

1 **Differential antigenic imprinting effects between influenza H1N1**
2 **hemagglutinin and neuraminidase in a mouse model**

3 Huibin Lv^{1,2,3}, Qi Wen Teo^{1,2,3}, Chang-Chun D. Lee⁴, Weiwen Liang³, Danbi Choi²,

4 Kevin J. Mao², Roberto Bruzzone^{3,5,6}, Ian A. Wilson^{4,7}, Nicholas C. Wu^{1,2,8,9,§}, Chris

5 K. P. Mok^{10,11,12,§}

6

7 ¹ Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-
8 Champaign, Urbana, IL 61801, USA

9 ² Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL
10 61801, USA

11 ³ HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of
12 Medicine, The University of Hong Kong, Hong Kong SAR, China

13 ⁴ Department of Integrative Structural and Computational Biology, The Scripps
14 Research Institute, La Jolla, CA 92037, USA

15 ⁵ Istituto Pasteur Italia, Rome, Italy

16 ⁶ Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR,
17 China

18 ⁷ Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA
19 92037, USA.

20 ⁸ Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-
21 Champaign, Urbana, IL 61801, USA

22 ⁹ Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign,
23 Urbana, IL 61801, USA

24 ¹⁰ The Jockey Club School of Public Health and Primary Care, The Chinese
25 University of Hong Kong, Hong Kong SAR, China

26 ¹¹ Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese

27 University of Hong Kong, Hong Kong SAR, China

28 ¹² S.H. Ho Research Centre for Infectious Diseases, Chinese University of Hong

29 Kong, Hong Kong, China

30

31 § Correspondences: nicwu@illinois.edu (N.C.W) and kapunmok@cuhk.edu.hk

32 (C.K.P.M)

33 **Abstract**

34 Understanding how immune history influences influenza immunity is essential for
35 developing effective vaccines and therapeutic strategies. This study investigates the
36 antigenic imprinting of influenza hemagglutinin (HA) and neuraminidase (NA) using a
37 mouse model with sequential infection by four seasonal H1N1 strains. Our findings
38 reveal that, among pre-2009 H1N1 strains, the extent of infection history correlates
39 with the restriction of antibody responses to antigenically drifted HA, but not NA. This
40 suggests the mouse model failed to recapitulate NA imprinting in humans, likely due
41 to the difference in NA immunodominance hierarchy between humans and mice.
42 Nevertheless, pre-existing antibodies induced by infection with pre-2009 influenza
43 virus impeded both functional HA and NA antibody responses against a 2009
44 pandemic H1N1 strain. Overall, this study provides insights into antigenic imprinting
45 for influenza virus, as well as the limitations of using mouse models for studying
46 antigenic imprinting.

47

48 **Importance**

49 Influenza viruses continue to pose a significant threat to human health, with vaccine
50 effectiveness being a persistent concern. One important factor is the individual
51 immune history can influence subsequent antibody responses. While many studies
52 have focused on how pre-existing antibodies influence the induction of anti-HA
53 antibodies after influenza virus infections or vaccinations, the impact on anti-NA
54 antibodies has been less extensively investigated. In this study, using a mouse
55 model, we highlighted within the pre-2009 H1N1 strains, a greater extent of immune
56 history negatively affected anti-HA antibodies but positively influenced anti-NA
57 antibody responses. However, for the 2009 pandemic H1N1 strain, which underwent

58 with antigenic shift, both anti-HA and anti-NA antibody responses have been
59 impeded by the antibodies induced by pre-2009 H1N1 virus infection. These findings
60 have important implications for enhancing our understanding of antigenic imprinting
61 on anti-HA and anti-NA antibody response and for developing more effective
62 vaccination strategies.

63

64 **Introduction**

65 During each influenza virus infection, the human immune system produces a
66 polyclonal antibody response targeting the two main surface glycoproteins of
67 influenza virus: hemagglutinin (HA) and neuraminidase (NA). HA, the predominant
68 surface antigen, consists of a globular head domain containing the receptor binding
69 site and a stem domain with the molecular machinery to facilitate cell entry through
70 fusion of the viral and host membranes [1]. In contrast, the NA protein aids virus
71 release by cleaving terminal sialic acids, enabling nascent virus particles to detach
72 from the host cell membrane [2]. For a long time, it was believed that an effective
73 humoral immune response to influenza virus primarily involved antibodies against
74 HA. However, recent studies have shown that anti-NA antibodies can also play a
75 substantial antiviral role, independent of the HA antibody response [3-5].

76

77 Almost everyone has been infected by influenza virus since their childhood and
78 experiences reinfection by antigenically drifted strains on a regular basis [6]. The
79 antigenic imprinting theory suggests that immune history can influence the
80 magnitude and quality of antibody responses to a subsequent infection [7, 8]. A
81 striking example is during the 2009 H1N1 “swine flu” pandemic, older individuals
82 appeared to exhibit lower relative mortality rates compared to other age groups,

83 possibly attributed to their exposure during childhood to antigenically similar H1N1
84 strains originating from the 1918 'Spanish flu' pandemic [9, 10]. However,
85 understanding the impact of age-dependent immune history on the antibody
86 response to the 2009 H1N1 pandemic virus remains largely elusive, primarily due to
87 the complexity of human experiences with infection and vaccination.

88

89 Due to the abundance of HA on the influenza virus surface, antigenic imprinting is
90 most often applied to anti-HA antibody responses [11-15]. A noteworthy example is
91 that early childhood infections with either H1N1 or H3N2 influenza viruses confer
92 protection against H5N1 and H7N9 viruses later in life. This is likely due to the
93 generation of anti-HA cross-reactive antibodies targeting shared epitopes across
94 these diverse strains [16]. However, antigenic imprinting on NA is less well
95 characterized [17, 18]. Moreover, the effect of the extent of immune history on both
96 HA and NA simultaneously remains unclear.

97

98 In this study, we aim to mimic human conditions in mice by sequentially infecting
99 them with up to four antigenically distinct influenza viruses and challenging them with
100 the 2009 H1N1 pandemic virus. We highlight the extent of immune history can
101 influence the induction of both anti-HA and anti-NA antibodies. Additionally, the
102 binding epitopes targeted by anti-NA antibodies following pre-2009 H1N1 virus
103 infection in the mouse model may differ from those observed in humans. These
104 results suggest that consideration of immune history is crucial for vaccine design.
105 Moreover, caution must be exercised when using mouse models to investigate
106 antigenic imprinting effects in humans.

