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Abstract

Unsupervised clustering is a powerful machine-learning technique widely used to
analyze high-dimensional biological data. It plays a crucial role in uncovering patterns,
structure, and inherent relationships within complex datasets without relying on
predefined labels. In the context of biology, high-dimensional data may include
transcriptomics, proteomics, and a variety of single-cell omics data. Most existing
clustering algorithms operate directly in the high-dimensional space, and their
performance may be negatively affected by the phenomenon known as the curse of
dimensionality. Here, we show an alternative clustering approach that alleviates the
curse by sequentially projecting high-dimensional data into a low-dimensional
representation. We validated the effectiveness of our approach, named APP, across
various biological data modalities, including flow and mass cytometry data, scRNA-seq,
multiplex imaging data, and T-cell receptor repertoire data. APP efficiently recapitulated
experimentally validated cell-type definitions and revealed new biologically meaningful

patterns.

Introduction

Modern biological data can be quite complex and high-dimensional, making it
challenging to uncover meaningful insights from the data. Clustering is often employed
to discover interesting patterns in the data by partitioning it into groups/clusters where
data points within the same cluster are more similar to each other than to those in other
clusters. High-dimensional clustering and projection pursuit [Friedman et al., 1974;
Friedman et al., 1982; Huber, 1985] both aim to address the problem of discovering

patterns in the data. However, they approach the problem from different angles.

High-dimensional clustering aims to group similar data points together based on a
similarity measure or fit to a posited generative model directly in the high-dimensional

space. It retains the original data's full information, but could suffer from the "curse of
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dimensionality" [Hastie et al., 2009 ; Bellman 1957; Bellman 1961], which results in data
becoming sparse and distances between observations becoming uninformative.
Consequently, the traditional clustering methods can fail to accurately reveal biological
patterns [Orlova et al., 2018] (and see Supplementary Tables 1 and 2 in [Meehan et al.,
2019])).

Projection pursuit, on the other hand, aims to find lower-dimensional projections of the
data where certain interesting patterns, structures, and features manifest themselves.
This is motivated by the fact that in many situations the relevant information (such as
cluster relationships) is contained in a lower dimensional subspace [Hastie et al., 2009],
with the remaining dimensions being uninformative. Projection pursuit involves finding
projections that maximize some criteria or interesting property. Once an interesting set
of projections has been found, existing structures (clusters) can be extracted and
analyzed separately. Projection pursuit can reveal hidden structures and relationships in
the data that might be difficult to detect in the original high-dimensional space due to the
curse of dimensionality. However, it requires defining a criterion or property to optimize
for, and the choice of criterion will determine the types of patterns that the optimization
will search for. Additionally, identifying the right projection can be computationally
intensive since one needs to explore d*N projections, where d is the data set
dimensionality, and N is the dimensionality of the low dimensional projection. While the
latter challenge is computational rather than a fundamental scientific limitation, it can be

a serious practical hurdle.

The concept of exhaustively exploring low-dimensional projections of high-dimensional
data has existed for a few decades. Historically, efforts were made to systematically
explore low-dimensional projections, referred to as a "grand tour" [Cook et al., 1995], or
to optimize specific criteria to identify profitable projections. However, challenges in
determining the optimal criterion and the computational complexities associated with
processing numerous low-dimensional projections have hindered the widespread

adoption of projection pursuit methods for data clustering tasks.
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Here we combined the principles of projection pursuit [Friedman et al., 1974; Friedman
et al., 1982; Huber, 1985] and clustering into an Automated Projection Pursuit (APP)
clustering approach to automatically uncover interesting structures in high-dimensional
data. In traditional projection pursuit, the analyst manually adjusts the projections to find
interesting patterns. In the APP approach, as implemented here, we automatically find
the low dimensional projections with the smallest data density between the resulting
clusters and further recursively and exhaustively analyze each resulting cluster until no
further splits in the data are detected. This allows for the reproducible discovery of
clusters that might be obscured in the high-dimensional space, and, as we show here, is
less sensitive to the curse of dimensionality. Finally, to address the challenging
computational aspects of projection pursuit clustering we developed an algorithm to

efficiently find the most profitable projection at each recursive step.

We demonstrate the versatility and accuracy of APP applied to various data modalities,
including flow and mass cytometry data, scRNAseq, multiplex imaging data, and TCR
repertoire data. Our results show that APP recapitulates experimentally validated cell
type definitions in a variety of data modalities, and offers additional biological insights.
These insights include evaluating hypotheses regarding the existence of a binding motif
between in CDR3b of TCRs that recognize the same peptide, as well as uncovering a
pattern involving charged amino acid residues that contribute to stabilizing the interface
between CDR3a and CDR3b chains of TCR.

To gain a deeper understanding of scenarios where projection pursuit methods, such as
APP, outperform widely used high-dimensional clustering methods, we initially applied
them to biological data with a known ground truth. In this dataset, each cell population
was quantified and functionally validated. To facilitate a quantitative evaluation of APP's
performance compared to other methods, we developed a label transfer pipeline based
on supervised UMAP (https://Jumap-learn.readthedocs.io/en/latest/supervised.html).
This approach provides a convenient framework for comparing and visualizing the
agreement between clustering algorithm methods and the ground truth and accounts for

the underlying data topology. This aspect is particularly vital, especially in the context of
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analyzing data from disease settings. As demonstrated in an illustrative example, our
analytical approach enabled the discovery of a novel population of myeloid cells notably

enriched in hospitalized COVID-19 patients.

Materials and methods
Data Overview

Flow cytometry data

Whole blood from consenting COVID-19 patients and healthy donors (studies approved
by the Emory Institutional Review Board (IRB) under protocol numbers IRB00058507,
IRB00057983, and IRB00058271) were collected by standard venipuncture, then
samples were processed as previously described [Eddins et al., 2022]. Peripheral blood
mononuclear cells (PBMCs) were isolated from whole blood following serum collection
using the EasySep™ Direct Human PBMC lIsolation Kit (StemCell Technologies)
following the manufacturer’s instructions. We then performed either a custom
monocyte-enrichment procedure (via negative selection) utilizing Mojosort™ anti-PE
Nanobeads (BioLegend) and PBMCs stained with PE-conjugated CD3¢ (clone:
UCHT1), CD19 (clone: SJ25C1), CD56 (clone: NCAM), and CD57 (clone: HNK-1; all
from BioLegend) for COVID-19 samples or the EasySep™ Human Monocyte
Enrichment Kit without CD16 Depletion kit (StemCell Technologies) for health donor

samples.

An aliquot of monocyte-enriched PBMCs (<107 total) was resuspended in
fluorescence-activated cell sorter (FACS) buffer in 5 mL FACS tubes and pre-incubated
with Human TruStain FcX™ (BioLegend). The 28-color extracellular staining master mix
(Supplementary Table 1) was prepared 2X in BD Horizon™ Brilliant Stain Buffer (BD
Biosciences) and added 1:1 to cells. After staining, cells were fixed with 4%
paraformaldehyde, then washed with FACS buffer, and resuspended in 200-1000 pL
FACS buffer for acquisition using BD FACSDiva™ Software on the Emory
Pediatric/Winship Flow Cytometry Core BD FACSymphony™ A5,
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Mass cytometry (CyTOF) data
A comprehensive 38-parameter mass cytometry panel was applied to healthy human

blood samples from ten consenting volunteers to compare the frequencies of 28

immune cell subsets [Toghi Eshghi et al., 2019]

scRNAseq data

PBMC dataset: Publicly available scRNA-seq counts data from 2,700 single peripheral
blood mononuclear cells (PBMC) was accessed from 10X Genomics
(https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene bc matrices.t

ar.gz).

