

1 **Long-term multi-meta-omics resolves the ecophysiological**
2 **controls of seasonal N₂O emissions**

5 Nina Roothans¹, Martin Pabst¹, Menno van Diemen¹, Claudia Herrera Mexicano¹, Marcel
6 Zandvoort², Thomas Abeel^{1,3}, Mark van Loosdrecht^{1,4} and Michele Laurenzi^{1,*}

7 ¹ Delft University of Technology, Mekelweg 5, 2628 CD Delft, the Netherlands

8 ² Waternet, Korte Ouderkerkerdijk 7, P.O. Box 94370, 1090 GJ Amsterdam, the Netherlands

9 ³ Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
10 of America

11 ⁴ Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg
12 University, Aalborg, Denmark

13 *corresponding author: m.laurenzi@tudelft.nl

16 **Abstract**

17
18 The potent greenhouse gas nitrous oxide (N_2O) originates primarily from natural and
19 engineered microbiomes. Emission seasonality is widely reported while the underlying
20 metabolic controls remain largely unresolved, hindering effective mitigation. We use
21 biological wastewater treatment as tractable model ecosystem over nearly two years. Long-
22 term metagenomic-resolved metaproteomics is combined with *ex situ* kinetic and full-scale
23 operational characterization. By leveraging the evidence independently obtained at multiple
24 ecophysiological levels, from individual genetic potential to actual metabolism and emergent
25 community phenotype, the cascade of environmental and operational triggers driving N_2O
26 emissions is resolved. We explain the dynamics in nitrite accumulation with the kinetic
27 unbalance between ammonia and nitrite oxidisers, and identify nitrifier denitrification as the
28 prime N_2O -producing pathway. The dissolved O_2 emerged as the key actionable parameter for
29 emission control. This work exemplifies the yet-to-be-realized potential of multi-meta-omics
30 approaches for the mechanistic understanding and ecological engineering of microbiomes,
31 ultimately advancing sustainable biotechnological developments.

32
33 **Keywords:** microbial ecophysiology; microbial communities; nitrous oxide; wastewater
34 treatment; multi-meta-omics

35 **Introduction**

36
37 The yearly anthropogenic emissions of nitrous oxide (N_2O), currently the third most important
38 greenhouse gas, are projected to increase by 50% in the coming 50 years if no mitigation
39 strategies are employed ¹. N_2O is mainly produced by microbial communities in natural,
40 managed and engineered ecosystems ². Yet, the mechanisms governing biological N_2O
41 emissions remain largely unknown. The main challenge lies in the coexistence of nitrogen-
42 converting guilds in complex microbiomes, each emitting N_2O under a range of complementary
43 conditions that alternate or overlap in most ecosystems (e.g. alternating oxic-anoxic conditions
44 in wastewater treatment plants ³ and sea sediments ⁴; substrate concentration gradients in
45 oceans ⁵, soils ⁶ and wastewater treatment biofilms ⁷). In general, high ammonium (NH_4^+) and
46 oxygen (O_2) concentrations stimulate N_2O production through hydroxylamine (NH_2OH)
47 oxidation by ammonia-oxidising bacteria (AOB), while high nitrite (NO_2^-) and low O_2
48 concentrations enhance the nitrifier denitrification pathway ⁸ (Fig. 1A). High NO_2^- and high O_2
49 concentrations result in N_2O accumulation from imbalanced denitrification by heterotrophic
50 denitrifying bacteria (DEN) ⁸ (Fig. 1A). Seemingly ubiquitous is the strong seasonality of N_2O
51 emissions in many natural and managed environments, such as oceans ^{9,10}, soils ¹¹⁻¹³, lakes ^{14,15}
52 and rivers ¹⁶, and engineered systems such as wastewater treatment plants ¹⁷⁻²⁴ (WWTPs,
53 summarized in Table S1). This indicates that seasonally-impacted macroscopic factors directly
54 influence biological N_2O turnover. Yet, studying the interactions between environmental
55 conditions, complex microbiome dynamics and N_2O emissions, and capturing the underlying
56 ecological principles is inherently challenging. To this end, we use biological wastewater
57 treatment as a more tractable model ecosystem, as the N_2O seasonality is well-represented,
58 while other variables (e.g. aeration, biomass concentration) are controlled or extensively
59 monitored ²⁵.

60
61 Most WWTPs emit the majority of their yearly N_2O during a winter or spring peak lasting 3-4
62 months, with simultaneous NO_2^- accumulation ^{17,21-24,26} (Table S1). Similarly, higher N_2O
63 emissions during colder seasons are widely reported for oceans ¹⁰, soils ^{12,13}, and lakes ¹⁴. Low
64 or increasing temperatures have been hypothesized as the underlying causes for the seasonal
65 N_2O emissions, but a clear correlation is often missing ^{10,13,14,18,19,27,28}. The immediate effect of
66 diverse environmental and process parameters on the N_2O production rates of AOB and DEN
67 largely explain the short-term N_2O dynamics in WWTPs ^{3,29} and natural environments ^{5,6,30,31},
68 but fail to describe the widely observed seasonality. Emblematic is the reported higher N_2O
69 production by AOB at high temperatures ³², while most seasonal emissions occur in winter.
70 Broadly applied correlation analyses between N_2O and environmental and operational
71 parameters have proved insufficient to explain seasonal emissions in WWTPs ^{18,24,33}, oceans
72 ^{9,10}, soils ¹¹⁻¹³ and freshwater systems ¹⁴⁻¹⁶. Despite the evident central microbial role in N_2O
73 conversions, most studies do not take potential seasonal dynamics of the microbiome's
74 metabolism into account, likely overlooking key mechanisms linking environmental triggers
75 and emissions. A delay between triggers, metabolic adaptations and emergent phenotype is
76 expected in slow-growing natural and WWTP communities ²⁸. Only few studies investigated
77 microbial dynamics during seasonal nitrogen oxides peaks in WWTPs with seemingly
78 contradicting results. Seasonal NO_2^- and N_2O accumulation events have been attributed to
79 decreased nitrite-oxidising bacteria (NOB) 16S rRNA gene abundances ^{19,23} and increased
80 difference between AOB and NOB activity ^{17,22}, while in other instances no seasonal

81 fluctuations were observed in the nitrifying community ³⁴. To date, the operational and
82 metabolic mechanisms controlling seasonal N₂O emissions remain largely unknown, hindering
83 effective mitigation.

84
85 We combine long-term metagenomic-resolved metaproteomic analyses with *ex situ* kinetic and
86 full-scale process characterizations to address the mechanistic gap in seasonal N₂O emissions.
87 The cascade of environmental and operational triggers underlying N₂O emissions is resolved
88 by leveraging the evidence obtained at multiple ecophysiological levels, from individual
89 genetic potential to actual metabolism and emergent community phenotype. We identify
90 nitrifier denitrification as the prime N₂O-producing pathway, and the dissolved O₂ as the
91 central operational parameter to minimize emissions. This work exemplifies the yet-to-be-
92 realized potential of multi-meta-omics approaches to inform ecologically-driven strategies for
93 the management and engineering of microbiomes, ultimately advancing sustainable
94 biotechnological developments.

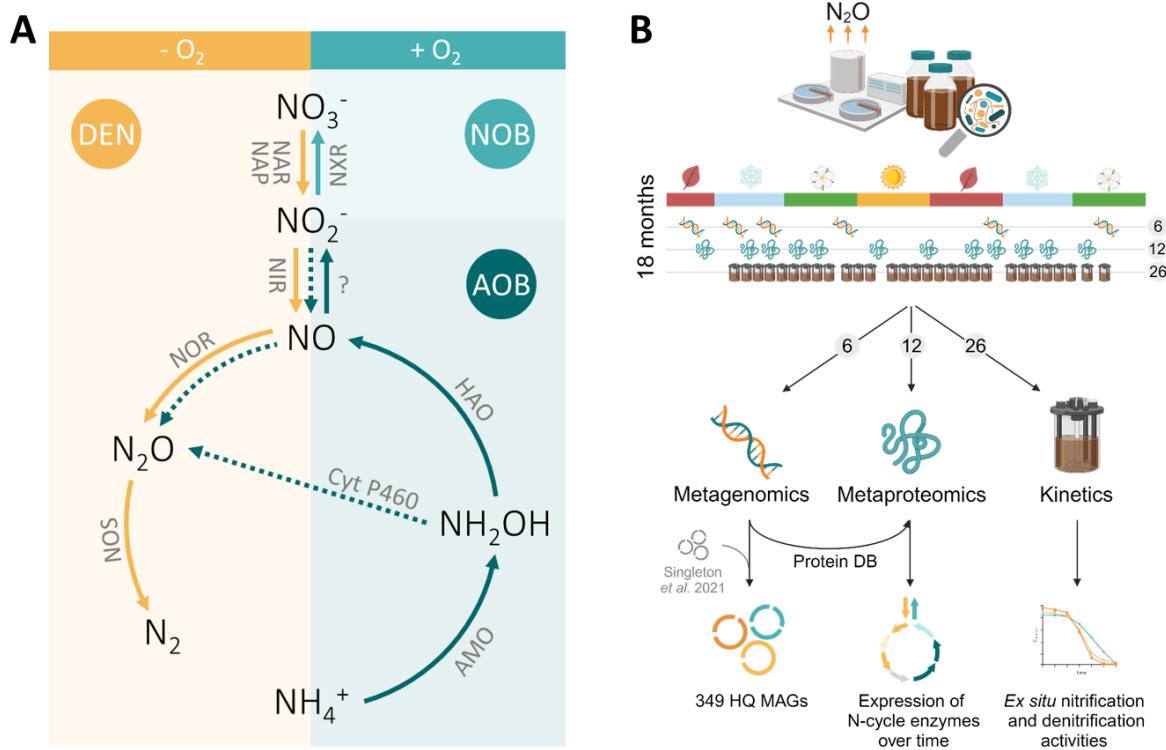
95 **Results**

96

97 **Signature metabolite accumulation profiles**

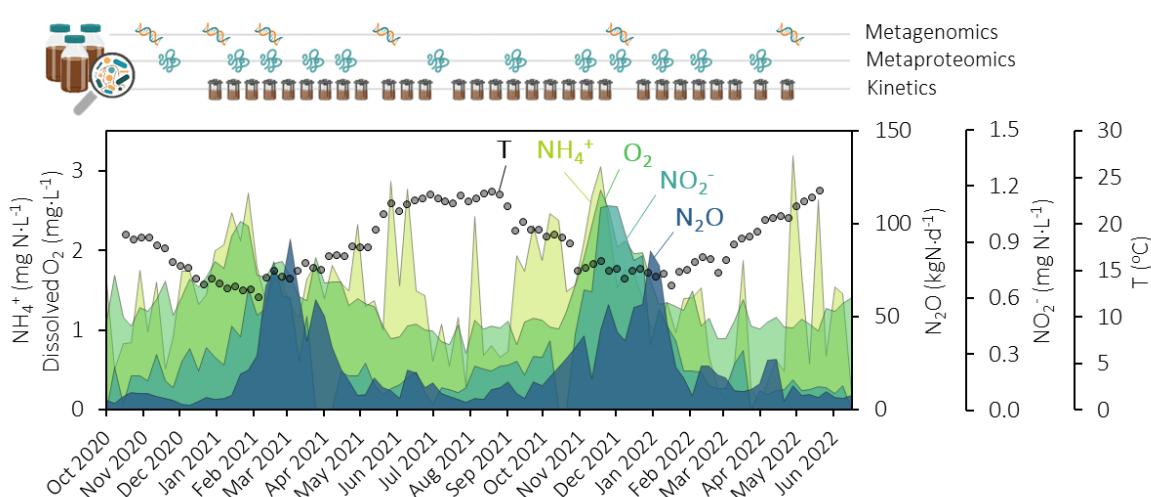
98

99 The ecophysiological response of N_2O -emitting complex microbial communities to seasonal
100 environmental and operational dynamics was studied using the Amsterdam-West wastewater
101 treatment plant (WWTP) as model ecosystem (Fig. 1A-B). The monitoring and sampling
102 period lasted eighteen months and covered two highly comparable N_2O emission peaks (Fig.
103 2). The peaks occurred during periods with low water temperatures, namely Feb – May 2021
104 and Nov 2021 – Mar 2022, and were preceded by the sequential accumulation of NH_4^+ , O_2 ,
105 and NO_2^- (Figs. 2 and S2). The same trend was followed in the five years prior to this study
106 (data not shown). Central to the plant operation is the control of the dissolved O_2 (DO)
107 concentration as a function of the residual NH_4^+ concentration in the aerated compartment. To
108 counteract the temperature-induced nitrification rate reduction, and consequent NH_4^+
109 concentration increase, the weekly average DO concentration was increased from 1 up to
110 almost 3 mg $\text{O}_2 \cdot \text{L}^{-1}$ (Fig. 2). In spite of this, O_2 remained the rate-limiting substrate for
111 nitrification during low temperature periods with high N_2O emissions, as evidenced by a lower
112 O_2/NH_4^+ ratio in the aerated compartment compared to warmer periods with low N_2O (Fig.
113 S3). Following the increase in DO, the average NO_2^- concentration in the pooled effluent
114 rapidly increased up to 1.1 mg $\text{N} \cdot \text{L}^{-1}$. Finally, N_2O started to accumulate, reaching maximum
115 daily rates of 110 (1st peak) and 101 kg $\text{N} \cdot \text{d}^{-1}$ (2nd peak) (Figs. 2 and S2). The delay between
116 the maximum DO concentration and the maximum N_2O emission rate ranged between six and
117 seven weeks for both peaks (Fig. 2), consistent with the imposed average sludge retention time
118 of 11-15 days. Statistically, NO_2^- strongly correlated with the O_2 concentration (Pearson
119 correlation coefficient of 0.8), and N_2O with NO_2^- (correlation coefficient 0.7), while they only
120 weakly correlated with all other parameters including the temperature (Fig. S4 and Table S2).



