

1 **ACE2-independent sarbecovirus cell entry is supported by TMPRSS2-related**
2 **enzymes and reduces sensitivity to antibody-mediated neutralization**

3

4 **Lu Zhang^{1,2}, Hsiu-Hsin Cheng^{1,2}, Nadine Krüger³, Bojan Hörnich⁴, Luise Graichen^{1,2},**
5 **Alexander S. Hahn⁴, Sebastian R. Schulz⁵, Hans-Martin Jäck⁵, Metodi V. Stankov⁶, Georg**
6 **M.N. Behrens^{6,7}, Marcel A. Müller⁸, Christian Drosten⁸, Onnen Mörer⁹, Martin Sebastian**
7 **Winkler⁹, ZhaoHui Qian¹⁰, Stefan Pöhlmann^{1,2,*}, Markus Hoffmann^{1,2,*}**

8

9 ¹Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany. ²Faculty of
10 Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
11 ³Platform Infection Models, German Primate Center, 37077 Göttingen, Germany. ⁴Junior
12 Research Group Herpesviruses, German Primate Center, 37077 Göttingen, Germany. ⁵Division
13 of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University
14 of Erlangen-Nürnberg, 91054 Erlangen, Germany. ⁶Department of Rheumatology and
15 Immunology, Hannover Medical School, 30625 Hannover, Germany. ⁷German Centre for
16 Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany. ⁸Institute
17 of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of
18 Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
19 ⁹Department of Anesthesiology, University of Göttingen Medical Center, Göttingen, Georg-
20 August University of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany. ¹⁰NHC
21 Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese
22 Academy of Medical Sciences and Peking Union Medical College, Beijing, China

23

24 *spoehlmann@dpz.eu (S.P.), mhoffmann@dpz.eu (M.H.)

25

26

27

28 **Abstract**

29 The COVID-19 pandemic, caused by SARS-CoV-2, demonstrated that zoonotic transmission of
30 animal sarbecoviruses threatens human health but the determinants of transmission are
31 incompletely understood. Here, we show that most spike (S) proteins of horseshoe bat and
32 Malayan pangolin sarbecoviruses employ ACE2 for entry, with human and raccoon dog ACE2
33 exhibiting broad receptor activity. The insertion of a multibasic cleavage site into the S proteins
34 increased entry into human lung cells driven by most S proteins tested, suggesting that
35 acquisition of a multibasic cleavage site might increase infectivity of diverse animal
36 sarbecoviruses for the human respiratory tract. In contrast, two bat sarbecovirus S proteins drove
37 cell entry in an ACE2-independent, trypsin-dependent fashion and several ACE2-dependent S
38 proteins could switch to the ACE2-independent entry pathway when exposed to trypsin. Several
39 TMPRSS2-related cellular proteases but not the insertion of a multibasic cleavage site into the S
40 protein allowed for ACE2-independent entry in the absence of trypsin and may support viral
41 spread in the respiratory tract. Finally, the pan-sarbecovirus antibody S2H97 enhanced cell entry
42 driven by two S proteins and this effect was reversed by trypsin. Similarly, plasma from
43 quadruple vaccinated individuals neutralized entry driven by all S proteins studied, and use of the
44 ACE2-independent, trypsin-dependent pathway reduced neutralization sensitivity. In sum, our
45 study reports a pathway for entry into human cells that is ACE2-independent, supported by
46 TMPRSS2-related proteases and associated with antibody evasion.

47

48

49

50

51

52 **Introduction**

53 The zoonotic transmission of animal coronaviruses of the genus *Betacoronavirus* to humans can
54 present a major health threat. Thus, the transmission of SARS-CoV-1 from bats to humans via
55 raccoon dogs and other intermediate hosts in 2002 resulted in the SARS epidemic that claimed
56 roughly 800 lives ¹⁻³. In 2012, a new, severe respiratory disease, Middle East respiratory
57 syndrome (MERS), emerged in Saudi Arabia and was found to be caused by a novel coronavirus,
58 MERS-CoV, which is transmitted from dromedary camels to humans and causes fatal diseases in
59 roughly 30% of the afflicted patients ^{4,5}. Finally, the emergence of SARS-CoV-2 in the human
60 population in the winter season of 2019 in Hubei province, China, resulted in the COVID-19
61 pandemic that has claimed 18 million lives in the first two years alone ⁶⁻⁸. Although emergence of
62 SARS-CoV-2 from a research laboratory has been suggested, a constantly increasing amount of
63 evidence indicates that the virus was transmitted from animals to humans, likely at the Huanan
64 Seafood market, in Wuhan, China ⁹⁻¹¹. Thus, several betacoronaviruses from animals have
65 zoonotic and pandemic potential and identifying which determinants control their ability to infect
66 human cells will be instrumental for risk assessment and for devising antiviral strategies.

67 Trimers of the coronavirus spike protein (S) are incorporated into the viral envelope and
68 facilitate viral entry into target cells. For this, the surface unit, S1, of S protein monomers binds
69 to cellular receptors, ACE2, in case of SARS-CoV-1 and SARS-CoV-2 ^{8,12,13}, while the S2
70 subunit facilitates fusion of the viral and a target cell membrane, allowing delivery of the viral
71 genetic information into the host cell cytoplasm, the site of coronavirus replication. Cleavage of
72 the S protein by host cell proteases at the S1/S2 site (located at the S1/S2 interface) and the S2'
73 site (located within the S2 subunit) is essential for membrane fusion and can be facilitated by the
74 lysosomal cysteine protease cathepsin L or the cell surface serine protease TMPRSS2 ^{12,14} with
75 the latter being essential for lung cell infection and pathogenesis ¹⁴⁻¹⁷. Finally, protease and

76 receptor usage are major determinants of coronavirus cell and species tropism and are thus in the
77 focus of many current research efforts¹⁸.

78 The subgenus *Sarbecovirus* within the genus *Betacoronavirus* contains a single species,
79 severe acute respiratory syndrome-related coronavirus. This species comprises SARS-CoV-2 and
80 more than 100 related viruses that have been identified in bats and pangolins. A subset of these
81 viruses can use angiotensin-converting enzyme 2 (ACE2) for entry into human and animal cells
82¹⁹⁻²⁹. However, it is not fully clear whether certain animal species can be identified as potential
83 reservoirs or intermediate hosts for animal sarbecoviruses based on exceptionally broad receptor
84 activity of their ACE2 orthologues. Recent studies provided evidence that the exposure of certain
85 sarbecovirus S proteins to trypsin can facilitate ACE2-independent viral entry into human cells, a
86 process that is determined by the receptor binding domain (RBD), and that equipping these S
87 proteins with a multibasic cleavage site, a major virulence determinant of SARS-CoV-2^{16,30}, is
88 insufficient for trypsin-independent entry^{21,31-33}. However, these analyses were confined to small
89 numbers of S proteins and it has not been resolved whether cellular proteases other than trypsin
90 can cleave and activate trypsin-dependent sarbecovirus S proteins for host cell entry. Finally, it is
91 incompletely understood whether antibodies elicited by multiple COVID-19 vaccinations
92 neutralize a broad spectrum of animal sarbecoviruses and it is unknown how usage of the ACE2-
93 independent pathway impacts susceptibility to antibody-mediated neutralization.

94 Here, examining a panel of bat and pangolin sarbecovirus S proteins, we found that
95 multiple S proteins utilized human ACE2 for entry and that, among animal ACE2 orthologues,
96 raccoon dog ACE2 exhibited the broadest receptor activity. We confirm that certain S proteins
97 mediate ACE2-independent, trypsin-dependent entry and that this process is controlled by the
98 RBD. Furthermore, we found that expression of certain type II transmembrane serine proteases
99 (TTSPs) in particle-producing cells, analogous to trypsin treatment, allowed for ACE2-

100 independent entry into human cells. In addition, we discovered that antibodies from quadruple
101 vaccinated individuals neutralized entry driven by all S proteins studied, suggesting that COVID-
102 19 vaccines might also offer some protection against diverse animal sarbecoviruses. Finally, we
103 obtained evidence that ACE2-independent, trypsin-dependent entry can modulate neutralization
104 by the pan sarbecovirus antibody S2H97 and allows for partial antibody evasion in the context of
105 plasma from COVID-19 vaccinees.

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124 **Results**

125

126 **The RBMs of clade 2 and 4 sarbecovirus S proteins display major structural differences**
127 **compared to clade 1 and 3 RBMs due to sequence variations in two surface exposed loops**

128 The alignment of the amino acid sequence of 184 sarbecovirus S proteins revealed clustering into
129 5 clades and 14 S proteins, representing all clades, were selected for detailed analyses (Figure 1A
130 and Supplemental figure 1). Structural studies had previously determined that the SARS-CoV-1 S
131 (SARS-1-S) and SARS-CoV-2 S (SARS-2-S) receptor binding motifs (RBM), which are located
132 within the RBD and make direct contact with ACE2, exhibit a similar structure³⁴. The predicted
133 structures of the RBMs of bat sarbecovirus clade 1 S proteins were similar among each other and
134 comparable to that of the RBM of SARS-1-S, the prototypic clade 1 S protein (Figure 1B and
135 Supplemental figure 2). Similar findings were made for the structures of clade 3 RBMs, including
136 the RBM of the SARS-2-S (Figure 1B). In contrast, loop 1 in the RBM was largely absent from
137 clade 2 and clade 4 S proteins (Figure 1B-C and Supplemental figure 2) and some clade 4 S
138 proteins contained a shortened loop 2 (Figure 1B-C and Supplemental figure 2). Thus, the RBMs
139 of the S proteins selected for analysis likely exhibit similar structures but two surface exposed
140 loops are partially or largely absent from clade 2 and 4 S proteins, due to clade-specific sequence
141 variations in the S gene, which may impact receptor interactions.

142

143 **Raccoon dog ACE2 exhibits broad receptor activity for clade 1 and 3 animal sarbecoviruses**

144 For a detailed analysis of determinants governing entry of animal sarbecoviruses into
145 human cells we selected a total of 14 S proteins that represent sarbecovirus clades 1 to 4,
146 including SARS-1-S (clade 1, human), WIV1 (clade 1, bat), LYRa11 (clade 1, bat), RsSHC014-S
147 (clade 1, bat), Rs4231 (clade 1, bat), Rs4874 (clade 1, bat), Rs7327 (clade 1, bat), Rs4081-S

148 (clade 2, bat), Rs4237 (clade, bat), SARS-2-S (clade 3, human), RaTG13-S (clade 3, bat), P5L-S
149 (clade 3, Malayan pangolin), cDNA8-S (clade 3, Malayan pangolin), and BM48-31-S (clade 4,
150 bat).

151 We first asked whether the sarbecovirus S proteins under study can employ human ACE2
152 and ACE2 orthologues from animal species potentially relevant to zoonotic transmission for cell
153 entry. For this, we studied receptor activity of human, pig, mink, pangolin and bat ACE2, using
154 pseudotyped particles and transfected BHK-21 hamster cells. BHK-21 cells were chosen as
155 targets since they do not support ACE2-dependent entry due lack of ACE2 expression ²⁴. All
156 ACE2 orthologues analyzed were robustly expressed in transfected cells, as determined by
157 immunoblot (data not shown). The analysis of binding of soluble human ACE2 to S protein
158 expressing cells revealed robust ACE2 binding to cells expressing SARS-2-S, SARS-1-S, WIV1,
159 LYRa11 S protein while for several other S proteins, including RaTG13 S protein, moderate to
160 low ACE2 binding was observed (Figure 2A and Supplemental figure 3). Finally, cells
161 expressing Rs4081, Rs4237 and BM48-31 S proteins failed to bind to soluble ACE2 (Figure 2A).

162 Next, we determined whether the S proteins could employ ACE2 of human and animal
163 origin for host cell entry. The S proteins that bound to human ACE2 were able to use human
164 ACE2 and animal ACE2 orthologues for entry into transfected BHK-21 cells but differences in
165 breadth of receptor activity were noted (Figure 2B and supplemental figure 4). Thus, all S
166 proteins studied efficiently employed human ACE2 for entry with the exception of the
167 aforementioned S proteins of BM48-31, Rs4081 and Rs4237, which had also failed to bind to
168 ACE2 (Figure 2B). Further, ACE2 usage by cDNA8 S protein was generally inefficient and
169 ACE2 of the Lander's horseshoe bat, (*Rhinolophus landeri*), did not appreciably support entry
170 driven by the S proteins of LYRa11, RsSHC014 and Rs7327 although these S proteins could use
171 other ACE2 orthologues for robust entry (Figure 2B). Finally, a systematic comparison of all

172 ACE2 orthologues revealed that ACE2 from the raccoon dog supported entry driven by all tested
173 clade 1 and 3 sarbecovirus S proteins with at least the same or, for several S proteins, even higher
174 efficiency than human ACE2 (Figure 2B), in keeping with a potential role of raccoon dogs as
175 intermediate host or reservoir for several animal sarbecoviruses.

176 We next asked whether the S proteins analyzed were able to mediate entry into diverse
177 human and animal cell lines. For this, we used 293T cells (human, kidney), 293T cells engineered
178 to overexpress human ACE2, Vero cells (African green monkey, kidney), Vero cells engineered
179 to overexpress TMPRSS2 or TMPRSS2 jointly with ACE2, A549 cells (human, lung) engineered
180 to overexpress human ACE2 and TMPRSS2, Calu-3 (human, lung), Calu-3 cells engineered to
181 overexpress human ACE2, Caco-2 cells (human, colon) and Huh-7 cells (liver, human) as targets.

182 All cell lines expressed endogenous or exogenous ACE2 and thus allowed for SARS-
183 CoV-2 S protein-driven entry (Figure 3A). Most animal sarbecovirus S proteins mediated entry
184 into cell lines expressing endogenous ACE2 (Figure 3A) and entry was markedly increased upon
185 directed expression of ACE2 in 293T and Calu-3 cells (Figure 3A). In contrast, directed
186 expression of TMPRSS2 in Vero cells had only moderate effects on viral entry. Thus, most S
187 proteins tested were able to bind to human ACE2, although with different efficiencies, and were
188 able to mediate entry into cell lines expressing human ACE2 or animal ACE2 orthologues. In
189 contrast, three S proteins, BM48-31, Rs4237 and Rs4081, failed to mediate entry into any of the
190 cell lines tested, irrespective of ACE2 expression (Figure 3A) and were thus in the focus of our
191 further analyses.

192
193 **The S proteins of clade 2 bat sarbecoviruses Rs4237 and Rs4081 mediate trypsin-dependent**
194 **entry into human cells**

195 We next asked whether lack of proteolytic activation of the BM48-31, Rs4237 and
196 Rs4081 S proteins was responsible for lack of cell entry. To address this possibility, we
197 preincubated S protein-bearing particles with trypsin before addition to target cells. Trypsin
198 treatment modulated S protein-driven entry in a cell line- and S protein-dependent manner. For
199 one group of S proteins, including the S proteins of Rs7327, Rs4231, RsSHC014, trypsin
200 treatment either increased entry efficiency or had no impact (Figure 3A). For instance, entry of
201 Rs4231 S protein into Calu-3 and Caco-2 cells was markedly increased by trypsin pre-treatment
202 although this effect was not observed with 293T cells. For a second group of S proteins,
203 including those of SARS-CoV-1, WIV1 and cDNA8, trypsin treatment reduced entry efficiency
204 or did not change entry efficiency (Figure 3A). Interestingly, among the S proteins that were
205 unable to mediate cell entry in the absence of trypsin, trypsin pre-treatment allowed for Rs4081 S
206 protein-driven entry into all cell lines studied (Figure 3A) with bat-derived MyDauLu/47 cells
207 being the only exception (Supplemental figure 5). Similarly, trypsin pre-treatment allowed for
208 Rs4237 S protein-driven entry into most cell lines studied, except for 293T, Calu-3 cell lines
209 (Figure 3A) and most bat-derived cell lines studied (Supplemental figure 5). In contrast, BM48-
210 31 S protein failed to mediate entry into any of the cell lines tested even upon pre-treatment with
211 trypsin (Figure 3A and Supplemental figure 5). In sum, availability of an appropriate protease can
212 limit sarbecovirus entry into human cells and this limitation can be overcome by trypsin
213 treatment, in keeping with published data^{21,31,35,36}.

214 We next investigated whether trypsin promoted viral entry by acting on viral particles or
215 on target cells. For this, cells, particles or particles and cells were preincubated with trypsin
216 followed by addition of a trypsin inhibitor and mixing of particles and cells. Treatment of target
217 cells with trypsin had no effect on entry driven by VSV-G or any of the sarbecovirus S proteins
218 studied (Figure 3B). In contrast, pretreatment of particles with trypsin allowed for entry driven by

219 the Rs4081 and Rs4237 S proteins and augmented entry driven by Rs4874 and Rs7327 but not
220 SARS-CoV-1 and SARS-CoV-2 S proteins (Figure 3B). Finally, augmentation of viral entry by
221 trypsin treatment of particles was not further increased when both particles and target cells were
222 preincubated with trypsin (Figure 3B), indicating that trypsin acts on viral particles rather than
223 target cells to promote entry driven by a subgroup of sarbecovirus S proteins.