107

108 **Results**

109 **Establishment of a Mouse Model for Sequential Infections with Heterologous**

110 **Influenza (H1N1) Viruses**

111 To mimic human sequential infections, we selected four pre-2009 H1N1 influenza
112 strains: A/USSR/90/1977 (USSR/77), A/Chile/1/1983 (Chile/83), A/Beijing/262/1995
113 (Beijing/95), and A/Brisbane/59/2007 (Bris/07). These strains, chosen for their role
114 as vaccine seed strains, are antigenically distinct from each other [19]. To minimize
115 genetic background interference, we integrated their HA and NA genes into the
116 A/Puerto Rico/8/1934 (H1N1) virus backbone using the "6+2" reverse genetic
117 approach [20].

118

119 Prior to the sequential infection experiments, we assessed the cross-reactive
120 antigenicity of HA and NA from each virus. Eight-week-old BALB/c mice were
121 infected twice, 21 days apart, with four sets of homologous viruses. Plasma samples
122 were collected 21 days after the second infection (Figure 1A). We performed ELISA
123 and microneutralization assay on each sample to evaluate binding and neutralizing
124 capacities against all four H1N1 viruses. Binding assays revealed cross-reactive
125 binding antibodies to the HA in mice (Figure 1B-E), while H1N1 cross-neutralization
126 was minimal against the three heterologous strains compared to the homologous
127 strain (Figure 1F-I). Notably, strong cross-reactive NA inhibition (NI) was observed
128 via enzyme-linked lectin assay (ELLA) in each group (Figure 1J-1M), supporting the
129 hypothesis that antigenic drift in HA and NA may occur asynchronously [21, 22].

130

131 These findings set the stage for interpreting results from a more comprehensive
132 experimental design involving sequential infection with different heterologous strains.

133 Four-week-old BALB/c mice were divided into four groups: Group 1 was infected
134 once with Bris/07; Group 2 underwent sequential infection with Beijing/95 followed by
135 Bris/07, 12 weeks apart; Group 3 was sequentially infected with Chile/83, Beijing/95,
136 and Bris/07, each 12 weeks apart; Group 4 experienced sequential infection with
137 USSR/77, Chile/83, Beijing/95, and finally Bris/07, again 12 weeks apart (Figure 2A).
138 Two control groups were included: Group 5, infected once with USSR/77 and
139 sampled after 39 weeks; and Group 6, comprising 40-week-old mice infected once
140 with Bris/07. Plasma samples from all groups except Group 5 were collected 21 days
141 post-last infection.

142

143 **Functional HA and NA Antibodies Show Opposite Trends Following Sequential
144 Infection with Heterologous Influenza Viruses**

145 To investigate antigenic imprinting, we first analyzed plasma binding to the HA
146 proteins of the four viruses. Sequential infection with heterologous H1N1 viruses
147 induced cross-reactive binding antibodies against all four strains ($p<0.0001$) (Figure
148 2B-2E). Interestingly, mice infected only with Bris/07 (Group 1) showed lower binding
149 to its cognate HA protein compared to those previously infected with heterologous
150 viruses. Mice in Group 5, infected only with USSR/77, developed cross-reactive
151 binding antibodies to all four viruses (Figure 2B-2E). This suggests that exposure to
152 earlier circulating strains contributes to cross-reactivity to drifted viruses, albeit
153 slightly reduced compared to the parental virus, lasting at least for 43 weeks.

154

155 Conversely, neutralizing activity against Bris/07 was highest in mice infected only
156 with this virus (Group 1 and Group 6), and decreased with the number of sequential
157 infections and the distance from the prime to the Bris/07 boost (Figure 2I). This trend

158 suggests a potential relationship between immune priming and viral neutralization
159 activity, where a greater extent of prior infection history may limit the production of
160 neutralizing antibodies. Although Group 5 mice showed relatively strong cross-
161 reactive binding capacity to Beijing/95 and Bris/07 (Figure 2D-2E), no neutralization
162 was observed in the microneutralization assay (Figure 2H-2I), indicating USSR/77
163 infection-induced antibodies may target non-neutralizing epitopes or the affinity of
164 induced antibodies is relatively low. Comparison of neutralizing antibody responses
165 to Bris/07 in Groups 1 and 6 revealed similarities in immune responses between
166 young and elderly mice (Figure 2I).

167

168 Influenza A viruses can be classified into group 1 and 2. We investigated binding
169 cross-reactivity of antibodies towards other human as well as avian group 1 viruses,
170 including A/Puerto Rico/8/1934 (H1N1), A/California/07/2009 (H1N1),
171 A/Japan/305/1957 (H2N2), A/duck/Laos/2006 (H5N1), and
172 A/chicken/Netherlands/2014 (H5N8) (Figure 3B-G). Trends observed were similar to
173 those with the four human H1N1 viruses from 1977 to 2007 (Figure 1B-1E). Using a
174 mini-HA protein derived from the stem domain of Bris/07,[23] we found that stem-
175 binding antibodies may contribute to the targeting of group 1 HAs (Figure 3D). No
176 cross-binding antibody responses were observed against group 2 HA proteins,
177 including those from A/Uruguay/716/2007 (H3N2), A/Anhui/1/2013 (H7N9), and
178 A/Jiangxi/346/2013 (H10N8) (Figure 3H-J), highlighting the specificity of these
179 interactions and the antigenic distinctions within and between these viral groups.

180

181 Antigenic imprinting is believed to be primarily influenced by HA antibodies, but the
182 role of NA antibodies remains unclear. We analyzed HA and NA via

183 hemagglutination inhibition assay (HAI) and neuraminidase inhibition assay (NAI).
184 Mice with previous heterologous virus infections exhibited lower HAI titers against
185 Bris/07 than with homologous Bris/07 infection (Figure 4A), while a contrasting
186 pattern was observed in NAI results, with heightened functional NAI antibody titers in
187 groups with more infection experiences (Figure 4B). These data suggest more
188 boosts lead to increased antibody responses to conserved sites in NA and show an
189 opposite effect of antigenic imprinting for HA and NA against a specific virus at the
190 same time.