Wildtype and 5XFAD mouse model dataset: Single-nucleus RNA-seq counts data for 3
wildtype and 3 5XFAD 7-month-old mouse brains was downloaded from the Gene
Expression Omnibus (GEO) database (accession number GSE140510) [Zhou et al.,
2020]. Droplet-based 5’ end massively parallel single-cell RNA sequencing had been
performed on the samples, and data processing was done using the Cell Ranger

Single-Cell Software Suite from 10x Genomics by the originators of the data.

Multiplex imaging data

CD11c, SIRPa, CD163, CD206, CD68, CD45, HLA-DRA and Pan-Keratin antibodies
were conjugated to oligonucleotides (oligos) and then validated in the SignalStar
Multiplex IHC assay to assess the myeloid compartment of the tumor microenvironment.
Paraffin-embedded human squamous cell carcinoma tissue was tested using 8-plex
panel Pan- Keratin (C11) & CO-0003-488 SignalStarTM Oligo-Antibody Pair #63566,
CD68 (D4B9C) & C0O-0007-594 SignalStarTM Oligo- Antibody Pair #77318,
CD206/MRC1 (E2L9N) & CO- 0035-488 SignalStarTM Oligo- Antibody Pair #99626,
CD163 (D6U1J) & CO-0022-750 SignalStarTM Oligo-Antibody Pair #71043,
SIRPa/SHPS1 (D613M) & CO-0034-647 SignalStarTM Oligo-Antibody Pair #80150,
CD45 (Intracellular Domain) (D9M8I) & CO-0013-647 SignalStarTM Oligo-Antibody Pair
#32740, CD11c (D3V1E) & CO-0017-594 SignalStarTM Oligo- Antibody Pair #85384,
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HLA-DRA (E9R2Q) & CO-0023- 750 SignalStarTM Oligo-Antibody Pair #58446 using
SignalStarTM mIHC technology.

All 8 primary antibodies are applied at once in one primary incubation step. A network
of complementary oligonucleotides with fluorescent channels 488, 594, 647, 750 nm
amplify the signal of up to 4 oligo-conjugated antibodies in the first round of imaging,
followed by removal and amplification of 4 additional antibodies in the second round of
imaging. Images were acquired on the Phenolmager HT (Akoya Biosciences). The
antibodies were quantitatively validated in the SignalStar assay to ensure maximum
fluorescent signal with minimal background, and compared against the chromogenic

gold standard.

TCR repertoire data

The TCR repertoire data utilized in this study was obtained from the McPAS-TCR
database [Tickotsky et al., 2017]. McPAS-TCR is a manually curated resource
containing human and mouse TCR sequences associated with various pathologies and
their cognate antigens. We downloaded the September 10, 2022 version of
McPAS-TCR (latest available), providing over 13,000 TCR CDR3-beta chain and

epitope pairs.

Data analysis

Flow cytometry data
Manual, use-guided analyses were performed using AutoGate [Meehan et al., 2019]

(available at: cytogenie.org) and FlowJo™ v10.8 (BD Biosciences).

Mass cytometry (CyTOF) data
Comprehensive conventional manual gating strategy for 38-parameter human

immunophenotyping is described at [Toghi Eshghi et al., 2019].
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scRNAseq data

Both datasets were processed using Seurat v3. Counts were log-normalized and
scaled, and UMAP reduction and PCA (principal component analysis) were performed.
Seurat’s default graph-based clustering algorithm was used to identify cell-type clusters
(https://satijalab.org/seurat/articles/pbmc3k_tutorial.html). Cell types were annotated by

comparing known biomarkers with the markers calculated for each cluster.

Principal components (10 for the PBMC dataset and 20 for the brain dataset [Zhou et
al., 2020]) were extracted from the Seurat objects in order to run the APP clustering
procedure, which produced new cluster identifications for each cell. New cell
annotations were identified by comparing known biomarkers with cluster markers
calculated using the new identifications. Differently-matched and non-matched cells
were identified and tabulated. Dimensional reduction plots and heat maps were

produced using Seurat, and other visualizations were produced using ggplot.

Multiplex imaging data

To interpret SignalStar data collected in two imaging rounds (Round 1 and Round 2)
with the Phenolmager HT (Vectra Polaris) several data pre-processing and processing
steps were performed. More specifically, whole slide imaging data collected with
Phenolmager HT underwent image stamping and whole section selection in the
Phenochart (Akoya Biosciences), with the further spectral unmixing and
autofluorescence removal done in the Inform (Akoya Biosciences) to distinguish true
signals from background noise and ensure accurate quantification of each fluorophore

signal.

TIFF components were then exported from the Inform (Akoya Biosciences) into the

QuPath [Bankhead et al., 2017] software where the TIFF components stitching, image
alignment co-registration, and image fusion were sequentially performed. These steps
allow simultaneous visualization of multiple markers signals from which were recorded

across different cycles or time points.
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Nuclear and membrane segmentation were then done using Cellpose QuPath extension
[Stringer et al., 2021] on the pre-processed images. Specifically, the 'nuclei' base model
of the Cellpose algorithm was employed, with the DAPI nuclear signal from Round 1
serving as its input. Expected diameter of detected nuclei was set to zero to allow for
automatic computation by Cellpose. To approximate cell boundaries, a nucleus
expansion algorithm implemented in Cellpose was employed, with the cellExpansion
parameter set to 5 micrometers. Cell expansion was constrained to 1.5 times the size of
the nucleus, controlled by the cellConstrainScale parameter. Additionally, tile size was
set to 2048 pixels and the setOverlap parameter that accounts for overlaps between the

tiles was set to 100 pixels.

Following segmentation twenty features per marker were extracted for each single cell
and used for the subsequent cellular analysis including cell phenotyping. Specifically,
measurements of marker mean, median, maximum, minimum, and standard deviation
were calculated for each of the identified cell compartments, namely the nucleus,

cytoplasm, membrane, and the entire cell.

TCR repertoire data

The TCR CDR3b, CDR3a sequences and associated peptide epitope sequence data
underwent conversion into embeddings using recent techniques in Large Language
Model (LLM) technology. Evolutionary Scale Modeling (ESM) [Lin et al., 2022] has
recently harnessed LLMs to create a collection of protein language models. Specifically,
we utilized the esm2_t33_650M_URS0D model from ESM to initially generate
embeddings for TCR CDR3b, CDR3a and peptide epitope sequences. These
embeddings, characterized by a high dimensionality (1280 dimensions), were
independently created for TCR CDR3b, CDR3a, and peptide epitope sequences.
Subsequently, we concatenated the embeddings (1280D for TCR CDR3b and 1280D
for peptide; 1280D TCR CDR3a, 1280D CDR3b, and 1280D peptide) to capture the

combined information pertaining to TCR-antigen interactions.
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The concatenation of these embeddings results in a feature vector (2560D for CDR3b
and peptide; 3840D for CDR3a, CDR3b and peptide) that encapsulates the unique
characteristics of both the TCR and antigenic sequences. This combined representation
aims to capture the intricacies of TCR-antigen interactions. PCA was then applied to
these combined embeddings, and the first 30 principal components were used in APP
clustering. This approach enabled thorough exploration and analysis of the dataset,
unveiling intricate patterns and relationships within the combined TCR-antigen

sequence space.

