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Abstract 16 

 17 

The potent greenhouse gas nitrous oxide (N2O) originates primarily from natural and 18 

engineered microbiomes. Emission seasonality is widely reported while the underlying 19 

metabolic controls remain largely unresolved, hindering effective mitigation. We use 20 

biological wastewater treatment as tractable model ecosystem over nearly two years. Long-21 

term metagenomic-resolved metaproteomics is combined with ex situ kinetic and full-scale 22 

operational characterization. By leveraging the evidence independently obtained at multiple 23 

ecophysiological levels, from individual genetic potential to actual metabolism and emergent 24 

community phenotype, the cascade of environmental and operational triggers driving N2O 25 

emissions is resolved. We explain the dynamics in nitrite accumulation with the kinetic 26 

unbalance between ammonia and nitrite oxidisers, and identify nitrifier denitrification as the 27 

prime N2O-producing pathway. The dissolved O2 emerged as the key actionable parameter for 28 

emission control. This work exemplifies the yet-to-be-realized potential of multi-meta-omics 29 

approaches for the mechanistic understanding and ecological engineering of microbiomes, 30 

ultimately advancing sustainable biotechnological developments. 31 

 32 
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Introduction 35 

 36 

The yearly anthropogenic emissions of nitrous oxide (N2O), currently the third most important 37 

greenhouse gas, are projected to increase by 50% in the coming 50 years if no mitigation 38 

strategies are employed 1. N2O is mainly produced by microbial communities in natural, 39 

managed and engineered ecosystems 2. Yet, the mechanisms governing biological N2O 40 

emissions remain largely unknown. The main challenge lies in the coexistence of nitrogen-41 

converting guilds in complex microbiomes, each emitting N2O under a range of complementary 42 

conditions that alternate or overlap in most ecosystems (e.g. alternating oxic-anoxic conditions 43 

in wastewater treatment plants 3 and sea sediments 4; substrate concentration gradients in 44 

oceans 5, soils 6 and wastewater treatment biofilms 7). In general, high ammonium (NH4
+) and 45 

oxygen (O2) concentrations stimulate N2O production through hydroxylamine (NH2OH) 46 

oxidation by ammonia-oxidising bacteria (AOB), while high nitrite (NO2
-) and low O2 47 

concentrations enhance the nitrifier denitrification pathway 8 (Fig. 1A). High NO2
- and high O2 48 

concentrations result in N2O accumulation from imbalanced denitrification by heterotrophic 49 

denitrifying bacteria (DEN) 8 (Fig. 1A). Seemingly ubiquitous is the strong seasonality of N2O 50 

emissions in many natural and managed environments, such as oceans 9,10, soils 11–13, lakes 14,15 51 

and rivers 16, and engineered systems such as wastewater treatment plants 17–24 (WWTPs, 52 

summarized in Table S1). This indicates that seasonally-impacted macroscopic factors directly 53 

influence biological N2O turnover. Yet, studying the interactions between environmental 54 

conditions, complex microbiome dynamics and N2O emissions, and capturing the underlying 55 

ecological principles is inherently challenging. To this end, we use biological wastewater 56 

treatment as a more tractable model ecosystem, as the N2O seasonality is well-represented, 57 

while other variables (e.g. aeration, biomass concentration) are controlled or extensively 58 

monitored 25. 59 

 60 

Most WWTPs emit the majority of their yearly N2O during a winter or spring peak lasting 3-4 61 

months, with simultaneous NO2
- accumulation 17,21–24,26 (Table S1). Similarly, higher N2O 62 

emissions during colder seasons are widely reported for oceans 10, soils 12,13, and lakes 14. Low 63 

or increasing temperatures have been hypothesized as the underlying causes for the seasonal 64 

N2O emissions, but a clear correlation is often missing 10,13,14,18,19,27,28. The immediate effect of 65 

diverse environmental and process parameters on the N2O production rates of AOB and DEN 66 

largely explain the short-term N2O dynamics in WWTPs 3,29 and natural environments 5,6,30,31, 67 

but fail to describe the widely observed seasonality. Emblematic is the reported higher N2O 68 

production by AOB at high temperatures 32, while most seasonal emissions occur in winter. 69 

Broadly applied correlation analyses between N2O and environmental and operational 70 

parameters have proved insufficient to explain seasonal emissions in WWTPs 18,24,33, oceans 71 
9,10, soils 11–13 and freshwater systems 14–16. Despite the evident central microbial role in N2O 72 

conversions, most studies do not take potential seasonal dynamics of the microbiome’s 73 

metabolism into account, likely overlooking key mechanisms linking environmental triggers 74 

and emissions. A delay between triggers, metabolic adaptations and emergent phenotype is 75 

expected in slow-growing natural and WWTP communities 28. Only few studies investigated 76 

microbial dynamics during seasonal nitrogen oxides peaks in WWTPs with seemingly 77 

contradicting results. Seasonal NO2
- and N2O accumulation events have been attributed to 78 

decreased nitrite-oxidising bacteria (NOB) 16S rRNA gene abundances 19,23 and increased 79 

difference between AOB and NOB activity 17,22, while in other instances no seasonal 80 
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fluctuations were observed in the nitrifying community 34. To date, the operational and 81 

metabolic mechanisms controlling seasonal N2O emissions remain largely unknown, hindering 82 

effective mitigation.  83 

 84 

We combine long-term metagenomic-resolved metaproteomic analyses with ex situ kinetic and 85 

full-scale process characterizations to address the mechanistic gap in seasonal N2O emissions. 86 

The cascade of environmental and operational triggers underlying N2O emissions is resolved 87 

by leveraging the evidence obtained at multiple ecophysiological levels, from individual 88 

genetic potential to actual metabolism and emergent community phenotype. We identify 89 

nitrifier denitrification as the prime N2O-producing pathway, and the dissolved O2 as the 90 

central operational parameter to minimize emissions. This work exemplifies the yet-to-be-91 

realized potential of multi-meta-omics approaches to inform ecologically-driven strategies for 92 

the management and engineering of microbiomes, ultimately advancing sustainable 93 

biotechnological developments.  94 
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Results 95 

 96 

Signature metabolite accumulation profiles 97 

 98 

The ecophysiological response of N2O-emitting complex microbial communities to seasonal 99 

environmental and operational dynamics was studied using the Amsterdam-West wastewater 100 

treatment plant (WWTP) as model ecosystem (Fig. 1A-B). The monitoring and sampling 101 

period lasted eighteen months and covered two highly comparable N2O emission peaks (Fig. 102 

2). The peaks occurred during periods with low water temperatures, namely Feb – May 2021 103 

and Nov 2021 – Mar 2022, and were preceded by the sequential accumulation of NH4
+, O2, 104 

and NO2
- (Figs. 2 and S2). The same trend was followed in the five years prior to this study 105 

(data not shown). Central to the plant operation is the control of the dissolved O2 (DO) 106 

concentration as a function of the residual NH4
+ concentration in the aerated compartment. To 107 

counteract the temperature-induced nitrification rate reduction, and consequent NH4
+ 108 

concentration increase, the weekly average DO concentration was increased from 1 up to 109 

almost 3 mg O2·L (Fig. 2). In spite of this, O2 remained the rate-limiting substrate for 110 

nitrification during low temperature periods with high N2O emissions, as evidenced by a lower 111 

O2/NH4
+ ratio in the aerated compartment compared to warmer periods with low N2O (Fig. 112 

S3). Following the increase in DO, the average NO2
- concentration in the pooled effluent 113 

rapidly increased up to 1.1 mg N·L-1. Finally, N2O started to accumulate, reaching maximum 114 

daily rates of 110 (1st peak) and 101 kg N·d-1 (2nd peak) (Figs. 2 and S2). The delay between 115 

the maximum DO concentration and the maximum N2O emission rate ranged between six and 116 

seven weeks for both peaks (Fig. 2), consistent with the imposed average sludge retention time 117 

of 11-15 days. Statistically, NO2
- strongly correlated with the O2 concentration (Pearson 118 

correlation coefficient of 0.8), and N2O with NO2
- (correlation coefficient 0.7), while they only 119 

weakly correlated with all other parameters including the temperature (Fig. S4 and Table S2).  120 