191

192 **Impact of Antigenic Shift on Establishment of Antigenic Imprinting**

193 Sequential infection with four strains induced cross-binding antibodies against Cal/09,
194 but no neutralization activity was observed (Figure 3C and S1A). This raises
195 questions about the role of antigenic shift in the development of antigenic imprinting,
196 particularly during the 2009 pandemic. When we challenged mice from Groups 1-4
197 with a lethal dose of Cal/09 (Figure 5A), all previously infected mice provided 100%
198 protective efficacy in body weight recovery and survival (Figure S2A-S2B). A
199 significant reduction in viral load in the lungs was observed in Group 2-4 which the
200 mice have more than two rounds of heterologous infection (Groups 2-4) ($p<0.05$)
201 (Figure S2C). Plasma collected 21 days post Cal/09 viral infection showed
202 diminished neutralization, HAI, and NAI against Cal/09 for heterologous
203 immunization compared to Bris/07 homologous immunization (Figure 5B-5D),
204 suggesting concurrent antigenic imprinting phenomena induced by shifts in both HA
205 and NA genes. It is interesting that we also observed this imprinting effect is less on
206 NAI, compared to neutralizing activity and HAI (Figure 5D).

207

208 To understand the mechanism of antigenic imprinting against Cal/09 NA, we
209 compared amino acid residues in the NA of Cal/09 with those of the four pre-2009
210 H1N1 strains. We focused on amino acid residues that are completely conserved
211 across the four pre-2009 NAs of interest, but differed in Cal/09 NA (Figure 6A).
212 These residues are highlighted on the surface of Cal/09 NA structure (Figure 6B).
213 Many of these mutations surround the NA active site, such as I149, N220, Q249,
214 K342, S343, N344 and N372. It is noted that most of these mutations are in the
215 major antigenic sites for the NA protein [24]. Moreover, several studies reported that
216 some of the NA antibodies that bind outside the active site can inhibit NA activity by
217 steric hindrance [3, 25]. On the other hand, the glycosylation profiles have been also
218 changed and may influence the antibody response in Cal/09 NA. For example, NWS
219 at 455-457 in four pre-2009 N1 stains goes to GWS in Cal/09 N1 and 434 where it
220 goes from KTT (1977 and 1983 N1) to NTT (glycan in 1995 and 2007 N1) to NTI
221 (Cal/09). Taken together, NA antibodies induced by sequential infection of pre-2009
222 viruses in the mouse model may dominantly target to the epitopes located in and
223 around the active site that are conserved in pre-2009 strains, but mutated in Cal/09.
224 Therefore, these imprinted antibodies are escaped by Cal/09 virus. This observation
225 further supports the notion that the antigenic disparity in the NA gene may contribute
226 to antigenic imprinting following infection with the Cal/09 virus.

227

228 Similar analysis has been performed for pre-2009 and Cal/09 HA amino acid
229 residues (Figure S3A). Residues on the HA head domain are highlighted on the
230 surface of Cal/09 HA structure (Figure S3B). It is interesting that similar types of
231 conserved residues are located closed to the receptor binding site (K145, G158,

232 N159, T187) among four pre-2009 stains, but we don't observe the same boosting
233 effects in HA after sequential infection, as shown in the NA.

234

235 **Discussion**

236 The concept of original antigenic sin (OAS), first described by Thomas Francis Jr in
237 the late 1950s in relation to the influenza virus, has recently been redefined as
238 antigenic imprinting or antigenic seniority [26, 27]. This phenomenon has also been
239 extended to other viruses, such as Dengue virus and SARS-CoV-2 [28-33]. Studies
240 on influenza virus have primarily focused on the HA protein, including monoclonal
241 antibody screening, functional epitope identification, and structural analysis [34-38].
242 As a result, most observations regarding antigenic imprinting in influenza have
243 focused on the HA. Consequently, the potential impact of antigenic imprinting on the
244 NA protein has been somewhat overlooked.

245

246 In our study, we showed antigenic imprinting on the NA protein may produce both
247 positive and negative effects. When dealing with antigenic drift, pre-existing B cell
248 memory from pre-2009 H1N1 viruses may enhance the production of functional NA
249 antibodies against antigenically similar strains through cross-reactivity. However,
250 when encountering a new strain with significant epitope changes due to viral
251 antigenic shift (Cal/09), this pre-existing memory may hinder, but not eliminate, the
252 generation of functional NA antibodies against the new strain. Our findings indicate
253 that pre-existing memory can have dual roles in the context of subsequent viral
254 infections.

255

256 Previous research by O'Donnell et al. observed that ferrets with prior seasonal H1N1
257 infections did not show evidence of original antigenic sin when exposed to the 2009
258 pandemic H1N1 virus [39]. Their study, focusing on antigenic imprinting, employed a
259 prime-boost strategy but did not explore the influence of the extent of immune history
260 on this phenomenon. In contrast, our study aimed to bridge this gap. We found that a
261 single prior exposure to a pre-2009 H1N1 strain does not influence the neutralizing
262 antibody response to the Cal/09 strain, which is consistent with observations from
263 O'Donnell et al [39]. Additionally, our research sheds light on how infection history
264 affects antibody responses to both HA and NA, emphasizing the need to consider
265 the extent and complexity of the immune history in understanding antigenic
266 imprinting and its implications for influenza virus evolution and immunity.

267

268 Another notable aspect of our study is the implication of different immunodominant
269 NA epitopes across various animal species. Daulagala et al. noted lower cross-NAI
270 activity in ferret sera after single H1N1 viral infection with virus strains between 1977
271 to 1991, while our mouse model displayed apparent cross-reactivity among NA
272 strains from different years [18]. Our hypotheses to explain this observation is the
273 immunodominant epitopes for NA antibody binding induced by ferrets may differ from
274 those induced by mice (Figure 1J-1M). This discrepancy underscores the possibility
275 of species-specific grouping of immunodominant NA epitopes, similar to a pattern
276 also observable in HA. Liu et al. previously demonstrated that, in mice, the antigenic
277 epitopes Sb and Cb2 are immunodominant, while ferret sera predominantly
278 recognize antigenic epitope Sa [40]. Validating the NA immunodominant epitopes
279 and identifying the hierarchy of the NA immunodominant sites in humans could
280 provide valuable information for the rational design of universal vaccines.

281

282 In conclusion, our study offers substantial insights into the dynamics of the human
283 immune response to influenza viruses, particularly to both HA and NA. It highlights
284 how the extent of infection history influences antibody responses, a critical factor in
285 the context of antigenic drift and shift. These findings have important implications for
286 enhancing our understanding of influenza and for developing more effective
287 vaccination.