The sequence similarity within each class (CDR3a, CDR3b and peptide epitope) was
calculated by aligning each pair of sequences and computing the Blosum62 score for
the alignment (utilizing the Bio.pairwise2 module in the Biopython package
(https://biopython.org/docs/1.75/api/Bio.pairwise2.html)). The Blosum62 score offers a
quantitative measure of the similarity or dissimilarity between amino acids at specific
positions in protein sequences, relying on observed frequencies of substitutions in
related proteins. It is commonly utilized in sequence alignment algorithms to assess the
evolutionary relationships between proteins and identify regions of conservation or
divergence. Within each cluster, an average sequence similarity was calculated by
averaging the scores for each unique pair of sequences found in that cluster. Between
each pair of clusters, an average sequence similarity score was calculated by averaging
the scores for each unique pair of sequences between the two clusters. Unique pairs
were used to avoid biasing within-cluster average scores for clusters containing many

repeated sequences.

Cluster sequence logos for peptides were generated by selecting all sequences of
uniform length. This length was defined as the rounded average sequence length
among all sequences in a cluster within a given class of sequences. This approach
ensured the ~70-80 percent (varies among the clusters) coverage for epitope
sequences. The distribution of amino acid residues at each position was then calculated

for these selected sequences. The Python package LogoMaker was employed to create
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probability matrices for the sequence logos, which were subsequently utilized for the

analysis of amino acid R group properties.

All CDR3a and CDR3b sequences used in this study underwent alignment using the
multiple alignment program for amino acid or nucleotide sequences (MAFFT),

accessible at https://mafft.cbrc.ip/alianment/server/large.himl?aug31, with default

settings. The aligned sequences were further employed for the analysis of amino acid R

group properties.

TCR-pMHC crystal structure analysis

Crystal structures under PDB accession codes 3GSN, 3PQY, 10GA, 304L and SEUO
were used to analyze in detail interfaces between antigen and TCRa, antigen and
TCRb, TCRa and TCRb. For each structure the analysis was performed using PISA
(http://www.ebi.ac.uk/pdbe/prot_int/pistart.html) service [Krissinel et el., 2007]. A manual
verification was performed for each structure using PyMOL Molecular Graphics System,

Version 1.2r3pre (Schrddinger, LLC). Figures were generated with PyMOL.

Automated projection pursuit clustering based on the best separation score

The objective of determining the decision boundary with the lowest data density
between resulting clusters at 2D projection shares a conceptual similarity with
Hamilton's principle of least action [The Feynman Lectures on Physics Vol. || Ch. 19:
The Principle of Least Action], a fundamental variational principle in particle and
continuum systems. According to Hamilton's formulation, the genuine dynamical
trajectory of a system, navigating between an initial and final configuration within a
specified time, is identified by contemplating all conceivable trajectories that the system
might follow. For each of these trajectories, the action—a functional of the trajectory—is
computed, and the trajectory that renders the action locally stationary (traditionally
termed 'least') is selected. The genuine trajectories are those that minimize the action.
The overarching concept of examining all conceivable trajectories (or decision
boundaries in our case) to identify the most optimal solution served as the foundational

principle in devising the logic behind the APP algorithm.

10
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The overall data clustering workflow (Figure 1) is constructed to unambiguously assign
a cluster identification number (id) to each data point in the data set by recursively
performing the following three steps: 1) presenting the multidimensional data in all its
two-dimensional (2D) orthogonal projections; 2) for each 2D projection finding the
decision boundary (i.e. the boundary separating cluster assignments) according to the
local minimum density of the data points; 3) choosing the 2D projection that has
decision boundary with the highest Calinski-Harabasz [Calinski et al., 1974] score,
splitting the data along this decision boundary. The Calinski-Harabasz index, that is
often used to evaluate the goodness of split, is calculated as a ratio of the sum of
inter-cluster dispersion and the sum of intra-cluster dispersion for all clusters (where the
dispersion is the sum of squared distances). These steps 1 and 2 are repeated
recursively and exhaustively, until there are no further splits as defined by the

user-inputed minimum cluster size parameter.
The generalized structure for such an algorithm may look as follows.

In each recursive step:

If the number of cells at the input to the recursion step is less than 2* min_cluster_size
(user defined parameter), then this piece of data is considered as the final cluster,
cluster id is assigned, and no further splits are performed. The algorithm exits the

recursion step.

Alternatively, for each 2D dimensional (x,y) projection mapped onto a unit square (side
length of 1) we build the Gaussian-smoothed histogram H(x,y) of the data points. For
the optimal number of bins of 2D histogram, we use Mann's formula [Mann et al., 1942]
taking into account the number of the data points n of the current 2D projection. The
challenge of determining the optimal number of histogram bins, contingent on the
number of data points, remains an ongoing issue without unanimous consensus in the
literature. The optimal choice must strike a balance between having too few bins

(resulting in poor resolution) and too many bins (leading to increased noise). Various

11
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approaches and formulas exist, and in our perspective, we adopted what we believe to
be the most reasonable one. The Gaussian smoothing width ¢ is taken as a free

parameter of the algorithm. Then the number of bins N for each of the two coordinates
is the square root of the total number of two-dimensional bins multiplied by the width of

the Gaussian smoothing:

2 0.1
N = 406[3(n — 1)°/4] (1)

Thus, the use of Gaussian smoothing not only reduces the statistical noise of the data,
but also allows to increase the number of histogram bins. Calculating the optimal
number of histogram bins depending on the number of data points considered at each
recursion step made it possible to significantly speed up the calculations, since it
reduced the number of algorithm operations due to the reduction in the size of clustered

projections during program operation.

To initiate the search for a decision boundary function y(x) (Supplementary Figure 1)

we build H1 function that is a sum of the initial distribution density H and a parabolic
function Hg - the “yo-gravity potential”. Function Hg(y) is added for partial straightening
the decision boundary function y(x) along the x-axis. Addition of the Hg(y) function to

the data histogram results in a constraint for the following decision boundary condition:

y(xo, q) = yo(q) and in a constraint that y(x, q) will be as close as possible to the yo(q)

fortheeveryx € [x ,x .

min max

m

HOb o=0- yo)z; y, =aq +QA-qy (2)
Where g € [0, 1] - a numeric parameter.

H (xy q) = H@y) + kH (v, q) 3)
Where k is a positive constant, the optimal value of which is calculated by the following

expression:
k = B-(max(H) — min(H))/max(Hg) 4)
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The coefficient k plays a crucial role in achieving a balance between the parabola and

the data, particularly in determining the trajectory of the decision boundary. And the
greater the coefficient k the greater the straightening effect. Here the multiplier § is a

free parameter that allows to vary the degree of influence of the “y 0—gravity potential” on

the clustering process. Our empirical assessment shows that a value of 3=0.1 (i.e. 10%

“gravity”) gives fairly good clustering results in many cases.

To “draw” a decision curve on a 2D plane one needs to know its’ initial [y(xm, )] as Y,

m

and final [y(xmm)] asy, boundary conditions. The explicit but more computationally
intense solution would be to search for a decision boundary for each possible Y, and Y,

in a given 2D projection. To optimize this process, instead of that approach we made the

parabolic function Hg be depend on a parameter q that is used to introduce the next

incremental step along the axes (i.e., 6q = 0.1).

