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ABSTRACT 

Functional brain connectivity measures extracted from resting-state functional magnetic resonance 

imaging (fMRI) scans have generated wide interest as potential noninvasive biomarkers. In this 

context, performing global signal regression (GSR) as a preprocessing step remains controversial. 

Specifically, while it has been shown that a considerable fraction of global signal variations is 

associated with physiological and motion sources, GSR may also result in removing neural 

activity. Here, we address this question by examining the fundamental sources of resting global 

signal fluctuations using simultaneous electroencephalography (EEG)-fMRI data combined with 

cardiac and breathing recordings. Our results suggest that systemic physiological fluctuations 

account for a significantly larger fraction of global signal variability compared to 

electrophysiological fluctuations. Furthermore, we show that GSR reduces artifactual connectivity 

due to heart rate and breathing fluctuations, but preserves connectivity patterns associated with 

electrophysiological activity within the alpha and beta frequency ranges. Overall, these results 

provide evidence that the neural component of resting-state fMRI-based connectivity is preserved 

after the global signal is regressed out. 
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1. INTRODUCTION 

Studying the brain at rest has become a powerful tool towards revealing intrinsic characteristics of 

functional brain organization. Even in the absence of overt behaviour, brain activity fluctuates in 

an organized fashion in the form of large-scale brain networks that resemble those observed during 

behavioral tasks (Biswal et al., 1995; Fox and Raichle, 2007; Gratton et al., 2018; Smith et al., 

2009). Functional magnetic resonance imaging (fMRI) has been widely used for studying the 

resting-state activity of temporally correlated and spatially distributed brain regions, and has 

shown promise to uncover mechanisms underlying neurological disorders (Gratton et al., 2019; 

Kassinopoulos et al., 2021; Xia et al., 2018). However, the blood-oxygenated level dependent 

(BOLD) signal typically employed in fMRI studies is only partially attributed to neural activity. 

Specifically, it has been shown that BOLD signal fluctuations are also driven by thermal noise as 

well as physiological and motion artifacts (Liu, 2016; Murphy et al., 2013).  

The BOLD fMRI signal relies on changes in local cerebral blood flow (CBF) to detect neural 

activity, which constitutes an important caveat, as several additional processes may induce 

fluctuations in CBF.  These include changes in heart rate and breathing patterns (Birn et al., 2006; 

Shmueli et al., 2007), variations in CO2 (Prokopiou et al., 2019; Wise et al., 2004), as well as 

arterial blood pressure (Whittaker et al., 2019a). Furthermore, the neurally driven fraction of the 

BOLD fMRI signal is not a direct measurement of neural activity, but an indirect measurement 

determined by neurovascular coupling mechanisms (Iadecola, 2017; Logothetis, 2008; Logothetis 

et al., 2001). It is also worth noting that the characteristics of physiological response functions that 

describe the dynamic effects of the aforementioned physiological signals (heart rate, respiration, 

arterial CO2 etc.) on the fMRI signal are highly similar to those of the hemodynamic response 

function (Prokopiou et al., 2022; Wu and Marinazzo, 2016), which further complicates 

disentangling the neural and physiological fMRI signal sources.  

The aggregate nature of the BOLD fMRI signal described above renders the removal of its non-

neural components a crucial and challenging task, which is particularly exacerbated in resting-

state studies, where there is no a priori assumption for the temporal pattern of the underlying 

neural activity. Although there have been many advances in resting-state fMRI denoising 

(Caballero-Gaudes and Reynolds, 2017; Ciric et al., 2018), there is still no gold standard for 

resting-state fMRI preprocessing. In particular, global signal regression (GSR), which involves 
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regressing out the average fMRI signal across the whole brain (global signal) from every voxel, 

has been proposed as a pre-processing step (Aguirre et al., 1998; Fox et al., 2009; Macey et al., 

2004). Yet, as the processes underpinning the global signal are still poorly understood, GSR has 

turned out to be one of the most contentious preprocessing steps in fMRI denoising (Liu et al., 

2017; Murphy and Fox, 2017; Power et al., 2017a). The rationale behind GSR is that the global 

signal mostly encompasses non-neuronal processes arising from physiological sources, head 

motion and scanner artifacts (Kassinopoulos and Mitsis, 2021; Power et al., 2017b). Therefore, 

GSR represents an effective data-driven approach for removing these global fluctuations, as they 

may result in artifactual functional connectivity patterns (Burgess et al., 2016; Ciric et al., 2017; 

Parkes et al., 2018; Xifra-Porxas et al., 2020). Indeed, GSR has been shown to increase the 

similarity of functional connectivity estimates across modalities (Keller et al., 2013). In addition, 

recent studies have reported that GSR improves the identifiability of well-established resting-state 

networks (Kassinopoulos and Mitsis, 2022), connectome fingerprinting accuracy (Xifra-Porxas et 

al., 2021), as well as the association between resting-state functional connectivity and behavioral 

measures (Li et al., 2019b), which suggests the potential benefits of performing GSR. 