288

289 **Materials and methods**

290 **Cells**

291 HEK293T and MDCK cells were cultured in Dulbecco's Modified Eagle's Medium
292 (DMEM, high glucose; Gibco) supplemented with 10% heat-inactivated fetal bovine
293 serum (FBS; Gibco), 1% penicillin-streptomycin (Gibco), and 1% Gluta-Max (Gibco).
294 Cells were passaged every 3-4 days using 0.05% Trypsin-EDTA solution (Gibco).

295

296 **Protein Expression and Purification**

297 Mini-HA #4900 [23], A/Chile/1/1983 (H1N1) HA, A/Puerto Rico/8/1934 (H1N1) HA,
298 and A/Japan/305/1957 (H2N2) HA proteins were fused with an N-terminal gp67
299 signal peptide and a C-terminal BirA biotinylation site, thrombin cleavage site,
300 trimerization domain, and Hisx6 tag. These were then cloned into a customized
301 baculovirus transfer vector. Recombinant bacmid DNA was generated using the Bac-
302 to-Bac system (Thermo Fisher Scientific), following the manufacturer's instructions.
303 Baculovirus was produced by transfecting purified bacmid DNA into adherent Sf9
304 cells using Cellfectin reagent (Thermo Fisher Scientific), as per the manufacturer's
305 instructions. The baculovirus was amplified in adherent Sf9 cells at a multiplicity of

306 infection (MOI) of 1. Recombinant proteins were expressed by infecting 1L of
307 suspension Sf9 cells at an MOI of 1. After three days of post-infection, Sf9 cells were
308 centrifuged at 4000 × g for 25 min, and soluble recombinant proteins were purified
309 from the supernatant using Ni Sepharose excel resin (Cytiva), followed by size
310 exclusion chromatography with a HiLoad 16/100 Superdex 200 prep grade column
311 (Cytiva) in 20 mM Tris-HCl pH 8.0, 100 mM NaCl. Proteins were concentrated using
312 an Amicon spin filter (Millipore Sigma) and filtered through 0.22 µm centrifuge Tube
313 Filters (Costar). Protein concentration was determined by Nanodrop (Fisher
314 Scientific), and proteins were aliquoted, flash-frozen in a dry-ice ethanol mixture, and
315 stored at -80°C until use.

316

317 HA proteins A/Brisbane/59/2007 (H1N1) (NR-28607), A/California/04/2009 (H1N1)
318 pdm09 (NR-15749), A/duck/Laos/3295/2006 (H5N1) (NR-13509),
319 A/chicken/Netherlands/14015531/2014 (H5N8) (NR-50110), A/Uruguay/716/2007
320 (H3N2) (NR-15168), A/Anhui/1/2013 (H7N9) (NR-44081), and A/Jiangxi/346/2013
321 (H10N8) (NR-49440) were obtained from BEI Resources, NIAID, NIH
322 (<https://www.beiresources.org/>).

323

324 **Recombinant Virus Construction and Purification**

325 H1N1 recombinant viruses A/USSR/90/1977 (HA, NA) x A/Puerto Rico/8/1934
326 (H1N1) (NR-3666), A/Chile/1/1983 (HA, NA) x A/Puerto Rico/8/1934 (H1N1) (NR-
327 3585), A/Beijing/262/1995 (HA, NA) x A/Puerto Rico/8/1934 (H1N1) (NR-3571), and
328 A/Brisbane/59/2007 (HA, NA) x A/Puerto Rico/8/1934 (H1N1) (NR-41797) were
329 obtained from BEI Resources, NIAID, NIH. Recombinant viruses were constructed
330 using a reverse genetics system, as previously described [20]. Briefly, constructed

331 HA and NA DNA plasmids were cloned and transfected into human embryonic
332 kidney 293T cells (ATCC) and Madin-Darby canine kidney (MDCK) cells with a 6-
333 segment plasmid encoding essential viral proteins and virus-like RNA of PR8.
334 Supernatants were injected into 8-10 day old embryonated chicken eggs for viral
335 rescue at 37°C for 48 hours. Viruses were plaque-purified on MDCK cells grown in
336 Dulbecco's Modified Eagles Medium (DMEM, Gibco) containing 10% fetal bovine
337 serum (FBS, Gibco) and a penicillin-streptomycin mix (100 units/mL penicillin and
338 100 µg/mL streptomycin, Gibco). Individual plaques were picked, injected into
339 embryonated eggs, and viral RNAs were extracted from allantoic fluids. HA and NA
340 segments were confirmed by Sanger sequencing.

341

342 **Mouse Infection and Sample Collection**

343 BALB/c mice were anesthetized with ketamine and xylazine, and intranasally
344 infected with 10⁵ PFU of influenza virus, previously diluted in PBS. Mouse plasma
345 samples were collected in tubes containing heparin as an anticoagulant on day 21
346 post-infection. The experiments were conducted in the University of Hong Kong's
347 Biosafety Level 2 (BSL2) facility. The study protocol adhered strictly to the
348 recommendations and was approved by the University of Hong Kong's Committee
349 on the Use of Live Animals in Teaching and Research (CULATR 5598-20).

350

351 **Enzyme-linked immunosorbent assay**

352 Nunc MaxiSorp ELISA plates (Thermo Fisher Scientific) were coated overnight at
353 4°C with 100 µl of recombinant proteins at 1 µg/mL in 1x PBS. The next day, plates
354 were washed three times with 1x PBS containing 0.05% Tween 20 and blocked with
355 100 µl of Chonblock blocking/sample dilution ELISA buffer (Chondrex Inc, Redmond,

356 US) for 1 hour at room temperature. Plasma samples, diluted 1:100, were incubated
357 for 2 hours at 37°C. Plates were then washed three times and incubated with
358 horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG antibody (GE
359 Healthcare) diluted 1:5,000 for 1 hour at 37°C. After five washes with PBS containing
360 0.05% Tween 20, 100 µL of 1-Step™ TMB ELISA Substrate Solution (Thermo Fisher
361 Scientific) was added to each well. Following a 15-minute incubation, the reaction
362 was stopped with 50 µL of 2 M H₂SO₄ solution, and absorbance was measured at
363 450 nm using a Sunrise (Tecan, Männedorf, Switzerland) absorbance microplate
364 reader.