To find the decision boundary with the smallest data density between the resulting
clusters, for every parameter value q € [0, 1] (Supplementary Figure 1) we search for

extremals fq(x) (an analogue of trajectory from analytical mechanics) and the

curvilinear integral S(q) (an analogue of action from analytical mechanics) of the

probability density along the decision boundary:

f,00 = argmin, ) [ H, (4% y00)dx )

min

S@@) = [ Hex f () ©)

min

Further, we need to find the values q, that would satisfy the following condition:

S(qo - 8q) > S(qo) < S(q0 + 8q). For such values, fq (x) will be a true extremal or
0

decision boundary. Once a decision boundary is found data is then splitted along that
decision boundary. If both parts of the data obtained after splitting contain more than

min_cluster_size cells, then this decision boundary is added to the list of decision
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boundaries for a given projection. If more than one decision boundary is found on a
given projection, these decision boundaries are then ranked according to their
Calinski-Harabasz score, and the decision boundary with the maximum

Calinski-Harabasz score is chosen to represent the given projection.

Then, among all possible 2D projections at a given recursion step, the algorithm
chooses the one that contains the decision boundary with the maximum
Calinski-Harabasz score. The data is then splitted along this decision boundary and the
new recursive step is initiated on each of two data pieces independently, if both parts of
the data obtained after splitting contain more than min_cluster_size cells. Alternatively, if
this latter condition doesn’t hold for any of the projections in the recursive iteration, then
the iteration's inputs form the final cluster. In this case, the algorithm assigns the final

cluster id to this piece of data and recursion stops.

Automated label transfer across samples

At a high level, the label transfer pipeline enables the use of a labeled (or partially
labeled) set of points to learn a metric on the data. This learned metric is then employed
as a measure of distance between new, unlabeled points. The immediate practical
applications of such a pipeline, demonstrated here, include the automation of an
expert-defined manual gating strategy, and the assessment of clustering algorithm
performance against the ground truth cluster labels. We have developed a concise
four-step pipeline that serves both these needs, facilitating the visualization and
quantification of the misclassification rate between the clustering algorithm and the
ground truth labels (see Supplementary Figure 2). Additionally, it streamlines the

automation of an expert-defined manual gating strategy.

The pipeline starts with creating a supervised UMAP embedding
(https://umap-learn.readthedocs.io/en/latest/supervised.html) using labeled or partially
labeled training sample(s) that has both marker expression data and ground truth
cluster labels. UMAP is applied to this training data with the goal to learn a distance

metric that best separates the classes while preserving their relationships in the marker
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space. Using equal weights for marker expression and ground truth cluster labels

ensures that both data-driven and prior knowledge are considered in the embedding.

This step itself provides an opportunity to assess the quality of the ground truth cluster
labels by observing an agreement (or disagreement) between the data topology and
clustering decisions. By observing the agreement or disagreement between the data's
topological structure in the UMAP space and the provided ground truth cluster labels,
one can gain insights into whether the ground truth labels accurately reflect the
underlying structure of the data (Supplementary Figure 3). High agreement between the
UMAP topology and the ground truth labels suggests that the ground truth labels are
representative of the data's natural clustering patterns. Conversely, disagreements may

indicate issues with the ground truth labels.

As we show here, this step is valuable not only for clustering evaluation but also for
quality control and refinement of the ground truth labels themselves (Supplementary
Figure 3). If discrepancies between the UMAP structure and ground truth labels are
identified, it might prompt a reevaluation or improvement of the ground truth
annotations. Overall, this dual-purpose step enhances the robustness of the pipeline by
allowing one to simultaneously assess the clustering algorithm's performance and the

quality of the ground truth labels used for evaluation.

In the following step (Supplementary Figure 2), the set of labeled points is employed to
learn a metric on the data. This learned metric subsequently serves as a distance
measure between new unlabeled points, facilitating the projection of an unlabeled test
set into the UMAP embedding space constructed using the training set. This ensures
that the test set occupies the same reduced-dimensional space as the training set. The
test set is then subjected to clustering using the Support Vector Clustering (SVC)
[Ben-Hur et al., 2001] algorithm directly applied in the supervised UMAP embedding
space. Given that clustering in this context is confined to two dimensions (UMAP_x and
UMAP_y), we opted for an algorithm that refrains from assigning any of the events to

noise and, at the same time, offers computational superiority over APP. Subsequently,
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the QFMatch algorithm [Orlova et al., 2018] is employed to align the cluster labels
between the test set (with cluster ids defined by SVC or assigned by the clustering
algorithm under assessment—see Supplementary Figure 4) and the training set (with
ground truth cluster ids). The alignment of labels is crucial as it accommodates the
following scenarios: 1) transferring cluster labels from the test set to the training set; 2)
directly assessing the agreement of clustering decisions made by multiple clustering

algorithms (see Supplementary Figure 4).

In the final step, we compute the number of misclassified events per cluster ID. This
quantifies how effectively the clustering algorithm has assigned data points to clusters in

comparison to the ground truth.

Beyond clustering algorithm evaluation, this pipeline holds broader applications in
supervised learning tasks. As demonstrated here, it can be employed to transfer labels
from one sample to another or from a partially labeled dataset to the remaining data in a
given set. This feature proves particularly valuable in scenarios where labeled data is

limited.

Results

Performance on data with functionally validated ground truth labels

To objectively assess the APP performance against the widely used clustering
algorithms in application to realistic, biologically relevant data, we used ground truth
data where each cell population was quantified and functionally validated. To generate
such biologically relevant data with the known ground truth we combined spleen cells
from the GFP+Wild-type and RAG-KO mice at five different proportions (Figure 2A).
RAG-KO mice are deficient in generating lymphoid lineages, while GFP+ mice
represent a healthy immune system with constitutive GFP expression in all immune cell
lineages. This allows for easy and accurate detection of immune cell populations by flow

cytometry, simplifying the identification and quantitation of cell lineages. The latter
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ensures that the clusters obtained by clustering algorithms can be compared against a

known biological truth [Zimmerman, 2011].

To assess the performance of the APP algorithm in comparison to state-of-the-art
clustering algorithms, we selected two generally widely used high-dimensional
clustering algorithms, irrespective of data origin: HDBSCAN
(https://pypi.org/project/hdbscan/) and KMeans
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html).
Additionally, we included Phenograph (https://pypi.org/project/PhenoGraph/), a method
widely used in the flow cytometry field and applied to other datasets reported in this
study. Our selection of algorithms reflects a diverse range, encompassing density-based
(HDBSCAN), centroid-based (KMeans), and graph-based (Phenograph) clustering
methods. This ensures a comprehensive comparison, considering different clustering

paradigms and their suitability for various data structures.

As demonstrated here, both HDBSCAN, KMeans (K=8), and Phenograph encounter
challenges in robustly detecting rare cell populations when coexisting with more
abundant cell populations in the same sample (Figure 2B,C). When clustering
algorithms operate across multiple dimensions simultaneously, they may face difficulties
in effectively detecting and distinguishing sparse populations from more prevalent ones.
The increased sparsity within the vast high-dimensional space poses a challenge in
identifying clusters that exist in lower-dimensional subspaces. Our findings illustrate that
even with seven dimensions (excluding live/dead PI from clustering), clustering
algorithms may encounter challenges when dealing with multiple dimensions

simultaneously.

Our findings suggest that the APP clustering method excels in scenarios where there
are clear distinctions between the cluster under consideration and the other cells in at
least one of the dimensions. The APP method's proficiency in identifying clusters with
evident separations in one or more dimensions makes it well-suited for situations where

distinct cell populations exist. In such cases, it can leverage the dimension(s) where the
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separation is apparent to successfully identify and differentiate clusters, even in the
presence of much larger populations and noise in the data. This aligns with scenarios
resembling cell phenotyping using flow/mass cytometry, imaging antibody panels, and
scRNAseq data, where there are often identifiable patterns or markers distinguishing
cell types. Another application, as demonstrated here, is clustering molecules, such as

TCRs and their cognate peptides, based on their sequence similarity and other features.