121 **Figure 1. Schematic representation of the nitrogen cycle, experimental approach and obtained datasets. (A) Nitrogen**
122

123 conversions in the biological nitrogen removal process and respective enzyme complexes. Ammonia-oxidising bacteria (AOB) 124 aerobically oxidise ammonium (NH_4^+) to hydroxylamine (NH_2OH) with the ammonium monooxygenase (AMO), NH_2OH to 125 nitric oxide (NO) with the hydroxylamine oxidoreductase (HAO), and NO to nitrite (NO_2^-) with a yet unknown enzyme. AOB 126 can biologically produce N_2O through the oxidation of NH_2OH with cytochrome P460 (cyt P460) or through the reduction of 127 NO – produced from NH_2OH oxidation or nitrifier denitrification (NO_2^- reduction with the nitrite reductase NIR) – with the 128 nitric oxide reductase (NOR) (dotted arrows). Nitrite-oxidising bacteria (NOB) aerobically oxidise NO_2^- to nitrate (NO_3^-) with 129 the nitrite oxidoreductase (NXR). Normally under anoxic conditions, denitrifying bacteria (DEN) reduce NO_3^- to NO_2^- with 130 the membrane-bound or periplasmic nitrate reductase (NAR, NAP), NO_2^- to NO with NIR, NO to N_2O with NOR and N_2O to 131 N_2 with the nitrous oxide reductase (NOS). Some DEN perform only some steps of the denitrification pathway while others 132 perform the entire pathway. (B) Overview of the methodological approach adopted in this study for the eighteen-months 133 characterization of a full-scale WWTP to resolve the microbial mechanisms underlying seasonal N_2O emissions. Sludge 134 samples were used for metagenomics (6 samples), metaproteomics (12 samples) and *ex situ* activity tests at 20 °C (26 samples). 135 (Created with BioRender.com.)



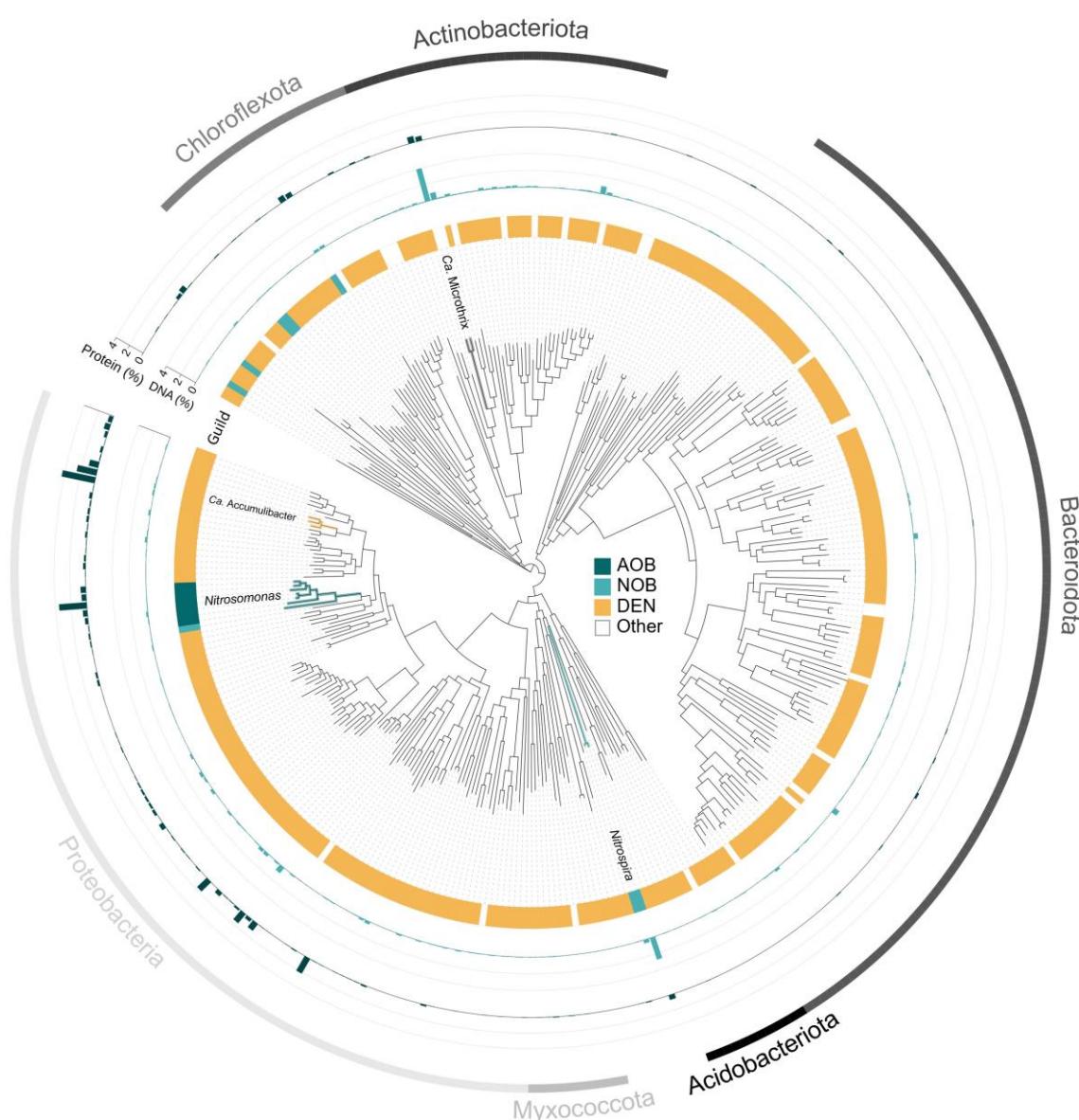
136
137 **Figure 2. Performance of the wastewater treatment plant (WWTP) monitored during nearly two years (Oct 2020 – Jul 138**
139 **2022).** Weekly average parameters at the WWTP, from back to front (light green to dark blue): concentration of NH_4^+ and 140 dissolved O_2 in the nitrification compartment (left axis), pooled effluent NO_2^- concentrations (right axis), N_2O emission rates 141 measured in the off-gas from all reactor compartments (right axis). The water temperature inside the reactor is represented on 142 the right axis (symbols). All metabolites were measured in a single biological nutrient removal lane of the WWTP, except the 143 effluent NO_2^- (seven lanes pooled together). Occasional sharp NH_4^+ peaks were caused by outliers on rainy days (Fig. S2). 144 The scheme above the plot represents the sampling time points for metagenomic (DNA), metaproteomic (protein) and *ex situ* 145 activity tests (bioreactor).

146 Maximum nitrogen metabolites conversion rates

147 To quantify seasonal changes in the microbiome metabolic potential, we estimated every 148 second week the maximum oxidation and reduction rates of the main nitrification (i.e. NH_4^+ 149 and NO_2^-) and denitrification (i.e. NO_3^- , NO_2^- and N_2O) intermediates, respectively. The 150 maximum NH_4^+ oxidation rate almost always exceeded the NO_2^- oxidation rate, with their 151 difference being the highest during the seasonal full-scale metabolite accumulation peaks (Fig. 152 S5). No clear seasonality emerged in the NO_3^- , NO_2^- , and N_2O maximum reduction rates, and 153 the N_2O reduction capacity was 1.4 to 2.1-fold higher than all other nitrifying and denitrifying 154 rates (Fig. S5).

155
156 **Genome-resolved taxonomic diversity**
157 The WWTP metagenome was sequenced at six time points to follow the dynamics in microbial 158 composition and functional potential, and to serve as database for the metaproteomic analysis 159 (Fig. 1B). Combined short-read (two samples; average 147 million reads per sample) and long- 160

162 read DNA sequencing (five samples, one of which also sequenced with short-reads; average
163 4.3 million reads per sample) resulted in 143 Gbp data, after quality filtering and trimming. A
164 total of 349 high-quality metagenome-assembled genomes (HQ MAGs, $\geq 90\%$ completeness
165 and $\leq 5\%$ contamination) (Fig. 3, Supplementary Data 1) were obtained. The 89 MAGs
166 generated from the five long-read samples were dereplicated with the HQ MAGs from
167 Singleton *et al.*³⁵ at 95% average nucleotide identity of open reading frames to increase the
168 genome-resolved read coverage. From the final 349 HQ MAGs, 44 were unique to our dataset,
169 268 were unique to the dataset of Singleton *et al.*³⁵, and 37 overlapped between both datasets
170 (Fig. S6). Overall, the HQ MAGs covered 31 phyla and 272 different genera, and included two
171 archaeal species (only bacterial MAGs are represented in Fig. 3). The full 16S rRNA gene was
172 identified in 347 (99.4%) MAGs. The relative abundance of the individual MAGs showed no
173 marked seasonal trend and little variation over the six time points (Fig. S7 and Supplementary
174 Data 1). We therefore discuss the average of their relative abundance among all samples. The
175 two most abundant MAGs belonged to the *Ca. Microthrix* (4.0%) and *Nitrospira* (2.7%) genera
176 (Fig. 3). All other MAGs had an average relative abundance lower than 1%. The majority of
177 the non-nitrifying MAGs contained at least one denitrification gene (DEN, 304) (Fig. 3,
178 Supplementary Data 2). 51 MAGs had the genetic potential to perform dissimilatory nitrite
179 reduction to ammonium (DNRA, containing the *nrfAH* genes), 46 of these also had at least one
180 denitrification gene (Fig. S14, Supplementary Data 2). Seven MAGs harboured the *amoABC*
181 genes (AOB) and eight harboured the *nxrAB* genes (NOB), most of these also had at least one
182 denitrification gene, mainly *nir* and *nor* encoding the NO_2^- and NO reductases, respectively
183 (Fig. S14, Supplementary Data 2). Neither complete ammonia-oxidising (comammox) nor
184 anaerobic ammonia-oxidising (anammox) MAGs were found in the metagenomes.



185
186 **Figure 3. Phylogenetic tree of the 347 bacterial high-quality MAGs extracted from activated sludge (the only two archaeal**
187 **MAGs are not represented).** From the inner to the outer circle: (i) circular phylogenetic tree with the identification of key
188 activated sludge genera *Nitrosomonas*, *Nitrospira*, *Ca. Accumulibacter* and *Ca. Microthrix*; (ii) identification of ammonia-
189 oxidising bacteria (AOB, containing *amoABC* genes, dark blue), nitrite-oxidising bacteria (NOB, containing *nxrAB* genes, light
190 blue) and denitrifying organisms (DEN, non-AOB and non-NOB MAGs harbouring at least one denitrification gene, yellow).
191 Some of the AOB and NOB MAGs also contained one or more denitrification genes (Supplementary Data 2); (iii) average DNA
192 relative abundance of each MAG in the community; (iv) average protein relative abundance of each MAG in the community;
193 (v) identification of the six most abundant phyla.

194

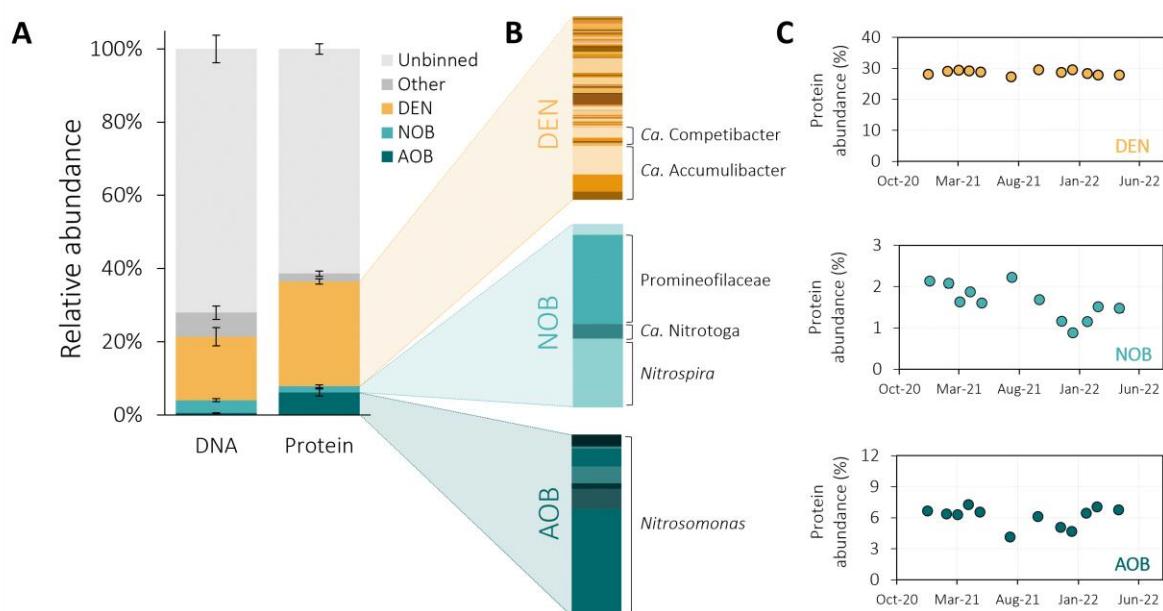
195

196 Metaproteomic-based functional profile

197

198 The dynamics in protein expression of the entire microbial community across twelve samples
199 was assessed by shotgun metaproteomics. We used the protein expression as proxy for active
200 metabolisms and to estimate the protein-based relative abundance of each MAG. In total, 3868
201 unique protein groups were detected, and 1884 had at least two unique peptides (accounting
202 for $44 \pm 1\%$ of the total mass-normalized spectral counts). 1105 of the identified proteins
203 (accounting for $68 \pm 1\%$ of the two unique peptides filtered normalized spectral counts)