Yet, there is also converging evidence from simultaneous electrophysiological-fMRI studies that 

neural activity is linked to the global signal. Earlier investigations, albeit not directly examining 

the global signal, showed that fluctuations in local field potentials exhibited fairly widespread 

correlations with fMRI activity over the macaque brain (Scholvinck et al., 2010). More recently, 

fluctuations of the global signal have been linked to electrophysiological indices of arousal (C. W. 

Wong et al., 2016; Wong et al., 2013) and glucose metabolism (Thompson et al., 2016). 

Furthermore, global resting-state fluctuations were found to at least partially stem from the basal 

forebrain (Liu et al., 2018; Turchi et al., 2018). Gutierrez-Barragan and colleagues showed that 

brain states occur at specific phases of global fMRI signal fluctuations in the mouse brain 

(Gutierrez-Barragan et al., 2019). Finally, individual variations in global signal topography have 

been associated with behavioral measures (Li et al., 2019a). All these reports suggest that GSR 

may remove neuronal-related fluctuations of interest in functional connectivity studies. 

Until now, the vast majority of studies investigating the processes underpinning the global signal 

have probed its physiological or neural origins separately. The neurally-related fraction of the 

global signal has been associated to fluctuations in arousal and vigilance, likely regulated by the 
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autonomic nervous system (Oken et al., 2006; Olbrich et al., 2011). However, these apparent 

neural fluctuations could also be associated with changes in systemic physiological quantities such 

as heart rate and breathing, which can in turn influence the fMRI signal. Hence, there is potentially 

a closed loop path through which neural autonomic activity indirectly contributes to the global 

signal through changes in physiological signals. Overall, the above observations suggest that 

physiological and neural processes should be simultaneously taken into consideration to fully 

elucidate the nature of the resting-state global signal, as well as quantify the extent to which neural 

and physiological mechanisms generate similar or distinct contributions to global signal 

fluctuations. 

While GSR is a more prevalent technique in resting-state studies, it was originally developed for 

task-based studies (Zarahn et al., 1997), and it is still frequently applied in this setting (e.g. (Finn 

et al., 2015; Marek et al., 2018)). Glasser et al. (2018) found that application of GSR to task fMRI 

data led to reduced statistical sensitivity for detecting activations, suggesting that the global signal 

in task-based studies contains relevant neural signal. However, the contributions of neurally-

related fluctuations to the global signal during behavioral tasks have not yet been elucidated, as 

previous simultaneous electrophysiological-fMRI investigations of the global signal only 

examined resting-state conditions. 

In the present study, we used simultaneously acquired electroencephalography (EEG)-fMRI data, 

as well as physiological recordings (heart rate and respiration), to quantify the unique and shared 

contributions of physiological and neural processes to the global fMRI signal, both at rest and 

during a hand-grip task. Furthermore, we generated two synthetic fMRI datasets that consisted of 

systemic and electrophysiological fluctuations, respectively, and evaluated the similarity between 

connectivity estimates extracted from the synthetic and experimental fMRI datasets. This allowed 

us to examine the effects of GSR on connectivity estimates and address explicitly whether 

eliminating the bias introduced by physiological processes inadvertently removes connectivity 

patterns related to electrophysiological activity. 
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2. MATERIALS AND METHODS 

2.1 Participants 

A total of 12 healthy volunteers (25.1 ± 2.9 years; 4 female) participated in the study. All subjects 

were right-handed according to the Edinburgh Handedness Inventory (Oldfield, 1971) and had no 

history of neurological or psychiatric disorders. The study was approved by the McGill University 

Ethical Advisory Committee. All participants signed a written informed consent and were 

compensated for their participation. 

2.2 Experimental paradigm 

The protocol carried out inside the MR scanner consisted of two 15-min resting-state runs, with a 

hand-grip task interleaved between them (Figure 1a). During the resting-state periods, subjects 

were instructed to stare at a white fixation cross displayed on a dark background and not to think 

of anything in particular.  After the first rest period, the maximum voluntary contraction (MVC) 

was obtained for each participant, using the same hand gripper subsequently employed for the 

motor task. The motor task was a unimanual isometric right hand-grip, during which the subjects 

had to apply force to track a ramp target as accurately as possible (Larivière et al., 2019; Xifra-

Porxas et al., 2019). At the onset of the trial, an orange circle appeared on the screen, and the 

subjects had 2 s to increase their force to reach a white target block at 15% of their MVC. This 

force was held for 3 s. Following this, participants tracked a linear increase of the force to reach 

30% of their MVC over a 3-s period, during which they had to maintain the circle inside the white 

target block, followed by a 3-s hold at 30% of their MVC (Figure 1b). A single trial lasted 11 s 

and the inter-trial interval was jittered between 3 and 5 s, during which subjects stared at a white 

cross. The task consisted of 50 trials, resulting in a total duration of about 13 min.  