224

225 **Trypsin-dependent cell entry driven by the S proteins of Rs4237 and Rs4081 is ACE2-
226 independent**

227 The finding that trypsin-promoted entry driven by the Rs4081 and Rs4237 S proteins did
228 not correlate with ACE2 expression suggested that these S proteins might mediate entry in an
229 ACE2-independent manner. In order to investigate this possibility, we pre-treated particles with
230 trypsin and/or target cells with anti-ACE2 antibody before infection. The anti-ACE2 antibody
231 blocked entry driven by most S proteins studied, and for several S proteins, including SARS-
232 CoV-2 S protein, trypsin treatment did not alter the efficiency of entry inhibition by the ACE2
233 antibody (Figure 3C). However, for other S proteins that facilitated ACE2-dependent entry,
234 including LYRa11, RsSHC014, Rs4231, Rs4874 and Rs7327, trypsin treatment reduced the
235 inhibitory effect of the anti-ACE2 antibody (Figure 3C). Finally, treatment of cells with anti-
236 ACE2 antibody did not block trypsin-dependent cell entry driven by Rs4081 and Rs4237 S
237 proteins (Figure 3C). Collectively, these results demonstrate that Rs4081 and Rs4237 S protein
238 engage a receptor other than ACE2 for host cell entry and that trypsin treatment can confer partial
239 ACE2-independence to entry driven by other S proteins, including LYRa11, RsSHC014, Rs4231,
240 Rs4874 and Rs7327.

241

242 **Trypsin cleaves sarbecovirus S proteins**

243 We next investigated whether trypsin treatment resulted in S protein cleavage and how
244 much trypsin was needed for S protein cleavage and S protein-driven entry. For analysis of
245 cleavage, S protein bearing VSV particles were incubated with 0.5, 5 and 50 µg/ml of trypsin and
246 then analyzed by immunoblot. All S proteins were largely uncleaved in the absence of trypsin, as
247 documented by prominent signals for the uncleaved S0 protein, with exception of SARS-2-S,
248 which was efficiently cleaved in the absence of trypsin due to the presence of a unique furin
249 cleavage site (Figure 4A). The addition of trypsin led to the cleavage of all S proteins studied, as
250 indicated by a reduction in signals for the S0 protein and an increase in signals corresponding to
251 the S2 subunit (Figure 4A). For some of the S proteins additional signals were observed in the
252 presence of 50 µg/ml trypsin, which likely corresponded to the S2' fragment (produced upon
253 cleavage of the S protein at the S2' site) and cleavage products thereof (Figure 4A). Thus, all S
254 proteins studied were cleaved by trypsin, although with different efficiencies, resulting in a
255 concentration-dependent disappearance of S0 and appearance of the S2' fragment and S2' sub-
256 fragments.

257 We next analyzed concentration-dependence of trypsin-dependent S protein-driven cell
258 entry by pre-incubation of pseudotyped particles with increasing amounts of trypsin. For this, we
259 chose 200 µg/ml trypsin as maximal concentration, considering that concentrations of roughly
260 150 µg/ml are present in the human intestine³⁷. S proteins that did not exhibit augmented cell
261 entry activity upon exposure to 50 µg/ml trypsin (Figure 3A), including SARS-1-S and SARS-2-
262 S, were also not appreciably stimulated for augmented cell entry when a higher concentration of
263 trypsin was used (Figure 4B). In contrast, S proteins that mediated increased entry upon exposure
264 to 50 µg/ml trypsin, including RsSHC014 and RS7327 S proteins, were slightly more active in
265 the presence of 200 µg/ml and this group included the S proteins of Rs4081 and Rs4237, which
266 allowed for cell entry only upon trypsin-treatment (Figure 4B). Importantly, trypsin-treatment did

267 not increase the ability of the S proteins to bind to ACE2 (Supplemental figure 6). Collectively,
268 we found that 50 and 200 µg/ml trypsin robustly increased or allowed for cell entry activity of
269 several animal sarbecovirus S proteins and these protease concentrations are likely attained in the
270 intestine, which is believed to be a major target for sarbecovirus infection in bats³⁸⁻⁴⁰. On a more
271 general level, our findings suggest that lack of proteolytic activation of the viral S protein might
272 impede host cell entry of Rs4237 and Rs4081.

273

274 **Thermolysin and elastase cleave Rs4081 S protein at the S1/S2 site and confer infectivity to**
275 **Rs4081 S protein-bearing particles**

276 We next investigated whether secreted proteases other than trypsin can promote entry
277 driven by the Rs4081 S protein. For this, we first analyzed the effect of thermolysin, papain and
278 elastase on cell entry. Thermolysin is a bacterial protease, while papain is a protease produced in
279 plants, and thermolysin has been used previously to characterize coronavirus S proteins⁴¹.
280 Elastase promotes inflammation and plays a role in several lung pathologies, likely including
281 COVID-19^{42,43}. Immunoblot analyses revealed that trypsin, thermolysin and elastase cleaved
282 both SARS-1-S and Rs4081-S at the S1/S2 site, resulting in production of the S2 fragment
283 (Figure 5A). In contrast, papain digest of SARS-1-S and Rs4081-S resulted in several S2-derived
284 fragments, suggesting multiple papain cleavage sites in the S2 subunit (Figure 5A).

285 Analyses of S protein pseudotyped particles revealed that none of the proteases tested
286 augmented entry driven by SARS-1-S protein and trypsin and thermolysin treatment even
287 reduced particle infectivity (Figure 5B). In contrast, trypsin, thermolysin and elastase allowed for
288 cell entry driven by the Rs4081 S protein in a concentration-dependent manner while papain had
289 no effect (Figure 5B). In sum, Rs4081 S protein can employ elastase, which is expressed in the
290 lung by neutrophils and alveolar macrophages, instead of trypsin for entry into human cells.

291

292 **TMPRSS11A, TMPRSS11D and TMPRSS11E cleave coexpressed Rs4081 S protein at the**
293 **S1/S2 site and confer infectivity to Rs4081 S protein bearing particles**

294 TMPRSS2 and other TTSPs are expressed in the lung and/or gastrointestinal tract and
295 cleave and activate diverse coronavirus S proteins ^{12,44,45}. Therefore, we examined whether
296 directed expression of TMPRSS2, TMPRSS11A, TMPRSS11D, TMPRSS11E or TMPRSS13
297 results in S protein cleavage and promotes entry driven by the Rs4081 S protein. In addition, we
298 analyzed the effect of the expression of furin, which cleaves SARS-2-S at the S1/S2 site in the
299 constitutive secretory pathway of infected cells ¹⁴.

300 All proteases examined were efficiently expressed in transfected 293T cells (Figure 5C)
301 and their expression in target cells rescued SARS-1-S but not VSV-G-driven entry from
302 inhibition by ammonium chloride, as expected (Figure 5D). In contrast, protease expression in
303 target cells did not allow for Rs4081 S protein-driven entry (Figure 5D). Therefore, we analyzed
304 whether protease expression in particle-producing cells modulates S protein cleavage and particle
305 infectivity. Expression of TMPRSS11A, TMPRSS11E and furin as well as trypsin-treatment in
306 cells producing SARS-1-S bearing particles had little impact on generation of the S2 fragment
307 (which results from cleavage at the S1/S2 site) (Figure 5E, left panel). Further, TMPRSS11D
308 expression increased production of the S2 fragment and the S2' fragment (which results from
309 cleavage at the S2' site) while TMPRSS2 and TMPRSS13 expression and trypsin treatment
310 augmented production of the S2' fragment and decreased production of the S2 fragment (Figure
311 5E). Finally, similar findings were made for the Rs4081 S protein, although exposure to 5 and
312 particularly 50 µg/ml trypsin resulted in processing of the S2' fragment into smaller fragments
313 (Figure 5E).

314 Expression of TTSPs or furin in particle producing cells or trypsin treatment of particles
315 did not augment cell entry driven by SARS-1-S (Figure 5F). In contrast, expression of
316 TMPRSS11A in particle producing cells increased particle infectivity with similar efficiency as
317 trypsin treatment of particles (Figure 5F). Expression of TMPRSS11D and TMPRSS11E also
318 augmented particle infectivity but with reduced efficiency as compared to TMPRSS11A while
319 expression of TMPRSS2, TMPRSS13 and furin had no effect (Figure 5F). Thus, Rs4081 S
320 protein is cleaved by TMPRSS11A, TMPRSS11D and TMPRSS11E at the S1/S2 site upon
321 protease coexpression and cleavage confers infectivity to Rs4081 S protein-bearing particles.

322

323 **Insertion of a multibasic cleavage site increases lung cell infection in a spike-specific fashion**

324 The SARS-CoV-2 S protein but none of the other S proteins studied harbors a multibasic
325 cleavage site at the S1/S2 loop (Figure 6A). The S protein is cleaved at this site by furin and
326 cleavage is essential for robust lung cell entry¹⁴. Therefore, we tested whether insertion of the
327 multibasic cleavage site of SARS-2-S in the other S proteins analyzed here increased lung cell
328 entry. The presence of a multibasic cleavage site was compatible with robust expression and
329 particle incorporation of S proteins (Figure 6B) and resulted in efficient proteolytic processing of
330 all S proteins studied (Figure 6B). Notably, the presence of a multibasic cleavage site invariably
331 reduced entry into 293T-ACE2 cells (Figure 6C), which depends on the activity of the S protein
332 activating endo/lysosomal protease cathepsin L. In contrast, the multibasic cleavage site either
333 had no effect or, for the majority of S proteins tested, augmented entry into Calu-3-ACE2 lung
334 cells, with enhancement of entry driven by the S proteins of SARS-CoV-2, RaTG13 and LYRa11
335 being particularly prominent (Figure 6C). Finally, the presence of a multibasic cleavage site was
336 not sufficient to allow for trypsin-independent 293T-ACE2 or Calu-3-ACE2 cell entry driven by
337 Rs4237 and Rs4081 S proteins (Figure 6C). Thus, a multibasic cleavage site may promote lung

338 cell entry of diverse animal sarbecoviruses but fails to allow for cell entry driven by the S
339 proteins of Rs4237 and Rs4081.

340

341 **The receptor binding domain is a determinant of trypsin-dependent entry of Rs4081**

342 Our studies had so far revealed that Rs4081 and Rs4237 S proteins facilitated entry into human
343 cells only upon pre-cleavage by trypsin or certain other soluble or membrane bound proteases.
344 However, which determinants in the S protein controlled trypsin-dependent entry was unclear. To
345 address this question, we constructed chimeras between SARS-1-S, which facilitates entry in a
346 trypsin-independent fashion, and the Rs4081 S protein, which facilitates entry in a trypsin-
347 dependent fashion. Specifically, we exchanged the S1 subunit between these S proteins or the N-
348 terminal domain (NTD), receptor binding domain (RBD), the domain harboring the S1/S2 and
349 S2' cleavage sites (priming domain, PD), or NTD jointly with RBD (Figure 7A-B). All chimeric
350 S proteins were efficiently and comparably incorporated into VSV particles (Figure 7C).

351 Introduction of the NTD or PD from of Rs4081-S into SARS-1-S was compatible with robust
352 entry into Vero and Caco-2 cells although entry driven by the S protein with PD from the Rs4081
353 S protein was reduced as compared to WT S protein, and trypsin did not increase entry efficiency
354 (Figure 7D). In contrast, SARS-1-S chimeras harboring the S1 subunit, RBD or NTD+RBD of
355 the Rs4081 S protein mediated entry only upon trypsin treatment. Trypsin-dependent entry
356 mediated by SARS-1-S with the S1 subunit of Rs4081 spike was robust, although not as efficient
357 as entry driven by WT SARS-1-S in the absence of trypsin, while trypsin-dependent entry driven
358 by the SARS-1-S chimera harboring the Rs4081 RBD or NTD+RBD was inefficient (Figure 7D).
359 Finally, the reverse observations were made for Rs4081 S protein harboring domains of SARS-1-
360 S. Entry remained trypsin-dependent when the NTD or PD of SARS-CoV-1 S protein were
361 introduced into Rs4081 S protein while introduction of the S1 subunit, RBD or NTD+RBD

362 allowed for trypsin-independent entry (Figure 7D). In sum, these results show that the RBD is a
363 major determinant of trypsin-dependent entry but also suggest the domains outside the RBD
364 might contribute to this phenotype.

365

366 **Trypsin treatment can modulate sarbecovirus neutralization by antibody S2H97**

367 The antibody S2H97 binds to a cryptic epitope within the RBD and recognizes the S proteins of
368 sarbecoviruses from all clades⁴⁶. The antibody neutralizes particles bearing the S proteins from
369 diverse sarbecoviruses in cell culture and efficiently suppresses SARS-CoV-2 amplification in
370 the lung of experimentally infected hamsters⁴⁶. Thus, S2H97 and related antibodies could be
371 useful for pandemic preparedness. We investigated whether S2H97 neutralizes particles bearing
372 the S proteins analyzed here and determined whether trypsin treatment modulates neutralization
373 sensitivity. We found that the highest concentration of S2H97 neutralized particles bearing 6 out
374 of the 13 S proteins tested by at least 70% while particles bearing 4 other S proteins were not
375 neutralized (Figure 8). In contrast, entry of particles harboring 2 out of these 4 S proteins was
376 augmented by S2H97 in the absence of trypsin (LYRa11, Rs7327) while moderate but
377 concentration-dependent neutralization was measured in the presence of trypsin (Figure 8).
378 Finally, trypsin treatment protected particles bearing the RsSHC014 S protein from neutralization
379 by S2H97. These results suggest that S2H97, and potentially related RBD antibodies, neutralize
380 several sarbecoviruses but augment cell entry of others, suggesting limited suitability for
381 pandemic preparedness. Furthermore, our findings indicate that trypsin treatment can alter
382 susceptibility of sarbecoviruses to antibody-mediated neutralization.

383

384 **Evidence that antibodies induced upon quadruple vaccination with COVID-19 vaccines**
385 **cross-neutralize multiple animal sarbecoviruses and that trypsin treatment promotes**
386 **antibody evasion**

387 The SARS and COVID-19 pandemics demonstrated the massive threat that animal
388 sarbecoviruses pose to human health. However, only few studies systematically analyzed whether
389 immune responses induced by current COVID-19 vaccines may protect against animal
390 sarbecoviruses. Therefore, we determined whether antibodies induced upon infection or
391 vaccination with COVID-19 mRNA vaccines inhibited entry driven by the S proteins analyzed
392 and whether trypsin modulated sensitivity to antibody-mediated neutralization.

393 Antibodies present in convalescent individuals that were infected by SARS-CoV-2 in the
394 first year of the pandemic efficiently neutralized particles bearing the S proteins of SARS-CoV-2
395 and the related clade 3 bat sarbecovirus RaTG13, as expected. Robust neutralization was also
396 observed for particles bearing the S proteins of cDNA8, LYRa11, RsSHC014 and Rs4231 while
397 neutralization of particles bearing other S proteins was inefficient (Figure 9A). Similar results
398 were obtained for antibodies induced upon double vaccination (Figure 9A). Finally, particles
399 bearing the S proteins of SARS-CoV-1, WIV1 and Rs4874 were not efficiently neutralized by
400 antibodies induced upon infection or double vaccination but were robustly neutralized by
401 antibodies induced by triple vaccination and, particularly, quadruple vaccination (Figure 9A). In
402 fact, particles bearing all S proteins analyzed were at least 50% neutralized by plasma from
403 quadruple donors, who received three doses of first-generation mRNA vaccines developed
404 against the SARS-CoV-2 B.1 lineage and a fourth dose of a bivalent Omicron BA.5-adapted
405 vaccine. These results suggest that repeated COVID-19 vaccination, including booster
406 vaccination with adapted vaccines, may offer at least partial cross-protection against diverse
407 animal sarbecoviruses.