204 uniquely matched with a single protein predicted in the metagenome (including all MAGs and
205 unbinned sequences). The remaining 779 proteins (accounting for $32 \pm 1\%$ of the two unique
206 peptides filtered normalized spectral counts) matched multiple highly similar proteins and
207 could not be linked to a single MAG, yet could be functionally and taxonomically annotated at
208 the genus level. Out of the 349 HQ MAGs, proteins from 143 MAGs (101 genera) were
209 detected (Supplementary Data 1). The HQ MAGs covered $39 \pm 1\%$ of the total protein pool,
210 higher than the $28 \pm 4\%$ coverage of the total community DNA (Fig. 4A). On average, the
211 relative abundance of key activated sludge taxa (e.g. *Ca. Microthrix*, *Ca. Accumulibacter*,
212 *Nitrosomonas* and *Nitrospira*) differed up to 20-fold between the metagenomic and
213 metaproteomic approaches (Fig. S12). For example, the AOB:NOB ratio was 0.1 in the
214 metagenome and 3.6 in the metaproteome (discussed in Supplementary Section 6).
215 Taxonomically, the diversity was greatest within the DEN guild (proteins from 124 MAGs
216 were detected) with no clear dominant MAG (Fig. 4B). Owing to this high diversity, many
217 DEN organisms were present in too low abundance to be recovered as MAGs even at the
218 already high sequencing depth employed here (20-25 Gbp per sample). Consequently, DNA
219 sequences from many DEN remained in the unbinned portion of the metagenomes, resulting in
220 the majority of the detected denitrification enzymes, namely nitrate, nitrite and nitrous oxide
221 reductases being assigned to the unbinned fraction (Fig. S15). Proteins from all seven AOB
222 and four NOB MAGs were detected in the metaproteome. The AOB consisted entirely of
223 *Nitrosomonas* MAGs, and were dominated by one MAG (Fig. 4B). NOB were dominated by
224 a *Nitrospira* and a Chloroflexota MAG belonging to the Promineofilaceae family (Fig. 4B),
225 but the alpha- and beta-subunits of the nitrite oxidoreductase (NxR_A and NxR_B) were only
226 expressed by *Nitrospira* and *Ca. Nitrotoga* (Fig. S15). Almost all detected nitrifying enzymes
227 belonged entirely to the recovered MAGs, highlighting the nearly full coverage of the active
228 nitrifying community by the MAGs (Fig. S15). Throughout the monitoring period, the relative
229 proteomic abundance of DEN hardly fluctuated, and the AOB and NOB guilds fluctuated
230 similarly over time (Fig. 4C). The maximum guild-specific fold change in the proteome was
231 1.1 (DEN), 1.8 (AOB) and 2.5 (NOB). Overall, there were no major shifts in the MAG-based
232 composition of each guild, at both DNA and protein level (Figs. S8-S10), and there were no
233 significant correlations between protein-level taxa abundance and WWTP performance (Table
234 S4).
235



236

237 **Figure 4. MAG-based functional guild distribution in the metagenomes and metaproteomes of the activated sludge.** (A)
238 Average relative abundance of denitrifying bacteria (DEN, non-AOB and -NOB MAGs containing at least one denitrification
239 genes, yellow), nitrite-oxidising bacteria (NOB, containing *nxrAB* genes, light blue), ammonia-oxidising bacteria (AOB,
240 containing *amoABC* genes, dark blue), other metagenome-assembled genomes (dark grey) and unbinned sequences (light grey)
241 in the total metagenome (DNA) and metaproteome (Protein) of the activated sludge. Some of the AOB and NOB MAGs also
242 contained one or more denitrification genes (Supplementary Data 2). The error bars represent fluctuations within six (DNA)
243 and twelve (protein) activated sludge samples taken throughout eighteen months. (B) MAG-based composition of the DEN,
244 NOB and AOB guilds. The most abundant genera in the DEN (*Ca. Accumulibacter* and *Ca. Competibacter*), NOB
245 (unidentified *Promineofilaceae* genus, *Ca. Nitrotoga*, *Nitrospira*) and AOB (*Nitrosomonas*) guilds are highlighted. (C)
246 Temporal fluctuations in the relative protein abundance of the DEN (yellow), NOB (light blue) and AOB (dark blue) guilds.
247 The error bars represent standard deviations between technical duplicates and are all smaller than the symbols.

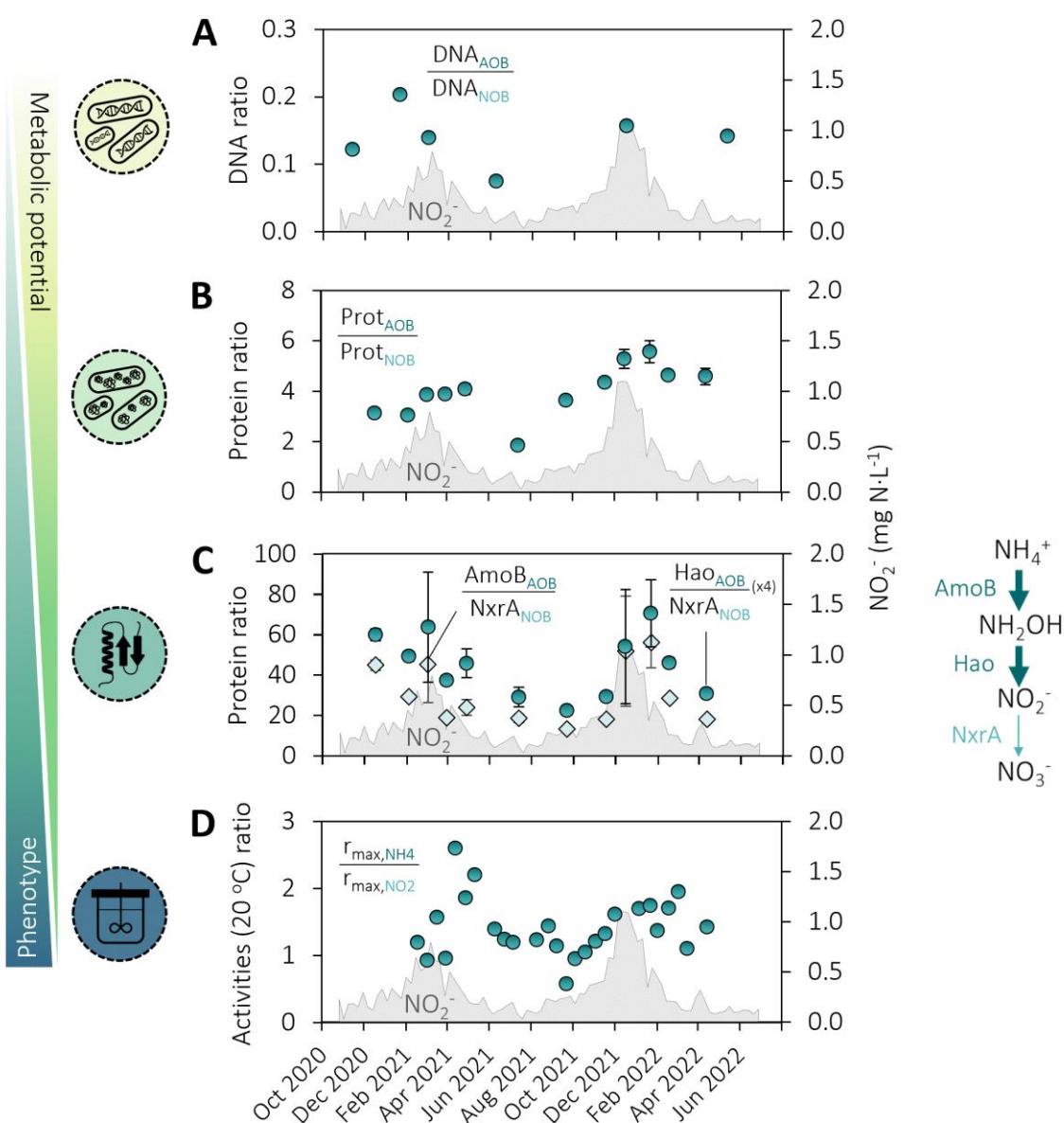
248

249

250 Unbalanced nitrification drives seasonal nitrite accumulation

251

252 The net accumulation and potential emission of any nitrogen intermediate results from the
253 unbalance between its production and consumption rates. Nitrite, a central metabolite
254 exchanged between AOB, NOB and DEN (Fig. 1A), always accumulated prior to the N₂O
255 peaks (Fig. 2). To understand the NO₂⁻ flux balance dynamics, we focused on the DNA,
256 expressed proteins and *ex situ* activity ratios of NO₂⁻-producing and -consuming guilds. At all
257 levels (genomic, proteomic and kinetic), the DEN guild did not display significant seasonal
258 dynamics (Figs. 4C, S8 and S19). Contrastingly, the (un)balance between AOB (NO₂⁻
259 producer) and NOB (NO₂⁻ consumer) fluctuated the most during the monitored period. The
260 ratio between the total abundances of AOB and NOB, both at DNA and protein level, was up
261 to 3-fold higher during periods of high effluent NO₂⁻ concentrations, compared to the rest of
262 the year (Fig. 5A-B). At individual protein level, including MAG and unbinned proteins, the
263 ratio between the expression of the key NH₄⁺-consuming enzyme (represented by the beta-
264 subunit of the ammonia monooxygenase – AmoB) and NO₂⁻-producing enzyme (represented
265 by the hydroxylamine oxidoreductase – Hao) of AOB relative to the catalytic subunit of the
266 NO₂⁻ oxidoreductase of NOB (NxrA) were also higher (Fig. 5C, Supplementary Data 3).
267 Consistently, the ratio between the maximum NH₄⁺ and NO₂⁻ oxidation activities was larger
268 during high NO₂⁻ concentration periods (Fig. 5D).



269
270 **Figure 5. Genomic, proteomic and maximum activity fluctuations of AOB and NOB in activated sludge during periods**
271 **of high and low nitrite accumulation. Left axes:** (A) Ratio between the total relative DNA abundance of ammonia- (AOB)

272 **and nitrite-oxidising bacteria NOB (circles). (B)** Ratio between the total relative protein abundance of AOB and NOB (circles).

273 **(C)** Ratios between the relative abundance of NO_2^- -producing and -consuming enzymes of AOB and NOB, respectively: beta-

274 subunit of the ammonia monooxygenase (AmoB) divided by the catalytic subunit of nitrite oxidoreductase (NxrA) (diamonds);

275 and hydroxylamine oxidoreductase (Hao) divided by NxrA (x4, circles). The enzyme abundances include the proteins

276 belonging to the MAGs and the unbinned fraction. The error bars in all protein ratios were propagated from standard deviations

277 of technical duplicates and some are smaller than the symbols. The respective enzymatic conversions are represented on the

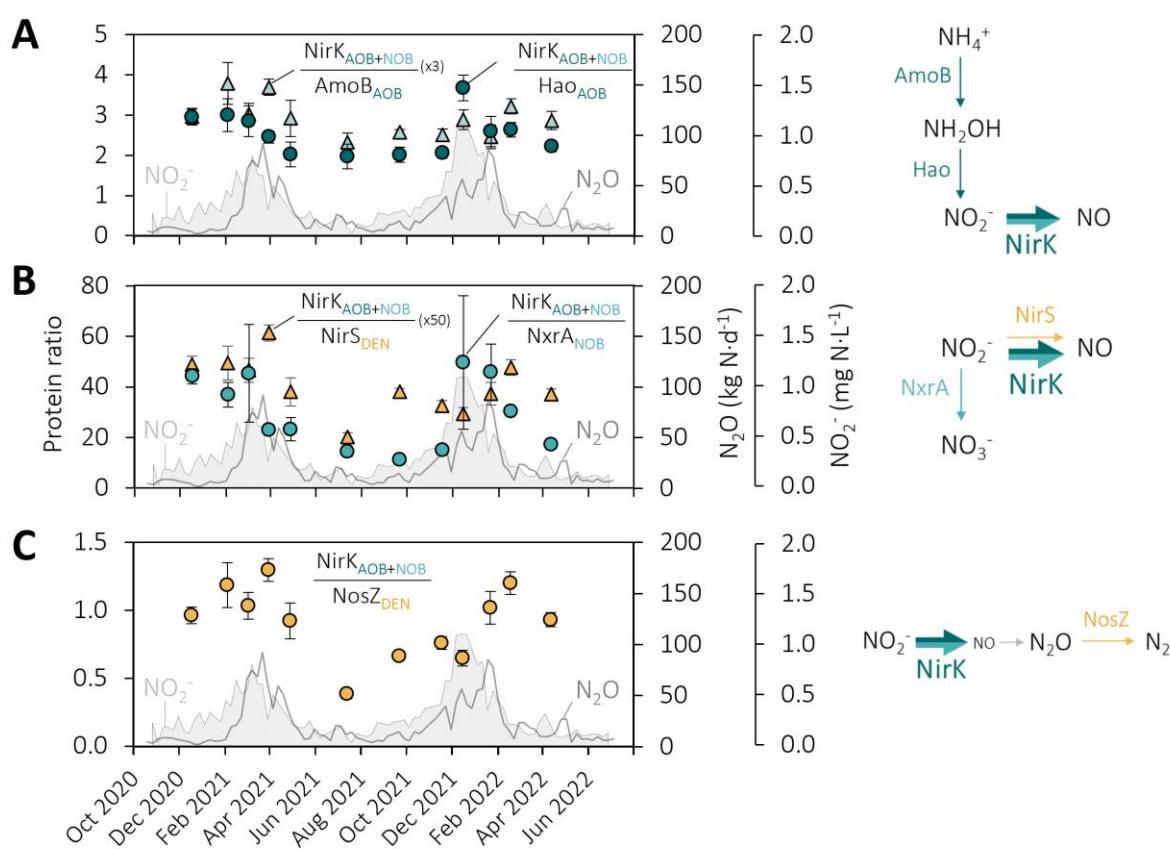
278 right. (D) Ratio between the maximum *ex situ* NH_4^+ and NO_2^- oxidation rates measured at 20 °C (circles). **Right axes: (A-D)**

279 Weekly average NO_2^- concentration in the effluent (seven parallel lanes pooled together, grey area).

280
281 **Overexpressed nitrifier denitrification during N_2O accumulation**

282 In analogy to nitrite, we used ratios between the relative abundance of enzymes directly or
283 indirectly producing and consuming N_2O as proxy for the N_2O flux balance. The total enzyme
284 abundances include MAG and unbinned protein abundances (Supplementary Data 3). The
285 seasonally accumulated NO_2^- can be reduced to N_2O by both AOB and DEN, sequentially using
286 the Cu- (NirK) or *cd1*-type (NirS) NO_2^- reductases and the nitric oxide reductase (Fig. 1A).