365

366 **Microneutralization assay**

367 For the microneutralization (MN) assay, MDCK cells were prepared in each well of
368 96-well cell culture plates one day before the assay, ensuring a 100% confluent
369 monolayer. Cells were washed once with phosphate-buffered saline (PBS; Gibco)
370 and replaced with minimal essential media (MEM; Gibco) containing 25 mM HEPES
371 (Gibco) and 100 U/mL penicillin-streptomycin (PS; Gibco). All plasma samples for
372 the MN assay were heat-inactivated at 56°C for 30 minutes. Two-fold serial dilutions
373 were performed on the heated plasma to create dilution series ranging from 1:20 to
374 1:2560. These dilutions were mixed with 100 TCID₅₀ of viruses in an equivalent
375 volume and incubated at 37°C for 1 hour. The mixture was then inoculated into cells
376 and incubated at 37°C for another hour. Cell supernatants were discarded and
377 replaced with MEM containing 25 mM HEPES, 100 U/mL PS, and 1 µg/mL TPCK-
378 trypsin (Sigma). Plates were incubated at 37°C for 72 hours, and virus presence was
379 detected by a hemagglutination assay, with results recorded as the MN₅₀ titer.

380

381 **Hemagglutination-Inhibition (HAI) Assays**

382 Plasma samples were serially diluted two-fold in a 96-well round-bottom plate in a
383 total volume of 25 μ l of phosphate-buffered saline (PBS). After dilution, 25 μ l of virus
384 [four hemagglutinating units (HAU)] in PBS were added to each well and incubated
385 for 30 minutes. Then, 50 μ l of a 1.0% (vol/vol) solution of turkey erythrocytes was
386 added, and the mixture was gently stirred. After 30 minutes at room temperature, the
387 plates were read, and titers were determined as the lowest concentration of
388 monoclonal antibody that fully inhibited agglutination. HAI assays were performed in
389 duplicate.

390

391 **Enzyme-linked lectin assay (ELLA)**

392 ELLA experiments were performed as described below. Briefly, each well of a 96-
393 well microtiter plate (Thermo Fisher) was coated with 100 μ l of fetuin (Sigma) at a
394 concentration of 25 μ g/mL in coating buffer (KPL coating solution; SeraCare) and
395 incubated overnight at 4°C. The following day, 50 μ l of plasma samples at the
396 indicated dilution in 2-(N-morpholino) ethanesulfonic acid (MES) buffer (pH 6.5),
397 containing 20 mM CaCl₂, 1% bovine serum albumin, and 0.5% Tween 20, were
398 mixed with an equal volume of H1N1 virus. This mixture was added to the fetuin-
399 coated wells and incubated for 18 hours at 37°C. The plate was then washed six
400 times with PBS containing 0.05% Tween 20. Subsequently, 100 μ l of horseradish
401 peroxidase-conjugated peanut agglutinin lectin (PNA-HRPO, Sigma–Aldrich) in MES
402 buffer (pH 6.5) with CaCl₂ and 1% bovine serum albumin was added to each well
403 and incubated for 2 hours at room temperature in the dark. Following this, the plate
404 was washed six times and developed with 1-Step™ TMB ELISA Substrate Solutions
405 (Thermo Fisher Scientific). The absorbance was measured at 450 nm using a

406 SpectraMax M2 microplate reader (Molecular Devices). Data points were analyzed
407 using Prism software, and the 50% inhibition concentration (IC_{50}) was determined as
408 the concentration at which 50% of the neuraminidase (NA) activity was inhibited,
409 compared to the negative control.

410

411 **Acknowledgements**

412 This work was supported by Calmette and Yersin scholarship from the Pasteur
413 International Network Association (H.L.), Carl R. Woese Institute for Genomic
414 Biology (IGB) postdoctoral fellowship (H.L.), Emergency Key Program of Guangzhou
415 Laboratory (EKG22-30-6) (C.K.P.M), Bill & Melinda Gates Foundation INV-004923
416 (I.A.W), and NIAID Centers of Excellence for Influenza Research and Response
417 75N93021C00015 (I.A.W, N.C.W.).

418

419 **Author contributions**

420 H.L., R.B., N.C.W. and C.K.P.M. conceived the research idea, planned the study,
421 analysed the data and wrote the manuscript. C.D.L. and I.A.W. provided the purified
422 HA proteins. H.L., Q.T, and D.C., W.L., K.M., performed the experiments. All authors
423 reviewed and edited the paper.

424

425 **Competing Interests**

426 N.C.W. serves as a consultant for HeliXon. The authors declare no competing
427 interests.

428

429 **Figure Legends**

430 **Figure 1. Binding, neutralizing and NAI antibodies induced by sequential
431 homologous viral infection**

432 (A) Experimental design and sample collection. Six mice in each group were
433 inoculated intranasally with sequential homologous H1N1 virus infection strategy
434 (1×10^5 PFU). (B-E) Binding antibodies against (B) USSR/77 HA, (C) Chile/83 HA,
435 (D) Beijing/95 HA, and (E) Bris/07 HA were tested by ELISA. (F-I) Neutralizing
436 antibodies against (F) USSR/77 virus, (G) Chile/83 virus, (H) Beijing/95 virus and (I)
437 Bris/07 virus were assessed by virus neutralization assay. (J-M) NAI antibody
438 against (J) USSR/77 virus, (K) Chile/83 virus, (L) Beijing/95 virus and (M) Bris/07
439 virus were measured by ELLA. Data are representative of two independent
440 experiments performed in technical duplicate. FI6v3 is an influenza Hemagglutinin
441 (HA) stem-specific antibody, and PBS was used as a negative control. Error bars
442 represent standard deviation. *p*-values were calculated using a two-tailed t-test (**p* <
443 0.05, ***p* < 0.01, ****p* < 0.001, *****p* < 0.0001, ns (not significant)).

444

445 **Figure 2. Binding and neutralizing antibodies after sequential viral infection**

446 (A) Experimental design and sample collection. Six mice in each group were
447 inoculated intranasally with sequential H1N1 virus infection strategy (1×10^5 PFU).
448 (B-E) Binding antibodies against (B) USSR/77 HA, (C) Chile/83 HA, (D) Beijing/95
449 HA, and (E) Bris/07 HA were tested by ELISA. (F-I) Neutralizing antibodies against
450 (F) USSR/77 virus, (G) Chile/83 virus, (H) Beijing/95 virus and (I) Bris/07 virus were
451 assessed by virus neutralization assay. Data are representative of two independent
452 experiments performed in technical duplicate. FI6v3 is an influenza Hemagglutinin
453 (HA) stem specific antibody and PBS was used as a negative control. Error bars

454 represent standard deviation. *p*-values were calculated using a two-tailed t-test (**p* <
455 0.05, ***p* < 0.01, ****p* < 0.001, *****p* < 0.0001, ns (not significant)).