408 Within the present study, we had found that trypsin promoted entry driven by some S
409 proteins (LYRa11, RsSHC014, Rs7327) and was even essential for entry driven by others
410 (Rs4081, Rs4237) and entry driven by these S proteins was partially (LYRa11, RsSHC014,
411 Rs7327) or fully ACE2-independent (Rs4081, Rs4237) (Figure 3). In contrast, entry driven by a
412 third group of S proteins, comprising SARS-CoV-2, P5L, cDNA8, SARS-CoV-1, WIV1,
413 Rs4231, Rs4874) was not augmented by trypsin (Figure 3) although trypsin rendered entry driven
414 by Rs4874 and Rs4231 S proteins partially ACE2-independent (Figure 3C). We now asked
415 whether differential dependence on trypsin and ACE2 for entry resulted in differential effects of
416 trypsin on antibody-mediated neutralization. Particles bearing S proteins that did not benefit from
417 trypsin for entry and that mediated exclusively ACE2-dependent entry were comparably
418 neutralized in the presence and absence of trypsin (SARS-CoV-2, P5L, cDNA8, Rs4231,
419 Rs4874) or even showed increased neutralization sensitivity in the presence of trypsin (WIV1,
420 SARS-CoV-1) (Figure 9B). In contrast, particles harboring S proteins that facilitated augmented
421 and partially ACE2-independent entry upon trypsin treatment showed reduced neutralization
422 sensitivity in the presence of trypsin (LYRa11, RsSHC014, Rs7327) (Figure 8B). Similarly,
423 particles bearing S proteins Rs4231 and Rs4874 that exhibited no trypsin-dependent
424 augmentation of entry but allowed for partially ACE2-independent entry in the presence of
425 trypsin also showed reduced neutralization upon trypsin treatment. Finally, particles bearing
426 Rs4081 or Rs4237 S proteins that depend on trypsin for entry were 50% neutralized (Figure 9B).
427 In sum, these results suggest that trypsin-dependent usage of an ACE2-independent entry
428 pathway may result in slightly reduced susceptibility to neutralization by antibodies induced upon
429 infection or vaccination.

430

431

432 **Discussion**

433 The spillover of coronaviruses from bats to humans is responsible for the severe
434 respiratory diseases SARS, MERS and likely COVID-19, which emerged within the last two
435 decades ^{13,47-49}. Further, two globally circulating endemic human coronaviruses, human
436 coronavirus (HCoV) NL63 and HCoV-229E, which cause the common cold, are believed to have
437 originated from bats and to have caused pandemics in the past ⁵⁰. Therefore, identifying
438 determinants that govern whether animal sarbecoviruses can jump species barriers is an important
439 task.

440 Our study shows that raccoon dog ACE2 exerts broad receptor activity for animal
441 sarbecoviruses and that ACE2-dependent entry into human lung cells is augmented by the
442 insertion of a multibasic cleavage site into the S protein. Further, we demonstrate that trypsin
443 treatment can confer infectivity of certain animal sarbecoviruses for human cells. Entry of these
444 viruses is ACE2-independent and trypsin-dependent and the latter phenotype is determined by the
445 RBD, confirming previous studies conducted with smaller numbers of spike proteins ^{21,31-33}.
446 Further, we found that TMPRSS2-related proteases, in particular TMPRSS11A and
447 TMPRSS11D, which are known to be expressed in respiratory epithelium, activate ACE2-
448 independent spike proteins for trypsin-independent entry and might thus promote viral invasion
449 of the respiratory tract. Finally, antibodies induced upon quadruple COVID-19 vaccination
450 robustly neutralized entry driven by all S proteins studied and might thus install appreciable
451 protection against zoonotic animal sarbecoviruses. However, usage of the ACE2-independent,
452 trypsin-dependent pathway significantly reduced neutralization sensitivity, which is noteworthy
453 considering that a subset of ACE2-dependent viruses could switch to the ACE2-independent
454 entry pathway in the presence of trypsin.

455 Our observation that several sarbecovirus S proteins can use ACE2 for entry into human
456 cells is in keeping with previous studies ^{19,20,23-27,51,52} and with the concept that ACE2-binding
457 RBDs evolved independently at least three times, resulting in the SARS-CoV-1 and SARS-CoV-
458 2 clades of Asian origin and the clade comprising SARS-like (SL)-CoVs of European and
459 African descent ⁵³. Moreover, a recent study shows that even a MERS-CoV-related bat virus uses
460 ACE2 for entry ⁵⁴ and genetic analysis revealed that the ACE2 gene is under positive selection in
461 bats and primates and might be shaped by pandemic coronaviruses ⁵⁵. Our finding that among
462 animal ACE2 orthologues raccoon dog ACE2 was most efficient at mediating cell entry driven
463 by diverse sarbecovirus S proteins is in keeping with similar findings made for SARS-CoV-1 ⁵⁶.
464 Moreover, this finding highlights that raccoon dogs, which served as intermediate host for SARS-
465 CoV-1 ⁵⁷, might be susceptible to infection by diverse animal sarbecoviruses, although it should
466 be stated that several post entry barriers to sarbecovirus infection have been described ⁵⁸. Indeed,
467 raccoon dogs were found to be susceptible to experimental SARS-CoV-2 infection and
468 transmission of SARS-CoV-2 from experimentally infected to uninfected animals has been
469 observed ⁵⁹. Further, other coronaviruses were recently detected in raccoon dogs that might
470 present a zoonotic threat ⁶⁰. Finally, raccoon dog DNA was associated with SARS-CoV-2 RNA
471 in cages at the Huanan Seafood Wholesale market (DOI 10.5281/zenodo.7754298), the proposed
472 early epicenter of the COVID-19 pandemic ¹¹, suggesting that raccoon dogs might have also
473 served as intermediate host for SARS-CoV-2 transmission from reservoir animals to humans.

474 Results obtained initially in the context of SARS-CoV-1 research revealed that certain
475 sarbecovirus S proteins fail to mediate entry into cells, indicating that they may be non-
476 functional. However, studies in the recent years changed this perception by demonstrating that
477 trypsin treatment can allow certain sarbecovirus S proteins to mediate entry into cell lines that are
478 otherwise refractory ^{21,31-33} and similar findings were reported for other coronavirus S proteins ³⁵.

479 The present study confirms and extends these findings. Thus, using Rs4081 S protein as model,
480 we show that trypsin acts on viral particles but not target cells to facilitate entry into otherwise
481 refractory cell lines and that trypsin cleaves diverse S proteins (including Rs4081-S), producing
482 the S2 and the S2' fragment, which is associated with membrane fusion. Furthermore, we
483 demonstrate that elastase, a secreted protease that plays a role in several lung diseases^{42,43}, can
484 cleave SARS-1-S and Rs4081 S protein and allow for trypsin-independent entry of Rs4081 S
485 protein-bearing particles, and that the same is true for the respiratory tract expressed TTSPs
486 TMPRSS11A, TMPRSS11D and TMPRSS11E upon expression in particle producing cells. In
487 contrast, expression of these proteases in target cells did not allow for entry. Similarly,
488 TMPRSS2, which is employed by SARS-2-S for lung cell entry^{12,61}, failed to functionally
489 replace trypsin in the context of Rs4081 S protein-driven entry, irrespective of its expression in
490 particle-producing or target cells, and the latter is in keeping with published data²¹. Collectively,
491 our results are in keeping with the concept that trypsin might promote bat sarbecovirus spread in
492 the perceived central target organ of the bat host, the gastrointestinal tract, but also indicates that
493 several membrane-associated or secreted proteases might allow for infection of the human
494 respiratory tract, potentially promoting zoonotic spillover.

495 Insertion of a furin cleavage site promoted Calu-3 lung cell entry of ACE2-dependent S
496 proteins, highlighting that optimization of the S1/S2 site may increase human lung cell infection
497 and thus the zoonotic potential of animal sarbecoviruses. However, insertion of a furin cleavage
498 site into the Rs4081 S protein was insufficient for trypsin-independent entry, highlighting that
499 acquisition of a multibasic cleavage site does not universally increase zoonotic potential of
500 animal sarbecoviruses. Instead, mutagenic analysis revealed that the RBD was the key
501 determinant of trypsin-dependent entry, in agreement with previous studies^{21,31}, and it will be
502 interesting to determine whether the RBD is cleaved and whether cleavage is required for trypsin-

503 dependent entry. In this context, it is noteworthy that a previous study indicated that trypsin-
504 treatment decreased rather than increased RBD binding to cells ²¹. Finally, the cellular receptor(s)
505 allowing for trypsin-dependent entry into cells remain(s) to be identified, with known coronavirus
506 receptors playing no role in this process ²¹. Our finding that particles bearing Rs4081 or Rs4237 S
507 protein, which facilitated cell entry only in the presence of trypsin, exhibited marked differences
508 in cell line tropism indicates that more than one receptor might be involved.

509 Neutralizing monoclonal antibodies could help to contain zoonotic transmission and
510 subsequent human-human spread of animal sarbecoviruses. The antibody S2H97 was found to
511 bind S proteins from sarbecoviruses from all clades and to exert neutralizing activity in cell
512 culture and protect hamsters from viral challenge ⁴⁶. Our analyses confirm that S2H97 neutralizes
513 diverse sarbecoviruses although the inefficient neutralization of particles bearing SARS-CoV-1 S
514 protein was unexpected ⁴⁶. However, S2H97 augmented entry driven by the S proteins of
515 LYRa11 and Rs7327 and antibody-dependent enhancement may increase viral spread and
516 pathogenesis. The underlying mechanism remains to be elucidated but these findings indicate that
517 S2H97 and potentially related antibodies are of limited use for pandemic preparedness. Finally,
518 trypsin treatment sensitized particles bearing the S proteins of LYRa11 and Rs7327 to
519 neutralization by S2H97 while the reverse effect was observed for particles bearing RsSHC014 S
520 protein, suggesting that the availability of the ACE2-independent, trypsin-dependent entry
521 pathway can be modulated neutralization by monoclonal antibodies.

522 It has previously been appreciated that COVID-19 vaccines can induce antibodies that at
523 least partially neutralize selected animal sarbecoviruses ^{27,62-66}. However, systematic analyses are
524 lacking. The present study demonstrates that quadruple vaccination including a bivalent Omicron
525 BA.5-adapted booster induced antibodies that appreciably cross-neutralized particles bearing all
526 S proteins tested. Thus, repeated vaccination might not only come at the benefit of efficient

527 protection against severe COVID-19 but might also provide substantial protection against diverse
528 animal sarbecoviruses. Notably, we obtained evidence that switching to the trypsin-dependent,
529 ACE2-independent entry route reduces neutralization sensitivity, in agreement with the finding
530 that ACE2-independent entry of SARS-CoV-2 conferred by mutation E484D allowed for
531 resistance against a neutralizing antibody ⁶⁷. Collectively, we identified viral and cellular
532 determinants required for animal sarbecovirus infection of human lung cells that may help to
533 predict and combat future spillover events.

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551 **Methods**

552

553 **Cell culture**

554 All cell lines were incubated in a humidified atmosphere at 37 °C containing 5% CO₂. 293T
555 (human, kidney; ACC-635, DSMZ), Huh-7 (human, liver; JCRB0403, JCRB; kindly provided by
556 Thomas Pietschmann, TWINCORE, Centre for Experimental and Clinical Infection Research,
557 Hannover, Germany), NCI-H522 (human lung; CRL-5810, ATCC; RRID: CVCL_1567), Vero
558 (African green monkey, kidney; CRL-1586, ATCC; kindly provided by Andrea Maisner, Institute
559 of Virology, Philipps University Marburg, Marburg, Germany), BHK-21 (Syrian hamster,
560 kidney; Laboratory of Georg Herrler, CCL-10, ATCC; RRID: CVCL_1915), PipNi/3 (Common
561 pipistrelle, kidney; RRID: CVCL_RX21), and MyDauLu/47 cells (Daubenton's bat, lung; RRID:
562 CVCL_RX49) were incubated in Dulbecco's modified Eagle medium (DMEM, PAN-Biotech)
563 supplemented with 10% fetal bovine serum (FCS, Biochrom), 100 U/ml of penicillin and 0.1
564 mg/ml of streptomycin (PAN-Biotech). Caco-2 (human, intestine; HTB-37, ATCC, RRID:
565 CVCL_0025) were cultivated in minimum essential medium (GIBCO) supplemented with 10%
566 FCS, 100 U/ml of penicillin and 0.1 mg/ml of streptomycin (PAN-Biotech), 1x non-essential
567 amino acid solution (from 100x stock, PAA) and 10 mM sodium pyruvate (Thermo Fisher
568 Scientific). Calu-3 cells (human, lung; HTB-55, ATCC; kindly provided by Stephan Ludwig,
569 Institute of Virology, University of Münster, Germany) were cultivated in DMEM/F-12 medium
570 (GIBCO) supplemented with 10% FCS, 100 U/ml of penicillin and 0.1 mg/ml of streptomycin
571 (PAN-Biotech), 1x non-essential amino acid solution and 10 mM sodium pyruvate. A549 cells
572 (human, lung; CRM-CCL-185, ATCC), 293T and Calu-3 cells were transduced with murine
573 leukemia virus-based transduction vectors encoding ACE2 and subsequently selected with
574 puromycin (Invivogen), resulting in cell lines that stably expressed ACE2. A549-ACE2 cells

575 were further transduced with murine leukemia virus-based transduction vectors encoding
576 TMPRSS2 and subsequently selected with blasticidin (Invivogen) to obtain A549-
577 ACE2+TMPRSS2 cells. Vero cells stably expressing TMPRSS2 were generated by retroviral
578 transduction and blasticidin-based selection. Vero-TMPRSS2 cells were further transduced with
579 murine leukemia virus-based transduction vectors encoding ACE2 and subsequently selected
580 with puromycin (Invivogen) to obtain Vero-ACE2+TMPRSS2 cells. Cell lines were
581 authenticated using various methods, including STR-typing (human cell lines), amplification and
582 sequencing of a fragment of the cytochrome c oxidase gene, microscopic examination and
583 evaluation of their growth characteristics. All cell lines were regularly tested for mycoplasma.

584

585 **Plasmids**

586 Expression plasmids for vesicular stomatitis virus glycoprotein (VSV-G), SARS-1-S Frankfurt-1
587 (GenBank: AY291315; with a C-terminal truncation of 18 amino acid residues), SARS-2-S
588 (codon-optimized, based on the Wuhan/Hu-1/2019 isolate; with a C-terminal truncation of 18
589 amino acid residues) were previously described ^{12,68}. The sequences of the following spike
590 proteins, bat SARSr-CoV Rs4081-CoV-S (GenBank: KY417143.1), bat SARSr-CoV Rs4237-
591 CoV-S (GenBank: KY417147.1), bat SARSr-CoV WIV1-CoV-S (GenBank: KF367457.1), bat
592 SARSr-CoV LYRa11-CoV-S (GenBank: KF569996.1), bat SARSr-CoV RsSHC014-CoV-S
593 (GenBank: KC881005.1), bat SARSr-CoV Rs4231-CoV-S (GenBank: KY417146.1.), bat
594 SARSr-CoV Rs4874-CoV-S (GenBank: KY417150.1), bat SARSr-CoV Rs7327-CoV-S
595 (GenBank: KY417151.1), bat SARSr-CoV BM48-31/BGR/2008 (GenBank: GU190215.1) were
596 obtained from NCBI (National Library of Medicine) database (<https://www.ncbi.nlm.nih.gov/>).
597 In addition, the following sequences were obtained from Global Initiative on Sharing All
598 Influenza Data (GISAID) database: SARS-like coronaviruses bat SARSr-CoV RaTG13-CoV-S

599 (codon-optimized, based on the EPI_ISL_402131|2013-07-24), pangolin SL-P5L-CoV-S
600 (EPI_ISL_410540|2017), pangolin SL-cDNA8-CoV-S (EPI_ISL_471461|2019). The sequences
601 were synthesized (Sigma-Aldrich) and inserted into the pCG1 expression vector (kindly provided
602 by Roberto Cattaneo, Mayo Clinic College of Medicine, Rochester, MN, USA) using the BamHI
603 and XbaI restriction sites. The sequences encoding the 18 C-terminal amino acids of these S
604 proteins were removed by PCR-based mutagenesis. For generation of sarbecovirus S proteins
605 harboring a multibasic S1/S2 cleavage site, the amino acid forming the respective S1/S2 regions
606 of animal sarbecovirus S proteins were replaced by the corresponding region of SARS-2-S
607 (amino acid residues 667-701) by overlap-extension PCR. In addition, chimeric S proteins
608 harboring different domains of SARS-1-S and Rs4081-S were constructed by overlap-extension
609 PCR. For generation of expression of plasmid for ACE2 orthologues, the coding sequence for red
610 fox ACE2, palm civet ACE2, Malayan pangolin ACE2⁶⁹, human ACE2, horseshoe bat
611 (*Rhinolophus landeri*, *R.sinicus*, *R.affinis*) ACE2, cat ACE2, pig ACE2, raccoon dog ACE2,
612 American mink ACE2 containing C-terminal c-myc-epitope tag were introduced into the
613 pQCXIP plasmid⁷⁰ via the NotI and PacI restriction sites. Furthermore, we produced an
614 expression plasmid encoding a soluble variant of human ACE2, which was fused to the Fc
615 portion of human immunoglobulin G (sol-hACE2-Fc). For this, we employed PCR amplification
616 to derive the sequence encoding the ACE2 ectodomain, encompassing amino acid residues 1-733,
617 which was subsequently inserted into the pCG1-Fc plasmid⁷¹ (kindly provided by Georg Herrler,
618 University of Veterinary Medicine, Hannover, Germany) via PacI and SalI restriction sites. The
619 integrity of all PCR-amplified sequences was confirmed through commercial sequencing services
620 (Microsynth Seqlab).