2.3 Data acquisition: EEG-fMRI data and physiological recordings 

All experiments were conducted at the McConnell Brain Imaging Centre (BIC) of the Montreal 

Neurological Institute (MNI), McGill University, using a 3T Siemens MAGNETOM Prisma fit 

MRI scanner (Siemens AG, Germany). A 32-channel head coil was used to acquire whole-brain 

T2*-weighted functional gradient echo planar (EPI) data (3×3×4 mm3 voxels, TR=2120 ms, 

TE=30 ms, flip angle=90°, FOV=192×192 mm2, anterior-posterior phase encoding direction). 
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Volumes were recorded in 35 transverse slices in descending order. A high-resolution structural 

volume was also acquired using a T1-weighted magnetization-prepared rapid acquisition gradient 

echo (MPRAGE) sequence (TR=2300 ms, TE=2.32 ms, flip angle=8°, FOV=240×240 mm2, 0.9 

mm3 isotropic voxels). 

EEG data were simultaneously recorded with an MR-compatible 64-channel system with Ag/AgCl 

ring-type electrodes (BrainAmp MR, Brain Products GmbH, Germany), sampled at 5000 Hz. 

Electrode impedances were maintained below 20 kΩ. An equidistant electrode layout was used 

with AFz and Cz as ground and online recording reference, respectively. The EEG acquisition 

clock was synchronised with the MR scanner clock through a device that sent triggers to the EEG 

recording system every time an fMRI volume was acquired (TriggerBox, Brain Products GmbH, 

Germany). The electrodes were precisely localized using a 3-D electromagnetic digitizer 

(Polhemus Isotrack, USA). 

Cardiac and breathing measurements were continuously recorded throughout the experiment using 

a pulse oximeter and respiratory belt (BIOPAC Systems, Inc., USA). An MR-compatible hand 

clench dynamometer (BIOPAC Systems, Inc., USA) was used to measure the subjects’ hand-grip 

Figure 1. (a) Experimental paradigm. Participants underwent two resting-state scans with eyes open, alternated by 

a motor task. The maximum voluntary contraction (MVC) of each participant was measured before performing the 

motor task. (b) Hand-grip task. Participants performed a unimanual right hand-grip task. During each trial, they 

initially fixated on a crosshair for a few seconds. This was followed by the appearance of an orange circle on the 

screen, whereby participants had 2 s to apply force to reach 15% of their MVC. A steady grip was then maintained 

for 3 s, which was followed by a guided ramp period where participants had to apply force to reach 30% of their MVC 

and sustain this grip strength for another 3 s. 
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strength during the motor paradigm. The pulse oximeter, respiratory belt and dynamometer were 

connected to an MP150 data acquisition system (BIOPAC Systems, Inc., USA) from which the 

signals were transferred to a computer, sampled at 1000 Hz. 

2.4 Preprocessing 

2.4.1 fMRI data 

The fMRI data were preprocessed using FSL (Jenkinson et al., 2012). Automated brain extraction 

using BET, motion correction via volume realignment using MCFLIRT, spatial smoothing (5 mm 

FWHM Gaussian kernel) and high-pass temporal filtering (100 s cutoff) were performed. 

Additional preprocessing included motion censoring based on the frame-wise displacement (FD) 

and root mean square intensity change of BOLD signal across the whole brain (DVARS) measures 

(Power et al., 2012). Motion censoring was applied by discarding volumes with FD>0.25 mm or 

when DVARS exceeded its median absolute deviation by a factor of 3, as well as their adjacent 

volumes. Volumes with subthreshold values of FD and DVARS were also discarded if they were 

preceded and followed by flagged volumes. All scans from one participant were excluded from 

the analysis, since more than 40% of volumes were identified as being contaminated by motion. 

Therefore, results from a total of 11 subjects are presented below. The censored fMRI data were 

co-registered to each subject's structural image and normalized to MNI space (2 mm). 

Subsequently, the preprocessed data were parcellated into 300 regions of interest (ROIs) using the 

Seitzman atlas (Seitzman et al., 2020). ROIs that were not assigned to any large-scale network in 

previous studies were disregarded, hence a total of 285 ROIs were used for further analyses. White 

matter denoising using principal component analysis (PCA) was applied to the parcellated data to 

mitigate the effects of head motion not corrected by motion censoring as well as the effects of 

cardiac pulsatility and breathing-related motion (Behzadi et al., 2007; Kassinopoulos and Mitsis, 

2022; Muschelli et al., 2014). Specifically, 10 white matter PCA components were removed from 

the data, as this number was found to maximize the functional connectivity contrast (FCC; Figure 

2), which is a quality control metric for evaluating the identifiability of well-established large-
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scale networks (Kassinopoulos and Mitsis, 2022). Finally, when assessing the effects of GSR, the 

PCA components and global signal were simultaneously regressed out.  