456

457 **Figure 3. Cross binding antibodies after sequential viral infection**

458 (A) Experimental design and sample collection. Six mice in each group were
459 inoculated intranasally with sequential H1N1 virus infection strategy (1×10^5 PFU).
460 (B-J) Binding antibodies against (B) A/Puerto Rico/8/34 (H1N1) HA, (C)
461 A/California/04/2009 (H1N1) HA, (D) H1N1 mini-HA, (E) A/Japan/305/1957 (H2N2)
462 HA, (F) A/duck/Laos/2006 (H5N1) HA, (G) A/chicken/NL/2014 (H5N8) HA, (H)
463 A/Uruguay/716/2007 (H3N2) HA, (I) A/Anhui/1/2013 (H7N9) HA and (J)
464 A/Jiangxi/346/2013 (H10N8) HA were tested by ELISA. Data are representative of
465 two independent experiments performed in technical duplicate. FI6v3 is an influenza
466 Hemagglutinin (HA) stem specific antibody and PBS was used as a negative control.
467 Error bars represent standard deviation. *p*-values were calculated using a two-tailed
468 t-test (**p* < 0.05, ***p* < 0.01, ****p* < 0.001, *****p* < 0.0001, ns (not significant)).

469

470 **Figure 4. HAI and NAI antibodies after sequential viral infection**

471 (A) Hemagglutination inhibiting antibody against Bris/07 H1N1 virus. (B)
472 Neuraminidase inhibiting antibody against Bris/07 H1N1 virus. Data are
473 representative of two independent experiments performed in technical duplicate.
474 PBS was used as a negative control. Error bars represent standard deviation. *p*-
475 values were calculated using a two-tailed t-test (**p* < 0.05, ***p* < 0.01, ****p* < 0.001,
476 *****p* < 0.0001, ns (not significant)).

477

478 **Figure 5. Neutralizing, HAI and NAI antibodies with sequential infection history**

479 **after Cal/09 H1N1 challenge**

480 (A) Experimental design and sample collection. Six mice in each group were first
481 inoculated intranasally with sequential H1N1 virus infection strategy (1×10^5 PFU)
482 and were challenged with Cal/09 H1N1 virus (4×10^5 PFU). (B) Neutralizing
483 antibodies against Cal/09 H1N1 virus were assessed by virus neutralization assay.
484 (C) Hemagglutination inhibiting antibody against Cal/09 H1N1 virus. (D)
485 Neuraminidase inhibiting antibody against Cal/09 H1N1 virus. Data are
486 representative of two independent experiments performed in technical duplicate.
487 PBS was used as a negative control. Error bars represent standard deviation. *p*-
488 values were calculated using a two-tailed t-test (**p* < 0.05, ***p* < 0.01, ****p* < 0.001,
489 *****p* < 0.0001, ns (not significant)).

490

491 **Figure 6. Surface residues difference among pre-2009 H1N1 NA and Cal/09**
492 **H1N1 NA**

493 (A) Mutations are highlighted in blue on in a sequence alignment among four pre-
494 2009 N1 protein and Cal/09 NA. (B) Surface residues on Cal/09 NA, which differs
495 from four pre-2009 NAs, are highlighted on the Cal/09 NA protein.

496

497 **Figure S1. Neutralizing antibodies after sequential viral infection against Cal/09**
498 **H1N1**

499 (A) Neutralizing antibodies against Cal/09 virus were assessed by virus
500 neutralization assay. Data are representative of two independent experiments
501 performed in technical duplicate. PBS was used as a negative control.

502

503 **Figure S2. In vivo protection against Cal/09 H1N1 virus after sequential
504 infection**

505 (A) The mean percentage of body weight change post-infection is shown (n = 6).
506 The humane endpoint, which was defined as a weight loss of 25% from initial weight
507 on day 0, is shown as a dotted line. (B) Kaplan-Meier survival curves are shown (n =
508 6). (C) Lung viral titers on day 3 after infection are shown (n = 3). Solid black lines
509 indicate means \pm SD. *p*-values were calculated using a two-tailed t-test (**p* < 0.05,
510 ***p* < 0.01, ****p* < 0.001, *****p* < 0.0001, ns (not significant)).

511

512 **Figure S3. Surface residues difference among pre-2009 H1N1 HA and Cal/09
513 H1N1 HA**

514 (A) Mutations are highlighted in blue on in a sequence alignment among four pre-
515 2009 HA protein and Cal/09 HA. (B) Surface residues on Cal/09 HA head domain,
516 which differs from four pre-2009 HAs, are highlighted on the Cal/09 HA protein.

