

1 **Dietary stress induced macrophage metabolic reprogramming, a determinant of an-
2 imal growth**

3
4 Anusree Mahanta^{1, #, *}, Sajad Ahmad Najar^{1, a, #}, Nivedita Hariharan¹, Manisha Goyal^{1, b},
5 Ramaswamy Subramanian^{2,3}, Angela Giangrande⁴, Dasaradhi Palakodeti¹ and Tina
6 Mukherjee^{1, *}

7 ¹Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK post, Bellary
8 Road, Bangalore 560065, India.

9 ^a The Shanmuga Arts, Science, Technology & Research Academy (SASTRA), Thanjavur,
10 Tamil Nadu 613401, India.

11 ^b The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bengaluru,
12 Karnataka, 560064, India.

13 ² Department of Biological Science, Purdue University, West Lafayette, Indiana, USA.

14
15 ³ Bindley Biosciences Centre, Purdue University, West Lafayette, Indiana, USA.

16
17 ⁴ Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.

18 [#] Co-first authors.

19 ^{*} Co-corresponding authors.

20 To whom correspondence should be addressed, e-mail: anusreem@instem.res.in (A.M),
21 tinam@instem.res.in (T.M)

22

23 **Running title:** Immune metabolic state transitions and animal growth in dietary stress.

24 **Keywords:** Macrophages, immune cells, metabolism, lipogenesis, TCA, immunity, growth,
25 dietary stress.

29 **Abstract**

30

31

32 Nutrient sensing and signaling play pivotal roles in animal growth. However, under dietary
33 stress, this system falters, leading to growth defects. While immune cells are increasingly
34 recognized as key nutrient sensors, their impact on animal growth remains poorly under-
35 stood. In this study, we investigate how *Drosophila* larval macrophages respond to exces-
36 sive dietary sugar and identify a reconfiguration of their metabolic state. They undergo a
37 glycolytic shift, intensify TCA activity, and elevate TAG synthesis. While typical of sugar-
38 induced nutrient stress, these changes interestingly exert contrasting effects on animal
39 growth: glycolysis and increased TCA activity inhibit growth, while the lipogenic shift pro-
40 motes it. However, the lipogenic response is insufficient to counteract the metabolic events
41 suppressing growth, resulting in an overall reduction in adult fly size under high sugar
42 conditions. Stimulating a pro-lipogenic immune state facilitates growth recovery, suggest-
43 ing a growth paradigm governed by immune-metabolic transitions. This study unveils the
44 unexpected influence of macrophage metabolic reprogramming on organismal growth ho-
45 meostasis during *Drosophila* development, highlighting immune cell states as central de-
46 terminants of growth, particularly under dietary stress.

47

48

49

50

51

52

53

54

55 **Introduction**

56 Body growth is a tightly regulated process that ensures formation of adults with correct
57 size and proportions to finally influence survival and reproduction (Baron et al., 2015; Bou-
58 lan et al., 2015; Nijhout et al., 2014). A complex integration of environmental and devel-
59 opmental cues governs the rate and duration of juvenile growth which determines the final
60 adult body size (Penzo-Méndez and Stanger, 2015). It is also essential that these growth
61 mechanisms are plastic to allow adaptation of developing animals to environmental chal-
62 lenges like infection and fluctuations in nutrition. The evolutionary conservation of mamma-
63 lian growth control pathways in fruit flies has facilitated numerous studies revealing intri-
64 cate communication between organs for systemic growth regulation in homeostasis and
65 under varying environmental conditions (Koyama et al., 2020). Cross-organ communica-
66 tion among *Drosophila* nutrient sensor and responder tissues—including the fat body,
67 brain, imaginal discs, muscle, and gut—is pivotal in regulating organ and body growth.
68 Hormones, cytokines, and morphogens serve as the signaling molecules orchestrating this
69 crosstalk (Reviewed in Chatterjee and Perrimon, 2021; Droujinine and Perrimon, 2016;
70 Boulan et al., 2021). Understanding how these tissues sense environmental cues and ad-
71 just growth accordingly provides insights into the systemic growth control axis.

72

73 In this context, the functioning of the immune system with consequences on systemic
74 growth is documented where examples of immune modulation and its impact on animal
75 sizes have been described. Heightened immunity correlates with stunted growth while the
76 opposite is true with animals with weak immune system (van der Most et al., 2011). The
77 importance of maintaining immune cell numbers to enable systemic growth has also been
78 recently described (Bakopoulos et al., 2020; Cho et al., 2020; Ramond et al., 2020). These
79 evidences have alluded to immune cell functioning and its trade off with growth homeosta-
80 sis. However, when it comes to growth axis, immune cells are seldom mentioned. Perhaps

81 because these examples of growth modulation are described in conditions of infection, we
82 consider changes in animal growth as consequence of altered immunity as opposed to
83 their direct contribution to the larger scheme of developmental control of growth. The fact
84 that immune cells are emerging as key nutrient sensors (Martínez-Micaelo et al., 2016;
85 Newsholme, 2021) much like the fat body and brain, and implicated in developmental de-
86 cisions (Juarez-Carreño and Geissmann, 2023), their role in growth homeostasis from a
87 developmental standpoint does not seem unrealistic.

88

89 It is now increasingly appreciated that macrophages in response to their surrounding envi-
90 ronment undergo metabolic-rewiring which in turn, determines their functional responses
91 (Batista-Gonzalez et al., 2019; El Kasmi and Stenmark, 2015). The recent advances in
92 high throughput transcriptomics and metabolic analysis have aided a deeper understand-
93 ing of macrophage heterogeneity revealing distinct phenotypes that rely on metabolic
94 pathways involving lactate (Geeraerts et al., 2021), purine (Li et al., 2022) and arginine
95 (Viola et al., 2019). This is in addition to the already established M1 and M2 macrophage
96 types employing aerobic glycolysis and fatty acid oxidation respectively (Galván-Peña and
97 O'Neill, 2014). Whether these macrophage functional types are different subsets or one
98 subset with potential for plasticity remains to be understood (Remmerie and Scott, 2018).
99 Nonetheless, the link between the metabolic heterogeneity of macrophages and their func-
100 tions has been widely implicated in both health and disease. Recent studies have in fact
101 also shown *Drosophila* macrophage-like plasmacytocytes to be highly heterogeneous with
102 regard to adopting comparable metabolic remodeling (Cattenoz et al., 2020; Cho et al.,
103 2020; Coates et al., 2021; Girard et al., 2021).

104

105 To that end, our work from the recent past has implicated *Drosophila* larval immune cells
106 as regulators of animal growth (P et al., 2020). *Drosophila* blood cells, akin to myeloid cells

107 (Evans et al., 2003), contributed significantly towards coordinating growth in conditions of
108 dietary sugar stress. Growth retarding effects of excessive dietary sugar (high sugar diet,
109 HSD) is evident from flies to mammals and the foremost underlying reason implicated in
110 this pathological outcome is development of insulin resistance or inhibition of growth hor-
111 mone signaling. We however found that animals with depleted number of immune cells
112 grew poorly in conditions on dietary sugar stress. Intriguingly, animals with more active
113 immune cells developed unexpectedly well on HSD and comparable to flies on regular di-
114 et. These findings highlighted immune cells as key modifiers of growth homeostasis in
115 stress conditions. The work proposed immune cell state changes as a key paradigm for
116 growth adaptation in stress conditions (P et al., 2020). Thus, immune control of growth
117 both in homeostasis and in stress conditions which remains a poorly understood area, led
118 us to take on board the current investigation. The immune underpinnings of systemic
119 growth homeostasis, specifically with respect to growth retardation evident in high sugar
120 intake forms the central focus of our investigation.

121
122 The present study employs a multi-prong, unbiased approach to explore immune-specific
123 internal state changes that is central to growth control and adaptation on dietary stress
124 conditions. Using a sensitized HSD model, the present study explores the immune-specific
125 regulators that function to control animal growth in this form of excessive sugar linked over
126 nutrition. We undertook a holistic methodology to ascertain immune-specific regulators that
127 possibly promote or inhibit growth. The central and unexpected finding of this study is the
128 impact of diet induced immune metabolic rewiring on organismal growth homeostasis. The
129 findings from the work lead us to propose a key deterministic role played by immune cells
130 in growth control and places the cellular immune system in the nexus of growth control
131 paradigm.

132

133 **Results**

134 **Dietary sugar overload impacts immune cell physiology and function**

135

136 The central question of the study is to discern intracellular immune cell states governing
137 body size control in a high sugar diet (HSD) induced stress. Therefore, we first character-
138 ized the status of immune cells themselves namely; cell numbers, basal metabolic state,
139 morphology and function when exposed to HSD. To do this, we utilized the differentiating
140 immune cell-specific marker Hemolectin, *Hml*^Δ*>GFP* (*Hml*^Δ*>GFP* crossed to *w*¹¹¹⁸) back-
141 ground animals and exposed them to two different dietary regimes: one, short term expo-
142 sure to HSD for four hours (referred to as 4hr.HSD, henceforth) as the means to gauge
143 immediate changes induced in immune cells by short term intake of high sugar and sec-
144 ond, a long-term, constitutive HSD feeding (referred as Ct.HSD, henceforth) to identify cell
145 states established as a consequence of sustained high sugar intake by the animal. Specif-
146 ically, for the short-term 4hr.HSD regime, *Hml*^Δ*>GFP/w*¹¹¹⁸ feeding third instar larvae
147 (72hr. AEL) rearing on regular food (RF, containing 5% sucrose) were transferred to HSD
148 where they were allowed to feed for a brief period of four hours only. Subsequent to this,
149 the larvae were dissected, bled and assessed for the aforementioned immune parameters.
150 For Ct.HSD regime, *Hml*^Δ*>GFP/w*¹¹¹⁸ embryos were collected and transferred to HSD,
151 where the animals were reared until feeding 3rd instar stage following which they were pro-
152 cessed similar to 4hr.HSD, for immune characterization.

153

154 To assess HSD induced changes in immune cell numbers, we specifically monitored
155 Hemolectin-positive (*Hml*⁺) and Hemolectin-negative (*Hml*⁻) cell populations across circula-
156 tory and sessile pools (see methods for further details on their assessment). For metabolic
157 changes, we characterized immune cells for their intracellular redox state, glucose levels
158 and lipid metabolism. For functional characterization, phagocytic bead uptake ability was

159 measured (Hao et al., 2018) and finally for morphological changes, phalloidin stainings
160 were undertaken to assess changes in cell morphology, size, shape, and length of im-
161 mune cell filopodia extensions.

162

163 We observed that high sugar treatment severely impacted larval immune cell numbers in
164 the long-term, Ct.HSD condition (Fig. 1a-d). We observed that while short-term, 4hr.HSD
165 treatment to larvae did not reveal any changes in immune cell numbers, Ct.HSD animals,
166 showed a significant decline in total immune cell numbers (Fig. 1c, c'). Specifically, a sig-
167 nificant decline in sessile Hml⁺ population was apparent (Fig. S1 a-a''), while circulating
168 cell numbers remained comparable across RF, 4hr.HSD and Ct.HSD (Fig. S1 b-b''). The
169 number of Hml⁻ cells however remained comparable between RF, 4hr.HSD and Ct.HSD
170 condition (Fig. 1d, Fig. S1a''-b''), which implied a specific sensitivity of the Hml⁺ cell popu-
171 lation to high sugar exposure.

172

173 Next, we compared the metabolic states and assessed for ROS levels by dihydroethidium
174 (DHE) staining and observed that it was elevated with high sugar exposure in 4hr.HSD
175 and Ct.HSD immune cells (Fig. 1 e-e'', k and Fig. S1 c-c''). Biochemical means to estimate
176 glucose levels revealed a significant rise in immune cell glucose following the short term
177 4hr.HSD exposure, which however was not detected in the long-term Ct.HSD regime (Fig
178 1 f). This implied that immune cell glucose levels increased immediate to sugar exposure,
179 but gradually plateaued in the longer term.

180

181 We observed that high sugar treatment also led to an overall increase in lipogenesis, much
182 more evident in the longer-term Ct.HSD than 4hr.HSD condition (Fig. 1g-g'', i and Fig. S1
183 d-d'', g-g''). For lipid measurements, we employed nile red staining to mark lipid droplets,
184 TAG biochemical measurements to assess total TAG and *UAS-LSD2-GFP* genetic report-

185 er line to assess their lipogenic state (Fauny et al., 2005). Specifically, we observed a
186 gradual increase in the number of lipid droplets (Fig. 1 g-g'' and Fig. S1 d-d'') and total
187 TAG level in immune cells from 4hr.HSD and Ct.HSD when compared to RF condition
188 (Fig. 1 i). These signatures of increasing levels of TAG in the cells corroborated with their
189 lipogenic potential as seen with increasing *LSD2-GFP* reporter expression (Fig. S1 g-g'').
190 The data highlighted the sensitivity of immune cells to HSD, and the overall impact on their
191 internal lipid homeostasis when faced with dietary sugar stress. Altogether, the increased
192 glucose levels following sugar exposure and the gradual increase in lipogenesis were
193 suggestive of induction of metabolic programs to accommodate excessive sugar (Mussel-
194 man et al., 2013).

195

196 Functionally, excessive sugar exposure severely impaired immune cell phagocytic abilities.
197 A gradual decrease in number of internalised beads was evident in the immune cells. This
198 was seen as early as in 4hr.HSD treatment and dramatically reduced in Ct.HSD condition
199 (Fig. 1 h-h'', I and Fig. S1 e-e''). Morphologically, compared to numerous filopodia seen
200 protruding from the immune cell surface from RF larvae (Fig. 1 j and Fig. S1 f), a reduction
201 in the number and length of filopodia was evident even at 4hr.HSD exposure which was
202 further pronounced in immune cells when subjected to Ct. HSD condition (Fig. 1 j-j'', m, n
203 and Fig. S1 f-f'').

204

205 The overall temporal profiling of immune cell number, cytoskeleton dynamics, phagocyto-
206 sis and metabolism revealed manifestation in metabolic and functional capabilities in im-
207 mune cells as early as 4hr of HSD feeding. A clear decline in immune cell phagocytic abil-
208 ity with increased lipogenesis was evident and these changes exaggerated with longer ex-
209 posure to dietary sugar. Any relevance of such sugar induced immune cell state changes
210 on adult body size, was investigated next. To do this we undertook an unbiased genome-

211 wide RNAi screening approach as the means to identify specific candidates whose func-
212 tioning in immune cells affected animal growth on HSD.

213

214 **Identification of immune-specific growth modulators using an *in-vivo* RNAi genetic
215 screening approach**

216 Setting up of the unbiased whole genome RNAi screen was conducted with a total of 1052
217 RNAi strains which were specifically expressed in Hm^{+} differentiating immune cells of the
218 *Drosophila* larvae using the Hm^A -Gal4 (Hm^A) as the driver line (Sinenko and Mathey-
219 Prevot., 2004). Specifically, males from each RNAi lines were crossed to virgin
220 Hm^A -UAS-GFP females on regular food and from the crosses, 35-40 embryos were col-
221 lected, transferred to high sugar diet and reared at 29°C until adult flies eclosed whose
222 sizes were thereafter scored. In each experimental set, the RNAi crosses were tested in
223 two batches as biological replicates for enhanced accuracy. For comparison to quantify
224 changes in adult sizes, Hm^A -UAS-GFP/ w^{1118} adults grown on RF and on HSD conditions
225 were used as controls that demonstrated normal adult fly size and growth retarded HSD
226 flies respectively (Fig. 2a).

227

228 For scoring, one day old adult flies obtained post eclosion were phenotypically screened
229 and scored for their body size. To increase robustness of the screening process, the size
230 scoring was performed independently by three different individuals in a blind unbiased
231 manner. As an initial body size scoring paradigm, the adults from the RNAi crosses were
232 scored either for any further reduction in their size than seen in HSD flies and were
233 marked “Small”, or any recovery in their size if they appeared any closer to size seen in
234 regular food raised controls and were marked “Big” respectively (Fig. 2a).

235

236 Based on this assessment criteria, in first round of *RNAi* screen, a total of 171 *RNAi* lines
237 were identified as “modifiers” of adult size on HSD condition. Of these, 101 lines showed
238 size reduction and were smaller than HSD control adults, implying that these lines are pos-
239 itive regulators of growth on HSD condition. Very interestingly, 18 *RNAi* strains restored
240 the adult size defect seen in HSD. The emerging adults from these *RNAi* crosses, were
241 larger in size than observed in HSD controls and were rather closer in their size towards
242 RF wild type controls. These “Big” genes were designated as negative regulators of
243 growth. The remaining 797 *RNAi* lines did not demonstrate any deviation from HSD con-
244 trols and were recorded as “no effect” (NE) and were listed as non-modifiers (Fig. 2b).

245

246 For the total 171 modifier lines identified from Round 1, we next undertook a second round
247 of screening. Here, we tested multiple *RNAi* lines against each candidate and only those
248 candidates where we observed consistent growth phenotypes across two or more *RNAi*
249 lines were finally selected. Majority of the *RNAi* lines chosen here are published lines vali-
250 dated for their function (Table S6). Depending on the extent of size modulation observed
251 they were further graded. For “Big” and “Small” phenotypes, they were also graded into
252 mild (+) or (-), moderate (++) or (--) or severe (+++) or (---) categories (Fig. 2c and Table
253 S1).

254

255 We found a total of 30 genes that showed consistent phenotype with more than one *RNAi*
256 line and were listed as “final candidate genes” (Fig. 2c and Table S1). Of these 17 were
257 identified as “Small” and 13 were identified as “Big” and majority of these lines were mod-
258 erate modifiers of the growth phenotype while only a few were mild effectors. This finding
259 implied a robust contribution by the immune cells on growth in HSD condition. Subse-
260 quently, Flybase was used to determine the known or predicted functions of these genes
261 (Fig. 2c and Table S1). When functionally categorised, these top 30 candidate genes

262 came under the categories that included diverse cellular functions ranging from transcription factors to metabolic and signaling genes (Fig. 2c).

264

265 As the major cohort important for animal growth, the signaling genes seemed expected,
266 however, we observed an unexpected influence on growth in this category. Signaling
267 pathway components of the Notch, Wnt and JAK/STAT pathway, were identified neces-
268 sary for growth as their down regulation in immune cells caused a retardation in adult fly
269 size compared to HSD controls. Hedgehog (Hh) signaling, contrarily was identified as a
270 negative modulator of growth. Interestingly, both *hh* and and its receptor, *smoothened*
271 (Alcedo et al., 1996) appeared in the screen and blocking their expression in blood cells,
272 led to growth recovery. The adults were much larger in size than the corresponding HSD
273 controls. The data implied that in HSD condition, immune cells signaling exerted dual con-
274 trol on growth, where players like Notch, Upd2, and Wnt enabled growth, but Hh and it's
275 signaling inhibited growth.

276

277 The other biological process that was over-represented, was the "metabolism category".
278 Under this, majority encoded functions related to "lipid metabolism". Specifically, lipogenic
279 genes like *Glycerol-3-phosphate acyltransferase 4 (Gpat4)*, involved in triglyceride synthe-
280 sis (Heier and Kühnlein, 2018) and transcription factors, *sugarbabe (sug)*, *Oxysterol recep-
281 tor protein 8 (Orp8)* (Kokki et al., 2021; Mattila et al., 2015; Repa et al., 2000), known to
282 promote lipogenic expression on high sugar diet were identified as positive growth regula-
283 tors. Importantly, the screen also identified *Brummer, bmm*, a key lipolytic gene (Grönke et
284 al., 2005), whose down regulation, showed growth recovery with adult flies much larger in
285 size than HSD control. These data revealed a significant role for immune lipid levels on
286 systemic growth and implied growth promoting functions for immune lipogenesis but
287 growth inhibitory consequences for immune cell lipid turnover (Fig. 2c).

288

289 Overall, the findings from the screen, revealed unexpected opposing states in the Hm^{+}
290 population of immune cells where they were growth enabling with players like *Notch*, *upd2*,
291 *Gpat4* but also disabling with respect to *hh*, *smo* and *bmm*. Apart from these, other candi-
292 dates also identified included members of, mitochondrial metabolism (*parkin*), autophagy
293 (*Atg13* and *Atg7*) and cytoskeletal remodeling (*Septin4*) all of which were identified as pos-
294 itive regulators. These altogether highlighted an important contribution of immune intrinsic
295 state in systemic coordination of animal growth.

296

297 At this point, it also seemed necessary to ascertain any association of changes in immune
298 cell numbers with body size phenotype. When assessed for a few randomly selected can-
299 didate genes from the screen, we found that knocking down these genes and the corre-
300 sponding change on immune cell numbers did not correlate with their adult fly size pheno-
301 type (Fig. S2 a-e). For instance, loss of *Sod1* in immune cells, while it caused a reduction
302 in immune numbers as evident by fewer $Hm^{A}>UAS-GFP$ positive cells, this genetic condi-
303 tion was identified as “Big” in the screen (Fig. S2b, and Table S1). Similar for *Lsd2*^{RNAi},
304 whose expression in immune cells, increased their numbers, was also identified as “Big” in
305 the screen (Fig. S2c and Table S1). On the contrary, loss of *Septin1* or *park* in immune
306 cells even though they did not show any dramatic difference in cell numbers (Fig. S2d, e),
307 the adults in these conditions were identified as Small” phenotype (Fig. 2c and Table S1).
308 Moreover, the modulation of these genes in the immune cells did not alter larval growth, as
309 the mutant larva were comparable to HSD control larvae in terms of their overall sizes (Fig.
310 S2 a-e). Only when assessed for adult fly sizes, they were affected (Tables S1). These ev-
311 idences further reinstated and confirmed our previously reported finding that immune cell
312 state rather than numbers determined growth and that immune cells specifically contribut-
313 ed towards adult growth regulation and not larval growth homeostasis (P et al., 2020).

314

315 **Transcriptional changes induced by HSD highlights reprogramming of macrophage**
316 **metabolic state**

317

318 The physiological changes (Fig.1) together with the distinct impact on growth seen upon
319 modulating lipogenic and lipolytic genes as identified in the screen (Fig. 2), highlighted a
320 relevant contribution of immune cell metabolic state on systemic growth. This led us to
321 dwell deeper and gain a holistic understanding of metabolic state changes invoked in im-
322 mune cells in response to HSD. For this, we undertook a genome wide transcriptomics
323 analysis by RNA sequencing of immune cells (Fig. S3a). As a side-by-side comparison,
324 whole larval transcriptome was also undertaken to comprehend global changes invoked by
325 HSD as opposed to specific changes initiated only in the immune cells (Fig. S3a). Total
326 immune cells from 4hr.HSD and Ct.HSD fed larvae were collected and processed for bulk
327 RNA sequencing with RF immune cells as control sample (Fig. S3a). Transcriptomics
328 analysis of whole larvae was also performed in these conditions (Fig. S3a).

329

330 The biological processes influenced by 4hr.HSD, and longer-term Ct.HSD, using Gene
331 Ontology (GO) analysis highlighted immediate transcriptional changes that remained per-
332 sistent even in constitutive HSD condition (Tables S2, 3). These included down regulation
333 of genes encoding JAK-STAT signaling pathway, Toll/Imd, ecdysone signaling and Wnt
334 signaling pathway. Along with these, genes involved in cell migration, cell-matrix adhesion
335 and integrin signaling were also seen down regulated upon HSD treatment. The transcrip-
336 tional changes converged with morphological analysis shown in Fig.1 and implied that high
337 sugar transcriptionally dampened their immune potential and cytoskeletal remodeling pro-
338 teins. We also assessed the expression of some of the screen candidates, like *Upd2*
339 (JAK/STAT Pathway), *Fz*, *α-catenin* (Wnt-signaling pathway), but did not observe any

340 transcriptional alteration. Nevertheless, the overall transcriptional down regulation of the
341 aforementioned signaling pathways highlighted their sensitivity to excessive sugar and the
342 associated implication on growth identified in the screen, corroborated with their functional
343 requirement.

344

345 When assessed for up regulated pathways, metabolic processes emerged as the most
346 over-represented/predominant biological process (Fig. 3 and Table S2). Specifically, lipid
347 metabolism was highlighted here as well, where up regulation of lipogenic genes was ob-
348 served (Fig. 3a). This includes *Acetyl CoA carboxylase (ACC)*, the rate limiting enzyme
349 involved in *de novo* fatty acid synthesis (Parvy et al., 2012), *GPAT*, *AGPAT* and *Lipin*,
350 (Heier and Kühnlein, 2018) all enzymatic members of the TAG synthesis pathway (Fig. 3
351 and Table S2, 3). ACC up regulation was only seen in 4hr.HSD condition (Fig. 3b) but not
352 with long term chronic exposure in Ct.HSD (Tables S2 and S3). Genes like *Gpdh1* and
353 *Lipin* were up regulated at 4hr.HSD condition and continued to be over-expressed even in
354 longer term HSD exposure (Fig 3b and Table S2, 3). A unique GO term the “fatty acid bio-
355 synthetic process” which included genes predicted in fatty acid elongase activity (CG8534,
356 CG9459, CG30008 and CG331100) were also seen up-regulated but only in the longer
357 term Ct.HSD condition (Table S3), which implied changes in carbon length of the fatty ac-
358 ids in larval immune cells with constitutive sugar exposure. Immune cells also showed a
359 significant increase in the expression of beta-oxidation pathway enzyme *Acyl-CoA synthe-*
360 *tase (AcsI)*, but compared to lipogenic genes, the lipid breakdown candidates were not
361 over-represented in the transcriptional landscape. This revealed a transcriptional repro-
362 gramming of the immune cells towards a lipogenic state.

363

364 In addition to lipid, genes/ enzymes of pyruvate metabolism and cycling like *Malic enzyme*
365 *b (Men-b)* and *Mitochondrial pyruvate carrier (Mpc1)* were also seen up regulated, indica-

366 tive of increased pyruvate metabolism, which was expected given the high sugar impact
367 (Table S2). Corroborating with the involvement of pyruvate, the TCA pathway components
368 were also seen to be up regulated (Fig. 3 a, b). This was interpreted based on genes like
369 *midline uncoordinated (muc)* with *Pyruvate dehydrogenase (Pdh)*-like activity, *Citrate syn-*
370 *thase 1 (Cs1)* and *Succinate dehydrogenase (Sdh)*. They were all up regulated in high
371 sugar conditions (Fig. 3 a, b). Mitochondrial pyruvate dehydrogenase moderates TCA ac-
372 tivity by regulating pyruvate entry into the TCA cycle (Leiter et al., 1978; Linn et al., 1969),
373 and with *muc* which has PDH like activity (Marygold, S.J, 2024), it's up regulation at 4hr
374 alluded to heightened pyruvate entry into the TCA (Fig. 3). Its expression was however not
375 up-regulated in the long term Ct.HSD exposure (Fig. 3b), but the sustained activation of
376 other TCA genes, *Cs* and *Sdh* (Fig. 3 a, b) implied heightened TCA-activity.

377

378 We also observed up-regulation of genes necessary for “glutathione metabolism” (Tables
379 S2, 3). This corroborated with TCA activity increase and induction of ROS in HSD immune
380 cells shown in Fig. 1e-e”. A small subset of genes involved in “regulation of cell division”
381 which included genes for spindle assembly and cytokinesis and “actin cytoskeleton reor-
382 ganization” were also seen up regulated (Table S2, 3) and reinstated the impact of sugar
383 stress on cellular proliferation and functions (Fig. 1d).

384

385 Overall, the transcriptomic analysis furthered our understanding of the metabolic events
386 induced in immune cells upon HSD exposure. The data revealed metabolic reprogram-
387 ming in immune cells upon sensing of high sugar. These include induction of heightened
388 TCA activity as early as 4hr post excessive sugar exposure and a shift towards a lipogenic
389 state (Fig. 3 a, b). The early identification of ACC, and sustained up regulation of TAG syn-
390 thesis genes, *GPAT1*, *AGPAT* and *Lipin* corroborated with the increased lipogenesis seen
391 in the aforementioned physiological characterizations (Fig. 1f-f’). These metabolic changes

392 were very specific to the blood tissue and not evident in the animal as a whole (Fig S4). In
393 the animal on the other hand, an overall dampening of metabolism was observed (Fig.
394 S4a) which was more clearly seen with long-term HSD exposure (Fig. S4b). Developmen-
395 tal genes were rather seen to be up regulated in the whole animal on HSD (Tables S4 and
396 S5) thereby implying that immune cells rewired their metabolism distinctly to enable pro-
397 cesses to deal with incoming sugar load and invoked specific internal events not globally
398 initiated.

399

400 The outcomes from the genetic screen allude to contribution of immune metabolic states
401 on systemic growth homeostasis. Specifically, the identification of lipogenic and lipolytic
402 genes as moderators of growth from the screen led us to investigate the additional meta-
403 bolic changes identified in the transcriptomic data and their contribution to growth in die-
404 tary sugar stress. To conduct this, we employed metabolic and genetic approaches and
405 dissected the specifics of each step in a systematic manner.

406

407 **Heightened TCA activity and glycolytic shift in HSD immune cells: Metabolic states**
408 **that repress growth**

409

410 As the first step, we addressed TCA and employed liquid chromatography-tandem mass
411 spectrometry (LC-MS/MS) to confirm the observed transcriptomics changes in TCA activi-
412 ty. This was followed by genetic approaches to modulate corresponding TCA genes to as-
413 sess the impact of animal growth on HSD condition. In this stage of our analysis, we con-
414 ducted a rather quantitative approach to score body sizes. We chose wingspan areas and
415 fly body length estimations (Lee et al., 2008, 2004) as a proxy for estimating the extent of
416 changes brought about by corresponding genetic manipulations on animal growth.

417

418 We performed metabolic flux analysis with isotopic $U^{13}C$ -pyruvate (Buescher et al., 2015.,
419 Jang et al., 2018) to discern any changes in the rate of TCA activity. To achieve this, im-
420 mune cells from regular food (RF) and constitutive high sugar diet (Ct.HSD) conditions
421 were incubated with $U^{13}C$ -pyruvate, and the flow of C13 into TCA cycle intermediates was
422 assessed. Pyruvate enters the TCA cycle via pyruvate dehydrogenase (PDH), where it is
423 converted into acetyl-CoA, and this contributes to two carbons into the TCA metabolites
424 (Fig. 4a). Pyruvate incorporates three carbons in oxaloacetate (OAA) via pyruvate carbox-
425 ylase (PC), which further adds on to citrate and thus contributes to the TCA cycle. Py-
426 ruvate is also converted into lactate via LDH and contributes to all the three carbons of lac-
427 tate. Thus, the differential labelling of carbons in TCA metabolites and lactate was consid-
428 ered as a measure of change in pyruvate flux under RF and Ct.HSD condition. Apart from
429 metabolic flux analysis, we also conducted steady-state targeted comparative analysis of
430 TCA cycle metabolites. For this, immune cells were isolated from animals raised in RF and
431 Ct.HSD exposure and processed for steady-state metabolite analysis.

432

433 The levels of TCA cycle metabolites between RF and Ct.HSD failed to show any difference
434 in the steady state conditions (Fig. S5a). The isotopic metabolite measurements however
435 revealed increased flux of pyruvate into TCA metabolites and lactate under HSD condi-
436 tions (Fig. 4a and Fig. S5b). Specifically, our isotopic labelling data showed increased,
437 higher ^{13}C label incorporation in citrate upon HSD, which indicates the increased pyruvate
438 flux towards TCA cycle (Fig. 4a and Fig. S 5b). Moreover, malate also showed an increase
439 in $M+2$ label incorporation in the HSD condition which is donated by PDH mediated entry
440 of pyruvate into the TCA (Fig. 4a and Fig. S 5b). These data showed that immune cells
441 change their metabolic state from less oxidative to more oxidative upon high sugar expo-
442 sure. The rate of PC metabolism in HSD condition was however reduced as decrease in
443 $M+3$ labelling in OAA was seen. This could be attributed to the concomitant rise in py-

444 pyruvate entry into TCA via PDH (Fig. 4a and Fig. S5b). An increased flow of labelled C13
445 pyruvate into lactate in HSD condition was also apparent (Fig. 4a and Fig. S 5b). Even
446 though *Ldh* transcript levels did not reveal any significant up regulation, the increased M+3
447 labelling in lactate upon HSD exposure implied increased LDH activity and demonstrated
448 an aerobic glycolytic shift in these immune cells (Vander et al., 2009). Thus, considering
449 the biochemical data, increased sugar exposure in the immune cells, exaggerated the
450 overall flow of pyruvate into the TCA via PDH and into lactate via LDH (Fig. 4a).

451

452 Next, we modulated TCA cycle and LDH activity to comprehend the precise contribution of
453 these metabolic state changes on growth regulation on HSD, respectively. To gauge TCA
454 function, we genetically modulated PDH by expressing RNAi against the *Pyruvate dehy-*
455 *drogenase E1 alpha subunit (Pdha)* and down regulated its expression in immune cells
456 (*Hm1^Δ>GFP/Pdha^{RNAi}*) and assessed animal growth in HSD condition. This genetic manip-
457 ulation showed a mild but significant recovery in animal size as apparent in their wingspan
458 areas (Fig. 4c-d''). When assessed for body lengths although males were larger compared
459 to HSD controls (Fig. 4c'-d'), the overall significance was indifferent and may be due to
460 underlying inconsistencies in batches (Fig. S6a). The quantitative analysis however did not
461 reveal any difference in the females (Fig. S6 f-f''). The converse experiment, to further in-
462 crease TCA activity in immune cells, by down regulating pyruvate dehydrogenase kinase
463 (*Pdk*) enzyme, the negative regulator of PDH (Bowker-Kinley et al., 1998) however led to
464 dramatic reduction in animal sizes (Fig. 4e-e'' and Fig. S6 b and g-g''). Here, a consistent
465 reduction in body length was evident across males (Fig. S6b) and females (Fig. S6g''). Al-
466 together, the data implied a growth inhibitory role for heightened immune cell TCA-activity,
467 but given the mild recovery seen on blocking *Pdha* and its inconsistency across males and
468 female genders, suggested additional inputs that operated towards growth impairment be-
469 yond the TCA cycle.

470

471 We modulated pyruvate conversion towards lactate and performed similar genetic manipu-
472 lations of *Ldh* enzyme and assessed for adult growth. We observed that knockdown of *Ldh*
473 enzyme increased adult fly sizes both in terms of wing span (Fig. 4f-f' and Fig. S6 h-h') and
474 body lengths (Fig. S6 c and h'') in males and females. Converse experiments with over
475 expression of *Ldh* in immune cells, caused a further reduction in animal size in comparison
476 to HSD-control adults (Fig. 4g-g'' and Fig. S6 d, i-i''). These data unlike PDH genetic ma-
477 nipulations unveiled a stronger influence of immune cell glycolytic shift on animal size con-
478 trol. The recovery in adult fly sizes seen with down regulating *Ldh* in immune cell, indicated
479 the sufficiency of immune cell lactate production on adult growth inhibition in HSD.