121 
Figure 1. Schematic representation of the nitrogen cycle, experimental approach and obtained datasets. (A) Nitrogen 122 
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conversions in the biological nitrogen removal process and respective enzyme complexes. Ammonia-oxidising bacteria (AOB) 123 
aerobically oxidise ammonium (NH4

+) to hydroxylamine (NH2OH) with the ammonium monooxygenase (AMO), NH2OH to 124 
nitric oxide (NO) with the hydroxylamine oxidoreductase (HAO), and NO to nitrite (NO2

-) with a yet unknown enzyme. AOB 125 
can biologically produce N2O through the oxidation of NH2OH with cytochrome P460 (cyt P460) or through the reduction of 126 
NO – produced from NH2OH oxidation or nitrifier denitrification (NO2

- reduction with the nitrite reductase NIR) – with the 127 
nitric oxide reductase (NOR) (dotted arrows). Nitrite-oxidising bacteria (NOB) aerobically oxidise NO2

- to nitrate (NO3
-) with 128 

the nitrite oxidoreductase (NXR). Normally under anoxic conditions, denitrifying bacteria (DEN) reduce NO3
- to NO2

- with 129 
the membrane-bound or periplasmic nitrate reductase (NAR, NAP), NO2

- to NO with NIR, NO to N2O with NOR and N2O to 130 
N2 with the nitrous oxide reductase (NOS). Some DEN perform only some steps of the denitrification pathway while others 131 
perform the entire pathway. (B) Overview of the methodological approach adopted in this study for the eighteen-months 132 
characterization of a full-scale WWTP to resolve the microbial mechanisms underlying seasonal N2O emissions. Sludge 133 
samples were used for metagenomics (6 samples), metaproteomics (12 samples) and ex situ activity tests at 20 oC (26 samples). 134 
(Created with BioRender.com.) 135 

 136 
Figure 2. Performance of the wastewater treatment plant (WWTP) monitored during nearly two years (Oct 2020 – Jul 137 
2022). Weekly average parameters at the WWTP, from back to front (light green to dark blue): concentration of NH4

+ and 138 
dissolved O2 in the nitrification compartment (left axis), pooled effluent NO2

- concentrations (right axis), N2O emission rates 139 
measured in the off-gas from all reactor compartments (right axis). The water temperature inside the reactor is represented on 140 
the right axis (symbols). All metabolites were measured in a single biological nutrient removal lane of the WWTP, except the 141 
effluent NO2

- (seven lanes pooled together). Occasional sharp NH4
+ peaks were caused by outliers on rainy days (Fig. S2).  142 

The scheme above the plot represents the sampling time points for metagenomic (DNA), metaproteomic (protein) and ex situ 143 
activity tests (bioreactor). 144 
 145 

Maximum nitrogen metabolites conversion rates  146 

 147 
To quantify seasonal changes in the microbiome metabolic potential, we estimated every 148 
second week the maximum oxidation and reduction rates of the main nitrification (i.e. NH4

+ 149 

and NO2
-) and denitrification (i.e. NO3

-, NO2
- and N2O) intermediates, respectively. The 150 

maximum NH4
+ oxidation rate almost always exceeded the NO2

- oxidation rate, with their 151 

difference being the highest during the seasonal full-scale metabolite accumulation peaks (Fig. 152 
S5). No clear seasonality emerged in the  NO3

-, NO2
-, and N2O maximum reduction rates, and 153 

the N2O reduction capacity was 1.4 to 2.1-fold higher than all other nitrifying and denitrifying 154 

rates (Fig. S5). 155 
 156 

Genome-resolved taxonomic diversity 157 

 158 

The WWTP metagenome was sequenced at six time points to follow the dynamics in microbial 159 

composition and functional potential, and to serve as database for the metaproteomic analysis 160 

(Fig. 1B). Combined short-read (two samples; average 147 million reads per sample) and long-161 
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read DNA sequencing (five samples, one of which also sequenced with short-reads; average 162 

4.3 million reads per sample) resulted in 143 Gbp data, after quality filtering and trimming. A 163 

total of 349 high-quality metagenome-assembled genomes (HQ MAGs, ≥ 90% completeness 164 

and ≤ 5% contamination) (Fig. 3, Supplementary Data 1) were obtained. The 89 MAGs 165 

generated from the five long-read samples were dereplicated with the HQ MAGs from 166 

Singleton et al. 35 at 95% average nucleotide identity of open reading frames to increase the 167 

genome-resolved read coverage. From the final 349 HQ MAGs, 44 were unique to our dataset, 168 

268 were unique to the dataset of Singleton et al. 35, and 37 overlapped between both datasets 169 

(Fig. S6). Overall, the HQ MAGs covered 31 phyla and 272 different genera, and included two 170 

archaeal species (only bacterial MAGs are represented in Fig. 3). The full 16S rRNA gene was 171 

identified in 347 (99.4%) MAGs. The relative abundance of the individual MAGs showed no 172 

marked seasonal trend and little variation over the six time points (Fig. S7 and Supplementary 173 

Data 1). We therefore discuss the average of their relative abundance among all samples. The 174 

two most abundant MAGs belonged to the Ca. Microthrix (4.0%) and Nitrospira (2.7%) genera 175 

(Fig. 3). All other MAGs had an average relative abundance lower than 1%. The majority of 176 

the non-nitrifying MAGs contained at least one denitrification gene (DEN, 304) (Fig. 3, 177 

Supplementary Data 2). 51 MAGs had the genetic potential to perform dissimilatory nitrite 178 

reduction to ammonium (DNRA, containing the nrfAH genes), 46 of these also had at least one 179 

denitrification gene (Fig. S14, Supplementary Data 2). Seven MAGs harboured the amoABC 180 

genes (AOB) and eight harboured the nxrAB genes (NOB), most of these also had at least one 181 

denitrification gene, mainly nir and nor encoding the NO2
- and NO reductases, respectively 182 

(Fig. S14, Supplementary Data 2). Neither complete ammonia-oxidising (comammox) nor 183 

anaerobic ammonia-oxidising (anammox) MAGs were found in the metagenomes. 184 
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 185 
Figure 3. Phylogenetic tree of the 347 bacterial high-quality MAGs extracted from activated sludge (the only two archaeal 186 
MAGs are not represented). From the inner to the outer circle: (i) circular phylogenetic tree with the identification of key 187 
activated sludge genera Nitrosomonas, Nitrospira, Ca. Accumulibacter and Ca. Microthrix; (ii) identification of ammonia-188 
oxidising bacteria (AOB, containing amoABC genes, dark blue), nitrite-oxidising bacteria (NOB, containing nxrAB genes, light 189 
blue) and denitrifying organisms (DEN, non-AOB and non-NOB MAGs harbouring at least one denitrification gene, yellow). 190 
Some of the AOB and NOB MAGs also contained one or more denitrification genes (Supplementary Data 2); (iii) average DNA 191 
relative abundance of each MAG in the community; (iv) average protein relative abundance of each MAG in the community; 192 
(v) identification of the six most abundant phyla. 193 
 194 

 195 

Metaproteomic-based functional profile 196 

 197 

The dynamics in protein expression of the entire microbial community across twelve samples 198 

was assessed by shotgun metaproteomics. We used the protein expression as proxy for active 199 

metabolisms and to estimate the protein-based relative abundance of each MAG. In total, 3868 200 

unique protein groups were detected, and 1884 had at least two unique peptides (accounting 201 

for 44 ± 1% of the total mass-normalized spectral counts). 1105 of the identified proteins 202 