Figure 2. Optimal number of PCA white matter components used for fMRI denoising. (a) Calculation of the 

functional connectivity contrast (FCC) measure, which quantifies the difference in correlation values among edges 

within and between-networks and serves in assessing the identifiability of well-established large-scale networks. (b-

d) Group-averaged FCC measure as a function of the number of white matter PCA components used for denoising for 

(b) resting-state 1, (c) motor task, and (d) resting-state 2. The black line denotes mean across subjects and the shaded 

area denotes standard error. Based on these traces, 10 PCA components were used for denoising, as this number 

yielded a high FCC value for all three conditions. 
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2.4.2 EEG data 

EEG data were corrected offline for gradient and ballistocardiogram (BCG) artifacts using sliding 

average template subtraction in BrainVision Analyzer 2 (Brain Products GmbH, Germany). The 

data were subsequently downsampled to 200 Hz and further preprocessed using independent 

component analysis to remove remaining non-neural components such as ocular and muscle 

artifacts, as well as gradient and BCG residuals. The preprocessed data were re-referenced using 

the average signal from all channels. 

Time-frequency spectrograms were calculated for each EEG channel using Morlet wavelets and a 

global spectrogram was obtained by taking the root mean square of all spectra across all channels. 

Then, we extracted the instantaneous power time-series through averaging of the global 

spectrogram within the following frequency bands: delta (1.5-4 Hz), theta (4-8 Hz), alpha (8-15 

Hz) and beta (15-26 Hz). These global EEG power time-series were subsequently convolved with 

a canonical double-gamma haemodynamic response function and downsampled to the frequency 

of image volume sampling (TR=2.12 s). The censored frames flagged during fMRI preprocessing 

were removed from the convolved EEG power time-series. 

2.4.3 Physiological recordings 

Beat-to-beat intervals were detected from the pulse oximeter signal, and the heart rate signal was 

computed as the inverse of the time differences between pairs of adjacent peaks and converted to 

beats-per-minute (bpm). Heart rate traces were visually examined to identify outliers, and an 

outlier replacement filter was used to eliminate spurious changes in heart rate. The breathing signal 

from the respiratory belt was detrended linearly, visually inspected and corrected for outliers using 

a replacement filter, low-pass filtered at 5 Hz, and z-scored. The respiratory flow, proposed in 

Kassinopoulos and Mitsis (2019) as a robust measure of the absolute flow of inhalation and 

exhalation of a subject at each time point, was extracted by further smoothing the breathing signal 

(moving average filter using a 1.5 sec window) and computing the square of the derivative of the 

smoothed breathing signal. Both heart rate and respiratory flow signals were resampled to 10 Hz.  

Following this, we modelled the effect of systemic low-frequency oscillations (SLFOs) associated 

with heart rate and breathing patterns using a recently developed method that computes scan-

specific physiological response functions (PRFs) (Kassinopoulos and Mitsis, 2019; scripts 

available on https://github.com/mkassinopoulos/PRF_estimation/). Briefly, this algorithm 
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estimates PRF curves so that the convolution between heart rate and respiratory flow with their 

corresponding PRFs optimizes the fit on the global signal of the same scan, while ensuring that 

the shapes of the PRF curves are physiologically plausible. The heart rate and respiratory flow 

were convolved with their respective PRFs and added to obtain a time-series that reflects the total 

effect of SLFOs. 

2.5 Data analysis 

We initially quantified the variance of the fMRI global signal explained by SLFOs and EEG power 

using partial correlation. Specifically, the contribution of SLFOs to the global signal was computed 

controlling for the EEG power time-series and vice versa. To assess the significance of these 

contributions to the global signal, surrogate data were generated via inter-subject surrogates 

(Lancaster et al., 2018), using physiological and EEG power time-series from different subjects. 

The contributions obtained using the experimental data from the same subject were compared to 

the ones obtained from the surrogate data using the Wilcoxon rank-sum test. The significance level 

was set to 0.05, and the p-values for the EEG bands were adjusted for multiple comparisons using 

the false discovery rate (FDR) method. 

In addition, we generated three synthetic fMRI datasets, namely the SLFOs synthetic fMRI, alpha 

power synthetic fMRI, and beta power synthetic fMRI, following the framework employed in 

Xifra-Porxas et al. (2021). In brief, the ROI fMRI time-series 𝑦(𝑡) in each of the 285 atlas-based 

ROIs was modelled using multiple linear regression, as follows: 

𝑦(𝑡) = 𝛽0 + 𝛽𝑆𝐿𝐹𝑂𝑠𝑥𝑆𝐿𝐹𝑂𝑠(𝑡) + 𝛃𝐸𝐸𝐺𝐱𝐸𝐸𝐺(𝑡) + 𝛃𝑃𝐶𝐴_𝑊𝑀𝐱𝑃𝐶𝐴_𝑊𝑀(𝑡) + 𝜀(𝑡) (1) 

𝛃𝐸𝐸𝐺 = [𝛽𝑑𝑒𝑙𝑡𝑎 𝛽𝑡ℎ𝑒𝑡𝑎 𝛽𝑎𝑙𝑝ℎ𝑎 𝛽𝑏𝑒𝑡𝑎],  𝛃𝑃𝐶𝐴_𝑊𝑀 = [𝛽𝑝𝑐𝑎1 ⋯ 𝛽𝑝𝑐𝑎10]  

𝐱𝐸𝐸𝐺(𝑡) =

[
 
 
 