On the flip side, high-dimensional clustering approaches may potentially outperform the
APP method when there is no clear split between clusters in any of the dimensions, and
the information about a given cluster is "distributed" across multiple dimensions.
High-dimensional clustering algorithms excel in aggregating information from multiple
dimensions simultaneously, which can be advantageous in situations where cluster
boundaries are less well-defined. An example of this is in identifying cells' activation
states, highlighting a specific application where high-dimensional clustering may be

preferred.

To mitigate some of the limitations of APP in scenarios with less clear cluster
separations, we explored incorporating dimensionality reduction techniques, such as
PCA, as a pre-processing step. As detailed in subsequent Results sections, this
approach proved effective in revealing underlying structures in high-dimensional data,

making it more accessible for clustering algorithms to identify meaningful clusters.

Application to flow and mass cytometry data

The analysis of high-dimensional flow and mass cytometry data, characterized by
dozens of parameters, presents two primary challenges: the requirement for unbiased,
unsupervised discovery of cell populations within a given panel of markers, and the
automation of an expert-defined manual gating strategy. The latter is crucial for clinical
applications of flow and mass cytometry data, while the former advances research
applications. In this context, we tackle both tasks by introducing an APP for
unsupervised discovery of cell populations and an automated label transfer pipeline for

the expert-defined gating automation.
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Using an expert-defined manual gating strategy as the "gold standard" (Supplementary
Figure 5), we evaluated the performance of APP in characterizing PBMCs from healthy
donors and COVID-19 patients. APP demonstrated an overall performance accuracy
exceeding 95 percent, significantly outperforming one of the widely used clustering
algorithms in the flow cytometry field, Phenograph (Figure 3A). The primary source of
misclassification for both algorithms stems from sparse cell populations (Figure 3B,
Supplementary Figures 6, 7). A detailed comparison (Figure 3B, Supplementary Figure
7) reveals that APP and Phenograph may misclassify different portions of the data, and
this discrepancy can be attributed to the distinct clustering logic employed by the two

methods.

Furthermore, we assessed the label transfer pipeline's capability to automate the
expert-defined gating strategy. The pipeline achieved remarkably high performance for
the healthy control cohort, exceeding 99 percent. This level of accuracy was attained
even when using just one randomly chosen manually gated healthy control sample as a
training set (Figure 3C&D). In the analysis of COVID-19 samples, there were more
discrepancies between the manual gating strategy established on healthy control
samples and the label transfer pipeline's outcomes. However, as shown here, this
apparent "discrepancy" may indicate that the original expert-defined gating strategy,
established on healthy control samples, might require adjustment when applied to
disease samples. For instance, as demonstrated here, COVID-19 disease samples
exhibit more complex and diverse cell populations than the healthy control samples

used to establish the initial manual gating strategy.

Our labels transfer pipeline includes an immediate sanity check to assess the quality of
the "ground truth" labels. This check examines whether the ground truth labels align
with the underlying data topology. If there is a disagreement, such as a cell population
defined as homogeneous in manual gating but being spread across multiple clusters on
the supervised UMAP plot, it suggests a potential issue with the original gating strategy

(Figure 3E). Indeed, revisiting the original expert-defined gating strategy, as illustrated in
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Figure 3F&G and Supplementary Figure 5B, led to the discovery of a COVID-19-specific
cell population labeled as HLA-DR—, CD86Lo/- intermediate monocytes (iMo).

Thus, APP identified a new population of myeloid cells specifically enriched in
hospitalized COVID-19 patients. Notably, this myeloid cell subset lacks cell-surface
expression of key proteins relevant for antigen presentation (HLA-DR) and
co-stimulation of T-cells (CD86), likely affecting viral antigen presentation and T-cell
activation. These findings highlight new mechanisms of SARS-CoV-2-induced
immuno-modulation that underlie the COVID-19 immunopathology in hospitalized

patients.

The label transfer pipeline was also tested in its application to mass cytometry data,
achieving an overall 87 percent accuracy (Supplementary Figure 8) when using the
manual gating labels, as described in [Toghi Eshghi et al., 2019]. Discrepancies
between the underlying data topology and manually assigned cell populations
(Supplementary Figure 8) serve as a source of reduced accuracy for the label transfer

pipeline.

Application to scRNAseq data

In contrast to flow and mass cytometry, which measure dozens of dimensions for each
individual cell, the dimensionality of gene expression data is often on the order of
thousands of genes per cell. Given the high-dimensional nature of gene expression
data, dimensionality reduction techniques, such as PCA (Principal Component
Analysis), are often employed as a pre-processing step before clustering to extract
meaningful patterns and reduce the computational complexity associated with analyzing
a large number of genes. We decided to test APP clustering performance on PCA
preprocessed scRNAseq data since dealing directly with the combinatorial combinations
of all possible pairwise projections from thousands of genes can be computationally

prohibitive.
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For this purpose we choose a publicly available scRNAseq dataset generated from
human PBMCs and characterized by 10X Genomics. We compared APP clustering
performance to the performance of a clustering process using KNN and Louvain
algorithms as implemented in the R package Seurat (referred to in this manuscript as
“Louvain clustering” and for our purposes, treated as the ground truth since itis a
workflow widely used by the field today). The overall misclassification rate between
Louvain clustering and APP clustering decisions in the PBMCs dataset is about thirty
percent, but less than fifteen percent overall when memory CD4 T cells are excluded
(Figure 4 A&B). APP clustering faces challenges in resolving the distinction between
Naive and Memory CD4 T cells in the dataset (Figure 4B), likely due to the fact that
these cells essentially represent distinct functional states and responses from the same
population of cells. And there is no clear split between these two populations in any
pairwise dimensions explored by APP (see Supplementary Data) since the
differentiation between Naive and Memory CD4 T cells may rely on simultaneous
changes in several genes and that gene set can vary based on factors such as the

context of the immune response, the microenvironment etc.

In our analysis, we further examined the group of cells that Louvain clustering identified
as B cells and APP as T cells, labeled as "CD4/CD8" in Figure 4A. We projected this
cell population in B cell, T cell and other marker space to gain insights into the APP
algorithm decision logic (see Supplementary Figure 9). It becomes apparent that while
the "CD4/CD8" cell population exhibits high expression of MS4A1, a B cell-specific
marker, it also demonstrates relatively high expression of S100A4, which is a memory
CD4 T cell marker, not a B cell-specific marker. This dual expression pattern likely

contributed to the source of confusion for APP clustering.

Louvain clustering and APP clustering were next applied to a shRNA-seq mouse brain
dataset from the wildtype and Alzheimer disease model (Figure 4C). The overall
mismatch rate between the two methods was about thirteen percent, indicating a good
level of agreement (Figure 4D). In this dataset, we did not see any “ground truth”

clusters that could not be discovered through APP clustering, as we did in the PBMC
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dataset. All Louvain clusters had equivalent APP clusters with matching marker genes
(Figure 4C). The significant areas of discrepancy tended to be in cells which were

assigned to their original Louvain clusters with some level of ambiguity.

Application to multiplex imaging data

Recent advancements in multiplex imaging technologies, exemplified by SignalStar,
have greatly enhanced our capacity to profile individual cells within the tissue context.
These technologies enable the simultaneous visualization of multiple biomolecules at
the single-cell or even the subcellular level. This capability provides valuable insights

into cellular heterogeneity, spatial organization, and the composition of tissues.