287 Here, NirK and NirS were exclusively expressed by nitrifiers and DEN, respectively (Fig. S15).
 288 Four *Nitrosomonas* (AOB) and one *Nitrospira* MAG (NOB) accounted for most of the NirK
 289 expression (75% and 17%, respectively) (Fig. S15). Within the nitrifying community, the
 290 relative abundance of NirK over the key AOB enzymes AmoB and Hao was the highest during
 291 periods of high NO_2^- and N_2O accumulation (Fig. 6A). The ratio of total relative abundance of
 292 NirK over the competing NO_2^- -oxidising NxrA (NOB) and NO_2^- -reducing NirS (DEN)
 293 followed a similar trend (Fig. 6B). NosZ is the only known N_2O -reducing enzyme, and the ratio
 294 NirK/NosZ clearly reflected the seasonal dynamics, being higher during seasonal peaks (Fig.
 295 6C). Similarly, yet to a significantly lower extent, also the ratio between the hydroxylamine
 296 (NH_2OH) producing AmoB and consuming Hao and CytP460 (Fig. S18), and the ratio
 297 NirS/NosZ (Fig. S19C) displayed some seasonality. The here employed protein extraction
 298 protocol does not allow for the quantification of membrane-bound proteins, such as the nitric
 299 oxide reductases, which were therefore not included in the discussion.



300
 301 **Figure 6. NirK overexpression relative to other nitrogen enzymes during periods of high NO_2^- concentrations and N_2O
 302 emissions. Left axes (symbols): (A) NirK vs. other AOB enzymes. Ratio between the total relative abundance of NO_2^- -
 303 consuming NirK and the other key AOB enzymes Hao (circles) and AmoB (triangles). (B) NirK vs. competing NO_2^- -
 304 consuming enzymes. Ratio between the total relative abundance of NO_2^- -consuming NirK and the NO_2^- competing NxrA
 305 (circles, NOB) and NirS (x50, triangles, DEN). (C) NirK in N_2O balance. Ratio between the total relative abundance of NirK
 306 (producing the N_2O precursor NO) and the only known enzymatic N_2O -sink N_2O reductase (NosZ) (circles). The enzyme
 307 abundances include the proteins belonging to the MAGs and the unbinned fraction. The error bars in the protein ratios were
 308 propagated from standard deviations of technical duplicates. All enzymatic conversions are schematically represented on the
 309 right. NirK is expressed by both AOB and NOB, but the activity and function of the enzyme in NOB are yet unknown. Right
 310 axes: (A-C) Weekly average NO_2^- concentration in the effluent of the WWTP (seven parallel lanes pooled together, grey area)
 311 and N_2O emission rates measured in the off-gas from all the reactor compartments in one lane at the WWTP (grey line).**

312 **Discussion**

313

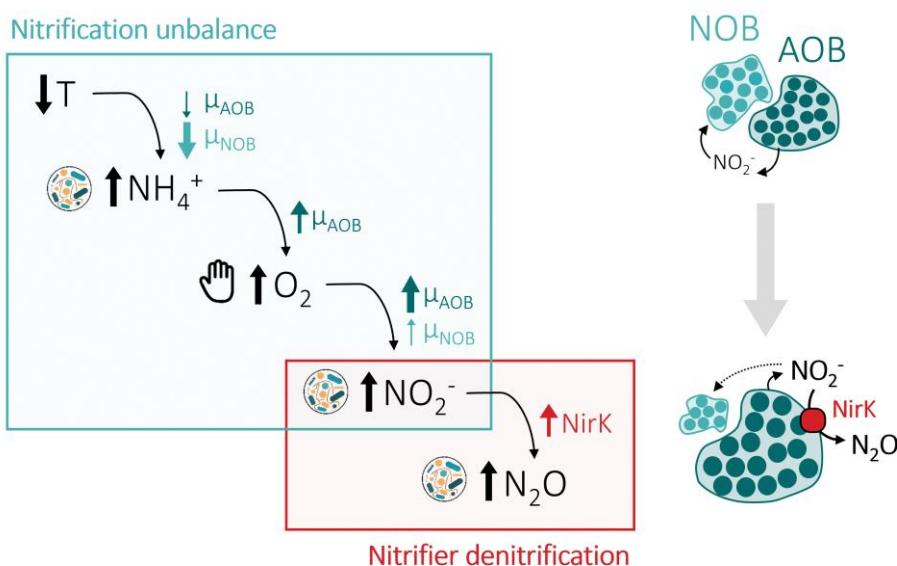
314 We postulate that the seasonal accumulation of NO_2^- and subsequent emissions of the potent
315 greenhouse gas N_2O at a full-scale WWTP are related to fluctuations in the balance of key
316 nitrogen-converting populations, rather than their individual abundance or activity. No major
317 changes in the DNA and protein composition, nor significant correlations with plant
318 performance, were observed throughout eighteen months of operation. This is consistent with
319 previous metagenomic and 16S rRNA gene amplicon sequencing reports in WWTPs³⁶⁻³⁹. The
320 microbiome was dominated by a taxonomically diverse DEN community (74% of the binned
321 community proteome), in line with most genomic and transcriptional analyses of conventional
322 WWTPs^{19,40,41}. While the high DEN abundance may have masked fluctuations at guild level,
323 the absence of significant changes at the activity and individual protein level further supports
324 the DEN stability. Instead, the DNA and protein abundances of the nitrifying community,
325 dominated by one AOB and two NOB MAGs, fluctuated over time, yet not consistently with
326 the observed nitrogen oxides accumulation dynamics. This aligns with most studies reporting
327 limited to no correlation between AOB and NOB 16S rRNA gene abundances and seasonal
328 nitrification failures³⁴, or AOB and NOB conversion rates and N_2O production²². Only few
329 studies observed a correlation between increased N_2O emissions and increased relative AOB
330 abundances (16S)⁴², AOB *ex situ* activities⁴³, or decreased NOB abundances (16S)^{19,23}. Yet
331 evidence remains sparse and seemingly conflicting, ultimately hindering mechanistic
332 generalizations. This lack of general consensus resides in the fundamental dependency between
333 metabolite dynamics and the trade-off between their production and consumption rates (i.e. the
334 balance between the producing and consuming guilds), rather than their individual magnitudes.
335

336 Against a relatively stable DEN community, featuring a fairly constant nitrite production and
337 reduction potential, we identified the unbalance between AOB (NO_2^- producer) and NOB (NO_2^-
338 consumer) as the primary cause for seasonal nitrite accumulation. During the nitrite peaks
339 preceding the N_2O ones, a higher ratio of AOB over NOB was observed at genomic, proteomic
340 and kinetic levels. To date, only Bae et al.²² quantitatively linked N_2O emissions with increased
341 AOB/NOB *ex situ* activity ratios in an otherwise stable nitrifying community based on 16S
342 rRNA gene sequencing. Gruber et al.²³ observed stable AOB but lower NOB and filamentous
343 bacteria 16S rRNA gene abundances during winter N_2O emissions, and hypothesized a
344 selective NOB washout due to compromised floc integrity. Here, the fluctuations in the sludge
345 settleability (representing floc integrity) and in the DNA and protein abundances of *Ca.*
346 *Microthrix* (filamentous bacteria) did not follow the full-scale metabolite profiles, nor the NOB
347 abundance or the AOB/NOB ratio (Figs. S2, S11 and Table S2). The known higher sensitivity
348 of NOB to the toxic free ammonia and nitrous acid compared to AOB⁴⁴⁻⁴⁶ has also been
349 suggested as potential cause for nitrite accumulation⁴⁵. However, in our case, the estimated
350 concentration of free ammonia (0.03 mg N·L⁻¹) and nitrous acid (0.001 mg N·L⁻¹) were far
351 below the NOB toxicity thresholds (Tables S6-S7)⁴⁴⁻⁴⁷. Instead, we argue that the unbalanced
352 AOB/NOB ratio results from a cascade of separate environmental and operational perturbations
353 differentially impacting their respective growth rates (Fig. 7). The decrease in temperature
354 reduces both AOB and NOB growth rates, and may alone promote the selective washout of the
355 slower-growing NOB (as estimated in this work and consistent with literature values; Table
356 S8, Fig. S21). In addition, reduced AOB rates lead to the accumulation of ammonium, with the
357 operationally undesired worsening of effluent quality. In response, most WWTPs increase the

358 operational dissolved O₂ set point to promote nitrification. The increased availability of
359 ammonium selectively favours AOB, while, in principle, the increase in dissolved O₂ positively
360 impacts the growth rate of both AOB and NOB. However, the reported lower AOB apparent
361 affinity for O₂ in activated sludge⁴⁸⁻⁵¹ likely favours AOB over NOB, further enhancing the
362 initial differential temperature impact on their growth rates. Ultimately, nitrite accumulation is
363 the result of the progressive relative enrichment of AOB over NOB. To test our hypothesis, we
364 developed and implemented a simple mathematical model based on the experimentally
365 estimated kinetic parameters and literature-derived stoichiometric parameters (Tables S9-S12).
366 The model reproduced all observed seasonal metabolites peaks induced by decreasing
367 temperatures and consequent increase in ammonium and operational dissolved O₂. The
368 simulations also captured the progressive relative biomass increase of AOB over NOB (Fig.
369 S23). These results strongly indicate that the sequential seasonal nitrogen oxides peaks result
370 from a cascade of distinguishable events, where temperature is the initial trigger but not the
371 sole direct cause, as commonly hypothesized. The absence of a single parameter correlating
372 with nitrite and subsequent N₂O emissions likely explains the difficulties of past studies to
373 identify direct correlations^{18,24,33}. Importantly, the dissolved O₂ concentration emerged as the
374 central operational parameter to act upon, and we posit that the AOB/NOB unbalance may be
375 largely prevented by anticipating in time, i.e. before measurable NH₄⁺ accumulation, the
376 operational O₂ increase.
377

378 The last metabolite to accumulate along the reconstructed ecophysiology cascade is N₂O. High
379 nitrite concentrations are well-known to lead to N₂O emissions through both nitrifier and
380 heterotrophic denitrification³, yet the dominant pathway underlying seasonal N₂O emissions
381 remains unclear^{21,24,43}. We use the nitrite reductases (NirK and NirS) as proxy for N₂O
382 production, and their genome-resolved taxonomy to differentiate between nitrifier and
383 heterotrophic denitrification. Considering the fast turnover of NO⁸, the use of Nir allows to
384 overcome the challenges in detecting the membrane-bound hydrophobic nitric oxide reductase
385 in metaproteomic analyses^{52,53}. Unbalanced heterotrophic denitrification was excluded as the
386 main N₂O producing pathway during the seasonal emissions owing to the relatively constant
387 ratio between NirS and NosZ, both exclusively expressed by DEN, and their rates. The nitrite
388 reductase NirK was exclusively expressed by nitrifiers, primarily by AOB, so it was used as
389 proxy for nitrifier denitrification. NOB *Nitrospira* contributed to about one fifth of the total
390 detected NirK, but its activity and function remain unknown⁵⁴⁻⁵⁶. A marked increase in the
391 ratio of NirK over other AOB enzymes (AmoB and Hao) and the competing NO₂⁻-consuming
392 enzymes (NxR from NOB and NirS from DEN) was observed during the seasonal nitrogen
393 oxide peaks. The higher expression of NirK was likely induced by the seasonally increased
394 nitrite concentrations^{57,58}, and suggests an increased relative nitrite flux towards nitrifier
395 denitrification rather than nitrite oxidation or heterotrophic nitrite reduction. Emissions also
396 coincided with periods in which O₂ was identified as the metabolically limiting substrate for
397 AOB (i.e. lower O₂/NH₄⁺ ratios compared to the rest of the year), likely forcing AOB to resort
398 to nitrifier denitrification as additional electron sink^{59,60}. The observed slight imbalance
399 between hydroxylamine-producing AmoB and -consuming Hao and Cyt P460 makes it here
400 tempting to speculate that hydroxylamine accumulated as a result of the kinetic O₂ limitation
401⁵⁹, further supporting an electron unbalance in the AOB metabolism. To date, only one report
402 suggested a correlation between N₂O emissions in WWTPs and *nirK* gene transcripts
403 abundance, quantified by RT-qPCR⁶¹. Yet, the *nirK* transcripts were not taxonomically

404 classified and were assumed to entirely belong to heterotrophic denitrifiers⁶¹. All other studies
405 discussing seasonal N₂O emissions in WWTPs infer the main N₂O-producing pathways based
406 on metabolite profiles, and a general consensus is still lacking^{18,20,21,24,43} (Table S1). Gruber et
407 al.⁶² suggest heterotrophic denitrification as the main N₂O-producing pathway in a WWTP
408 using natural isotopic signatures, but seasonal dynamics were not captured. More importantly,
409 the isotopic signatures of N₂O produced through nitrifier and heterotrophic denitrification
410 largely overlap, challenging the possibility to univocally distinguish the two pathways^{62,63}. For
411 the same reason, ¹⁵N/¹⁸O tracer methods also did not yield conclusive results⁶³. Instead, by
412 integrating metagenomic-guided metaproteomics with kinetic analyses and full-scale
413 operational data we provide independent evidence on multiple ecophysiological levels
414 identifying nitrifier denitrification as the prime N₂O-producing pathway during seasonal
415 emissions. More broadly, our results demonstrate the untapped potential of multi-meta-omics
416 integration in biotechnological developments to resolve the complexity and advance the
417 engineering of the underlying microbiomes.