480

481 **Opposing effects of immune cell *de novo* lipogenic and lipolytic state in systemic**
482 **growth regulation**

483

484 The bulk transcriptome revealed up regulation of *de novo* and TAG lipogenic enzymes and
485 the screen revealed a growth enabling role for immune cell *GPAT* function and a growth
486 inhibitory for *bmm*. We therefore undertook real-time quantitative PCR method to confirm
487 the expression levels of all these lipogenic pathway enzymes and *bmm*. As done for RNA-
488 seq, immune cells from larvae reared on 4hr.HSD, Ct.HSD and RF control were isolated
489 and assessed. Here as well, a significant up regulation of ACC, was detected in 4hr.HSD
490 immune cells but not with constitutive treatment (Fig. S7a1). *GPAT1*, 1-Acylglycerol-3-
491 phosphate O-acyltransferase 4 (*Agpat4*), *Lpin* and *Midway* encoding acyl coenzyme A: di-
492 acylglycerol acyltransferase (*DGAT1*) was analyzed and we found that *GPAT1* and *Mid-*
493 *way* were up regulated in the long-term Ct.HSD condition (Fig. S7a2-a5). Additionally, ex-
494 pression of *Glycerol 3 phosphate dehydrogenase1* (*Gpdh1*), that catalyzes the conversion
495 of dihydroxyacetone phosphate to glycerol-3-phosphate and provides the backbone for

496 TAG synthesis was also seen up-regulated in Ct.HSD condition (Fig. S7a6). Expression
497 analysis of *bmm*, failed to show any difference in its transcript levels (Fig. S7 a7). These
498 collectively confirmed an early transcriptional shift towards increasing intracellular immune
499 cell lipid synthesis, through *de novo* fatty acid synthesis early and through TAG synthesis
500 as the longer-term response to high dietary sugar exposure.

501

502 We genetically deconstructed their roles and first addressed the contribution of the *de no-*
503 *vo* lipogenic pathway (Fig. 5a). We investigated the expression dynamics of ACC protein in
504 immune cells on RF (Fig. 5b), 4hr.HSD (Fig. 5c) and Ct. HSD (Fig. 5d) condition. Unlike
505 the RT-PCR results, no dramatic increase in ACC protein was seen in 4hr.HSD condition
506 and was comparable to RF control (Fig. 5c compared to 5b, Fig. 5e). The ACC protein lev-
507 els however declined in Ct.HSD condition and was much lower than seen in RF (Fig. 5d
508 compared to 5b, Fig. 5e). This implied that the initial transcriptional induction of *de novo*
509 lipogenic enzyme did not lead to a corresponding up-regulation in its protein levels. With
510 sustained high sugar exposure, the levels of ACC declined furthermore. We know that
511 HSD condition drives intracellular lipid levels to increase (Fig. 1g-g"). The impact of ACC
512 on any changes in immune-cell lipid levels was therefore characterized. We observed that
513 down regulation of ACC expression in larval immune cells (*Hm1^Δ>GFP/ACC^{RNAi}*), led to a
514 significant reduction in lipid levels than seen in HSD control immune cells (Fig. 5f-g, Fig.
515 S7b-c). These data implied a role for ACC function in immune lipogenesis and suggested
516 that even though levels of ACC in long term HSD conditions was not high, its activity con-
517 tributed towards increasing lipid levels. Next, we assessed adult fly sizes, and observed
518 that immune down regulation of ACC (*Hm1^Δ>GFP/ACC^{RNAi}*) led to smaller animal sizes in
519 comparison to HSD controls (Fig. 5k-l" and Fig. S7g, k-l"). This was evident in wingspan
520 (Fig. 4l-l' and Fig. S7 l-l') and body length quantifications (Fig. S7 g and l'') across male
521 and female adult flies. We also did the converse experiment and over expressed ACC en-

522 zyme in immune cells ($Hm\Delta>GFP/UAS-ACC$) which led to a further increase in intracellu-
523 lar lipid levels, much more than seen in HSD control immune cells (Fig. 5h and Fig. S7d).
524 Moreover, this genetic manipulation led to a significant increase in fly sizes across genders
525 (Fig. 5m-m" and Fig. S7 h, m-m"), which suggested that even though ACC function was
526 necessary to support growth it was limited in its capacity. We speculate the inability of im-
527 mune cells to maintain ACC expression in long-term sugar exposure restricted the extent
528 of its growth function. We speculate that the increased PDH activity in immune cells is op-
529 posed by ACC function that exerts an additional route to divert sugar derived acetyl CoA
530 intermediate into lipids (Fig. 3a). While the sugar breakdown is growth inhibitory, the ACC
531 mediated *de novo* lipogenic arm confers adaption to growth on HSD. The gain of ACC also
532 suggests that favoring *de novo* lipogenesis enables better growth recovery on HSD.

533

534 Next, we did quantitative assessment of the TAG synthesis pathway. Down regulation of
535 TAG lipogenic pathway components, *Gpat4* ($Hm\Delta>GFP/Gpat4^{RNAi}$) and *Agpat3*
536 ($Hm\Delta>GFP/Agpat3^{RNAi}$) in immune cells led to decreased lipid levels in immune cells (Fig.
537 5i-j and Fig. S7e-f). Their down regulation confirmed the smaller animal size phenotype
538 seen in the screen, but this was now clearly evident in wingspan areas (Fig. 5n-o' and Fig.
539 S7n-o') and body length quantifications (Fig. 5n"-o" and Fig. S7 i, j, n"-o"). This was ob-
540 served consistently across males and females and altogether reinstated the importance of
541 TAG synthesis in immune cells to drive animal growth on HSD condition.

542

543 While the former process contributes to *de novo* TAG synthesis, we also know that im-
544 mune cells express lipid scavenging receptors (Franc et al., 1996) which can add to intra-
545 cellular lipid levels. In this context, *croquemort* (*Crq*), the CD-36 homolog in flies (Franc et
546 al., 1996, Guillou et al., 2016) its role in immune cell lipid uptake and high fat induced die-
547 tary stress outcomes is well described (Kiran et al., 2022). Protein levels of Croquemort

548 demonstrated an increase in immune cells on Ct.HSD treatment (Fig. S8 a-c). Its genetic
549 down regulation in immune cells led to reduction in their intracellular lipids (Fig. S8d-e'),
550 and a retardation in adult fly size (Fig. S8 f-k) in both males and females. The data
551 demonstrated that along with *de novo* lipogenesis, lipid uptake also contributed towards
552 increasing intracellular TAG levels and these processes together enabled growth on HSD.
553 Inhibiting either pathway was sufficient to impair the growth promoting benefits of the other
554 lipogenic steps. The use of immune cells and their lipogenic potential in HSD condition
555 was a prominent outcome from these analyses.

556

557 Post lipogenesis, lipolysis drives TAG breakdown (Fig. 6a) and the cycle of lipid synthesis
558 coupled to breakdown maintains intracellular lipid homeostasis (Huang et al., 2014). The
559 screen identified *bmm* dependent TAG breakdown, as a negative regulator of animal
560 growth for which we conducted similar quantifications. Even though the RT-PCR expres-
561 sion analysis failed to show any difference (Fig. S7a7), genetic down regulation of *bmm*
562 (*Hm^Δ>GFP/bmm^{RNAi}*), led to further elevation in intracellular immune cell lipid levels on
563 HSD (Fig. 6 b-c and Fig. S9 a, b), which implied its active state in immune cells. Down
564 regulation of *bmm*, was accompanied by an increase in animal size (Fig. 6 e-f" and Fig. S9
565 d-e"). Contrarily, *bmm* over expression (*Hm^Δ>GFP/UAS-bmm*) in the immune cells not
566 only led to reduction in intracellular lipid levels (Fig. 6d, Fig. S9c), but also caused further
567 retardation of animal sizes than seen in HSD controls (Fig. 6 g-g" and Fig. S9 f-f"). This
568 implied a deleterious impact of immune-specific lipid breakdown on animal growth and al-
569 luded to immune-derived free fatty acids and their debilitating effects on systemic growth
570 homeostasis in HSD.

571

572 **Upstream modifier of immune cell lipogenesis**

573

574 Overall, the data lead us to conclude that the exposure to high sugar diet induced in-
575 creased pyruvate metabolism into driving TCA and a corresponding glycolytic shift. While
576 these may be intrinsic to the immune compartment to counter high sugar stress, the out-
577 come of these catabolic activities is a systemic inhibition of growth. The induction of TAG
578 lipogenesis in these cells, through *de novo* and lipid uptake however functions to favor
579 growth. Although our findings in the current state cannot discriminate between the
580 strengths of different lipogenic modalities and their precise contribution in enabling growth,
581 ACC whose functions allow diversion of sugars into lipids (Cao et al., 2008; Yore et al.,
582 2014), its role in capacitating growth on high sugar appears central. Downstream of lipid
583 synthesis, lipid breakdown is growth inhibitory and most likely adds to components like
584 free fatty acids or acetyl-CoA which are known drivers of excessive sugar induced lipotoxic-
585 ity (Postic and Girard, 2008; Unger, 2003). These results lead us to speculate that the li-
586 pogenic and lipolytic balance in immune cells is key to countering growth inhibitory stress
587 imposed by HSD. As the balance shifts towards *de novo* lipogenesis, the growth achieved
588 is superior than seen on HSD.

589

590 Regulation of *de novo* lipogenic enzyme ACC therefore appears critical. Given the limiting
591 expression levels of ACC on HSD, it led us to explore upstream players that could be in-
592 volved in this. For this we took to screen candidates and addressed a few of them for their
593 effects on immune cell lipid levels. Of all the players, Notch and Hedgehog (Hh) compo-
594 nents were identified as strong regulators of growth, where Notch signaling emerged as a
595 positive regulator of growth while Hh signaling impaired growth on HSD. Thus, we under-
596 took characterization of these two signaling pathways. We assessed for their activity and
597 subsequent impact of their modulation on immune cell lipid levels and animal growth.

598

599 We found that Notch activity was dramatically down regulated in immune cells obtained
600 from HSD treated animals (Fig. S10 a-c). Notch activity was assessed by measuring levels
601 of intracellular domain of Notch protein (NICD), which was detected using an antibody
602 against NICD. The reduction in immune NICD levels implied sensitivity of Notch signaling
603 in these cells to high sugar intake. Contrary to this, expression analysis of Hh pathway in
604 immune cells using Ci protein expression as a corresponding read out of Hh activity (Chen
605 et al., 1999), revealed a significant increase in Ci expression in immune cells on HSD (Fig.
606 S10 d-f). This implied differential impact of excessive sugar intake on immune signaling,
607 where high dietary sugar down regulated Notch activity but led to stabilisation of Hh signal-
608 ing in them.

609

610 We explored the impact of down regulating Notch signaling by expressing a dominant-
611 negative version of the corresponding S3 cleavage enzyme, Presenilin (Psn,
612 *Hm^Δ>GFP/UAS-Psn^{DN}*, Fortini, 2001) in the immune cells. Psn, catalyzes the intramem-
613 brane cleavage of Notch receptor and we found that expression of dominant negative *Psn*,
614 led to reduction in animal size, both in terms of wing span and body lengths (Fig. S10 g-h''
615 and Fig. S11 a, d-e''). Contrarily, expression of Notch-activated form in immune cells
616 (*Hm^Δ>GFP/UAS-N^{Act}*), as the means to activate Notch signaling in them was sufficient to
617 rescue the size defect seen in HSD condition (Fig. S10 i-i'' and Fig. S11 b, f-f''). On the
618 other end, consistent with genetic screen data, down regulation of *hh* in the immune cells
619 (*Hm^Δ>GFP/hh^{RNAi}*) led to recovery in HSD adult fly sizes (Fig. S10 j-j'' and Fig. S11 c, g-
620 g''). Unlike Notch, which consistently affected both genders, loss of hedgehog signaling
621 showed stronger recovery in female sizes (Fig. S11 g-g') than that seen in males (Fig. S10
622 j-j'). Although not conclusive the emerging differences in male and female sizes in few of
623 the backgrounds like PDH, suggest sex-specific regulation of growth on HSD and the dif-
624 ferential control exerted by immune cells on this axis.

625

626 Finally, we assessed for any change in intracellular lipid content and observed that im-
627 mune cells with reduced Notch signaling in Ct.HSD, showed reduction in their lipid droplet
628 content (Fig. S10 k-l'). Raising Notch activity on the other hand, (*Hm^Δ>GFP/Notch^{act}*) in-
629 creased intracellular lipid levels (Fig. S10 m-m'). This suggested that intra-cellular Notch
630 activity was critical towards driving a lipogenic state in immune cells. Intriguingly, a similar
631 increase in immune cell intracellular lipid level was also observed upon loss of *hh* function
632 in them (Fig. S10 n-n'). When assessed for any changes in ACC expression in immune
633 cells, down regulating Notch although did not reveal any change in its levels (Fig. S10 o-
634 p), increasing Notch signaling was sufficient to raise ACC protein levels (Fig. S10 q,s).
635 Down regulating *hh* in immune cells was also sufficient to raise ACC protein levels in HSD
636 immune cells (Fig. S10 r, s). Collectively, these data support a lipogenic role for Notch,
637 and an anti-lipogenic role of Hh signaling in immune cells.

638

639 The data lead us to propose an immune state, where the differential impact of sugar on
640 signaling pathways like Notch and Hh most likely limits the extent of their intracellular lipo-
641 genic potential. Thus, even though lipogenesis is induced, its insufficiency to counter
642 growth inhibitory metabolic steps invoked by TCA, glycolytic shift and lipolysis is perhaps
643 why the animal emerges as a smaller adult on high sugar diet.

644

645

646 **Discussion**

647 **Dietary stress induced macrophage metabolic reprogramming, a determinant of an-**
648 **imal growth trajectory**

649

650 This research underscores the intricate link between the metabolic states of macrophages
651 and their influence on animal growth. Through a comprehensive approach involving im-
652 mune cell characterization, genome-wide RNAi screening, transcriptomics, morphometrics,
653 and metabolomics, we elucidate the nuances of macrophage metabolic adaptations in re-
654 sponse to excessive dietary sugar and their repercussions on animal size regulation (see
655 Fig. 6g). Our findings reveal an unexpected utilization of immune cells' lipogenic potential
656 as the means to promote systemic growth under high sugar diet conditions.

657

658 Previous studies have established larval circulating immune cells, akin to macrophages,
659 (Evans et al., 2003) as primarily lipid-scavenging entities, actively engaging in lipolysis and
660 oxidative metabolism (Cattenoz et al., 2020). However, we observe a notable shift in their
661 metabolic profile in the presence of dietary sugar excess. Larval immune cells undergo
662 heightened tricarboxylic acid (TCA) cycle activity, induce a glycolytic switch, and ramp up
663 triacylglycerol (TAG) synthesis. Importantly, the induction of the lipogenic state is intricate-
664 ly regulated by lipolytic processes, maintaining intracellular lipid levels. These metabolic
665 adaptations likely confer immune cell tolerance to excessive sugar-induced stress but con-
666 currently impacts systemic growth dynamics. Through genetic characterization, we identify
667 steps in TCA cycle activity, glycolytic transition, and increased lipolysis as growth-
668 inhibitory, whereas the induction of lipogenesis and TAG synthesis promotes growth.
669 Thus, in high sugar, an imbalance between growth favoring and growth-inhibiting path-
670 ways results in an anti-growth immune-metabolic state, leading to growth retardation under
671 high sugar diet conditions (refer to Fig. 6g). Genetic interventions inhibiting either the

672 growth-opposing immune metabolic pathways or promotion of growth-favoring metabolic
673 processes suffices to restore growth levels comparable to those observed under a regular
674 diet. This study unravels a novel regulatory mechanism wherein immune metabolic altera-
675 tions exert precise control over systemic growth dynamics. Despite the positive effects of
676 lipogenesis, the metabolic state skewed towards increased sugar and lipid breakdown
677 minimizes its impact, culminating in overall reduced adult size. Thus, our findings under-
678 score the significant contribution of immune cell metabolic adaptations to adult growth ho-
679 meostasis, shedding light on the plasticity of this intricate interplay.

680

681 The debilitating effects of high sugar on childhood growth trajectory is well established.
682 However, the underlying reasons for how high sugar impairs growth is limited to increased
683 peripheral insulin resistance and resistance to growth hormone signaling. Given animal
684 growth is achieved by complex communication between multiple organs, little is known
685 about how dietary sugar overload impacts the underpinnings of this crosstalk. In the con-
686 text of immune changes seen in this study, immune-lipid homeostasis has as an adaptive
687 influence on growth where increasing *de novo* lipogenesis can shift the systemic imbal-
688 ance to drive growth recovery on HSD. In the context of sugar, the sufficiency of immune-
689 lactate production in driving growth retardation is significant. The influence of lactacidemia
690 on intrauterine growth retardation (Marconi et al., 1990) concurs with this result and posits
691 immune cell glycolytic shift as a prominent cause for the growth retardation. Thus, we hy-
692 pothesize that the excessive sugar breakdown with intermediates like lactate shifts the
693 systemic homeostasis on HSD to growth impairment, but when diverted into lipids allows
694 growth on HSD and limits the negative context imposed by sugar metabolism. The induc-
695 tion of *de novo* lipogenesis while allowing an alternate route to metabolize sugars, most
696 likely also restricts pyruvate availability for LDH function, and is perhaps how gain of ACC
697 enables growth recovery. The insufficient and inconsistent impact of blocking pyruvate en-

698 try into TCA (with loss of PDH) implies the role of TCA in facilitation but not driver of the
699 same. An alternate route that opposes growth more affirmatively is predictably via LDH
700 that raises lactate that then leads to growth impairment on HSD.

701

702 The extent of lipogenic induction is limited in immune cells and may be because these
703 cells unlike the fat body are never designed for storage functions. Lipid breakdown is
704 therefore facilitated by bmm and most likely adds to raise the pool of free fatty acids (FFA)
705 and negatively influences growth. FFA and their link with the development of inflammation
706 and insulin insensitivity in peripheral tissues is well established (Johnson and Olefsky,
707 2013). High levels of circulating FFA and their uptake by non-adipose organs that cannot
708 store fatty acids or their derivatives develop lipotoxicity leading to systemic insulin re-
709 sistance (Postic and Girard, 2008; Unger, 2003). Thus, it is possible that lactate together
710 with the elevated levels of FFA released from immune cells facilitates growth retardation
711 through invoking insulin resistance. It is also possible that FFA further fuels immune cell
712 TCA activity and adds to growth retardation (Fig. 6g).

713

714 In our previous work, we described the role of macrophage internal state as a relevant
715 regulator of animal growth. In this study we extend these observations and show the spe-
716 cifics of internal state changes that are linked to systemic growth homeostasis. Moreover,
717 we found signals that allow immune cells to translate these internal state changes to im-
718 pact systemic growth. Pro- and anti-growth factors emanating from immune cells can be
719 perceived by tissues and impinge on a multi-organ cross-talk to define the extent of growth
720 adaption possible. The identification of secreted entities like Hh, that negatively influences
721 growth, while Upd2, Wnt pathway that positively influence growth, illustrate this possibility.

722

723 **Macrophages, an important lipogenic organ to ameliorate the effects of dietary sug-**
724 **ar induced stress**

725

726 The protective role of lipogenesis in *Drosophila* and mammals is clearly shown. Lipogenic
727 shift in adipose tissues to store TAGs, protects the animal against sugar induced toxicity
728 (Musselman et al., 2013). Studies in mice have shown that TAG storage protects the ani-
729 mal from developing insulin resistance (Greenberg et al., 2011). Immune cells on the other
730 hand are not conventional storage organs, however, we find that they too respond to HSD
731 exposure in similar ways like the fat body demonstrating a clear lipogenic shift. A transcrip-
732 tional induction of lipogenic genes with up regulation of TAG synthesis enzymes, *de novo*
733 lipogenesis and alongside requirement for lipid scavenging receptors like Crq, with in-
734 creasing intracellular levels of TAG, reveal immune cells functioning in the capacity of a
735 key lipogenic organ. The concerted effort of an immune lipogenic state against sugar in-
736 duced stress, proposes an intriguing role for this circulating organ in enabling processes to
737 accommodate sugar overload. The growth promoting function of this shift further highlights
738 the systemic stress relieving potential enabled by the lipogenic shift in this tissue. Contrary
739 to the known inflammatory consequences of increasing lipid accumulation in immune cells
740 and a defining hallmark of an inflammatory response (Zhang et al., 2022), high sugar in-
741 duced lipogenic state in immune cells in this study correlates with dampened immunity as
742 evident from the transcriptional down regulation of most immune related pathways.

743

744 Specifically, the sugar dependent metabolic reprogramming to drive *de novo* lipogenesis
745 allows commitment of carbon to *de novo* fatty acid synthesis (Parks et al., 2008) and pro-
746 tects the animal against dietary sugar induced stress (Musselman et al., 2013). *de novo*
747 lipogenesis in immune cells also appears to function in a similar capacity. However, the
748 limited expression of ACC keeps *de novo* lipogenesis under control. While limited storage

749 of these cell may underlie this restraint, the growth recovery seen with over-expression of
750 ACC allude to possible repression on ACC. Given the critical role for ACC at the nexus of
751 metabolism, lipid synthesis and impact on macrophage inflammatory response (Yeudall et
752 al., 2022), it is unclear as to why the immune cells given the overall benefits, would limit
753 their ACC expression and consequently their *de novo* lipogenic potential. The possible
754 dysregulation by Hh may underlie this limitation. Hh signaling controls cAMP levels in *Dro-*
755 *sophila* larval blood cells (Mondal et al., 2011) and the inhibitory effects of increased cAMP
756 on *de novo* lipogenesis (Batchuluun et al., 2022; von Loeffelholz et al., 2021) aligns well
757 with this possibility but remains to be tested. Alternatively, a limitation in CoA in high sugar
758 conditions (Musselman et al., 2013) may restrict *de novo* lipogenesis or because lipid syn-
759 thesis via *de novo* lipogenesis is a metabolically costly process compared to the energeti-
760 cally efficient process of direct lipid incorporation into storage forms (Solinas et al., 2015).
761 Therefore, it is very likely that with constant feeding on HSD across the developmental
762 stages, the immune cells resort to a cost-effective process of lipid uptake to maintain a lim-
763 ited lipogenic state.

764

765 What is striking is the identification of transcriptional regulators like oxysterol proteins in
766 the screen and their role in promoting growth which remain to be explored in detail. Oxys-
767 terols mediate transcriptional regulation that drives direct lipogenesis by promoting lipo-
768 genic factors like SREBP and FASN (Horton et al., 2002). Their identification in the screen
769 further strengthens the fact that immune cells are invoked to initiate a lipogenic program.
770 The overall metabolic reshaping exhibited by immune cells to function as a lipogenic organ
771 to confer the tolerance against dietary stress is very striking. Given the specific up regula-
772 tion of lipogenesis is seen in the face of caloric excess, this is more likely to be a compen-
773 satory mechanism to a pathophysiological state, than of a physiological regulation. The
774 data opens a new paradigm to look at these cells in the face of dietary stresses functioning

775 much like fat body or adipose tissues and operating beyond their role in defensive func-
776 tions.

777

778 **Immune cell metabolic heterogeneity: A model to explain the dichotomy of metabol-
779 ic states seen in HSD**

780

781 To our knowledge, this is the first study where an unbiased genetic screen and a system-
782 atic approach has been conducted to investigate immune interface of animal growth regu-
783 lation. This extensive analysis has alluded to the existence of unexpectedly contrasting
784 immune metabolic states with opposing consequences on growth phenotype. The dichot-
785 omy of immune cell states within the Hm^{+} population is evident across independent and
786 unbiased transcriptomics, genetics and metabolomic approaches.

787

788 Macrophage polarization from M1 to M2 state is a well-established concept in mammals
789 (Chen et al, 2023) although not discerned in *Drosophila*, but our data allows us to specu-
790 late on a model of immune metabolic heterogeneity that defines immune outcomes. We
791 hypothesize that while all cells may be undergoing metabolic shifts, subpopulations exist-
792 ing in lipogenic or glycolytic state can be proposed and it is a balance in these subtypes
793 that defines the immune outcomes. It is entirely possible that our genetic manipulations
794 introduce bias in immune cells to one type over the other. Recent findings from single cell
795 analysis have alluded to heterogenous population of immune cells in the larvae where li-
796 pogenic sub-populations have been identified (Cho et al., 2020; Girard et al., 2021). More-
797 over, transcriptomics of embryonic versus larval immune cells have revealed distinct met-
798 abolic cell states, where embryonic macrophages are lipogenic and glycolytic, while larval
799 immune cells are oxidative, lipolytic and extensively phagocytic (Cattenoz et al., 2020).
800 High sugar induced metabolic reprogramming captures snippets of both larval and embry-

801 onic states and therefore the state of heterogeneity could also be an outcome of macro-
802 phages from distinct ontogeny contributing to growth. While these are speculations, a bal-
803 ance of pro- and anti-growth immune states in organismal growth homeostasis is evident
804 from our analysis. Currently limited by bulk transcriptomics studies, single cell analysis of
805 immune cells on HSD will be needed to address the observed immune dichotomy in great-
806 er detail.

807

808 **Immune cell state at the interface of coordinating systemic organismal**
809 **growth homeostasis**

810 The indication of macrophages as nutrient sensors (Martínez-Micaleo et al., 2016; News-
811 holme, 2021) which assimilate environmental information and relay cues at an organismal
812 level is an emerging concept. Evidences supporting immune cells in this capacity have re-
813 cently been published with respect to governing growth and developmental timing in ho-
814 meostasis (Juarez-Carreño and Geissmann, 2023; Sriskanthadevan-Pirahas et al., 2023)
815 and in infection (Krejčová et al., 2019). Our findings from the past have elaborated on simi-
816 lar lines (P et al., 2020). They have alluded to systemic influence on insulin signaling and
817 fat body metabolic state and inflammation. Moreover, we have seen that growth recovery
818 on HSD by activating immune-Pvr pathway is independent of insulin activity implying addi-
819 tional players involved in this axis (P et al., 2020). This is where signaling molecules like
820 Adenosine (Bajgar et al., 2015; Bajgar and Dolezal, 2018), Impl2 (Honegger et al., 2008;
821 Krejčová et al., 2023; Okamoto et al, 2013), Upd3 (Romão et al., 2021; Shin et al., 2020;
822 Woodcock et al., 2015), Dilp8 (Colombani et al., 2012; Garelli et al., 2015; Sanchez et al.,
823 2019; Vallejo et al., 2015), Hh (Rodenfels et al., 2014; Vervoort, 2000) and Pvfs (Ghosh et
824 al., 2020; Juarez-Carreño and Geissmann, 2023; Cox et al, 2021) become relevant. Either
825 by modifying insulin resistance or defining developmental timing, they orchestrate metabol-
826 ic and growth equilibrium. With metabolites like lactate, acetyl CoA and candidate cyto-

827 kines like Upd2, Wg, Hh and peptide hormones (CCHamide-2, sNPF) identified in the im-
828 mune cells with specific effect on growth, the ability of these cells to engage in a multi-
829 organ cross-talk beyond insulin signaling can be readily envisaged.

830

831 Finally, the concept of altering body size, particularly stunted growth is also considered as
832 an adaptation to adverse environmental conditions rather than a pathological conse-
833 quence (Bogin et al., 2007). This finds support from studies across humans and other
834 mammals in conditions of heat stress (Elayadeth-Meethal et al., 2018), high altitude (Baye
835 and Hirvonen, 2020; Grant et al., 2022; Pawson and Clegg, 1997) and nutrient availability.

836 In this study, while we focused our discussions on growth recovery in dietary stress, given
837 this is burgeoning problem linked to high sugar diet and childhood growth abnormalities, if
838 any specific contribution these changes have on animal adaptation with respect to surviv-
839 al, fecundity etc., remains to be investigated. Although preliminary, we do observe a bene-
840 fit on survival on HSD with heightened TCA or glycolytic shift in immune cells. Very strik-
841 ingly, immune specific downregulation of alpha-ketoglutarate, a key TCA enzyme had
842 heightened larval lethality on HSD (data not shown). It is therefore entirely possible that
843 the limited lipogenic shift, and the stunted growth driven by these pathways is merely an
844 adaptation mechanism to facilitate development in the face of dietary sugar induced
845 stress.

846

847 For an animal to grow, it must sense nutrients and then systemically relay information to
848 facilitate nutrient allocation and coordinate metabolism to achieve growth in a well-
849 coordinated manner. In conditions of nutrient stress, defects in nutrient sensing and signal-
850 ing is a hallmark feature that is linked to growth abnormalities. Given the physiological
851 complexity of higher model systems, it becomes extremely challenging to address the un-
852 derlying biological processes and complex crosstalk involved in such responses. The find-

853 ings in this study provide a fundamental insight into an unexplored and overlooked area of
854 immune metabolic reprogramming and its larger consequences on growth physiology. The
855 small animal sizes observed in macrophage depleted mice and their sensitivity to dietary
856 stresses (Hua et al., 2018; Weisberg et al., 2003) confirms with the larger role played by
857 immune cells in growth control, across systems. Moreover, the connection between im-
858 munity and growth (van der Most et al., 2011) alludes to unexplored immune metabolic
859 changes that accompany in these cells in infected conditions (Krejčová et al., 2023) in im-
860 mune-growth cross-talk. The findings in this study highlights the impact of immune-derived
861 metabolites and the specifics of modulating immune internal metabolic state on decisions
862 defining growth physiology. The cross-talk promoted by immune cells emerges much more
863 than just a consequence of altered immune function and proposes their deterministic role
864 in defining animal growth potential. Further research in this area promises novel insights
865 into growth regulation that currently remain unexplored and beyond our understanding.

866

867 **Materials and methods:**

868

869 ***Drosophila* genetics**

870 Flies were raised on standard cornmeal medium (5% sucrose) at 25°C. For high sugar di-
871 et, the sugar content was increased five-fold to 25% sucrose. The RNAi lines were ob-
872 tained either from Bloomington *Drosophila* Stock Center (BDSC, Bloomington, IN) or Vien-
873 na *Drosophila* Research Centre (VDRC). The *Gal4* line used was *Hm^Δ>UAS-GFP* (Sinen-
874 ko and Mathey-Prevot., 2004) and *w¹¹¹⁸* flies were used as controls. All genetic crosses
875 were set up at 25°C and then transferred to 29°C where they were grown until analysis ei-
876 ther as larvae or as adults. See Table S6 for a complete list of genes and their BDSC or
877 VDRC stock numbers.

878

879 **High sugar diet exposure**

880 We utilised two different dietary regimes of high sugar diet (HSD). For the short-term
881 4hr.HSD regime, *Hm^Δ>GFP/w¹¹¹⁸/RNAi* feeding third instar larvae (72hr. AEL) reared on
882 regular food (RF, containing 5% sucrose) were transferred to HSD (containing 25% su-
883 crose) where they were allowed to feed for a brief period of four hours only. For Ct.HSD
884 regime, *Hm^Δ>GFP/w¹¹¹⁸/RNAi* embryos were collected on RF and transferred to HSD
885 (containing 25% sucrose). The larvae were reared at 29°C until feeding 3rd instar stage fol-
886 lowing which they were processed for experiments related to immune cells and until eclo-
887 sion for experiments related to adult body size.

888

889 **Immune cell counts**

890 For quantification of sessile and circulating immune cells, protocol described by (Petraki et
891 al., 2015) was used to isolate the two immune cell populations. Briefly, three feeding third
892 instar larvae were allowed to bleed for a few seconds in PBS following an incision at both
893 the larval posterior and anterior ends. After the release of the circulating immune cells, the

894 same larvae were transferred to another well and sessile immune cells attached to the lar-
895 val cuticle released by a process of scrapping and/or jabbing. For quantifying total immune
896 cells, there was no separation of circulating and sessile immune cells. Images were ac-
897 quired with five fields per sample at 20X magnification. For cell counting, particle analyser
898 in ImageJ was used with size range of 2-infinity. For cell clusters typically counted as one
899 by the software, the number of cells in those clusters were estimated by manual counting.
900 The counting was done for DAPI-positive (representing total blood cells), Hml-positive
901 (Hml⁺), and Hml-negative (Hml⁻) cells. Counting assays were performed in at least two
902 wells per experiment and independently repeated at least three times. The cell numbers
903 obtained were quantified per larva and represented as number of immune cells per mm².
904

905 **Immunohistochemistry and staining**

906 For all other experiments except the cell count assay, total immune cells comprising of cir-
907 culating and sessile pool were analysed. Immune cells were bled and allowed to settle for
908 30 minutes. Cells were then fixed with 4% formaldehyde in PBS for 10 minutes and incu-
909 bated with primary antibodies overnight at 4 degrees. Primary antibodies used were rabbit-
910 αACC (1:1000, Jacques Montagne, I2BC, France), mouse-αNICD (1 :50, DSHB,
911 C17.9C6), rabbit-αCi (1 :100, DSHB, 2A1), rabbit-αCrq (1:100, The Scripps Research In-
912 stitute, La Jolla, USA. The secondary antibody Alexa Fluor 546 (Invitrogen) was used at
913 1:500. Nuclei were visualized using DAPI (Sigma). Samples were mounted with Vec-
914 tashield (Vector Laboratories).

915
916 For Nile Red staining, formaldehyde fixed cells were incubated in 1:1000 solution of 0.02%
917 Nile Red (Sigma- Cat. No. N3013) for 20 mins, washed and mounted similarly. Images
918 were acquired on Olympus FV3000 confocal microscope with a step size of 1μm at 40X or
919 60X magnification.

920

921 For phalloidin staining, cells were first permeabilized with 0.1% Triton X-100 in PBS
922 (PBST) for 5 mins and then incubated for 2 hours with Atto 565 Phalloidin (Sigma-Aldrich #
923 94072) diluted 1:100 in PBS. Phalloidin staining was used to assess cell morphology and
924 filopodia length and number. Specifically, for measuring filopodia length, it was done as de-
925 scribed in Hao et al, 2018. Briefly, the line tool on Image J was used to draw a line over a
926 filopodium from its tip to cell body with extensions > 0.5 μ m being classified as filopodia.

927

928 ROS stainings were done as described in (Owusu-Ansah et al., 2008). Larval immune
929 cells were stained with 1:1000 DHE (Dihydroethidium) (Invitrogen, Molecular Probes,
930 D11347) dissolved in 1xPBS for 15 min in the dark. Immune cells were washed in 1xPBS
931 twice and fixed with 4% formaldehyde for 5 mins at room temperature in the dark. After
932 this, 1X PBS wash was given to the immune cells and this step was repeated twice and
933 then Vectashield (Vector Laboratories) was added. The immune cells were imaged imme-
934 diately.

935

936 **Immune cell phagocytosis assay**

937 Immune cells bled in PBS were treated with 0.1 μ m latex beads (ThermoFischer Scientific
938 #F8801) for 15 minutes and washed three times with PBS to remove the excess free
939 beads. Cells were then fixed with 4% formaldehyde in PBS for 10 minutes, washed with
940 PBS and mounted in Vectashield with DAPI (Vector Laboratories) for imaging. For meas-
941 uring phagocytic capacity, phagocytic index was measured as number of engulfed latex
942 beads per immune cell (Hao et al, 2018).

943

944 **Image analysis and quantification of expression intensities**

945 ImageJ software was used for analysis. For all images, across all experiments, with stain-
946 ings on circulating immune cells, the quantification of the expression pattern or intensities
947 was done in the following manner. At least two wells per experiment was analysed . Each
948 well had immune cells obtained from a maximum of five larvae. Five to six images were
949 captured for each well at 60X magnification, and the staining was assessed for 5-6
950 cells/field. The analyses were carried out for at least 60-70 cells per experiment and this
951 was repeated independently at least three times. The quantifications shown in the graphs
952 represents the average expression from these cells across batches. Images were assem-
953 bled in Adobe Photoshop 2023.