517 Reference

- 518 1. Wu NC, Wilson IA. Influenza hemagglutinin structures and antibody recognition. 519 Cold Spring Harb Perspect Med. 2020;10(8). Epub 2019/12/25. doi: 520 10.1101/cshperspect.a038778. PubMed PMID: 31871236; PubMed Central PMCID: 521 PMCPMC7397844.
- 522 2. Krammer F. The human antibody response to influenza A virus infection and 523 vaccination. Nat Rev Immunol. 2019;19(6):383-97. Epub 2019/03/07. doi: 524 10.1038/s41577-019-0143-6. PubMed PMID: 30837674.
- 525 3. Lei R, Kim W, Lv H, Mou Z, Scherm MJ, Schmitz AJ, et al. Leveraging vaccination- 526 induced protective antibodies to define conserved epitopes on influenza N2 neuraminidase. 527 Immunity. 2023;56(11):2621-34 e6. Epub 2023/11/16. doi: 10.1016/j.jimmuni.2023.10.005. 528 PubMed PMID: 37967533; PubMed Central PMCID: PMCPMC10655865.
- 529 4. Stadlbauer D, Zhu X, McMahon M, Turner JS, Wohlbold TJ, Schmitz AJ, et al. 530 Broadly protective human antibodies that target the active site of influenza virus 531 neuraminidase. Science. 2019;366(6464):499-504. Epub 2019/10/28. doi: 532 10.1126/science.aay0678. PubMed PMID: 31649200; PubMed Central PMCID: 533 PMCPMC7105897.
- 534 5. Momont C, Dang HV, Zatta F, Hauser K, Wang C, di Iulio J, et al. A pan-influenza 535 antibody inhibiting neuraminidase via receptor mimicry. Nature. 2023;618(7965):590-7. 536 Epub 2023/06/01. doi: 10.1038/s41586-023-06136-y. PubMed PMID: 37258672; PubMed 537 Central PMCID: PMCPMC10266979 A.C., B.G., A.E.P., S.S.Y., D.R.B., I.B., M.M., 538 M.A.S., W.T.S., J.L.M., E.C., A.T., L.E.R., L.A.P., A.L., G.S., D.C. and M.S.P. are 539 employees of and may hold shares in Vir Biotechnology. D.C., M.S.P., A.M., E.C., G.S., 540 K.H., C.M. and E.F. are currently listed as inventors on multiple patent applications, which 541 disclose the subject matter described in this paper. E.F., A.E.P., R.S. and H.W.V. are former 542 employees of VIR Biotechnology. E.F. is currently an employee at and hold stocks in 543 Amgen. Amgen provided no funding for this work. T.I.C. is a consultant for Vir 544 Biotechnology and receives royalties from licensing of ISOLDE software used for molecular 545 modelling. D.M.B. received research funding from VIR Biotechnology. L.A.P. is a former 546 employee and shareholder of Regeneron Pharmaceuticals and is a member of the Scientific 547 Advisory Board AI-driven structure-enabled antiviral platform (ASAP). Regeneron provided 548 no funding for this work. H.W.V. is a founder of PierianDx and Casma Therapeutics. Neither 549 company provided funding for this work. The remaining authors declare that the research was 550 conducted in the absence of any commercial or financial relationships that could be construed 551 as a potential competing interest.
- 552 6. Kucharski AJ, Lessler J, Read JM, Zhu H, Jiang CQ, Guan Y, et al. Estimating the 553 life course of influenza A(H3N2) antibody responses from cross-sectional data. PLoS Biol. 554 2015;13(3):e1002082. Epub 2015/03/04. doi: 10.1371/journal.pbio.1002082. PubMed PMID: 555 25734701; PubMed Central PMCID: PMCPMC4348415.
- 556 7. Fonville JM, Wilks SH, James SL, Fox A, Ventresca M, Aban M, et al. Antibody 557 landscapes after influenza virus infection or vaccination. Science. 2014;346(6212):996-1000. 558 Epub 2014/11/22. doi: 10.1126/science.1256427. PubMed PMID: 25414313; PubMed 559 Central PMCID: PMCPMC4246172.
- 560 8. Cobey S, Hensley SE. Immune history and influenza virus susceptibility. Curr Opin 561 Virol. 2017;22:105-11. Epub 2017/01/16. doi: 10.1016/j.coviro.2016.12.004. PubMed PMID: 562 28088686; PubMed Central PMCID: PMCPMC5467731.
- 563 9. Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, Cheng PY, et al. Estimated 564 global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1

565 virus circulation: a modelling study. *Lancet Infect Dis.* 2012;12(9):687-95. Epub 2012/06/29.
566 doi: 10.1016/S1473-3099(12)70121-4. PubMed PMID: 22738893.

567 10. Nguyen AM, Noymer A. Influenza mortality in the United States, 2009 pandemic:
568 burden, timing and age distribution. *PLoS One.* 2013;8(5):e64198. Epub 2013/05/30. doi:
569 10.1371/journal.pone.0064198. PubMed PMID: 23717567; PubMed Central PMCID:
570 PMCPMC3661470 district in San Diego County, California, USA. Palomar Health is not a
571 commercial entity, and therefore no commercial competing interests exist. None of the data
572 analyzed in the article come from Palomar Health.

573 11. Gouma S, Kim K, Weirick ME, Gumina ME, Branche A, Topham DJ, et al. Middle-
574 aged individuals may be in a perpetual state of H3N2 influenza virus susceptibility. *Nat
575 Commun.* 2020;11(1):4566. Epub 2020/09/13. doi: 10.1038/s41467-020-18465-x. PubMed
576 PMID: 32917903; PubMed Central PMCID: PMCPMC7486384 Merck for work unrelated to
577 this report. A.S.M. has received consultancy fees from Sanofi Pasteur, Seqirus, and Novavax
578 for work unrelated to this report. A.B. reports have received consultancy fees from GSK and
579 Merck and grant support from Merck, Pfizer, and Janssen for work unrelated to this report.
580 All other authors report no potential conflicts.

581 12. Arevalo CP, Le Sage V, Bolton MJ, Eilola T, Jones JE, Kormuth KA, et al. Original
582 antigenic sin priming of influenza virus hemagglutinin stalk antibodies. *Proc Natl Acad Sci U
583 S A.* 2020;117(29):17221-7. Epub 2020/07/08. doi: 10.1073/pnas.1920321117. PubMed
584 PMID: 32631992; PubMed Central PMCID: PMCPMC7382271.

585 13. McCarthy KR, Von Holle TA, Sutherland LL, Oguin TH, 3rd, Sempowski GD,
586 Harrison SC, et al. Differential immune imprinting by influenza virus vaccination and
587 infection in nonhuman primates. *Proc Natl Acad Sci U S A.* 2021;118(23). Epub 2021/06/03.
588 doi: 10.1073/pnas.2026752118. PubMed PMID: 34074774; PubMed Central PMCID:
589 PMCPMC8201799.

590 14. Gostic KM, Bridge R, Brady S, Viboud C, Worobey M, Lloyd-Smith JO. Childhood
591 immune imprinting to influenza A shapes birth year-specific risk during seasonal H1N1 and
592 H3N2 epidemics. *PLoS Pathog.* 2019;15(12):e1008109. Epub 2019/12/20. doi:
593 10.1371/journal.ppat.1008109. PubMed PMID: 31856206; PubMed Central PMCID:
594 PMCPMC6922319.

595 15. Yewdell JW, Santos JJS. Original antigenic sin: How original? How sinful? *Cold
596 Spring Harb Perspect Med.* 2021;11(5):a038786. Epub 2020/01/23. doi:
597 10.1101/cshperspect.a038786. PubMed PMID: 31964645; PubMed Central PMCID:
598 PMCPMC8091961.