621

622 **Phylogenetic analysis**

623 Phylogenetic analysis (neighbor-joining tree, bootstrap method with 5,000 iterations, Poisson
624 substitution model, uniform rates among sites, complete deletion of gaps/missing data) was
625 performed using the MEGA7.0.26 software. Sequence alignments were performed using the
626 Clustal Omega online tool (<https://www.ebi.ac.uk/Tools/msa/clustalo/>).

627

628 **Production of pseudotyped particles**

629 Rhabdoviral particles bearing coronavirus S proteins, VSV-G or no viral protein (negative
630 control) were prepared according to a published protocol ⁷². In brief, a replication-deficient
631 vesicular stomatitis virus vector that lacks the genetic information for VSV-G and instead codes
632 for two reporter proteins, enhanced green fluorescent protein and firefly luciferase (FLuc),
633 VSV*ΔG-FLuc (kindly provided by Gert Zimmer, Institute of Virology and Immunology,
634 Mittelhäusern, Switzerland) ⁷³ used for particle production. Thus, 293T cells transfected with
635 plasmids encoding the desired viral glycoproteins were inoculated with VSV*ΔG-FLuc for 1 h at
636 37 °C, the inoculum was removed and cells were washed with PBS. Of note, for experiments
637 addressing the impact of S protein cleavage by TTSPs during pseudovirus production, cell were
638 cotransfected with TMPRSS2, TMPRSS11A, TMPRSS11D, TMPRSS11E, TMPRSS13, or Furin.
639 Subsequently, culture medium supplemented with anti-VSV-G antibody (culture supernatant
640 from I1-hybridoma cells; ATCC no. CRL-2700; except for cells expressing VSV-G) was added
641 to the cells in order to neutralize residual viral particles. After incubation for 16-18 h, the cell
642 culture supernatant was harvested, cleared from debris by centrifugation at 2,000 x g for 10 min,
643 aliquoted and stored at -80 °C until further use.

644

645 **Transduction of target cells**

646 For transduction experiments, target cells were seeded into 96-well plates prior to inoculation
647 with equal volumes of pseudotyped particles. For selected experiments, target cells were
648 transfected to express different ACE2 orthologues or proteases 24h prior to infection. In order to
649 investigate the impact of trypsin on S protein-driven cell entry, pseudotyped particles were
650 treated with different concentrations of trypsin for 30 min, followed by a 10 min incubation with
651 trypsin inhibitor (same concentration as for trypsin). Alternatively, pseudotyped particles were
652 treated with different concentrations of thermolysin, elastase or papain. To determine whether
653 ACE2 was required for entry, Vero-TMPRSS2 cells were incubated with recombinant anti-ACE2
654 neutralizing antibody (Sino Biologics, Cat: 10108-MM36) for 30 minutes prior to inoculation
655 with pseudotyped particles. In order to study neutralization sensitivity of animal sarbecovirus S
656 proteins to the pan-sarbecovirus monoclonal antibody S2H97, pseudotyped particles were pre-
657 incubated for 30 min with medium containing different concentrations of S2H97, before being
658 inoculated onto Vero-ACE2-TMPRSS2 cells. To assess the ability of patient plasma to block S
659 protein-driven cell entry, pseudotyped particles were pre-incubated for 30 min with medium
660 containing a fixed dilution of or patient plasma (1:25), before being inoculated onto A549-ACE2-
661 TMPRSS2 or Vero-ACE2-TMPRSS2 cells. Transduction efficiency was evaluated at 16-18 h
662 post transduction by removing the culture supernatant and lysing the cells in PBS containing
663 0.5% triton X-100 (Carl Roth) for 30 min at room temperature. The cell lysates were then
664 transferred into white 96-well plates and FLuc activity was measured using a commercial
665 luciferase substrate (Beetle-Juice, PJK) and recorded using the Hidex Sense plate luminometer
666 (Hidex).
667
668 **Production of sol-ACE2-Fc**

669 293T cells were seeded in 6-well plates and transfected with 8 µg of sol-ACE2-Fc expression
670 plasmid per well. At 10 h post-transfection, the medium was replaced and cells were incubated
671 for an additional 38 h. Subsequently, the culture supernatant was collected and centrifuged at
672 2,000 x g for 10 min at 4 °C to remove cellular debris. The resulting clarified supernatant was
673 loaded onto Vivaspin protein concentrator columns with a 30 kDa molecular weight cut-off
674 (Sartorius) and centrifuged at 4,000 x g and 4 °C until the sample was concentrated by a factor of
675 100. The concentrated sol-ACE2-Fc was aliquot and stored at -80 °C.

676

677 **ACE2 binding**

678 To assess the binding efficacy of S proteins to ACE2, 293T cells were seeded into 6-well plates
679 and transfected with the respective S protein-encoding plasmid using calcium-phosphate
680 precipitation method. Empty plasmid served as control. At 24 h post-transfection, the culture
681 medium was replaced with fresh medium, and the cells were further incubated. At 48 h post-
682 transfection, the culture medium was removed, and the cells were resuspended in PBS, pelleted
683 by centrifugation, incubated with different concentration of trypsin, and washed with PBS
684 containing 1% bovine serum albumin (PBS-B). The cells were then resuspended in PBS-B
685 containing solACE2-Fc at a 1:100 dilution and rotated at 4 °C for 1 hour. The cells were then
686 pelleted, washed and resuspended in PBS-B containing anti-human AlexaFluor-488-conjugated
687 antibody in a 1:200 dilution, and rotated for an additional hour at 4 °C. Finally, the cells were
688 washed with PBS-B and analyzed by flow cytometry using ID7000 Spectral Cell Analyzer. The
689 data were processed using the ID7000 Spectral Cell analyzer software (version 1.1.8.18211, Sony
690 Biotechnology, San Jose, CA, USA).

691

692 **Immunoblot**

693 To analyze S protein cleavage and incorporation into pseudotyped particles, the pseudotyped
694 particles bearing S proteins were added onto a 20% (w/v) sucrose cushion and subjected to high-
695 speed centrifugation at 25,000 x g for 120 min at 4°C. (i) For investigating S protein
696 incorporation into particles, the supernatant was removed after centrifugation and the pellet was
697 mixed with equal volume of 2x SDS-sample buffer (0.03 M Tris-HCl, 10% glycerol, 2% SDS,
698 0.2% bromophenol blue, 1 mM EDTA). (ii) To assess S protein cleavage by trypsin, the
699 supernatant was removed after centrifugation and the pellet and residual volume were vortexed
700 and divided into 4 different tubes. Different concentration of trypsin (0 µg/ml, 0.5 µg/ml, 5
701 µg/ml, 50 µg/ml) were added to the tubes, which were then incubated at 37°C for 20 min. After
702 incubation, the 2x SDS-sample buffer was added and heated for 10 min at 96 °C before SDS-
703 polyacrylamide gel electrophoresis and immunoblotting. The nitrocellulose membranes were
704 blocked in a solution of 5% skim milk powder dissolved in PBS-T (PBS containing 0.05%
705 Tween-20) for 1 h at room temperature. The membranes were then incubated overnight at 4°C
706 with the primary antibody, which was diluted in skim milk solution. After washing three times
707 with PBS-T, the membranes were probed with peroxidase-conjugated anti-mouse or anti-rabbit
708 antibody for 1 h at room temperature. The membranes were then washed three times with PBS-T
709 and incubated with an in house-prepared enhanced chemiluminescent solution (1 ml of solution
710 A: 0.1 M Tris-HCl [pH 8.6], 250 µg/ml luminol sodium salt; 100 µl of solution B: 1 mg/ml para-
711 hydroxycoumaric acid dissolved in dimethyl sulfoxide [DMSO]; 1.5 µl of 0.3 % H₂O₂ solution)
712 before being imaged using the ChemoCam imager along with the ChemoStar Imager Software
713 version v.0.3.23 (Intas Science Imaging Instruments GmbH). The primary antibody used for
714 detection of S protein expression was rabbit anti-S2 (SARS-CoV-2 (2019-nCoV) Spike S2
715 antibody (Biozol, Cat: SIN-40590-T62, diluted 1:2,000) while mouse anti-VSV matrix protein
716 (Kerafast, Cat: EB0011, diluted 1:2,500) was used for detection of M protein expression.

717 Peroxidase-coupled goat anti-mouse antibody (Dianova, Cat: 115-035-003, diluted 1:2,500) and
718 goat anti-rabbit antibody (Dianova, Cat: 111-035-003, diluted 1:2,500) were used as secondary
719 antibodies

720

721 **Detection of SARS-CoV-2 IgG**

722 We measured SARS-CoV-2 IgG by quantitative ELISA (anti-SARS-CoV-2 S1 Spike protein
723 domain/receptor binding domain IgG SARS-CoV-2-QuantiVac, EUROIMMUN, Lübeck,
724 Germany) according to the manufacturer's instructions (dilution up to 1:4,000). We used an
725 AESKU.READER (AESKU.GROUP, Wendelsheim, Germany) and the Gen5 2.01 Software for
726 analysis.

727

728 **Patient plasma samples**

729 Before analysis, all plasma samples underwent heat-inactivation at 56°C for 30 min and
730 prescreening for robust neutralization of pseudotyped particles bearing SARS-2-S. Convalescent
731 plasma was obtained from COVID-19 patients treated at the intensive care unit of the University
732 Medicine Göttingen (UMG) under approval given by the ethic committee of the UMG
733 (SeptImmun Study 25/4/19 Ü). Plasma from vaccinated individuals was collected at Hannover
734 Medical School under approval given by the Institutional Review Board of Hannover Medical
735 School (8973_BO_K_2020, amendment Dec 2020). Written informed consent was obtained from
736 each participant prior to the use of any plasma samples for research.

737

738 **Data normalization and statistical analysis**

739 Data analysis was performed using ID7000 Spectral Cell analyzer software (version 1.1.8.18211,
740 Sony Biotechnology, San Jose, CA, USA), Microsoft Excel (part of the Microsoft Office

741 software package, version 2019, Microsoft Corporation) and GraphPad Prism 8 version 8.4.3
742 (GraphPad Software). Only P values of 0.05 or lower were considered statistically significant (P
743 > 0.05 , not significant [ns]; $P \leq 0.05$, *; $P \leq 0.01$, **; $P \leq 0.001$, ***). Specific details on the
744 statistical test and the error bars are indicated in the figure legends.

745

746 **Data availability**

747 Datasets generated and/or analyzed during the current study are available in the paper or are
748 appended as supplementary data. Source data are provided in this paper.

749

750

751

752

753

754

755

756

757

758

759

760 **References**

- 761
- 762 1. de Wit, E., van Doremalen, N., Falzarano, D. & Munster, V.J. SARS and MERS: recent
763 insights into emerging coronaviruses. *Nat Rev Microbiol* **14**, 523-534 (2016).
 - 764 2. Drosten, C., *et al.* Identification of a novel coronavirus in patients with severe acute
765 respiratory syndrome. *N Engl J Med* **348**, 1967-1976 (2003).
 - 766 3. Rota, P.A., *et al.* Characterization of a novel coronavirus associated with severe acute
767 respiratory syndrome. *Science* **300**, 1394-1399 (2003).
 - 768 4. Fehr, A.R., Channappanavar, R. & Perlman, S. Middle East Respiratory Syndrome:
769 Emergence of a Pathogenic Human Coronavirus. *Annu Rev Med* **68**, 387-399 (2017).
 - 770 5. Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D. & Fouchier, R.A.
771 Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. *N Engl J
772 Med* **367**, 1814-1820 (2012).
 - 773 6. Collaborators, C.-E.M. Estimating excess mortality due to the COVID-19 pandemic: a
774 systematic analysis of COVID-19-related mortality, 2020-21. *Lancet* **399**, 1513-1536
775 (2022).
 - 776 7. Huang, C., *et al.* Clinical features of patients infected with 2019 novel coronavirus in
777 Wuhan, China. *Lancet* **395**, 497-506 (2020).
 - 778 8. Zhou, P., *et al.* A pneumonia outbreak associated with a new coronavirus of probable bat
779 origin. *Nature* **579**, 270-273 (2020).
 - 780 9. Lytras, S., Xia, W., Hughes, J., Jiang, X. & Robertson, D.L. The animal origin of SARS-
781 CoV-2. *Science* **373**, 968-970 (2021).
 - 782 10. The Lancet, M. Searching for SARS-CoV-2 origins: confidence versus evidence. *Lancet
783 Microbe* **4**, e200 (2023).
 - 784 11. Worobey, M., *et al.* The Huanan Seafood Wholesale Market in Wuhan was the early
785 epicenter of the COVID-19 pandemic. *Science* **377**, 951-959 (2022).
 - 786 12. Hoffmann, M., *et al.* SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
787 Blocked by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271-280 e278 (2020).
 - 788 13. Li, W., *et al.* Angiotensin-converting enzyme 2 is a functional receptor for the SARS
789 coronavirus. *Nature* **426**, 450-454 (2003).
 - 790 14. Hoffmann, M., Kleine-Weber, H. & Pohlmann, S. A Multibasic Cleavage Site in the
791 Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. *Mol Cell*
792 **78**, 779-784 e775 (2020).
 - 793 15. Iwata-Yoshikawa, N., *et al.* TMPRSS2 Contributes to Virus Spread and
794 Immunopathology in the Airways of Murine Models after Coronavirus Infection. *J Virol*
795 **93**(2019).
 - 796 16. Johnson, B.A., *et al.* Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis.
797 *Nature* **591**, 293-299 (2021).
 - 798 17. Metzdorf, K., *et al.* TMPRSS2 Is Essential for SARS-CoV-2 Beta and Omicron Infection.
799 *Viruses* **15**(2023).
 - 800 18. Zheng, Y., *et al.* Lysosomal Proteases Are a Determinant of Coronavirus Tropism. *J Virol*
801 **92**(2018).
 - 802 19. Starr, T.N., *et al.* ACE2 binding is an ancestral and evolvable trait of sarbecoviruses.
803 *Nature* **603**, 913-918 (2022).

- 804 20. Yan, H., *et al.* ACE2 receptor usage reveals variation in susceptibility to SARS-CoV and
805 SARS-CoV-2 infection among bat species. *Nat Ecol Evol* **5**, 600-608 (2021).
- 806 21. Guo, H., *et al.* ACE2-Independent Bat Sarbecovirus Entry and Replication in Human and
807 Bat Cells. *mBio* **13**, e0256622 (2022).
- 808 22. Li, Y., *et al.* SARS-CoV-2 and Three Related Coronaviruses Utilize Multiple ACE2
809 Orthologs and Are Potently Blocked by an Improved ACE2-Ig. *J Virol* **94**(2020).
- 810 23. Liu, K., *et al.* Cross-species recognition of SARS-CoV-2 to bat ACE2. *Proc Natl Acad
811 Sci U S A* **118**(2021).
- 812 24. Conceicao, C., *et al.* The SARS-CoV-2 Spike protein has a broad tropism for mammalian
813 ACE2 proteins. *PLoS Biol* **18**, e3001016 (2020).
- 814 25. Zhang, H.L., *et al.* Evaluating angiotensin-converting enzyme 2-mediated SARS-CoV-2
815 entry across species. *J Biol Chem* **296**, 100435 (2021).
- 816 26. Zhou, H., *et al.* Identification of novel bat coronaviruses sheds light on the evolutionary
817 origins of SARS-CoV-2 and related viruses. *Cell* **184**, 4380-4391 e4314 (2021).
- 818 27. Temmam, S., *et al.* Bat coronaviruses related to SARS-CoV-2 and infectious for human
819 cells. *Nature* **604**, 330-336 (2022).
- 820 28. Briggs, K., *et al.* SARS-CoV-2 utilization of ACE2 from different bat species allows for
821 virus entry and replication in vitro. *Virology* **586**, 122-129 (2023).
- 822 29. Hu, Y., *et al.* Host range and structural analysis of bat-origin RshSTT182/200 coronavirus
823 binding to human ACE2 and its animal orthologs. *EMBO J* **42**, e111737 (2023).
- 824 30. Peacock, T.P., *et al.* The furin cleavage site in the SARS-CoV-2 spike protein is required
825 for transmission in ferrets. *Nat Microbiol* **6**, 899-909 (2021).
- 826 31. Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor
827 usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nat Microbiol* **5**, 562-569
828 (2020).
- 829 32. Khaledian, E., *et al.* Sequence determinants of human-cell entry identified in ACE2-
830 independent bat sarbecoviruses: A combined laboratory and computational network
831 science approach. *EBioMedicine* **79**, 103990 (2022).
- 832 33. Guo, H., *et al.* Isolation of ACE2-dependent and -independent sarbecoviruses from
833 Chinese horseshoe bats. *J Virol* **97**, e0039523 (2023).
- 834 34. Lan, J., *et al.* Structure of the SARS-CoV-2 spike receptor-binding domain bound to the
835 ACE2 receptor. *Nature* **581**, 215-220 (2020).
- 836 35. Menachery, V.D., *et al.* Trypsin Treatment Unlocks Barrier for Zoonotic Bat Coronavirus
837 Infection. *J Virol* **94**(2020).
- 838 36. Ou, X., *et al.* Host susceptibility and structural and immunological insight of S proteins of
839 two SARS-CoV-2 closely related bat coronaviruses. *Cell Discov* **9**, 78 (2023).
- 840 37. Metheny, N.A., *et al.* pH and concentrations of pepsin and trypsin in feeding tube
841 aspirates as predictors of tube placement. *JPEN J Parenter Enteral Nutr* **21**, 279-285
842 (1997).
- 843 38. Munster, V.J., *et al.* Replication and shedding of MERS-CoV in Jamaican fruit bats
844 (*Artibeus jamaicensis*). *Sci Rep* **6**, 21878 (2016).
- 845 39. Ruiz-Aravena, M., *et al.* Ecology, evolution and spillover of coronaviruses from bats. *Nat
846 Rev Microbiol* **20**, 299-314 (2022).
- 847 40. Schlottau, K., *et al.* SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an
848 experimental transmission study. *Lancet Microbe* **1**, e218-e225 (2020).
- 849 41. Simmons, G., *et al.* Different host cell proteases activate the SARS-coronavirus spike-
850 protein for cell-cell and virus-cell fusion. *Virology* **413**, 265-274 (2011).