954

955 **Immune cell biochemical assays: Triacylglycerol and glucose measurements**

956 TAG and glucose measurements were done as shown in P et al, 2020. Briefly, immune
957 cells bled from at least fifteen larvae per experiment were collected in PBS followed by
958 centrifugation at 1000rpm to pellet the cells. To the pellet, 0.05% 1XPBST (Tween 20) was
959 added and vortexed intermittently by keeping on ice. Protein levels of immune cells were
960 estimated using BCA protein assay kit (ThermoFischer Scientific #23225). For measuring
961 glucose and TAG levels, immune cell samples were first heat inactivated at 70°C for 10
962 mins and then subjected to metabolite analysis using GOD-POD kit (Sigma#GAGO20) and
963 Triglyceride assay kit (Sigma#T2449) respectively. Assays were performed on Varioskan
964 LUX Multimode Microplate Reader and metabolite levels in each sample were normalised
965 to total protein levels. At least two-three biological replicates were used and the assays
966 were performed in at least three independent experiments (see Legends for “n”, total
967 number of larvae for the assays).

968

969 **RNA isolation, bulk RNA-sequencing and Real-Time PCR**

970 Immune cells from thirty-forty feeding 3rd instar larvae fed on RF, 4hr.HSD and Ct.HSD
971 were collected in PBS on ice and stored at -80°C. Total RNA was extracted using Trizol
972 (Life Technologies) followed by assessment of RNA integrity (>7) and purity using an Ag-
973 ilent-2100 Bioanalyzer. Illumina Hi-seq kits were used to construct sequencing libraries fol-
974 lowing standard protocol, and 100 bp single end reads were generated at Sequencing fa-
975 cility, NCBS (Bengaluru, India).

976 For Real-Time PCR, RNA was first converted to first-strand cDNA using the SuperScript II
977 Reverse Transcriptase kit (Invitrogen#18064014) following the manufacturer's instructions.
978 Real-Time PCR was performed in QuantStudio 5 Real-Time PCR System (Applied Biosys-
979 tems) using SYBR Green Master Mix (Applied Biosystems#A5741) and gene-specific pri-
980 mers. The primers designed using IDT's Primer Quest Tool are listed in Table S7. Relative
981 quantification of transcript levels was achieved using the Comparative Ct method (delta-
982 delta Ct) using Rp49 as endogenous control. At least three biological replicates were used
983 and repeated three times (see Legends for "n", total number of larvae for qPCR)

984

985

986 **RNA-seq data analysis**

987 Post sequencing, 30 to 40 million single-end reads were obtained. FastQC v0.11.5 was
988 used to perform the initial quality check. Adapters were trimmed from the reads using cu-
989 tadapt v1.8.3 (-a AGATCGGAAGAGCACACGTCTGAAGTCAGTCA). The trimmed reads
990 were mapped to the *Drosophila* genome (*Drosophila melanogaster*. BDGP6.22) using
991 Hisat2 v2.1.0. Read counting was done using featureCounts v2.0.0. DESeq2 v1.40.1 was
992 used to perform the read count normalization and differential expression analysis (Ge et al,
993 2018; Kanehisa et al, 2000; Kim et al, 2015; Liao et al, 2014; Love et al, 2014; Andrews,
994 S; 2010; Martin, M, 2011). Genes that showed a fold change of at least 2 (up or down),
995 with an adjusted p-value of less than 0.05, were considered as differentially expressed for

996 further analysis. Gene ontology and KEGG pathway enrichment analysis of the differential-
997 ly expressed genes was done on the ShinyGO v0.60 webserver. Genes that are associat-
998 ed with each metabolic pathway considered here, were retrieved from the KEGG database
999 (<http://www.genome.jp/>).

1000

1001 **Adult fly size and wing analysis**

1002 The adult fly progeny of the tested crosses viz RNAi lines with the immune cell specific
1003 driver, *Hm1^{Δ>}GFP* were collected after the eclosion on high sugar diet and kept on 29°C for
1004 one to two days in normal food vials for acclimatization. Both females and males were kept
1005 together. After two days the male and female flies were separated, and flies were grouped
1006 for imaging for the body size. Each fly was kept in a lateral position and fly wings were
1007 moved backward to expose the body. The length from the anterior end of a head to the
1008 posterior end of the abdomen in the flies was measured (Lee et al., 2008, 2004). For
1009 wingspan quantification, the right wing of each fly was plucked and mounted on a glass
1010 slide, separately for males and females. The distilled water was used to mount the wing on
1011 a glass slide for proper orientation. The slides were covered with a coverslip and sealed
1012 with nail paint. The images of the wings were captured with the Leica MZ 10 F modular
1013 stereo microscope and LASX software. Fiji Image J was used to quantify the wing pheno-
1014 type for wing area using the polygon section tool in the software. The scale was set by
1015 converting pixels to millimeters (mms). The hinge region of the wing was excluded while
1016 marking the boundary of the wing. More than 50 animals were used for wing span and
1017 adult fly length analysis.

1018

1019 **Metabolite extraction and derivatization**

1020 For metabolite extraction, blood cells from five feeding 3rd instar (WI) larvae per replicate
1021 were extracted and 200µl of 80% ice-cold Methanol was added. After this, 100µl of LC/MS
1022 grade water was added and the samples were incubated in ice for 30 min. Then 200µl
1023 chloroform was added and samples were vortexed for 30 seconds and centrifuged at
1024 13000 RPM for 10 min. at 4°C. The upper phase was transferred into a fresh tube, dried
1025 down in a Vacufuge plus speed-vac at room temperature and derivatized further with OB-
1026 HA/EDC for metabolite analysis. The interphase was taken for protein estimation for nor-
1027 malization purpose. Proteins were resuspended in 5% SDS and heated at 37°C for 30
1028 minutes. The protein concentration was determined using the Pierce BCA Protein Assay
1029 Kit Assay (ThermoFisher). For steady state analysis, the metabolite levels were normal-
1030 ized by per sample per total protein amount in µg.

1031

1032 For derivatization of metabolites (Tan et al., 2014; Walvekar et al., 2018), the dried sam-
1033 ples were dissolved in 50 µl of LC/MS grade water and 50µl of 1M EDC (in Pyridine buffer)
1034 was added. Samples were kept on a thermomixer for 10 min. at room temperature and
1035 100µl of 0.5 M OBHA (in Pyridine buffer) was added. The samples were incubated again
1036 for 1.5 hours on the thermomixer at 25°C, and metabolites were extracted by adding 300
1037 µl of ethyl acetate and this step was repeated three times. Samples were dried down in a
1038 Vacufuge plus speed-vac at room temperature and stored at -80°C until run for LC/MS
1039 analysis. A minimum of 4 biological replicates were taken per experiment (see Legends for
1040 “n”, total number of larvae for metabolomics).

1041

1042 **13-C labelling and stable isotope tracer analysis**

1043 For isotopomer tracer analysis, five feeding 3rd instar (WI) larvae were washed twice in
1044 PBS and immune cells were extracted. Blood cells were incubated in 10mM of U¹³C-
1045 Pyruvate in 1X PBS (Cambridge Isotope Laboratories, CLM-2440-0.5) for 30 min. Blood-

1046 cells were centrifuged down at 13000 RPM for 10 min. and 200ul of 80% ice-cold metha-
1047 nol was added to each sample and stored at -80°C. Samples were further processed for
1048 metabolite extraction as done for steady state analysis.

1049

1050 **Liquid chromatography-mass spectrometry (LC/MS) analysis**

1051 The metabolite extract was separated using a Waters XBridge C18 Column (2.1 mm, 100
1052 mm, 3.5 mm) coupled to an Agilent QQQ 6470 system. The autosampler and column oven
1053 were held at 4°C and 25°C, respectively. The column was used with buffer A (Water and
1054 0.1% Formic Acid) and buffer B (100% acetonitrile and 0.1% Formic Acid). The chromato-
1055 graphic gradient was run at a flow rate of 0.300 ml/minute as follows: 0 min: gradient 10%
1056 B; 0.50 min: gradient 10% B; 8 min: gradient 100% B; 10 min: gradient 10% B; 11 min:
1057 gradient at 10% B. and 16 min: gradient held at 10% B. The mass spectrometer was oper-
1058 ated in MRM, positive ion mode. Mass spectrometry detection was carried out on a QQQ
1059 Agilent 6470 system with ESI source. For metabolite quantification, Peak areas were pro-
1060 cessed using MassHunter workstation (Agilent). Microsoft Excel 2016 and GraphPad
1061 Prism 9 software was used for statistical analysis. Q1/Q3 parameters are Retention time
1062 (RT) values given in Table S8.

1063

1064 **Sample size and Statistical analyses**

1065 In all experiments, n implies the total number of samples analyzed that were obtained from
1066 independent experimental repeats and 'N' represents the number of independent experi-
1067 mental repeats, which is shown by dot in the graphs and also mentioned in the figure leg-
1068 ends. The sample size across all experiments was determined based on the sensitivity of
1069 the assay to detect the corresponding changes. All statistical analyses and quantifications
1070 were performed using GraphPad Prism Ten and Microsoft Excel 2016. Unpaired t-test with
1071 Welch's correction, Two-way ANOVA with main effects or with Dunnett's multiple compari-

1072 son test is employed wherever applicable to account for the variation between and within
1073 the experiments (Goyal et al., 2021; Hadjieconomou et al., 2020). P-value given for each
1074 graph in legends.

1075

1076 **Data availability**

1077 All raw RNAseq reads associated with the study are available from the NCBI SRA (Acces-
1078 sion PRJNA1090274).

1079

1080

1081 **Acknowledgements**

1082 We thank Prof. Jacques Montagne for the Acetyl-CoA-Carboxylase (ACC) antibody, Prof.
1083 Nathalie Franc for the Croquemort (Crq) antibody, the Bloomington *Drosophila* Stock Cen-
1084 ter (BDSC) and Vienna *Drosophila* Resource Center (VDRC) for fly stocks. We
1085 acknowledge National Centre for Biological Sciences (NCBS), Centre for Cellular and Mo-
1086 lecular Platforms (C-CAMP) for Central Imaging & Flow Cytometry Facility (CIFF) and the
1087 fly facility. We thank metabolomics facility at MPF, Bindley Bioscience Center, and Dr.
1088 Vikki Weake, Purdue University for help with metabolomic experiments. Owing to space
1089 limitations, we apologize to our colleagues whose work is not cited. Cartoons were created
1090 with BioRender.com. This study was supported by Department of Science and Technology
1091 - CRG (Grant number CRG/2021/002815), USIAS Indo French grant awarded to T.M and
1092 A.G and DBT/Wellcome Trust Senior Research Fellowship (Grant number
1093 IA/S/22/1/506259) awarded to T.M. This work was also supported by the DBT/Wellcome
1094 Trust India Alliance Fellowship [Grant number IA/E/18/1/504327] awarded to A.M. S.N is a
1095 Graduate Student at inStem, in the Mukherjee lab, and is supported by Council of Scien-
1096 tific & Industrial Research (CSIR)-Fellowship. M.G. is a Graduate Student at inStem, in the
1097 Mukherjee lab, and is supported by DST-INSPIRE and, SERB-OVDF fellowship facilitated
1098 the work done at Purdue University.

1099

1100 **Conflict of interest statement**

1101 The authors declare no conflict of interest.

1102

1103

1104

1105

1106

1107 **References**

1108

1109

1110 Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data
1111 [Online]. Available online at:
1112 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

1113 Alcedo J, Ayzenzon M, Von Ohlen T, Noll M, Hooper JE. The *Drosophila* smoothened
1114 gene encodes a seven-pass membrane protein, a putative receptor for the hedge-
1115 hog signal. *Cell*. 1996 Jul 26;86(2):221-32. doi: 10.1016/s0092-8674(00)80094-x.

1116 Bailey AP, Koster G, Guillermier C, Hirst EM, MacRae JI, Lechene CP, Postle AD, Gould
1117 AP. Antioxidant Role for Lipid Droplets in a Stem Cell Niche of *Drosophila*. *Cell*.
1118 2015 Oct 8;163(2):340-53. doi: 10.1016/j.cell.2015.09.020.

1119 Bajgar, A., Dolezal, T., 2018. Extracellular adenosine modulates host-pathogen interac-
1120 tions through regulation of systemic metabolism during immune response in Dro-
1121 sophila. *PLOS Pathogens* 14, e1007022.
1122 <https://doi.org/10.1371/journal.ppat.1007022>

1123 Bajgar, A., Kucerova, K., Jonatova, L., Tomcala, A., Schneedorferova, I., Okrouhlik, J.,
1124 Dolezal, T., 2015. Extracellular adenosine mediates a systemic metabolic switch
1125 during immune response. *PLoS Biol* 13, e1002135.
1126 <https://doi.org/10.1371/journal.pbio.1002135>

1127 Bakopoulos, D., Beadle, L.F., Esposito, K.M., Mirth, C.K., Warr, C.G., Johnson, T.K., 2020.
1128 Insulin-Like Signalling Influences the Coordination of Larval Hemocyte Number with
1129 Body Size in *Drosophila melanogaster*. *G3 (Bethesda)* 10, 2213–2220.
1130 <https://doi.org/10.1534/g3.120.401313>

1131 Baron, J., Sävendahl, L., De Luca, F., Dauber, A., Phillip, M., Wit, J.M., Nilsson, O., 2015.
1132 Short and tall stature: a new paradigm emerges. *Nat Rev Endocrinol* 11, 735–746.
1133 <https://doi.org/10.1038/nrendo.2015.165>

1134 Batchuluun, B., Pinkosky, S.L., Steinberg, G.R., 2022. Lipogenesis inhibitors: therapeutic
1135 opportunities and challenges. *Nat Rev Drug Discov* 21, 283–305.
1136 <https://doi.org/10.1038/s41573-021-00367-2>

1137 Batista-Gonzalez, A., Vidal, R., Criollo, A., Carreño, L.J., 2019. New Insights on the Role
1138 of Lipid Metabolism in the Metabolic Reprogramming of Macrophages. *Front Immunol*
1139 10, 2993. <https://doi.org/10.3389/fimmu.2019.02993>

1140 Baye, K., Hirvonen, K., 2020. Evaluation of Linear Growth at Higher Altitudes. *JAMA Pedi-
1141 atr* 174, 977–984. <https://doi.org/10.1001/jamapediatrics.2020.2386>

1142 Begon, B., Silva, M.I.V., Rios, L., 2007. Life history trade-offs in human growth: adaptation
1143 or pathology? *Am J Hum Biol* 19, 631–642. <https://doi.org/10.1002/ajhb.20666>

1144 Boulan, L., Milán, M., Léopold, P., 2015. The Systemic Control of Growth. *Cold Spring
1145 Harb Perspect Biol* 7, a019117. <https://doi.org/10.1101/cshperspect.a019117>

1146 Boulan, L., Milán, M., Léopold, P., 2021. What determines organ size during development
1147 and regeneration?. *Development* 148 (1): dev196063.
1148 doi: <https://doi.org/10.1242/dev.196063>.

1149 Bowker-Kinley, M.M., Davis, I.W., Wu, P., Harris, A.R., Popov, M.K., 1998. Evidence for
1150 existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase
1151 complex. *Biochemical Journal* 329, 191–196. <https://doi.org/10.1042/bj3290191>

1152 Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB,
1153 DeBerardinis RJ, Feron O, Frezza C, Ghesquiere B, Gottlieb E, Hiller K, Jones RG,
1154 Kamphorst JJ, Kibbey RG, Kimmelman AC, Locasale JW, Lunt SY, Maddocks OD,
1155 Malloy C, Metallo CM, Meuillet EJ, Munger J, Nöh K, Rabinowitz JD, Ralser M,
1156 Sauer U, Stephanopoulos G, St-Pierre J, Tennant DA, Wittmann C, Vander Heiden

1157 MG, Vazquez A, Vousden K, Young JD, Zamboni N, Fendt SM. A roadmap for in-
1158 terpreting (13)C metabolite labeling patterns from cells. *Curr Opin Biotechnol.* 2015
1159 Aug;34:189-201. doi: 10.1016/j.copbio.2015.02.003.

1160 Cao, H.; Gerhold, K.; Mayers, J.R.; Wiest, M.M.; Watkins, S.M.; Hotamisligil, G.S. Identifi-
1161 cation of a lipokine, a lipid hormone linking adipose tissue to systemic metabo-
1162 lism. *Cell* **2008**, 134, 933–944.

1163 Cattenoz, P.B., Sakr, R., Pavlidaki, A., Delaporte, C., Riba, A., Molina, N., Hariharan, N.,
1164 Mukherjee, T., Giangrande, A., 2020. Temporal specificity and heterogeneity of
1165 Drosophila immune cells. *EMBO J* 39, e104486.
1166 <https://doi.org/10.15252/embj.2020104486>

1167 Chatterjee, N., Perrimon, N., 2021. What fuels the fly: Energy metabolism in Drosophila
1168 and its application to the study of obesity and diabetes. *Science Advances* 7,
1169 eabg4336. <https://doi.org/10.1126/sciadv.abg4336>

1170 Chen, C.-H., Kessler, D.P. von, Park, W., Wang, B., Ma, Y., Beachy, P.A., 1999. Nuclear
1171 Trafficking of Cubitus interruptus in the Transcriptional Regulation of Hedgehog
1172 Target Gene Expression. *Cell* 98, 305–316. [https://doi.org/10.1016/S0092-8674\(00\)81960-1](https://doi.org/10.1016/S0092-8674(00)81960-1)

1173 Cho, B., Yoon, S.-H., Lee, Daewon, Koranteng, F., Tattikota, S.G., Cha, N., Shin, M., Do,
1174 H., Hu, Y., Oh, S.Y., Lee, Daehan, Vipin Menon, A., Moon, S.J., Perrimon, N., Nam,
1175 J.-W., Shim, J., 2020. Single-cell transcriptome maps of myeloid blood cell lineages
1176 in Drosophila. *Nat Commun* 11, 4483. <https://doi.org/10.1038/s41467-020-18135-y>

1177 Coates, J.A., Brooks, E., Brittle, A.L., Armitage, E.L., Zeidler, M.P., Evans, I.R., 2021.
1178 Identification of functionally distinct macrophage subpopulations in Drosophila. *eLife*
1179 10, e58686. <https://doi.org/10.7554/eLife.58686>

1180 Colombani, J., Andersen, D.S., Léopold, P., 2012. Secreted peptide Dilp8 coordinates
1181 Drosophila tissue growth with developmental timing. *Science* 336, 582–585.
1182 <https://doi.org/10.1126/science.1216689>

1183 Dong Q, Zavortink M, Froldi F, Golenkina S, Lam T, Cheng LY. Glial Hedgehog signalling
1184 and lipid metabolism regulate neural stem cell proliferation in Drosophila. *EMBO*
1185 *Rep.* 2021 May 5;22(5):e52130. doi: 10.15252/embr.202052130.

1186 Droujinine, I.A., Perrimon, N., 2016. Interorgan Communication Pathways in Physiology:
1187 Focus on Drosophila. *Annu Rev Genet* 50, 539–570.
1188 <https://doi.org/10.1146/annurev-genet-121415-122024>

1189 El Kasmi, K.C., Stenmark, K.R., 2015. Contribution of metabolic reprogramming to macro-
1190 phage plasticity and function. *Semin Immunol* 27, 267–275.
1191 <https://doi.org/10.1016/j.smim.2015.09.001>

1192 Elayadeth-Meethal, M., Thazhathu Veettil, A., Maloney, S.K., Hawkins, N., Misselbrook,
1193 T.H., Sejian, V., Rivero, M.J., Lee, M.R.F., 2018. Size does matter: Parallel evolu-
1194 tion of adaptive thermal tolerance and body size facilitates adaptation to climate
1195 change in domestic cattle. *Ecology and Evolution* 8, 10608–10620.
1196 <https://doi.org/10.1002/ece3.4550>

1197 Evans CJ, Hartenstein V, Banerjee U. Thicker than blood: conserved mechanisms in Dro-
1198 sophila and vertebrate hematopoiesis. *Dev Cell.* 2003 Nov;5(5):673-90. doi:
1199 10.1016/s1534-5807(03)00335-6.

1200 Fauny, J.D., Silber, J., Zider, A., 2005. Drosophila Lipid Storage Droplet 2 gene (Lsd-2) is
1201 expressed and controls lipid storage in wing imaginal discs. *Developmental Dynam-
1202 ics* 232, 725–732. <https://doi.org/10.1002/dvdy.20277>

1203 Fortini, M.E., 2001. Notch and Presenilin: a proteolytic mechanism emerges. *Current Opin-*
1204 *ion in Cell Biology* 13, 627–634. [https://doi.org/10.1016/S0955-0674\(00\)00261-1](https://doi.org/10.1016/S0955-0674(00)00261-1).

1205 Frame AK, Robinson JW, Mahmoudzadeh NH, Tennessen JM, Simon AF, Cumming RC.
1206 Aging and memory are altered by genetically manipulating lactate dehydrogenase

1207

1208

1209 in the neurons or glia of flies. *Aging (Albany NY)*. 2023 Feb 28;15(4):947-981. doi:
1210 10.18632/aging.204565.

1211 Franc, N.C., Dimarcq, J.L., Lagueux, M., Hoffmann, J., Ezekowitz, R.A. B., 1996. Croquemort,
1212 A Novel Drosophila Hemocyte/Macrophage Receptor that Recognizes Apoptotic Cells. *Immunity* 4, 431-443. [https://doi.org/10.1016/S1074-7613\(00\)80410-0](https://doi.org/10.1016/S1074-7613(00)80410-0)

1213 Galván-Peña, S., O'Neill, L.A.J., 2014. Metabolic Reprograming in Macrophage Polarization. *Front Immunol* 5, 420. <https://doi.org/10.3389/fimmu.2014.00420>

1214 Garelli, A., Heredia, F., Casimiro, A.P., Macedo, A., Nunes, C., Garcez, M., Dias, A.R.M.,
1215 Volonte, Y.A., Uhlmann, T., Caparros, E., Koyama, T., Gontijo, A.M., 2015. Dilp8
1216 requires the neuronal relaxin receptor Lgr3 to couple growth to developmental timing. *Nat Commun* 6, 8732. <https://doi.org/10.1038/ncomms9732>

1217 Ge, S.X., Jung, D., 2018. "ShinyGO: a graphical enrichment tool for animals and plants."
1218 bioRxiv: 315150.

1219 Geeraerts, X., Fernández-Garcia, J., Hartmann, F.J., de Goede, K.E., Martens, L., Elkrim,
1220 Y., Debraekeler, A., Stijlemans, B., Vandekeere, A., Rinaldi, G., De Rycke, R.,
1221 Planque, M., Broekaert, D., Meinster, E., Clappaert, E., Bardet, P., Murgaski, A.,
1222 Gysemans, C., Nana, F.A., Saeys, Y., Bendall, S.C., Laoui, D., Van den Bossche,
1223 J., Fendt, S.-M., Van Ginderachter, J.A., 2021. Macrophages are metabolically het-
1224 erogeneous within the tumor microenvironment. *Cell Reports* 37, 110171.
1225 <https://doi.org/10.1016/j.celrep.2021.110171>

1226 Ghosh, A.C., Tattikota, S.G., Liu, Y., Comjean, A., Hu, Y., Barrera, V., Ho Sui, S.J., Perri-
1227 mon, N., 2020. Drosophila PDGF/VEGF signaling from muscles to hepatocyte-like
1228 cells protects against obesity. *eLife* 9, e56969. <https://doi.org/10.7554/eLife.56969>

1229 Girard, J.R., Goins, L.M., Vu, D.M., Sharpley, M.S., Spratford, C.M., Mantri, S.R.,
1230 Banerjee, U., 2021. Paths and pathways that generate cell-type heterogeneity and
1231 developmental progression in hematopoiesis. *eLife* 10, e67516.
1232 <https://doi.org/10.7554/eLife.67516>

1233 Goyal, M., Tomar, A., Madhwal, S., Mukherjee, T., 2021. Blood progenitor redox homeo-
1234 stasis through olfaction-derived systemic GABA in hematopoietic growth control in
1235 Drosophila. *Development* 149, dev199550. <https://doi.org/10.1242/dev.199550>

1236 Grant, I.D., Giussani, D.A., Aiken, C.E., 2022. Fetal growth and spontaneous preterm birth
1237 in high-altitude pregnancy: A systematic review, meta-analysis, and meta-
1238 regression. *Int J Gynaecol Obstet* 157, 221–229. <https://doi.org/10.1002/ijgo.13779>

1239 Greenberg, A.S., Coleman, R.A., Kraemer, F.B., McManaman, J.L., Obin, M.S., Puri, V.,
1240 Yan, Q.-W., Miyoshi, H., Mashek, D.G., 2011. The role of lipid droplets in metabolic
1241 disease in rodents and humans. *J Clin Invest* 121, 2102–2110.
1242 <https://doi.org/10.1172/JCI46069>

1243 Grmai L, Michaca M, Lackner E, Nampoothiri V P N, Vasudevan D. Integrated stress re-
1244 sponse signaling acts as a metabolic sensor in fat tissues to regulate oocyte matu-
1245 ration and ovulation. *Cell Rep*. 2024 Mar 26;43(3):113863. doi:
1246 10.1016/j.celrep.2024.113863.

1247 Grönke, S., Mildner, A., Fellert, S., Tennagels, N., Petry, S., Müller, G., Jäckle, H.,
1248 Kühnlein, R.P., 2005. Brummer lipase is an evolutionary conserved fat storage reg-
1249 ulator in Drosophila. *Cell Metab* 1, 323–330.
1250 <https://doi.org/10.1016/j.cmet.2005.04.003>

1251 Guillou, A., Troha, K., Wang, H., Franc, N.C., Buchon, N., 2016. The Drosophila CD36
1252 Homologue croquemort Is Required to Maintain Immune and Gut Homeostasis dur-
1253 ing Development and Aging. *PLOS Pathogens* 12, e1005961.
1254 <https://doi.org/10.1371/journal.ppat.1005961>

1255 Guo Y, Livne-Bar I, Zhou L, Boulianne GL. Drosophila presenilin is required for neuronal
1256 differentiation and affects notch subcellular localization and signaling. *J Neurosci*.
1257 1999 Oct 1;19(19):8435-42. doi: 10.1523/JNEUROSCI.19-19-08435.1999.

1258

1261 Hadjieconomou, D., King, G., Gaspar, P., Mineo, A., Blackie, L., Ameku, T., Studd, C., De
1262 Mendoza, A., Diao, F., White, B.H., Brown, A.E.X., Plaçais, P.-Y., Préat, T., Miguel-
1263 Aliaga, I., 2020. Enteric neurons increase maternal food intake during reproduction.
1264 *Nature* 587, 455–459. <https://doi.org/10.1038/s41586-020-2866-8>

1265 Hao, Y., Yu, S., Luo, F., Jin, L.H., 2018. Jumu is required for circulating hemocyte differen-
1266 tiation and phagocytosis in *Drosophila*. *Cell Communication and Signaling* 16, 95.
1267 <https://doi.org/10.1186/s12964-018-0305-3>

1268 Heier, C., Kühnlein, R.P., 2018. Triacylglycerol Metabolism in *Drosophila melanogaster*.
1269 *Genetics* 210, 1163–1184. <https://doi.org/10.1534/genetics.118.301583>

1270 Holcombe, J., Weavers, H. Functional-metabolic coupling in distinct renal cell types coor-
1271 dinates organ-wide physiology and delays premature ageing. *Nat Commun* 14,
1272 8405 (2023). <https://doi.org/10.1038/s41467-023-44098-x>

1273 Honegger, B., Galic, M., Köhler, K., Wittwer, F., Brogiolo, W., Hafen, E., Stocker, H., 2008.
1274 Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin
1275 signaling in *Drosophila* and is essential for starvation resistance. *J Biol* 7, 10.
1276 <https://doi.org/10.1186/jbiol72>

1277 Horton, J.D., Goldstein, J.L., Brown, M.S., 2002. SREBPs: activators of the complete pro-
1278 gram of cholesterol and fatty acid synthesis in the liver. *J Clin Invest* 109, 1125–
1279 1131. <https://doi.org/10.1172/JCI15593>

1280 Hua L, Shi J, Shultz LD, Ren G. Genetic Models of Macrophage Depletion. *Methods Mol
1281 Biol.* 2018;1784:243-258. doi: 10.1007/978-1-4939-7837-3_22.

1282 Jang C, Chen L, Rabinowitz JD. Metabolomics and Isotope Tracing. *Cell.* 2018 May
1283 3;173(4):822-837. doi: 10.1016/j.cell.2018.03.055.

1284 Johnson AM, Olefsky JM. The origins and drivers of insulin resistance. *Cell.* 2013 Feb
1285 14;152(4):673-84. doi: 10.1016/j.cell.2013.01.041. PMID: 23415219.

1286 Juarez-Carreño, S., Geissmann, F., 2023. The macrophage genetic cassette inr/dtor/pvf2
1287 is a nutritional status checkpoint for developmental timing. *Science Advances* 9,
1288 eadh0589. <https://doi.org/10.1126/sciadv.adh0589>

1289 Kanehisa, M., Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids
1290 Res.* 28 (2000), pp. 27–30.

1291 Kim D, Langmead B and Salzberg SL. HISAT: a fast spliced aligner with low memory re-
1292 quirements. *Nature Methods* 2015

1293 Kiran, S., Rakib, A., Kodidela, S., Kumar, S., Singh, U.P., 2022. High-Fat Diet-Induced
1294 Dysregulation of Immune Cells Correlates with Macrophage Phenotypes and
1295 Chronic Inflammation in Adipose Tissue. *Cells* 11, 1327.
1296 <https://doi.org/10.3390/cells11081327>

1297 Kokki, K., Lamichane, N., Nieminen, A.I., Ruhanen, H., Morikka, J., Robciuc, M., Rovenko,
1298 B.M., Havula, E., Käkelä, R., Hietakangas, V., 2021. Metabolic gene regulation by
1299 *Drosophila* GATA transcription factor Grain. *PLOS Genetics* 17, e1009855.
1300 <https://doi.org/10.1371/journal.pgen.1009855>

1301 Koyama, T., Texada, M.J., Halberg, K.A., Rewitz, K., 2020. Metabolism and growth adap-
1302 tation to environmental conditions in *Drosophila*. *Cell Mol Life Sci* 77, 4523–4551.
1303 <https://doi.org/10.1007/s00018-020-03547-2>

1304 Krejčová, G., Danielová, A., Nedbalová, P., Kazek, M., Strych, L., Chawla, G., Tennesen,
1305 J.M., Lieskovská, J., Jindra, M., Doležal, T., Bajgar, A., 2019. *Drosophila* macro-
1306 phages switch to aerobic glycolysis to mount effective antibacterial defense. *eLife* 8,
1307 e50414. <https://doi.org/10.7554/eLife.50414>

1308 Krejčová, G., Morgantini, C., Zemanová, H., Lauschke, V.M., Kovářová, J., Kubásek, J.,
1309 Nedbalová, P., Kamps-Hughes, N., Moos, M., Aouadi, M., Doležal, T., Bajgar, A.,
1310 2023. Macrophage-derived insulin antagonist ImpL2 induces lipoprotein mobiliza-
1311 tion upon bacterial infection. *The EMBO Journal* 42, e114086.
1312 <https://doi.org/10.15252/embj.2023114086>

1313 Kyung-Ah Lee, Kyu-Chan Cho, Boram Kim, In-Hwan Jang, Kibum Nam, Young Eun Kwon,
1314 Myungjin Kim, Do Young Hyeon, Daehee Hwang, Jae-Hong Seol, Won-Jae Lee, In-
1315flammation-Modulated Metabolic Reprogramming Is Required for DUOX-Dependent
1316 Gut Immunity in Drosophila, *Cell Host & Microbe*, Volume 23, Issue 3, 2018, Pages
1317 338-352.e5, ISSN 1931-3128.

1318 Lee, K.-S., Kwon, O.-Y., Lee, J.H., Kwon, K., Min, K.-J., Jung, S.-A., Kim, A.-K., You, K.-
1319 H., Tatar, M., Yu, K., 2008. Drosophila short neuropeptide F signalling regulates
1320 growth by ERK-mediated insulin signalling. *Nat Cell Biol* 10, 468–475.
1321 <https://doi.org/10.1038/ncb1710>

1322 Lee, K.-S., You, K.-H., Choo, J.-K., Han, Y.-M., Yu, K., 2004. Drosophila Short Neuropep-
1323 tide F Regulates Food Intake and Body Size*. *Journal of Biological Chemistry* 279,
1324 50781–50789. <https://doi.org/10.1074/jbc.M407842200>

1325 Leiter, A.B., Weinberg, M., Isohashi, F., Utter, M.F., 1978. Relationship between phos-
1326 phorylation and activity of pyruvate dehydrogenase in rat liver mitochondria and the
1327 absence of such a relationship for pyruvate carboxylase. *J Biol Chem* 253, 2716–
1328 2723.

1329 Li, S., Yu, J., Huber, A., Kryczek, I., Wang, Z., Jiang, L., Li, X., Du, W., Li, G., Wei, S.,
1330 Vatan, L., Szeliga, W., Chinnaiyan, A.M., Green, M.D., Cieslik, M., Zou, W., 2022.
1331 Metabolism drives macrophage heterogeneity in the tumor microenvironment. *Cell*
1332 *Rep* 39, 110609. <https://doi.org/10.1016/j.celrep.2022.110609>

1333 Liao Y, Smyth GK and Shi W (2014). featureCounts: an efficient general purpose program
1334 for assigning sequence reads to genomic features. *Bioinformatics*, 30(7):923-30.

1335 Linn, T.C., Pettit, F.H., Hucho, F., Reed, L.J., 1969. Alpha-keto acid dehydrogenase com-
1336 plexes. XI. Comparative studies of regulatory properties of the pyruvate dehydro-
1337 genase complexes from kidney, heart, and liver mitochondria. *Proc Natl Acad Sci U*
1338 *SA* 64, 227–234. <https://doi.org/10.1073/pnas.64.1.227>

1339 Long DM, Frame AK, Reardon PN, Cumming RC, Hendrix DA, Kretzschmar D,
1340 Giebultowicz JM. Lactate dehydrogenase expression modulates longevity and neu-
1341 rodegeneration in *Drosophila melanogaster*. *Aging (Albany NY)*. 2020 Jun
1342 2:12(11):10041-10058. doi: 10.18632/aging.103373.

1343 Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion
1344 for RNA-seq data with DESeq2.” *Genome Biology*, 15, 550. doi:10.1186/s13059-
1345 014-0550-8.

1346 Marconi, A., Cetin, I., Ferrazzi, E. et al. Lactate Metabolism in Normal and Growth-
1347 Retarded Human Fetuses. *Pediatr Res* 28, 652–656 (1990).
1348 <https://doi.org/10.1203/00006450-199012000-00022>

1349 Martin, Marcel. Cutadapt removes adapter sequences from high-throughput sequencing
1350 reads. *EMBnet.journal*, [S.I.], v. 17, n. 1, p. pp. 10-12, may 2011. ISSN 2226-6089.

