55 which modifies at C548 of murine NLRP3 which inhibits NLRP3 interactions with NEK7¹⁹. Collectively, these
56 observations provide mounting evidence that NLRP3 serves as an electrophile sensor within the cell, linking the
57 covalent modification of its sensor cysteines to decreased NLRP3 inflammasome activation and downstream
58 inflammatory signaling.

59 The capacity for NLRP3 to respond to electrophilic small molecules is reminiscent of the established
60 electrophile sensor KEAP1 (Kelch-like ECH-associated protein 1). KEAP1 serves as a negative regulator of the
61 oxidative stress responsive transcription factor NRF2 (NFE2L2, NFE2 Like BZIP Transcription Factor 2),
62 promoting its ubiquitination and degradation through interactions with the Cullin-RING E3 ubiquitin ligase protein
63 complex. KEAP1 bears 12 sensor cysteines which respond to covalent modification by liberating NRF2
64 sufficiently to enact a protective transcriptional response²⁰. In addition to exogenous electrophilic chemicals,
65 KEAP1 has been shown to covalently sense endogenous reactive electrophilic metabolites induced by
66 perturbations in the TCA cycle and glycolysis, resulting in NRF2 activation^{21,22}. Both the TCA cycle metabolite
67 fumarate and the TCA cycle derived metabolite itaconate are established activators of NRF2 that covalently
68 modify sensor cysteines in the BTB domain of KEAP1²³⁻²⁷.

69 We previously identified the compound CBR-470-1 as an activator of NRF2²⁸. This compound inhibits the
70 glycolytic enzyme phosphoglycerate kinase (PGK1), leading to an accumulation of upstream metabolites 1,3-
71 bisphosphoglycerate (1,3-BPG), glyceraldehyde-3-phosphate (GAP), and dihydroxyacetone phosphate (DHAP).
72 In response to PGK1 inhibition, methylglyoxal (MGO), the non-enzymatic dicarbonyl elimination product of GAP
73 and DHAP, accumulates and induces formation of KEAP1 dimers via MICA (methyl imidazole crosslink between
74 cysteine and arginine) modifications, augmenting NRF2 activation and expression of its target genes. An analog
75 of this compound, CBR-470-2, was also shown to be active in vivo, protecting against oxidative damage in
76 response to pathogenic UV exposure²⁸.

77 Because NLRP3 and KEAP1 both sense the presence of electrophilic chemicals from exogenous and
78 endogenous sources, we hypothesized that NLRP3 might also be capable of sensing and responding to
79 glycolytic metabolites, like MGO. Here we report that the CBR-470 series of compounds inhibit NLRP3

80 inflammasome assembly through a mechanism that involves covalent crosslinking and inactivation of NLRP3 by
81 increased levels of MGO.

82

83 **Results:**

84 *Pharmacologic PGK1 inhibitors block NLRP3 inflammasome assembly and activity.*

85 The assembly and activity of the NLRP3 inflammasome is highly sensitive to reactive metabolites
86 generated by alterations to metabolic pathways. Here, we sought to determine whether PGK1 inhibitors such as
87 CBR-470-1 and CBR-470-2 (**Fig. S1A,B**) – both compounds that lead to generation of the reactive metabolite
88 MGO²⁸ – could inhibit NLRP3 inflammasome assembly and activity. Initially, we monitored assembly of the
89 NLRP3 inflammasomes in THP1 cells stably expressing a GFP-tagged ASC (ASC-GFP) (Invivogen). Treatment
90 of these cells with the priming stimulus LPS followed by the activating stimulus nigericin triggers NLRP3
91 inflammasome assembly, which can be followed by the formation of ASC-GFP specks using high content imaging
92 (**Fig. S1C**). As described previously, ASC-GFP speck formation could be dose-dependently inhibited by pre-
93 treatment with the NLRP3 inflammasome inhibitor MCC950 (**Fig. 1A**)¹⁸. Intriguingly, pretreatment with either
94 CBR-470-1 or CBR-470-2 for 2 h inhibited ASC-GFP speck formation in these cells with an IC₅₀ of 25 μ M and 3
95 μ M, respectively (**Fig. 1A**). The levels of inhibition afforded by these two PGK1 inhibitors was similar to that
96 observed for MCC950 and minimal increases in inhibition were observed by increasing the pre-treatment time
97 beyond 2 h (**Fig. 1A-C, Fig. S1D, E**).

98 Next, we determined the potential for these compounds to inhibit downstream NLRP3 inflammasome-
99 dependent activities including IL-1 β secretion and pyroptotic cell death. Pretreatment with CBR-470-1 or CBR-
100 470-2 for 2 h inhibited IL-1 β secretion from both THP1 cells and primary dendritic cells, as measured using
101 HEK293Blue IL-1 β reporter cells (**Fig. 1D,E**). Similarly, pretreatment with CBR-470-1 or CBR-470-2 for 2 h
102 blocked pyroptotic cell death induced by nigericin in LPS-primed THP1 cells to the same levels observed for
103 MCC950 (**Fig. 1F**). These results demonstrate that two different PGK1 inhibitors block NLRP3 inflammasome
104 assembly and downstream signaling. Since CBR-470-2 showed superior potency in cell-based experiments as
105 compared to CBR-470-1, we specifically focused on CBR-470-2 for further mechanistic experimentation.

106

107 *CBR-470-2-dependent NLRP3 inhibition is independent of NRF2 Activation or NF- κ B Inhibition.*

108 PGK1 inhibitors such as CBR-470-2 have been previously reported to activate NRF2 in mammalian cells²⁸. Since
109 NRF2 activation has previously been shown to inhibit the NLRP3 inflammasome^{29,30}, we sought to determine
110 whether the inhibition of NLRP3 assembly and activity observed with this compound could be attributed to NRF2
111 activation. Interestingly, a 2 h treatment with CBR-470-2 did not induce expression of the NRF2 target gene
112 NQO1 in THP1 cells (**Fig. 2A**). However, we did observe increased NQO1 expression following 16 h treatment
113 with CBR-470-2. This increase in NQO1 expression could be blocked by co-treatment with the NRF2 inhibitor
114 ML385, indicating that this effect can be attributed to NRF2 activation. Similar results were observed for the
115 alternative NRF2 target gene HMOX1 (**Fig. S2**). These results indicate that NRF2 is not activated in the 2 h
116 pretreatment time course where we observe CBR-470-2-dependent inhibition of NLRP3 inflammasome
117 assembly and activation.

118 To further probe the specific dependence of compound-dependent NLRP3 inhibition, we monitored ASC-
119 GFP speck formation and pyroptotic cell death in THP1 cells pretreated with the NRF2 inhibitor ML385 for 30
120 min followed by CBR-470-2 for 2 h. Interestingly, pre-treatment with ML385 did not influence the potency or
121 efficacy of CBR-470-2-dependent inhibition of NLRP3 inflammasome assembly or activity in these assays (**Fig.**
122 **2B,C**). This further demonstrates that the observed inhibition of NLRP3 inflammasomes afforded by the PGK1
123 inhibitor is not mediated through NRF2 activation.

124 Next, we sought to determine the potential impact of CBR-470-2 on the NF- κ B-dependent expression of
125 NLRP3 inflammasome components induced by LPS priming. We found that co-treatment with CBR-470-2 for 3
126 h or 24 h does not significantly influence expression of *NLRP3* in LPS-primed THP1 cells, although it does
127 modestly reduce expression of *pro-IL1b* (**Fig. 2D**). Further, we found protein levels of NF- κ B targets including
128 NLRP3, ASC, and pro-IL-1 β , as well as other NLRP3 inflammasome components were not significantly
129 decreased following a 2 h treatment with CBR-470-2 in LPS-primed THP1 cells (**Fig. 2E, F**). These results
130 indicate that CBR-470-2 does not significantly influence expression of NF- κ B target genes induced by LPS
131 priming.

132

133 *CBR-470-2 inhibits NLRP3 through the increased production of MGO downstream of PGK1.*

134 Pharmacologic PGK1 inhibition with CBR-470-2 leads to the accumulation of the reactive metabolite
135 MGO²⁸. Since previous results showed that the NLRP3 inflammasome is sensitive to inactivation by reactive
136 metabolites, we predicted that CBR-470-2 likely inhibits NLRP3 inflammasome assembly and activity through a
137 mechanism involving the accumulation of MGO. To initially test this, we monitored NLRP3 inflammasome
138 assembly (via ASC-GFP speck formation) in THP1 cells co-treated with CBR-470-2 and glutathione (GSH), the
139 latter a treatment that neutralizes reactive metabolites. Intriguingly, we found that co-treatment with glutathione
140 fully abrogated the inhibition of ASC-GFP speck formation afforded by CBR-470-2 (**Fig. 3A**). Identical results
141 were observed in THP1 cells treated with CBR-470-1 (**Fig. S3A**). This supports a model whereby these two
142 PGK1 inhibitors inhibit inflammasome assembly through a mechanism involving the accumulation of a reactive
143 metabolite such as MGO.

144 CBR-470-2 generates MGO by inhibiting the enzymatic activity of PGK1²⁸. Thus, we predicted that
145 genetic depletion of PGK1 should similarly inhibit NLRP3 inflammasome assembly. We depleted *PGK1* in THP1-
146 ASC-GFP cells using three different siRNAs and monitored NLRP3 inflammasome assembly by ASC-GFP speck
147 formation. We confirmed that our siRNA treatment reduced expression of *PGK1* in these cells by RT-qPCR (**Fig.**
148 **3B**). Intriguingly, reductions in *PGK1* afforded by all three siRNAs significantly reduced ASC-GFP speck
149 formation in THP1 cells (**Fig. 3C**). This indicates that genetic depletion of *PGK1* recapitulates the reduced NLRP3
150 inflammasome assembly induced by pharmacologic PGK1 inhibitors such as CBR-470-2.