(accounting for 68 ± 1% of the two unique peptides filtered normalized spectral counts) 203 
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uniquely matched with a single protein predicted in the metagenome (including all MAGs and 204 

unbinned sequences). The remaining 779 proteins (accounting for 32 ± 1% of the two unique 205 

peptides filtered normalized spectral counts) matched multiple highly similar proteins and 206 

could not be linked to a single MAG, yet could be functionally and taxonomically annotated at 207 

the genus level. Out of the 349 HQ MAGs, proteins from 143 MAGs (101 genera) were 208 

detected (Supplementary Data 1). The HQ MAGs covered 39 ± 1 % of the total protein pool, 209 

higher than the 28 ± 4 % coverage of the total community DNA (Fig. 4A). On average, the 210 

relative abundance of key activated sludge taxa (e.g. Ca. Microthrix, Ca. Accumulibacter, 211 

Nitrosomonas and Nitrospira,) differed up to 20-fold between the metagenomic and 212 

metaproteomic approaches (Fig. S12). For example, the AOB:NOB ratio was 0.1 in the 213 

metagenome and 3.6 in the metaproteome (discussed in Supplementary Section 6). 214 

Taxonomically, the diversity was greatest within the DEN guild (proteins from 124 MAGs 215 

were detected) with no clear dominant MAG (Fig. 4B). Owing to this high diversity, many 216 

DEN organisms were present in too low abundance to be recovered as MAGs even at the 217 

already high sequencing depth employed here (20-25 Gbp per sample). Consequently, DNA 218 

sequences from many DEN remained in the unbinned portion of the metagenomes, resulting in 219 

the majority of the detected denitrification enzymes, namely nitrate, nitrite and nitrous oxide 220 

reductases being assigned to the unbinned fraction (Fig. S15). Proteins from all seven AOB 221 

and four NOB MAGs were detected in the metaproteome. The AOB consisted entirely of 222 

Nitrosomonas MAGs, and were dominated by one MAG (Fig. 4B). NOB were dominated by 223 

a Nitrospira and a Chloroflexota MAG belonging to the Promineofilaceae family (Fig. 4B), 224 

but the alpha- and beta-subunits of the nitrite oxidoreductase (NxrA and NxrB) were only 225 

expressed by Nitrospira and Ca. Nitrotoga (Fig. S15). Almost all detected nitrifying enzymes 226 

belonged entirely to the recovered MAGs, highlighting the nearly full coverage of the active 227 

nitrifying community by the MAGs (Fig. S15). Throughout the monitoring period, the relative 228 

proteomic abundance of DEN hardly fluctuated, and the AOB and NOB guilds fluctuated 229 

similarly over time (Fig. 4C). The maximum guild-specific fold change in the proteome was 230 

1.1 (DEN), 1.8 (AOB) and 2.5 (NOB). Overall, there were no major shifts in the MAG-based 231 

composition of each guild, at both DNA and protein level (Figs. S8-S10), and there were no 232 

significant correlations between protein-level taxa abundance and WWTP performance (Table 233 

S4). 234 

 235 
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 236 

Figure 4. MAG-based functional guild distribution in the metagenomes and metaproteomes of the activated sludge. (A) 237 
Average relative abundance of denitrifying bacteria (DEN, non-AOB and -NOB MAGs containing at least one denitrification 238 
gene, yellow), nitrite-oxidising bacteria (NOB, containing nxrAB genes, light blue), ammonia-oxidising bacteria (AOB, 239 
containing amoABC genes, dark blue), other metagenome-assembled genomes (dark grey) and unbinned sequences (light grey) 240 
in the total metagenome (DNA) and metaproteome (Protein) of the activated sludge. Some of the AOB and NOB MAGs also 241 
contained one or more denitrification genes (Supplementary Data 2). The error bars represent fluctuations within six (DNA) 242 
and twelve (protein) activated sludge samples taken throughout eighteen months. (B) MAG-based composition of the DEN, 243 
NOB and AOB guilds. The most abundant genera in the DEN (Ca. Accumulibacter and Ca. Competibacter), NOB 244 
(unidentified Promineofilaceae genus, Ca. Nitrotoga, Nitrospira) and AOB (Nitrosomonas) guilds are highlighted. (C) 245 
Temporal fluctuations in the relative protein abundance of the DEN (yellow), NOB (light blue) and AOB (dark blue) guilds. 246 
The error bars represent standard deviations between technical duplicates and are all smaller than the symbols. 247 
 248 

 249 

Unbalanced nitrification drives seasonal nitrite accumulation 250 

 251 

The net accumulation and potential emission of any nitrogen intermediate results from the 252 

unbalance between its production and consumption rates. Nitrite, a central metabolite 253 

exchanged between AOB, NOB and DEN (Fig. 1A), always accumulated prior to the N2O 254 

peaks (Fig. 2). To understand the NO2
- flux balance dynamics, we focused on the DNA, 255 

expressed proteins and ex situ activity ratios of NO2
--producing and -consuming guilds. At all 256 

levels (genomic, proteomic and kinetic), the DEN guild did not display significant seasonal 257 

dynamics (Figs. 4C, S8 and S19). Contrastingly, the (un)balance between AOB (NO2
- 258 

producer) and NOB (NO2
- consumer) fluctuated the most during the monitored period. The 259 

ratio between the total abundances of AOB and NOB, both at DNA and protein level, was up 260 

to 3-fold higher during periods of high effluent NO2
- concentrations, compared to the rest of 261 

the year (Fig. 5A-B). At individual protein level, including MAG and unbinned proteins, the 262 

ratio between the expression of the key NH4
+-consuming enzyme (represented by the beta-263 

subunit of the ammonia monooxygenase – AmoB) and NO2
--producing enzyme (represented 264 

by the hydroxylamine oxidoreductase – Hao) of AOB relative to the catalytic subunit of the 265 

NO2
- oxidoreductase of NOB (NxrA) were also higher (Fig. 5C, Supplementary Data 3). 266 

Consistently, the ratio between the maximum NH4
+ and NO2

- oxidation activities was larger 267 

during high NO2
- concentration periods (Fig. 5D). 268 
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 269 
Figure 5. Genomic, proteomic and maximum activity fluctuations of AOB and NOB in activated sludge during periods 270 
of high and low nitrite accumulation. Left axes: (A) Ratio between the total relative DNA abundance of ammonia- (AOB) 271 
and nitrite-oxidising bacteria NOB (circles). (B) Ratio between the total relative protein abundance of AOB and NOB (circles). 272 
(C) Ratios between the relative abundance of NO2

--producing and -consuming enzymes of AOB and NOB, respectively: beta-273 
subunit of the ammonia monooxygenase (AmoB) divided by the catalytic subunit of nitrite oxidoreductase (NxrA) (diamonds); 274 
and hydroxylamine oxidoreductase (Hao) divided by NxrA (x4, circles). The enzyme abundances include the proteins 275 
belonging to the MAGs and the unbinned fraction. The error bars in all protein ratios were propagated from standard deviations 276 
of technical duplicates and some are smaller than the symbols. The respective enzymatic conversions are represented on the 277 
right. (D) Ratio between the maximum ex situ NH4

+ and NO2
- oxidation rates measured at 20 ˚C (circles). Right axes: (A-D) 278 

Weekly average NO2
- concentration in the effluent (seven parallel lanes pooled together, grey area). 279 

 280 
Overexpressed nitrifier denitrification during N2O accumulation 281 

In analogy to nitrite, we used ratios between the relative abundance of enzymes directly or 282 

indirectly producing and consuming N2O as proxy for the N2O flux balance. The total enzyme 283 

abundances include MAG and unbinned protein abundances (Supplementary Data 3). The 284 

seasonally accumulated NO2
- can be reduced to N2O by both AOB and DEN, sequentially using 285 

the Cu- (NirK) or cd1-type (NirS) NO2
- reductases and the nitric oxide reductase (Fig. 1A). 286 
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Here, NirK and NirS were exclusively expressed by nitrifiers and DEN, respectively (Fig. S15). 287 