1351 Martínez-Micaelo, N., González-Abuín, N., Terra, X., Ardévol, A., Pinent, M., Petretto, E.,
1352 Behmoaras, J., Blay, M., 2016. Identification of a nutrient-sensing transcriptional
1353 network in monocytes by using inbred rat models on a cafeteria diet. *Dis Model
1354 Mech* 9, 1231–1239. <https://doi.org/10.1242/dmm.025528>

1355 Mattila, J., Havula, E., Suominen, E., Teesalu, M., Surakka, I., Hynynen, R., Kilpinen, H.,
1356 Väänänen, J., Hovatta, I., Käkelä, R., Ripatti, S., Sandmann, T., Hietakangas, V.,
1357 2015. Mondo-Mlx Mediates Organismal Sugar Sensing through the Gli-Similar
1358 Transcription Factor Sugarbabe. *Cell Rep* 13, 350–364.
1359 <https://doi.org/10.1016/j.celrep.2015.08.081>

1360 Marygold, S.J. (2024.1.15). Identification of the components of the *D. melanogaster* PDC
1361 and BCKDHC complexes. FBref0258539. Personal communication to FlyBase

1362 Mondal BC, Mukherjee T, Mandal L, Evans CJ, Sinenko SA, Martinez-Agosto JA,
1363 Banerjee U. Interaction between differentiating cell- and niche-derived signals in

1364 hematopoietic progenitor maintenance. *Cell*. 2011 Dec 23;147(7):1589-600. doi:
1365 10.1016/j.cell.2011.11.041.

1366 Mulyil S, Levet C, Düsterhöft S, Dulloo I, Cowley SA, Freeman M. ADAM17-triggered TNF
1367 signalling protects the ageing Drosophila retina from lipid droplet-mediated degen-
1368 eration. *EMBO J*. 2020 Sep 1;39(17):e104415. doi: 10.15252/embj.2020104415.

1369 Musselman, L.P., Fink, J.L., Ramachandran, P.V., Patterson, B.W., Okunade, A.L., Maier,
1370 E., Brent, M.R., Turk, J., Baranski, T.J., 2013. Role of Fat Body Lipogenesis in Pro-
1371 tection against the Effects of Caloric Overload in Drosophila. *J Biol Chem* 288,
1372 8028–8042. <https://doi.org/10.1074/jbc.M112.371047>

1373 Newsholme, P., 2021. Cellular and metabolic mechanisms of nutrient actions in immune
1374 function. *Eur J Clin Nutr* 75, 1328–1331. <https://doi.org/10.1038/s41430-021-00960>

1375 Nijhout, H.F., Riddiford, L.M., Mirth, C., Shingleton, A.W., Suzuki, Y., Callier, V., 2014. The
1376 developmental control of size in insects. *Wiley Interdiscip Rev Dev Biol* 3, 113–134.
1377 <https://doi.org/10.1002/wdev.124>

1378 Okamoto, N., Nishimura, T., 2015. Signaling from Glia and Cholinergic Neurons Controls
1379 Nutrient-Dependent Production of an Insulin-like Peptide for Drosophila Body
1380 Growth. *Dev Cell* 35, 295–310. <https://doi.org/10.1016/j.devcel.2015.10.003>

1381 Owusu-Ansah, E., Yavari, A. and Banerjee, U. (2008). A protocol for *in vivo* detection of
1382 reactive oxygen species. <http://dx.doi.org/10.1038/nprot.2008.23>

1383 P, P., Tomar, A., Madhwal, S., Mukherjee, T., 2020. Immune Control of Animal Growth in
1384 Homeostasis and Nutritional Stress in Drosophila. *Frontiers in Immunology* 11.

1385 Parks, E.J., Skokan, L.E., Timlin, M.T., Dingfelder, C.S., 2008. Dietary sugars stimulate
1386 fatty acid synthesis in adults. *J Nutr* 138, 1039–1046.
1387 <https://doi.org/10.1093/jn/138.6.1039>

1388 Parvy, J.-P., Napal, L., Rubin, T., Poidevin, M., Perrin, L., Wicker-Thomas, C., Montagne,
1389 J., 2012. Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty acid-
1390 dependent remote signal to waterproof the respiratory system. *PLoS Genet* 8,
1391 e1002925. <https://doi.org/10.1371/journal.pgen.1002925>

1392 Pawson, I.G., Clegg, E.J., 1997. Growth and development in high altitude populations: a
1393 review of Ethiopian, Peruvian, and Nepalese studies. *Proceedings of the Royal So-
1394 ciety of London. Series B. Biological Sciences* 194, 83–98.
1395 <https://doi.org/10.1098/rspb.1976.0067>

1396 Penzo-Méndez, A.I., Stanger, B.Z., 2015. Organ-Size Regulation in Mammals. *Cold Spring
1397 Harb Perspect Biol* 7, a019240. <https://doi.org/10.1101/cshperspect.a019240>

1398 Petraki, S., Alexander, B., Brückner, K., 2015. Assaying Blood Cell Populations of the Dro-
1399 sophila melanogaster Larva. *J Vis Exp* 52733. <https://doi.org/10.3791/52733>

1400 Postic, C., Girard, J., 2008. Contribution of *de novo* fatty acid synthesis to hepatic steato-
1401 sis and insulin resistance: lessons from genetically engineered mice. *J Clin Invest*
1402 118, 829–838. <https://doi.org/10.1172/JCI34275>

1403 Rai, M., Carter, S.M., Shefali, S.A., Mahmoudzadeh, N.H., Pepin, R., Tennessen, J.M.,
1404 2022. The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase
1405 1 is required for oogenesis, embryonic development, and amino acid homeostasis.
1406 *G3 Genes|Genomes|Genetics* 12, jkac115.
1407 <https://doi.org/10.1093/g3journal/jkac115>

1408 Ramond, E., Petrignani, B., Dudzic, J.P., Boquete, J.-P., Poidevin, M., Kondo, S., Le-
1409 maitre, B., 2020. The adipokine NimrodB5 regulates peripheral hematopoiesis in
1410 Drosophila. *The FEBS Journal* 287, 3399–3426. <https://doi.org/10.1111/febs.15237>

1411 Remmerie, A., Scott, C.L., 2018. Macrophages and lipid metabolism. *Cell Immunol* 330,
1412 27–42. <https://doi.org/10.1016/j.cellimm.2018.01.020>

1413 Repa, J.J., Liang, G., Ou, J., Bashmakov, Y., Lobaccaro, J.M., Shimomura, I., Shan, B.,
1414 Brown, M.S., Goldstein, J.L., Mangelsdorf, D.J., 2000. Regulation of mouse sterol
1415 regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors,

1416 LXRalpha and LXRbeta. *Genes Dev* 14, 2819–2830.
1417 <https://doi.org/10.1101/gad.844900>

1418 Rodenfels, J., Lavrynenko, O., Aycirix, S., Sampaio, J.L., Carvalho, M., Shevchenko, A.,
1419 Eaton, S., 2014. Production of systemically circulating Hedgehog by the intestine
1420 couples nutrition to growth and development. *Genes Dev* 28, 2636–2651.
1421 <https://doi.org/10.1101/gad.249763.114>

1422 Romão, D., Muzzopappa, M., Barrio, L., Milán, M., 2021. The Upd3 cytokine couples in-
1423flammation to maturation defects in *Drosophila*. *Current Biology* 31, 1780-1787.e6.
1424 <https://doi.org/10.1016/j.cub.2021.01.080>

1425 Sanchez, J.A., Mesquita, D., Ingaramo, M.C., Ariel, F., Milán, M., Dekanty, A., 2019. Ei-
1426 ger/TNF α -mediated Dilp8 and ROS production coordinate intra-organ growth in
1427 *Drosophila*. *PLOS Genetics* 15, e1008133.
1428 <https://doi.org/10.1371/journal.pgen.1008133>

1429 Sinenko SA, Mathey-Prevot B. Increased expression of *Drosophila* tetraspanin, Tsp68C,
1430 suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemo-
1431 cytes. *Oncogene*. 2004;23:9120–9128.

1432 Sasamura T, Matsuno K, Fortini ME (2013) Disruption of *Drosophila melanogaster* Lipid
1433 Metabolism Genes Causes Tissue Overgrowth Associated with Altered Develop-
1434 mental Signaling. *PLoS Genet* 9(11): e1003917.
1435 <https://doi.org/10.1371/journal.pgen.1003917>

1436 Shen, J.L., Doherty, J., Allen, E. et al. Atg6 promotes organismal health by suppression of
1437 cell stress and inflammation. *Cell Death Differ* 29, 2275–2287 (2022).
1438 <https://doi.org/10.1038/s41418-022-01014-y>

1439 Shin, M., Cha, N., Koranteng, F., Cho, B., Shim, J., 2020. Subpopulation of Macrophage-
1440 Like Plasmacytoid Dendritic Cells Attenuates Systemic Growth via JAK/STAT in the *Drosophila*
1441 Fat Body. *Frontiers in Immunology* 11.

1442 Silva, B., Mantha, O.L., Schor, J. et al. Glia fuel neurons with locally synthesized ketone
1443 bodies to sustain memory under starvation. *Nat Metab* 4, 213–224 (2022).
1444 <https://doi.org/10.1038/s42255-022-00528-6>

1445 Solinas, G., Borén, J., Dulloo, A.G., 2015. De novo lipogenesis in metabolic homeostasis:
1446 More friend than foe? *Mol Metab* 4, 367–377.
1447 <https://doi.org/10.1016/j.molmet.2015.03.004>

1448 Sriskanthadevan-Pirahas, S., Tinwala, A.Q., Turingan, M.J., Khan, S., Grewal, S.S., 2023.
1449 Mitochondrial metabolism in *Drosophila* macrophage-like cells regulates body
1450 growth via modulation of cytokine and insulin signaling. *Biol Open* 12, bio059968.
1451 <https://doi.org/10.1242/bio.059968>

1452 Tan, B., Lu, Z., Dong, S., Zhao, G., & Kuo, M. S. (2014). Derivatization of the tricarboxylic
1453 acid intermediates with O-benzylhydroxylamine for liquid chromatography-tandem
1454 mass spectrometry detection. *Analytical biochemistry*

1455 Unger, R.H., 2003. Minireview: Weapons of Lean Body Mass Destruction: The Role of Ec-
1456 topic Lipids in the Metabolic Syndrome. *Endocrinology* 144, 5159–5165.
1457 <https://doi.org/10.1210/en.2003-0870>

1458 Vallejo, D.M., Juarez-Carreño, S., Bolivar, J., Morante, J., Dominguez, M., 2015. A brain
1459 circuit that synchronizes growth and maturation revealed through Dilp8 binding to
1460 Lgr3. *Science* 350, aac6767. <https://doi.org/10.1126/science.aac6767>

1461 Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the
1462 metabolic requirements of cell proliferation. *Science*. 2009 May 22;324(5930):1029-33.
1463 doi:10.1126/science.1160809.

1464

1465 van der Most, P.J., de Jong, B., Parmentier, H.K., Verhulst, S., 2011. Trade-off between
1466 growth and immune function: a meta-analysis of selection experiments. *Functional
1467 Ecology* 25, 74–80. <https://doi.org/10.1111/j.1365-2435.2010.01800.x>

1468 Vervoort, M., 2000. hedgehog and wing development in *Drosophila*: a morphogen at
1469 work? *BioEssays* 22, 460–468. [https://doi.org/10.1002/\(SICI\)1521-1878\(200005\)22:5<460::AID-BIES8>3.0.CO;2-G](https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<460::AID-BIES8>3.0.CO;2-G)

1470 Viola, A., Munari, F., Sánchez-Rodríguez, R., Scolaro, T., Castegna, A., 2019. The Metabolic
1471 Signature of Macrophage Responses. *Frontiers in Immunology* 10.

1472 von Loeffelholz, C., Coldewey, S.M., Birkenfeld, A.L., 2021. A Narrative Review on the
1473 Role of AMPK on De Novo Lipogenesis in Non-Alcoholic Fatty Liver Disease: Evidence
1474 from Human Studies. *Cells* 10, 1822. <https://doi.org/10.3390/cells10071822>

1475 Walvekar, A., Rashida, Z., Maddali, H., & Laxman, S. (2018). A versatile LC-MS/MS approach
1476 for comprehensive, quantitative analysis of central metabolic pathways. *Wellcome open research*, 3, 122.

1477 1478 Wat LW, Chao C, Bartlett R, Buchanan JL, Millington JW, Chih HJ, Chowdhury ZS, Biswas
1479 P, Huang V, Shin LJ, Wang LC, Gauthier ML, Barone MC, Montooth KL, Welte MA,
1480 Rideout EJ. A role for triglyceride lipase brummer in the regulation of sex differ-
1481 ences in *Drosophila* fat storage and breakdown. *PLoS Biol.* 2020 Jan
1482 21;18(1):e3000595. doi: 10.1371/journal.pbio.3000595.

1483 Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is
1484 associated with macrophage accumulation in adipose tissue. *J Clin Invest.* 2003
1485 Dec;112(12):1796-808.doi:10.1172/JCI19246.

1486 Woodcock, K.J., Kierdorf, K., Pouchelon, C.A., Vivancos, V., Dionne, M.S., Geissmann, F.,
1487 2015. Macrophage-Derived upd3 Cytokine Causes Impaired Glucose Homeostasis
1488 and Reduced Lifespan in *Drosophila* Fed a Lipid-Rich Diet. *Immunity* 42, 133–144.
1489 <https://doi.org/10.1016/j.jimmuni.2014.12.023>

1490 Yeudall, S., Upchurch, C.M., Seegren, P.V., Pavelec, C.M., Greulich, J., Lemke, M.C.,
1491 Harris, T.E., Desai, B.N., Hoehn, K.L., Leitinger, N., 2022. Macrophage acetyl-CoA
1492 carboxylase regulates acute inflammation through control of glucose and lipid me-
1493 tabolism. *Science Advances* 8, eabq1984. <https://doi.org/10.1126/sciadv.abq1984>

1494 Yore, M.M.; Syed, I.; Moraes-Vieira, P.M.; Zhang, T.; Herman, M.A.; Homan, E.A.; Patel,
1495 R.T.; Lee, J.; Chen, S.; Peroni, O.D. Discovery of a class of endogenous mammali-
1496 an lipids with anti-diabetic and anti-inflammatory effects. *Cell* **2014**, 159, 318–332.

1497 Yu YV, Li Z, Rizzo NP, Einstein J, Welte MA. Targeting the motor regulator Klar to lipid
1498 droplets. *BMC Cell Biol.* 2011 Feb 24;12:9. doi: 10.1186/1471-2121-12-9.

1499 ZhangJ,DaiWandChenY(2022)Editorial:TheRolesofLipidsinImmunometabolism:TheCrosst
1500 alkBetweenLipidMetabolismsandInflamma-
1501 tion.*Front.Cardiovasc.Med.*9:938535.doi:10.3389/fcvm.2022.938535

1502

1503

1504

1505

1506

1507

1508 **Figure legends**

1509

1510 **Figure 1. Dietary sugar stress affects larval macrophage physiology.**

1511 **Data information:** DNA is stained with DAPI in blue, immune cells are marked in green
1512 ($Hm^{\Delta} > UAS-GFP$). DHE staining to assess ROS, is shown in spectral mode in panels (e-
1513 e''). Immune metabolic characterizations using nile red to mark lipids, bead uptake assay
1514 to assess phagocytosis and phalloidin to mark actin cytoskeletal changes is shown in red
1515 in panels (g-j''). Panels (a-c), scale bar is 1mm, (a'-c'), scale bar is 100 μ m and (e-j''), scale
1516 bar is 5 μ m. The quantification in d represents mean with standard deviation. In quantifica-
1517 tion graphs (f, i, k, l, m and n), each dot represents individual experiments, extending from
1518 min. to max. Comparisons for significance are with regular food conditions and asterisks
1519 mark statistically significant differences (* $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; **** $p < 0.0001$). The
1520 statistical analysis applied is Unpaired t-test with Welch's correction or Two-way ANOVA
1521 with Dunnett's multiple comparison test wherever applicable. RF, 4hr.HSD and Ct.HSD
1522 indicate conditions of larvae fed on regular food (RF), four hours high sugar diet (4hr.HSD)
1523 and constitutive high sugar diet (Ct.HSD) respectively. "N" is the total number of experi-
1524 mental repeats and "n" is the total number of larvae analyzed. See methods for further de-
1525 tails on larval numbers and sample analysis for each of the experiments.

1526
1527 (a-d) High sugar diet affects immune cell physiology. (a-c') Representative images of feed-
1528 ing third instar larvae and immune cells on RF, 4hr.HSD and Ct.HSD. (a-a')
1529 $Hm^{\Delta} > GFP/w^{1118}$ (Control, RF). (b-b') $Hm^{\Delta} > GFP/w^{1118}$ (4hr.HSD) does not show any
1530 change in immune cell number as compared to Control (a-a'), (c-c') $Hm^{\Delta} > GFP/w^{1118}$
1531 (Ct.HSD) larvae show reduction in Hm^{Δ} -positive ($Hm^{\Delta+}$) immune cells when compared to
1532 Control (a-a'). (d) Quantification of total $Hm^{\Delta+}$ immune cell numbers (green bars) in
1533 $Hm^{\Delta} > GFP/w^{1118}$ (Control, RF, N=3, n=18), $Hm^{\Delta} > GFP/w^{1118}$ (4hr.HSD, N=3, n=18,
1534 p=0.3790) and $Hm^{\Delta} > GFP/w^{1118}$ (Ct.HSD, N=3, n=18, p<0.0001). No change in $Hm^{\Delta-}$ popu-
1535 lation is seen (grey bar).

1536

1537 (e-e'') Representative images of immune cells to assess ROS levels. Compared to (e)
1538 ROS level in immune cell of $Hm\Delta>GFP/w^{1118}$ (*Control*, RF), high sugar treated condition,
1539 (e') $Hm\Delta>GFP/w^{1118}$ (4hr.HSD) and (e'') $Hm\Delta>GFP/w^{1118}$ (Ct.HSD) show increased ROS
1540 levels. See quantification in k.

1541

1542 (f) Quantification of glucose levels in immune cells of $Hm\Delta>GFP/w^{1118}$ (*Control*, RF, N=3,
1543 n=90), $Hm\Delta>GFP/w^{1118}$ (4hr.HSD, N=3, n=90, p=0.0086) and $Hm\Delta>GFP/w^{1118}$ (Ct.HSD,
1544 N=3, n=90, p=0.2911). Immune cells show higher glucose levels at 4hr.HSD as compared
1545 to *Control*.

1546

1547 (g-g'') Representative images of immune cells with Nile red staining to assess for lipid
1548 droplet accumulation. Compared to (g) $Hm\Delta>GFP/w^{1118}$ (*Control*, RF), (g')
1549 $Hm\Delta>GFP/w^{1118}$ (4hr.HSD) and (g'') $Hm\Delta>GFP/w^{1118}$ (Ct.HSD) show gradual increase in
1550 immune cell lipid content. The immune cell in panel g'' is a zoomed version of a cell se-
1551 lected from panel d'' of Fig. S1.

1552

1553 (h-h'') Representative images of immune cells to assess phagocytosis through bead up-
1554 take assay. Compared to (h) $Hm\Delta>GFP/w^{1118}$ (*Control*, RF), (h') $Hm\Delta>GFP/w^{1118}$
1555 (4hr.HSD) and (h'') $Hm\Delta>GFP/w^{1118}$ (Ct.HSD) immune cells show reduction in number of
1556 internalised beads after 15 min of exposure. Quantifications in l.

1557

1558 (i) Quantification of triglycerides (TAG) in immune cells of $Hm\Delta>GFP/w^{1118}$ (*Control*, RF,
1559 N=3, n=105), $Hm\Delta>GFP/w^{1118}$ (4hr.HSD, N=3, n=105, p=0.0209) and $Hm\Delta>GFP/w^{1118}$
1560 (Ct.HSD, N=3, n=105, p=0.0002). Immune cells show higher TAG levels on HSD both at
1561 4hr. HSD and Ct.HSD, in comparison to *Control*.

1562

1563 (j-j'') Representative images of immune cells assessed for cellular morphology. Compared
1564 to (j) $Hm^{\Delta}>GFP/w^{1118}$ (Control, RF), (j') $Hm^{\Delta}>GFP/w^{1118}$ (4hr.HSD) and (j'')
1565 $Hm^{\Delta}>GFP/w^{1118}$ (Ct.HSD) show reduction in filopodia length (Quantifications in m) as well
1566 as filopodia number (Quantifications in n).

1567

1568 (k) Quantification of ROS intensity levels of immune cells in $Hm^{\Delta}>GFP/w^{1118}$ (Control, RF,
1569 N=3, n=30), $Hm^{\Delta}>GFP/w^{1118}$ (4hr.HSD, N=3, n=30, p<0.0001) and $Hm^{\Delta}>GFP/w^{1118}$
1570 (Ct.HSD, N=2, n=20, p=0.0232).

1571

1572 (l) Quantification of bead uptake assay of immune cells in $Hm^{\Delta}>GFP/w^{1118}$ (Control, RF,
1573 N=3, n=30), $Hm^{\Delta}>GFP/w^{1118}$ (4hr.HSD, N=3, n=30, p=0.0001) and $Hm^{\Delta}>GFP/w^{1118}$
1574 (Ct.HSD, N=3, n=30, p<0.0001).

1575

1576 (m) Quantification of immune cell filopodia length in $Hm^{\Delta}>GFP/w^{1118}$ (Control, RF, N=3,
1577 n=30), $Hm^{\Delta}>GFP/w^{1118}$ (4hr.HSD, N=3, n=30, p<0.0001) and $Hm^{\Delta}>GFP/w^{1118}$ (Ct.HSD,
1578 N=3, n=30, p<0.0001).

1579

1580 (n) Quantification of immune cell filopodia number in $Hm^{\Delta}>GFP/w^{1118}$ (Control, RF, N=3,
1581 n=30), $Hm^{\Delta}>GFP/w^{1118}$ (4hr.HSD, N=3, n=30, p<0.0001) and $Hm^{\Delta}>GFP/w^{1118}$ (Ct.HSD,
1582 N=3, n=30, p<0.0001).

1583

1584

1585

1586

1587 **Figure 2. Identification of immune-specific modulators of animal growth in dietary**
1588 **sugar stress condition**

1589

1590 (a) Schematic representation of *in-vivo* genome wide RNAi screen. Females of immune
1591 cell specific Gal4 driver ($Hm^{\Delta}>GFP$) line were crossed to *UAS-RNAi* males. Eggs collect-

1592 ed on regular food were transferred to high sugar diet (HSD). Enclosed flies were scored for
1593 body size phenotype.

1594

1595 (b) Summary of the results from *in-vivo* RNAi screen. In the first round, >1000RNAi lines
1596 were tested. Modifiers obtained from first round were further tested in second round with
1597 multiple RNAi lines (See Table S1 for details on the lines tested). Finally, we arrived at 30
1598 effector genes with 17 genes being positive regulators of growth and 13 as negative regu-
1599 lators.

1600

1601 (c) Summary of the final effector/candidate genes obtained from the screen. The genes
1602 were categorized based on their biological functions. “Big” and “Small” phenotypes, were
1603 graded into mild (+) or (-), moderate (++) or (--) or severe (+++) or (---) categories.

1604

1605 **Figure 3. Dietary sugar stress induces metabolic rewiring in immune cells.**

1606

1607 (a) Diagrammatic representation of overall transcriptional changes seen in metabolic
1608 genes in immune cells on HSD with short term (4hr.HSD) and long-term (Ct.HSD) expo-
1609 sure. All genes shown in red indicate their transcriptional up regulation, this includes TCA
1610 enzymes, *de novo* lipogenesis, TAG synthesis pathway and beta-oxidation enzymes.

1611

1612 (b) Bar plots show temporal changes in respective metabolic genes, and their paralogs.
1613 Red bars indicate up regulated genes, and blue bars indicate down-regulated genes. ACC,
1614 which is a key *de novo* lipogenic enzyme, is seen up regulated immediately upon HSD ex-
1615 posure, but not with long-term exposure, when only TAG synthesis is seen up regulated.
1616 beta-oxidation enzyme, *acyl-CoA synthetase long-chain (ACSL)* is however seen up-
1617 regulated in constitutive HSD condition, but not in 4h, short term.

1618

1619 **Figure 4. An oxidative and aerobic glycolytic state in immune cells represses**
1620 **growth on HSD.**

1621

1622 Data information: Scale bar: 0.5mm for flies and 0.25mm for wings. In quantification
1623 graphs, shown in panel (a), (d'-g') each dot represents an experimental repeat. Except for
1624 panel (a), where comparisons are with respect to Control on RF, in all other panels compar-
1625 ison for significance is with respect to Control on HSD. Asterisks mark statistically signifi-
1626 cant differences (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). The statistical analysis ap-
1627 plied is Two-way ANOVA, main effects test. "N" is the total number of repeats. "n" is the
1628 total number of animals (larvae or adult flies) analyzed. Only right wing from each adult fly
1629 was selected for quantification. The red dotted line in the panels marks the wing span area
1630 and is used as a reference to showcase any change in wing span area across genotypes.
1631 The two horizontal red lines in the panels is used as a reference to showcase any change
1632 in fly lengths across genotypes. RF and Ct.HSD correspond to regular food and constitu-
1633 tive high sugar diet respectively.

1634

1635 (a) Distribution of labeled ^{13}C pyruvate in TCA metabolites and lactate in
1636 $Hm^{\Delta}\text{GFP}^>/w^{1118}$ (Control, RF) and $Hm^{\Delta}\text{GFP}^>/w^{1118}$ (Ct.HSD) conditions. Ct.HSD led to an
1637 increase in M+5 label incorporation in citrate (N=2, n=55, p=0.0018), M+2 label incorpora-
1638 tion in malate (N=2, n=60, p=0.0007) and a decrease in M+3 label incorporation in OAA
1639 (N=2, n=55, p=0.0028). Increase in M+3 label incorporation in lactate was also noticed
1640 (N=2, n=70, p=0.0337).

1641

1642 (b) Pyruvate metabolism into acetyl CoA under the regulation of PDH enzyme fuels the
1643 TCA /oxidative metabolism. PDK inhibits PDH activity and regulates TCA. Pyruvate con-
1644 version to lactate is driven by LDH enzymatic activity.

1645
1646 (c-g") Modulating larval immune cell TCA and glycolytic activity affects adult growth. Rep-
1647 resentative images of fly wings of adult males (c-g) showing size phenotype on Ct.HSD
1648 from respective genetic backgrounds. Compared to (c) Ct.HSD *Control* ($Hm^{\Delta} > GFP/w^{1118}$),
1649 moderating TCA activity by (d) expressing $Pdha^{RNAi}$ ($Hm^{\Delta} > GFP/Pdha^{RNAi}$) to reduce TCA
1650 led to increase in animal size while (e) Pdk^{RNAi} ($Hm^{\Delta} > GFP/Pdk^{RNAi}$), to increase TCA activ-
1651 ity, decreased their size furthermore. (f) Down-regulating immune glycolytic activity by ex-
1652 pressing Ldh^{RNAi} ($Hm^{\Delta} > GFP/Ldh^{RNAi}$) lead to size increase while (g) over-expressing Ldh
1653 ($Hm^{\Delta} > GFP/UAS-Ldh$) led to decrease in animal sizes. (d'-g') Wing span quantifications in
1654 males. (d') $Hm^{\Delta} > GFP/Pdha^{RNAi}$ (N=3, n=95, p<0.0001 in comparison to corresponding
1655 Ct.HSD *Control*, $Hm^{\Delta} > GFP/w^{1118}$, Ct.HSD, N=3, n=76), (e') $Hm^{\Delta} > GFP/Pdk^{RNAi}$ (N=3,
1656 n=77, p<0.0001 in comparison to corresponding Ct.HSD *Control*, $Hm^{\Delta} > GFP/w^{1118}$,
1657 Ct.HSD, N=3, n=66), (f') $Hm^{\Delta} > GFP/Ldh^{RNAi}$ (N=3, n=125, p<0.0001 in comparison to
1658 Ct.HSD *Control*, $Hm^{\Delta} > GFP/w^{1118}$, Ct.HSD, N=3, n=101) and (g') $Hm^{\Delta} > GFP/UAS-Ldh$
1659 (N=3, n=122, p<0.0064 in comparison to Ct.HSD *Control*, $Hm^{\Delta} > GFP/w^{1118}$, Ct.HSD, N=3,
1660 n=70). (d"-g") Representative images of adult males on Ct.HSD from respective genetic
1661 backgrounds compared to control (c').

1662

1663 **Figure 5. Immune cell lipid homeostasis and systemic growth regulation on HSD.**

1664 Data information: DNA is stained with DAPI (blue). ACC staining is shown in spectral
1665 mode in panels (b-d). Nile red staining to mark lipids is shown in red in panels (f-j). Scale
1666 bar: 5 μ m for immune cells, 0.5mm for flies and 0.25mm for wings. In quantification graphs
1667 (e), (l'-o') each dot represents an experimental repeat. Except for panel (e), where compar-
1668

1669 ions are with respect to Control on RF, in all other panels comparison for significance is
1670 with respect to Control on HSD. Asterisks mark statistically significant differences
1671 (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). The statistical analysis applied is Two-way
1672 ANOVA, main effects or with Dunnett's multiple comparison test wherever applicable. "N"
1673 is the total number of repeats. "n" is the total number of animals (larvae or adult flies) ana-
1674 lyzed. Only right wing from each adult fly was selected for quantification. The red dotted
1675 line in the panels marks the wing span area and is used as a reference to showcase any
1676 change in wing span area across genotypes. The two horizontal red lines in the panels is
1677 used as a reference to showcase any change in fly lengths across genotypes. RF and
1678 Ct.HSD correspond to regular food and constitutive high sugar diet respectively. See
1679 methods for further details on larval numbers and sample analysis for each of the experi-
1680 ments.

1681 (a) Schematic representation of *de novo* lipogenesis and Triacylglycerol (TAG) synthesis
1682 pathway.

1683

1684 (b-d) Representative images of immune cells stained to visualize Acetyl CoA carboxylase
1685 (ACC) protein expression. Compared to ACC protein levels in (b) RF Control
1686 ($Hm^{\Delta} > GFP/w^{1118}$), (c) 4hr.HSD Control ($Hm^{\Delta} > GFP/w^{1118}$) showed no change in ACC ex-
1687 pression, while (d) Ct.HSD Control ($Hm^{\Delta} > GFP/w^{1118}$) the expression of ACC is decreased
1688 dramatically and is much reduced than levels seen in RF condition (b). (e) Relative quanti-
1689 fication of ACC protein expression, RF (N=9, n=30), 4hr.HSD (N=4, n=30) and Ct.HSD
1690 (N=8, n=30, P<0.0001).

1691

1692 (f-j) Representative images of immune cells stained to observe lipid droplets (Nile red, red)
1693 in (f) Ct.HSD Control ($Hm^{\Delta} > GFP/w^{1118}$) and with immune-specific (g) loss of ACC function,
1694 ($Hm^{\Delta} > GFP/ACC^{RNAi}$), (h) gain of ACC expression ($Hm^{\Delta} > GFP/UAS-ACC$), (i) loss of

1695 *Gpat4* ($Hm^{\Delta} > GFP/Gpat4^{RNAi}$) and (j) loss of *Agpat3*($Hm^{\Delta} > GFP/Agpat3^{RNAi}$) function.
1696 Compared to Ct.HSD *Control* (f), loss of immune cells lipid synthesis both *de novo* (g) or
1697 TAG synthesis (i) and (j) led to reduced lipid droplets in them. Contrarily, gain of *de novo*
1698 lipid synthesis (h) shows increased lipid droplets in them. Please see Fig. S7 (b-f) for im-
1699 mune cells marked in green ($Hm^{\Delta} > UAS-GFP$) along with nile red.

1700

1701 (k-o'') Modulating larval immune cell lipid homeostasis affects adult growth. Representative
1702 images of fly wings of adult males (k-o) showing size phenotype on Ct.HSD from respec-
1703 tive genetic backgrounds. Compared to (k) Ct.HSD *Control* ($Hm^{\Delta} > GFP/w^{1118}$), (l) loss of
1704 ACC function ($Hm^{\Delta} > GFP/ACC^{RNAi}$) leads to growth retardation, while (m) gain of immune
1705 ACC expression ($Hm^{\Delta} > GFP/UAS-ACC$) shows growth recovery as the flies are larger than
1706 HSD *Control* adults. Similarly, loss of TAG synthesis, by blocking (n) *Gpat4*
1707 ($Hm^{\Delta} > GFP/Gpat4^{RNAi}$) or (o) *Agpat3* ($Hm^{\Delta} > GFP/Agpat3^{RNAi}$) shows reduction in animal
1708 size. (l'-o') Quantification of wingspan in (l') $Hm^{\Delta} > GFP/ACC^{RNAi}$ (N=3, n=90, p<0.0001 in
1709 comparison to Ct.HSD *Control*, $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=71), (m') $Hm^{\Delta} > GFP/UAS-ACC$
1710 (N=3, n=75, p<0.0001 in comparison to Ct.HSD *Control*, $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=102),
1711 (n') $Hm^{\Delta} > GFP/Gpat4^{RNAi}$ (N=3, n=92, p<0.0001 in comparison to Ct.HSD *Control*,
1712 $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=79) and (o') $Hm^{\Delta} > GFP/Agpat3^{RNAi}$ (N=3, n=56, p=0.0078 in
1713 comparison to Ct.HSD *Control*, $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=48). (l''-o'') Representative imag-
1714 es of adult males on Ct.HSD from respective genetic backgrounds compared to control
1715 (k').

1716

1717

1718 **Figure 6. Immune cell lipolytic state as inhibitor of systemic growth on HSD.**

1719

1720 Data information: DNA is stained with DAPI (blue), immune cells are shown in green
1721 ($Hm^{\Delta} > UAS-GFP$). Scale bar: 5 μ m for immune cells, 0.5mm for flies and 0.25mm for
1722 wings. In quantification graphs (f') and (g'), each dot represents an experimental repeat.
1723 Comparisons for significance are with Control on HSD and asterisks mark statistically sig-
1724 nificant differences (* $p<0.05$; ** $p<0.01$; *** $p<0.001$; **** $p<0.0001$). The statistical analysis
1725 applied is Two-way ANOVA, main effects test. "N" is the total number of repeats. "n" is the
1726 total number of animals (larvae or adult flies) analyzed. Only right wing from each adult fly
1727 was selected for quantification. The red dotted line in the panels marks the wing span area
1728 and is used as a reference to showcase any change in wing span area across genotypes.
1729 The two horizontal red lines in the panels is used as a reference to showcase any change
1730 in fly lengths across genotypes. RF and Ct.HSD corresponds to regular food and constitu-
1731 tive high sugar diet respectively.

1732
1733 (a) Bmm lipase enzyme function breakdown Triacylglycerol (TAG) into diacylglycerol
1734 (DAG).