418
419 **Figure 7. Schematic representation of the proposed ecophysiological cascade underlying seasonal N₂O emissions in**
420 **WWTPs.** A decrease in temperature causes lower growth rates of ammonia-oxidising bacteria (AOB) and nitrite-oxidising bacteria (NOB),
421 promoting ammonium accumulation and a selective washout of the slower-growing NOB; the resulting increased ammonium
422 concentrations stimulate the growth of AOB and induce the process control to increase the operational dissolved O_2
423 concentration; the increased O_2 concentrations increase the growth rates of both AOB and NOB, but may selectively benefit
424 AOB with a lower apparent affinity for O_2 . The resulting increased AOB/NOB ratio causes the accumulation of nitrite and
425 consequent stimulation of nitrifier denitrification by AOB, as observed in the overexpression of the Cu-type nitrite reductase
426 (NirK). The ammonium, nitrite and N_2O concentration increases are a result of changes in the microbial community
427 metabolism, while the increase in O_2 concentration is the only manually controlled parameter in the cascade.

428 **Methods**

429

430 **WWTP operation.** The covered Amsterdam-West WWTP has the daily capacity to treat
431 200,000 m³ municipal wastewater under dry weather conditions (1 million population
432 equivalents). After fine screening and primary sedimentation, carbon, phosphorus and nitrogen
433 are biologically removed in a modified University of Cape Town configuration in seven
434 independent parallel cylindric plug-flow activated sludge tanks (Fig. S1). Nutrient removal
435 occurred in four compartments: anaerobic (biological phosphorus removal), anoxic
436 (denitrification), facultative (aerated when additional nitrification capacity was required), and
437 aerobic (nitrification) (Fig. S1). The setpoint for the dissolved O₂ concentration in the aerobic
438 and facultative zones was set as function of the measured NH₄⁺ concentration in the aerated
439 compartment. The average sludge retention time (SRT) was 11-15 days and was controlled to
440 maintain an average total suspended solids of 4.2 g·L⁻¹. N₂O was measured in the combined
441 gas exhaust of all compartments (anaerobic + anoxic + facultative + aerobic) of a single lane
442 using an RosemountTM X-STREAM gas analyser (Emerson). NH₄⁺, NO₃⁻ and N₂O were
443 measured in a single biological nutrient removal lane of the WWTP, NO₂⁻ was measured in the
444 pooled effluent of seven lanes.

445

446 **Ex situ batch activity tests with full-scale activated sludge.** The maximum nitrification and
447 denitrification activities of the activated sludge were measured every two weeks between
448 January 2021 and May 2022. For consistency, the sludge sampling, handling and storage, and
449 the activity tests were always performed in the same manner. Samples were collected from the
450 aerated compartment of the monitored full-scale activated sludge reactor and stored in two litre
451 glass bottles in the fridge for a maximum of four hours. The sludge was transported under cold
452 conditions (never reaching a temperature above 10 °C) and immediately placed in a 3 L
453 jacketed glass bioreactor with a 2 L working volume (Applikon, Getinge). The sludge was
454 made anoxic by sparging with N₂ for 1 h at 0.5 L·min⁻¹ (after which the bioreactor was sealed)
455 and was incubated overnight with 50 mg N·L⁻¹ NaNO₃ to consume the internal carbon storages.
456 During overnight storage and subsequent activity tests, the sludge was stirred at 750 rpm by
457 two six-blade turbines, the temperature was maintained at 20 ± 1 °C using a cryostat bath
458 (Lauda), and the pH was automatically maintained at 7.0 ± 0.1 by 1 M HCl and 1 M NaOH
459 with two peristaltic pumps (Watson Marlow) controlled by an in-Control process controller
460 (Applikon, Getinge). The pH and dissolved oxygen were continuously monitored with probes
461 (Applikon AppliSens, Getinge). Influent gas flows were controlled by mass-flow controllers
462 (Brooks). After overnight incubation with NO₃⁻, the sludge was activated by adding a spike of
463 NaNO₃ (5 mg N·L⁻¹) and a mixture of organic carbon (acetate, pyruvate, glucose, 37.5 mg
464 COD·L⁻¹ each). The batch activity tests were sequentially performed on the same day in the
465 following order: N₂O, NO₂⁻ and NO₃⁻ reduction (denitrification), and NH₄⁺ and NO₂⁻ oxidation
466 (nitrification) (Table 2). Before each batch, the depletion of the previous nitrogen compound
467 was ensured. Substrates were added to the bioreactor with a syringe and needle through a rubber
468 septum, marking the start of the batches. The batches' progress was monitored with NO₂⁻ and
469 NO₃⁻ MQuant[®] colorimetric test strips (Merck).

470 Nitrogen compounds were added at 12 mg N·L⁻¹, in the form of N₂O (sparging 1.5% N₂O +
471 98.5% N₂ at 0.5 L·min⁻¹ during 15-20 min), NaNO₂ (1.2 mL), NaNO₃ (1.2 mL) and NH₄HCO₃
472 (1.2 mL) from concentrated stocks. The proportion bicarbonate to nitrogen was kept the same
473 for the two nitrification batches by supplying 0.9 mM NaHCO₃ to the NO₂⁻ oxidation batch.

474 The organic carbon compounds were added at the start of the denitrification batches (each 75
475 mg COD·L⁻¹, at least 2-fold higher than stoichiometrically needed) from anoxic concentrated
476 stock solutions: sodium acetate (C₂H₃NaO₂, 3 mL), sodium pyruvate (C₃H₃NaO₃, 3 mL) and
477 glucose (C₆H₁₂O₆, 3 mL). The concentration of pyruvate was 4-fold lower in the batch tests
478 from January until mid-August 2021, but this had no effect on the measured activities. Before
479 each denitrification test, anoxic conditions were ensured by sparging N₂ at 0.5 L·min⁻¹ for 20
480 min, after which the reactor was sealed off from the exterior. The transition from anoxic to oxic
481 conditions was achieved by sparging air at 0.5 L·min⁻¹ for at least 1 h. During each nitrification
482 test, oxic conditions (> 70% air saturation) were ensured by continuously sparging air at 0.5
483 L·min⁻¹. When necessary, foam formation was reduced with a few drops of six times diluted
484 antifoam C 391 emulsion (Merck Life Science NV). For supernatant analysis, samples were
485 taken every 3, 5, 10 or 15 min (depending on the length of the batches), and immediately
486 filtered with a 0.45 µm PVDF Millex syringe filter (Merck) and placed on ice. The samples
487 were stored at 4 °C until analysis on the following day.

488

489 **Table 1. Order and details of the nitrification and denitrification activity tests performed on a single day, every second**
490 **week.** The denitrification tests (N₂O, NO₂⁻ and NO₃⁻ reduction) were performed under anoxic conditions, with a mixture of
491 organic carbon compounds as electron donor. Prior to each denitrification batch the broth was sparged with N₂ during 20 min
492 to ensure anoxic conditions and remove intermediate nitrogenous gases. The nitrification tests (NH₄⁺ and NO₂⁻ oxidation) were
493 performed with O₂ as electron acceptor, under continuous aeration. Between the denitrification and nitrification batches, the
494 broth was made oxic by sparging air for 60 min. Each nitrogen compound was added at a final concentration of 12 mg N·L⁻¹.

Batch	Electron donor	Electron acceptor	Length (min)	Sparging	Conditions
N ₂ O reduction (DEN)	Acetate, pyruvate, glucose	N ₂ O	24 - 105	Off	
NO ₂ ⁻ reduction (DEN)	Acetate, pyruvate, glucose	NO ₂ ⁻	25 - >150	Off	Anoxic
NO ₃ ⁻ reduction (DEN)	Acetate, pyruvate, glucose	NO ₃ ⁻	35 - >150	Off	
NH ₄ ⁺ oxidation (AOB)	NH ₄ ⁺	O ₂	30 - >150	Air	Oxic
NO ₂ ⁻ oxidation (NOB)	NO ₂ ⁻	O ₂	45 - >150	Air	

495

496 **Analytical methods.** The concentrations of NH₄⁺, NO₂⁻ and NO₃⁻ in the filtered supernatant
497 were spectrophotometrically measured on the day following the batches, using the GalleryTM
498 Discrete Analyzer (Thermo Fisher Scientific) or cuvette test kits (LCK339, LCK342 and
499 LCK304, Hach Lange). When measuring NO₃⁻ with the cuvette test kits, the samples were
500 diluted 1:1 with 20 g·L⁻¹ sulfamic acid to remove NO₂⁻ as interference. The volatile suspended
501 solids concentration (ash content subtracted from the dried biomass), measured in triplicate,
502 was taken as proxy for the biomass concentration. Immediately upon arrival, 3x 25 mL of
503 sludge was centrifuged at 4200 rpm for 20 min, the pellet was resuspended in 15 mL MilliQ
504 water, dried at 105 °C (24 h) and burned at 550 °C (2 h). The concentrations of O₂, CO₂ and
505 N₂O in the condenser-dried reactor off-gas were monitored by a Rosemount NGA 2000 off-
506 gas analyser (Emerson). The dissolved N₂O concentrations were monitored and recorded every
507 minute with a standard N₂O-R microsensor (customized concentration range 0.4 – 2 mM,
508 Unisense) and a picoammeter PA2000 (Unisense). The dissolved N₂O concentrations were
509 calculated using the average of all calibrations performed 1-2 days before every batch series.

510

511 **Calculations activity tests.** The maximum NO₂⁻ and NO₃⁻ reduction and NH₄⁺ and NO₂⁻
512 oxidation rates were obtained through linear regression of the substrate concentration profiles
513 over time. The slope was determined using at least four concentration points in the linear range.
514 The maximum N₂O reduction rate was calculated in Spyder IDE v5.1.5 using Python v3.9.12
515 and the NumPy v1.21.5⁶⁴, SciPy v1.7.3⁶⁵ and Pandas v1.4.2⁶⁶ packages, taking into account

516 the gas-liquid transfer between the reactor broth and headspace throughout the batch test
517 (Supplementary Section 13). A system of ordinary differential equations (ODEs), representing
518 the liquid and headspace mass balances, was defined to describe the gas-liquid transfer over
519 time:

520
$$\frac{dc_{N_2O,liq}}{dt} = r_{N_2O} - k_L a \cdot (c_{N_2O,liq} - c_{N_2O,gas} \cdot \frac{K_{H,N_2O} \cdot R \cdot T}{p}) \quad (eq. 1)$$

521
$$\frac{dc_{N_2O,gas}}{dt} = \frac{V_{liq}}{V_{gas}} k_L a \cdot (c_{N_2O,liq} - c_{N_2O,gas}) \quad (eq. 2)$$

522 With $c_{N_2O,liq}$ and $c_{N_2O,gas}$ the N_2O concentration in the liquid and headspace, r_{N_2O} the unknown
523 N_2O consumption rate, $k_L a$ the experimentally determined volumetric mass transfer coefficient
524 (5 h^{-1}), K_{H,N_2O} the Henry coefficient (27.05 mM/atm), R the ideal gas constant (8.206×10^{-5}
525 $\text{L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mmol}$), T the temperature, p the pressure, and V_{liq} and V_{gas} the broth and headspace
526 volumes. The rates were obtained by fitting the model to the experimental data, i.e. by
527 minimizing the sum of squared errors between the experimentally measured and calculated (eq.
528 1-2) N_2O concentrations (see code in Supplementary Section 13).