𝑥𝑑𝑒𝑙𝑡𝑎(𝑡)

𝑥𝑡ℎ𝑒𝑡𝑎(𝑡)

𝑥𝑎𝑙𝑝ℎ𝑎(𝑡)

𝑥𝑏𝑒𝑡𝑎(𝑡) ]
 
 
 

,   𝐱𝑃𝐶𝐴_𝑊𝑀(𝑡) = [

𝑥𝑝𝑐𝑎1(𝑡)

⋮
𝑥𝑝𝑐𝑎10(𝑡)

] 

 

where 𝑥𝑆𝐿𝐹𝑂𝑠(𝑡) is the physiological regressor related to SLFOs, 𝐱𝐸𝐸𝐺(𝑡) are the four EEG power 

time-series, 𝐱𝑃𝐶𝐴_𝑊𝑀(𝑡) are the 10 PCA components extracted from white matter, 

{𝛽0, 𝛽𝑆𝐿𝐹𝑂𝑠, 𝛃𝐸𝐸𝐺 , 𝛃𝑃𝐶𝐴_𝑊𝑀} are the unknown parameters estimated from the data, and 𝜀 is the 

error. Then, for each of the three processes of interest (i.e. SLFOs, alpha and beta EEG power), a 

synthetic dataset was constructed where the fluctuations attributed to the corresponding process 
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were retained while the remaining fraction of fluctuations was replaced with an uncorrelated 

random signal of equal amplitude (Xifra-Porxas et al., 2021). We only considered the alpha and 

beta power among the EEG bands because they were found to be the only ones contributing to the 

global signal (Figure 3; p < 0.05). 

We then computed the static functional connectivity matrices (i.e. pairwise correlations between 

time-series of all ROIs) for the following three experimental datasets: raw experimental fMRI, 

preprocessed experimental fMRI without GSR, and preprocessed experimental fMRI with GSR; 

as well as for the three synthetic datasets: SLFOs synthetic fMRI, alpha power synthetic fMRI, 

and beta power synthetic fMRI. Finally, we quantified the similarity between the SLFOs, alpha 

power and beta power connectivity matrices with respect to the fMRI connectivity matrices at 

different preprocessing stages, by computing the correlations between their upper triangular 

values. The derived correlations were utilized to assess the effect of GSR on the similarity between 

SLFOs and fMRI connectivity, as well as EEG power and fMRI connectivity. 
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3. RESULTS 

3.1 Association of SLFOs and EEG power with the fMRI global signal 

In line with previous studies (Birn et al., 2006; Kassinopoulos and Mitsis, 2019; Power et al., 

2017a; Shmueli et al., 2007), SLFOs were strongly correlated with the global signal, both at rest 

and during the motor task (Figure 3). Regarding the EEG bands, alpha power was negatively 

correlated with the global signal both at rest and during the motor task (Figure 3), and beta power 

was negatively correlated with the global signal during the motor task (Figure 3b). Illustrative 

individual time series from representative subjects can be found in Supp. Fig. 1. It is worth noting 

that the correlation strength of alpha and beta fluctuations with the global signal, albeit significant, 

was considerably weaker compared to the correlation between SLFOs and the global signal. The 

mean correlation value across subjects for the full model containing both SLFOs and significant 

EEG power bands was equal to 0.64 ± 0.12 (resting-state 1), 0.64 ± 0.09 (motor task), and 

0.59 ± 0.09 (resting-state 2). Moreover, alpha power fluctuations were found to be negatively 

correlated with SLFOs (𝑅 = −0.09, 𝑝 = 0.02) during resting-state 1. This correlation vanished 

when alpha fluctuations and SLFOs were controlled for global signal fluctuations (R=0.02, 

p=0.84), which may suggest a common component between those two variables that is reflected 

on the global signal, possibly reflecting a direct or indirect effect of autonomic activity. Yet, we 

were unable to replicate this result during the motor task or resting-state 2 (i.e. alpha power was 

Figure 3. Partial correlation of SLFOs and EEG power time-series with the fMRI global signal across subjects 

for (a) resting-state 1, (b) motor task, and (c) resting-state 2. Significance testing was performed against surrogate 

data (Wilcoxon rank-sum test, * p < 0.05, ** p < 0.001). The p-values for the four EEG bands were corrected for 

multiple comparisons using FDR. SLFOs were highly correlated with the global signal, whereas alpha and beta power 

fluctuations were found to be weakly correlated with global signal variations. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.18.590163doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.18.590163
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

not significantly correlated with SLFOs). Finally, delta and theta power fluctuations did not yield 

a consistent contribution to the global signal across subjects for any of the scans. 