151 Next, we determined the potential for direct administration of MGO to inhibit NLRP3 inflammasome. We
152 treated THP1 cells with increasing concentrations of MGO and monitored NLRP3 assembly using our ASC-GFP
153 speck formation assay. Pre-treatment with MGO for 2 h inhibited NLRP3 inflammasome assembly with an EC₅₀
154 of ~0.52 mM (**Fig. 3D**). Similar results were observed for pyroptotic cell death, where pretreatment for 2 h with
155 MGO similarly improved viability of THP1 cells treated with LPS and nigericin (**Fig. S3B**). MGO activates NRF2

156 through the covalent targeting of KEAP1. Thus, we determined the potential involvement of MGO-dependent
157 NRF2 activation in the inhibition of NLRP3 inflammasome assembly afforded by this metabolite by pretreating
158 THP1 cells with the NRF2 inhibitor ML385 prior to MGO. We found that pre-treatment with ML385 caused a
159 modest increase in dose-dependent inhibition of ASC-GFP speck formation afforded by MGO treatment (**Fig.**
160 **3D**). Similarly, co-treatment with ML385 also caused a modest increase in the dose-dependent protection against
161 pyroptotic cell death induced by MGO (**Fig. S3B**). These results suggests that MGO-dependent NRF2 activation
162 does not contribute to the observed reduction in NLRP3 inflammasome assembly and activity induced by this
163 metabolite, and our results are also consistent with a model whereby MGO inhibits NLRP3 inflammasome
164 assembly through a direct mechanism involving covalent protein modification.

165 We next sought to determine whether treatment with CBR-470-2 increases MGO levels in THP1 cells.
166 Towards that aim, we used a fluorescence indicator probe for MGO generation³¹ to monitor the production of this
167 metabolite in THP1 cells treated with CBR-470-2 (**Fig. S3C**). We observed a rapid increase of MGO in THP1
168 cells treated with CBR-470-2, which began to decline ~8 h after treatment (**Fig. 3E**). Intriguingly, the level of
169 intracellular MGO generated by compound treatment is nearly identical to that observed in THP1 cells treated
170 directly with 1 mM MGO – a dose sufficient to fully inhibit NLRP3 inflammasome assembly (**Fig. 3D**). We also
171 observe crosslinking of KEAP1 following treatment of THP1 cells with CBR-470-2 within 1 h, supporting this rapid
172 accumulation of MGO within the cell (**Fig. S3D**). This indicates that treatment with CBR-470-2 increases
173 intracellular MGO to levels sufficient to inhibit NLRP3 inflammasome assembly.

174 Collectively, these results indicate that CBR-470-2 inhibits NLRP3 inflammasome assembly through a
175 mechanism involving PGK1 inhibition and subsequent accumulation of the reactive metabolite MGO.
176

177 *MGO induces inter- and intra-molecular crosslinks of NLRP3 monomers through MICA modifications.*

178 MGO inhibits the NRF2 suppressor KEAP1 by inducing MICA (methyl imidazole crosslink between
179 cysteine and arginine) modifications on neighboring protomers. Thus, we sought to determine whether MGO
180 generated by CBR-470-2 treatment could similarly induce intermolecular crosslinking of NLRP3. Treatment with
181 MGO for 2 h increased crosslinking of NLRP3-FLAG expressed in HEK293T cells, as measured by
182 immunoblotting, evident by the accumulation of high molecular weight (HMW) NLRP3 (**Fig. S4A**). Similarly,
183 treatment with CBR-470-2 also increased HMW NLRP3-FLAG in HEK293T cells. Further, treatment with CBR-
184 470-2 increased HMW endogenous NLRP3 in THP1 cells, evident by reductions in soluble NLRP3 and increased
185 HMW NLRP3 in the insoluble fraction (**Fig. 4A**).

186 We next sought to identify the specific domains of NLRP3 that were most sensitive to crosslinking induced
187 by treatment with CBR-470-2 or exogenous MGO. NLRP3 contains multiple domains including a pyrin domain
188 (PYN), a nucleotide binding domain (NBD), and a leucine rich repeat (LRR) domain. We expressed NLRP3-
189 FLAG constructs lacking each of these individual domains (e.g., Δ PYN, Δ NBD, Δ LRR) or each individual domains
190 on their own (e.g., PYN, NBD, LRR) in HEK293T cells and monitored crosslinking induced by treatment with
191 CBR-470-2 or MGO. Interestingly, all of these constructs demonstrated increases in HMW bands in cells treated
192 with either CBR-470-2 or MGO (**Fig. 4B**, **Fig. S4B**). However, loss of the PYN domain from the full-length
193 NLRP3-FLAG construct appeared to most strongly inhibit crosslinking under both conditions. Likewise, when

194 expressed in isolation, the PYN domain showed the most robust increase in HMW bands when compared to
195 other domains expressed on their own. Intriguingly, we found that recombinant PYN (residues 3-110) also readily
196 form HMW bands corresponding to molecular weights of PYN dimers and trimers when treated with 1 mM MGO
197 for 1 h in vitro (**Fig. S4C-E**). Thus, we explicitly sought to probe the nature of this modification using the PYN
198 domain construct.

199 MICA modifications proceed by crosslinking Cys residues to Arg residues. Thus, we overexpressed PYN
200 domains lacking all or 3 of the 4 Cys residues within this domain in HEK293T cells and monitored crosslinking
201 induced by treatment with CBR-470-2 by immunoblotting. This showed that loss of all Cys residues prevented
202 CBR-470-2-dependent increases in PYN crosslinking (**Fig. 4C**). Intriguingly, reintroduction of C108 or C130 into
203 the Cys-less PYN domain partially restored CBR-470-2-dependent crosslinking. Similar results were observed
204 in MGO cells overexpressing these PYN Cys mutants, although all constructs showed some modest increase in
205 MGO-dependent crosslinking (**Fig. S4F**). These results identify C108 and C130 of the PYN domain as two sites
206 for covalent modification. Using two alkyne containing probe compounds, mCMF859 and P207-9175, which
207 previously were shown to inhibit NLRP3 and covalently modify C130 in the PYN domain (**Fig. S4G**), we further
208 confirmed that CBR-470-2 treatment decreases probe labeling of this Cys residue (**Fig. S4H**). This further
209 supports a model whereby MGO generated by CBR-470-2-dependent PGK1 inhibition leads to the covalent
210 modification of this site.

211 Finally, to confirm that MICA modifications occur within the NLRP3 PYN domain, we overexpressed the
212 PYN in HEK293T cells treated with CBR-470-2 or MGO. We then excised the HMW band correspond to the PYN
213 dimer and the monomeric PYN domain from SDS-PAGE gels and subjected these isolates to enzymatic
214 digestion. We then monitored the formation of the MICA modification by mass spectrometry. Crosslinked peptides
215 with the corresponding MICA mass addition (36 Da) were observed in isolates prepared from both the CBR-470-
216 2 and MGO treated samples between C08-R43, C08-R81, C38-R07, C38-R43, C108-R89 (CBR only), C130-
217 R89, and C130-R126 and were not observed in the PYN monomer bands isolated from untreated cells (**Fig. 4D-G, Fig. S5A-F**). The formation of crosslinks involving C08 and C38, combined with the minimal increase in HMW
219 bands for PYN constructs containing only these Cys residues (**Fig. 4C**), suggests that these crosslinks are likely
220 intramolecular. This would indicate that apart from the intermolecular crosslinks observed by SDS-PAGE (evident
221 by HMW bands), CBR-470-2 treatment also leads to intramolecular crosslinks. Further, this mix of crosslinks
222 suggests that NLRP3 is highly sensitive to glycolytic perturbations resulting in MGO modification at multiple sites
223 that integrate to inhibit of NLRP3 inflammasome assembly and activity.

224

225 **Discussion:**

226 Here, we have discovered that inhibition of the glycolytic enzyme PGK1 in a monocyte cell line leads to
227 accumulation of methylglyoxal, a reactive metabolite that covalently crosslinks and inactivates NLRP3, the
228 central pattern recognition receptor of the NLRP3 inflammasome. Interestingly, inhibition of other glycolytic
229 enzymes has been found to modulate the activity of NLRP3 inflammasome, as hexokinase inhibition leads to
230 increases in cytosolic mtDNA which induces inflammasome activation^{32,33}. Despite this, regulation of the NLRP3
231 inflammasome by glycolytic metabolites is poorly understood, as inhibition at different nodes of glycolysis can

232 lead to differing effects on inflammasome activity. For example, inhibiting glycolytic commitment using 2-
233 deoxyglucose can either activate or inhibit the NLRP3 inflammasome³³⁻³⁵. Nevertheless, these data along with
234 the work presented here present a mounting case that glycolytic metabolism is intimately linked to NLRP3
235 inflammasome pathway activity. It is conceivable that certain cell types, like pro-inflammatory macrophages (M2
236 macrophages), which rely on augmented Warburg-like levels of glycolysis, may sense and respond to modulated
237 glycolytic flux, and the mechanism delineated here may provide a means of feeding back to resolve inflammatory
238 activation.

239 Inhibition of the NLRP3 inflammasome by increased MGO levels occurs as the result of covalent
240 crosslinking of cysteines and arginines through MICA modification, which leads to formation of NLRP3 oligomers.
241 These crosslinks occur through a variety of cysteines and arginines across multiple domains of NLRP3, having
242 established in this work 7 different crosslinks within the pyrin domain alone. Previously, we reported that
243 VLX1570, a covalent small molecule inhibitor of NLRP3 can also crosslink NLRP3 through its multiple covalent
244 reactive groups. The pyrin domain was also the most sensitive to crosslinking by VLX1570, although, like MGO,
245 we observed crosslinking of the other domains of NLRP3. In both cases, the crosslinking appears to be
246 nonspecific for a specific site in NLRP3, but instead seems to form disordered multimers of various sizes which
247 we posit inhibits the appropriate oligomerization and assembly of the NLRP3 inflammasome. Given the
248 propensity of the pyrin domain, and more generally NLRP3, it is possible that covalent crosslinking and
249 inactivation is an evolved mechanism to sense the presence of an array of reactive metabolites.