529 **DNA extraction, library preparation and sequencing.** Samples of 2 mL were taken
530 immediately after cold transport of the sludge, and centrifuged at $16,200 \times g$ for 5 min at 4°C
531 to separate the biomass from the supernatant. The biomass pellets were stored at -80°C until
532 DNA extraction. The DNA of the 12 Nov 2020, 9 Jun, 16 Dec 2021 and 11 May 2022 samples
533 was extracted with the DNeasy PowerSoil Pro Kit (Qiagen). The manufacturer's instructions
534 were followed, with exception of these steps: approximately 50 mg biomass was resuspended
535 in the CD1 solution by vortexing before transferring to the PowerBead tube; 3 x 40 s bead-
536 beating (Beadbeater-24, Biospec) was alternated with 2 min incubation on ice; tubes were
537 gently inverted instead of vortexed to prevent DNA shearing³⁵. The DNA of the 20 Jan and 3
538 Mar 2021 samples (1/3 pellet) was extracted with the DNeasy UltraClean Microbial Kit
539 (Qiagen) following the manufacturer's instructions. The DNA concentration and quality were
540 assessed with the Qubit 4 Fluorometer (Thermo Fisher Scientific) and the BioTek Synergy
541 HTX multimode microplate reader (Agilent), respectively.

542 The samples of 12 Nov 2020 (np1), 9 Jun (np2), 16 Dec 2021 (np3) and 11 May 2022 (np4)
543 were prepared for long-read sequencing using the Ligation Sequencing Kit V14 (Oxford
544 Nanopore Technologies Ltd), the NEBNext® Companion Module for Oxford Nanopore
545 Technologies® Ligation Sequencing (New England BioLabs) and UltraPure™ BSA (50
546 mg/mL) (Thermo Fisher Scientific). The incubations in the Hula mixer were replaced with
547 slow manual inversions, all resuspensions were performed by flicking the tube, and the last
548 room temperature incubation step was performed at 37°C to improve the recovery of long DNA
549 fragments. Four MinION R10.4 flow cells (Oxford Nanopore Technologies), one for each
550 sample, were used to sequence on a MinION for 89-96 h in accurate mode (260 bps), yielding
551 21-29 Gbp per sample. The sample of 20 Jan 2021 (np1.5) was prepared with a Ligation
552 Sequencing Kit V12 and sequenced on a GridION with MinION R9.4 flow cells (Oxford
553 Nanopore Technologies), generating 11.2 Gbp. Short-read sequencing was also performed on
554 the samples of 20 Jan (il1) and 3 Mar 2021 (il2) on an Illumina NovaSeq 6000 platform by
555 Novogene Ltd. (UK), resulting in over 20 Gbp (per sample) of 150 bp paired-end reads with a
556 350 bp insert.

557 **Processing of metagenomic data and MAG recovery.** After sequencing, the DNA data was
558 processed to obtain metagenome-assembled genomes (MAGs). The final set of MAGs was

561 obtained from the five nanopore-sequenced samples (np1-4 and np1.5). The Illumina reads (il1
562 and il2) were solely used for differential coverage binning and to estimate the relative
563 abundance of each MAG on the respective dates. The raw long reads were basecalled in super-
564 accurate mode with the “dna_r10.4.1_450bps_sup.cfg” configuration file and --
565 do_read_splitting option using Guppy v6.4.2 (np1-4) or with “dna_r9.4.1_450bps_sup.cfg”
566 using Guppy v5.0.7 (Oxford Nanopore Technologies) (np1.5). The duplex reads of np1-4 were
567 filtered using pairs_from_summary and filter_pairs from Duplex tools v0.2.19 (Oxford
568 Nanopore Technologies). The duplex reads were basecalled using the duplex basecaller of
569 Guppy and merged with the remaining simplex reads using SeqKit v2.3.0⁶⁷. The reads were
570 filtered, trimmed and inspected with NanoFilt v2.8.0⁶⁸ (options -q 10 -l 200), Porechop v0.2.4
571 (<https://github.com/rrwick/Porechop>) and NanoPlot v1.41.0⁶⁸. The Illumina reads were
572 filtered and trimmed using Trimmomatic v0.39⁶⁹ with the options LEADING:3 TRAILING:3
573 SLIDINGWINDOW:4:15 MINLEN:35 HEADCROP:5. The kmer algorithm of Nonpareil
574 v3.401⁷⁰ estimated a diversity coverage of 69.9% (il1) and 71.3% (il2) for the trimmed
575 Illumina reads.

576 The long reads were individually assembled and pairwise co-assembled (np1-np2, np2-np3,
577 np3-np4) with Flye v2.9.1⁷¹ in --meta mode. The reads were mapped on the assembly with
578 Minimap2 v2.24⁷². The individual assemblies were polished with Racon v1.4.3
579 (<https://github.com/isovic/racon>) and two times with Medaka v1.5.0
580 (<https://github.com/nanoporetech/medaka>). The reads from all samples were mapped to each
581 assembly using Minimap2, the alignments were converted from SAM to BAM and sorted with
582 SAMtools v1.10⁷³ and the contig coverage in each sample was calculated with
583 jgi_summarize_bam_contig_depths⁷⁴. The differential coverages were used for automatic
584 binning of each assembly with MetaBAT2 v2.15⁷⁴, MaxBin2 v2.2.7⁷⁵ and CONCOCT v1.1.0
585⁷⁶, setting the minimum contig length at 2000 bp. The outputs were combined into an optimized
586 set of non-redundant bins with DAS Tool v1.1.3⁷⁷, which used Prodigal v2.6.3⁷⁸ and
587 DIAMOND v2.0.8⁷⁹. The bins obtained from all assemblies (np1, np1.5, np2, np3, np4, np1-
588 np2, np2-np3, np3-np4) were dereplicated with the 1083 HQ MAGs from Singleton *et al.*
589 (2021)³⁵ at 95% average nucleotide identity of open reading frames using dRep v3.2.2⁸⁰ with
590 the options -comp 70 -con 10 -sa 0.95 --S_algorithm gANI.

591 Bin completeness and contamination was assessed with the lineage_wf workflow of CheckM
592 v1.1.3⁸¹. The relative abundance of the bins in each sample (np1, np2, np3, np4, il1, il2) was
593 determined with CoverM v0.6.1 (<https://github.com/wwood/CoverM>), using the options --
594 methods relative_abundance mean --min-read-percent-identity 95 --min-read-aligned-
595 percentage 50. Bins with completeness < 90%, contamination > 5% or with zero abundance in
596 all samples were discarded, resulting in a non-redundant set of 349 HQ MAGs. The HQ MAGs
597 were taxonomically classified using the classify_wf mode of GTDB-Tk v2.3.0⁸² and the
598 GTDB release 207⁸³ ([gtdbtk_r207_v2_data.tar.gz](https://github.com/tseemann/gtdbtk_r207_v2_data.tar.gz)). The presence of 16S rRNA genes was
599 verified with barrnap v0.9 (<https://github.com/tseemann/barrnap>). A bacterial phylogenetic
600 tree was made with FastTree v2.1.11⁸⁴ using the multiple sequence alignment generated with
601 the identify and align modes of GTDB-Tk, adjusted with the TreeTools v1.10.0⁸⁵ package in
602 RStudio v22.0.3⁸⁶ with R v4.2.2⁸⁷ and visualized with iTol v6.8.2⁸⁸.

603
604 **Gene prediction and functional annotation.** Genes were predicted in all assemblies using
605 Prodigal v2.6.3⁷⁸ with the -p meta option. The gene sequences were concatenated and
606 duplicates were removed using grep and rmdup from SeqKit v2.3.1⁶⁷, resulting in a unique set

607 of genes covering all metagenomic samples. The predicted genes were functionally annotated
608 with the annotate pipeline of EnrichM v0.6.5 (<https://github.com/geronimp/enrichM>), using
609 DIAMOND v2.0.8⁷⁹ and HMMER v3.2.1 (<http://hmmer.org/>) and the EnrichM v10 database,
610 including a KO-annotated UniRef100 2018_11⁸⁹ DIAMOND database and HMM libraries of
611 the KEGG 88.2⁹⁰, PFAM 32.0⁹¹, and TIGRFAMs 15.0⁹² databases. In general, the genes of
612 interest from the nitrogen cycle were identified by their KO identifier (Table S3). Cytochrome
613 P460 was identified through its PFAM identifier PF16694. The genes encoding the alpha- and
614 beta-subunit of the cytoplasmic nitrate reductase (*narG* and *narH*) and the nitrite
615 oxidoreductase (*nxrA* and *nxrB*) have the same KO identifier, so these were distinguished
616 through a phylogenetic analysis using the graft command of GraftM⁹³ and the respective
617 packages (7.70.nxrA_narG and 7.69.nxrB). If the alpha-subunit was classified as *narG* or *nxrA*,
618 the putative beta-subunit located in the same contig was manually annotated. The unclassified
619 sequences were left with the *narGH* annotation. The *nxrAB* genes from the *Ca. Nitrotoga* MAG
620 (NOB) could not be distinguished with GraftM, but were confirmed with a BLAST on UniProt
621⁹⁴. Similarly, the alpha-subunit of the ammonia monooxygenase gene (*amoA*) was
622 distinguished from the methane monooxygenase gene (*pmoA*) using the 20170316_pmoA
623 package of GraftM. Unidentified sequences remained annotated as *pmoA*. The beta- and
624 gamma-subunits located in the same contig as *amoA* were manually annotated as *amoB* and
625 *amoC*. Distinction between the quinol-dependent nitric oxide reductase (qNor, encoded by
626 *norZ*) and the alpha subunit of the cytochrome c-dependent reductase (cNor, encoded by *norB*),
627 was made by identifying the fused quinol oxidase domain on the N-terminal of *norZ*⁹⁵. A
628 multiple sequence alignment was performed between putative NorB and NorZ protein
629 sequences found in the metagenomes (K04561), and reference sequences of NorB
630 (*Pseudomonas stutzeri*, P98008) and NorZ (*Cupriavidus necator*, Q0JYR9), extracted from
631 UniProtKB⁹⁴, using Clustal Omega v1.2.4⁹⁶. The alignment was visualized and analysed, and
632 the quinol oxidase domain was identified with Jalview v2.11.3.2. The distinction between clade
633 I and II nitrous oxide reductase, respectively TAT- and Sec-dependent, was made by combining
634 the TIGRFAM annotation of EnrichM and the phylogenetic analysis of GraftM with the
635 7.45.nosZ package. The sequences not classified as either clade I or II remained annotated as
636 unclassified *nosZ*. Data processing was performed using RStudio v22.0.3⁸⁶ with R v4.2.2⁸⁷,
637 and the plyr v1.8.8⁹⁸, tidyverse v2.0.0⁹⁹, readxl v1.4.2¹⁰⁰, data.table v1.15.0¹⁰¹, aplot v0.2.2
638¹⁰² and reshape2 v1.4.4¹⁰³ packages.
639

640 **Protein extraction.** Biomass samples were taken and stored as detailed in the DNA extraction
641 section. Proteins were extracted from 12 samples, as previously described¹⁰⁴. Briefly, around
642 60 mg of the biomass pellet were homogenised in three cycles of vortexing and ice incubation
643 with glass beads (150 – 212 µm, Sigma Aldrich), 50 mM TEAB buffer 1% (w/w) NaDOC and
644 B-PER reagent (Thermo Scientific). Proteins in the supernatant were precipitated with 1:4
645 trichloroacetic acid (Sigma Aldrich). The pellet was washed and disrupted with acetone two
646 times and re-dissolved in 200 mM ammonium bicarbonate with 6 M Urea (Sigma Aldrich).
647 Human serum albumin (0.1 µg, Sigma Aldrich) was added to all samples to control the
648 digestion efficiency. The mixture was reduced with 10 mM dithiothreitol (Sigma Aldrich) at
649 37 °C for 60 min, and alkylated with 20 mM iodoacetamide (Sigma Aldrich) in the dark for 30
650 min. Samples were diluted with 100 mM ammonium bicarbonate to obtain a urea concentration
651 lower than 1 M. Protein digestion occurred overnight at 37 °C and 300 rpm with 1.5 µg
652 sequencing grade trypsin (Promega). 0.5 pmol of the Pierce™ Peptide Retention Time

653 Calibration mix (Thermo Scientific) was added to all samples to control the chromatographic
654 performance. Solid phase extraction was performed with an Oasis HLB 96-well μ Elution Plate
655 (2 mg sorbent per well, 30 μ m, Waters) and a vacuum pump. The columns were conditioned
656 with MeOH, equilibrated with water two times, loaded with the peptide samples, washed with
657 two rounds of 5% MeOH and sequentially eluted with 2% formic acid in 80% MeOH and 1
658 mM ammonium bicarbonate in 80% MeOH. The samples were dried in a centrifuge
659 Concentrator plus (Eppendorf) at 45 °C and stored at -20 °C until analysis.

660

661 **Shotgun metaproteomics.** Peptide samples were dissolved in 20 μ L of 3% acetonitrile and
662 0.01% trifluoroacetic acid, incubated at room temperature for 30 min and vortexed thoroughly.
663 The protein concentration was measured at 280 nm wavelength with a NanoDrop ND-1000
664 spectrophotometer (Thermo Scientific) and samples were diluted to a concentration of 0.5
665 mg/mL. Shotgun metaproteomics was performed as previously described ¹⁰⁴, with a
666 randomized sample order. Briefly, approximately 0.5 μ g protein digest was analysed using a
667 nano-liquid-chromatography system consisting of an EASY nano-LC 1200, equipped with an
668 Acclaim PepMap RSLC RP C18 separation column (50 μ m x 150 mm, 2 μ m, Cat. No. 164568),
669 and a QE plus Orbitrap mass spectrometer (Thermo Fisher Scientific). The flow rate was
670 maintained at 350 nL/min over a linear gradient from 5% to 25% solvent B over 90 min, from
671 25% to 55% over 60 min, followed by back equilibration to starting conditions. Solvent A was
672 a 0.1% formic acid solution in water (FA), and solvent B consisted of 80% ACN in water and
673 0.1% FA. The Orbitrap was operated in data dependent acquisition (DDA) mode acquiring
674 peptide signals from 385–1250 m/z at 70 K resolution in full MS mode with a maximum ion
675 injection time (IT) of 75 ms and an automatic gain control (AGC) target of 3E6. The top 10
676 precursors were selected for MS/MS analysis and subjected to fragmentation using higher-
677 energy collisional dissociation (HCD) at a normalised collision energy of 28. MS/MS scans
678 were acquired at 17.5 K resolution with AGC target of 2E5 and IT of 75 ms, 1.2 m/z isolation
679 width. The protein reference sequence database was generated through whole metagenome
680 sequencing of the microbial samples, which included all metagenome-assembled genomes
681 (MAGs) and unique unbinned sequences from all samples. The raw mass spectrometric data
682 from each sample were analysed against this database using PEAKS Studio X (Bioinformatics
683 Solutions Inc.) in a two-round database search process. The initial round was conducted
684 without considering variable modifications and missed cleavages. Subsequently, the focused
685 database was further searched, allowing for a 20 ppm parent ion and a 0.02 m/z fragment ion
686 mass error tolerance, up to 3 missed cleavages, and iodoacetamide as a fixed modification, with
687 methionine oxidation and N/Q deamidation as variable modifications.