3.2 Effect of GSR on connectome patterns associated with SLFOs and EEG 

power fluctuations 

For each subject and scan, connectivity matrices were derived using the synthetic dataset generated 

from SLFOs, enabling us to identify the connectivity edges more prone to exhibit artifactual 

connectivity attributable to SLFOs. We found that fluctuations due to SLFOs artifactually 

increased the connectivity across most brain networks and particularly within the visual network, 

as well as between the visual network and other brain networks (Figure 4a), consistent with 

previous observations using a larger cohort (Xifra-Porxas et al., 2021). Furthermore, the effect of 

SLFOs on the visual network were found to be spatially homogeneous at rest, whereas during the 

motor task, some edges were more affected than others (Figure 4a). Consistent with our earlier 

study (Xifra-Porxas et al., 2021), WM denoising led to a significant reduction in similarity between 

the SLFOs’ and the fMRI connectivity matrices both at rest and during the motor task (Figure 4b; 

p < 0.001). Further, GSR yielded a small additional reduction in similarity for all three scans (p < 

0.05). This result supports the extensive evidence that, at least with respect to mitigating nuisance 

processes, GSR is effective. 

Subsequently, we sought to determine whether applying GSR also removed substantial EEG power 

fluctuations. First, we derived connectivity matrices using the fMRI synthetic datasets generated 

using the BOLD fluctuations attributed to alpha and beta power activity, thus highlighting the 

edges underpinning connectivity patterns of likely neural origin. At rest, alpha power variations 

mostly contributed to connectivity within the visual network and dorsal attention network as well 

as between these two networks (Figure 5a). On the other hand, during the motor task, alpha power 

variations mostly contributed to connectivity within the default mode network (Figure 5a), 

whereas beta power variations mainly contributed to connectivity within some edges of the visual 

network (Figure 5c).  

Finally, we evaluated whether performing GSR on the preprocessed fMRI data significantly 

removed the connectivity signature of these neural processes. To do this, we compared the 

similarity of the connectome patterns associated with EEG activity with the connectivity patterns 
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of the three experimental fMRI datasets. WM denoising was found to increase the similarity 

between modalities for all scans (Figure 5b & 5d; p < 0.05). As seen in Figure 5b & 5d, GSR 

did not have any significant effect on the similarity between the EEG-related connectivity 

signatures and fMRI connectivity matrices, neither for alpha nor beta power variations. 

 

  

Figure 4. Effect of GSR on connectome patterns induced by SLFOs. (a) Group averaged FC matrices computed 

using the synthetic dataset associated with systemic low frequency fluctuations (SLFOs) for each scan. (b) Similarity 

between the SLFOs’ FC matrices and the FC matrices extracted from the raw data, the preprocessed data (after 

regressing out 10 PCA white matter components; WM10), and the preprocessed data after global signal regression 

(WM10 & GSR). While WM regression reduced the similarity between the raw and SLFOs connectivity matrices, 

suggesting a reduction in connectivity bias, GSR further reduced this similarity significantly (Wilcoxon rank-sum 

test, * p < 0.05, ** p < 0.005). Error bars denote standard deviation. 
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Figure 5. Effect of GSR on connectome patterns associated with EEG power. (a) Group averaged FC matrices 

computed using the fMRI synthetic dataset associated with fluctuations in alpha power, for each scan. (b) Similarity 

between the alpha band EEG-based FC matrices and the FC matrices extracted from the raw data, the preprocessed 

data (i.e. fMRI data after regressing out 10 PCA white matter components; WM10), and the preprocessed data after 

global signal regression (WM10 & GSR). (c) Group averaged FC matrices computed using the fMRI synthetic dataset 

associated with fluctuations in beta power, for the motor task. (d) Similarity between the beta band EEG-based FC 

matrices and the FC matrices extracted from the raw data, the preprocessed data (WM10), and the preprocessed data 

after GSR (WM10 & GSR). GSR did not significantly alter the connectivity related to EEG activity (Wilcoxon rank-

sum test). In all subplots, error bars denote standard deviation. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.18.590163doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.18.590163
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

4. DISCUSSION 

GSR is a widely used preprocessing step to remove global artifacts (mostly heart rate and breathing 

effects, collectively termed SLFOs) from fMRI data (Ciric et al., 2017; Parkes et al., 2018; Power 

et al., 2018, 2017b; Kassinopoulos & Mitsis, 2021), but remains controversial because it may also 

discard neural signals (Liu et al., 2017; Murphy and Fox, 2017). Up to date, the vast majority of 

studies investigating the origins of the global signal and evaluating the potential effects of GSR 

have examined fMRI data concurrently with either physiological or electrophysiological 

recordings, but not both at the same time. In the present study, we used simultaneous EEG-fMRI 

data, as well as cardiac and breathing recordings, to examine the processes underpinning the global 

signal and the impact of GSR on measures of brain activity and connectivity related to neural and 

systemic physiological fluctuations. Our results suggest that the global signal is strongly associated 

with physiological processes (R ~ 0.6) and more weakly associated with EEG power fluctuations 

(R ~ -0.1). We further demonstrated that GSR effectively removes the connectome patterns 

induced by physiological processes (SLFOs), but preserves the connectome patterns associated 

with EEG alpha and beta power fluctuations. These results provide evidence that, in the context of 

connectivity analyses, GSR improves the denoising of fMRI data and does not seem to alter the 

connectivity profiles associated with electrophysiological activity. 