250 Here we have shown that MGO acts similarly to the reactive metabolites fumarate and itaconate, capable
251 of both activating NRF2 and inhibiting the NLRP3 inflammasome. This concurrent signaling may suggest an
252 evolved coordinated response to promote cellular survival and dampen inflammation. To the extent that MGO
253 might modulate additional related cellular responses will be of keen interest in future work. Nevertheless, these
254 data suggest that one reactive electrophilic compound is likely capable of modulating both pathways, potentially
255 for therapeutic benefit in disease. Indeed, there are numerous disease states in which NRF2 activation and
256 NLRP3 inhibition are known to be beneficial including neurodegenerative diseases, metabolic diseases,
257 gastrointestinal diseases, and autoimmune disorders. Using a compound such as CBR-470-2, which beneficially
258 regulates both pathways, may provide an additive or synergistic therapeutic effect to improve disease outcome.
259
260

261 **Methods:**

262 Methods generally are as previously described¹⁸ and are here reviewed in brief with any modifications.
263

264 *Compounds, Antibodies, and Plasmids*

265 Ultrapure LPS, E. coli 0111:B4 (Invivogen; Cat. No. tlrl-3pelps) was dissolved in ultrapure water and administered
266 at 1 µg/mL. MCC950 (SelleckChem; Cat. No. S7809) was dissolved in water and administered at 10 µM.
267 Nigericin Sodium Salt (Cayman Chem.; Cat. No. 11437-25) was dissolved in ethanol and administered at 10 µM.
268 CBR-470-1 and CBR-470-2 were synthesized in house as previously described²⁸. Methylglyoxal (MGO) was

269 obtained from Acros Organics (40 wt% solution in water, Cat. No. 175791000) and freshly diluted in cell culture
270 media prior to administration at the indicated concentrations.

271

272 *Cell Culture and ASC Speck Assay:*

273 WT THP1 cells, THP1-ASC-GFP Reporter cells, and HEK-Blue™ IL-1 β cells were obtained from Invivogen and
274 maintained according to Invivogen protocols. siRNA transfections were performed using Lipofectamine™
275 RNAiMAX Transfection Reagent (Invitrogen, 13778075) following manufacturer's protocol with 9 μ L of RNAiMAX
276 reagent and 3 μ L of 10 μ M siRNA in 300 μ L of Optimem per 2 million cells in a 6 well dish. Cells with knocked
277 down PGK1 from siRNA experiments were tested 2 days following transfection in respective assays or harvested
278 for gene knockdown confirmation. For ASC-GFP Speck assay, cells were plated in black, clear-bottom 384 well
279 plates at 20,000 cells/well in 50 μ L of media. Compounds in dose response were transferred using an Agilent
280 Bravo outfitted with a pintoool head to transfer 100 nL. Following pre-treatment time (1 to 24 h), 10 μ L of media
281 containing Nigericin and Hoechst were added to each well for two hours (final concentration 10 μ M Nigericin, 5
282 μ g/mL Hoechst). Cells were imaged on the Cellinsight CX5 HCS Platform and ASC-Specks were quantified using
283 the SpotDetector function of the Cellinsight High Content Analysis Platform. GSH curve shift assays were
284 performed in a similar manner except 10 μ L of GSH (final concentration 10 mM) was added 15 min prior to
285 addition of CBR-470 compounds.

286

287 *IL-1 β Secretion Inhibition Assay:*

288 WT THP1 or primary dendritic cells were primed and treated with compound at the indicated concentrations.
289 Following pre-treatment of 2 h with inhibitors, cells were treated with ATP pH 7.4 (final concentration 5 mM).
290 Cells were allowed to secrete IL-1 β overnight. The next day, 10,000 HEK-Blue™ IL-1 β cells were plated in 30
291 μ L of media in black, clear bottom 384-well plates, and 10 μ L of IL-1 β conditioned media added to each well.
292 Cells were incubated overnight to produce SEAP. The following day, 30 μ L of QUANTI-Blue (Invivogen) was
293 added to each well and incubated at 37 °C for 30 min-24 h (until visibly observable signal) and absorbance at
294 655 nM was measured.

295

296 *Pyroptotic Cell Death Assay:*

297 WT THP1 cells were primed with LPS, pretreated with compounds, and activated with Nigericin as described in
298 the ASC-Speck Assay. 10 μ M MCC950 was used as a control to inhibit pyroptotic cell death, and cells not treated
299 with Nigericin were used for no pyroptotic cell death (maximal viability). Two hours after addition of Nigericin, 30
300 μ L of CellTiter-Glo (Promega, diluted 1:6 in water), was added to each well and luminescence was measured
301 with an Envision plate reader.

302

303 *qPCR:*

304 Cells were lysed and RNA purified using a RNeasy Mini Kit (Qiagen, Cat. No. 74106) following the manufacturer's
305 protocol. 400 μ g of RNA was converted to cDNA using the High-Capacity cDNA Reverse Transcription Kit
306 (Advanced Biosystems; cat. 4368814) which was then diluted 1:4 with DNase/ RNAse free water. qPCR

307 reactions were prepared using Power SYBR Green PCR Master Mix (Applied Biosystems; cat. 4367659) and
308 primers (Table S3) obtained from Integrated DNA Technologies. qPCR reactions were performed using the
309 QuantStudio™ 7 Flex with an initial melting period of 95 °C for 10 min and then 40 cycles of 15 s at 95 °C, 1 min
310 at 60 °C.

311

312 *Immunoblotting and Immunoprecipitation:*

313 To express NLRP3 in HEK293T cells, 10⁶ cells were plated on 6-well plates coated with poly-d-lysine and
314 transfected with 2 µg of DNA per well and 7 µL of Fugene in 100 µL of Optimem. After 48 h, the cells were treated
315 with compound. For experiments done with endogenous NLRP3, WT THP1 cells were primed overnight with 1
316 µg/mL LPS, 1 ng/mL TNF-α and treated with compound before collection. Each well was harvested in RIPA buffer
317 with protease inhibitor and lysed on ice for >15 min. Insoluble material was separated via centrifugation.
318 Concentration of soluble lysates was measured via absorbance with a nanodrop instrument. Lysate samples
319 loaded typically were 50 µg. For samples with FLAG immunoprecipitation, lysates were normalized to 1 mg/mL
320 and 20 µL of Magnetic FLAG Beads were added to each sample and incubated at 4°C overnight. Beads were
321 immobilized using a magnetic Eppendorf holder and washed 2X with lysis buffer and 1X with DPBS. Beads were
322 either resuspended in loading dye for analysis via Western blot, or in 100 µL of DPBS for click chemistry. Click
323 Chemistry Master Mix was comprised of 6 µL of 1.7 Tris((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amine (Sigma) in
324 4:1 tBuOH:DMSO solution, 2 µL of 50 mM CuSO₄ (Sigma) in water, 2 µL of 5 mM rhodamine-azide in DMSO and
325 2 µL of 50 mM tris(2-carboxyethyl)phosphine (TCEP) in water. To each sample, 12 µL of click chemistry master
326 mix was added and incubated for 1 h in the dark at room temperature. Beads were immobilized using a magnetic
327 Eppendorf holder and washed 2X with DPBS. Beads were resuspended in loading dye for analysis via Western
328 blot and boiled for 15 min at 95 °C. SDS-PAGE and Western blotting protocol as previously described¹⁸.

329

330 *Cellular Methylglyoxal Level Assay:*

331 WT THP1 cells were treated with CBR-470-2 or MGO for the indicated timeframes and concentrations. Cells
332 were harvested via centrifugation, rinsed twice with DPBS, and then lysed in 100 µL of DPBS per 1 million cells
333 via probe sonication. Insoluble material was separated via centrifugation. 30 µL of clarified lysate, 50 µL of DPBS,
334 and 10 µL of 100 µM 1,8-diaminonaphthalene were added to each well in a clear 96 well plate and incubated for
335 30 min. Fluorescence (Ex: 355 nm, Em: 400 nm) was measured using a SpectraMax iD3 plate reader.

336

337 *Mass Spectrometry:*

338 The gel band sample was destained, reduced (10 mM DTT), alkylated (55mM iodoacetamide) and digested with
339 trypsin overnight before being analyzed by nano-LC-MS/MS. The nano LC-MS/MS analysis was carried out on
340 a Thermo Scientific Easy nano LC 1200 coupled with Thermo Scientific Q Exactive Plus using Nanospray Flex
341 ion source. Eight µL of digested peptides were analyzed by reverse-phase chromatography using 14cm length
342 x 75mm inner diameter nanoelectrospray capillary column packed in-house with Phenomenex Aqua 3 µm C18
343 125 Å. Mobile phase A and B were water + 0.1% formic acid and 80% acetonitrile + 0.1% formic acid. The elution
344 gradient started at 2% B for 5min, ramped up to 25% B for 100mins, 40%B for 20 mins, 95%B for 1 min and held

345 at 95% B for 14 mins. Data acquisition was performed using Xcalibur (version 4.3). One MS scan of m/z 400-
346 2000 was followed by 10 MS/MS scans on the most abundant ions with application of the dynamic exclusion of
347 10sec.