Four Nitrosomonas (AOB) and one Nitrospira MAG (NOB) accounted for most of the NirK 288 

expression (75% and 17%, respectively) (Fig. S15). Within the nitrifying community, the 289 

relative abundance of NirK over the key AOB enzymes AmoB and Hao was the highest during 290 

periods of high NO2
- and N2O accumulation (Fig. 6A). The ratio of total relative abundance of 291 

NirK over the competing NO2
--oxidising NxrA (NOB) and NO2

--reducing NirS (DEN) 292 

followed a similar trend (Fig. 6B). NosZ is the only known N2O-reducing enzyme, and the ratio 293 

NirK/NosZ clearly reflected the seasonal dynamics, being higher during seasonal peaks (Fig. 294 

6C). Similarly, yet to a significantly lower extent, also the ratio between the hydroxylamine 295 

(NH2OH) producing AmoB and consuming Hao and CytP460 (Fig. S18), and the ratio 296 

NirS/NosZ (Fig. S19C) displayed some seasonality. The here employed protein extraction 297 

protocol does not allow for the quantification of membrane-bound proteins, such as the nitric 298 

oxide reductases, which were therefore not included in the discussion.  299 

 300 
Figure 6. NirK overexpression relative to other nitrogen enzymes during periods of high NO2

- concentrations and N2O 301 
emissions. Left axes (symbols): (A) NirK vs. other AOB enzymes. Ratio between the total relative abundance of NO2

--302 
consuming NirK and the other key AOB enzymes Hao (circles) and AmoB (triangles). (B) NirK vs. competing NO2

- 303 
consuming enzymes. Ratio between the total relative abundance of NO2

--consuming NirK and the NO2
- competing NxrA 304 

(circles, NOB) and NirS (x50, triangles, DEN). (C) NirK in N2O balance. Ratio between the total relative abundance of NirK 305 
(producing the N2O precursor NO) and the only known enzymatic N2O-sink N2O reductase (NosZ) (circles). The enzyme 306 
abundances include the proteins belonging to the MAGs and the unbinned fraction. The error bars in the protein ratios were 307 
propagated from standard deviations of technical duplicates. All enzymatic conversions are schematically represented on the 308 
right. NirK is expressed by both AOB and NOB, but the activity and function of the enzyme in NOB are yet unknown. Right 309 
axes: (A-C) Weekly average NO2

- concentration in the effluent of the WWTP (seven parallel lanes pooled together, grey area) 310 
and N2O emission rates measured in the off-gas from all the reactor compartments in one lane at the WWTP (grey line).   311 
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Discussion 312 

 313 

We postulate that the seasonal accumulation of NO2
- and subsequent emissions of the potent 314 

greenhouse gas N2O at a full-scale WWTP are related to fluctuations in the balance of key 315 

nitrogen-converting populations, rather than their individual abundance or activity. No major 316 

changes in the DNA and protein composition, nor significant correlations with plant 317 

performance, were observed throughout eighteen months of operation. This is consistent with 318 

previous metagenomic and 16S rRNA gene amplicon sequencing reports in WWTPs 36–39. The 319 

microbiome was dominated by a taxonomically diverse DEN community (74% of the binned 320 

community proteome), in line with most genomic and transcriptional analyses of conventional 321 

WWTPs 19,40,41. While the high DEN abundance may have masked fluctuations at guild level, 322 

the absence of significant changes at the activity and individual protein level further supports 323 

the DEN stability. Instead, the DNA and protein abundances of the nitrifying community, 324 

dominated by one AOB and two NOB MAGs, fluctuated over time, yet not consistently with 325 

the observed nitrogen oxides accumulation dynamics. This aligns with most studies reporting 326 

limited to no correlation between AOB and NOB 16S rRNA gene abundances and seasonal 327 

nitrification failures 34, or AOB and NOB conversion rates and N2O production 22. Only few 328 

studies observed a correlation between increased N2O emissions and increased relative AOB 329 

abundances (16S) 42, AOB ex situ activities 43, or decreased NOB abundances (16S) 19,23. Yet 330 

evidence remains sparce and seemingly conflicting, ultimately hindering mechanistic 331 

generalizations. This lack of general consensus resides in the fundamental dependency between 332 

metabolite dynamics and the trade-off between their production and consumption rates (i.e. the 333 

balance between the producing and consuming guilds), rather than their individual magnitudes. 334 

 335 

Against a relatively stable DEN community, featuring a fairly constant nitrite production and 336 

reduction potential, we identified the unbalance between AOB (NO2
- producer) and NOB (NO2

- 337 

consumer) as the primary cause for seasonal nitrite accumulation. During the nitrite peaks 338 

preceding the N2O ones, a higher ratio of AOB over NOB was observed at genomic, proteomic 339 

and kinetic levels. To date, only Bae et al.22 quantitatively linked N2O emissions with increased 340 

AOB/NOB ex situ activity ratios in an otherwise stable nitrifying community based on 16S 341 

rRNA gene sequencing. Gruber et al.23 observed stable AOB but lower NOB and filamentous 342 

bacteria 16S rRNA gene abundances during winter N2O emissions, and hypothesized a 343 

selective NOB washout due to compromised floc integrity. Here, the fluctuations in the sludge 344 

settleability (representing floc integrity) and in the DNA and protein abundances of Ca. 345 

Microthrix (filamentous bacteria) did not follow the full-scale metabolite profiles, nor the NOB 346 

abundance or the AOB/NOB ratio (Figs. S2, S11 and Table S2). The known higher sensitivity 347 

of NOB to the toxic free ammonia and nitrous acid compared to AOB 44–46 has also been 348 

suggested as potential cause for nitrite accumulation 45. However, in our case, the estimated 349 

concentration of free ammonia (0.03 mg N·L-1) and nitrous acid (0.001 mg N·L-1) were far 350 

below the NOB toxicity thresholds (Tables S6-S7) 44–47. Instead, we argue that the unbalanced 351 

AOB/NOB ratio results from a cascade of separate environmental and operational perturbations 352 

differentially impacting their respective growth rates (Fig. 7). The decrease in temperature 353 

reduces both AOB and NOB growth rates, and may alone promote the selective washout of the 354 

slower-growing NOB (as estimated in this work and consistent with literature values; Table 355 

S8, Fig. S21). In addition, reduced AOB rates lead to the accumulation of ammonium, with the 356 

operationally undesired worsening of effluent quality. In response, most WWTPs increase the 357 
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operational dissolved O2 set point to promote nitrification. The increased availability of 358 

ammonium selectively favours AOB, while, in principle, the increase in dissolved O2 positively 359 

impacts the growth rate of both AOB and NOB. However, the reported lower AOB apparent 360 

affinity for O2 in activated sludge 48–51 likely favours AOB over NOB, further enhancing the 361 

initial differential temperature impact on their growth rates. Ultimately, nitrite accumulation is 362 

the result of the progressive relative enrichment of AOB over NOB. To test our hypothesis, we 363 

developed and implemented a simple mathematical model based on the experimentally 364 

estimated kinetic parameters and literature-derived stoichiometric parameters (Tables S9-S12). 365 

The model reproduced all observed seasonal metabolites peaks induced by decreasing 366 

temperatures and consequent increase in ammonium and operational dissolved O2. The 367 

simulations also captured the progressive relative biomass increase of AOB over NOB (Fig. 368 