- 851 42. Matera, M.G., Rogliani, P., Ora, J., Calzetta, L. & Cazzola, M. A comprehensive
852 overview of investigational elastase inhibitors for the treatment of acute respiratory
853 distress syndrome. *Expert Opin Investig Drugs* **32**, 793-802 (2023).
- 854 43. Zeng, W., Song, Y., Wang, R., He, R. & Wang, T. Neutrophil elastase: From mechanisms
855 to therapeutic potential. *J Pharm Anal* **13**, 355-366 (2023).
- 856 44. Hoffmann, M., *et al.* Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-
857 related proteases and its metabolite GBPA exerts antiviral activity. *EBioMedicine* **65**,
858 103255 (2021).
- 859 45. Wettstein, L., Kirchhoff, F. & Munch, J. The Transmembrane Protease TMPRSS2 as a
860 Therapeutic Target for COVID-19 Treatment. *Int J Mol Sci* **23**(2022).
- 861 46. Starr, T.N., *et al.* SARS-CoV-2 RBD antibodies that maximize breadth and resistance to
862 escape. *Nature* **597**, 97-102 (2021).
- 863 47. Lau, S.K., *et al.* Severe acute respiratory syndrome coronavirus-like virus in Chinese
864 horseshoe bats. *Proc Natl Acad Sci U S A* **102**, 14040-14045 (2005).
- 865 48. Lau, S.K., *et al.* Genetic characterization of Betacoronavirus lineage C viruses in bats
866 reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus
867 HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East
868 respiratory syndrome coronavirus. *J Virol* **87**, 8638-8650 (2013).
- 869 49. Corman, V.M., *et al.* Rooting the phylogenetic tree of middle East respiratory syndrome
870 coronavirus by characterization of a conspecific virus from an African bat. *J Virol* **88**,
871 11297-11303 (2014).
- 872 50. Corman, V.M., Muth, D., Niemeyer, D. & Drosten, C. Hosts and Sources of Endemic
873 Human Coronaviruses. *Adv Virus Res* **100**, 163-188 (2018).
- 874 51. Roelle, S.M., Shukla, N., Pham, A.T., Bruchez, A.M. & Matreyek, K.A. Expanded ACE2
875 dependencies of diverse SARS-like coronavirus receptor binding domains. *PLoS Biol* **20**,
876 e3001738 (2022).
- 877 52. Li, L., *et al.* Broader-species receptor binding and structural bases of Omicron SARS-
878 CoV-2 to both mouse and palm-civet ACE2s. *Cell Discov* **8**, 65 (2022).
- 879 53. Gao, B. & Zhu, S. Mutation-driven parallel evolution in emergence of ACE2-utilizing
880 sarbecoviruses. *Front Microbiol* **14**, 1118025 (2023).
- 881 54. Xiong, Q., *et al.* Close relatives of MERS-CoV in bats use ACE2 as their functional
882 receptors. *Nature* **612**, 748-757 (2022).
- 883 55. Cariou, M., *et al.* Distinct evolutionary trajectories of SARS-CoV-2-interacting proteins
884 in bats and primates identify important host determinants of COVID-19. *Proc Natl Acad
885 Sci U S A* **119**, e2206610119 (2022).
- 886 56. Xu, L., *et al.* Angiotensin-converting enzyme 2 (ACE2) from raccoon dog can serve as an
887 efficient receptor for the spike protein of severe acute respiratory syndrome coronavirus. *J
888 Gen Virol* **90**, 2695-2703 (2009).
- 889 57. Guan, Y., *et al.* Isolation and characterization of viruses related to the SARS coronavirus
890 from animals in southern China. *Science* **302**, 276-278 (2003).
- 891 58. Aicher, S.M., *et al.* Species-Specific Molecular Barriers to SARS-CoV-2 Replication in
892 Bat Cells. *J Virol* **96**, e0060822 (2022).
- 893 59. Freuling, C.M., *et al.* Susceptibility of Raccoon Dogs for Experimental SARS-CoV-2
894 Infection. *Emerg Infect Dis* **26**, 2982-2985 (2020).
- 895 60. He, W.T., *et al.* Virome characterization of game animals in China reveals a spectrum of
896 emerging pathogens. *Cell* **185**, 1117-1129 e1118 (2022).

- 897 61. Iwata-Yoshikawa, N., *et al.* Essential role of TMPRSS2 in SARS-CoV-2 infection in
898 murine airways. *Nat Commun* **13**, 6100 (2022).
- 899 62. Srisutthisamphan, K., Saenboonrueng, J., Wanitchang, A., Viriyakitkosol, R. &
900 Jongkaewwattana, A. Cross-Neutralization of SARS-CoV-2-Specific Antibodies in
901 Convalescent and Immunized Human Sera against the Bat and Pangolin Coronaviruses.
902 *Viruses* **14**(2022).
- 903 63. Appelberg, S., *et al.* A universal SARS-CoV DNA vaccine inducing highly cross-reactive
904 neutralizing antibodies and T cells. *EMBO Mol Med* **14**, e15821 (2022).
- 905 64. Cantoni, D., *et al.* Pseudotyped Bat Coronavirus RaTG13 is efficiently neutralised by
906 convalescent sera from SARS-CoV-2 infected patients. *Commun Biol* **5**, 409 (2022).
- 907 65. Wang, P., *et al.* A monoclonal antibody that neutralizes SARS-CoV-2 variants, SARS-
908 CoV, and other sarbecoviruses. *Emerg Microbes Infect* **11**, 147-157 (2022).
- 909 66. Wec, A.Z., *et al.* Broad neutralization of SARS-related viruses by human monoclonal
910 antibodies. *Science* **369**, 731-736 (2020).
- 911 67. Hoffmann, M., *et al.* Evidence for an ACE2-Independent Entry Pathway That Can Protect
912 from Neutralization by an Antibody Used for COVID-19 Therapy. *mBio* **13**, e0036422
913 (2022).
- 914 68. Brinkmann, C., *et al.* The glycoprotein of vesicular stomatitis virus promotes release of
915 virus-like particles from tetherin-positive cells. *PLoS One* **12**, e0189073 (2017).
- 916 69. Li, P., *et al.* The Rhinolophus affinis bat ACE2 and multiple animal orthologs are
917 functional receptors for bat coronavirus RaTG13 and SARS-CoV-2. *Sci Bull (Beijing)* **66**,
918 1215-1227 (2021).
- 919 70. Brass, A.L., *et al.* The IFITM proteins mediate cellular resistance to influenza A H1N1
920 virus, West Nile virus, and dengue virus. *Cell* **139**, 1243-1254 (2009).
- 921 71. Sauer, A.K., *et al.* Characterization of the sialic acid binding activity of influenza A
922 viruses using soluble variants of the H7 and H9 hemagglutinins. *PLoS One* **9**, e89529
923 (2014).
- 924 72. Kleine-Weber, H., *et al.* Mutations in the Spike Protein of Middle East Respiratory
925 Syndrome Coronavirus Transmitted in Korea Increase Resistance to Antibody-Mediated
926 Neutralization. *J Virol* **93**(2019).
- 927 73. Berger Rentsch, M. & Zimmer, G. A vesicular stomatitis virus replicon-based bioassay
928 for the rapid and sensitive determination of multi-species type I interferon. *PLoS One* **6**,
929 e25858 (2011).

930

931 **Acknowledgements**

932 We thank Anne Cossmann for data collection and curation. SP acknowledges funding by the EU
933 project UNDINE (grant agreement number 101057100), the COVID-19-Research Network
934 Lower Saxony (COFONI) through funding from the Ministry of Science and Culture of Lower
935 Saxony in Germany (14-76103-184, projects 7FF22, 6FF22, 10FF22) and the German Research
936 Foundation (Deutsche Forschungsgemeinschaft, DFG; PO 716/11-1). G.M.N.B. acknowledges
937 funding by German Center for Infection Research (grant no 80018019238), the European
938 Regional Development Funds (Defeat Corona, ZW7-8515131), and Getting AIR (ZW7-
939 85151373) and the Ministry for Science and Culture of Lower Saxony (Niedersächsisches
940 Ministerium für Wissenschaft und Kultur; 14-76103-184, COFONI Network, project 4LZF23.
941 LZ acknowledges funding by the China Scholarship Council (CSC) (202006270031). Funding
942 sources had no role in the design and execution of the study, the writing of the manuscript and the
943 decision to submit the manuscript for publication. The authors did not receive payment by a
944 pharmaceutical company or other agency to write the publication. The authors were not
945 precluded from accessing data in the study, and they accept responsibility to submit for
946 publication.

947

948 **Author contributions**

949 Conceptualization: M.H.; Methodology: S.P., and M.H.; Investigation: L.Z., H.H.C., N.K., L.G.,
950 and M.H.; Formal analysis: M.H.; Resources: B.H., A.H., S.R.S, H.-M.J., M.V.S., G.M.N.B.,
951 M.A.M., C.D., O.M., M.S.W., and Z.H. Q.; Funding acquisition: C.D., G.M.N.B. and S.P.;
952 Writing – original draft: S.P., L.Z., M.H.; Writing – review & editing: all authors.

953

954 **Competing interests**

955 S.P. and M.H. conducted contract research (testing of vaccinee plasma for neutralizing activity
956 against SARS-CoV-2) for Valneva unrelated to this work. G.M.N.B. served as advisor for
957 Moderna and S.P. served as advisor for BioNTech, unrelated to this work. The authors declare no
958 competing interests. M.S.W. received funding from Sartorius AG (Göttingen, Germany) from
959 GRIFOLS SA (Barcelona, Spain), Sphingotec (Henningsdorf, Germany), Inflamatix
960 (Sunnyvale, CA, USA) and the German Research Foundation (Bonn, Germany). He is in the
961 advisory board of Amomed (Wien, Austria) and Gilead Science Inc. (Foster City, CA, USA).

962

963 **Additional information**

964 **See Supplementary Information**

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979 **Figure legends**

980

981 **Fig. 1 Alignment of S protein sequences and structural predictions. A)** Phylogenetic analysis
982 of human and animal sarbecoviruses. The sarbecoviruses were grouped into five clades, indicated
983 by different colors, based on the full spike sequences. The sarbecoviruses functionally analyzed
984 in the present study are indicated in grey boxes. (See Figure S1 for more details). **B)** Structure of
985 RBD. The structure of RBDs was predicted based on homology modeling using SARS-2-S RBD
986 as template. Two loops involved in ACE2 interactions are highlighted (See supplemental figure 2
987 for more details). **C)** Schematic overview of the spike (S) protein domain structure (upper panel)
988 and alignment of the RBM sequences of the S proteins analyzed in panel A. The ACE2
989 interacting residues of SARS-1-S and SARS-2-S are marked in blue (lower panel). “*” indicates
990 conserved amino acid residues, “-“ indicates gaps. The S proteins under study are indicated by
991 circles. Abbreviations: NTD = N-terminal domain; RBD = receptor-binding domain; TD =
992 transmembrane domain; S1/S2 and S2’ = cleavage sites in the S protein.

993

994 **Fig. 2. Raccoon dog ACE2 supports entry driven by the S proteins of diverse**
995 **sarbecoviruses. A)** Binding of soluble human ACE2 to S protein expressing cells. 293T cells
996 transiently expressing the indicated S proteins (or no S protein) were first incubated with soluble
997 ACE2 containing a C-terminal Fc-tag (derived from human immunoglobulin G; solACE2-Fc)
998 and subsequently incubated with an AlexaFluor-488-coupled secondary antibody, before
999 solACE2-Fc binding was analyzed by flow cytometry (see Figure S3 for details on the gating
1000 strategy). Presented are the average (mean) data from five biological replicates (each conducted
1001 with single samples) in which solACE2-Fc binding to S protein expressing cells was normalized
1002 against binding to control transfected cells (set as 100). Error bars indicate SEM. Statistical

1003 significance was assessed by two-tailed Student's t-tests ($p > 0.05$, not significant [ns]; $p \leq 0.05$,
1004 *; $p \leq 0.01$, **; $p \leq 0.001$, ***). **B)** Receptor activity of ACE2 orthologues. BHK-21 cells
1005 transiently expressing the indicated ACE2 orthologues (or empty vector) were inoculated with
1006 pseudotyped particles bearing the indicated S proteins (or no S protein). Entry into cells
1007 expressing ACE2 orthologues was normalized against entry into cells expressing human ACE2
1008 (set as 1). The heat map presents the average (mean) data from three biological replicates (each
1009 conducted with four technical replicates). (See Figure S4 for more details)
1010
1011 **Fig. 3. Trypsin treatment can allow for ACE2-independent cell entry. A)** S protein driven cell
1012 entry in the presence and absence of trypsin. Particles bearing the indicated S proteins (or no S
1013 protein) were preincubated with or without trypsin before being added to the respective cell lines.
1014 S-protein driven cell entry was analyzed by measuring the activity of virus-encoded firefly
1015 luciferase in the cell lysate at 16-18h post inoculation. Presented are the average of (mean) data
1016 from three biological replicates (each conducted with four technical replicates) in which cell
1017 entry was normalized against that measured for particles bearing no S protein (set as 1). Error
1018 bars show the SEM. Statistical significance was assessed by two-tailed Student's t-tests ($p > 0.05$,
1019 not significant [ns]; $p \leq 0.05$, *; $p \leq 0.01$, **; $p \leq 0.001$, ***). **B)** Trypsin treatment of viral
1020 particles but not target cells promotes entry. Vero cells or pseudotyped particles bearing indicated
1021 S proteins were pre-incubated with trypsin and subsequently trypsin inhibitor as indicated. The
1022 pseudotyped particles were added to the cells. S-protein-driven cell entry was analyzed by and
1023 data presented as described for panel A. Presented are the average (mean) data of three biological
1024 replicates, each performed with four technical replicates. Error bars show SEM. Statistical
1025 significance was assessed by ANOVA ($p > 0.05$, not significant [ns]; $p \leq 0.05$, *; $p \leq 0.01$, **; p
1026 ≤ 0.001 , ***). **C)** Blockade of S protein-driven cell entry by an anti-ACE2 antibody. Vero-

1027 TMPRSS2 cells were pre-incubated with anti-ACE2 antibody. Particles bearing the indicated S
1028 proteins were incubated with trypsin followed by incubation with trypsin inhibitor before
1029 addition onto target cells. The pseudotyped particles were added to the cells. S-protein-driven cell
1030 entry was analyzed by and data presented as described for panel A. Presented are the average
1031 (mean) data of three biological replicates, each performed with four technical replicates. Error
1032 bars show SEM. Statistical significance was assessed by ANOVA ($p > 0.05$, not significant [ns];
1033 $p \leq 0.05$, *; $p \leq 0.01$, **; $p \leq 0.001$, ***).