1735
1736 (b-d) Representative images of immune cells on Ct.HSD stained to show lipid droplets
1737 (Nile Red, red). Compared to lipid levels seen in (b) Ct.HSD Control ($Hm^{\Delta} > GFP/w^{1118}$), (c)
1738 loss of immune cell *brummer* function ($Hm^{\Delta} > GFP/bmm^{RNAi}$) led to increase in lipid droplets
1739 and (d) gain of *bmm* expression ($Hm^{\Delta} > GFP/UAS-bmm$) led to decrease in lipids respec-
1740 tively. Please see Fig. S9 (a-c) for immune cells marked in green ($Hm^{\Delta} > UAS-GFP$) along
1741 with nile red.

1742
1743 (e-g") Modulating larval immune cell lipolysis affects adult growth. Representative images
1744 of fly wings of adult males (e-g) showing size phenotype on Ct.HSD from respective genet-
1745 ic backgrounds. Compared to (e) Ct.HSD Control ($Hm^{\Delta} > GFP/w^{1118}$), (f) loss of *bmm*
1746 ($Hm^{\Delta} > GFP/bmm^{RNAi}$) led to recovery in adult fly size while (g) increase in *bmm* expression

1747 (*Hm^Δ>GFP/UAS-bmm*) in immune cells caused a further reduction in size. (f'-g') Quantifi-
1748 cation of wingspan in (f') *Hm^Δ>GFP/bmm^{RNAi}* (N=3, n=96, p<0.0001 in comparison to
1749 Ct.HSD *Control*, *Hm^Δ>GFP/w¹¹¹⁸*, N=3, n=132) and (g') *Hm^Δ>GFP/UAS-bmm* (N=3, n=91,
1750 p<0.0001 in comparison to Ct.HSD *Control*, *Hm^Δ>GFP/w¹¹¹⁸*, N=3, n=56). (f'-g'') Repre-
1751 sentative images of adult males on Ct.HSD from respective genetic backgrounds com-
1752 pared to control (e').

1753

1754

1755 (g) High sugar diet induced macrophage metabolic reprogramming in *Drosophila* larvae
1756 affects animal growth. Compared to regular diet, where immune cells are oxidative, inter-
1757 nalise lipids and are lipolytic, HSD stress induces transcriptional rewiring of their metabolic
1758 state. They show elevated pyruvate entry into the TCA cycle and into lactate formation.
1759 They also undergo a lipogenic shift (green arrows, lipid droplets in yellow) which is medi-
1760 ated by *de novo* lipogenesis (ACC dependent), lipid uptake and elevated TAG synthesis.
1761 The resulting TAGs are broken down through the lipolytic pathway (Free Fatty Acids, FFA)
1762 and this overall maintains the levels of TAG in the HSD immune cells. The shift to glycoly-
1763 sis, increased TCA and lipolysis is growth inhibitory (steps marked in red arrows), but the
1764 lipogenic metabolic shift favours growth (steps marked in green). The extent of lipogenesis
1765 is however not sufficient to oppose the metabolic events that lead to growth repression,
1766 which leads to the overall reduction of adult fly size on HSD. The importance of lipids in-
1767 side immune cells remains a key to cope up with dietary stress induced growth inhibition.

1768

1769

1770

1771

1772
1773
1774
1775 **Supplementary figures legends**
1776

1777 **Figure S1. Dietary sugar stress affects larval macrophage physiology.**

1778 **Data information:** DNA is stained with DAPI in blue, immune cells are marked in green
1779 (*Hm^Δ>UAS-GFP*). DHE staining to assess ROS, is shown in spectral mode in panels (c-
1780 c''). Immune metabolic characterizations using nile red to mark lipids, bead uptake assay
1781 to assess phagocytosis, phalloidin to mark actin cytoskeletal changes and *LSD2-GFP* to
1782 mark lipid droplets is shown in red in panels (d-g''). Panels (a-b''), scale bar is 100μm and
1783 (c-g''), scale bar is 5μm. The quantifications in (a'') and (b'') represent mean with stand-
1784 ard deviation. Comparisons for significance are with regular food conditions and asterisks
1785 mark statistically significant differences (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). The
1786 statistical analysis applied is Unpaired t-test with Welch's correction or Two-way ANOVA
1787 with Dunnett's multiple comparison test wherever applicable. RF, 4hr.HSD and Ct.HSD
1788 indicate conditions of larvae fed on regular food (RF), four hours high sugar diet (4hr.HSD)
1789 and constitutive high sugar diet (Ct.HSD) respectively. "N" is the total number of experi-
1790 mental repeats and "n" is the total number of larvae analyzed. See methods for further de-
1791 tails on larval numbers and sample analysis for each of the experiments.

1792
1793 (a-b'') HSD alters *Hm⁺* immune cell numbers. (a-b'') Representative images of sessile (a-
1794 a'') and circulatory immune cells (b-b''), on RF (a, b), 4hr.HSD (a', b') and Ct.HSD (a'', b'').
1795 Compared to sessile immune cells in (a) *Hm^Δ>GFP/w¹¹¹⁸* (Control) (RF), (a')
1796 *Hm^Δ>GFP/w¹¹¹⁸* (4hr.HSD) did not show any dramatic change in their numbers, but (a'')
1797 *Hm^Δ>GFP/w¹¹¹⁸* (Ct.HSD) larvae show significant reduction in *Hm⁺* sessile population.
1798 See representative quantifications in a''. Circulating cell numbers in (b') *Hm^Δ>GFP/w¹¹¹⁸*

1799 (4hr.HSD) and (b'') $Hm^{\Delta}>GFP/w^{1118}$ (Ct.HSD) showed no striking difference compared to
1800 the *Control* (b). See representative quantifications in b''.
1801 (a'') Quantification of sessile Hm^+ immune cell numbers in $Hm^{\Delta}>GFP/w^{1118}$ (*Control*, RF,
1802 N=3, n=18), $Hm^{\Delta}>GFP/w^{1118}$ (4hr.HSD, N=3, n=18, p=0.0107) and $Hm^{\Delta}>GFP/w^{1118}$
1803 (Ct.HSD, N=3, n=18, p<0.0001). (b'') Quantification of circulatory Hm^+ immune cell num-
1804 bers in $Hm^{\Delta}>GFP/w^{1118}$ (*Control*, RF, N=3, n=18), $Hm^{\Delta}>GFP/w^{1118}$ (4hr.HSD, N=3, n=18,
1805 p=0.0072) and $Hm^{\Delta}>GFP/w^{1118}$ (Ct.HSD, N=3, n=18, p=0.1996).
1806
1807 (c-c'') Representative images of immune cells to assess ROS levels.
1808 (c) ROS level in immune cell of $Hm^{\Delta}>GFP/w^{1118}$ (*Control*, RF). (c') $Hm^{\Delta}>GFP/w^{1118}$
1809 (4hr.HSD) and (c'') $Hm^{\Delta}>GFP/w^{1118}$ (Ct.HSD) show increased ROS levels as compared to
1810 *Control* (c).
1811
1812 (d-d'') Representative images of immune cells with Nile red staining to assess for lipid
1813 droplet accumulation.
1814 (d) $Hm^{\Delta}>GFP/w^{1118}$ (*Control*, RF). (d') $Hm^{\Delta}>GFP/w^{1118}$ (4hr.HSD) and (d'')
1815 $Hm^{\Delta}>GFP/w^{1118}$ (Ct.HSD) show gradual increase in immune cell lipid content compared to
1816 *Control* (d).
1817
1818 (e-e'') Representative confocal images of immune cells to assess phagocytosis through
1819 bead uptake assay 15 min post exposure.
1820 (e) $Hm^{\Delta}>GFP/w^{1118}$ (*Control*, RF). (e') $Hm^{\Delta}>GFP/w^{1118}$ (4hr.HSD) and (e'')
1821 $Hm^{\Delta}>GFP/w^{1118}$ (Ct.HSD) show reduction in number of internalised beads when com-
1822 pared to *Control* (e).
1823

1824 (f-f') Representative confocal images of immune cells assessed for cellular morphology, (f)
1825 $Hm^{\Delta} > GFP/w^{1118}$ (Control, RF). (f') $Hm^{\Delta} > GFP/w^{1118}$ (4hr.HSD) and (f'') $Hm^{\Delta} > GFP/w^{1118}$
1826 (Ct.HSD) show reduction both in number as well as in length of filopodia compared to *Con-*
1827 *trol* (f).

1828

1829 (g-g'') Representative images of immune cells assessed for lipid droplets with *UAS-LSD2-*
1830 *GFP* reporter line. (g) *actin-GAL4/UAS-LSD2-GFP* (Control, RF). (g') *actin-GAL4/UAS-*
1831 *LSD2-GFP* (4hr.HSD) and (g'') *actin-GAL4/UAS-LSD2-GFP* (Ct.HSD) show gradual in-
1832 crease in immune cell lipid droplets (green) compared to *Control* (g).

1833

1834 **Figure S2. Immune cell state rather than numbers determines growth on HSD**

1835

1836 (a-e) Representative third instar larval images of a few candidate genes from the genetic
1837 screen. (a) $Hm^{\Delta} > GFP/w^{1118}$ (Control, Ct.HSD). Big fly size is seen in (b)
1838 $Hm^{\Delta} > GFP/Sod1^{RNAi}$ and (c) ($Hm^{\Delta} > GFP/Lsd2^{RNAi}$). Small fly size is seen in (d) ($Hm^{\Delta} > GFP/$
1839 $Septin1^{RNAi}$) and (e) ($Hm^{\Delta} > GFP/park^{RNAi}$). Knock down of the genes in immune cells and
1840 the corresponding change on adult fly size allude to immune cell state and its important
1841 contribution on growth, as opposed to their numbers.

1842

1843 **Figure S3. Whole-genome transcriptomics of immune cells and larvae exposed to**
1844 **high sugar diet**

1845

1846 (a) Schematic representation of transcriptomics performed on immune cells and whole lar-
1847 vae in $Hm^{\Delta} GFP > w^{1118}$ (Control, RF), $Hm^{\Delta} GFP > w^{1118}$ (4hr.HSD) and $Hm^{\Delta} GFP > w^{1118}$
1848 (Ct.HSD) dietary conditions. See methods for details.

1849

1850 (b-b') Scatter plots depicting the distribution of differentially expressed genes in immune
1851 cells and (c-c') whole larvae fed on 4hr.HSD and Ct.HSD respectively compared to larvae
1852 fed on RF.

1853

1854 **Figure S4. High sugar diet dampens metabolic events in whole larvae**

1855

1856 (a) and (b) Bar plots of up regulated (in red) and down regulated genes (in blue) of differ-
1857 ent metabolic pathways in whole animal (larvae) raised on 4hr.HSD and Ct.HSD respec-
1858 tively. Metabolic genes are down-regulated in 4hr.HSD whole larvae and this is sustained
1859 in long term Ct.HSD animals.

1860

1861 **Figure S5. Steady-state metabolite and flux analysis with U¹³C-pyruvate from im-
1862 mune cells on RF and Ct.HSD.**

1863

1864 (a) Mass spectrometry analysis of steady-state lactate and TCA metabolites in immune
1865 cells between *Hm^ΔGFP>/w¹¹¹⁸* (Control, RF) and *Hm^ΔGFP>/w¹¹¹⁸* (Ct.HSD) do not show
1866 any significant change.

1867

1868 (b) Distribution of labeled U¹³C pyruvate in TCA metabolites and lactate in
1869 *Hm^ΔGFP>/w¹¹¹⁸* (Control, RF) and *Hm^ΔGFP>/w¹¹¹⁸* (Ct.HSD) conditions showing the re-
1870 spective fraction label incorporation from 13C. 13C label incorporation in unlabelled condi-
1871 tion is shown to indicate the natural isotopic abundance. Ct.HSD led to an increase in M+5
1872 label incorporation in citrate, label incorporation in malate M+2 and a decrease in M+3 la-
1873 bel incorporation in OAA. M+3 label incorporation in lactate increases in Ct.HSD condition.

1874

1875 **Figure S6. An oxidative and aerobic glycolytic state in immune cells represses**
1876 **growth on HSD.**

1877

1878 Data information: Scale bar: 0.5mm for flies and 0.25mm for wings. In quantification
1879 graphs, shown in panel (a-d), (f'-i'), (f''-i''), each dot represents an experimental repeat.
1880 Comparison for significance is with respect to Control on HSD. Asterisks mark statistically
1881 significant differences (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). The statistical analy-
1882 sis applied is Two-way ANOVA, main effects test. "N" is the total number of repeats. "n" is
1883 the total number of animals analyzed. Only right wing from each adult fly was selected for
1884 quantification. The red dotted line in the panels marks the wing span area and is used as a
1885 reference to showcase any change in wing span area across genotypes. The two horizont-
1886 al red lines in the panels is used as a reference to showcase any change in fly lengths
1887 across genotypes. RF and Ct.HSD correspond to regular food and constitutive high sugar
1888 diet respectively.

1889

1890

1891 (a-i'') Modulating larval immune cell TCA and glycolytic activity affects adult growth.
1892 (a-d) Fly length quantifications in males. (a) $Hm^{\Delta} > GFP/Pdha^{RNAi}$ (N=3, n=65, p=0.8628, in
1893 comparison to corresponding Ct.HSD Control, $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=42), (b)
1894 $Hm^{\Delta} > GFP/Pdk^{RNAi}$ (N=3, n=77, p<0.0001 in comparison to corresponding Ct. HSD Con-
1895 trol, $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=62), (c) $Hm^{\Delta} > GFP/Ldh^{RNAi}$ (N=3, n=87, p<0.0001 in compar-
1896 ison to Ct.HSD Control, $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=65) and (d) $Hm^{\Delta} > GFP/UAS-Ldh$ (N=3,
1897 n=83, p<0.0001 in comparison to Ct.HSD Control, $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=71). Repre-
1898 sentative images of wings of adult females (e-i) showing size phenotype on Ct.HSD from
1899 respective genetic backgrounds. Compared to (e) Ct.HSD Control ($Hm^{\Delta} > GFP/w^{1118}$), (f)
1900 expressing $Pdha^{RNAi}$ ($Hm^{\Delta} > GFP/Pdha^{RNAi}$) in immune cells to reduce TCA activity did not

1901 show any striking change in wing span. Expressing (g) Pdk^{RNAi} ($Hm^{\Delta} > GFP/Pdk^{RNAi}$) to in-
1902 crease TCA activity, contrarily decreases size. (h) Down regulating immune cell glycolytic
1903 activity by expressing Ldh^{RNAi} ($Hm^{\Delta} > GFP/Ldh^{RNAi}$) causes increase in size and (i) further
1904 increasing Ldh expression ($Hm^{\Delta} > GFP/UAS-Ldh$) led to decrease in size. (f'-i') Wing span
1905 quantifications in females. (f') $Hm^{\Delta} > GFP/Pdha^{RNAi}$ (N=3, n=57, p=0.0481 in comparison to
1906 corresponding Ct.HSD Control, $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=67), (g') $Hm^{\Delta} > GFP/Pdk^{RNAi}$
1907 (N=3, n=79, p<0.0001 in comparison to corresponding Ct.HSD Control, $Hm^{\Delta} > GFP/w^{1118}$,
1908 N=3, n=61), (h') $Hm^{\Delta} > GFP/Ldh^{RNAi}$ (N=3, n=106, p<0.0001 in comparison to correspond-
1909 ing Ct.HSD Control, $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=90) and (i') $Hm^{\Delta} > GFP/UAS-Ldh$ (N=3,
1910 n=104, p=0.0005 in comparison to corresponding Ct.HSD Control, $Hm^{\Delta} > GFP/w^{1118}$, N=3,
1911 n=81).

1912 (f'-i'') Representative images of adult females on Ct.HSD from respective genetic back-
1913 grounds compared to control (e'). (f''-i'') Fly length quantifications in females. (f'')
1914 $Hm^{\Delta} > GFP/Pdha^{RNAi}$ (N=3, n=60, p=0.7817 in comparison to corresponding Ct.HSD Con-
1915 trol, $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=73), (g'') $Hm^{\Delta} > GFP/Pdk^{RNAi}$ (N=3, n=81, p<0.0001 in com-
1916 parison to corresponding Ct.HSD Control, $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=62), (h'')
1917 $Hm^{\Delta} > GFP/Ldh^{RNAi}$ (N=3, n=70, p<0.0001 in comparison to Ct.HSD Control,
1918 $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=58) and (i'') $Hm^{\Delta} > GFP/UAS-Ldh$ (N=3, n=84, p=0.0007 in com-
1919 parison to Ct.HSD Control, $Hm^{\Delta} > GFP/w^{1118}$, N=3, n=71).

1920

1921

1922 **Figure S7. Immune cell lipid homeostasis and systemic growth regulation on HSD.**

1923

1924 Data information: DNA is stained with DAPI (blue), immune cells are shown in green
1925 ($Hm^{\Delta} > UAS-GFP$). Nile red staining to mark lipids is shown in red in panels (b-f). Scale
1926 bar: 5 μ m for immune cells, 0.5mm for flies and 0.25mm for wings. In quantification graphs

1927 (a1-a7), (g-j), (l'-o') and (l''-o''), each dot represents an experimental repeat. Except for
1928 panel (a1-a7) and (b-f), where comparisons are with respect to Control on RF, in all other
1929 panels comparison for significance is with respect to Control on HSD. Asterisks mark sta-
1930 tistically significant differences (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). The statisti-
1931 cal analysis applied is Two-way ANOVA, main effects or with Dunnett's multiple compari-
1932 son test wherever applicable. "N" is the total number of repeats. "n" is the total number of
1933 animals (larvae and adult flies). Only right wing from each adult fly was selected for quanti-
1934 fication. The red dotted line in the panels marks the wing span area and is used as a ref-
1935 erence to showcase any change in wing span area across genotypes. The two horizontal
1936 red lines in the panels is used as a reference to showcase any change in fly lengths
1937 across genotypes. RF, 4hr.HSD and Ct.HSD correspond to regular food, four hours high
1938 sugar diet and constitutive high sugar diet respectively. See methods for further details on
1939 larval numbers and sample analysis for each of the experiments.

1940

1941 (a1-a7) Relative immune-specific expression of lipid metabolism genes by Real-Time PCR
1942 show; (a1) a significant up regulation of ACC, at 4hr.HSD ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=105,
1943 p=0.0167) but not with Ct.HSD ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=120, p=0.3690). (a2) *GPAT1*
1944 (N=3, n=120, p=0.0044) was up regulated in Ct.HSD. (a3) *AGPAT4* and (a4) *Lpin* did not
1945 show any change. (a5) *Midway* (N=3, n=120, p=0.0052) and (a6) *Gpdh1* (N=3, n=120,
1946 p=0.0165) were up regulated in Ct.HSD and (a7) *bmm* did not show any change at
1947 4hr.HSD (N=3, n=105) and Ct.HSD (N=3, n=120). All comparisons are with control
1948 $Hm^{\Delta} GFP > w^{1118}$ on RF (N=3, n=105).

1949

1950 (b-f) Representative images of immune cells stained to observe lipid droplets (Nile red,
1951 red) in (b) Ct.HSD Control ($Hm^{\Delta} > GFP/w^{1118}$) and with immune-specific (c) loss of ACC
1952 function, ($Hm^{\Delta} > GFP/ACC^{RNAi}$), (d) gain of ACC expression ($Hm^{\Delta} > GFP/UAS-ACC$), (e)

1953 loss of *Gpat4* ($Hm^{\Delta} > GFP/Gpat4^{RNAi}$) and (f) loss of *Agpat3* ($Hm^{\Delta} > GFP/Agpat3^{RNAi}$) func-
1954 tion. Compared to Ct.HSD Control (b), loss of immune cells lipid synthesis both *de novo*
1955 (c) or TAG synthesis (e) and (f) led to reduced lipid droplets in them. Contrarily, gain of *de*
1956 *novo* lipid synthesis (d) shows increased lipid droplets in them.

1957

1958 (g-o'') Modulating larval immune cell lipid homeostasis affects adult growth.

1959 (g-j) Fly length quantifications in males. (g) $Hm^{\Delta} > GFP/ACC^{RNAi}$ (N=3, n=44, p<0.0001)
1960 compared to corresponding Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=45), (h)
1961 $Hm^{\Delta} > GFP/UAS-ACC$ (N=3, n=43, p<0.0001) compared to corresponding Ct.HSD Control,
1962 ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=56), (i) $Hm^{\Delta} > GFP/Gpat4^{RNAi}$ (N=3, n=90, p<0.0001) compared
1963 to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=75) and (j) $Hm^{\Delta} > GFP/Agpat3^{RNAi}$ (N=3,
1964 n=80, p<0.0001) compared to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=78). (k-o) Repre-
1965 sentative images of wings of adult females showing size phenotype on Ct.HSD from re-
1966 spective genetic backgrounds. Compared to (k) Ct.HSD Control ($Hm^{\Delta} > GFP/w^{1118}$), (l) loss
1967 of ACC function ($Hm^{\Delta} > GFP/ACC^{RNAi}$) leads to growth retardation while (m) gain of im-
1968 mune ACC expression ($Hm^{\Delta} > GFP/UAS-ACC$) shows growth recovery and the flies are
1969 much larger than Ct.HSD Control adults (k). Similarly, loss of TAG synthesis, by blocking
1970 (n) *Gpat4* ($Hm^{\Delta} > GFP/Gpat4^{RNAi}$) or (o) *Agpat3* ($Hm^{\Delta} > GFP/Agpat3^{RNAi}$) shows reduction in
1971 animal size. (l'-o') Wing span quantifications in females. (l') $Hm^{\Delta} > GFP/ACC^{RNAi}$ (N=3,
1972 n=84, p<0.0001) compared to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=115), (m')
1973 $Hm^{\Delta} > GFP/UAS-ACC$ (N=3, n=83, p<0.0001) compared to Ct.HSD Control,
1974 ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=106), (n') $Hm^{\Delta} > GFP/Gpat4^{RNAi}$ (N=3, n=96, p<0.0001) com-
1975 pared to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=88) and (o') $Hm^{\Delta} > GFP/Agpat3^{RNAi}$
1976 (N=3, n=42, p<0.0001) compared to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=61). (l''-o'')
1977 Representative images of adult females on Ct.HSD from respective genetic backgrounds
1978 compared to control (k'). (l''-o'') Fly length quantifications in females. (l'')

1979 $Hm^{\Delta} > GFP/ACC^{RNAi}$ (N=3, n=33, p<0.0001) compared to corresponding Ct.HSD Control,
1980 ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=40), (m'') $Hm^{\Delta} > GFP/UAS-ACC$ (N=3, n=58, p<0.0001) com-
1981 pared to corresponding Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=45), (n'')
1982 $Hm^{\Delta} > GFP/Gpat4^{RNAi}$ (N=3, n=78, p<0.0001) compared to Ct.HSD Control,
1983 ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=78) and (o'') $Hm^{\Delta} > GFP/Agpat3^{RNAi}$ (N=3, n=56, p<0.0001)
1984 compared to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=73).

1985

1986 **Figure S8. Immune cell lipid uptake regulates growth on high sugar diet.**

1987

1988 Data information: DNA is stained with DAPI (blue), immune cells are shown in green
1989 ($Hm^{\Delta} > UAS-GFP$). Croquemort (Crq) staining is shown in spectral mode in panels (a-b).
1990 Nile red staining to mark lipids is shown in red in panels (d-e'). Scale bar: 5 μ m for immune
1991 cells, 0.5mm for flies and 0.25mm for wings. In quantification graphs (c), (h), and (k), each
1992 dot represents an experimental repeat. Except for panel (a-c) where comparisons are with
1993 respect to Control on RF, in all other panels comparison for significance is with respect to
1994 Control on HSD. Asterisks mark statistically significant differences (*p<0.05; **p<0.01;
1995 ***p<0.001; ****p<0.0001). The statistical analysis applied is Two-way ANOVA, main ef-
1996 fects. "N" is the total number of repeats. "n" is the total number of animals (larvae and adult
1997 flies). Only right wing from each adult fly was selected for quantification. The red dotted
1998 line in the panels marks the wing span area and is used as a reference to showcase any
1999 change in wing span area across genotypes. The two horizontal red lines in the panels is
2000 used as a reference to showcase any change in fly lengths across genotypes. RF and
2001 Ct.HSD correspond to regular food and constitutive high sugar diet respectively. See
2002 methods for further details on larval numbers and sample analysis for each of the experi-
2003 ments.

2004

2005
2006 (a-b) Representative images of immune cells stained to visualize Crq protein expression.
2007 Compared to Crq protein levels in (a) RF Control ($Hm^{\Delta} > GFP/w^{1118}$), (b) long-term HSD
2008 condition (Ct.HSD) the expression of Crq is increased dramatically. (c) Relative quantifica-
2009 tion of Crq protein expression, RF (N=3, n=30) and Ct.HSD (N=2, n=30, P<0.0001).
2010
2011 (d-e') Representative images of immune cells on Ct.HSD stained to show lipid droplets
2012 (Nile Red, red). Compared to lipid levels seen in (d, d') HSD Control ($Hm^{\Delta} > GFP/w^{1118}$), (e,
2013 e') loss of immune cell *crq* function ($Hm^{\Delta} > GFP/crq^{RNAi}$) leads to decrease in lipid droplets.
2014
2015 (f-g') Representative images of (f-g) adult males and (f-g') right-wing to show size pheno-
2016 type on Ct.HSD upon manipulating lipid uptake in immune cells. Compared to (f-f') HSD
2017 Control ($Hm^{\Delta} > GFP/w^{1118}$), (g-g') loss of *crq* ($Hm^{\Delta} > GFP/crq^{RNAi}$) causes a further reduction
2018 in body size. (h) Male wingspan quantification of Ct.HSD control ($Hm^{\Delta} GFP > w^{1118}$, N=3,
2019 n=124), and *Crq^{RNAi}* ($Hm^{\Delta} GFP > Crq^{RNAi}$, N=3, n=51, p<0.0001). (i-j'') Representative im-
2020 ages of (i-j) adult females and (i'-j') wing to show size phenotype on Ct.HSD upon manipu-
2021 lating lipid uptake in immune cells. Compared to (i-i') Ct.HSD Control ($Hm^{\Delta} > GFP/w^{1118}$), (j-
2022 j') loss of *crq* ($Hm^{\Delta} > GFP/crq^{RNAi}$) causes a further reduction in body size. (k) Female
2023 wingspan quantification of Ct.HSD control ($Hm^{\Delta} GFP > w^{1118}$, N=3, n=111), and *crq^{RNAi}*
2024 ($Hm^{\Delta} GFP > crq^{RNAi}$, N=3, n=31, p<0.0001).
2025
2026 **Figure S9. Immune cell lipolytic state as inhibitor of systemic growth on HSD.**
2027
2028 Data information: DNA is stained with DAPI (blue), immune cells are shown in green
2029 ($Hm^{\Delta} > UAS-GFP$). Nile red staining to mark lipids is shown in red in panels (a-c). Scale
2030 bar: 5 μ m for immune cells, 0.5mm for flies and 0.25mm for wings. In quantification graphs

2031 e'-f'), each dot represents an experimental repeat. Comparison for significance is with re-
2032 spect to Control on HSD. Asterisks mark statistically significant differences (*p<0.05;
2033 **p<0.01; ***p<0.001; ****p<0.0001). The statistical analysis applied is Two-way ANOVA,
2034 main effects. "N" is the total number of repeats. "n" is the total number of animals (larvae
2035 and adult flies). Only right wing from each adult fly was selected for quantification. The red
2036 dotted line in the panels marks the wing span area and is used as a reference to show-
2037 case any change in wing span area across genotypes. The two horizontal red lines in the
2038 panels is used as a reference to showcase any change in fly lengths across genotypes.
2039 RF and Ct.HSD correspond to regular food and constitutive high sugar diet respectively.
2040

2041 (a-c) Representative images of immune cells on Ct.HSD stained to show lipid droplets
2042 (Nile Red, red). Compared to lipid levels seen in (b) Ct.HSD *Control* ($Hm^{\Delta}>GFP/w^{1118}$), (c)
2043 loss of immune cell *brummer* function ($Hm^{\Delta}>GFP/bmm^{RNAi}$) led to increase in lipid droplets
2044 and (d) gain of *bmm* expression ($Hm^{\Delta}>GFP/UAS-bmm$) led to decrease in lipids respec-
2045 tively.

2046
2047 (d-f') Modulating larval immune cell lipolysis affects adult growth. Representative images
2048 of fly wings of adult females (d-f) showing size phenotype on Ct.HSD from respective ge-
2049 netic backgrounds. Compared to (d) Ct.HSD *Control* ($Hm^{\Delta}>GFP/w^{1118}$), (e) loss of *bmm*
2050 ($Hm^{\Delta}>GFP/bmm^{RNAi}$) or (f) increase in its expression ($Hm^{\Delta}>GFP/UAS-bmm$) in immune
2051 cells causes either a recovery in adult fly size or a further reduction in size respectively.

2052 (e'-f') Quantification of female wingspan in (e') $Hm^{\Delta}>GFP/bmm^{RNAi}$ (N=3, n=108,
2053 p<0.0001) in comparison to HSD *Control*, ($Hm^{\Delta}>GFP/w^{1118}$, N=3, n=136), and (f')
2054 $Hm^{\Delta}>GFP/UAS-bmm$ (N=3, n=85, p=0.0004) in comparison to HSD *Control*,
2055 ($Hm^{\Delta}>GFP/w^{1118}$, N=3, n=51). (e''-f'') Representative images of adult females on Ct.HSD
2056 from respective genetic backgrounds compared to control (d').

2057

2058 **Figure S10: Hedgehog and Notch as upstream modifiers of immune cell lipogenesis**
2059 **in high sugar diet**

2060

2061 Data information: DNA is stained with DAPI (blue), immune cells are shown in green
2062 (*Hm^Δ>UAS-GFP*). NICD, Ci and ACC staining are shown in spectral mode in panels (a-b),
2063 (d-e) and (o-r). Nile red staining to mark lipids is shown in red in panels (k-n'). Scale bar:
2064 5 μ m for immune cells, 0.5mm for flies and 0.25mm for wings. In quantification graphs (c),
2065 (f), (h'-j') and (s), each dot represents an experimental repeat. Except for panels (a-b) and
2066 (d-e), where comparisons are with respect to Control on RF, in all other panels comparison
2067 for significance is with respect to Control on HSD. Asterisks mark statistically significant
2068 differences (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). The statistical analysis applied
2069 is Two-way ANOVA, main effects or with Dunnett's multiple comparison test wherever ap-
2070 plicable. "N" is the total number of repeats. "n" is the total number of animals (larvae or
2071 adult flies) analyzed. Only right wing from each adult fly was selected for quantification.
2072 The red dotted line in the panels marks the wing span area and is used as a reference to
2073 showcase any change in wing span area across genotypes. The two horizontal red lines in
2074 the panels is used as a reference to showcase any change in fly lengths across geno-
2075 types. RF and Ct.HSD correspond to regular food and constitutive high sugar diet respec-
2076 tively. See methods for further details on larval numbers and sample analysis for each of
2077 the experiments.

2078

2079

2080 (a-b) Representative images of immune cells stained to visualize Notch Intracellular do-
2081 main (NICD) expression. Compared to NICD protein levels in (a) RF Control

2082 (Hm Δ >GFP/w 1118), (b) long-term HSD condition (Ct.HSD) showed a significant decrease.
2083 (c) Quantification of NICD intensity in RF (N=3, n=30) and Ct.HSD (N=3, n=30, p<0.0001).
2084
2085 (d-e) Representative image of immune cells for active form of Cubitus interruptus (Ci) ex-
2086 pression in Control (Hm Δ >GFP/w 1118) regular food (RF) (d). Constitutive high sugar diet
2087 (Ct.HSD) (e) shows more Ci expression as compared to Control (d). (f) Quantification of Ci
2088 intensity in RF (N=2, n=30) and Ct.HSD (N=2, n=30, p<0.0001).
2089
2090 (g-j'') Modulating larval immune cell Notch and Hh pathway affects adult growth. Repre-
2091 sentative images of fly wings of adult males (g-j) showing size phenotype on Ct.HSD from
2092 respective genetic backgrounds. Compared to (g) Ct.HSD Control (Hm Δ >GFP/w 1118), (h)
2093 loss of Psn (Hm Δ >GFP/Psn DN) or (i) increase in Notch activity (Hm Δ >GFP/UAS-Notch Act)
2094 in immune cells causes either a further reduction in adult size or recovery respectively. (j)
2095 Down regulating hh (Hm Δ >GFP/hh RNAi) in immune cells shows increased adult size com-
2096 pared to control (g). (h'-j') Quantification of male wingspan in (h') Hm Δ >GFP/Psn DN (N=3,
2097 n=73, p<0.0001) compared to Ct.HSD Control (Hm Δ >GFP/w 1118 , N=3, n=99,) (i')
2098 Hm Δ >GFP/UAS-Notch Act (N=3, n=94, p<0.0001) compared to Ct.HSD Control
2099 (Hm Δ >GFP/w 1118 , N=3, n=119, p<0.0001), (j') Hm Δ >GFP/UAS-hh RNAi (N=3, n=159,
2100 p=0.1313) compared to Ct.HSD Control (Hm Δ >GFP/w 1118 , N=3, n=72,). (h''-j'') Repre-
2101 sentative images of adult males on Ct.HSD from respective genetic backgrounds com-
2102 pared to control (g').
2103
2104 (k-n) Representative images of immune cells on Ct.HSD for lipids (Nile red) in (k) Ct.HSD
2105 Control (Hm Δ >GFP/w 1118). (l) UAS-Psn DN (Hm Δ >GFP/UAS-Psn DN) and (m) UAS-Notch Act
2106 (Hm Δ >GFP/UAS-Notch Act) show decreased and increased lipids respectively as com-

2107 pared to Control (k). hh^{RNAi} ($Hm\Delta>GFP/hh^{RNAi}$) (n) shows increased lipid droplets as com-
2108 pared to Control (k).

2109

2110 (o-r) Representative images of immune cells for Acetyl CoA carboxylase (ACC) enzyme
2111 expression on (o) Ct.HSD Control ($Hm\Delta>GFP/w^{1118}$), Psn^{DN} ($Hm\Delta>GFP/UAS- Psn^{DN}$) (p)
2112 shows no change as compared to Control. $UAS-Notch^{Act}$ ($Hm\Delta>GFP/UAS-Notch^{Act}$) (q)
2113 and hh^{RNAi} ($Hm\Delta>GFP/hh^{RNAi}$) (r) show increased ACC expression as compared to Control
2114 (o).

2115

2116 (s) Quantification of ACC intensity in $Hm\Delta>GFP/w^{1118}$ (Control, Ct.HSD, N=2, n=30),
2117 Psn^{DN} ($Hm\Delta>GFP/UAS- Psn^{DN}$, N=2, n=30, p=0.0945), $UAS-Notch^{Act}$ ($Hm\Delta>GFP/UAS-$
2118 $Notch^{Act}$, N=2, n=30, p<0.0001), hh^{RNAi} ($Hm\Delta>GFP/ hh^{RNAi}$, N=2, n=30, p<0.0001).