We applied APP clustering to characterize cellular composition within the tissue context
of the human squamous lung carcinoma sample using the 8-plex SignalStar myeloid
cell panel. The 8-plex panel (CD11c, SIRPa, CD163, CD206, CD68, CD45, HLA-DRA
and Pan-Keratin) generated a dataset of 160 features per cell for approximately
230,000 cells. The 160-feature set comprises 8 antibodies x 5 statistics x 4 cell
compartments. Here, 5 statistics represent the measurements of marker mean, median,
maximum, minimum, and standard deviation, while 4 cell compartments denote the
nucleus, cytoplasm, membrane, and the entire cell. We used PCA to reduce the
dimensionality of the dataset to 30 dimensions and subsequently performed APP

clustering (see Figure 5A&B).

This clustering approach readily identifies various cell types, including tumor epithelium,
stromal, and immune cells. The marker composition of the panel illustrates the
phenotypic while reflecting functional heterogeneity within the myeloid compartment:
Populations of macrophages and monocytes (Clusters 9 and 7), typically identified by
prominent expression of CD68 and CD206, can further be subdivided based on high vs
low expression of CD11c and SIRP-alpha [Xu et al., 2017]; similarly, CD11c+ dendritic
cells (DCs) can belong to CD163-high or CD163-low (Clusters 0 and 4, respectively),
functionally distinct populations [Dutertre et al., 2019; Bourdely et al., 2020; Comi et al.,
2020].
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The representation of individual clusters (Figure 5A) not only demonstrates phenotypic
heterogeneity but also provides valuable clues regarding the relative proportion of
phenotypes. Macrophages are known to be prominent cell populations within the
microenvironment of diverse human tumor types including NSCLC [Sedighzadeh et al.,
2021; Laviron et al., 2022] and based on the size of the combined clusters,
macrophages are a highly prevalent cell type in the TME of this squamous NSCLC.
PanCK expression identifies epithelial cells, in this particular case cancer cells,
unambiguously and the majority of PanCK+ cells seem to be low or negative for all
other markers (cluster 6). However, two smaller PanCK+ clusters, 2 and 3, are identified
showing elevated levels of HLA-DR; induction of HLA-DR expression in malignant
epithelial cells is a known phenomenon, particularly in an inflammatory milieu [Miura et
al., 2021; Senosain et al., 2021]. Interestingly, cells of these two clusters seem to
preferentially localize to the epithelial-stromal interface with physical proximity between
epithelial and immune cells and a potentially high local concentration of inflammatory

cytokines.

Cell type label assignments were determined through a combination of marker
expression patterns and the spatial location of identified clusters on the tissue slide
(Figure 5 C&D). Given that this dataset lacks ground truth labels, known labels for each
cell population, the biological relevance of APP clustering decisions was evaluated by
domain experts. Pathology and immunology experts independently assessed and
confirmed the adequacy of APP clustering in characterizing and distinguishing
meaningful cell populations within the slide tissue, particularly in the context of the

human squamous lung carcinoma sample.

Application to TCR-peptide sequence representation data

Recent advancements in Large Language Models (LLMs) have shown significant
promise for applications in the analysis of protein sequence data [Madani et al., 2023;
Chandra et al., 2023; Ruffolo et al., 2024]. LLMs have been investigated for functional

annotation of protein sequences [Quintana et al., 2023], demonstrating capabilities in
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predicting protein functions, interactions, as well as antibody and TCR specificity [Leem
et al., 2022; Wu et al., 2023]. These models excel at capturing contextual relationships
within sequences. In the context of TCR sequences, this proficiency involves
understanding the specific arrangement of amino acids and their roles in recognizing
and binding to antigens. Analyzing the language-like patterns in TCR and antigen

sequences using these models may unveil insights into the determinants of specificity.

Although LLMs showcase remarkable capabilities in capturing intricate patterns and
relationships within sequences, their black-box nature can pose challenges to
interpretability. To address this, clustering techniques can be employed to interpret LLM
decisions. In this example using human and mouse TCR sequences and their cognate
antigens (Figure 6), we illustrate that the combination of LLMs and APP clustering
methods offers a synergistic approach for uncovering patterns, relationships, and
semantic structures within large and high-dimensional datasets of TCR-antigen

sequences.

To illustrate this point, we created embeddings for over 13,000 unique data points
containing TCR CDR3b and cognate epitope sequence information for over 350 unique
peptides (left side of Figure 6A). Additionally, we independently generated embeddings
for a subset of approximately 4000 unique TCRs with sequence information for both
TCR CDR3a and CDR3b (right side of Figure 6A). These embeddings were generated
independently for each sequence class (CDR3a, CDR3b, and epitope) and then
concatenated for CDR3b-epitope and CDR3a/b-epitope. PCA was subsequently
performed, and the first 30 PCs were utilized for APP clustering, employing a minimum
cluster size of 100. The composition of identified clusters was characterized based on
epitope content and their association with disease information retrieved from the
McPAS-TCR database (Figure 6B).

By combining embeddings constructed independently for TCRs and peptides, we

generated a fused representation that captures similarities on both the TCR and peptide

sides (Supplementary Figure 10). This approach highlights co-similarities between
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TCRs and peptides across multiple pairs, enabling exploration of the joint sequence
space of TCR-peptide interactions. This comprehensive view could offer valuable
immunological insights into the complexities of immune recognition, cross-reactivity,

specificity, and diversity.

Nevertheless, the inherent black-box nature of LLMs presents a challenge in
immediately interpreting the rationale behind the grouping of data points within
embeddings. Introducing a clustering approach to these embeddings and subsequently
overlaying domain knowledge and interpretable feature information onto the clustering
decisions provides an opportunity to partially unravel the decision-making process of
LLMs. This method allows for a more nuanced understanding and interpretation of the
patterns and associations encoded within the model, bridging the gap between the

complexity of LLMs and the need for interpretability in various applications.

One evident hypothesis to investigate was assessing whether sequence similarity
played a significant role as one of the driving forces behind the clustering of
TCR-peptide data points within the class-separated and the combined embeddings.
This investigation aimed to uncover the impact of sequence similarity on the grouping
patterns within the combined embeddings, providing valuable insights into the
underlying factors influencing the model's behavior. To evaluate this hypothesis, we
calculated sequence similarity independently for peptides, TCR CDR3b, and TCR
CDRB3a among all pairwise combinations of clusters (refer to Figure 6C and

Supplementary Figure 10).

The within-cluster average sequence similarity consistently displayed higher scores
compared to inter-cluster average sequence similarity in all three cases: for peptides,
CDR3a, and CDR3b. This is evident from the observed higher Blosum62 score diagonal
pattern on the heatmaps (Figure 6C, Supplementary Figure 10, Supplementary Figure
11 A,B). As depicted in Supplementary Figures 10 and 11 sequence similarity,
particularly in cases of peptide epitopes, plays a significant role in data clustering when

class-separate embeddings are constructed. A clear pattern of peptide clustering based
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on disease categories (pathogens vs cancers, etc.) is observed. However, once TCR
and peptide embeddings are concatenated, the data points undergo significant
rearrangement in the embedded space. The disease of origin becomes a less
significant feature for peptides. Overall, while sequence similarity between peptide
epitopes and between TCRs still contributes to clustering, it becomes less prominent, as
evidenced by a significant decrease in the median Blosum62 score on the diagonal,

particularly for peptide epitopes.