1034

1035 **Fig. 4. Trypsin cleaves the S proteins of diverse sarbecoviruses. A)** Cleavage of S proteins by
1036 trypsin. Particles pseudotyped with the indicated S proteins were incubated with the indicated
1037 concentrations of trypsin for 20 min at 37°C and S protein expression analyzed by immunoblot
1038 with SARS-CoV-2 S2 antibody. VSV-M served as loading control. Similar results were obtained
1039 in two separate experiments. Bands corresponding to uncleaved S proteins (S0), the S2 subunit
1040 (S2), S2 subunit cleaved at the S2' site (S2') and additional S2 cleavage fragments (S2*) are
1041 indicated. **B)** Modulation of S protein driven entry by trypsin is concentration-dependent.
1042 Particles pseudotyped with the indicated S proteins were treated with the indicated concentrations
1043 of trypsin for 20 min at 37°C before addition to Vero cells. The efficiency of S protein-driven cell
1044 entry was determined by measuring the activity of virus-encoded firefly luciferase in cell lysates
1045 at 16-18h post inoculation. Results for S protein bearing particles were normalized against those
1046 obtained for particles bearing no S protein (set as 1). The average (mean) data of three biological
1047 replicates is presented, each performed with four technical replicates. Error bars show the SEM.
1048 Statistical significance was assessed by ANOVA ($p > 0.05$, not significant [ns]; $p \leq 0.05$, *; $p \leq$
1049 0.01 , **; $p \leq 0.001$, ***).

1051 **Fig. 5. Elastase and type II transmembrane serine proteases can activate the otherwise**
1052 **trypsin-dependent Rs4081 S protein. A)** Analysis S protein cleavage. Particles pseudotyped
1053 with SARS-1-S or Rs4081 S protein (or no S protein) were incubated with the indicated proteases
1054 (at highest concentration used for panel B, 20 min incubation) and S protein expression analyzed
1055 by immunoblot using an antibody directed against the S2 subunit of SARS-2-S. VSV-M served
1056 as loading control. Similar results were obtained in two separate experiments. Bands
1057 corresponding to uncleaved S proteins (S0), the S2 subunit (S2) and the S2 subunit cleaved at the
1058 S2' site (S2') are indicated. **B)** Impact of proteases on cell entry. Particles pseudotyped with
1059 SARS-1-S or Rs4081 S protein were treated with the indicated concentrations of trypsin,
1060 Thermolysin, papain or elastase for 20 min at 37°C before addition to Vero cells. The efficiency
1061 of S protein-driven cell entry was determined by measuring the activity of virus-encoded firefly
1062 luciferase in cell lysates at 16-18h post inoculation. Results for S protein bearing particles were
1063 normalized against those obtained for particles bearing no S protein (set as 1). The average
1064 (mean) data of three biological replicates are presented, each performed with four technical
1065 replicates. Error bars indicate SEM. Statistical significance was assessed by ANOVA ($p > 0.05$,
1066 not significant [ns]; $p \leq 0.05$, *; $p \leq 0.01$, **; $p \leq 0.001$, ***). **C)** Expression of type II
1067 transmembrane serine proteases (TTSPs). 293T cells were transiently transfected with plasmids
1068 encoding the indicated proteases with a c-myc antigenic tag or empty plasmid and cell lysates
1069 were harvested at 48 h after transfection. Cell lysates were analyzed by immunoblot for protease
1070 expression using c-myc antibody. Detection of ACTB served as loading control. Similar results
1071 were obtained in two separate experiments. **D)** Expression of TTSPs on target cells does not
1072 allow for entry driven by the trypsin-dependent Rs4081 S protein. 293T cells transiently
1073 expressing the indicated TTSPs of furin were Mock treated or treated with ammonium chloride to
1074 block cathepsin L-dependent endo/lysosomal entry and inoculated with pseudotypes bearing

1075 SARS-1-S, Rs4081-S or VSV-G. Alternatively, particles were treated with trypsin (50 μ g/ml for
1076 30 min) and added to mock treated cells. S-protein-driven cell entry was analyzed by and data
1077 presented as described for panel B. The average (mean) data of three biological replicates are
1078 presented, each performed with four technical replicates. Error bars show the SEM. Statistical
1079 significance was assessed by ANOVA ($p > 0.05$, not significant [ns]; $p \leq 0.05$, *; $p \leq 0.01$, **; $p \leq$
1080 0.001, ***). **E)** S protein cleavage by TTSPs. Particles pseudotyped with SARS-1-S or Rs4081 S
1081 proteins (or no S protein) were produced in 293T cells coexpressing the indicated TTSPs or furin.
1082 Alternatively, particles were treated with the indicated concentrations of trypsin for 30 min. S
1083 protein expression was analyzed by immunoblot using an antibody directed against the S2
1084 subunit of SARS-2-S. VSV-M served as loading control. Similar results were obtained in two
1085 separate experiments. Bands corresponding to uncleaved S proteins (S0), the S2 subunit (S2) and
1086 the S2 subunit cleaved at the S2' site (S2') are indicated. **F)** Coexpression of TTSPs in particle
1087 producing cells can activate the Rs4081 S protein. Particles bearing SARS-1-S or Rs4081 S
1088 protein and produced in 293T cells expressing the indicated TTSPs or furin were added to Vero
1089 cells. S-protein-driven cell entry was analyzed by and data presented as described for panel B.
1090 The average (mean) data of three biological replicates are presented, each performed with four
1091 technical replicates. Error bars show the SEM. Statistical significance was assessed by ANOVA
1092 ($p > 0.05$, not significant [ns]; $p \leq 0.05$, *; $p \leq 0.01$, **; $p \leq 0.001$, ***).
1093

1094 **Fig. 6. Insertion of a multibasic cleavage site into sarbecovirus S proteins universally**
1095 **increases lung cell entry but does not allow for trypsin-independent entry by RS4081 and**
1096 **Rs4237 S proteins. A)** Alignment of the S1/S2 loop sequences of the indicated S proteins.
1097 Amino acid residues were color coded on the basis of biochemical properties. Asterisks indicate
1098 conserved residues. **B)** Analysis of S protein cleavage. Particles pseudotyped with the indicated S

1099 proteins were subjected to immunoblot analysis, using anti an antibody directed against the S2
1100 subunit of SARS-2-S. Black and red indicate uncleaved precursor respective S (S0) and S2,
1101 respectively. Detection of VSV-M served as a loading control. Shown is a representative
1102 immunoblot from three independent experiments. **C)** Impact of the multibasic cleavage site on S
1103 protein-driven entry. Particles bearing the indicated S proteins (or no S protein) were added to
1104 293T-ACE2 or Calu-3-ACE2 cells. The efficiency of S protein-driven cell entry was determined
1105 by measuring the activity of virus-encoded firefly luciferase in cell lysates at 16-18h post
1106 inoculation. Results for S protein bearing particles were normalized against those obtained for
1107 particles bearing no S protein (set as 1). Presented are the average (mean) data of three biological
1108 replicates, each performed with four technical replicates. Error bars indicate SEM. Statistical
1109 significance was assessed by two-tailed Student's t-tests ($p > 0.05$, not significant [ns]; $p \leq 0.05$,
1110 *; $p \leq 0.01$, **; $p \leq 0.001$, ***).

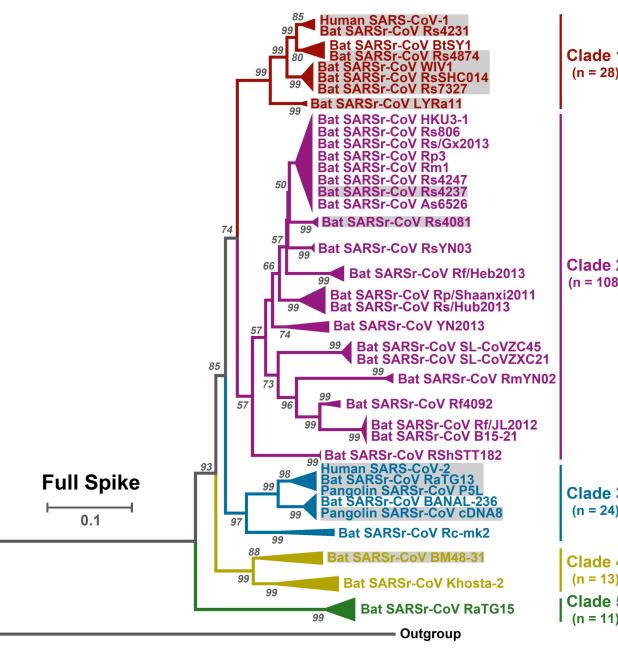
1111
1112 **Fig. 7. The RBD is the key determinant of trypsin-dependent entry.** **A)** Overview of the
1113 chimeric SARS-1-S and Rs4081 S proteins analyzed. The sequences of the S1/S2 and S2'
1114 cleavage sites are indicated, asterisk indicate conserved amino acids. **B)** The domains exchanged
1115 between SARS-1-S and Rs4081 S proteins are color coded in the context of the S protein
1116 monomer. **C)** Expression of chimeric S proteins. Particles pseudotyped with the indicated S
1117 protein were subjected to immunoblot analysis, using anti an antibody directed against the S2
1118 subunit of SARS-2-S. Detection of VSV-M served as loading control. Similar results were
1119 obtained in two separate experiments. **D)** Cell entry of driven by chimeric S proteins. Particles
1120 bearing the indicated S proteins (or no S protein) were treated with trypsin (50 μ g/ml for 30 min
1121 at 37°C) before addition to Vero or Caco-2 cells. The efficiency of S protein-driven cell entry
1122 was determined by measuring the activity of virus-encoded firefly luciferase in cell lysates at 16-

1123 18h post inoculation. Results for S protein bearing particles were normalized against those
1124 obtained for particles bearing no S protein (set as 1). Presented are the average (mean) data of
1125 three biological replicates, each performed with four technical replicates. Error bars indicate
1126 SEM. Statistical significance was assessed by two-tailed Student's t-tests ($p > 0.05$, not
1127 significant [ns]; $p \leq 0.05$, *; $p \leq 0.01$, **; $p \leq 0.001$, ***).

1128

1129 **Fig. 8. Trypsin treatment modulates sarbecovirus neutralization by the pan-sarbecovirus**
1130 **monoclonal antibody S2H97.** Particles bearing the indicated S proteins were preincubated with
1131 different concentrations of the pan-sarbecovirus monoclonal antibody S2H97, before being added
1132 to Vero-ACE2-TMPRSS2 cells. S protein-driven cell entry was analyzed by measuring the
1133 activity of virus-encoded firefly luciferase in cell lysates at 16-18h post inoculation and
1134 normalized to entry of in the absence of antibody. Presented are the combined data for 10 plasma.
1135 Please see supplementary table 1 for detailed information on the plasma samples. Presented are
1136 the average (mean) data of three biological replicates, each performed with four technical
1137 replicates. Error bars indicate SEM. Statistical significance was assessed by two-way analysis of
1138 variance with Sidak's multiple comparisons test ($p > 0.05$, not significant [ns]; $p \leq 0.05$, *; $p \leq$
1139 0.01 , **; $p \leq 0.001$, ***).

1140


1141 **Fig. 9. Antibodies induced by quadruple vaccination neutralize particles bearing diverse**
1142 **sarbecovirus S proteins. A)** Particles bearing the indicated S proteins were preincubated with a
1143 1:25 dilution of plasma from convalescent patients, individuals vaccinated two times with
1144 BNT162b2 (BNT/BNT), three times with ChAdOx1-S and BNT162b2 (AZ/BNT/BNT), and four
1145 times, including a bivalent, BA.5-adapted booster, before being added to A549-ACE2-TMPRSS2
1146 cells. S protein-driven cell entry was analyzed by measuring the activity of virus-encoded firefly

1147 luciferase in cell lysates at 16-18h post inoculation and normalized to entry of in the absence of
1148 serum. Presented are the combined data for 10 plasma. Please see supplementary table 1 for
1149 detailed information on the plasma samples. **B)** Particles bearing the indicated S proteins were
1150 preincubated with trypsin or Mock treated for 30 min before incubation with a fixed 1:25 dilution
1151 of serum from triple vaccinated donors that were boosted with a BA.5-adapted vaccine.
1152 Subsequently, the particles were added to Vero-ACE2-TMPRSS2 cells. S protein-driven cell
1153 entry was analyzed by measuring the activity of virus-encoded firefly luciferase in cell lysates at
1154 16-18h post inoculation and normalized to entry of in the absence of serum. Presented are the
1155 combined data for 10 plasma. Please see supplementary for detailed information on the plasma
1156 samples tested.