4.1 Association of SLFOs and EEG power with the fMRI global signal 

We first evaluated the unique contributions of SLFOs and EEG activity to the global signal. SLFOs 

were found to explain a considerable fraction of global signal variance at rest (Figure 3a,3c), 

consistent with several earlier studies (Birn et al., 2006; Chang and Glover, 2009; Erdoğan et al., 

2016; Kassinopoulos and Mitsis, 2019; Power et al., 2017b),  as well as during the motor task 

(Figure 3b). Alpha power fluctuations were found to be negatively correlated with the global 

signal for all scans (Figure 3a-c), consistent with earlier work (Liu et al., 2017), and beta power 

was found to be negatively correlated with the global signal during the motor task (Figure 3b). 

Our results suggest that contributions of electrophysiological origin to the global signal, albeit 

significant, were substantially weaker than physiological contributions. 

A possible explanation for this is that the sign of correlation between fMRI fluctuations and EEG 

activity may not the same across brain regions and, thus, when averaging fMRI signals across the 
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whole brain, the contributions of these electrophysiological fluctuations may cancel out to some 

extent. Several studies have reported that, during resting conditions, alpha activity is negatively 

correlated with sensorimotor areas but positively correlated with default-mode regions (Mantini et 

al., 2007; Mayhew and Bagshaw, 2017; Scheeringa et al., 2012). These trends were also observed 

in our data, resulting in the presence of both positively and negatively correlated activity in Figure 

5a. Therefore, it is indeed likely that the weak relationship between global signal and EEG activity 

may be due to differences in the polarity of associated fMRI activity across regions. 

4.2 Association between SLFOs and alpha power 

We observed that alpha power and SLFOs were negatively correlated during resting-state 1, albeit 

weakly. This finding was not replicated during the motor task and resting-state 2. The weak 

association between SLFOs and alpha activity may be due to the fact that subjects had their eyes 

open, which is in agreement to previous work that has demonstrated an association between 

respiration and alpha power during an eyes closed condition but not during eyes open (Yuan et al., 

2013). Independent of this, shared contributions from SLFOs and alpha activity to the global 

signal, which could potentially reflect a direct or indirect effect of autonomic activity, were not 

consistently observed in our data. Therefore, our results seem to indicate that the major contributor 

to the global signal was physiological in origin. 

4.3 Effect of GSR on connectome patterns associated with SLFOs and EEG 

power 

We initially assessed the systematic effect of SLFOs on estimates of functional connectivity. The 

grand-averaged functional connectivity matrices calculated from the SLFOs synthetic datasets 

exhibited a heterogeneous pattern, characterized by stronger correlations within and between 

sensory cortices, including the visual cortex, somatosensory cortex and auditory cortex, as well as 

subcortical regions such as the thalamus and cerebellum (Figure 4a). This heterogeneity among 

brain regions is not surprising as it has been reported that global signal fluctuations are non-

uniformly distributed across the brain (Fox et al., 2009; Kassinopoulos and Mitsis, 2019; Power et 

al., 2017b). Furthermore, the artifactual connectivity patterns due to SLFOs observed in the present 

study were similar to those reported in our recent study where a large number of healthy subjects 

from the Human Connectome Project (HCP) dataset was used for cortical regions (Xifra-Porxas 
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et al., 2020). However, our results also revealed artifactual connectivity patterns within and 

between subcortical regions such as the thalamus and cerebellum, which we were unable to 

observe in the HCP dataset, likely due to poor signal-to-noise ratio in the subcortex in the HCP 

data (Ji et al., 2018; Seitzman et al., 2020). Moreover, we observed a task-related effect on the 

SLFOs connectivity pattern (Figure 4a), whereby contributions of SLFOs on the fMRI data were 

weaker during the motor task and the second resting-state period. This observation may seem 

paradoxical as the contribution of SLFOs to the global signal did not significantly decrease across 

scans (Figure 3), but could be explained by the fact that global signal fluctuations were found to 

be reduced during the motor task and the second resting-state period compared to the first resting-

state period (Supp. Fig. 2). It may also indicate that subjects were more alert during and after the 

motor task (Wong et al., 2013; Yeo et al., 2015). Finally, it could reflect the effect of 

circadian/ultradian physiological fluctuations, given that scanning started at 6 pm for all subjects 

and it has been reported that the amplitude of global signal fluctuations decreases as the day 

progresses (Orban et al., 2020). 