It's noteworthy that certain peptides grouped together, such as those within cluster 4 on
the right side of Figure 6B, originate from antigens associated with diseases that are not
immediately related. For instance, cluster 4 predominantly consists of peptides derived
from cancer neoantigens and Influenza. What's particularly interesting is that TCRs
recognizing these peptides also exhibit a closer sequence similarity in their CDR3a and
CDR3b regions within cluster 4 compared to TCRs outside of this cluster (Figure 6C) .
This suggests a potential shared recognition pattern among TCRs responding to

sequence-similar peptides from disparate diseases within the same cluster.

The clustering based on sequence similarity indicates a commonality in the TCR
responses, implying a common recognition pattern that extends across distinct disease
contexts. From an immunology perspective, this observation could potentially be
explained via TCRs’ promiscuity towards structurally similar epitopes, even if they
originate from different antigens. This promiscuity could be facilitated by commonalities
in binding motifs among TCRs. Nonetheless, our analysis, illustrated in Supplementary
Figure 11, reveals the absence of an immediately discernible common binding motif.
This holds true even among CDR3b sequences that specifically recognize the same
peptide epitope (LPRRSGAAGA). It is worth noting that the promiscuity works both
ways, namely that a TCR can recognise multiple epitope peptides, but also an epitope
peptide can be recognized by multiple TCRs. Our clustering results show that the
recognition patterns can be very different, since different peptide-TCR pairs
corresponding to the same peptide are sorted into different clusters in many cases

(Supplementary Figure 11).
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By further exploring the joint sequence space, we observed a novel pattern of
"similarity" between the data points emerging. This led to significantly different
within-cluster arrangements for both peptides and TCR CDR3b. The label transfer
pipeline was employed to quantitatively assess the degree of rearrangement that both
peptide and TCR CDR3b classes undergo between the single class embeddings and
concatenated embeddings (Supplementary Figure 12). Only 23 percent of peptide
epitope data (and 12 percent for TCR CDR3Db) is arranged in similar patterns between
the single class and concatenated embeddings space. This suggests that, during the
exploration of the joint sequence space of TCR-peptide interactions, a new rationale for
data point similarity that is not necessarily relevant to the origin of the antigen peptide

emerged.

In our pursuit of a deeper understanding of the arrangement of data points in the joint
sequence space, we explored the possibility of utilizing the characteristic properties of
amino acid R groups as a novel similarity criterion. However, we found no immediate
patterns of complementarity or cluster-specific motifs defined by the properties of amino
acid R groups (refer to Figure 6D, Supplementary Figures 10&11). The diversity among
TCRs and the peptides they recognize suggests that the mechanisms of interaction can
vary significantly between individual TCR-peptide pairs, with no obvious rules being
detected so far. For instance, in Supplementary Figure 13, we highlight a case where a
positively charged residue from the peptide side interacts with the TCR chains through
the formation of hydrogen bonds, underscoring the intricate and diverse nature of these

molecular interactions.

An intriguing pattern did emerge, though, revealing a prevalence of negatively charged
amino acid residues on CDR3b and positively charged residues on CDR3a chains
across almost all identified clusters (see Supplementary Figure 13). To delve into the
potential significance of these charged residues, we meticulously examined five
TCR-pMHC crystal structures (PDB accession numbers 3GSN, 3PQY, 10GA, 304L,

5EUQO). Upon closer investigation of these structures, it became evident that these
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charged amino acid residues play a role in stabilizing the interface between CDR3a and
CDRa3b, orienting partners to each other in three-dimensional space. Most frequently,
this stabilization occurs through hydrogen bonds, although there is also an instance of

ionic interaction (Supplementary Figure 13E).

Conclusions

Identifying robust patterns in high-dimensional data is a challenging and crucial task in
various scientific fields. High-dimensional data often poses challenges such as the
curse of dimensionality, where traditional methods may struggle due to increased

sparsity.

Projection pursuit has been proposed as a potential approach to address or mitigate
some of the challenges posed by the curse of dimensionality. As a concept this
technique has been around for several decades, and its development and application
span across different fields such as statistics, machine learning, and data visualization.
The idea of seeking interesting projections of high-dimensional data can be traced back
to the 1970s and 1980s [Kruskal, 1969; Friedman et al., 1974; Friedman et al., 1982;
Huber, 1985].

While the concept of projection pursuit has been around for decades, high-dimensional
clustering has gained more popularity and attention, especially in the context of the
computational challenges posed by modern data analysis. High-dimensional clustering
methods are explicitly designed to directly address the task of grouping data points into
clusters. Projection pursuit approaches were originally designed as powerful tools for
exploring interesting projections and not explicitly assigning a unique cluster id to each
event in the data set. Additionally, the high-dimensional nature of modern data instantly
leads to a challenge of efficiently traversing myriads of low dimensional projections

generated by the projection pursuit approach.

Here, we have integrated the principles of projection pursuit and clustering to create an

automated projection pursuit clustering approach, designed to reveal noteworthy
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structures in high-dimensional data and assign cluster labels. The "projection" aspect of
our approach involves orthogonal projection of high-dimensional data into a
two-dimensional space. The "pursuit" component is guided by the concept of, at each
step, identifying a projection with the smallest data density distribution along the
decision boundary. The automated clustering aspect is executed through the recursive
and exhaustive application of the "projection" and "pursuit" steps. To facilitate the
computational challenge associated with exploring a high number of low-dimensional
projections, we reduced the number of operations required by the algorithm at each
recursive step by adopting the calculation of the optimal number of histogram bins. We
also implemented parallelization of the APP algorithm enhancing its computational
performance. Future improvements may focus on additionally optimizing specific
algorithm components and/or exploring alternative computational strategies such as
leveraging high-performance computing when a relatively large amount of

high-dimensional data is needed to be processed.

In general, projection pursuit clustering can offer advantages in certain scenarios
compared to traditional high-dimensional clustering methods. Projection pursuit can be
effective when certain dimensions or variables are more important for clustering than
others. It actively seeks projections that highlight important features, helping to focus on

relevant dimensions and potentially improving cluster separation.

In scenarios characterized by sparse or imbalanced data, where there is a high degree
of sparsity amid more abundant populations (which can extend to situations involving
outliers and/or noise), projection pursuit proves beneficial in identifying pertinent
dimensions and enhancing cluster separation. Traditional methods may face challenges
in handling sparsity due to a dearth of informative features. Projection pursuit seeks to
discover projections that are not only conducive to clustering but also interpretable. If
the objective is to extract meaningful insights from clustering outcomes and
comprehend the contributions of individual dimensions, projection pursuit may be the

preferred choice.
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The approach of discovering patterns through projection pursuit and clustering proves to
be versatile across various data modalities. In this context, our focus was specifically on
high-dimensional biological data given its frequent representation of both abundant and
sparse populations within the same sample. We demonstrated the APP method's
capability to replicate experimentally validated cell type definitions, emphasizing the
biological relevance of the clusters identified by our approach. We conducted a
performance comparison of APP with other widely adopted clustering methods. While,
on the whole, APP's results align well with other methods, there are instances where
one method may outperform the other, and we illustrated these nuances using

real-world datasets.

In many biological real-world datasets, the availability of a clear "ground truth" can be
challenging. As illustrated in the examples presented, reliance on domain experts'
knowledge-driven clustering or clustering done with widely-adopted approaches serves
as a substitute for ground truth. While expert-driven clustering provides a valuable
reference point, a more accurate (albeit labor-intensive) method for assessing clustering
performance involves conducting functional tests on groups of cells assigned to the
same cluster. By observing the functional "purity" and homogeneity of a given cluster
compared to other cell clusters in the sample, researchers can achieve a more precise

evaluation of the clustering results.