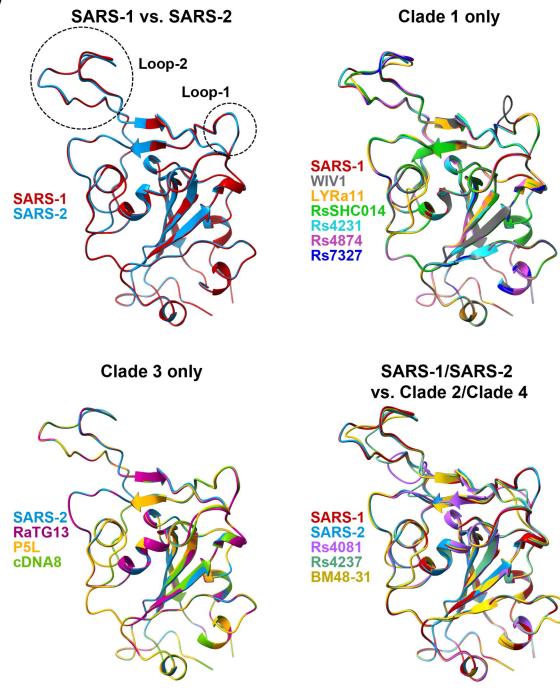
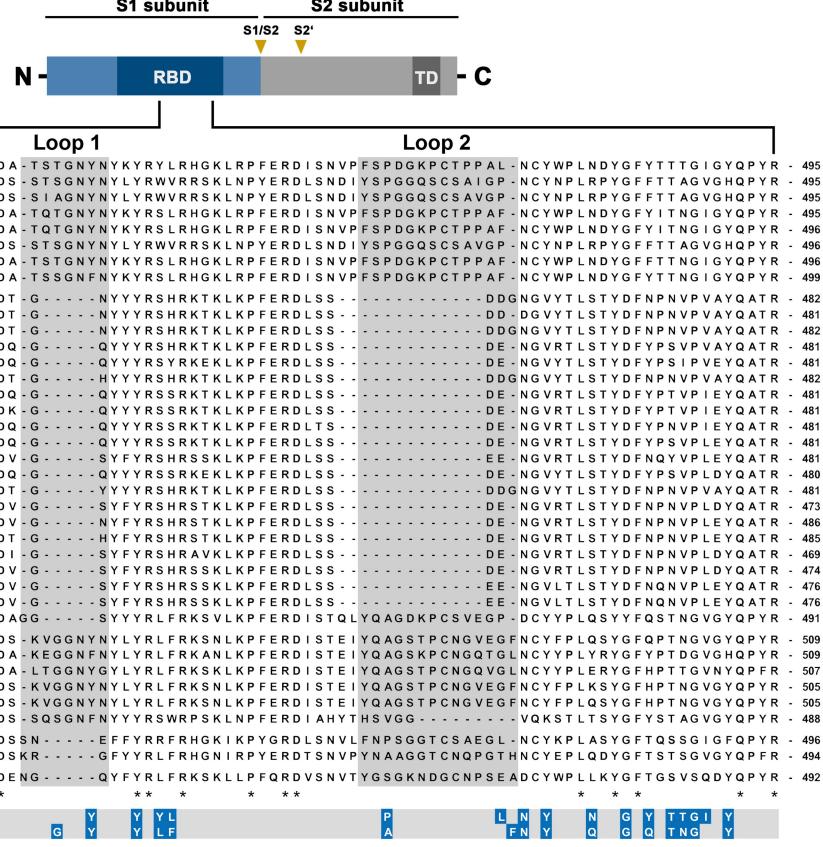
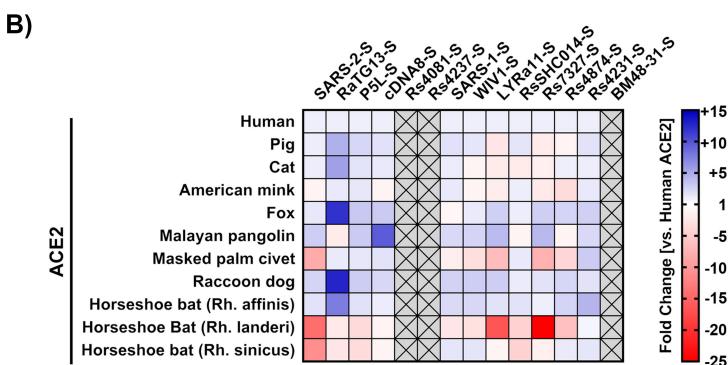
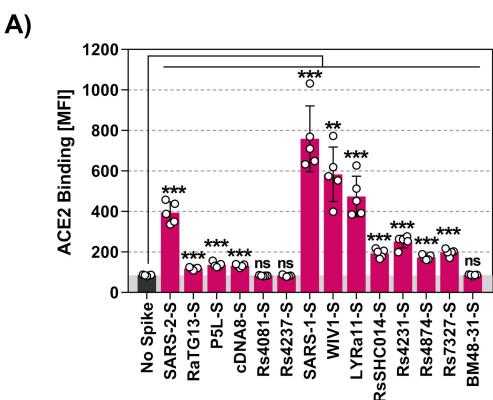
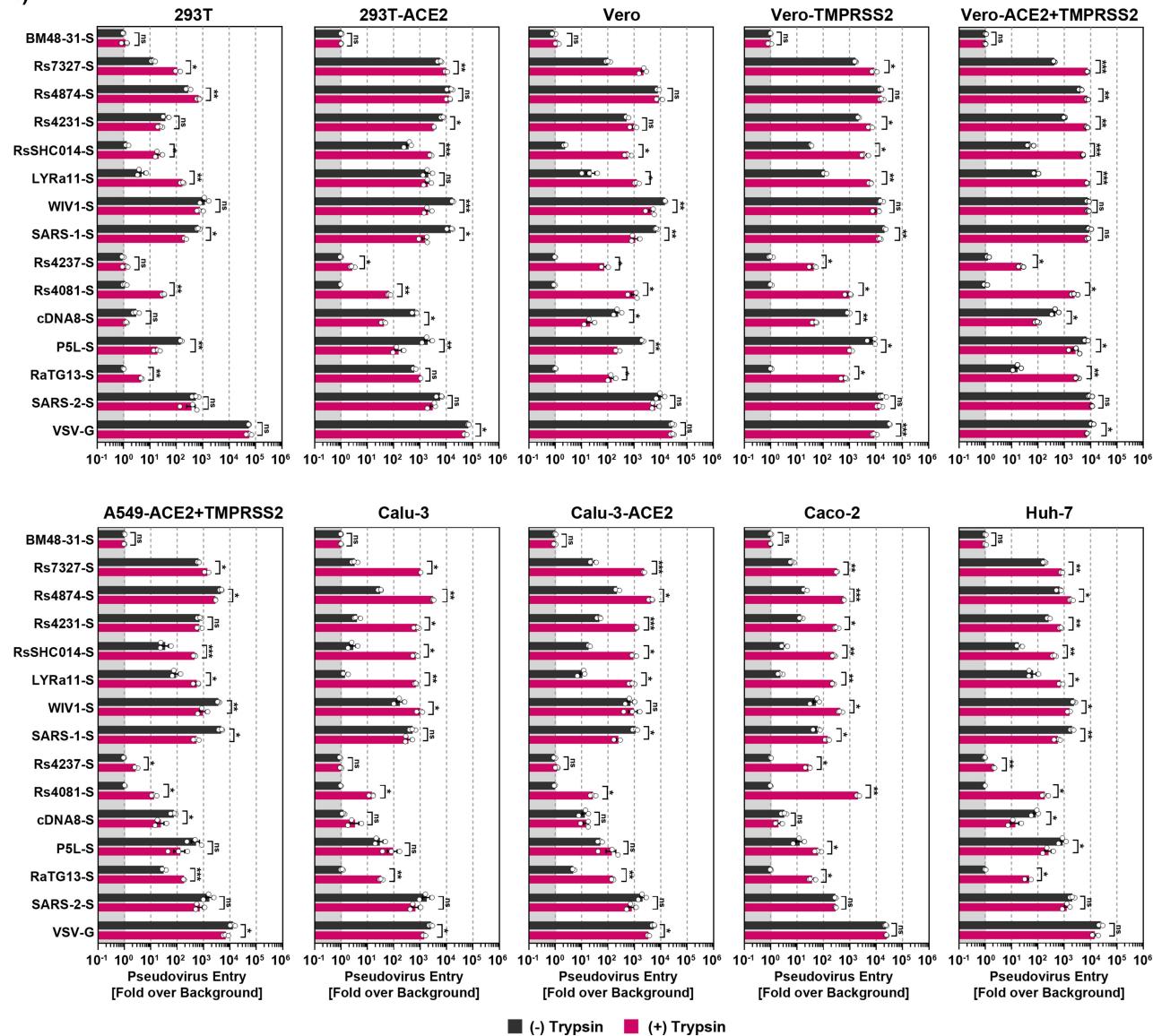
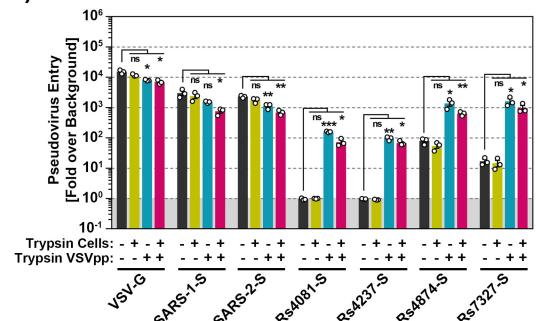
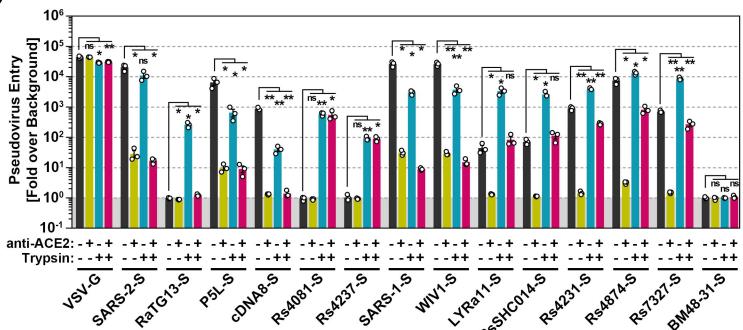

1157

Figure 1


A)



B)

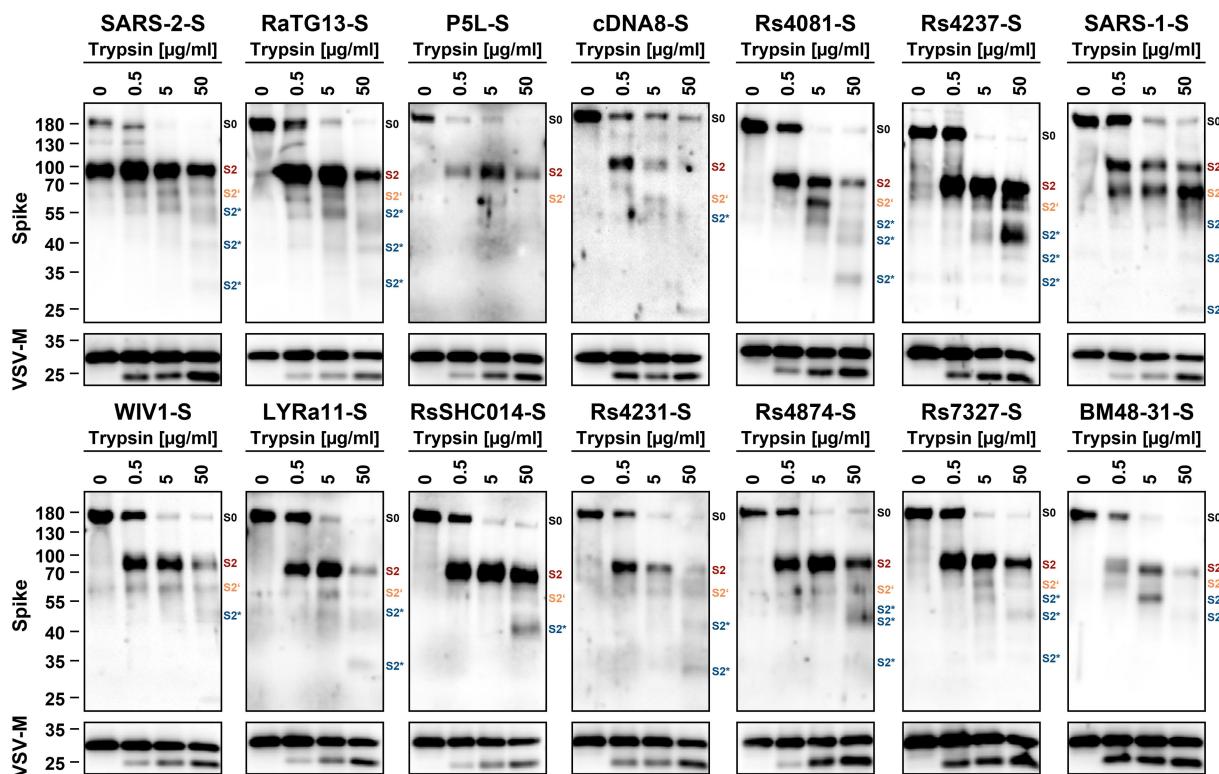
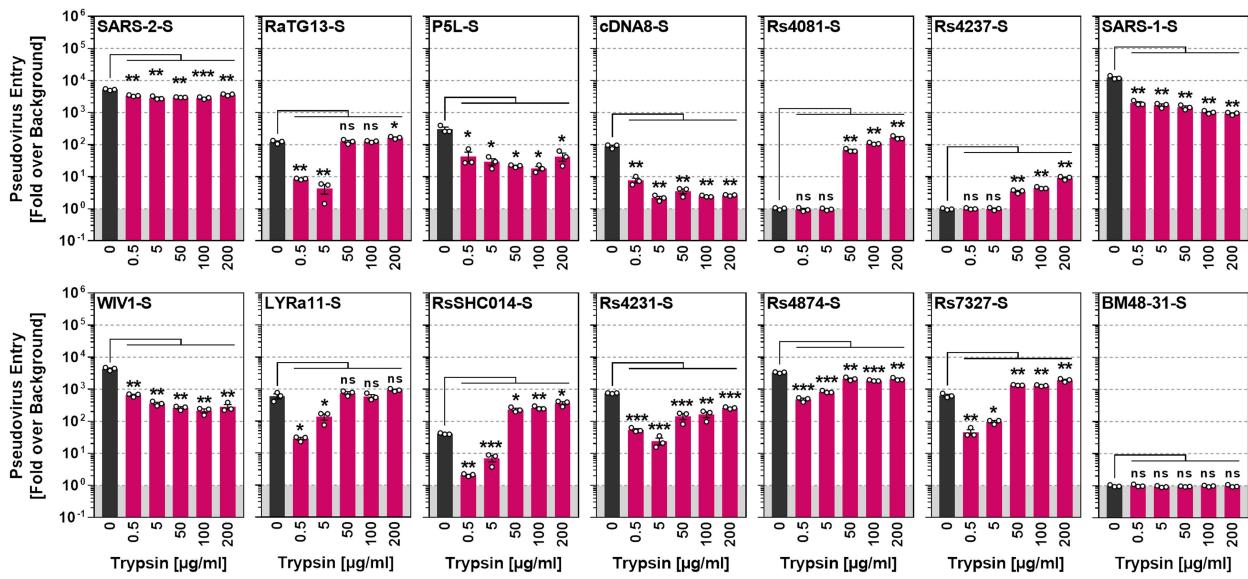


C)

Figure 2

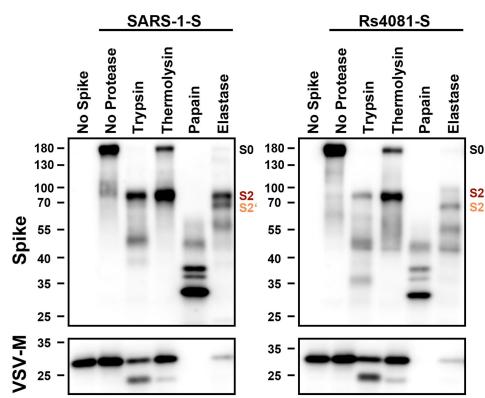


Figure 3**A)****B)****C)**

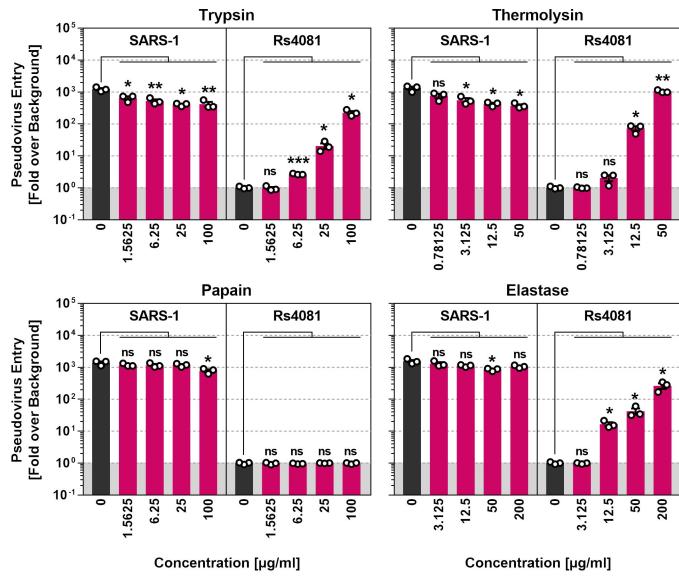
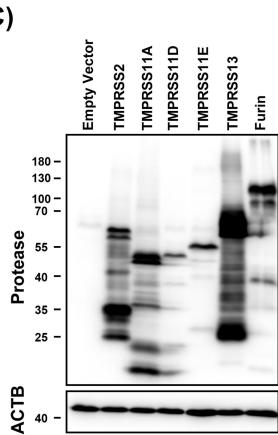
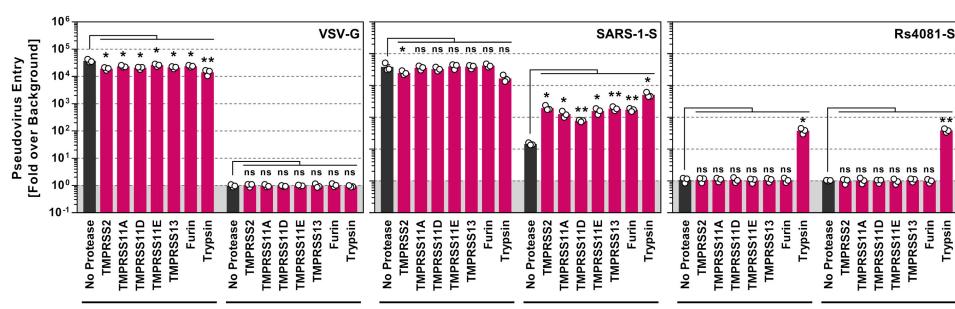
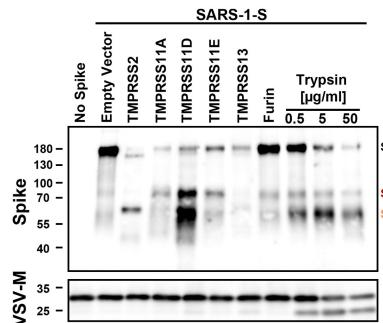

Figure 4**A)****B)**

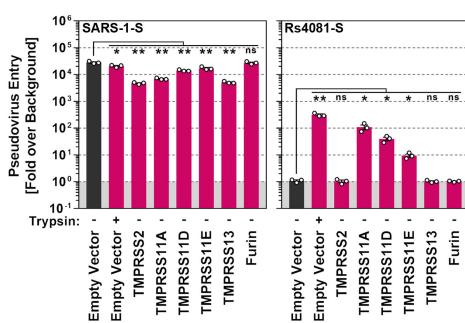
Figure 5


A)


B)


C)

D)


E)

SARS-1-S

Rs4081-S

F)