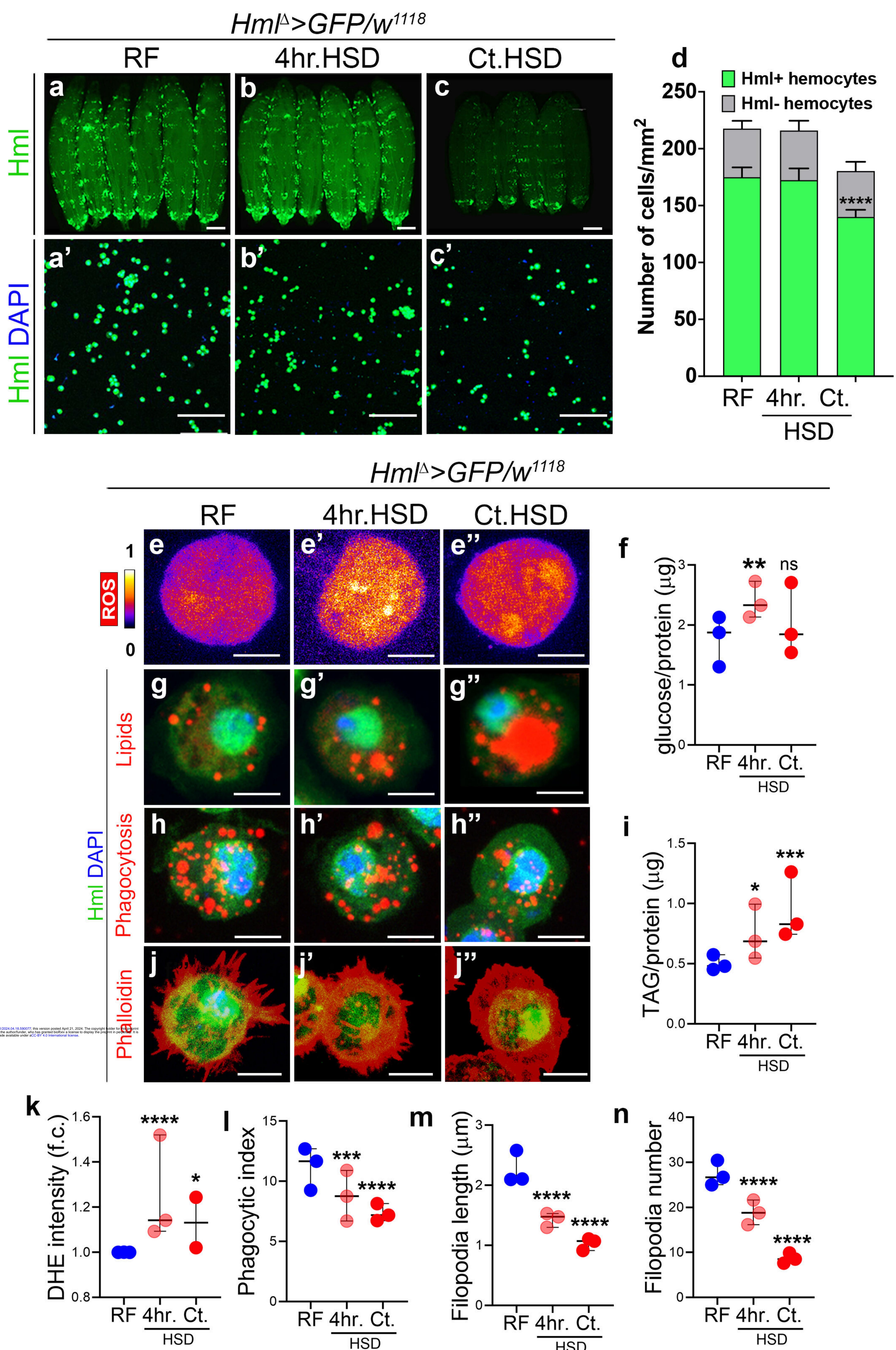
2119

2120 **Figure S11. Hedgehog and Notch as upstream modifiers of immune cell lipogenesis**
2121 **in high sugar diet**

2122

2123 Data information: Scale bar: 0.5mm for flies and 0.25mm for wings. In quantification
2124 graphs, shown in panel (a-c), (e'-g'), (e''-g''), each dot represents an experimental repeat.
2125 Comparison for significance is with respect to Control on HSD. Asterisks mark statistically
2126 significant differences (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). The statistical analy-
2127 sis applied is Two-way ANOVA, main effects test. “N” is the total number of repeats. “n” is
2128 the total number of animals analyzed. Only right wing from each adult fly was selected for
2129 quantification. The red dotted line in the panels marks the wing span area and is used as a
2130 reference to showcase any change in wing span area across genotypes. The two horizon-
2131 tal red lines in the panels is used as a reference to showcase any change in fly lengths

2132 across genotypes. RF and Ct.HSD correspond to regular food and constitutive high sugar
2133 diet respectively.


2134

2135 (a-g'') Modulating larval immune cell Notch and Hh pathway affects adult growth. (a-c) Fly
2136 length quantifications in males in (a) $Hm^{\Delta} > GFP/Psn^{DN}$ (N=3, n=51, p<0.0001) compared
2137 to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=58), (b) $Hm^{\Delta} > GFP/UAS-Notch^{Act}$ (N=3,
2138 n=40, p=0.0204) compared to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$ N=3, n=66,), (c)
2139 $Hm^{\Delta} > GFP/ Hh^{RNAi}$ (N=3, n=47, p=0.0012) compared to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$
2140 N=3, n=58). Representative images of fly wings of adult females (d-g) showing size pheno-
2141 type on Ct.HSD from respective genetic backgrounds. Compared to (d) Ct.HSD Control
2142 ($Hm^{\Delta} > GFP/w^{1118}$), (e) loss of Psn ($Hm^{\Delta} > GFP/Psn^{DN}$) or (f) increase in Notch activity
2143 ($Hm^{\Delta} > GFP/UAS-Notch^{Act}$) in immune cells causes either a further reduction in adult size
2144 or recovery respectively. (g) Down regulating hh ($Hm^{\Delta} > GFP/hh^{RNAi}$) in immune cells
2145 shows increased adult size compared to control (d). (e'-g') Quantification of female wing-
2146 span in (e') $Hm^{\Delta} > GFP/Psn^{DN}$ (N=3, n=58, p=0.0166) compared to Ct.HSD Control,
2147 ($Hm^{\Delta} > GFP/w^{1118}$, N=3, n=60,) (f') $Hm^{\Delta} > GFP/UAS-Notch^{Act}$ (N=3, n=72, p<0.0001) com-
2148 pared to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$ N=3, n=101,), (g') $Hm^{\Delta} > GFP/hh^{RNAi}$ (N=3,
2149 n=141, p<0.0001) compared to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$ N=3, n=84). (e''-g'')
2150 Representative images of adult females on Ct.HSD from respective genetic backgrounds
2151 compared to control (d'). (e''-g'') Female body length quantifications in (e'')
2152 $Hm^{\Delta} > GFP/Psn^{DN}$ (N=3, n=46, p<0.0001) compared to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$,
2153 N=3, n=50), (f'') $Hm^{\Delta} > GFP/UAS-Notch^{Act}$ (N=3, n=46, p=0.6726) compared to Ct.HSD
2154 Control, ($Hm^{\Delta} > GFP/w^{1118}$ N=3, n=56,), (g'') $Hm^{\Delta} > GFP/Hh^{RNAi}$ (N=3, n=28, p<0.0001)
2155 compared to Ct.HSD Control, ($Hm^{\Delta} > GFP/w^{1118}$ N=3, n=53).

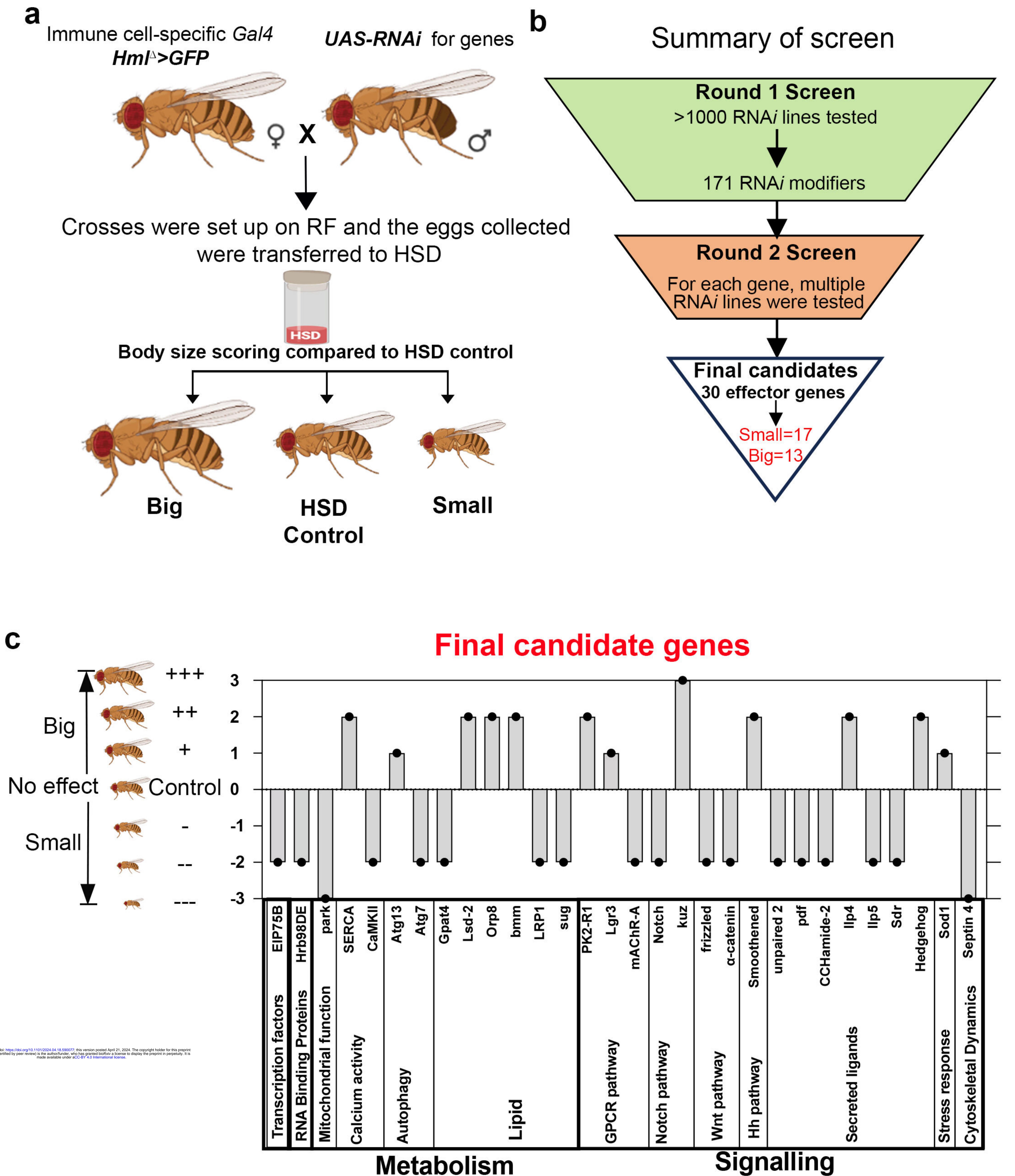

2156

Figure 1

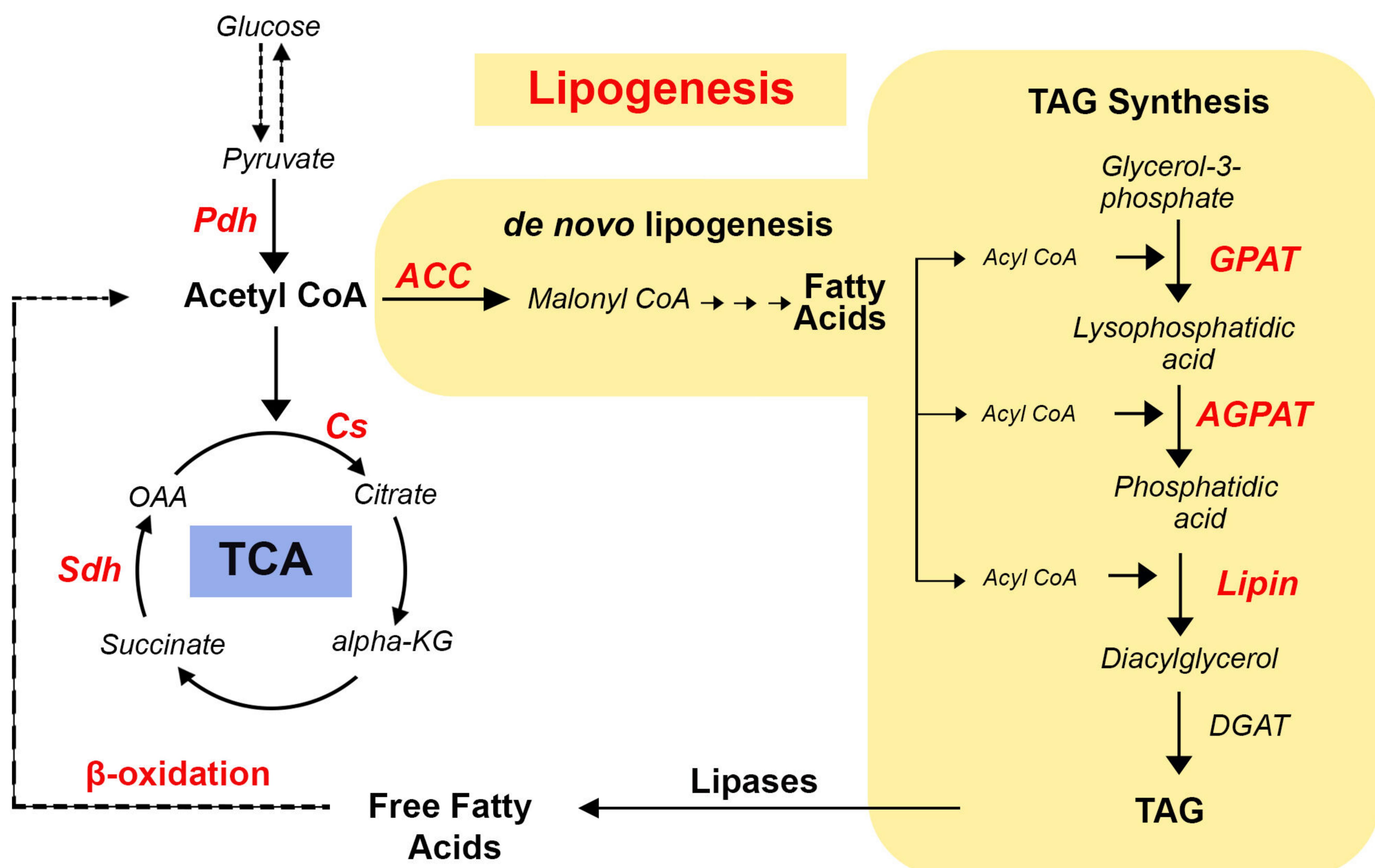
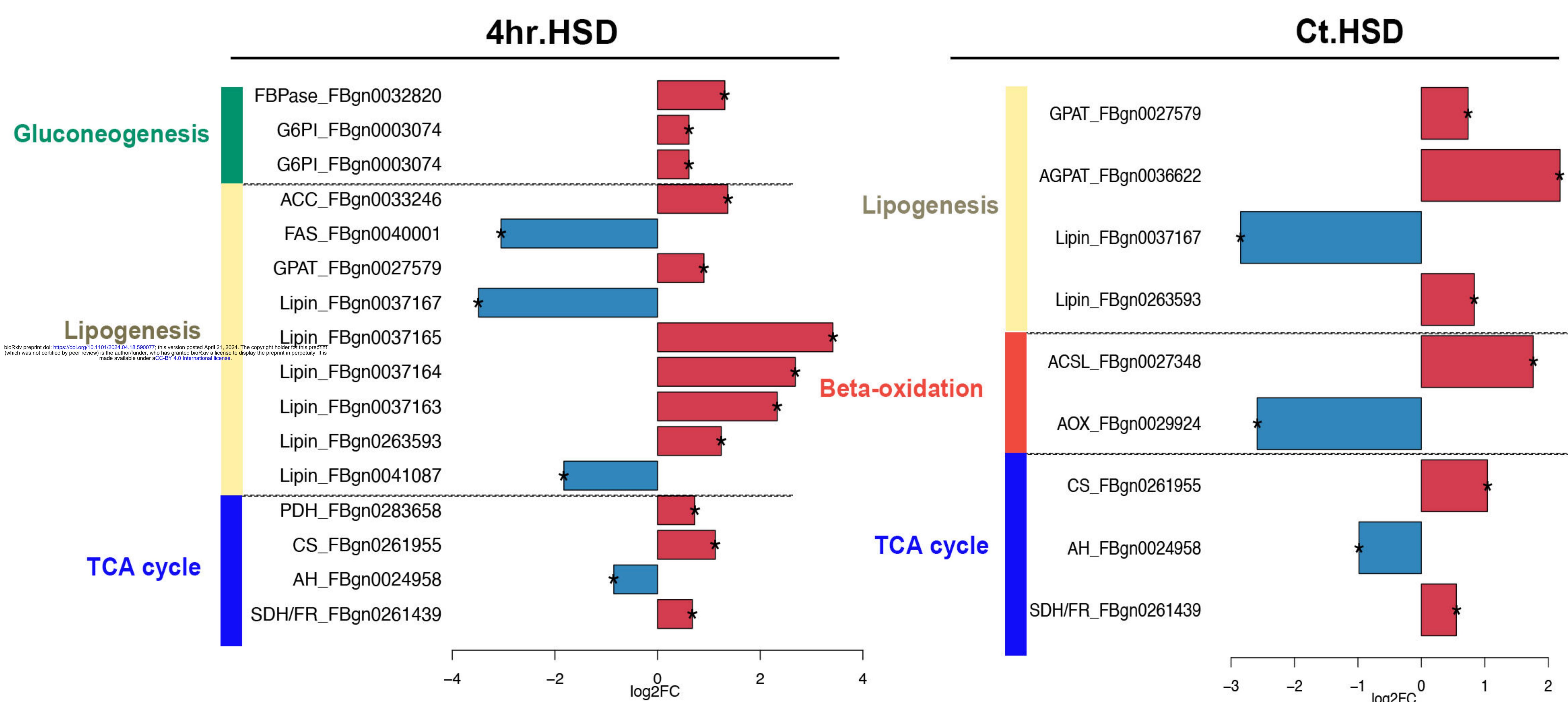
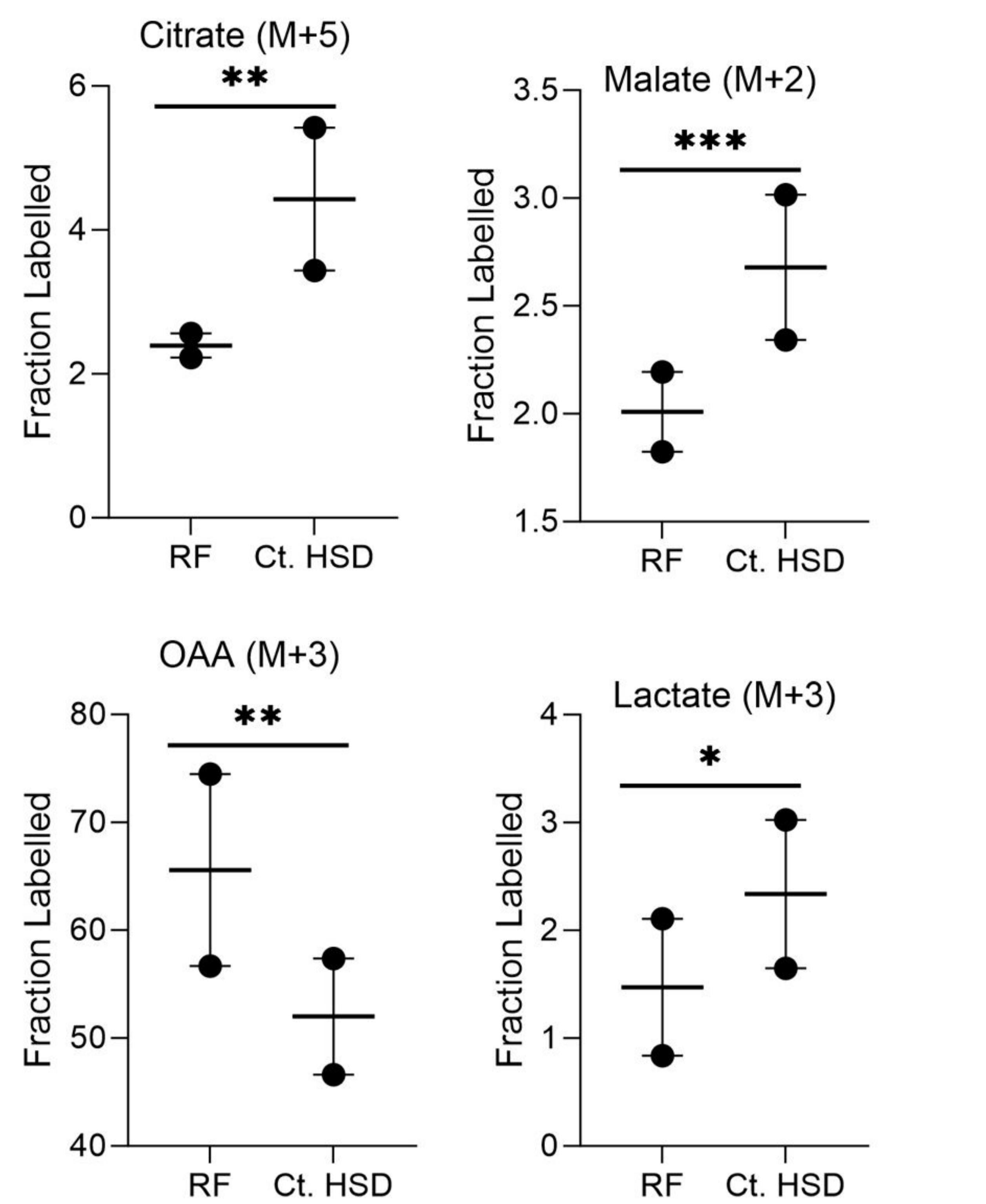


Figure 2


Figure 3

a


b

Genome wide transcriptional response seen in immune cells on HSD

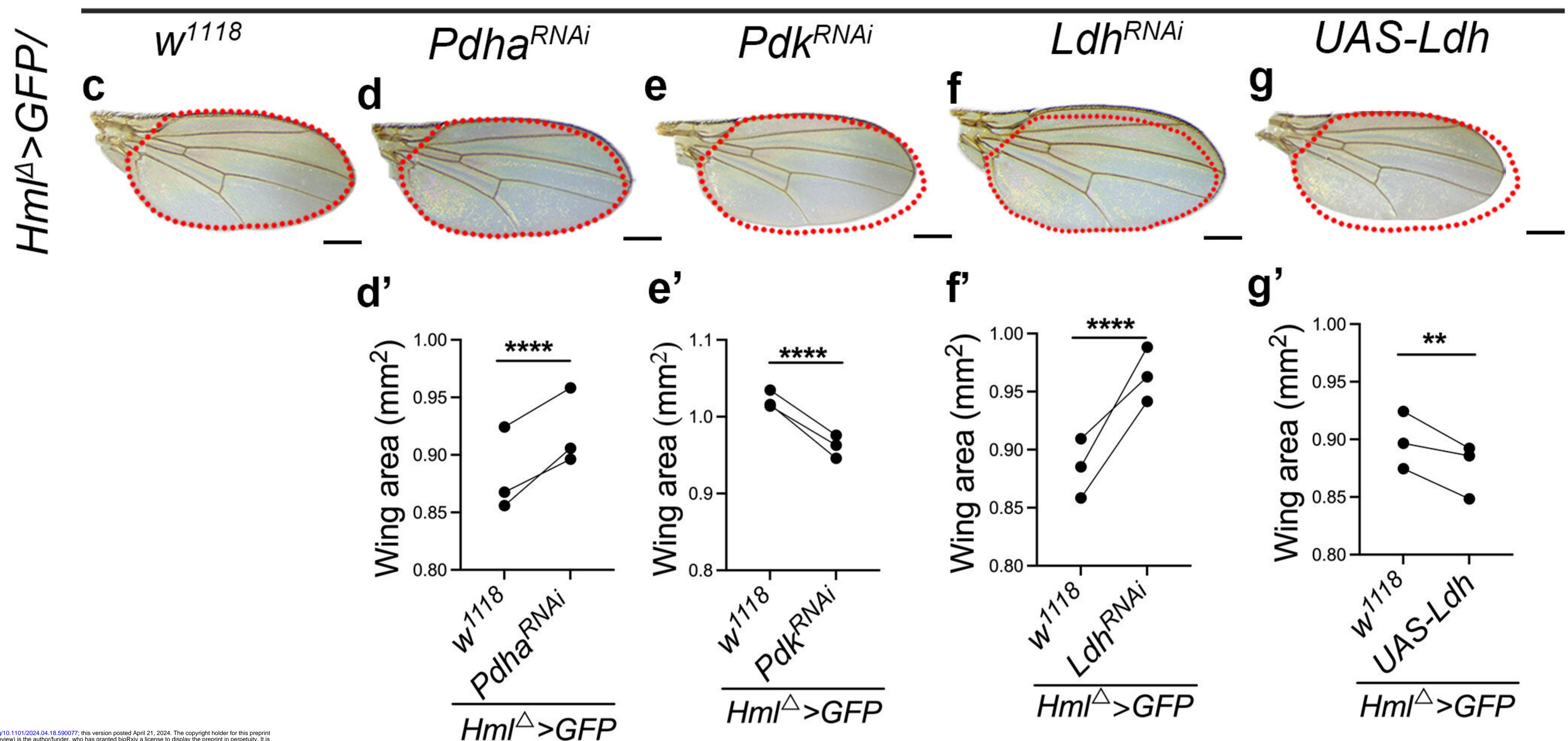
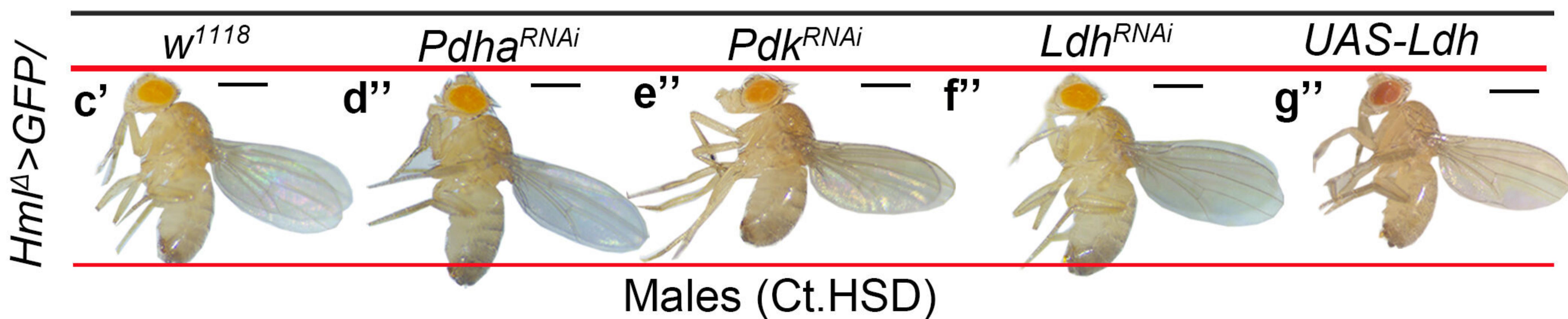
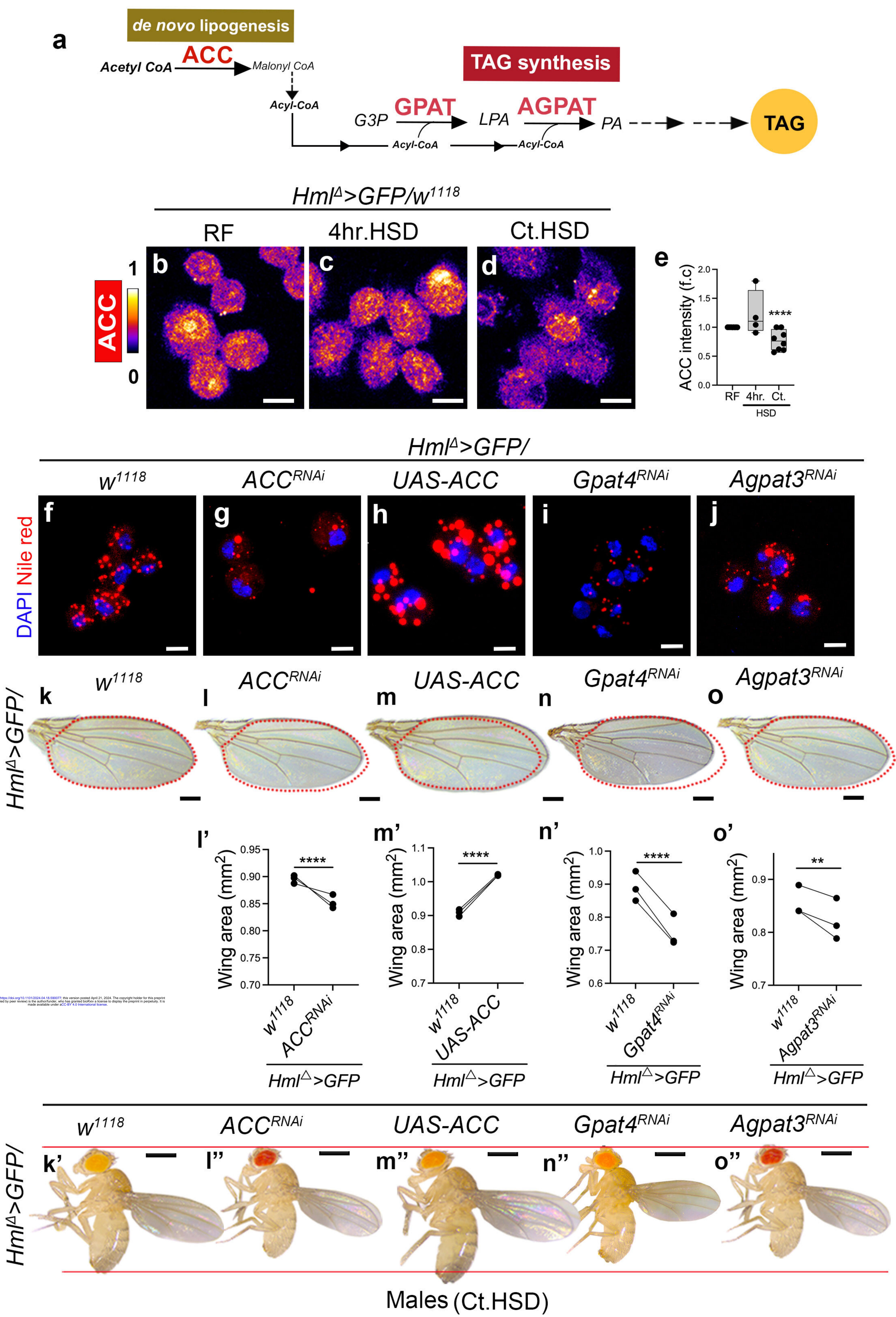
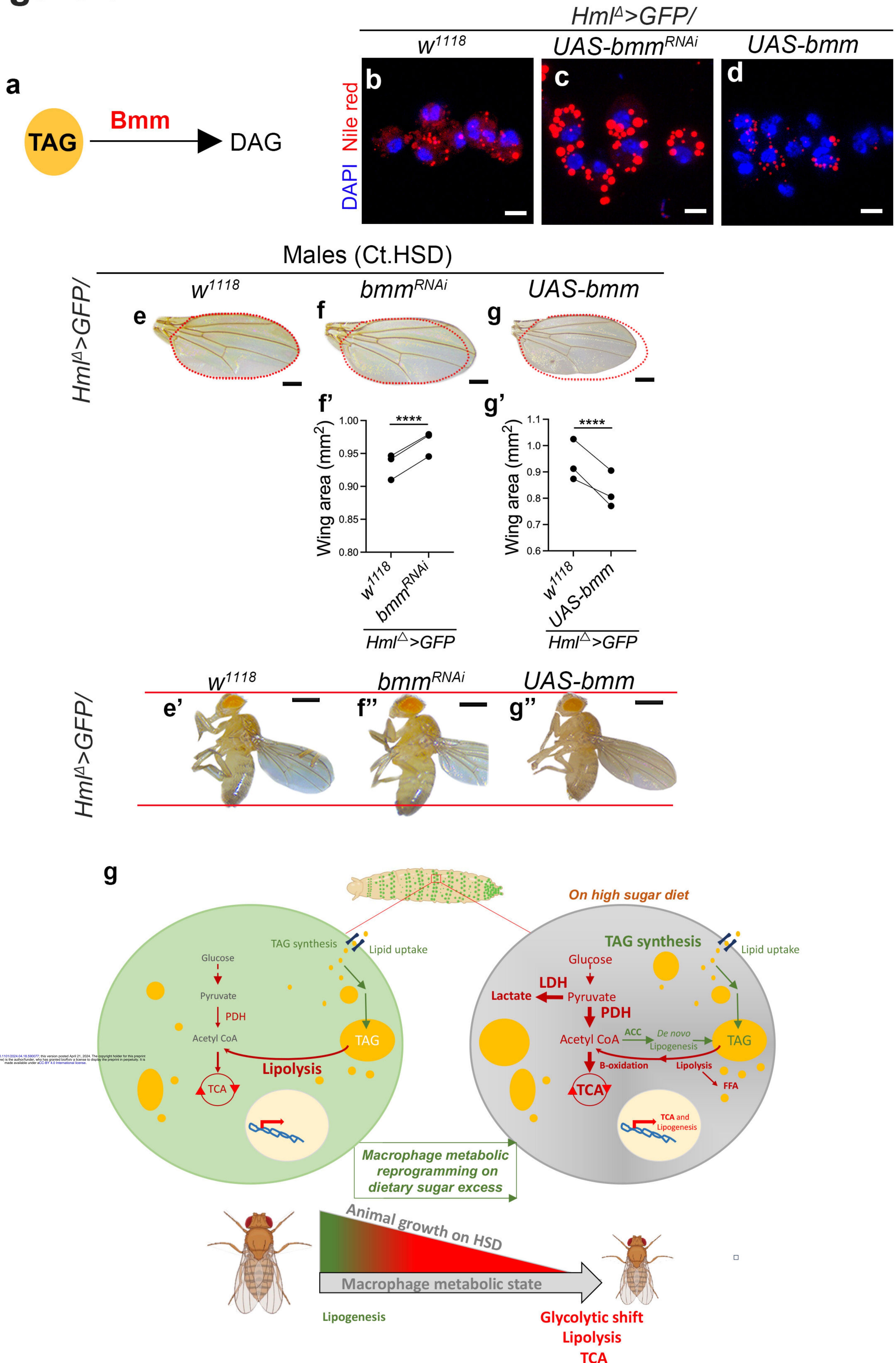


Figure 4


a


b


bioRxiv preprint doi: <https://doi.org/10.1101/2024.04.18.690077>; this version posted April 21, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