S23). These results strongly indicate that the sequential seasonal nitrogen oxides peaks result 369 

from a cascade of distinguishable events, where temperature is the initial trigger but not the 370 

sole direct cause, as commonly hypothesized. The absence of a single parameter correlating 371 

with nitrite and subsequent N2O emissions likely explains the difficulties of past studies to 372 

identify direct correlations 18,24,33. Importantly, the dissolved O2 concentration emerged as the 373 

central operational parameter to act upon, and we posit that the AOB/NOB unbalance may be 374 

largely prevented by anticipating in time, i.e. before measurable NH4
+ accumulation, the 375 

operational O2 increase. 376 

 377 

The last metabolite to accumulate along the reconstructed ecophysiology cascade is N2O. High 378 

nitrite concentrations are well-known to lead to N2O emissions through both nitrifier and 379 

heterotrophic denitrification 3, yet the dominant pathway underlying seasonal N2O emissions 380 

remains unclear 21,24,43. We use the nitrite reductases (NirK and NirS) as proxy for N2O 381 

production, and their genome-resolved taxonomy to differentiate between nitrifier and 382 

heterotrophic denitrification. Considering the fast turnover of NO 8, the use of Nir allows to 383 

overcome the challenges in detecting the membrane-bound hydrophobic nitric oxide reductase 384 

in metaproteomic analyses 52,53. Unbalanced heterotrophic denitrification was excluded as the 385 

main N2O producing pathway during the seasonal emissions owing to the relatively constant 386 

ratio between NirS and NosZ, both exclusively expressed by DEN, and their rates. The nitrite 387 

reductase NirK was exclusively expressed by nitrifiers, primarily by AOB, so it was used as 388 

proxy for nitrifier denitrification. NOB Nitrospira contributed to about one fifth of the total 389 

detected NirK, but its activity and function remain unknown 54–56. A marked increase in the 390 

ratio of NirK over other AOB enzymes (AmoB and Hao) and the competing NO2
--consuming 391 

enzymes (NxrA from NOB and NirS from DEN) was observed during the seasonal nitrogen 392 

oxide peaks. The higher expression of NirK was likely induced by the seasonally increased 393 

nitrite concentrations 57,58, and suggests an increased relative nitrite flux towards nitrifier 394 

denitrification rather than nitrite oxidation or heterotrophic nitrite reduction. Emissions also 395 

coincided with periods in which O2 was identified as the metabolically limiting substrate for 396 

AOB (i.e. lower O2/NH4
+ ratios compared to the rest of the year), likely forcing AOB to resort 397 

to nitrifier denitrification as additional electron sink 59,60. The observed slight imbalance 398 

between hydroxylamine-producing AmoB and -consuming Hao and Cyt P460 makes it here 399 

tempting to speculate that hydroxylamine accumulated as a result of the kinetic O2 limitation 400 
59, further supporting an electron unbalance in the AOB metabolism. To date, only one report 401 

suggested a correlation between N2O emissions in WWTPs and nirK gene transcripts 402 

abundance, quantified by RT-qPCR 61. Yet, the nirK transcripts were not taxonomically 403 
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classified and were assumed to entirely belong to heterotrophic denitrifiers 61. All other studies 404 

discussing seasonal N2O emissions in WWTPs infer the main N2O-producing pathways based 405 

on metabolite profiles, and a general consensus is still lacking 18,20,21,24,43 (Table S1). Gruber et 406 

al. 62 suggest heterotrophic denitrification as the main N2O-producing pathway in a WWTP 407 

using natural isotopic signatures, but seasonal dynamics were not captured. More importantly, 408 

the isotopic signatures of N2O produced through nitrifier and heterotrophic denitrification 409 

largely overlap, challenging the possibility to univocally distinguish the two pathways 62,63. For 410 

the same reason, 15N/18O tracer methods also did not yield conclusive results 63. Instead, by 411 

integrating metagenomic-guided metaproteomics with kinetic analyses and full-scale 412 

operational data we provide independent evidence on multiple ecophysiological levels 413 

identifying nitrifier denitrification as the prime N2O-producing pathway during seasonal 414 

emissions. More broadly, our results demonstrate the untapped potential of multi-meta-omics 415 

integration in biotechnological developments to resolve the complexity and advance the 416 

engineering of the underlying microbiomes. 417 

 418 
Figure 7. Schematic representation of the proposed ecophysiological cascade underlying seasonal N2O emissions in 419 
WWTPs. A decrease in temperature causes lower growth rates of ammonia- (AOB) and nitrite-oxidising bacteria (NOB), 420 
promoting ammonium accumulation and a selective washout of the slower-growing NOB; the resulting increased ammonium 421 
concentrations stimulate the growth of AOB and induce the process control to increase the operational dissolved O2 422 
concentration; the increased O2 concentrations increase the growth rates of both AOB and NOB, but may selectively benefit 423 
AOB with a lower apparent affinity for O2. The resulting increased AOB/NOB ratio causes the accumulation of nitrite and 424 
consequent stimulation of nitrifier denitrification by AOB, as observed in the overexpression of the Cu-type nitrite reductase 425 
(NirK). The ammonium, nitrite and N2O concentration increases are a result of changes in the microbial community 426 
metabolism, while the increase in O2 concentration is the only manually controlled parameter in the cascade.  427 
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Methods 428 

 429 

WWTP operation. The covered Amsterdam-West WWTP has the daily capacity to treat 430 

200,000 m3 municipal wastewater under dry weather conditions (1 million population 431 

equivalents). After fine screening and primary sedimentation, carbon, phosphorus and nitrogen 432 

are biologically removed in a modified University of Cape Town configuration in seven 433 

independent parallel cylindric plug-flow activated sludge tanks (Fig. S1). Nutrient removal 434 

occurred in four compartments: anaerobic (biological phosphorus removal), anoxic 435 

(denitrification), facultative (aerated when additional nitrification capacity was required), and 436 

aerobic (nitrification) (Fig. S1). The setpoint for the dissolved O2 concentration in the aerobic 437 

and facultative zones was set as function of the measured NH4
+ concentration in the aerated 438 

compartment. The average sludge retention time (SRT) was 11-15 days and was controlled to 439 

maintain an average total suspended solids of 4.2 g·L-1. N2O was measured in the combined 440 

gas exhaust of all compartments (anaerobic + anoxic + facultative + aerobic) of a single lane 441 

using an RosemountTM X-STREAM gas analyser (Emerson). NH4
+, NO3

- and N2O were 442 

measured in a single biological nutrient removal lane of the WWTP, NO2
- was measured in the 443 

pooled effluent of seven lanes. 444 

 445 

Ex situ batch activity tests with full-scale activated sludge. The maximum nitrification and 446 

denitrification activities of the activated sludge were measured every two weeks between 447 

January 2021 and May 2022. For consistency, the sludge sampling, handling and storage, and 448 

the activity tests were always performed in the same manner. Samples were collected from the 449 

aerated compartment of the monitored full-scale activated sludge reactor and stored in two litre 450 

glass bottles in the fridge for a maximum of four hours. The sludge was transported under cold 451 

conditions (never reaching a temperature above 10 oC) and immediately placed in a 3 L 452 

jacketed glass bioreactor with a 2 L working volume (Applikon, Getinge). The sludge was 453 

made anoxic by sparging with N2 for 1 h at 0.5 L·min-1 (after which the bioreactor was sealed) 454 

and was incubated overnight with 50 mg N·L-1 NaNO3 to consume the internal carbon storages. 455 

During overnight storage and subsequent activity tests, the sludge was stirred at 750 rpm by 456 

two six-blade turbines, the temperature was maintained at 20 ± 1 oC using a cryostat bath 457 

(Lauda), and the pH was automatically maintained at 7.0 ± 0.1 by 1 M HCl and 1 M NaOH 458 

with two peristaltic pumps (Watson Marlow) controlled by an in-Control process controller 459 

(Applikon, Getinge). The pH and dissolved oxygen were continuously monitored with probes 460 

(Applikon AppliSens, Getinge). Influent gas flows were controlled by mass-flow controllers 461 

(Brooks). After overnight incubation with NO3
-, the sludge was activated by adding a spike of 462 

NaNO3 (5 mg N·L-1) and a mixture of organic carbon (acetate, pyruvate, glucose, 37.5 mg 463 

COD·L-1 each). The batch activity tests were sequentially performed on the same day in the 464 

following order: N2O, NO2
- and NO3

- reduction (denitrification), and NH4
+ and NO2

- oxidation 465 

(nitrification) (Table 2). Before each batch, the depletion of the previous nitrogen compound 466 

was ensured. Substrates were added to the bioreactor with a syringe and needle through a rubber 467 

septum, marking the start of the batches. The batches’ progress was monitored with NO2
- and 468 