The grand-averaged functional connectivity matrices calculated from the fraction of BOLD 

variance explained by alpha and beta power fluctuations also revealed structured patterns (Figure 

5a, 5c). At rest, fluctuations in alpha power were associated with correlated activity within and 

between visual and dorsal attention networks (Figure 5a). Fluctuations in alpha power were also 

associated with anticorrelations of visual and dorsal attention networks with the default mode 

network and several subcortical regions. These results are consistent with earlier work reporting a 

positive association of alpha power fluctuations with fMRI activity in the default mode network 

and several subcortical regions, as well as a negative association between alpha power and fMRI 

activity in sensory regions (Bowman et al., 2017; Jann et al., 2009; Mantini et al., 2007; Mayhew 

and Bagshaw, 2017; Mo et al., 2013; Moosmann et al., 2003; Scheeringa et al., 2012). During the 

motor task, we found that alpha power was positively correlated with fMRI connectivity within 

the default mode network (Figure 5a), possibly reflecting the analogy between task-related 

synchronization/desynchronization alpha patterns and activation/deactivation default mode 

fluctuations (Mayhew et al., 2013; Mo et al., 2013). Furthermore, fluctuations in beta power were 

mostly associated with positively and negatively correlated activity within the visual and default 

mode networks, but surprisingly not in the somatosensory network (Figure 5c).  
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Regarding the effect of GSR on the estimates of functional connectivity, our recent work (Xifra-

Porxas et al., 2020) provided evidence that GSR is effective in terms of removing systematic biases 

on measures of resting-state functional connectivity arising due to SLFOs. However, since we did 

not have electrophysiological recordings in that study, we were unable to assess whether GSR also 

removed any signal of interest. Here, we show that, in addition to mitigating the effect of sLFOs 

on resting-state connectivity patterns, GSR yielded similar results during the motor task (Figure 

4b). It is worth noting that even though we used a relatively aggressive preprocessing pipeline (10 

PCA components from white matter) (Kassinopoulos and Mitsis, 2022), performing GSR was 

found to be beneficial. Considering that in a large number of fMRI studies only the average signals 

from white matter and cerebrospinal fluid compartments are regressed out, our results suggest that 

the effectiveness of GSR with respect to artifact removal would have been even more pronounced 

for milder preprocessing pipelines. Furthermore, we found that EEG power fluctuations within the 

alpha and beta bands were correlated to the global signal (Figure 3) but the extent of shared 

variance was small and, thus, GSR did not have any significant effect on the fMRI connectivity 

patterns attributed to alpha (Figure 5b) and beta (Figure 5d) electrophysiological power, neither 

at rest nor during the motor task. This is to some extent supported by the findings reported in a 

study involving macaque monkeys, where it was shown that, while inactivation of the basal 

forebrain led to selective suppression of ipsilateral global components, resting-state brain networks 

preserved their distinctive topography (Turchi et al., 2018). Overall, our results support the view 

that the benefits of GSR in terms of fMRI denoising outweigh the potential loss of neural 

information (Li et al., 2019a, 2019b). 

Limitations 

The present study has a limited sample size, which could explain the non-significant effects of 

GSR on the connectivity patterns related to neural activity. On the other hand, we were able to 

replicate previous findings from a large cohort with regards to the effect of GSR on connectivity 

patterns induced by SLFOs (Xifra-Porxas et al., 2021), which lends support to the validity of our 

results. Further research with larger sample sizes can likely provide further insights into the 

nuanced impact of GSR on neural connectivity patterns. 

Furthermore, despite the large fraction of the global signal variance that was explained by SLFOs, 

and to a lesser extent by EEG power (Figure 3), there was still variance unaccounted for. The EEG 
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signal is not a perfect reflection of neural activity and is known to be considerably noisy in the MR 

environment, as well as mostly blind to deeper sources. Therefore, it is likely that there was an 

additional fraction of neural activity that was present in the global signal that we were unable to 

detect in the EEG data. Likewise, there are other physiological factors not considered here that are 

known to give rise to SLFOs and are reflected on the global signal, such as finger skin vascular 

tone (Kassinopoulos and Mitsis, 2021; Özbay et al., 2019), arterial CO2 changes (Prokopiou et al., 

2019; Wise et al., 2004) and arterial blood pressure (Dagenais and Mitsis, 2023; Whittaker et al., 

2019b). Future studies using more direct surrogates of neuronal activity (e.g. intracranial EEG) are 

needed to confirm whether crucial neural information is being removed through GSR. 

Finally, we examined resting conditions and a hand-grip task, but results could be different during 

other conditions, such as sleep (Duyn et al., 2020) or when investigating diurnal variations in large-

scale spontaneous brain activity (Orban et al., 2020).  
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5. CONCLUSIONS 

Using simultaneous EEG-fMRI recordings, we demonstrated that the global BOLD fMRI signal 

exhibits a significant association with SLFOs as well as EEG alpha and beta power fluctuations, 

during resting conditions and motor task execution. In both cases, the effect of sLFOs was found 

to be more pronounced. We also provide evidence that GSR effectively removes confounds in 

functional connectivity induced by SLFOs, without severely disrupting the functional connectivity 

patterns attributed to EEG alpha and beta activity, suggesting that it overall yields a beneficial 

effect in terms of fMRI-based connectivity assessment.   
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SUPPLEMENTARY MATERIAL 

Supp. Fig. 1. Global signal, SLFOs, and alpha power traces from 5 representative subjects. 
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Supp. Fig. 2. Mean global signal fluctuation (standard deviation of the global signal) across participants for 

each scan. Error bars denote standard error of the mean. Significance testing using the sign-rank test (* p <0.05, 
+ p <0.1). 
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