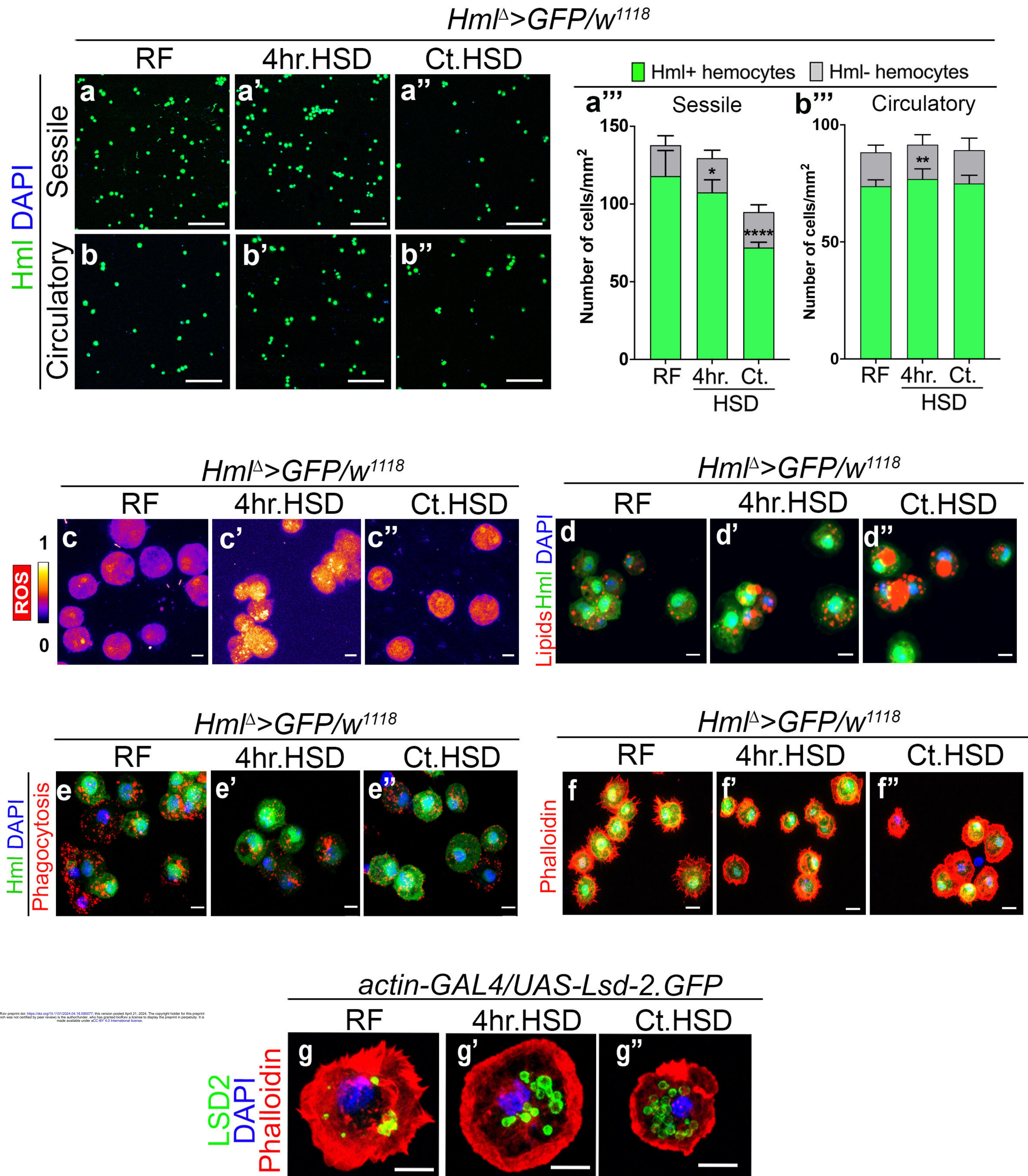
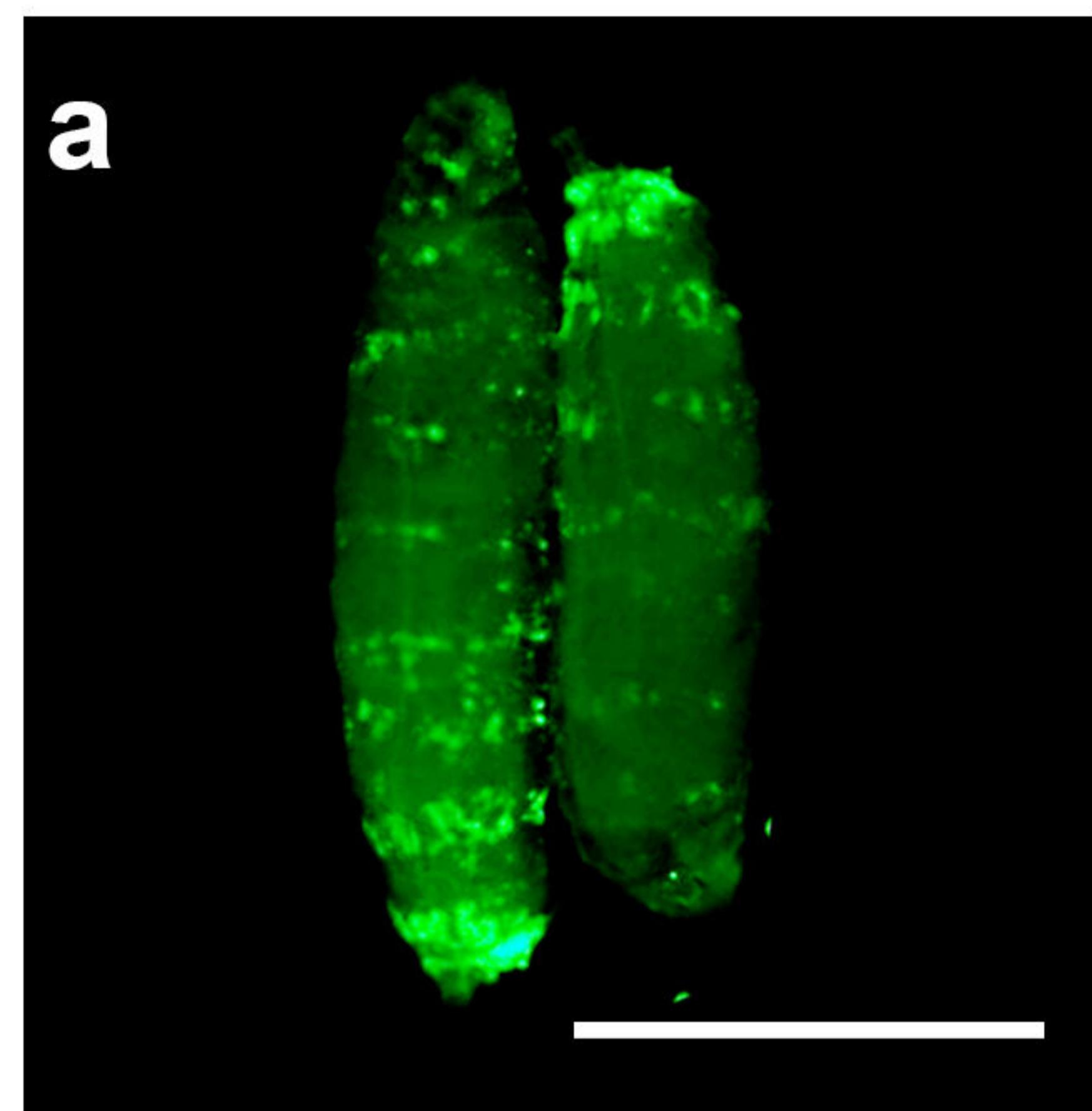
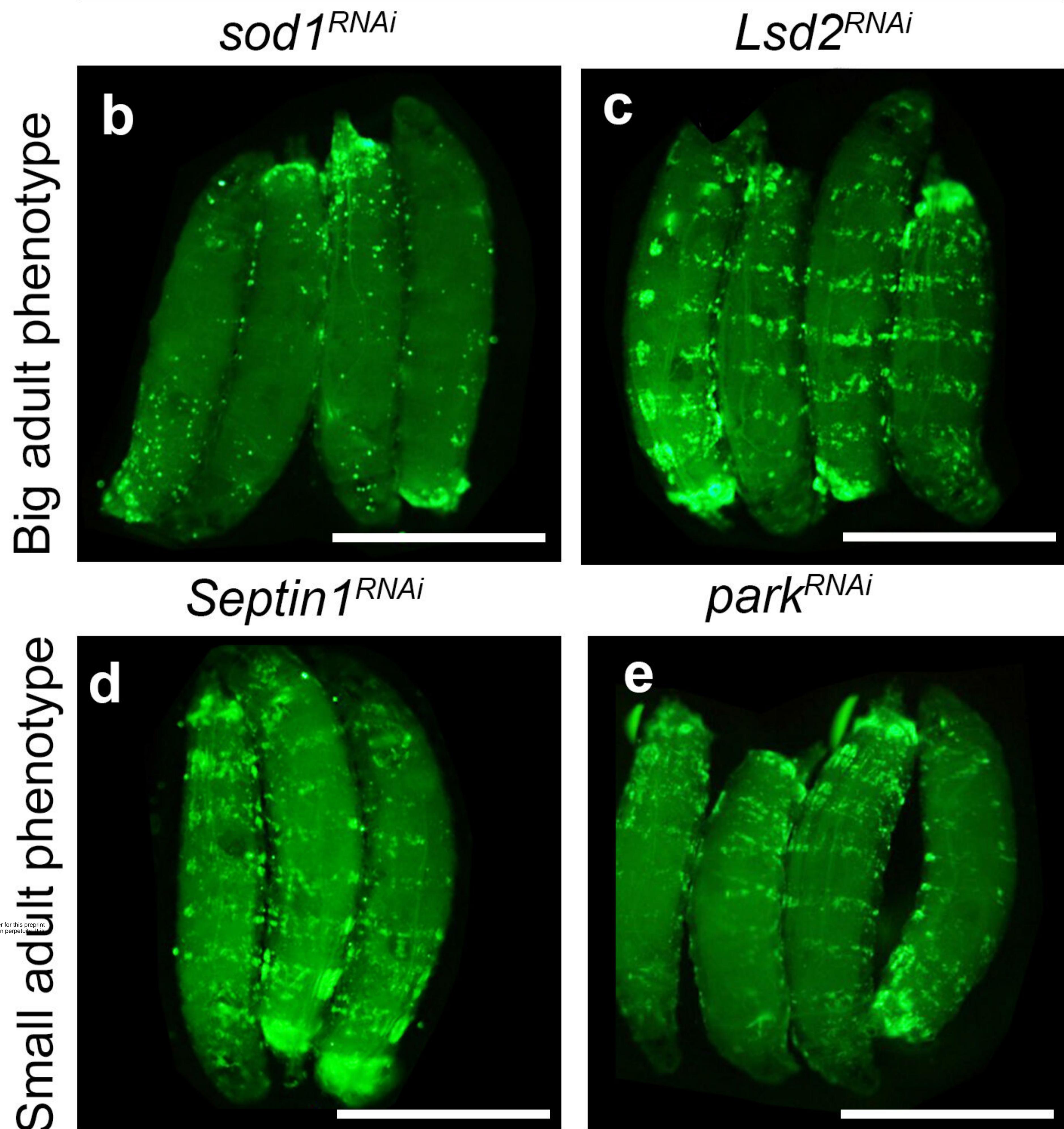

Figure 5

Figure 6

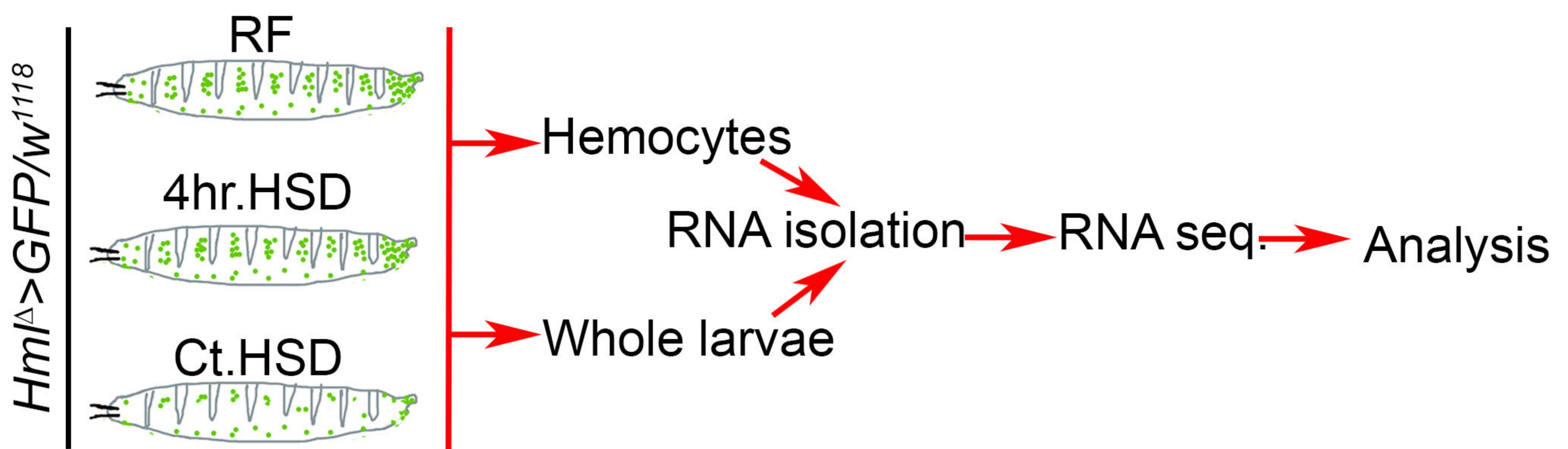


Supplementary figure 1

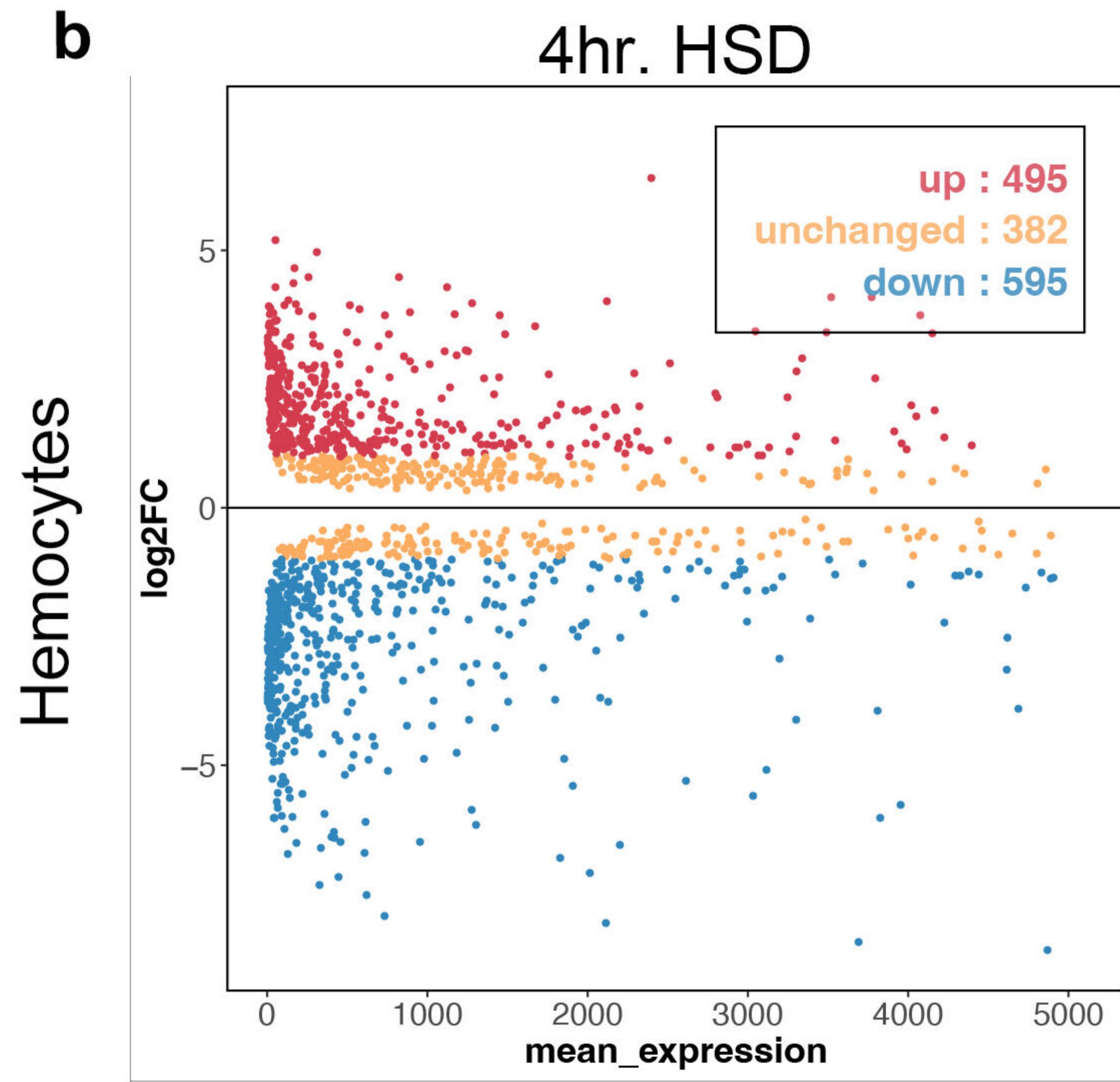


Supplementary figure 2

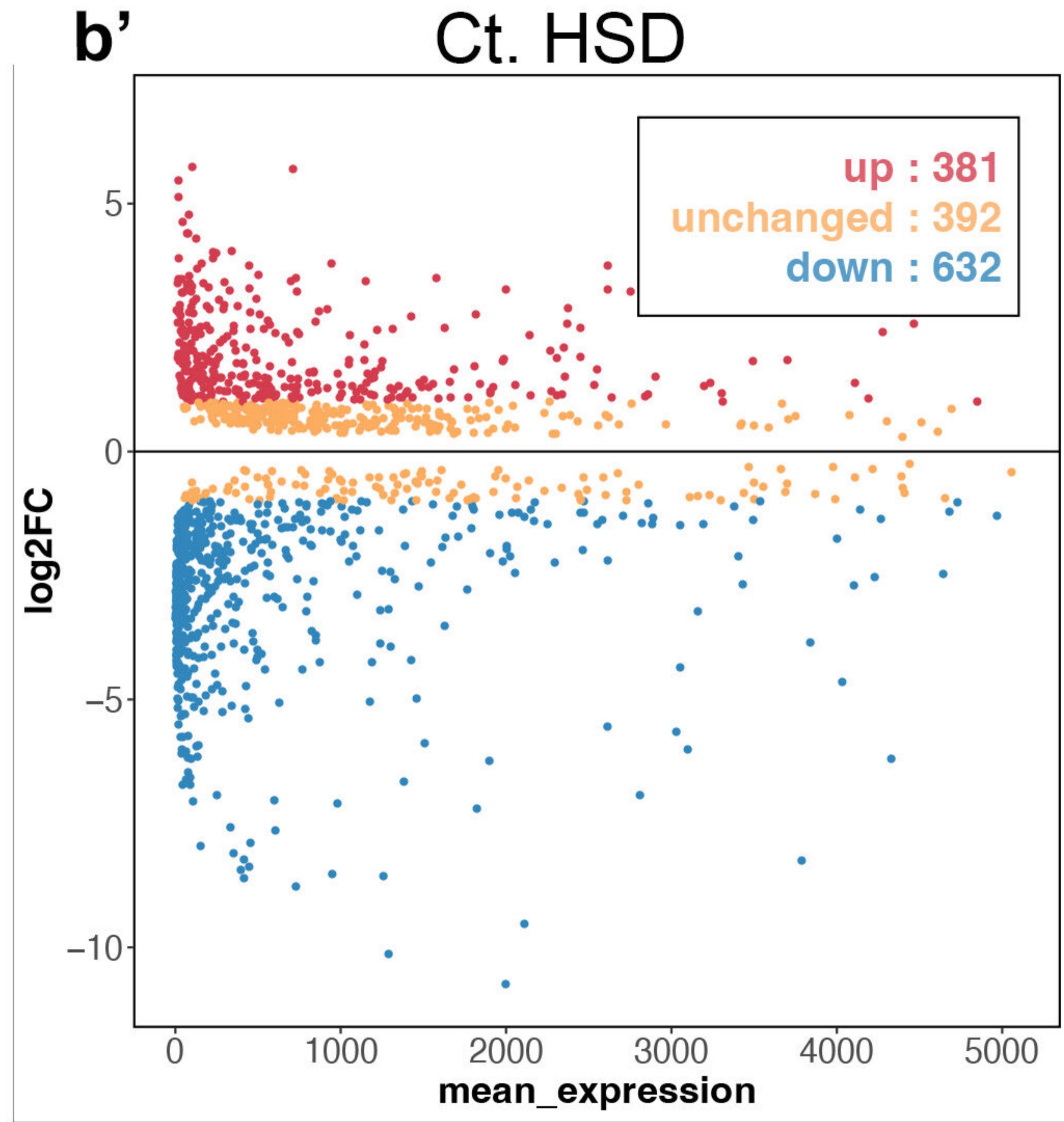
Hm^Δ>GFP/w¹¹¹⁸ (Ct.HSD)

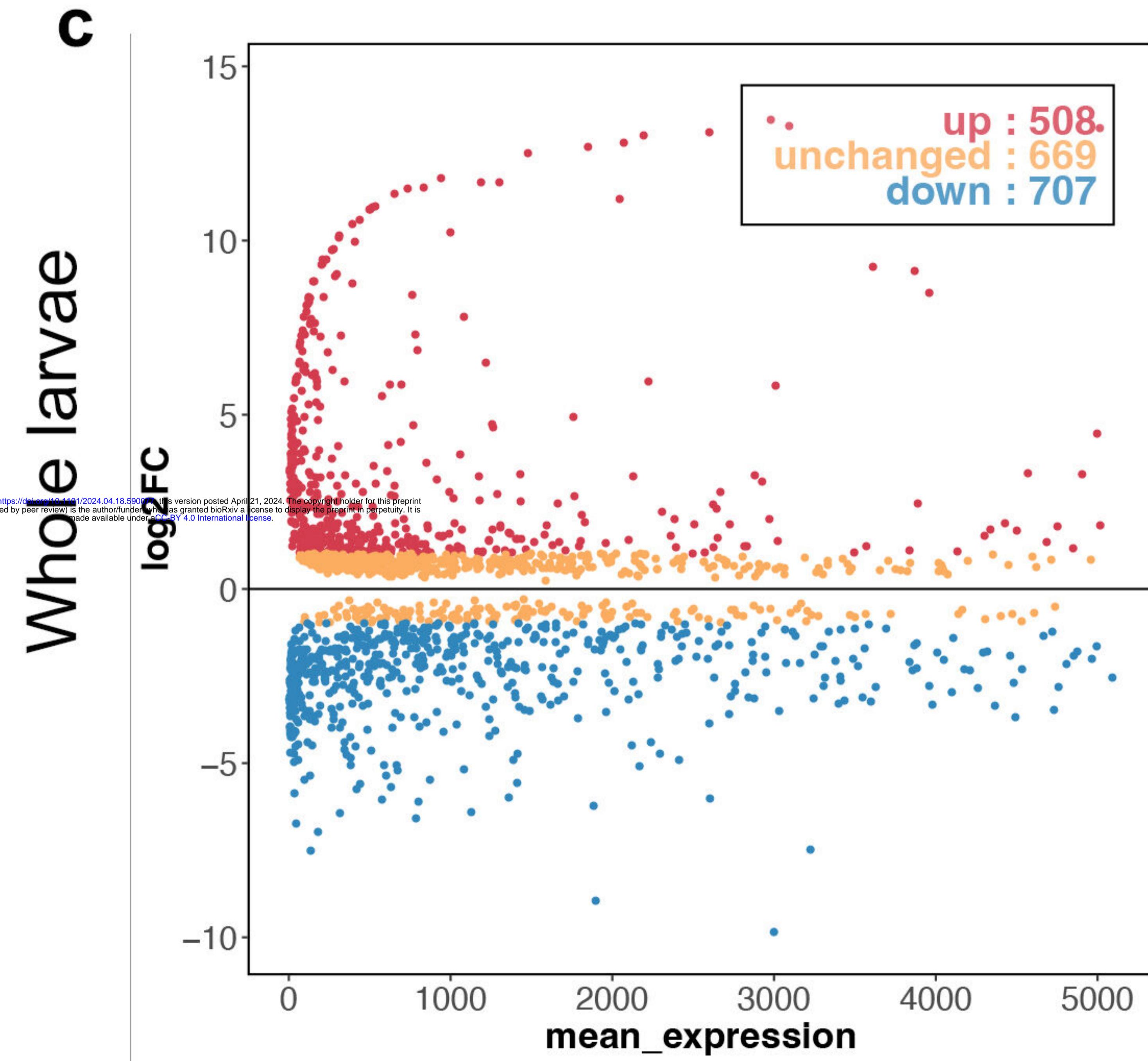


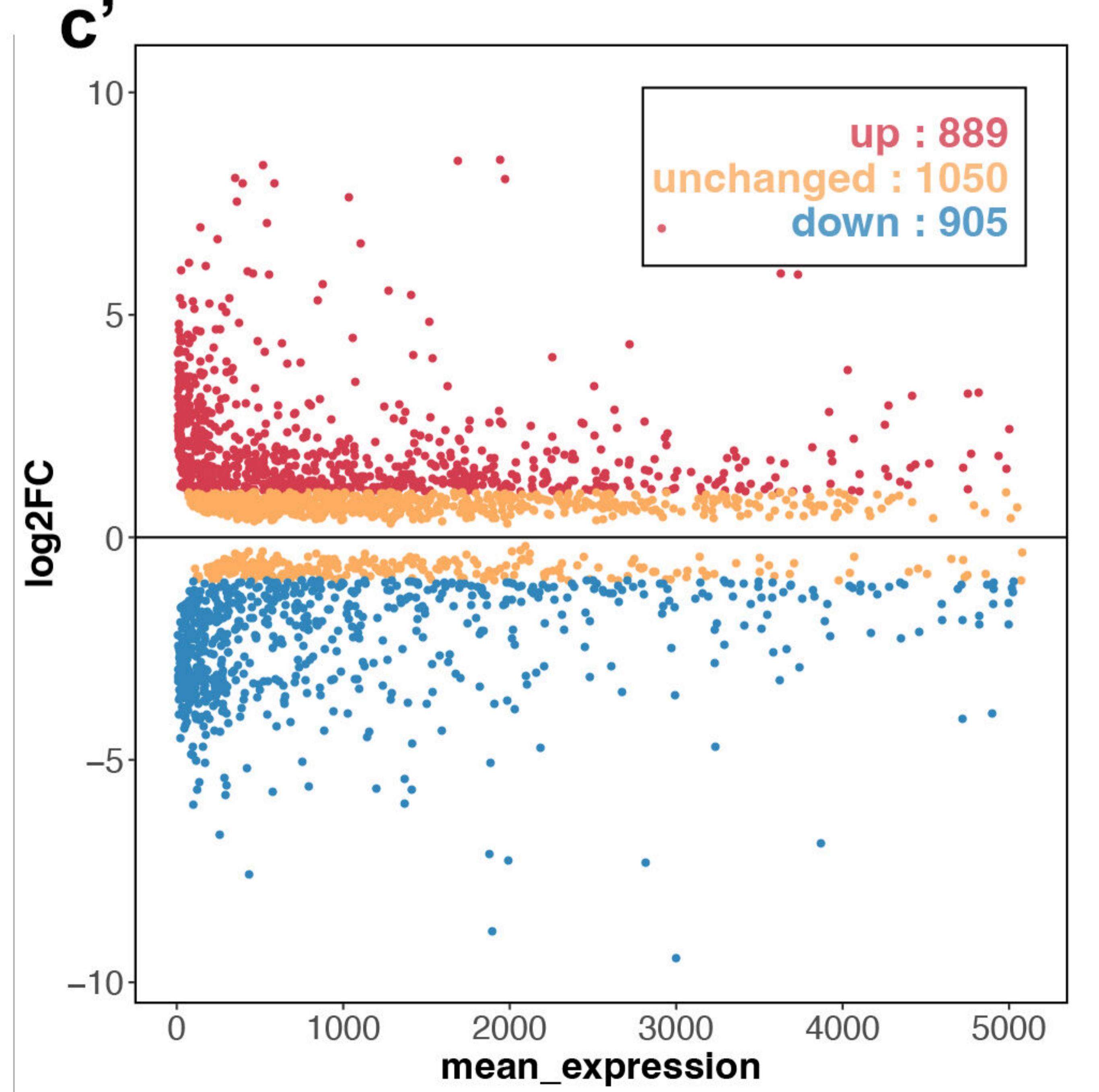
Hm^Δ>GFP/ (Ct.HSD)



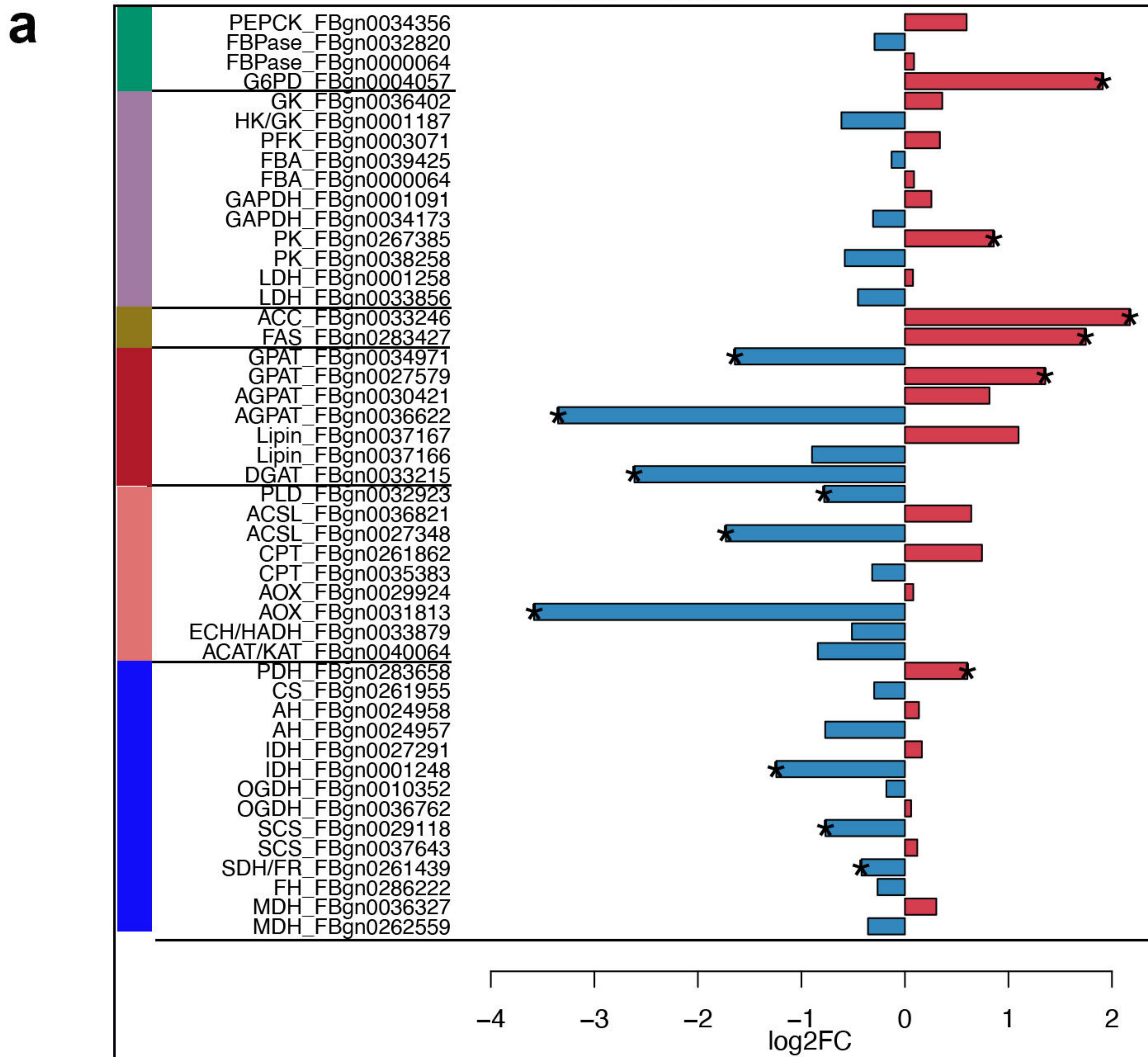
Supplementary figure 3

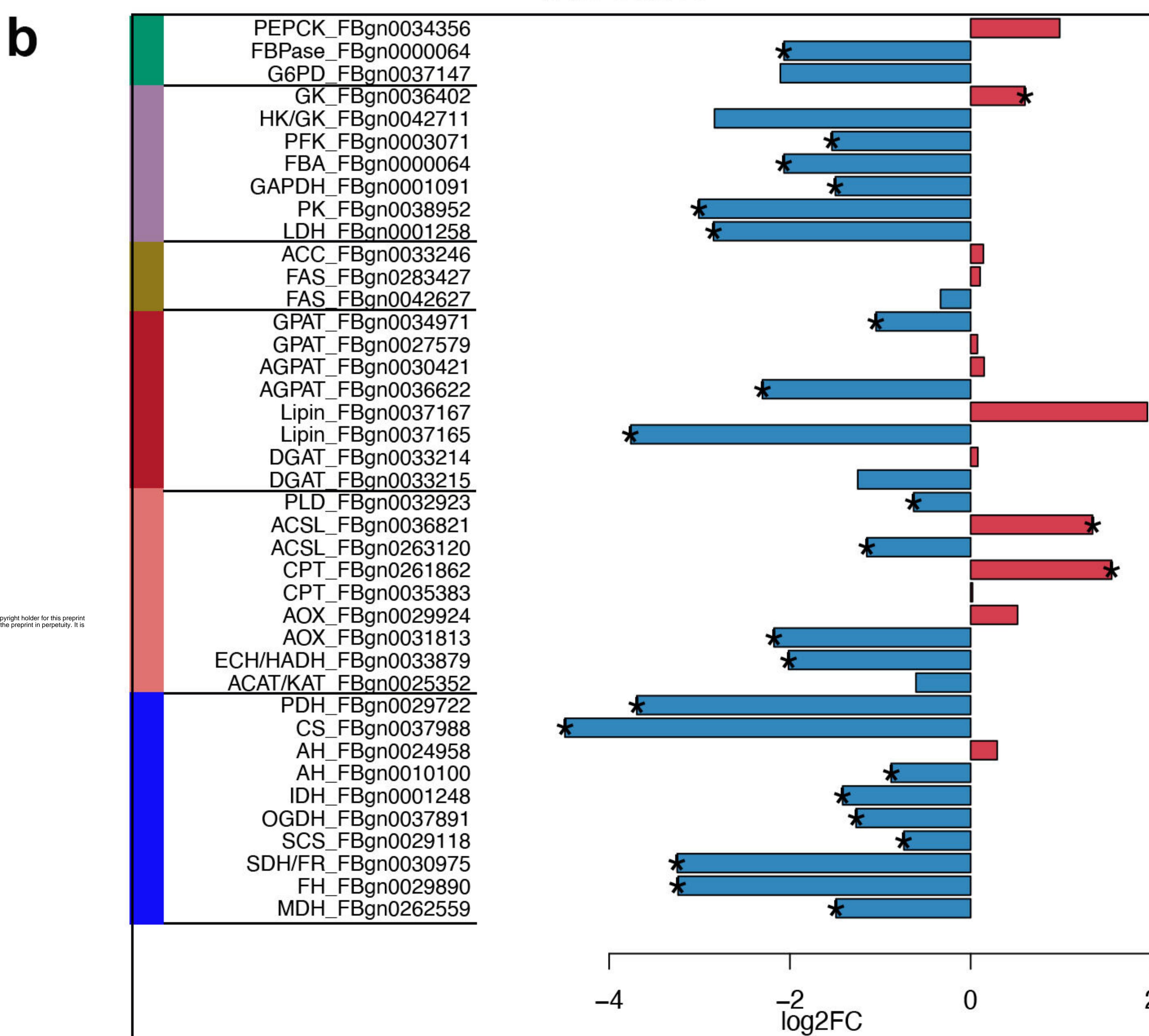

a


b


b'

c


c'