348

349 *Recombinant PYN Domain Expression:* As previously described¹⁸

350

351 Table S1: Compounds

Compound	Source	Catalog Number
ML385	Cayman Chemical	21114-5

352

353 Table S2: Antibodies for Western Blotting

Protein	Supplier	Catalog Number	Host Species	Dilution
NLRP3 (NBD)	Cell Signaling	15101S	Rabbit	1:1000 (BSA)
NLRP3 (PYN)	Adipogen	AG-20B-0014-C100	Mouse	1:1000 (BSA)
Tubulin	Sigma	T6557	Mouse	1:2000 (BSA)
HIS-Tag	Santa Cruz	Sc-8036	Mouse	1:1000 (BSA)
FLAG	Sigma	F1804	Mouse	1:1000 (Milk)
IL-1 β	GeneTex	GTX74034	Rabbit	1:1000 (BSA)
GFP	Abcam	Ab290	Rabbit	1:1000 (BSA)
ASC	Cell Signaling	13833S	Rabbit	1:1000 (BSA)
CASP1	Cell Signaling	3866S	Rabbit	1:1000 (BSA)
NEK7	Cell Signaling	3057S	Rabbit	1:1000 (BSA)

354

355 Table S3: qPCR Primers

Gene	Forward	Reverse
PGK1	CAAGCTGGACGTTAAAGGGA	CAAGCTGGACGTTAAAGGGA
NLRP3	GATCTCGTTGCGATCAACA	GGGATTGAAACACGTGCATTA
Pro-IL-1B	AGCTGCCAGTGAAATGATG	GGTGGTCGGAGATTCTGTAGC
NQO1	GCCTCCTTCATGGCATAGTT	GGACTGCACCAGAGCCAT
HMOX1	GAGTGTAAGGACCCATCGGA	GCCAGCAACAAAGTGCAAG
GAPDH	AATGAAGGGGTATTGATGG	AAGGTGAAGGTCGGAGTCAA
RiboPro	CGTCGCCTCCTACCTGCT	CCATTCACTGATAACCTG

356

357 **Author Contributions:**

358 C.S., R.L.W., and M.J.B. designed research; C.S., C.B., J.S., I.L., and P.B. performed research; C.S., C.B., and
359 I.L. analyzed data; and C.S., R.L.W., and M.J.B. wrote the paper.

360

361 **Acknowledgments:**

362 This work was supported by the NIH (GM146865 to MJB; DK107604 and AG046495 to RLW). We thank Alan
363 Chu (CALIBR) for providing THP1-ASC-GFP, WT THP-1, and HEK-Blue™ IL-1 β cells, Calibr at Scripps Research
364 for providing CBR-470-1 and CBR-470-2, Luke Lairson and lab members for assistance with CX5 HCS platform,
365 and Linh Truc Hoang and the Scripps Mass Spectrometry core for assistance with running and processing mass
366 spectrometry samples,

367

368 **Declaration of Interests:**

369 The authors declare no competing interests.

370

371 **References:**

372 1 Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate
373 the NALP3 inflammasome. *Nature* **440**, 237-241 (2006). <https://doi.org/10.1038/nature04516>

374 2 Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid- β . *Nature
375 Immunology* **9**, 857-865 (2008). <https://doi.org/10.1038/ni.1636>

376 3 Pike, A. F. et al. α -Synuclein evokes NLRP3 inflammasome-mediated IL-1 β secretion from primary human
377 microglia. *Glia* **69**, 1413-1428 (2021). <https://doi.org/10.1002/glia.23970>

378 4 Booshehri, L. M. & Hoffman, H. M. CAPS and NLRP3. *Journal of Clinical Immunology* **39**, 277-286 (2019).
379 <https://doi.org/10.1007/s10875-019-00638-z>

380 5 Liu, L. et al. The Pathogenic Role of NLRP3 Inflammasome Activation in Inflammatory Bowel Diseases
381 of Both Mice and Humans. *Journal of Crohn's and Colitis* **11**, 737-750 (2017).
382 <https://doi.org/10.1093/ecco-jcc/jlw219>

383 6 Yu, L. et al. The NLRP3 Inflammasome in Non-Alcoholic Fatty Liver Disease and Steatohepatitis:
384 Therapeutic Targets and Treatment. *Frontiers in Pharmacology* **13** (2022).
385 <https://doi.org/10.3389/fphar.2022.780496>

386 7 Mathews, R. J. et al. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic
387 variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-
388 TNF treatment. *Annals of the Rheumatic Diseases* **73**, 1202-1210 (2014).
389 <https://doi.org/10.1136/annrheumdis-2013-203276>

390 8 Klück, V. et al. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares:
391 an open-label, dose-adaptive, proof-of-concept, phase 2a trial. *The Lancet Rheumatology* **2**, e270-e280
392 (2020). [https://doi.org/10.1016/S2665-9913\(20\)30065-5](https://doi.org/10.1016/S2665-9913(20)30065-5)

393 9 Marchetti, C. et al. OLT1177, a β -sulfonyl nitrile compound, safe in humans, inhibits the NLRP3
394 inflammasome and reverses the metabolic cost of inflammation. *Proceedings of the National Academy
395 of Sciences* **115**, E1530-E1539 (2018). <https://doi.org/10.1073/pnas.1716095115>

396 10 Cao, J.-F. et al. Exploring the mechanism of action of dapansutrile in the treatment of gouty arthritis based
397 on molecular docking and molecular dynamics. *Frontiers in Physiology* **13** (2022).
398 <https://doi.org/10.3389/fphys.2022.990469>
399 11 (Zydus Lifesciences Ltd, www.zyduslife.com 2022).

400 12 Chen, Y. et al. RRx-001 ameliorates inflammatory diseases by acting as a potent covalent NLRP3
401 inhibitor. *Cellular & Molecular Immunology* **18**, 1425-1436 (2021). <https://doi.org/10.1038/s41423-021-00683-y>

403 13 He, H. et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. *Nature
404 Communications* **9** (2018). <https://doi.org/10.1038/s41467-018-04947-6>

405 14 Xu, H. et al. Costunolide covalently targets NACHT domain of NLRP3 to inhibit inflammasome activation
406 and alleviate NLRP3-driven inflammatory diseases. *Acta Pharm Sin B* **13**, 678-693 (2023).
407 <https://doi.org/10.1016/j.apsb.2022.09.014>

408 15 Christine Juliana, T. F.-A., Jianghong Wu, Pinaki Datta, Leobaldo Solorzano, 1Je-Wook Yu, Rong Meng,
409 Andrew A. Quong Eicke Latz, Charles P. Scott, Emad S. Alnemri. Anti-inflammatory Compounds
410 Parthenolide and Bay 11-7082 Are Direct Inhibitors of the Inflammasome. *Journal of Biological Chemistry*
411 **285**, 9792-9802 (2010).

412 16 He, Y., Varadarajan, S., Muñoz-Planillo, R., Burberry, A., Nakamura, Y., Núñez, G. 3,4-Methylenedioxy-
413 β-nitrostyrene Inhibits NLRP3 Inflammasome Activation by Blocking Assembly of the Inflammasome. *Journal of Biological Chemistry* **289**, 1142–1150 (2014). <https://doi.org/10.1074/jbc.m113.515080>

414 17 Chen, C. et al. Identification of Tubocapsanolide A as a novel NLRP3 inhibitor for potential treatment of
415 colitis. *Biochemical Pharmacology* **190**, 114645 (2021).
<https://doi.org/https://doi.org/10.1016/j.bcp.2021.114645>

416 18 Stanton, C. et al. Covalent Targeting As a Common Mechanism for Inhibiting NLRP3 Inflammasome
417 Assembly. *ACS Chemical Biology* (2024). <https://doi.org/10.1021/acschembio.3c00330>

418 19 Hooftman, A. et al. The Immunomodulatory Metabolite Itaconate Modifies NLRP3 and Inhibits
419 Inflammasome Activation. *Cell Metabolism* **32**, 468-478.e467 (2020).
<https://doi.org/10.1016/j.cmet.2020.07.016>

420 20 Sekhar, K. R., Rachakonda, G. & Freeman, M. L. Cysteine-based regulation of the CUL3 adaptor protein
421 Keap1. *Toxicology and Applied Pharmacology* **244**, 21-26 (2010).
<https://doi.org/https://doi.org/10.1016/j.taap.2009.06.016>

422 21 Ko, Y. et al. S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling.
423 *Proceedings of the National Academy of Sciences* **120** (2023). <https://doi.org/10.1073/pnas.2300763120>

424 22 Ibrahim, L. et al. Succinylation of a KEAP1 sensor lysine promotes NRF2 activation. *bioRxiv*,
425 2023.2005.2008.539908 (2023). <https://doi.org/10.1101/2023.05.08.539908>

426 23 Unni, S., Deshmukh, P., Krishnappa, G., Kommu, P. & Padmanabhan, B. Structural insights into the
427 multiple binding modes of Dimethyl Fumarate (DMF) and its analogs to the Kelch domain of Keap1. *The
428 FEBS Journal* **288**, 1599-1613 (2021). <https://doi.org/https://doi.org/10.1111/febs.15485>

429 24 Bompuzzi, R. Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: an overview.
430 *Therapeutic Advances in Neurological Disorders* **8**, 20-30 (2015).
<https://doi.org/10.1177/1756285614564152>

431 25 Blair, H. A. Dimethyl Fumarate: A Review in Moderate to Severe Plaque Psoriasis. *Drugs* **78**, 123-130
432 (2018). <https://doi.org/10.1007/s40265-017-0854-6>

433 26 Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.
434 *Nature* **556**, 113-117 (2018). <https://doi.org/10.1038/nature25986>

435 27 Robert, H. S. et al. Fumarates Promote Cytoprotection of Central Nervous System Cells against Oxidative
436 Stress via the Nuclear Factor (Erythroid-Derived 2)-Like 2 Pathway. *Journal of Pharmacology and
437 Experimental Therapeutics* **341**, 274 (2012). <https://doi.org/10.1124/jpet.111.190132>