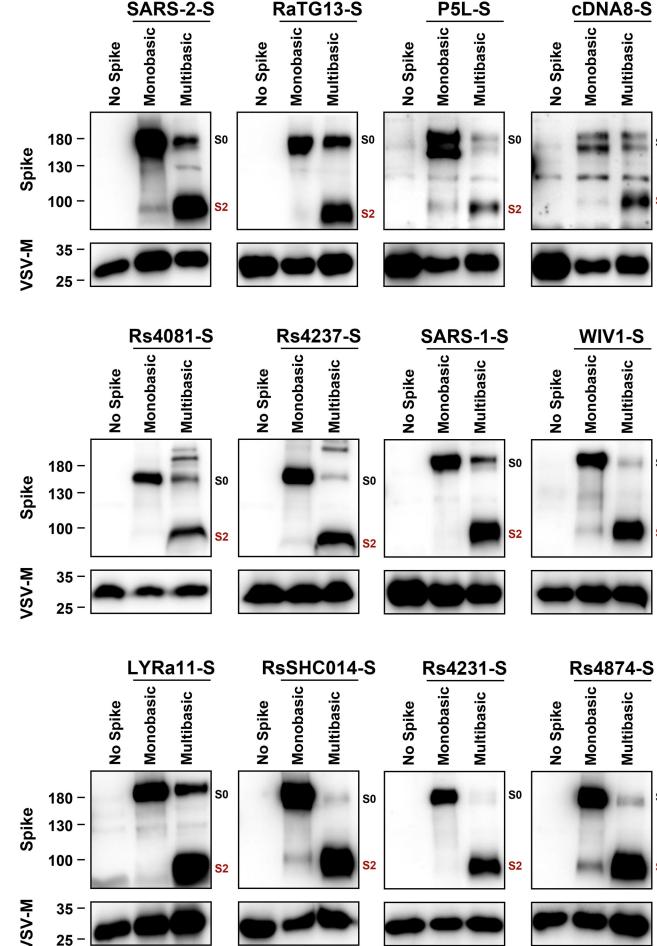
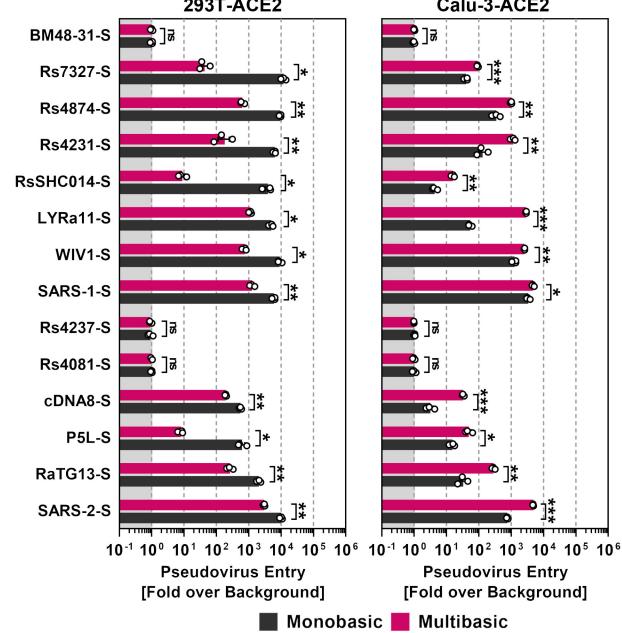
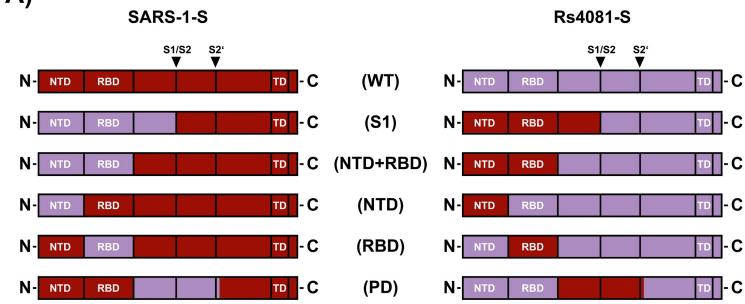
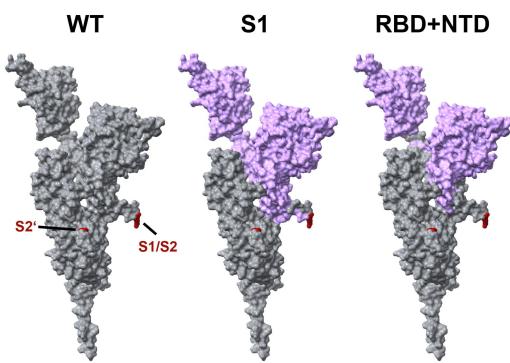
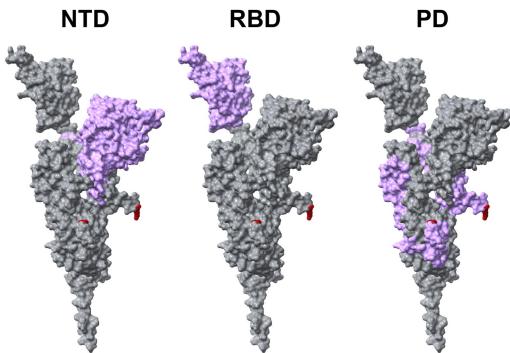
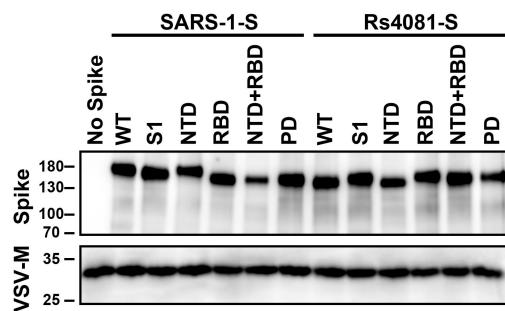
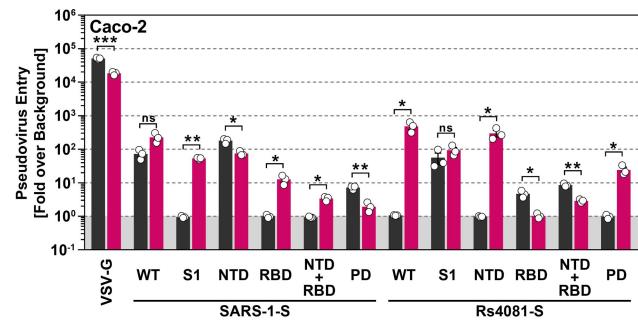
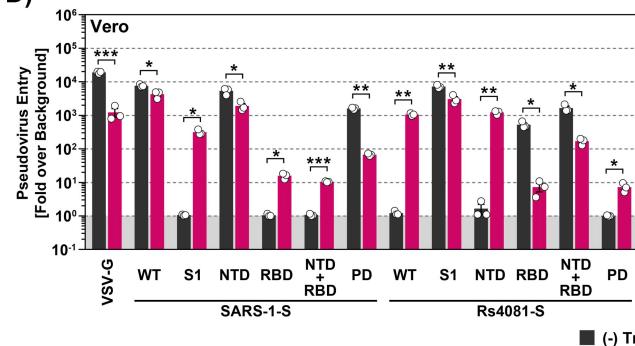
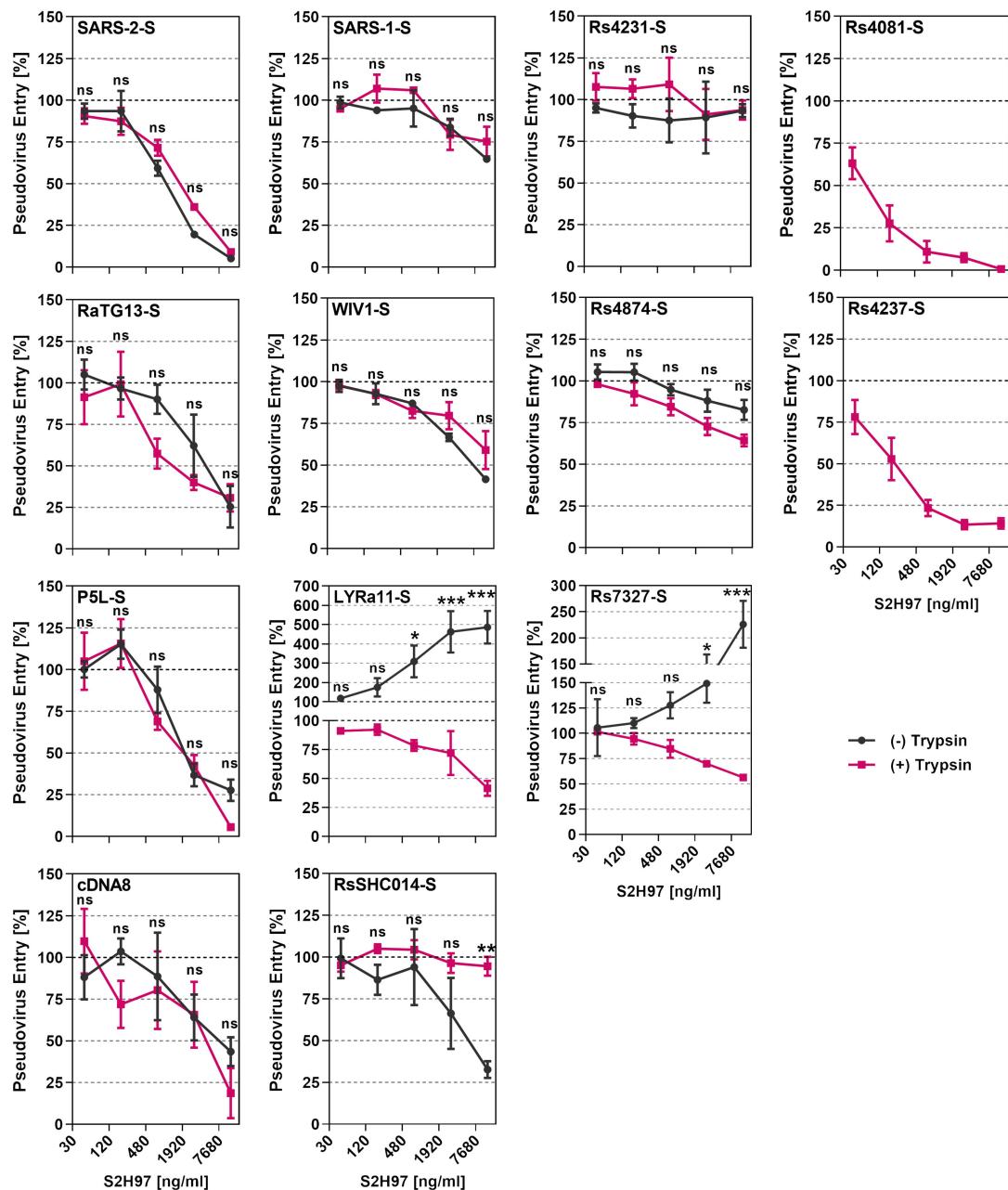


Figure 6


A)

		S1/S2 Loop																																												
SARS-1-S	651	-	P	I	G	A	G	I	C	A	S	Y	H	T	V	S	L	L	-	-	-	R	S	T	S	Q	K	S	I	V	A	Y	T	M	S	L	G	A	D	S	S	I	-	687		
WIV1-S	652	-	P	I	G	A	G	I	C	A	S	Y	H	T	V	S	S	L	-	-	-	R	S	T	S	Q	K	S	I	V	A	Y	T	M	S	L	G	A	D	S	S	I	-	688		
LYRa11-S	655	-	P	I	G	A	G	I	C	A	S	Y	H	T	A	S	L	L	-	-	-	R	N	T	D	Q	K	S	I	V	A	Y	T	M	S	L	G	A	E	N	S	I	-	691		
RsSHC014-S	652	-	P	I	G	A	G	I	C	A	S	Y	H	T	V	S	S	L	-	-	-	R	S	T	S	Q	K	S	I	V	A	Y	T	M	S	L	G	A	D	S	S	I	-	688		
Rs4231-S	651	-	P	I	G	A	G	I	C	A	S	Y	H	T	V	S	S	L	-	-	-	R	S	T	S	Q	K	S	I	V	A	Y	T	M	S	L	G	A	D	S	S	I	-	687		
Rs4874-S	651	-	P	I	G	A	G	I	C	A	S	Y	H	T	V	S	S	L	-	-	-	R	S	T	S	Q	K	S	I	V	A	Y	T	M	S	L	G	A	D	S	S	I	-	687		
Rs7327-S	652	-	P	I	G	A	G	I	C	A	S	Y	H	T	V	S	S	L	-	-	-	R	S	T	S	Q	K	S	I	V	A	Y	T	M	S	L	G	A	D	S	S	I	-	688		
Rs4081-S	637	-	P	I	G	A	G	I	C	A	S	Y	H	T	A	S	T	L	-	-	-	R	S	V	G	Q	K	S	I	V	A	Y	T	M	S	L	G	A	E	N	S	I	-	673		
Rs4237-S	637	-	P	I	G	A	G	I	C	A	S	Y	H	T	A	S	T	L	-	-	-	R	S	V	G	Q	K	S	I	V	A	Y	T	M	S	L	G	A	E	N	S	I	-	673		
SARS-2-S	665	-	P	I	G	A	G	I	C	A	S	Y	Q	T	Q	T	N	S	P	R	R	A	R	S	V	A	S	Q	S	I	I	A	Y	T	M	S	L	G	A	E	N	S	V	-	705	
RaTG13-S	665	-	P	I	G	A	G	I	C	A	S	Y	Q	T	Q	T	N	S	-	-	-	R	S	V	A	S	Q	S	I	I	A	Y	T	M	S	L	G	A	E	N	S	V	-	701		
P5L-S	663	-	P	V	G	A	G	I	C	A	S	Y	H	S	M	S	F	-	-	-	R	S	V	N	Q	R	S	I	I	A	Y	T	M	S	L	G	A	E	N	S	V	-	699			
cDNA8-S	661	-	P	I	G	A	G	I	C	A	S	Y	Q	T	Q	T	N	S	-	-	-	R	S	V	V	S	S	Q	I	I	A	Y	T	M	S	L	G	A	E	N	S	V	-	697		
BM48-31-S	654	-	P	I	G	A	G	I	C	A	K	Y	T	N	V	S	S	T	-	-	-	L	V	R	S	G	G	-	H	S	I	L	A	Y	T	M	S	L	G	D	N	Q	D	I	-	691







B)



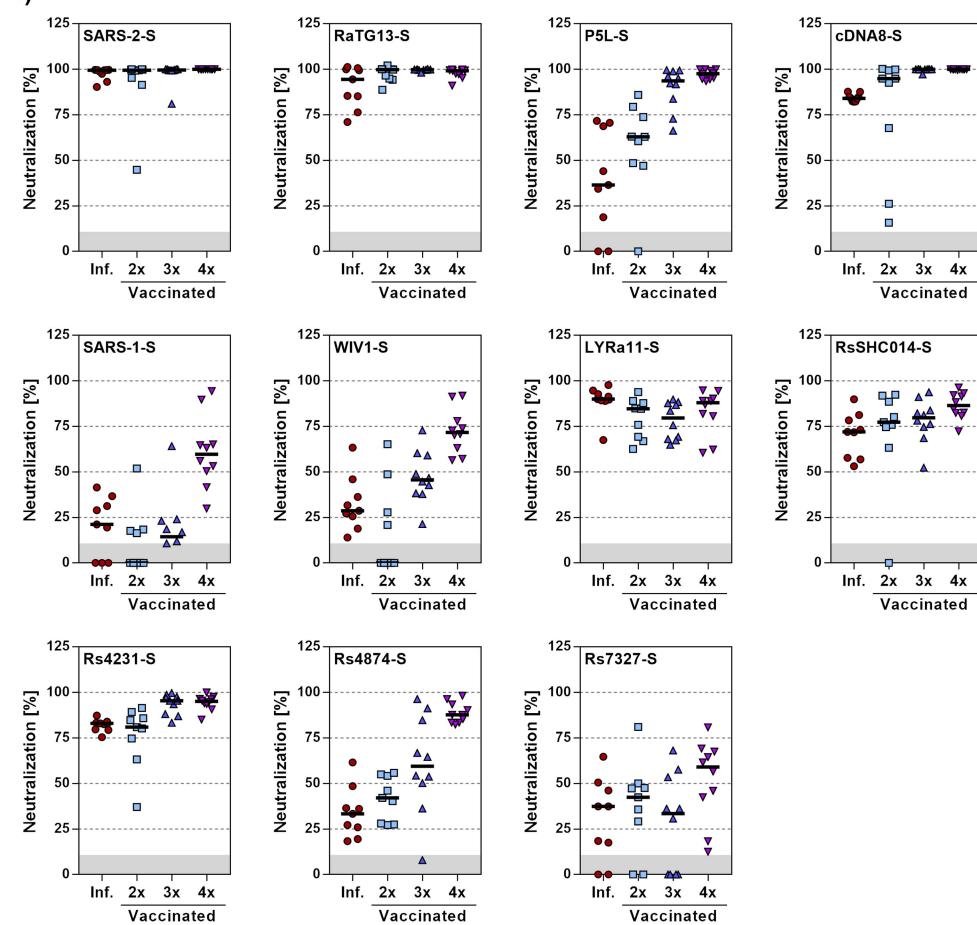
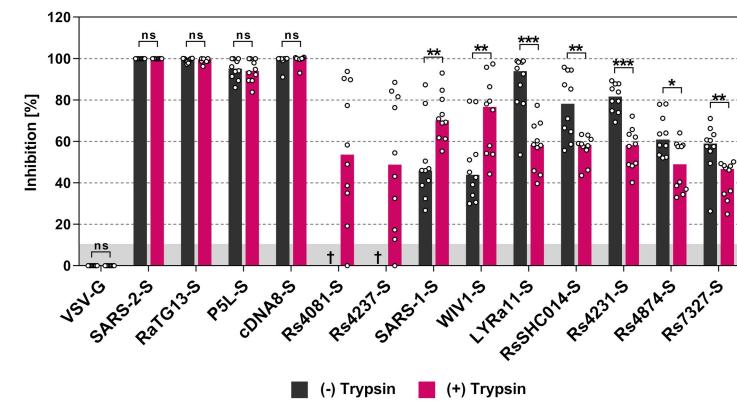


c)

Figure 7

A)

B)

C)

D)

Figure 8

Figure 9**A)****B)**