Supplementary figure 4

Genome wide transcriptome of the whole animal raised on HSD

4hr. HSD

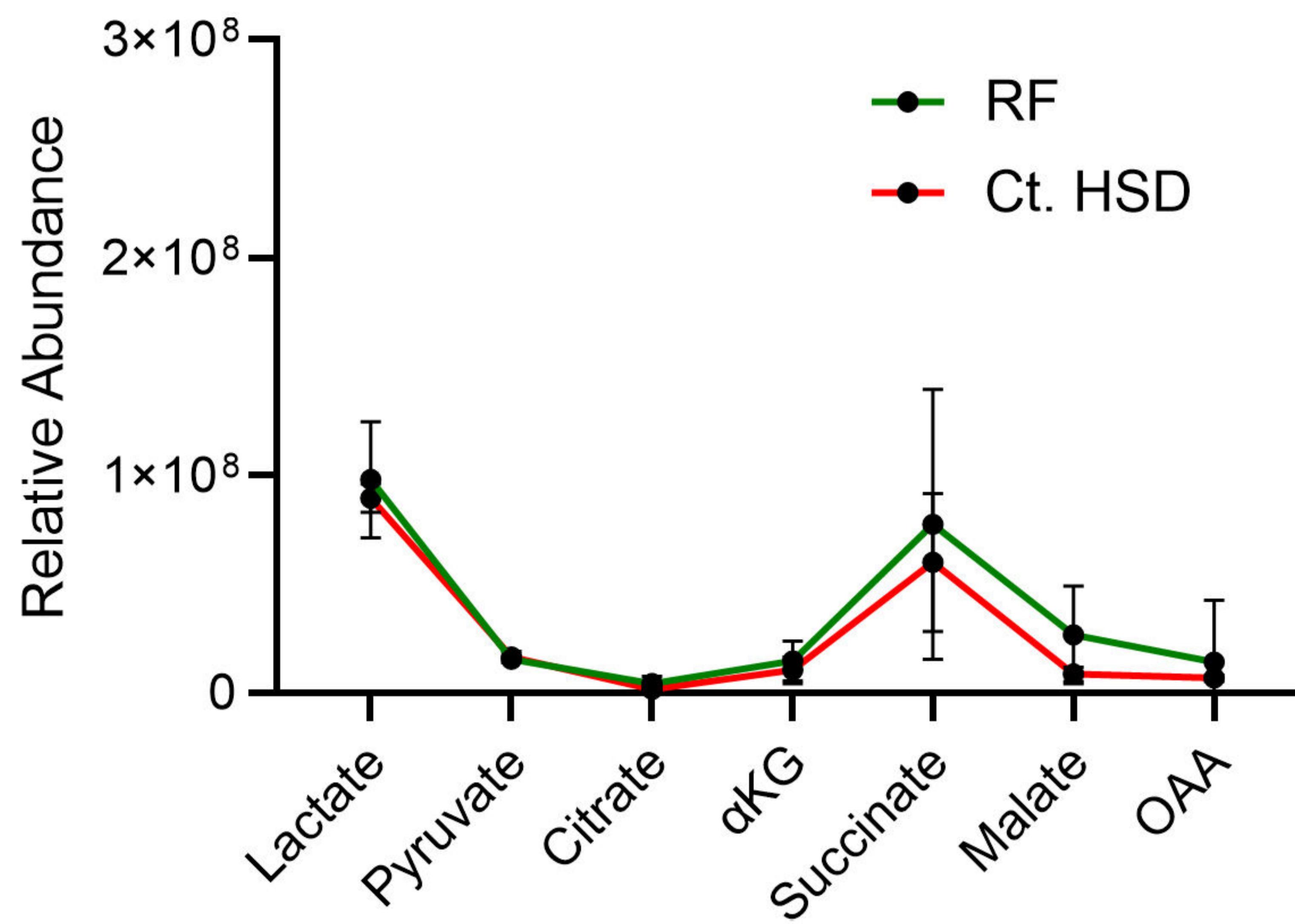
Ct. HSD

Gluconeogenesis

Glycolysis

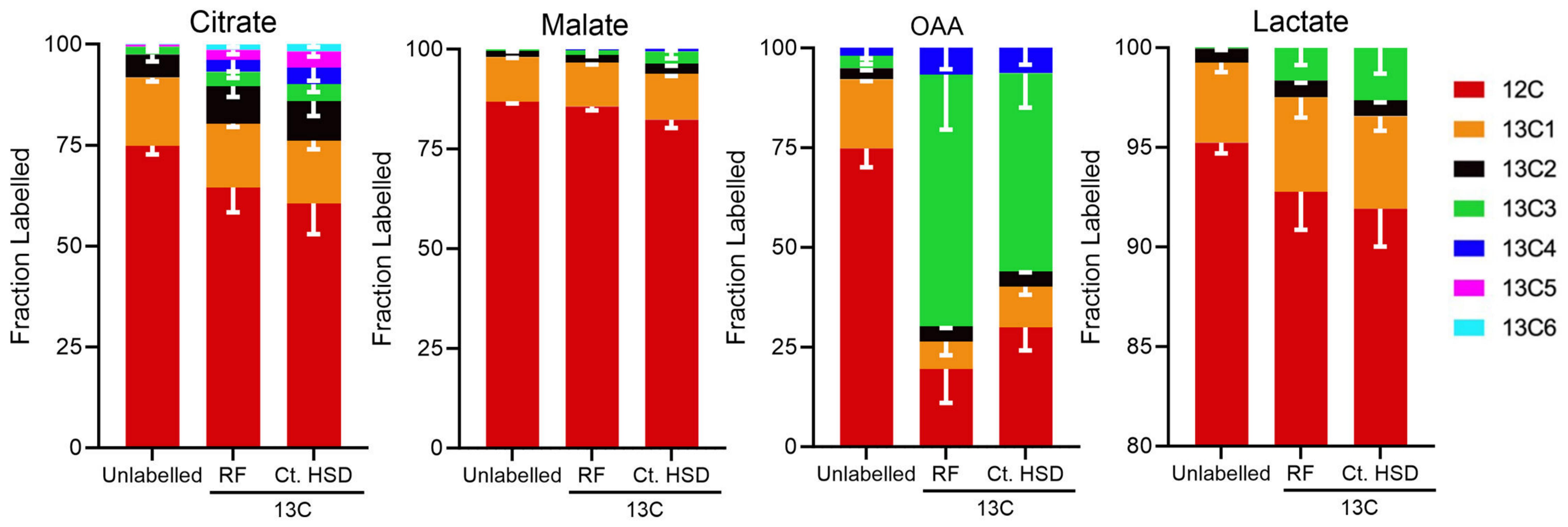
Denovo lipogenesis

TAG synthesis

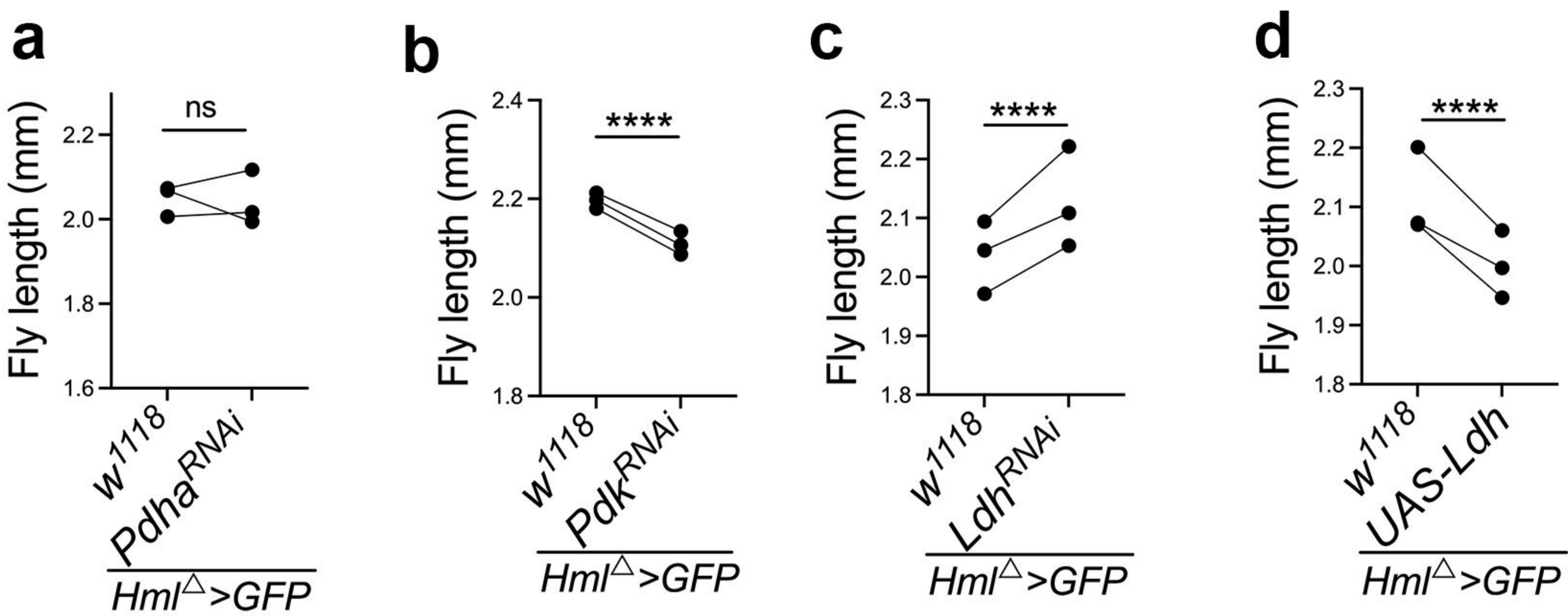

beta-oxidation

TCA

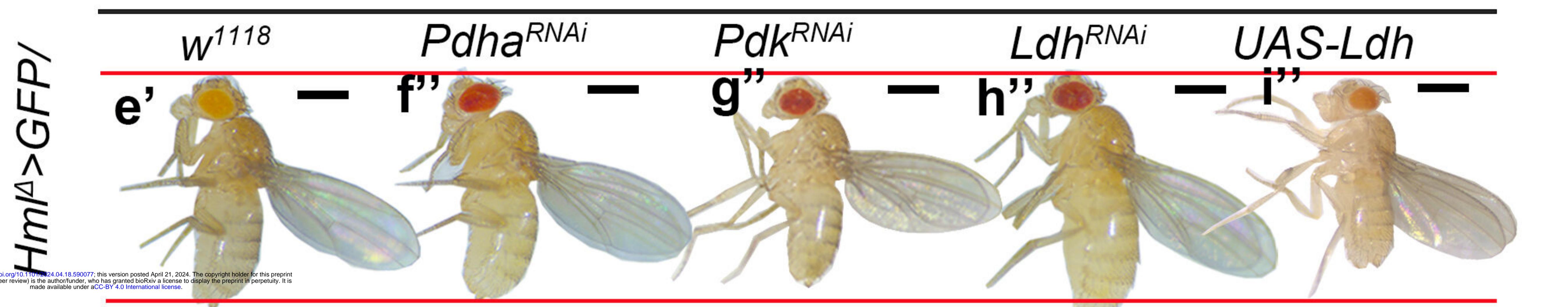
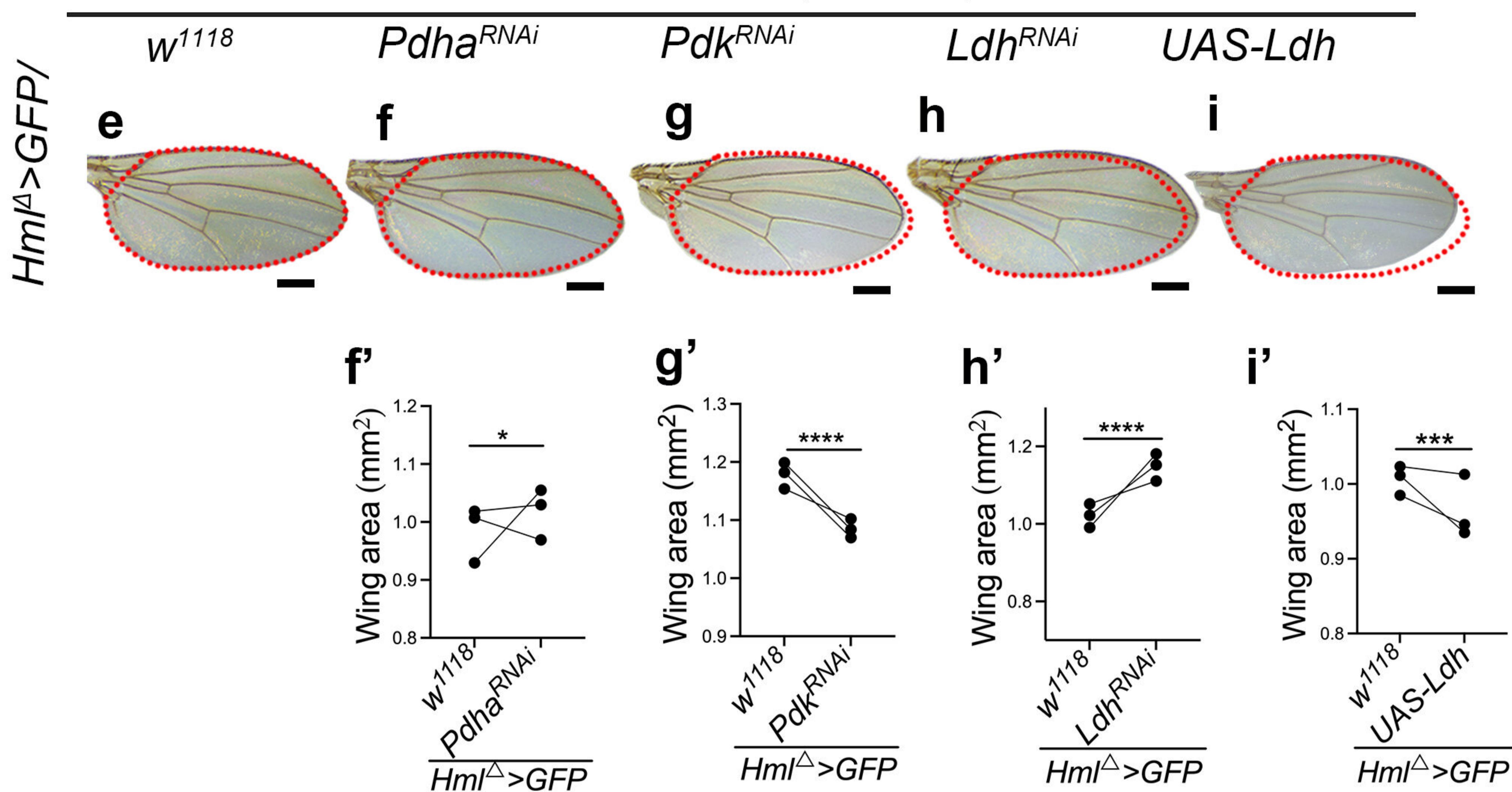
Supplementary figure 5


a

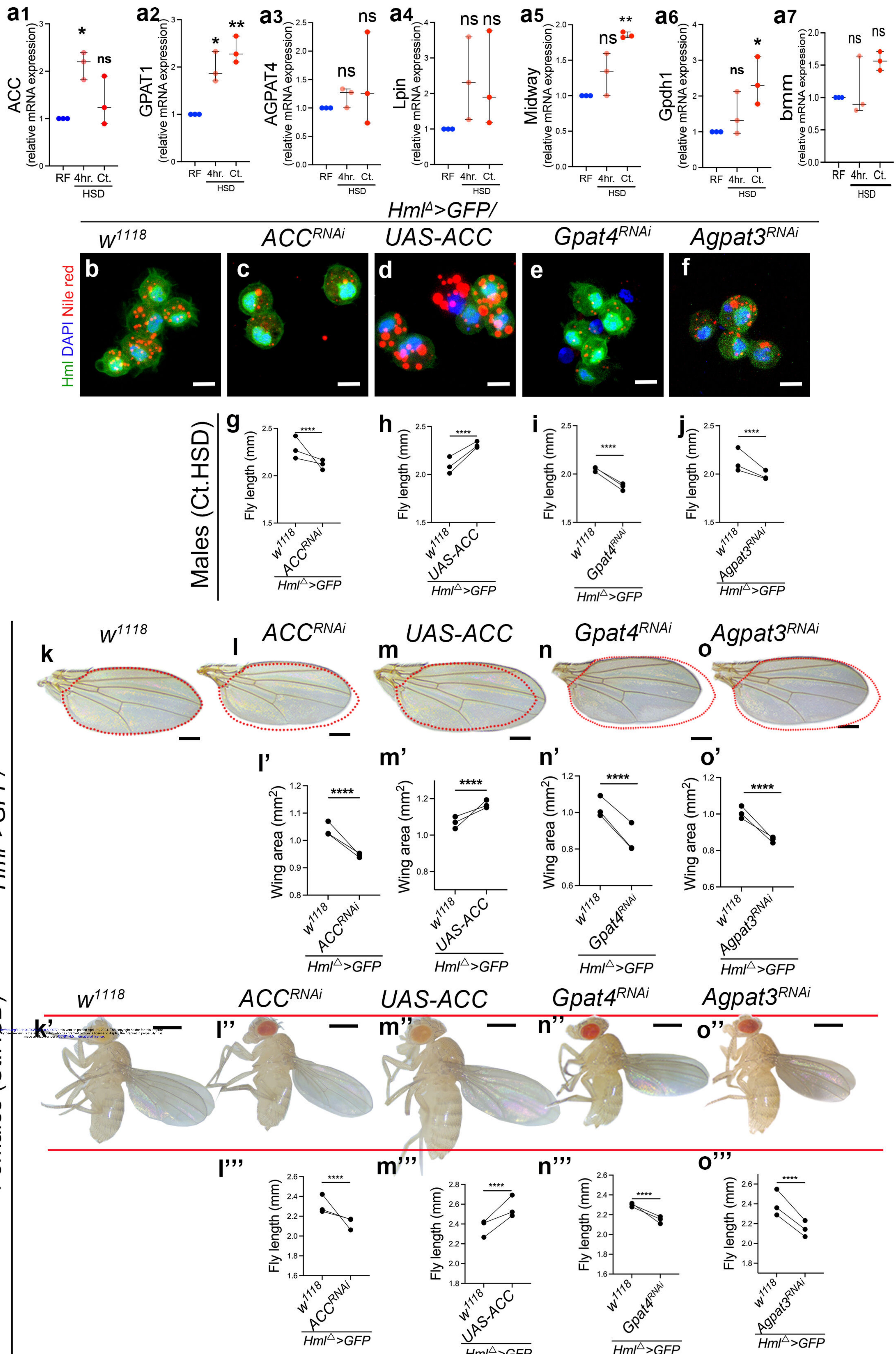
Steady-state metabolite analysis of immune cells from animals raised on RF and Ct.HSD

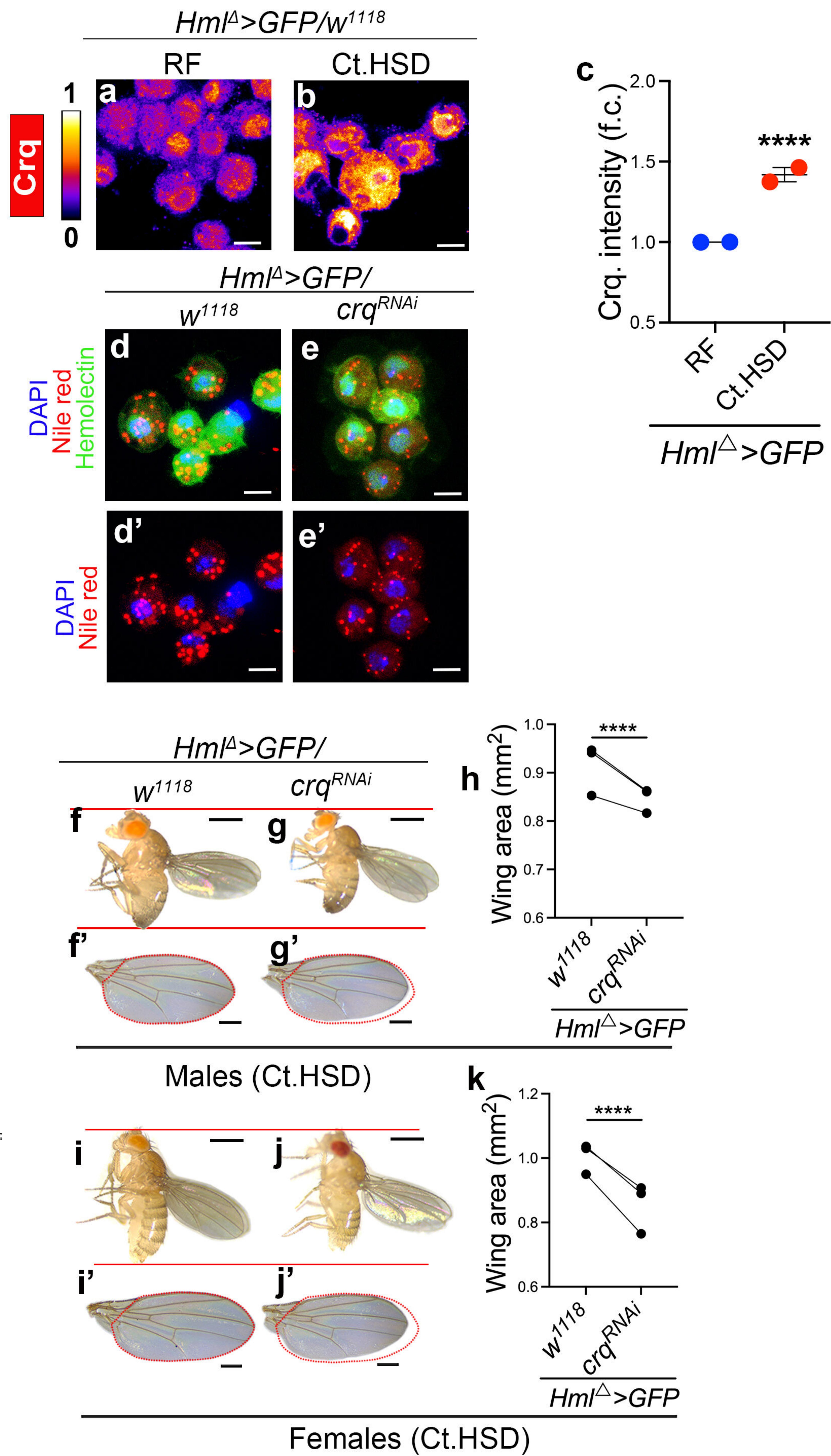

b

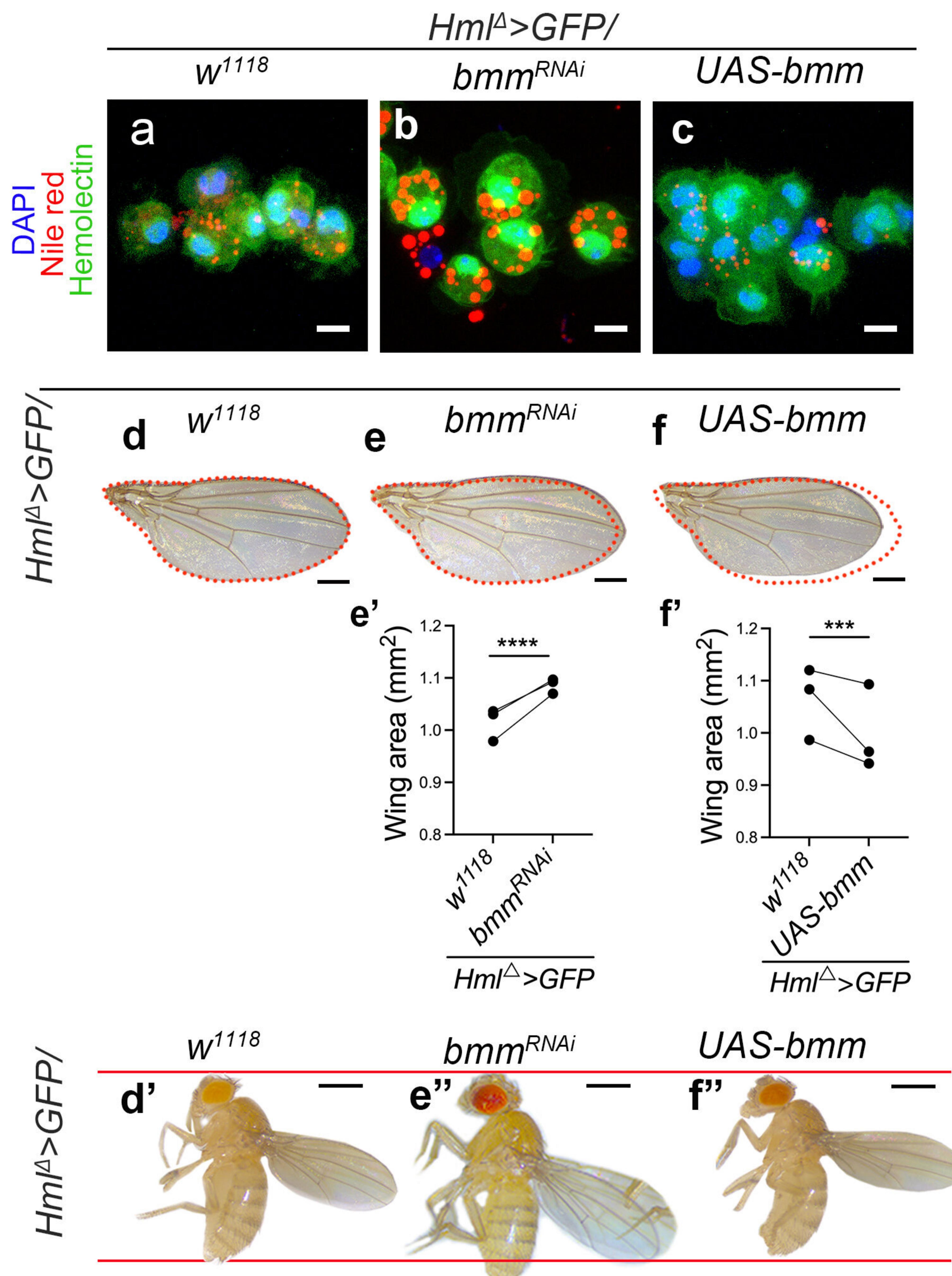
Metabolite flux analysis of immune cells from animals raised on RF and Ct.HSD

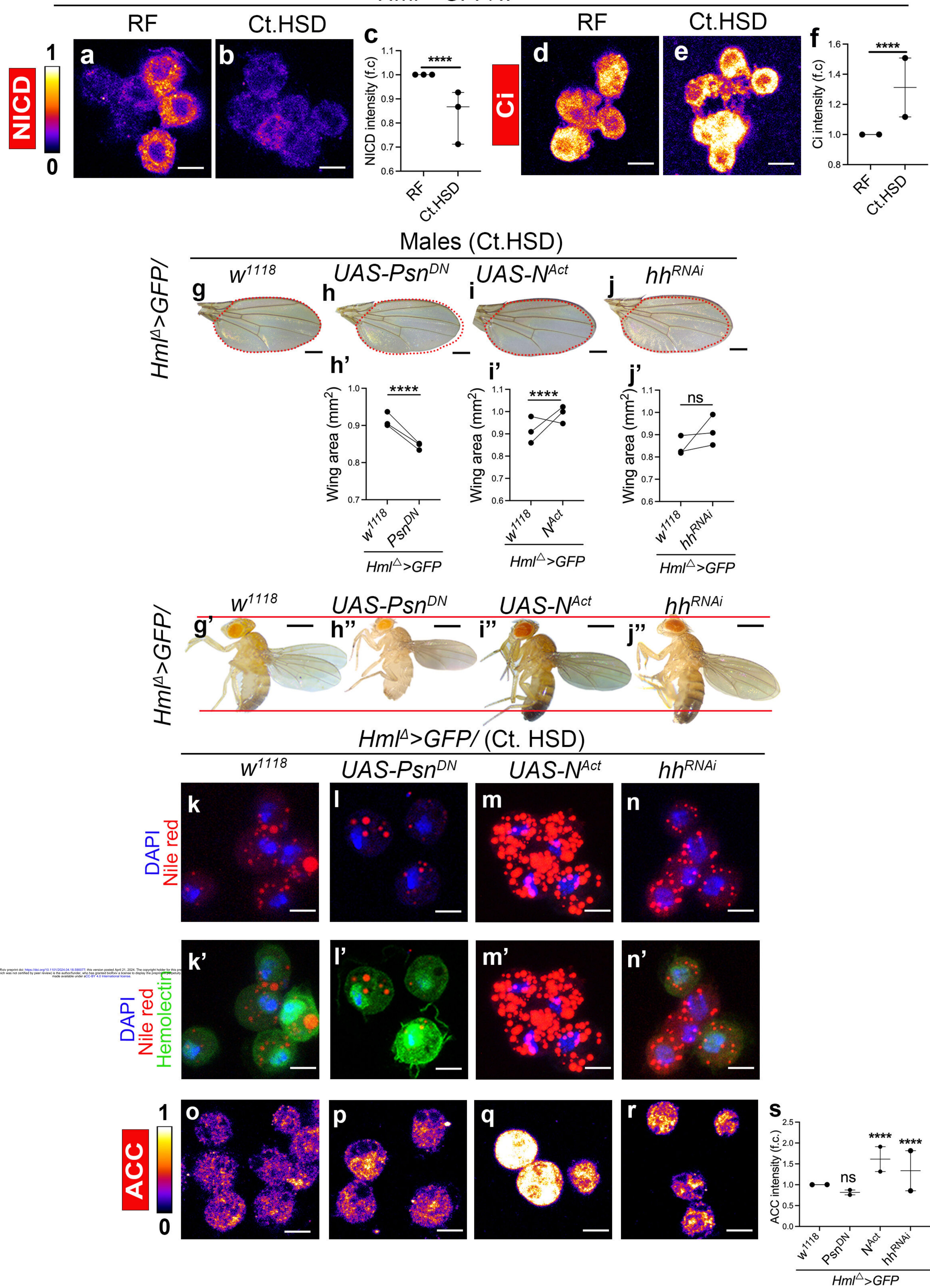
Supplementary figure 6


Males (Ct.HSD)

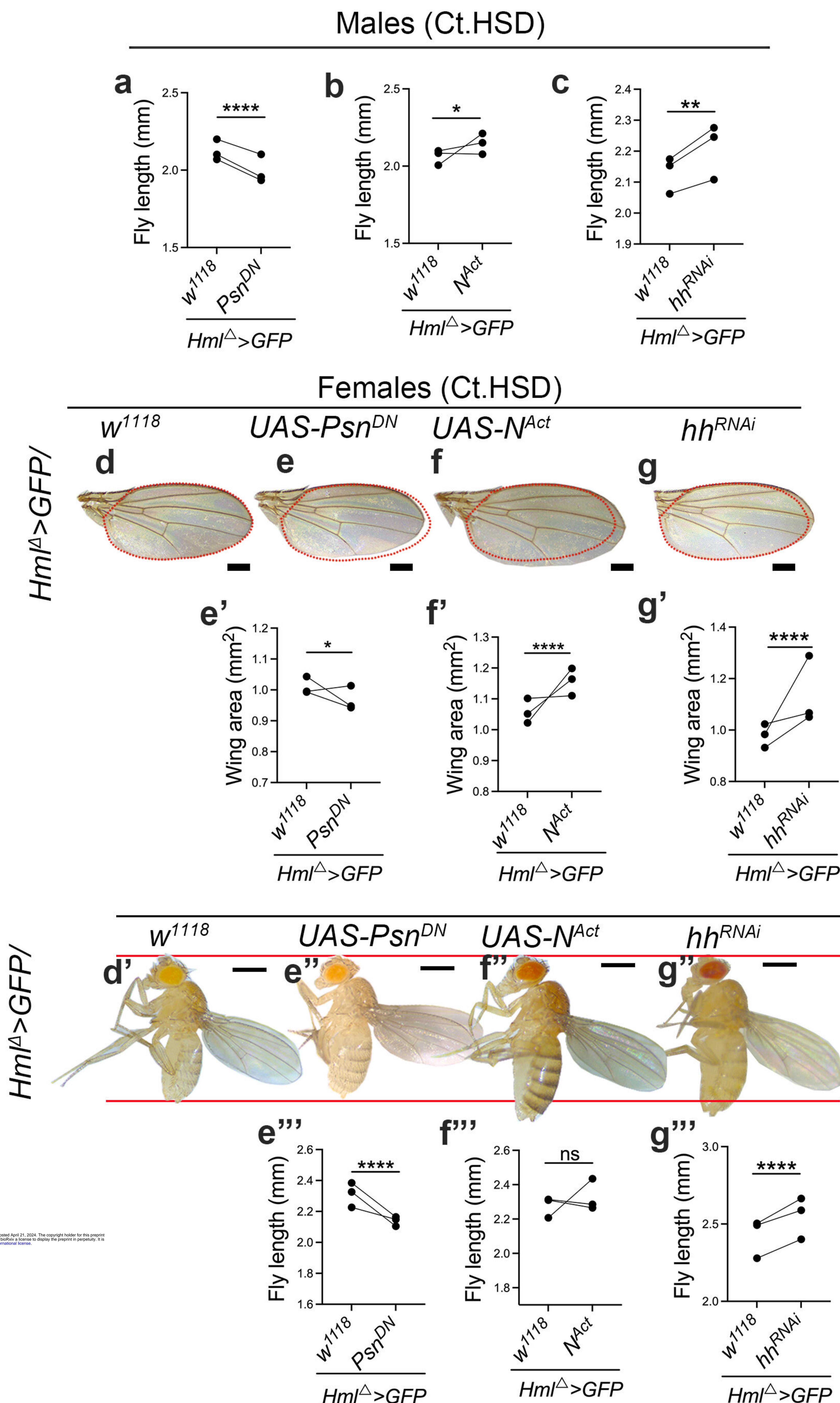

Females (Ct.HSD)


Supplementary figure 7

Supplementary figure 8



Supplementary figure 9



Supplementary figure 10

Hml^Δ>GFP/w¹¹¹⁸

Supplementary figure 11