NO3
- MQuant® colorimetric test strips (Merck). 469 

Nitrogen compounds were added at 12 mg N·L-1, in the form of N2O (sparging 1.5% N2O + 470 

98.5% N2 at 0.5 L·min-1 during 15-20 min), NaNO2 (1.2 mL), NaNO3 (1.2 mL) and NH4HCO3 471 

(1.2 mL) from concentrated stocks. The proportion bicarbonate to nitrogen was kept the same 472 

for the two nitrification batches by supplying 0.9 mM NaHCO3 to the NO2
- oxidation batch. 473 
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The organic carbon compounds were added at the start of the denitrification batches (each 75 474 

mg COD·L-1, at least 2-fold higher than stoichiometrically needed) from anoxic concentrated 475 

stock solutions: sodium acetate (C2H3NaO2, 3 mL), sodium pyruvate (C3H3NaO3, 3 mL) and 476 

glucose (C6H12O6, 3 mL). The concentration of pyruvate was 4-fold lower in the batch tests 477 

from January until mid-August 2021, but this had no effect on the measured activities. Before 478 

each denitrification test, anoxic conditions were ensured by sparging N2 at 0.5 L·min-1 for 20 479 

min, after which the reactor was sealed off from the exterior. The transition from anoxic to oxic 480 

conditions was achieved by sparging air at 0.5 L·min-1 for at least 1 h. During each nitrification 481 

test, oxic conditions (> 70% air saturation) were ensured by continuously sparging air at 0.5 482 

L·min-1. When necessary, foam formation was reduced with a few drops of six times diluted 483 

antifoam C 391 emulsion (Merck Life Science NV). For supernatant analysis, samples were 484 

taken every 3, 5, 10 or 15 min (depending on the length of the batches), and immediately 485 

filtered with a 0.45 µm PVDF Millex syringe filter (Merck) and placed on ice. The samples 486 

were stored at 4 oC until analysis on the following day. 487 

 488 
Table 1. Order and details of the nitrification and denitrification activity tests performed on a single day, every second 489 
week. The denitrification tests (N2O, NO2

- and NO3
- reduction) were performed under anoxic conditions, with a mixture of 490 

organic carbon compounds as electron donor. Prior to each denitrification batch the broth was sparged with N2 during 20 min 491 
to ensure anoxic conditions and remove intermediate nitrogenous gases. The nitrification tests (NH4

+ and NO2
- oxidation) were 492 

performed with O2 as electron acceptor, under continuous aeration. Between the denitrification and nitrification batches, the 493 
broth was made oxic by sparging air for 60 min. Each nitrogen compound was added at a final concentration of 12 mg N·L-1. 494 

Batch Electron donor 
Electron 

acceptor 
Length (min) Sparging Conditions 

N2O reduction (DEN) Acetate, pyruvate, glucose N2O 24  -    105 Off 

Anoxic NO2
- reduction (DEN) Acetate, pyruvate, glucose NO2

- 25  -  >150 Off 

NO3
- reduction (DEN) Acetate, pyruvate, glucose NO3

- 35  -  >150 Off 

NH4
+ oxidation (AOB) NH4

+ O2 30  -  >150 Air 
Oxic 

NO2
- oxidation (NOB) NO2

- O2 45  -  >150 Air 

 495 

Analytical methods. The concentrations of NH4
+, NO2

- and NO3
- in the filtered supernatant 496 

were spectrophotometrically measured on the day following the batches, using the GalleryTM 497 

Discrete Analyzer (Thermo Fisher Scientific) or cuvette test kits (LCK339, LCK342 and 498 

LCK304, Hach Lange). When measuring NO3
- with the cuvette test kits, the samples were 499 

diluted 1:1 with 20 g·L-1 sulfamic acid to remove NO2
- as interference. The volatile suspended 500 

solids concentration (ash content subtracted from the dried biomass), measured in triplicate, 501 

was taken as proxy for the biomass concentration. Immediately upon arrival, 3x 25 mL of 502 

sludge was centrifuged at 4200 rpm for 20 min, the pellet was resuspended in 15 mL MilliQ 503 

water, dried at 105 oC (24 h) and burned at 550 oC (2 h). The concentrations of O2, CO2 and 504 

N2O in the condenser-dried reactor off-gas were monitored by a Rosemount NGA 2000 off-505 

gas analyser (Emerson). The dissolved N2O concentrations were monitored and recorded every 506 

minute with a standard N2O-R microsensor (customized concentration range 0.4 – 2 mM, 507 

Unisense) and a picoammeter PA2000 (Unisense). The dissolved N2O concentrations were 508 

calculated using the average of all calibrations performed 1-2 days before every batch series.  509 

 510 

Calculations activity tests. The maximum NO2
- and NO3

- reduction and NH4
+ and NO2

- 511 

oxidation rates were obtained through linear regression of the substrate concentration profiles 512 

over time. The slope was determined using at least four concentration points in the linear range. 513 

The maximum N2O reduction rate was calculated in Spyder IDE v5.1.5 using Python v3.9.12 514 

and the NumPy v1.21.5 64, SciPy v1.7.3 65 and Pandas v1.4.2 66 packages, taking into account 515 
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the gas-liquid transfer between the reactor broth and headspace throughout the batch test 516 

(Supplementary Section 13). A system of ordinary differential equations (ODEs), representing 517 

the liquid and headspace mass balances, was defined to describe the gas-liquid transfer over 518 

time: 519 
dcN2O,liq

dt
= rN2O −  kLa ∙ (cN2O,liq − cN2O,gas ∙

KH,N2O∙R∙T

p
)  (eq. 1) 520 

dcN2O,gas

dt
=  

𝑉𝑙𝑖𝑞

𝑉𝑔𝑎𝑠
𝑘𝐿𝑎 ∙ (cN2O,liq − cN2O,gas)   (eq. 2) 521 

With cN2O,liq and cN2O,gas the N2O concentration in the liquid and headspace, rN2O the unknown 522 

N2O consumption rate, kLa the experimentally determined volumetric mass transfer coefficient 523 

(5 h-1), KH,N2O the Henry coefficient (27.05 mM/atm), R the ideal gas constant (8.206 x 10-5 524 

L·atm·K-1·mmol), T the temperature, p the pressure, and Vliq and Vgas the broth and headspace 525 

volumes. The rates were obtained by fitting the model to the experimental data, i.e. by 526 

minimizing the sum of squared errors between the experimentally measured and calculated (eq. 527 

1-2) N2O concentrations (see code in Supplementary Section 13). 528 

 529 

DNA extraction, library preparation and sequencing. Samples of 2 mL were taken 530 

immediately after cold transport of the sludge, and centrifuged at 16,200 x g for 5 min at 4 oC 531 

to separate the biomass from the supernatant. The biomass pellets were stored at -80 oC until 532 

DNA extraction. The DNA of the 12 Nov 2020, 9 Jun, 16 Dec 2021 and 11 May 2022 samples 533 

was extracted with the DNeasy PowerSoil Pro Kit (Qiagen). The manufacturer’s instructions 534 

were followed, with exception of these steps: approximately 50 mg biomass was resuspended 535 

in the CD1 solution by vortexing before transferring to the PowerBead tube; 3 x 40 s bead-536 

beating (Beadbeater-24, Biospec) was alternated with 2 min incubation on ice; tubes were 537 

gently inverted instead of vortexed to prevent DNA shearing 35. The DNA of the 20 Jan and 3 538 

Mar 2021 samples (1/3 pellet) was extracted with the DNeasy UltraClean Microbial Kit 539 

(Qiagen) following the manufacturer’s instructions. The DNA concentration and quality were 540 

assessed with the Qubit 4 Fluorometer (Thermo Fisher Scientific) and the BioTek Synergy 541 

HTX multimode microplate reader (Agilent), respectively. 542 

The samples of 12 Nov 2020 (np1), 9 Jun (np2), 16 Dec 2021 (np3) and 11 May 2022 (np4) 543 

were prepared for long-read sequencing using the Ligation Sequencing Kit V14 (Oxford 544 