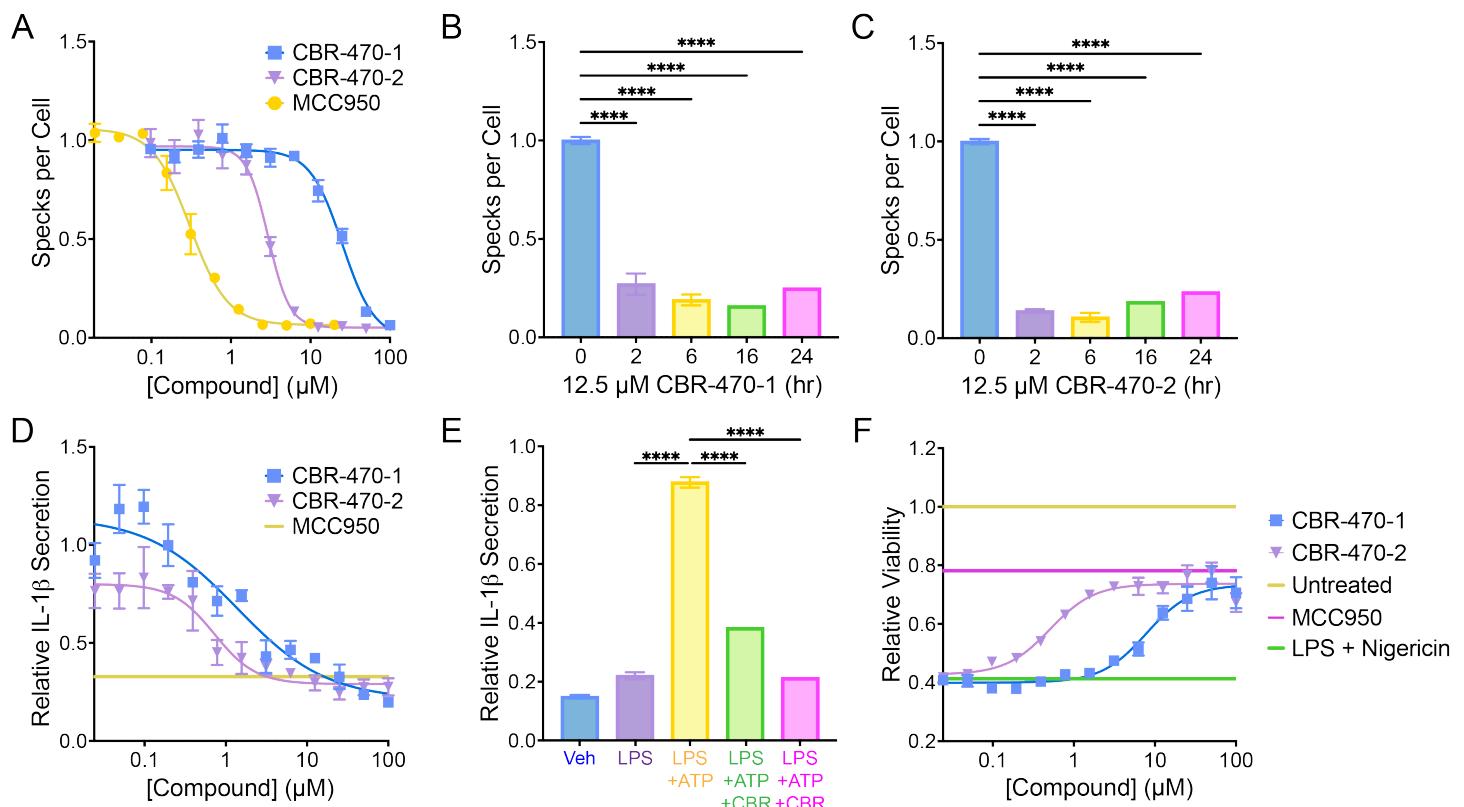
438 28 Bollong, M. J. et al. A metabolite-derived protein modification integrates glycolysis with KEAP1–NRF2
439 signalling. *Nature* **562**, 600-604 (2018). <https://doi.org/10.1038/s41586-018-0622-0>

440 29 Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative
441 stress to inflammasome activation. *Nature Immunology* **11**, 136-140 (2010).
<https://doi.org/10.1038/ni.1831>

442 30 Rushworth, S. A., MacEwan, D. J. & O'Connell, M. A. Lipopolysaccharide-Induced Expression of
443 NAD(P)H:Quinone Oxidoreductase 1 and Heme Oxygenase-1 Protects against Excessive Inflammatory
444 Responses in Human Monocytes. *The Journal of Immunology* **181**, 6730-6737 (2008).
<https://doi.org/10.4049/jimmunol.181.10.6730>

445 31 Jana, A., Joseph, M. M., Munan, S., Maiti, K. K. & Samanta, A. Highly selective chemosensor for reactive
446 carbonyl species based on simple 1,8-diaminonaphthalene. *J Photochem Photobiol B* **213**, 112076
447 (2020). <https://doi.org/10.1016/j.jphotobiol.2020.112076>

448 32 Baik, S. H. et al. Hexokinase dissociation from mitochondria promotes oligomerization of VDAC that
449 facilitates NLRP3 inflammasome assembly and activation. *Science Immunology* **8**, eade7652 (2023).
<https://doi.org/doi:10.1126/scimmunol.ade7652>


450 33 Wolf, A. J. et al. Hexokinase Is an Innate Immune Receptor for the Detection of Bacterial Peptidoglycan.
451 *Cell* **166**, 624-636 (2016). <https://doi.org/10.1016/j.cell.2016.05.076>

452 34 Zhong, W. J. et al. Inhibition of glycolysis alleviates lipopolysaccharide-induced acute lung injury in a
453 mouse model. *Journal of Cellular Physiology* **234**, 4641-4654 (2019). <https://doi.org/10.1002/jcp.27261>

454 35 Nomura, J., So, A., Tamura, M. & Busso, N. Intracellular ATP Decrease Mediates NLRP3 Inflammasome
455 Activation upon Nigericin and Crystal Stimulation. *The Journal of Immunology* **195**, 5718-5724 (2015).
<https://doi.org/10.4049/jimmunol.1402512>