688

689 **Metaproteomic data analysis.** Peptide spectrum matches were filtered against 5% false
690 discovery rates (FDR) and protein identifications with ≥ 2 unique peptide sequences were
691 considered significant. The human serum albumin added as internal process control was filtered
692 out. Proteins were grouped according to their unique protein group identification. The peptide
693 spectral counts were divided by their molar mass for normalisation and technical duplicates
694 were averaged. The relative abundance of each protein in a certain sample was determined by
695 dividing the respective normalized spectral counts by the sum of normalized spectral counts of
696 all proteins detected in that sample. The total relative abundance of each MAG in the
697 metaproteome was calculated by summing the relative abundance of all proteins belonging to
698 that MAG. The same was performed to calculate the total relative abundance of functionally

699 identical proteins. Some functionally identical proteins belonging to different MAGs from the
700 same genus could not be distinguished because of their high similarity. Therefore, these
701 proteins were grouped by their functional annotation and genus for the data analysis. Proteins
702 that simultaneously matched unbinned sequences and one or more MAGs from a certain genus,
703 were classified as belonging to that genus. The catalytic subunits of the nitrogen-converting
704 enzymes of interest were used as representative of that protein during data analysis, with
705 exception of the ammonia monooxygenase (AMO). The catalytic alpha-subunit (AmoA) is
706 located in the cell membrane ¹⁰⁵, and is thus hydrophobic, so it is not well detected in the
707 proteomic analysis (Fig. S15). The beta-subunit (AmoB), only partially in the membrane, was
708 detected in much higher amounts so it was here used as proxy for AMO. In any case, the results
709 were similar for AmoA and AmoB (Fig. S17). Data processing was performed using RStudio
710 v22.0.3 ⁸⁶ with R v4.2.2 ⁸⁷, and the plyr v1.8.8 ⁹⁸, tidyverse v2.0.0 ⁹⁹, readxl v1.4.2 ¹⁰⁰,
711 data.table v1.15.0 ¹⁰¹, aplot v0.2.2 ¹⁰², reshape2 v1.4.4 ¹⁰³ and matrixStats v1.2.0 ¹⁰⁶ packages.

712 **References**

713

- 714 1. IPCC. *Climate Change 2014: Synthesis Report*. (2014).
- 715 2. Tian, H. *et al.* A comprehensive quantification of global nitrous oxide sources and sinks. *Nature* **586**, 248–256 (2020).
- 716 3. Vasilaki, V., Massara, T. M., Stanchev, P., Fatone, F. & Katsou, E. A decade of nitrous oxide (N₂O) monitoring in full-scale wastewater treatment processes: A critical review. *Water Res.* **161**, 392–412 (2019).
- 717 4. Marchant, H. K. *et al.* Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. *ISME J.* **11**, 1799–1812 (2017).
- 718 5. Freing, A., Wallace, D. W. R. & Bange, H. W. Global oceanic production of nitrous oxide. *Philos. Trans. R. Soc. B* **367**, 1245–1255 (2012).
- 719 6. Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? *Philos. Trans. R. Soc. B Biol. Sci.* **368**, (2013).
- 720 7. Sabba, F., Picioreanu, C., Boltz, J. P. & Nerenberg, R. Predicting N₂O emissions from nitrifying and denitrifying biofilms: A modeling study. *Water Sci. Technol.* **75**, 530–538 (2017).
- 721 8. Schreiber, F., Wunderlin, P., Udert, K. M. & Wells, G. F. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies. *Front. Microbiol.* **3**, 1–24 (2012).
- 722 9. Yang, S. *et al.* Global reconstruction reduces the uncertainty of oceanic nitrous oxide emissions and reveals a vigorous seasonal cycle. *Proc. Natl. Acad. Sci. U. S. A.* **117**, (2020).
- 723 10. Wan, X. S., Lin, H., Ward, B. B., Kao, S. J. & Dai, M. Significant Seasonal N₂O Dynamics Revealed by Multi-Year Observations in the Northern South China Sea. *Global Biogeochem. Cycles* **36**, (2022).
- 724 11. Bremner, J. M., Robbins, S. G. & Blackmer, A. M. Seasonal variability in emission of nitrous oxide from soil. *Geophys. Res. Lett.* **7**, 641–644 (1980).
- 725 12. Wagner-Riddle, C. *et al.* Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles. *Nat. Geosci.* **10**, 279–283 (2017).
- 726 13. Wang, X. *et al.* Hot moment of N₂O emissions in seasonally frozen peatlands. *ISME J.* **17**, 792–802 (2023).
- 727 14. Kortelainen, P. *et al.* Lakes as nitrous oxide sources in the boreal landscape. *Glob. Chang. Biol.* **26**, 1432–1445 (2020).
- 728 15. Liang, X. *et al.* Nitrification Regulates the Spatiotemporal Variability of N₂O Emissions in a Eutrophic Lake. *Environ. Sci. Technol.* **56**, 17430–17442 (2022).
- 729 16. Beaulieu, J. J., Shuster, W. D. & Rebholz, J. A. Nitrous oxide emissions from a large, impounded river: The Ohio river. *Environ. Sci. Technol.* **44**, 7527–7533 (2010).
- 730 17. Brotto, A. C. *et al.* Factors controlling nitrous oxide emissions from a full-scale activated sludge system in the tropics. *Environ. Sci. Pollut. Res.* **22**, 11840–11849 (2015).
- 731 18. Chen, X. *et al.* Assessment of Full-Scale N₂O Emission Characteristics and Testing of Control Concepts in an Activated Sludge Wastewater Treatment Plant with Alternating Aerobic and Anoxic Phases. *Environ. Sci. Technol.* **53**, 12485–12494 (2019).
- 732 19. Valk, L. *et al.* Exploring the microbial influence on seasonal nitrous oxide concentration in a full-scale wastewater treatment plant using metagenome assembled genomes. *Water Res.* **219**, 118563 (2022).
- 733 20. Sieranen, M. *et al.* Seasonality of nitrous oxide emissions at six full-scale wastewater treatment plants. *Water Sci. Technol.* **89**, 603–612 (2023).
- 734 21. Daelman, M. R. J., van Voorthuizen, E. M., van Dongen, U. G. J. M., Volcke, E. I. P. & van Loosdrecht, M. C. M. Seasonal and diurnal variability of N₂O emissions from a full-scale municipal wastewater treatment plant. *Sci. Total Environ.* **536**, 1–11 (2015).
- 735 22. Bae, W. Bin *et al.* Temporal triggers of N₂O emissions during cyclical and seasonal variations of a full-scale sequencing batch reactor treating municipal wastewater. *Sci. Total Environ.* **797**, 149093 (2021).

766 23. Gruber, W. *et al.* Linking seasonal N₂O emissions and nitrification failures to microbial
767 dynamics in a SBR wastewater treatment plant. *Water Res.* **X** **11**, 100098 (2021).

768 24. Gruber, W. *et al.* Estimation of countrywide N₂O emissions from wastewater treatment in
769 Switzerland using long-term monitoring data. *Water Res.* **X** **13**, (2021).

770 25. Daims, H., Taylor, M. W. & Wagner, M. Wastewater treatment: a model system for microbial
771 ecology. *Trends Biotechnol.* **24**, 483–489 (2006).

772 26. Gruber, W. *et al.* N₂O emission in full-scale wastewater treatment: Proposing a refined
773 monitoring strategy. *Sci. Total Environ.* **699**, 134157 (2020).

774 27. Kosonen, H. *et al.* Nitrous Oxide Production at a Fully Covered Wastewater Treatment Plant:
775 Results of a Long-Term Online Monitoring Campaign. *Environ. Sci. Technol.* **50**, 5547–5554
776 (2016).

777 28. Daelman, M. R. J., Van Voorthuizen, E. M., Van Dongen, L. G. J. M., Volcke, E. I. P. & Van
778 Loosdrecht, M. C. M. Methane and nitrous oxide emissions from municipal wastewater
779 treatment - Results from a long-term study. *Water Sci. Technol.* **67**, 2350–2355 (2013).

780 29. Chen, H., Zeng, L., Wang, D., Zhou, Y. & Yang, X. Recent advances in nitrous oxide
781 production and mitigation in wastewater treatment. *Water Res.* **184**, 116168 (2020).

782 30. Baggs, E. M. Soil microbial sources of nitrous oxide: Recent advances in knowledge,
783 emerging challenges and future direction. *Curr. Opin. Environ. Sustain.* **3**, 321–327 (2011).

784 31. Thomson, A. J., Giannopoulos, G., Pretty, J., Baggs, E. M. & Richardson, D. J. Biological
785 sources and sinks of nitrous oxide and strategies to mitigate emissions. *Philos. Trans. R. Soc. B
786 Biol. Sci.* **367**, 1157–1168 (2012).

787 32. Pijuan, M. & Zhao, Y. *Quantification and Modelling of Fugitive Greenhouse Gas Emissions
788 from Urban Water Systems. Quantification and Modelling of Fugitive Greenhouse Gas
789 Emissions from Urban Water Systems* (2022). doi:10.2166/9781789060461.

790 33. Vasilaki, V., Volcke, E. I. P., Nandi, A. K., van Loosdrecht, M. C. M. & Katsou, E. Relating
791 N₂O emissions during biological nitrogen removal with operating conditions using
792 multivariate statistical techniques. *Water Res.* **140**, 387–402 (2018).

793 34. Johnston, J., LaPara, T. & Behrens, S. Composition and Dynamics of the Activated Sludge
794 Microbiome during Seasonal Nitrification Failure. *Sci. Rep.* **9**, 1–15 (2019).

795 35. Singleton, C. M. *et al.* Connecting structure to function with the recovery of over 1000 high-
796 quality metagenome-assembled genomes from activated sludge using long-read sequencing.
797 *Nat. Commun.* **12**, 1–13 (2021).

798 36. Wang, Y. *et al.* Successional dynamics and alternative stable states in a saline activated sludge
799 microbial community over 9 years. *Microbiome* **9**, 1–15 (2021).

800 37. Ju, F., Guo, F., Ye, L., Xia, Y. & Zhang, T. Metagenomic analysis on seasonal microbial
801 variations of activated sludge from a full-scale wastewater treatment plant over 4 years.
802 *Environ. Microbiol. Rep.* **6**, 80–89 (2014).

803 38. Saunders, A. M., Albertsen, M., Vollertsen, J. & Nielsen, P. H. The activated sludge
804 ecosystem contains a core community of abundant organisms. *ISME J.* **10**, 11–20 (2016).

805 39. Herold, M. *et al.* Integration of time-series meta-omics data reveals how microbial ecosystems
806 respond to disturbance. *Nat. Commun.* **11**, (2020).

807 40. Yu, K. & Zhang, T. Metagenomic and metatranscriptomic analysis of microbial community
808 structure and gene expression of activated sludge. *PLoS One* **7**, (2012).

809 41. Lu, H., Chandran, K. & Stensel, D. Microbial ecology of denitrification in biological
810 wastewater treatment. *Water Res.* **64**, 237–254 (2014).

811 42. Castellano-Hinojosa, A., Maza-Márquez, P., Melero-Rubio, Y., González-López, J. &
812 Rodelas, B. Linking nitrous oxide emissions to population dynamics of nitrifying and
813 denitrifying prokaryotes in four full-scale wastewater treatment plants. *Chemosphere* **200**, 57–
814 66 (2018).

815 43. Song, M. J. *et al.* Identification of primary effectors of N₂O emissions from full-scale
816 biological nitrogen removal systems using random forest approach. *Water Res.* **184**, 116144
817 (2020).

818 44. Duan, H. *et al.* Improving wastewater management using free nitrous acid (FNA). *Water Res.*
819 **171**, (2020).

820 45. Zhou, Y., Oehmen, A., Lim, M., Vadivelu, V. & Ng, W. J. The role of nitrite and free nitrous

821 acid (FNA) in wastewater treatment plants. *Water Res.* **45**, 4672–4682 (2011).

822 46. Park, S. & Bae, W. Modeling kinetics of ammonium oxidation and nitrite oxidation under
823 simultaneous inhibition by free ammonia and free nitrous acid. *Process Biochem.* **44**, 631–640
824 (2009).

825 47. Anthonisen, A. C., Srinath, E. G., Loehr, R. C. & Prakasam, T. B. S. Inhibition of nitrification
826 and nitrous acid compounds. *J. Water Pollut. Control Fed.* **48**, 835–852 (1976).