Nanopore Technologies Ltd), the NEBNext® Companion Module for Oxford Nanopore 545 

Technologies® Ligation Sequencing (New England BioLabs) and UltraPureTM BSA (50 546 

mg/mL) (Thermo Fisher Scientific). The incubations in the Hula mixer were replaced with 547 

slow manual inversions, all resuspensions were performed by flicking the tube, and the last 548 

room temperature incubation step was performed a 37 oC to improve the recovery of long DNA 549 

fragments. Four MinION R10.4 flow cells (Oxford Nanopore Technologies), one for each 550 

sample, were used to sequence on a MinION for 89-96 h in accurate mode (260 bps), yielding 551 

21-29 Gbp per sample. The sample of 20 Jan 2021 (np1.5) was prepared with a Ligation 552 

Sequencing Kit V12 and sequenced on a GridION with MinION R9.4 flow cells (Oxford 553 

Nanopore Technologies), generating 11.2 Gbp. Short-read sequencing was also performed on 554 

the samples of 20 Jan (il1) and 3 Mar 2021 (il2) on an Illumina NovaSeq 6000 platform by 555 

Novogene Ltd. (UK), resulting in over 20 Gbp (per sample) of 150 bp paired-end reads with a 556 

350 bp insert. 557 

 558 

Processing of metagenomic data and MAG recovery. After sequencing, the DNA data was 559 

processed to obtain metagenome-assembled genomes (MAGs). The final set of MAGs was 560 
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obtained from the five nanopore-sequenced samples (np1-4 and np1.5). The Illumina reads (il1 561 

and il2) were solely used for differential coverage binning and to estimate the relative 562 

abundance of each MAG on the respective dates. The raw long reads were basecalled in super-563 

accurate mode with the “dna_r10.4.1_450bps_sup.cfg” configuration file and --564 

do_read_splitting option using Guppy v6.4.2 (np1-4) or with “dna_r9.4.1_450bps_sup.cfg” 565 

using Guppy v5.0.7 (Oxford Nanopore Technologies) (np1.5). The duplex reads of np1-4 were 566 

filtered using pairs_from_summary and filter_pairs from Duplex tools v0.2.19 (Oxford 567 

Nanopore Technologies). The duplex reads were basecalled using the duplex basecaller of 568 

Guppy and merged with the remaining simplex reads using SeqKit v2.3.0 67. The reads were 569 

filtered, trimmed and inspected with NanoFilt v2.8.0 68 (options -q 10 -l 200), Porechop v0.2.4 570 

(https://github.com/rrwick/Porechop) and NanoPlot v1.41.0 68. The Illumina reads were 571 

filtered and trimmed using Trimmomatic v0.39 69 with the options LEADING:3 TRAILING:3 572 

SLIDINGWINDOW:4:15 MINLEN:35 HEADCROP:5. The kmer algorithm of Nonpareil 573 

v3.401 70 estimated a diversity coverage of 69.9% (il1) and 71.3% (il2) for the trimmed 574 

Illumina reads. 575 

The long reads were individually assembled and pairwise co-assembled (np1-np2, np2-np3, 576 

np3-np4) with Flye v2.9.1 71 in --meta mode. The reads were mapped on the assembly with 577 

Minimap2 v2.24 72. The individual assemblies were polished with Racon v1.4.3 578 

(https://github.com/isovic/racon) and two times with Medaka v1.5.0 579 

(https://github.com/nanoporetech/medaka). The reads from all samples were mapped to each 580 

assembly using Minimap2, the alignments were converted from SAM to BAM and sorted with 581 

SAMtools v1.10 73 and the contig coverage in each sample was calculated with 582 

jgi_summarize_bam_contig_depths 74.  The differential coverages were used for automatic 583 

binning of each assembly with MetaBAT2 v2.15 74, MaxBin2 v2.2.7 75 and CONCOCT v1.1.0 584 
76, setting the minimum contig length at 2000 bp. The outputs were combined into an optimized 585 

set of non-redundant bins with DAS Tool v1.1.3 77, which used Prodigal v2.6.3 78 and 586 

DIAMOND v2.0.8 79. The bins obtained from all assemblies (np1, np1.5, np2, np3, np4, np1-587 

np2, np2-np3, np3-np4) were dereplicated with the 1083 HQ MAGs from Singleton et al. 588 

(2021) 35 at 95% average nucleotide identity of open reading frames using dRep v3.2.2 80 with 589 

the options -comp 70 -con 10 -sa 0.95 --S_algorithm gANI.  590 

Bin completeness and contamination was assessed with the lineage_wf workflow of CheckM 591 

v1.1.3 81. The relative abundance of the bins in each sample (np1, np2, np3, np4, il1, il2) was 592 

determined with CoverM v0.6.1 (https://github.com/wwood/CoverM), using the options --593 

methods relative_abundance mean --min-read-percent-identity 95 --min-read-aligned-594 

percentage 50. Bins with completeness < 90%, contamination > 5% or with zero abundance in 595 

all samples were discarded, resulting in a non-redundant set of 349 HQ MAGs. The HQ MAGs 596 

were taxonomically classified using the classify_wf mode of GTDB-Tk v2.3.0 82 and the 597 

GTDB release 207 83 (gtdbtk_r207_v2_data.tar.gz). The presence of 16S rRNA genes was 598 

verified with barrnap v0.9 (https://github.com/tseemann/barrnap). A bacterial phylogenetic 599 

tree was made with FastTree v2.1.11 84 using the multiple sequence alignment generated with 600 

the identify and align modes of GTDB-Tk, adjusted with the TreeTools v1.10.0 85 package in 601 

RStudio v22.0.3 86 with R v4.2.2 87 and visualized with iTol v6.8.2 88. 602 

 603 

Gene prediction and functional annotation. Genes were predicted in all assemblies using 604 

Prodigal v2.6.3 78 with the -p meta option. The gene sequences were concatenated and 605 

duplicates were removed using grep and rmdup from SeqKit v2.3.1 67, resulting in a unique set 606 
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of genes covering all metagenomic samples. The predicted genes were functionally annotated 607 

with the annotate pipeline of EnrichM v0.6.5 (https://github.com/geronimp/enrichM), using 608 

DIAMOND v2.0.8 79 and HMMER v3.2.1 (http://hmmer.org/) and the EnrichM v10 database, 609 

including a KO-annotated UniRef100 2018_11 89 DIAMOND database and HMM libraries of 610 

the KEGG 88.2 90, PFAM 32.0 91, and TIGRFAMs 15.0 92 databases. In general, the genes of 611 

interest from the nitrogen cycle were identified by their KO identifier (Table S3). Cytochrome 612 

P460 was identified through its PFAM identifier PF16694. The genes encoding the alpha- and 613 

beta-subunit of the cytoplasmic nitrate reductase (narG and narH) and the nitrite 614 

oxidoreductase (nxrA and nxrB) have the same KO identifier, so these were distinguished 615 

through a phylogenetic analysis using the graft command of GraftM 93 and the respective 616 

packages (7.70.nxrA_narG and 7.69.nxrB). If the alpha-subunit was classified as narG or nxrA, 617 

the putative beta-subunit located in the same contig was manually annotated. The unclassified 618 

sequences were left with the narGH annotation. The nxrAB genes from the Ca. Nitrotoga MAG 619 

(NOB) could not be distinguished with GraftM, but were confirmed with a BLAST on UniProt 620 
94. Similarly, the alpha-subunit of the ammonia monooxygenase gene (amoA) was 621 

distinguished from the methane monooxygenase gene (pmoA) using the 20170316_pmoA 622 

package of GraftM. Unidentified sequences remained annotated as pmoA. The beta- and 623 

gamma-subunits located in the same contig as amoA were manually annotated as amoB and 624 

amoC. Distinction between the quinol-dependent nitric oxide reductase (qNor, encoded by 625 

norZ) and the alpha subunit of the cytochrome c-dependent reductase (cNor, encoded by norB), 626 

was made by identifying the fused quinol oxidase domain on the N-terminal of norZ 95. A 627 

multiple sequence alignment was performed between putative NorB and NorZ protein 628 

sequences found in the metagenomes (K04561), and reference sequences of NorB 629 

(Pseudomonas stutzeri, P98008) and NorZ (Cupriavidus necator, Q0JYR9), extracted from 630 