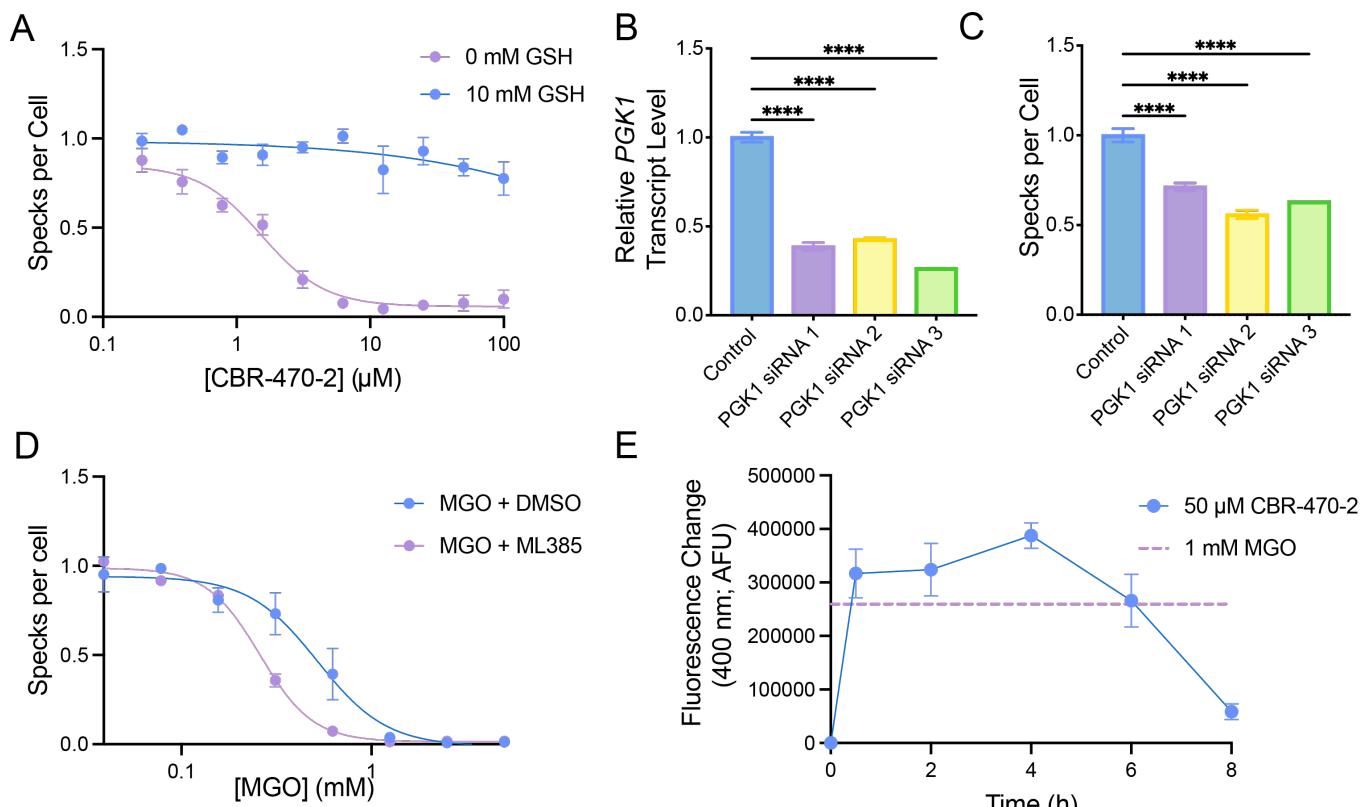
456

466

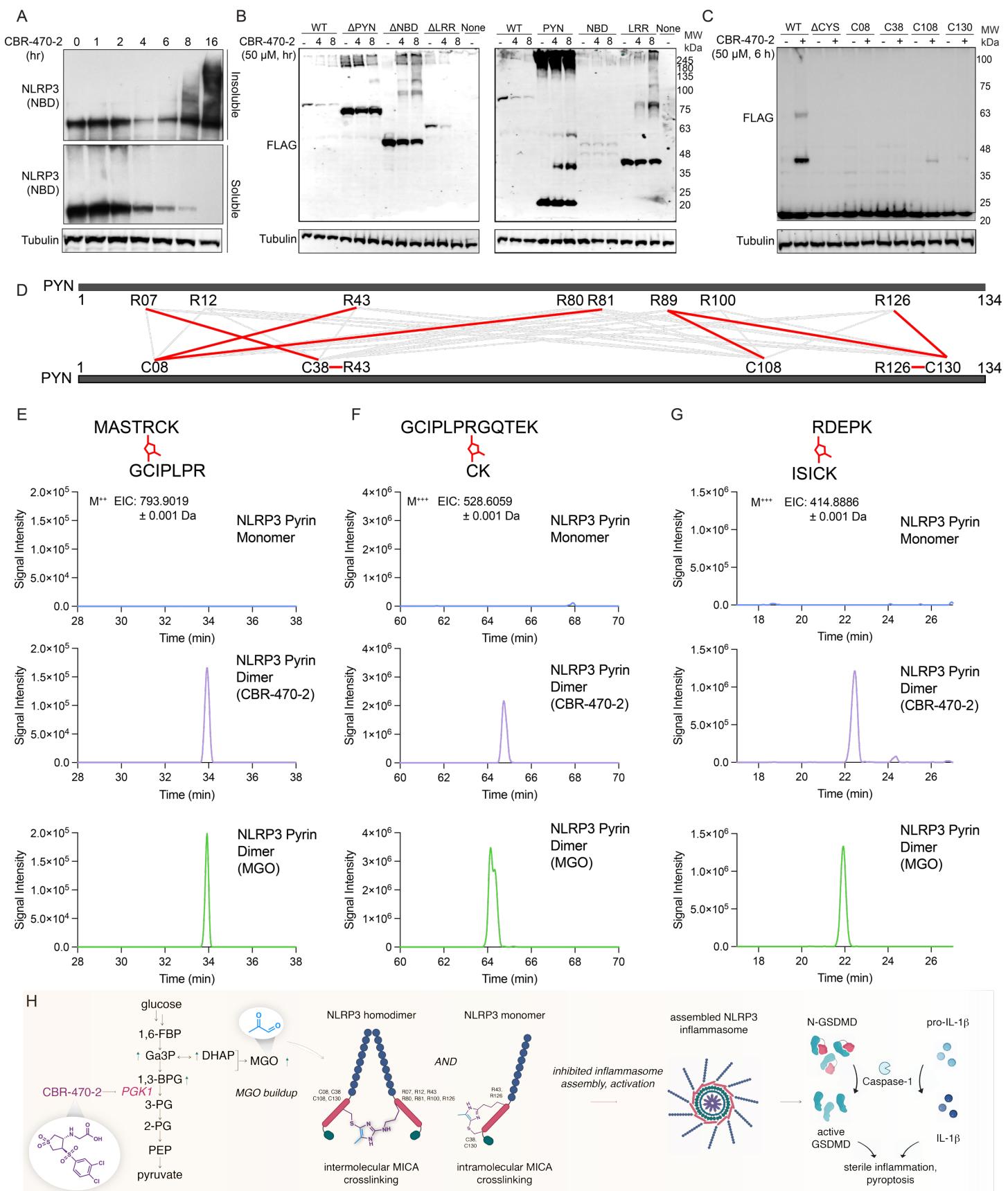
Figure 1. CBR-470 series compounds inhibit the NLRP3 inflammasome.

(A) Number of ASC-GFP specks per cell in THP1-ASC-GFP cells treated for 2 hours with the indicated concentrations of compound. Error bars show SEM for $n = 3$ replicates. (B, C) Number of ASC-GFP specks per cell in THP1-ASC-GFP cells pretreated with CBR-470-1 (B) and CBR-470-2 (C) at 12.5 μ M for 0-24 h. Error bars show SEM for $n = 3$ replicates. **** $P < 0.0001$ for ordinary one-way analysis of variance (ANOVA). (D) Relative level of secreted IL-1 β from WT THP1 cells stimulated with LPS, pretreated with MCC950 (10 μ M), CBR-470-1, or CBR-470-2, and activated with ATP. IL-1 β measured by SEAP secretion from HEK-Blue-IL-1 β reporter cells. Error bars show SEM for $n = 3$ replicates. (E) Relative level of secreted IL-1 β from primary murine dendritic cells stimulated with LPS and pretreated with 10 μ M CBR-470-1 or CBR-470-2 for 1 hr prior to addition of ATP as measured by SEAP secretion from HEK-Blue-IL-1 β reporter cells. Error bars show SD for $n = 16$ replicates. **** $P < 0.0001$ for ordinary one-way analysis of variance (ANOVA) with Tukey correction for multiple comparisons between conditions. (F) Relative viability of LPS-primed (1 μ g/mL, 16 h) WT THP1 following NLRP3-mediated pyroptotic cell death induced by Nigericin (10 μ M, 2.5 h), pretreated with CBR-470-1 and CBR-470-2 (2 h) in dose response, or with 10 μ M MCC950 (2 h). Error bars show SEM for $n = 6$ replicates.

487


488 **Figure 2. CBR-470-2 inhibition of the NLRP3 inflammasome does not rely on NRF2 activation or NF-κB
489 inhibition.**

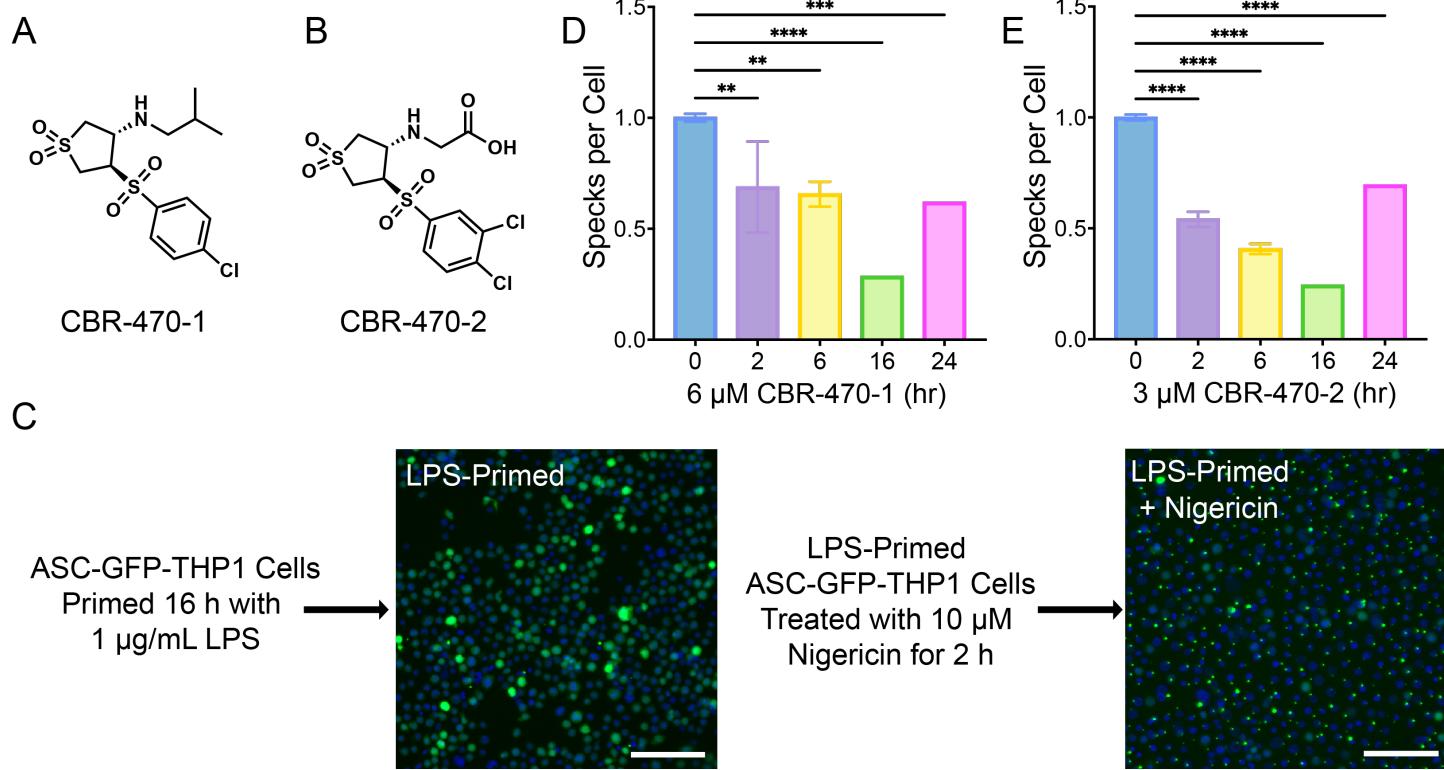
490 (A) Relative transcript level for *NQO1* as measured by qPCR from WT THP1 cells pre-treated with or without 10
491 μM ML385 for 30 min and then treated CBR-470-2 for 2 or 16 h. Error bars show SEM for n = 3 replicates. (B)
492 Number of ASC-GFP specks per cell in THP1-ASC-GFP cells pretreated with or without 10 μM ML385 for 30
493 min and then for 2 hours with CBR-470-1 and CBR-470-2. Error bars show SEM for n = 3 replicates. (C) Relative
494 viability of LPS-primed (1 μg/mL, 16 h) WT THP1 following NLRP3-mediated pyroptotic cell death induced by
495 Nigericin (10 μM, 2.5 h), pretreated with or without 10 μM ML385 for 30 min and then with CBR-470-2 (2 h) in
496 dose response, or with 10 μM MCC950 (2 h). Error bars show SEM for n = 3 replicates. (D) Relative transcript
497 levels for NF-κB target genes *NLRP3* and *IL-1β* as measured by qPCR from WT THP1 cells treated with 1 μg/mL
498 LPS for 3 hr and then 10 μM CBR-470-2 for 3 or 24 h. Error bars show SEM for n = 3 replicates. (E) Western
499 blot for NLRP3, ASC, NEK7, pro-IL-1β, IL-1β, pro-CASP1, CASP1, and Tubulin in LPS-primed THP1 cells treated
500 with vehicle or CBR-470-2 (50 μM) for 2 h. (F) Average intensity of bands of western blot in E for each protein.