827 48. Cao, Y. *et al.* The influence of dissolved oxygen on partial nitritation/anammox performance
828 and microbial community of the 200,000 m³/d activated sludge process at the Changi water
829 reclamation plant (2011 to 2016). *Water Sci. Technol.* **78**, 634–643 (2018).

830 49. Law, Y. *et al.* High dissolved oxygen selection against nitrospira sublineage i in full-scale
831 activated sludge. *Environ. Sci. Technol.* **53**, 8157–8166 (2019).

832 50. Picioreanu, C., Pérez, J. & van Loosdrecht, M. C. M. Impact of cell cluster size on apparent
833 half-saturation coefficients for oxygen in nitrifying sludge and biofilms. *Water Res.* **106**, 371–
834 382 (2016).

835 51. Regmi, P. *et al.* Control of aeration, aerobic SRT and COD input for mainstream
836 nitritation/denitritation. *Water Res.* **57**, 162–171 (2014).

837 52. Olaya-Abril, A. *et al.* Exploring the denitrification proteome of *Paracoccus denitrificans*
838 PD1222. *Front. Microbiol.* **9**, 1–16 (2018).

839 53. Zorz, J. K., Kozlowski, J. A., Stein, L. Y., Strous, M. & Kleiner, M. Comparative proteomics
840 of three species of ammonia-oxidizing bacteria. *Front. Microbiol.* **9**, 1–15 (2018).

841 54. Mundinger, A. B., Lawson, C. E., Jetten, M. S. M., Koch, H. & Lücker, S. Cultivation and
842 transcriptional analysis of a canonical nitrospira under stable growth conditions. *Front.*
843 *Microbiol.* **10**, 1–15 (2019).

844 55. Daims, H., Lücker, S. & Wagner, M. A New Perspective on Microbes Formerly Known as
845 Nitrite-Oxidizing Bacteria. *Trends Microbiol.* **24**, 699–712 (2016).

846 56. Starkenburg, S. R. *et al.* Genome sequence of the chemolithoautotrophic nitrite-oxidizing
847 bacterium *Nitrobacter winogradskyi* Nb-255. *Appl. Environ. Microbiol.* **72**, 2050–2063 (2006).

848 57. Beaumont, H. J. E., Lens, S. I., Reijnders, W. N. M., Westerhoff, H. V. & Van Spanning, R. J.
849 M. Expression of nitrite reductase in *Nitrosomonas europaea* involves NsrR, a novel nitrite-
850 sensitive transcription repressor. *Mol. Microbiol.* **54**, 148–158 (2004).

851 58. Yu, R. & Chandran, K. Strategies of *Nitrosomonas europaea* 19718 to counter low dissolved
852 oxygen and high nitrite concentrations. *BMC Microbiol.* **10**, (2010).

853 59. Soler-Jofra, A., Schmidtchen, L., Olmo, L., van Loosdrecht, M. C. M. & Pérez, J. Short and
854 long term continuous hydroxylamine feeding in a granular sludge partial nitritation reactor.
855 *Water Res.* **209**, (2022).

856 60. Perez-Garcia, O., Villas-Boas, S. G., Swift, S., Chandran, K. & Singhal, N. Clarifying the
857 regulation of NO/N₂O production in *Nitrosomonas europaea* during anoxic-oxic transition via
858 flux balance analysis of a metabolic network model. *Water Res.* **60**, 267–277 (2014).

859 61. Vieira, A., Galinha, C. F., Oehmen, A. & Carvalho, G. The link between nitrous oxide
860 emissions, microbial community profile and function from three full-scale WWTPs. *Sci. Total*
861 *Environ.* **651**, 2460–2472 (2019).

862 62. Gruber, W. *et al.* Tracing N₂O formation in full-scale wastewater treatment with natural
863 abundance isotopes indicates control by organic substrate and process settings. *Water Res. X*
864 **15**, (2022).

865 63. Duan, H., Ye, L., Erler, D., Ni, B. & Yuan, Z. Quantifying nitrous oxide production pathways
866 in wastewater treatment systems using isotope technology e A critical review. *Water Res.* **122**,
867 96–113 (2017).

868 64. Harris, C. R. *et al.* Array programming with NumPy. *Nature* **585**, 357–362 (2020).

869 65. Virtanen, P. *et al.* SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nat.*
870 *Methods* **17**, 261–272 (2020).

871 66. McKinney, W. pandas: a Foundational Python Library for Data Analysis and Statistics. *Python*
872 *High Perform. Sci. Comput.* 1–9 (2011).

873 67. Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q
874 file manipulation. *PLoS One* **11**, 1–10 (2016).

875 68. De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack:

876 69. Visualizing and processing long-read sequencing data. *Bioinformatics* **34**, 2666–2669 (2018).

877 69. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina
878 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

879 70. Rodriguez-R, L. M. & Konstantinidis, K. T. Nonpareil: A redundancy-based approach to
880 assess the level of coverage in metagenomic datasets. *Bioinformatics* **30**, 629–635 (2014).

881 71. Kolmogorov, M. *et al.* metaFlye: scalable long-read metagenome assembly using repeat
882 graphs. *Nat. Methods* **17**, 1103–1110 (2020).

883 72. Li, H. Minimap2 : pairwise alignment for nucleotide sequences. **34**, 3094–3100 (2018).

884 73. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–
885 2079 (2009).

886 74. Kang, D. D. *et al.* MetaBAT 2: An adaptive binning algorithm for robust and efficient genome
887 reconstruction from metagenome assemblies. *PeerJ* **2019**, 1–13 (2019).

888 75. Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: An automated binning algorithm to
889 recover genomes from multiple metagenomic datasets. *Bioinformatics* **32**, 605–607 (2016).

890 76. Alneberg, J. *et al.* Binning metagenomic contigs by coverage and composition. *Nat. Methods*
891 **11**, 1144–1146 (2014).

892 77. Sieber, C. M. K. *et al.* Recovery of genomes from metagenomes via a dereplication,
893 aggregation and scoring strategy. *Nat. Microbiol.* **3**, 836–843 (2018).

894 78. Hyatt, D. *et al.* Prodigal: Prokaryotic gene recognition and translation initiation site
895 identification. *BMC Bioinformatics* **11**, (2010).

896 79. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND.
897 *Nat. Methods* **12**, 59–60 (2014).

898 80. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. DRep: A tool for fast and accurate
899 genomic comparisons that enables improved genome recovery from metagenomes through de-
900 replication. *ISME J.* **11**, 2864–2868 (2017).

901 81. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM:
902 Assessing the quality of microbial genomes recovered from isolates, single cells, and
903 metagenomes. *Genome Res.* **25**, 1043–1055 (2015).

904 82. Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly
905 classification with the genome taxonomy database. *Bioinformatics* **38**, 5315–5316 (2022).

906 83. Parks, D. H. *et al.* GTDB: An ongoing census of bacterial and archaeal diversity through a
907 phylogenetically consistent, rank normalized and complete genome-based taxonomy. *Nucleic
908 Acids Res.* **50**, D785–D794 (2022).

909 84. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 - Approximately maximum-likelihood
910 trees for large alignments. *PLoS One* **5**, (2010).

911 85. Smith, M. TreeTools: create, modify and analyse phylogenetic trees. *Comprehensive R
912 Archive Network* at <https://doi.org/10.5281/zenodo.3522725> (2019).

913 86. RStudio Team. RStudio: Integrated Development Environment for R. *RStudio, PBC, Boston,
914 MA* <http://www.rstudio.com/> (2021).

915 87. R Core Team. R: A language and environment for statistical computing. *R Foundation for
916 Statistical Computing, Vienna, Austria* <https://www.r-project.org/> (2022).

917 88. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree
918 display and annotation. *Nucleic Acids Res.* **49**, W293–W296 (2021).

919 89. Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef clusters: A
920 comprehensive and scalable alternative for improving sequence similarity searches.
921 *Bioinformatics* **31**, 926–932 (2015).

922 90. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference
923 resource for gene and protein annotation. *Nucleic Acids Res.* **44**, D457–D462 (2016).

924 91. Mistry, J. *et al.* Pfam: The protein families database in 2021. *Nucleic Acids Res.* **49**, D412–
925 D419 (2021).

926 92. Haft, D. H. *et al.* TIGRFAMs and genome properties in 2013. *Nucleic Acids Res.* **41**, 387–395
927 (2013).

928 93. Boyd, J. A., Woodcroft, B. J. & Tyson, G. W. GraftM: a tool for scalable, phylogenetically
929 informed classification of genes within metagenomes. *Nucleic Acids Res.* **46**, E59 (2018).

930 94. The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. *Nucleic*

931 *Acids Res.* **51**, 523–531 (2023).

932 95. Zumft, W. G. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-
933 copper oxidase type. *J. Inorg. Biochem.* **99**, 194–215 (2005).

934 96. Madeira, F. *et al.* Search and sequence analysis tools services from EMBL-EBI in 2022.
935 *Nucleic Acids Res.* **50**, W276–W279 (2022).

936 97. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview
937 Version 2-A multiple sequence alignment editor and analysis workbench. *Bioinformatics* **25**,
938 1189–1191 (2009).

939 98. Wickham, H. The split-apply-combine strategy for data analysis. *J. Stat. Softw.* **40**, 1–29
940 (2011).

941 99. Wickham, H. *et al.* Welcome to the Tidyverse. *J. Open Source Softw.* **4**, 1686 (2019).

942 100. Wickham, H. & Bryan, J. readxl: Read Excel Files. <https://cran.r-project.org/package=readxl>
943 (2023).

944 101. Barrett, T. *et al.* data.table: Extension of ‘data.frame’. at <https://rdatatable.gitlab.io/data.table>
945 (2024).

946 102. Yu, G. aplot for decorating a plot with associated information. at <https://github.com/YuLab-SMU/aplot> (2023).

947 103. Wickham, H. Reshaping data with the reshape package. *J. Stat. Softw.* **21**, 1–20 (2007).

948 104. Kleikamp, H. B. C. *et al.* Metaproteomics, metagenomics and 16S rRNA sequencing provide
949 different perspectives on the aerobic granular sludge microbiome. *Water Res.* **246**, 120700
950 (2023).

951 105. Musiani, F., Broll, V., Evangelisti, E. & Ciurli, S. The model structure of the
952 copper-dependent ammonia monooxygenase. *J. Biol. Inorg. Chem.* **25**, 995–1007 (2020).

953 106. Bengtsson, H. *et al.* matrixStats: Functions that Apply to Rows and Columns of Matrices (and
954 to Vectors). at <https://github.com/HenrikBengtsson/matrixStats> (2023).

955

956

957

958 **Acknowledgements**

959 We deeply thank Dirk Geerts (TU Delft) for valuable support with the bioreactor, Carol de
960 Ram and Dita Heikens (TU Delft) for help with the protein extraction protocol, Waternet for
961 providing the activated sludge (Hidde Schijfsma, Alex Veltman and Adrien Azé for sampling),
962 Mads Albertsen and team at Aalborg University for sequencing one of the samples with Oxford
963 Nanopore R9.4 during the “Hands-on metagenomics using Oxford Nanopore DNA
964 sequencing” course, and Alexandra Deeke (Waterschap de Dommel), Cora Uijterlinde
965 (STOWA), Inge Pistorius, Robert Kras, Floris de Heer and Maurice Ramaker (Waterschap Aa
966 en Maas), Maaike Hoekstra (HHNK), Mariska Ronteltap (Hoogheemraadschap van Delfland),
967 the Dutch Community of Practice for N₂O, Adriano Joss (Eawag), and Wenzel Gruber (upwater
968 AG) for insightful discussions.

969

970 **Funding**

971 This work was financed by Stichting Toegepast Onderzoek Waterbeheer (STOWA;
972 JG191217009/732.750/CU), Hoogheemraadschap Hollands Noorderkwartier (HHNK;
973 20.0787440) and Waterschap de Dommel (Z62737/U131154). ML was partially supported by
974 a Veni grant from the Dutch Research Council (NWO; project number VI.Veni.192.252).

975

976 **Competing interest statement**

977 The authors declare no competing interests.

978

979 **Data availability**

980 Raw DNA reads were deposited in the NCBI Sequence Read Archive and the 54 high-quality
981 MAGs were deposited in Genbank under BioProject PRJNA1082082. The raw mass
982 spectrometry proteomics data acquired in this project have been deposited in the
983 ProteomeXchange Consortium database under the dataset identifier PXD051095. The HQ
984 MAGs accession numbers, quality and abundance can be found in Supplementary Data 1, and
985 the gene presence and protein abundance in the MAGs and the unbinned sequences can be
986 found in Supplementary Data 2 and 3, respectively. The Python codes used to calculate the
987 maximum N₂O rates and to simulate the biological nitrogen removal process are in
988 Supplementary Information.

989

990 **Author contributions**

991 NR, MvL and ML conceptualized the study. NR, MP, MvD, CHM, MvL and ML designed the
992 experiments. NR, MvD and CHM performed the maximum activity measurements. MZ
993 collected and pre-processed the WWTP data. NR performed the Nanopore sequencing,
994 implemented the bioinformatics pipeline and performed metagenomic analysis with input from
995 TA. NR performed the protein extraction with input from MP. MP performed the shotgun
996 metaproteomics. NR wrote the Python and RStudio scripts for data analysis and NR, MvD,
997 CHM analysed the data with inputs from MZ, MvL and ML. NR wrote the draft manuscript
998 and created the visuals with strong inputs from ML and contributions from all co-authors. All
999 authors reviewed and approved the final manuscript.