In one of such examples we used a data set with functionally validated ground truth and
demonstrated that APP was able to effectively recapitulate experimentally validated
cell-type definitions better than other widely used clustering approaches. We also
presented APP’s utility in discovering new biologically meaningful patterns. By
combining the strengths of LLMs for sequence analysis with the interpretability provided
by clustering, we gained deeper insights into the complex relationships within
TCR-pMHC sequence datasets. This integrative approach contributes to the elucidation
of patterns that may have important implications for better understanding of TCR and
pMHC function and design. Our results also underline the ongoing challenges with the
design of universal pMHC-TCR specificity machine-learning models when showing that

the pMHC-TCR recognition patterns are not always self-evident.
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Data availability

Flow cytometry data for six healthy controls and six COVID-19 patient samples is

available upon request.

Ten healthy control cytof data is available at https://flowrepository.org/id/FR-FCM-Z24F .

scRNAseq PBMC dataset is available through the 10X Genomics website:

https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.ta
r.az.

Wildtype and 5XFAD mouse model scRNEseq data is available for download from the
Gene Expression Omnibus (GEO) with the accession number GSE140510.

Human squamous cell carcinoma stained with SignalStar mIHC technology is available

at https://data.mendeley.com/datasets/5vfzZ9vhm2s/1

TCR repertoire data is available as part of the McPAS-TCR database
[http://friedmanlab.weizmann.ac.il/McPAS-TCR/]

Code availability

Source code is available at https://github.com/cellsignal/projectionpursuit
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Figure 1. Automated projection pursuit clustering workflow. A. Metaphorical
representation of projection pursuit clustering, where the paper sheet represents
multidimensional data (implying that the data is complex and exists in a
higher-dimensional space) projected into a pair of dimensions with the best separation
(all other projections are not shown). Scissors symbolize the process of splitting the
data into segments along a decision boundary (dotted line). This step reflects the idea
of sequentially finding the most informative projections to separate the data effectively.
B. To illustrate the concept behind the APP algorithm in a simplified manner we used a
three-dimensional synthetic dataset. C. The APP algorithm systematically explores
orthogonal two-dimensional projections, selects the one with the smallest density
distribution along the decision boundary (represented by a blue line on the
two-dimensional projections), and recursively splits the data until the defined stop
criteria are met. This approach helps uncover meaningful patterns and structures in the

data.
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Figure 2. APP outperforms widely used clustering methods in application to the
representative biological dataset that has functionally validated ground truth
labels. A. A representative ground truth sample, selected from several similar types of
samples, was generated by mixing cells in equal proportions (50% each) from the GFP+
Wild-type spleen and RAG-KO spleen. It's important to note that RAG-KO mice lack B
and T cells. B. The APP algorithm's performance in cell population classification is
being assessed, and its effectiveness is being compared to that of state-of-the-art
clustering algorithms. The evaluation encompasses the blending of wild-type spleen
cells and RAG-KO spleen cells at five different proportions (50/50, 25/75, 12.5/87.5,
75125, 87.5/12.5). Evaluation metrics encompass total population misclassification and
per cell type misclassification. The results are averaged over five data points
corresponding to the distinct cell mixing proportions. The table displays results
specifically for the 50/50 cell mixture. C. The misclassification for the 50/50 mix is
visually represented in black color using the automated label transfer pipeline.
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Figure 3. The label transfer pipeline reveals distinct cellular responses in
COVID-19 patients and achieves over 99 percent accuracy in automating the
manual gating strategy for healthy control samples, using minimal training data.
A. On average, less than three percent of the data were misclassified when comparing
APP clustering decisions to the manual ground truth labels. B. The primary source of
misclassification between manual and automated clustering decisions is sparse cell
types. Cell populations are ordered from most abundant to least abundant (left to right).
C. The automation of the gating strategy application, implemented via the automated
label transfer pipeline, achieves very high accuracy for healthy control (HC or hc)
samples. D. Misclassification evaluation on a per-cell-population basis allows the
identification of populations that are most problematic for the automated gating strategy
transfer, providing targeted insights for improvement. As in panel A, cell populations are
ordered from most abundant to least abundant. E. The label transfer pipeline facilitates
the observation of agreement or disagreement between data topology and ground truth
cluster labels. It provides insights into the accuracy of ground truth labels and serves as
a quality control step. Detected discrepancies (e.g., iMo cell population is more
heterogeneous than defined by the original manual gating strategy) may prompt
reevaluation or refinement of annotations (F), resulting in the discovery of biologically
meaningful cell populations (G, HLA-DR- CD86lo ncMo and iMo populations that are
unique to COVID patients). Minimum cluster size and bin size input parameters of 100
and 50, respectively, were used for both APP and the label transfer pipeline to generate

the results presented in panels A-G.
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Figure 4. Both Louvain clustering and APP clustering, applied to PCA-reduced
scRNAseq data, exhibit good alignment with each other. The overall
misclassification rate between Louvain and APP clustering decisions in the PBMCs
dataset is about 29 percent . The misclassification rates are determined with reference
to the "ground truth" clusters, indicating how many cells in each ground truth cluster
produced by Louvain were marked as misclassified. APP clustering encounters
challenges in distinguishing between CD4 Naive and Memory cells in the dataset (A,B).
C. There is a high degree of concordance (approximately 87 percent) between Louvain
and APP clustering when applied to pooled combinations of wildtype (WT) and
Alzheimer Disease model (5X) mice samples. Heatmaps illustrate the concordance of
gene expression patterns in each cluster type as identified by the two clustering
algorithms. Panel D presents per cell type misclassification, providing insights into

specific cell types where misclassification occurs.
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Figure 5. APP clustering successfully leverages multiplexed imaging data to gain
insights into biologically meaningful cell populations within the complex tissue
context of a human squamous lung carcinoma sample. Eleven cell clusters
detected by APP (A) were annotated based on the pattern of median marker expression

(B) and their spatial location (C,D).
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Figure 6. There is no identifiable common binding motif or a universal amino acid
R group attribute characterizing the pMHC-TCR interaction. The clusters annotated
by APP (A) are, in most cases, heterogeneous in terms of associated pathology, but
some clusters are disproportionately enriched for particular pathologies, such as
Epstein-Barr virus in cluster 14 or cytomegalovirus in cluster 32 in the clustering based
on CDR3b and epitope sequences (B). Half of the pathologies in this dataset are
associated with multiple unique epitope sequences, with an average of 8 unique epitope
sequences per pathology. When sequence similarity scores are calculated for each pair
of unique epitope sequences in the dataset and those scores are averaged across each
unique pair within a cluster and and across each unique pair between all pairwise
clusters, average similarity scores are systematically higher within clusters—on the
diagonal line in these heatmaps—than between clusters. The same pattern is observed
for CDR3b and CDR3a sequences to a lesser degree (C). Note that Cluster 2 from the
CDR3b, CDR3a, and epitope clustering was removed from the epitope and CDR3a
heatmaps because it contained < 20 unique epitope sequences (all other clusters had
between 41-125 unique epitope sequences), causing it to have average within-cluster
scores high enough to visually overwhelm the heatmaps, so as to allow the patterns
between other clusters to be more perceptible, and clusters 1, 14, and 36 were removed
from the CDR4b and epitope clustering because their average within-cluster scores
were also visually distracting outliers. Per cluster amino acid enrichment analysis (D)
has unveiled that, while there is no singular characteristic universally defining
TCR-pMHC interactions, specific clusters may demonstrate shared electrostatic
patterns involving charged amino acids at the interface. A noteworthy example includes
a set of clusters (highlighted with a dashed line) enriched with the LPRRSGAAGA

peptide, characterized by positively charged amino acids.
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