501

502

503

504
505 **Figure 3. Inhibition by CBR-470 is mediated by PGK1 inhibition and accumulation of methylglyoxal.**
506 (A) Number of ASC-GFP specks per cell in THP1-ASC-GFP cells pre-treated with 0 or 10 mM GSH and then
507 treated in dose response with CBR-470-2. Error bars show SEM for n = 3 replicates. (B) Relative transcript level
508 of *PGK1* as measured by qPCR 48 hr after knockdown with siRNA targeting *PGK1* in THP1-ASC-GFP cells.
509 Error bars show SEM for n = 3 replicates (C) ASC Speck formation in THP1-ASC-GFP cells 48 hr following
510 transfection with siRNAs targeting *PGK1*. Error bars show SEM for n = 3 replicates. (D) Number of ASC-GFP
511 specks per cell in THP1-ASC-GFP cells pretreated with or without 10 μM ML385 for 30 min and then for 2 hours
512 with MGO in dose response. Error bars show SEM for n = 3 replicates. (E) Fluorescence (Ex. 355, Em. 400 nM)
513 increase from untreated baseline control for methylglyoxal level assay for lysates from THP1 cells treated with
514 50 μM CBR-470-2 for indicated time point or 1 mM MGO for 1 h. Error bars show SEM for n = 6 replicates.
515
516
517
518
519

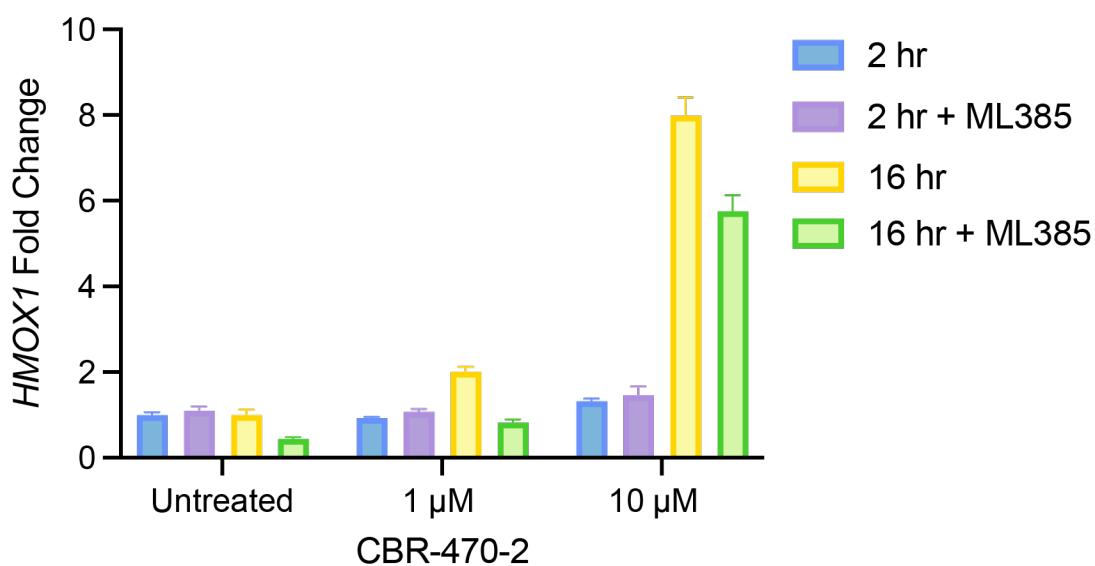


520
521

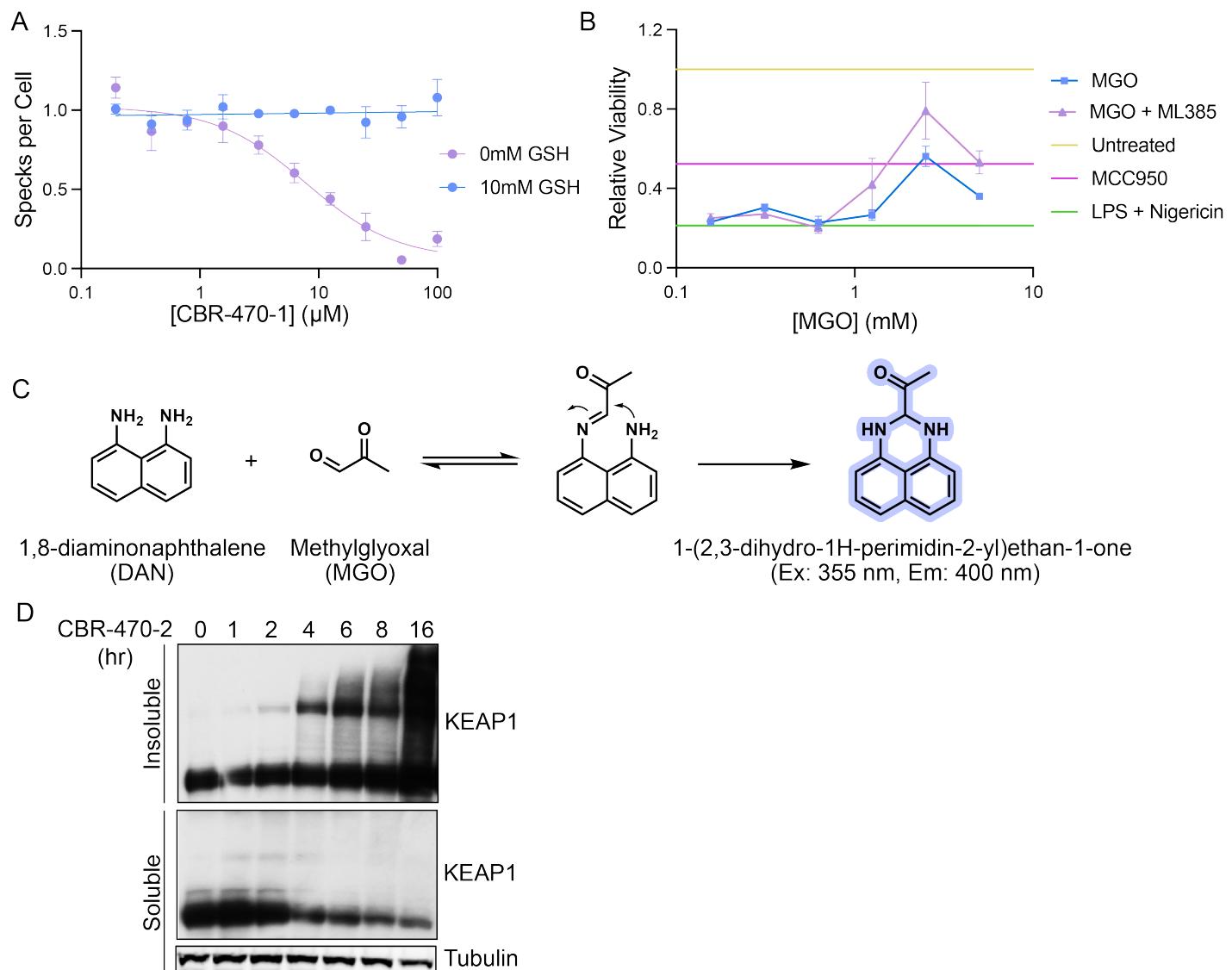
522 **Figure 4. CBR-470-2 inhibits NLRP3 through MICA crosslinks.**
 523 (A) Western blot of Soluble and Insoluble NLRP3 (NBD) and Tubulin from WT THP1 cells treated with 50 μM
 524 CBR-470-2 for 1 to 16 h. (B) Western blot for FLAG and Tubulin in HEK293T cells overexpressing the indicated
 525 FLAG-Tagged NLRP3 domain constructs treated with 50 μM CBR-470-2 for 4 or 8 h. (C) Western blot of FLAG

526 from HEK293T cells overexpressing NLRP3-FLAG PYN domain constructs with cysteines mutated and
527 individually reintroduced, treated with 50 μ M CBR-470-2 for 6 h. (D) Schematic depicting the various cysteine-
528 arginine MICA crosslinks observed within NLRP3 PYN domain (E-G) EICs from LC-MS/MS analyses of gel-
529 isolated and digested HMW-PYN (CBR-470-2 and MGO-induced) and monomeric PYN for C38-R07 (E), C08-
530 R43 (F), and C130-R89 crosslinked peptides. (H) Schematic depicting the communication between glucose
531 metabolism and the NLRP3 inflammasome mediated by MGO crosslinking of NLRP3 and inhibition of
532 inflammasome assembly.

533
534
535
536
537


538
539

540 **Supplemental Figure 1. CBR-470-1 and CBR-470-2 display time dependent inhibition at lower
541 concentrations.**