UniProtKB 94, using Clustal Omega v1.2.4 96. The alignment was visualized and analysed, and 631 

the quinol oxidase domain was identified with Jalview v2.11.3.2. The distinction between clade 632 

I and II nitrous oxide reductase, respectively TAT- and Sec-dependent, was made by combining 633 

the TIGRFAM annotation of EnrichM and the phylogenetic analysis of GraftM with the 634 

7.45.nosZ package. The sequences not classified as either clade I or II remained annotated as 635 

unclassified nosZ. Data processing was performed using RStudio v22.0.3 86 with R v4.2.2 87, 636 

and the plyr v1.8.8 98, tidyverse v2.0.0 99 , readxl v1.4.2 100, data.table v1.15.0 101, aplot v0.2.2 637 
102 and reshape2 v1.4.4 103 packages. 638 

 639 

Protein extraction. Biomass samples were taken and stored as detailed in the DNA extraction 640 

section. Proteins were extracted from 12 samples, as previously described 104. Briefly, around 641 

60 mg of the biomass pellet were homogenised in three cycles of vortexing and ice incubation 642 

with glass beads (150 – 212 µm, Sigma Aldrich), 50 mM TEAB buffer 1% (w/w) NaDOC and 643 

B-PER reagent (Thermo Scientific). Proteins in the supernatant were precipitated with 1:4 644 

trichloroacetic acid (Sigma Aldrich). The pellet was washed and disrupted with acetone two 645 

times and re-dissolved in 200 mM ammonium bicarbonate with 6 M Urea (Sigma Aldrich). 646 

Human serum albumin (0.1 µg, Sigma Aldrich) was added to all samples to control the 647 

digestion efficiency. The mixture was reduced with 10 mM dithiothreitol (Sigma Aldrich) at 648 

37 °C for 60 min, and alkylated with 20 mM iodoacetamide (Sigma Aldrich) in the dark for 30 649 

min. Samples were diluted with 100 mM ammonium bicarbonate to obtain a urea concentration 650 

lower than 1 M. Protein digestion occurred overnight at 37 oC and 300 rpm with 1.5 µg 651 

sequencing grade trypsin (Promega). 0.5 pmol of the PierceTM Peptide Retention Time 652 
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Calibration mix (Thermo Scientific) was added to all samples to control the chromatographic 653 

performance. Solid phase extraction was performed with an Oasis HLB 96-well µElution Plate 654 

(2 mg sorbent per well, 30 µm, Waters) and a vacuum pump. The columns were conditioned 655 

with MeOH, equilibrated with water two times, loaded with the peptide samples, washed with 656 

two rounds of 5% MeOH and sequentially eluted with 2% formic acid in 80% MeOH and 1 657 

mM ammonium bicarbonate in 80% MeOH. The samples were dried in a centrifuge 658 

Concentrator plus (Eppendorf) at 45 oC and stored at -20 oC until analysis.  659 

 660 

Shotgun metaproteomics. Peptide samples were dissolved in 20 µL of 3% acetonitrile and 661 

0.01% trifluoroacetic acid,  incubated at room temperature for 30 min and vortexed thoroughly. 662 

The protein concentration was measured at 280 nm wavelength with a NanoDrop ND-1000 663 

spectrophotometer (Thermo Scientific) and samples were diluted to a concentration of 0.5 664 

mg/mL. Shotgun metaproteomics was performed as previously described 104, with a 665 

randomized sample order. Briefly, approximately 0.5 µg protein digest was analysed using a 666 

nano-liquid-chromatography system consisting of an EASY nano-LC 1200, equipped with an 667 

Acclaim PepMap RSLC RP C18 separation column (50 μm x 150 mm, 2 μm, Cat. No. 164568), 668 

and a QE plus Orbitrap mass spectrometer (Thermo Fisher Scientific). The flow rate was 669 

maintained at 350 nL/min over a linear gradient from 5% to 25% solvent B over 90 min, from 670 

25% to 55% over 60 min, followed by back equilibration to starting conditions. Solvent A was 671 

a 0.1% formic acid solution in water (FA), and solvent B consisted of 80% ACN in water and 672 

0.1% FA. The Orbitrap was operated in data dependent acquisition (DDA) mode acquiring 673 

peptide signals from 385–1250 m/z at 70 K resolution in full MS mode with a maximum ion 674 

injection time (IT) of 75 ms and an automatic gain control (AGC) target of 3E6. The top 10 675 

precursors were selected for MS/MS analysis and subjected to fragmentation using higher-676 

energy collisional dissociation (HCD) at a normalised collision energy of 28. MS/MS scans 677 

were acquired at 17.5 K resolution with AGC target of 2E5 and IT of 75 ms, 1.2 m/z isolation 678 

width. The protein reference sequence database was generated through whole metagenome 679 

sequencing of the microbial samples, which included all metagenome-assembled genomes 680 

(MAGs) and unique unbinned sequences from all samples. The raw mass spectrometric data 681 

from each sample were analysed against this database using PEAKS Studio X (Bioinformatics 682 

Solutions Inc.) in a two-round database search process. The initial round was conducted 683 

without considering variable modifications and missed cleavages. Subsequently, the focused 684 

database was further searched, allowing for a 20 ppm parent ion and a 0.02 m/z fragment ion 685 

mass error tolerance, up to 3 missed cleavages, and iodoacetamide as a fixed modification, with 686 

methionine oxidation and N/Q deamidation as variable modifications. 687 

 688 

Metaproteomic data analysis. Peptide spectrum matches were filtered against 5% false 689 

discovery rates (FDR) and protein identifications with ≥2 unique peptide sequences were 690 

considered significant. The human serum albumin added as internal process control was filtered 691 

out. Proteins were grouped according to their unique protein group identification. The peptide 692 

spectral counts were divided by their molar mass for normalisation and technical duplicates 693 

were averaged. The relative abundance of each protein in a certain sample was determined by 694 

dividing the respective normalized spectral counts by the sum of normalized spectral counts of 695 

all proteins detected in that sample. The total relative abundance of each MAG in the 696 

metaproteome was calculated by summing the relative abundance of all proteins belonging to 697 

that MAG. The same was performed to calculate the total relative abundance of functionally 698 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2024. ; https://doi.org/10.1101/2024.04.17.589950doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.17.589950
http://creativecommons.org/licenses/by-nc/4.0/


22 
 

identical proteins. Some functionally identical proteins belonging to different MAGs from the 699 

same genus could not be distinguished because of their high similarity. Therefore, these 700 

proteins were grouped by their functional annotation and genus for the data analysis. Proteins 701 

that simultaneously matched unbinned sequences and one or more MAGs from a certain genus, 702 

were classified as belonging to that genus. The catalytic subunits of the nitrogen-converting 703 

enzymes of interest were used as representative of that protein during data analysis, with 704 

exception of the ammonia monooxygenase (AMO). The catalytic alpha-subunit (AmoA) is 705 

located in the cell membrane 105, and is thus hydrophobic, so it is not well detected in the 706 

proteomic analysis (Fig. S15). The beta-subunit (AmoB), only partially in the membrane, was 707 

detected in much higher amounts so it was here used as proxy for AMO. In any case, the results 708 

were similar for AmoA and AmoB (Fig. S17). Data processing was performed using RStudio 709 

v22.0.3 86 with R v4.2.2 87, and the plyr v1.8.8 98, tidyverse v2.0.0 99 , readxl v1.4.2 100, 710 

data.table v1.15.0 101, aplot v0.2.2 102, reshape2 v1.4.4 103 and matrixStats v1.2.0 106 packages.  711 
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