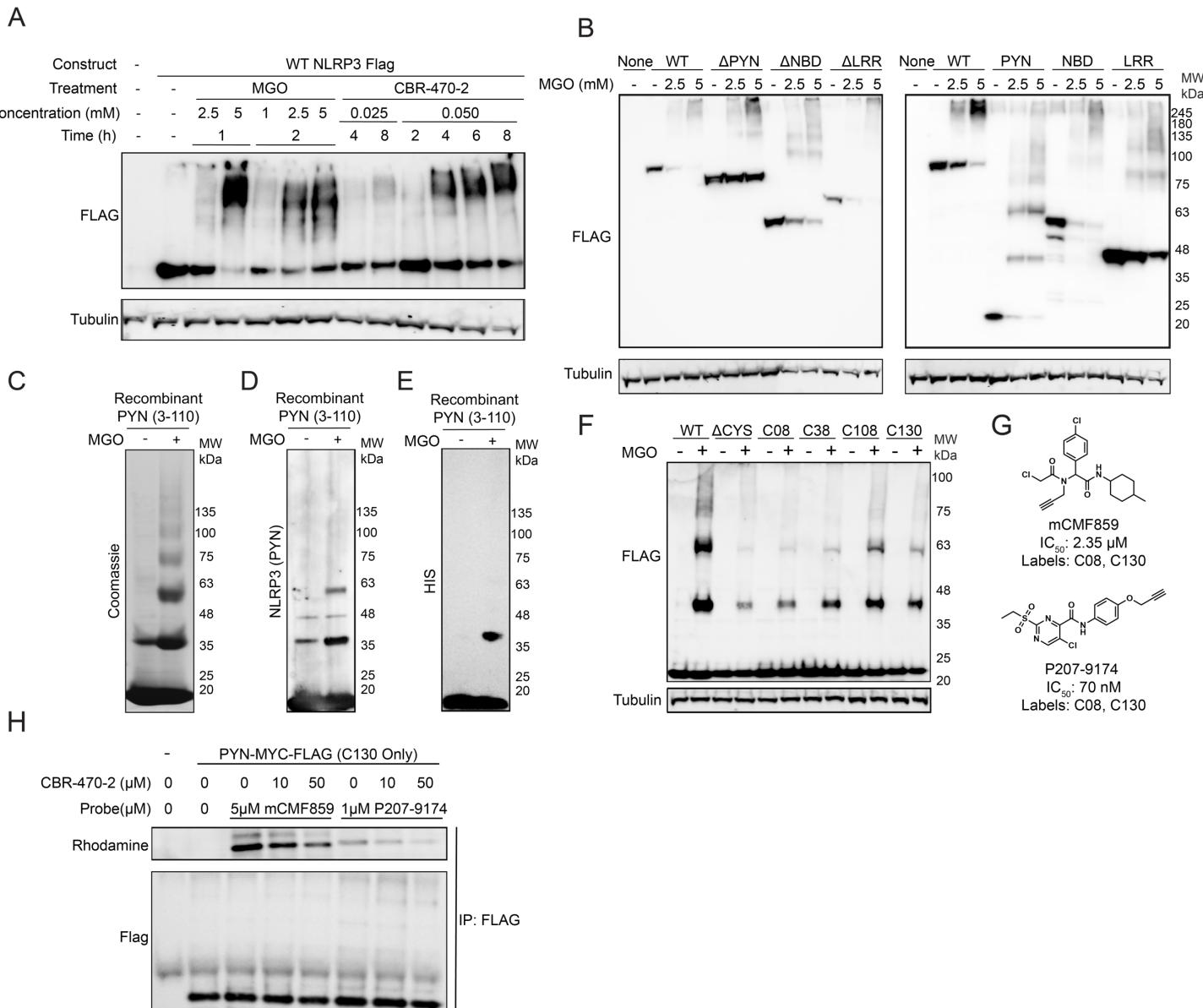

542 Structures of CBR-470-1 (A) and CBR-470-2 (B). (C) Schematic with representative images of ASC-GFP Speck
543 formation induced by LPS and Nigericin. Scale bar = 100 μ m. (D,E) Number of ASC-GFP specks per cell in
544 THP1-ASC-GFP cells pretreated with CBR-470-1 at 6 μ M (D) and CBR-470-2 at 3 μ M (E) for 0-24 h. Error bars
545 show SEM for n = 3 replicates.

546
547
548
549
550
551

A

552
553 **Supplemental Figure 2. CBR-470-2 induces NRF2 target gene expression at 16 h but not 2 h.**
554 (A) Relative transcript level for *HMOX1* as measured by qPCR from WT THP1 cells pre-treated with or without
555 10 μ M ML385 for 30min and then treated CBR-470-2 for 2 or 16 h. Error bars show SEM for n = 3 replicates.
556
557
558
559

560 561 562 Supplemental Figure 3. Inhibition or knockdown of PGK1 induces methylglyoxal accumulation.

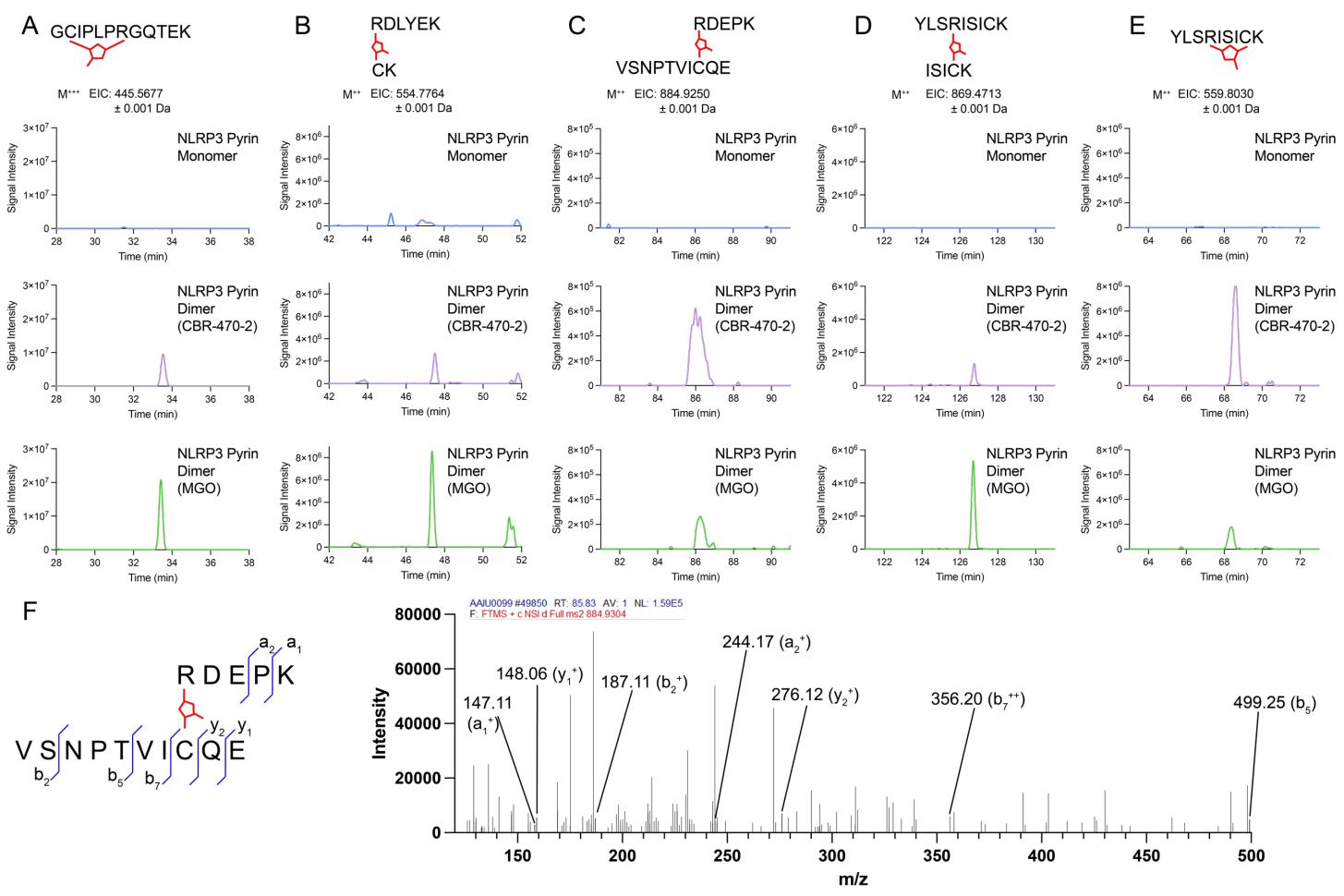

563 (A) Number of ASC-GFP specks per cell in THP1-ASC-GFP cells pre-treated with 0 or 10 mM GSH and then
 564 treated in dose response with CBR-470-1. Error bars show SEM for $n = 3$ replicates. (B) Relative viability of LPS-
 565 primed (1 μ g/mL, 16 h) WT THP1 following NLRP3-mediated pyroptotic cell death induced by Nigericin (10 μ M,
 566 2.5 h), pretreated with or without 10 μ M ML385 for 30 min and then with MGO (2 h) in dose response, or with 10
 567 μ M MCC950 (2 h). Error bars show SEM for $n = 3$ replicates. (C) 1,8-Diaminonaphthalene reaction with MGO to
 568 form fluorescent compound. (D) Western blot of soluble and insoluble KEAP1 and Tubulin from WT THP1 cells
 569 treated with 50 μ M CBR-470-2 for 1 to 16 h.

570

571

572

573



574
575

576 **Supplemental Figure 4. CBR-470-2 and MGO induce covalent crosslinks of NLRP3 Pyrin domain**
577 **cysteines.**

578 (A) Western blot for FLAG and Tubulin in HEK293T cells overexpressing the indicated FLAG-Tagged NLRP3
579 treated with CBR-470-2 or MGO at the indicated concentrations and timepoints. (B) Western blot for FLAG and
580 Tubulin in HEK293T cells overexpressing the indicated FLAG-Tagged NLRP3 domain constructs treated with 0,
581 2.5 or 5 mM MGO for 1 h. (C-E) Coomassie Blue stain (C) or Western blots of NLRP3 (PYN) (D) and HIS-TAG
582 (E) from recombinant NLRP3 PYN (3-110, C08S, C38S) treated with 5 mM MGO at 4 °C for 1 h. (F) Western
583 blot of FLAG from HEK293T cells overexpressing NLRP3-FLAG PYN domain constructs with cysteines mutated
584 and individually reintroduced, treated with or without 5 mM MGO for 1 h. (G) Structures and activities of
585 mCMF859 and P207-9174. (H) Anti-FLAG Western blot and rhodamine imaging of FLAG immunoprecipitated
586 material after in situ treatment of HEK293T cells expressing FLAG-tagged PYN domain C130 only construct
587 treated with CBR-470-2 (6h) and then 1 μ M P207-9174 or 5 μ M mCMF859 (1 h).

588
589

590
591

592 **Supplemental Figure 5. CBR-470-2 and MGO induce MICA crosslinks among NLRP3 PYN domains.**
 593 (A-E) EICs from LC-MS/MS analyses of gel-isolated and digested HMW-PYN (CBR-470-2 and MGO-induced)
 594 and monomeric PYN for intramolecular C38-R43 (A), C08-R81 (B), C108-R89 (C), intermolecular C130-R126
 595 (D), and intramolecular C130-R126 (E) crosslinked peptides. (F) Annotated MS2 spectrum from the crosslinked
 596 C108-R89 PYN peptide.