599 16. Gostic KM, Ambrose M, Worobey M, Lloyd-Smith JO. Potent protection against
600 H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. *Science.*
601 2016;354(6313):722-6. Epub 2016/11/16. doi: 10.1126/science.aag1322. PubMed PMID:
602 27846599; PubMed Central PMCID: PMCPMC5134739.

603 17. Rajendran M, Nachbagauer R, Ermler ME, Bunduc P, Amanat F, Izikson R, et al.
604 Analysis of anti-influenza virus neuraminidase antibodies in children, adults, and the elderly
605 by ELISA and enzyme inhibition: evidence for original antigenic sin. *mBio.* 2017;8(2). Epub
606 2017/03/23. doi: 10.1128/mBio.02281-16. PubMed PMID: 28325769; PubMed Central
607 PMCID: PMCPMC5362038.

608 18. Daulagala P, Mann BR, Leung K, Lau EHY, Yung L, Lei R, et al. Imprinted anti-
609 hemagglutinin and anti-neuraminidase antibody responses after childhood infections of
610 A(H1N1) and A(H1N1)pdm09 influenza viruses. *mBio.* 2023;14(3):e0008423. Epub
611 2023/04/19. doi: 10.1128/mbio.00084-23. PubMed PMID: 37070986; PubMed Central
612 PMCID: PMCPMC10294682.

613 19. Anderson CS, McCall PR, Stern HA, Yang H, Topham DJ. Antigenic cartography of
614 H1N1 influenza viruses using sequence-based antigenic distance calculation. *BMC*

615 Bioinformatics. 2018;19(1):51. Epub 2018/02/13. doi: 10.1186/s12859-018-2042-4. PubMed
616 PMID: 29433425; PubMed Central PMCID: PMCPMC5809904.

617 20. Neumann G, Fujii K, Kino Y, Kawaoka Y. An improved reverse genetics system for
618 influenza A virus generation and its implications for vaccine production. Proc Natl Acad Sci
619 U S A. 2005;102(46):16825-9. Epub 2005/11/04. doi: 10.1073/pnas.0505587102. PubMed
620 PMID: 16267134; PubMed Central PMCID: PMCPMC1283806.

621 21. Sandbulte MR, Westgeest KB, Gao J, Xu X, Klimov AI, Russell CA, et al. Discordant
622 antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses.
623 Proc Natl Acad Sci U S A. 2011;108(51):20748-53. Epub 2011/12/07. doi:
624 10.1073/pnas.1113801108. PubMed PMID: 22143798; PubMed Central PMCID:
625 PMCPMC3251064.

626 22. Kilbourne ED, Johansson BE, Grajower B. Independent and disparate evolution in
627 nature of influenza A virus hemagglutinin and neuraminidase glycoproteins. Proc Natl Acad
628 Sci U S A. 1990;87(2):786-90. Epub 1990/01/01. doi: 10.1073/pnas.87.2.786. PubMed
629 PMID: 2300562; PubMed Central PMCID: PMCPMC53351.

630 23. Impagliazzo A, Milder F, Kuipers H, Wagner MV, Zhu X, Hoffman RM, et al. A
631 stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science.
632 2015;349(6254):1301-6. Epub 2015/08/26. doi: 10.1126/science.aac7263. PubMed PMID:
633 26303961.

634 24. Colman PM, Varghese JN, Laver WG. Structure of the catalytic and antigenic sites in
635 influenza virus neuraminidase. Nature. 1983;303(5912):41-4. Epub 1983/05/05. doi:
636 10.1038/303041a0. PubMed PMID: 6188957.

637 25. Xiong FF, Liu XY, Gao FX, Luo J, Duan P, Tan WS, et al. Protective efficacy of anti-
638 neuraminidase monoclonal antibodies against H7N9 influenza virus infection. Emerg
639 Microbes Infect. 2020;9(1):78-87. Epub 2020/01/03. doi: 10.1080/22221751.2019.1708214.
640 PubMed PMID: 31894728; PubMed Central PMCID: PMCPMC6968527.

641 26. Henry C, Palm AE, Krammer F, Wilson PC. From original antigenic sin to the
642 universal influenza virus vaccine. Trends Immunol. 2018;39(1):70-9. Epub 2017/09/05. doi:
643 10.1016/j.it.2017.08.003. PubMed PMID: 28867526; PubMed Central PMCID:
644 PMCPMC5748348.

645 27. Thomas Francis J. On the doctrine of original antigenic sin. Proceedings of the
646 American Philosophical Society. 1960;104:572-8.

647 28. Lv H, So RTY, Teo QW, Yuan M, Liu H, Lee CD, et al. Neutralizing antibody
648 response to Sarbecovirus is delayed in sequential heterologous immunization. Viruses.
649 2022;14(7). Epub 2022/07/28. doi: 10.3390/v14071382. PubMed PMID: 35891363; PubMed
650 Central PMCID: PMCPMC9318566.

651 29. Koutsakos M, Ellebedy AH. Immunological imprinting: Understanding COVID-19.
652 Immunity. 2023;56(5):909-13. Epub 2023/04/28. doi: 10.1016/j.jimmuni.2023.04.012.
653 PubMed PMID: 37105169; PubMed Central PMCID: PMCPMC10113596 companies. The
654 Ellebedy laboratory has received funding under sponsored research agreements from
655 Moderna, Emergent BioSolutions, and AbbVie. A.H.E. has received consulting and speaking
656 fees from InBios International, Inc, Fimbrion Therapeutics, RGAX, Mubadala Investment
657 Company, Moderna, Pfizer, GSK, Danaher, Third Rock Ventures, Goldman Sachs, and
658 Morgan Stanley; is the founder of ImmuneBio Consulting and a recipient of royalties from
659 licensing agreements with Abbvie and Leyden Laboratories B.V. The content of this
660 manuscript is solely the responsibility of the authors and does not necessarily represent the
661 official view of NIAID or NIH.

662 30. Halstead SB, Rojanasuphot S, Sangkawibha N. Original antigenic sin in dengue. Am J
663 Trop Med Hyg. 1983;32(1):154-6. Epub 1983/01/01. doi: 10.4269/ajtmh.1983.32.154.
664 PubMed PMID: 6824120.

665 31. Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical
666 cytokine storms. *Nat Rev Immunol.* 2011;11(8):532-43. Epub 2011/07/16. doi:
667 10.1038/nri3014. PubMed PMID: 21760609.

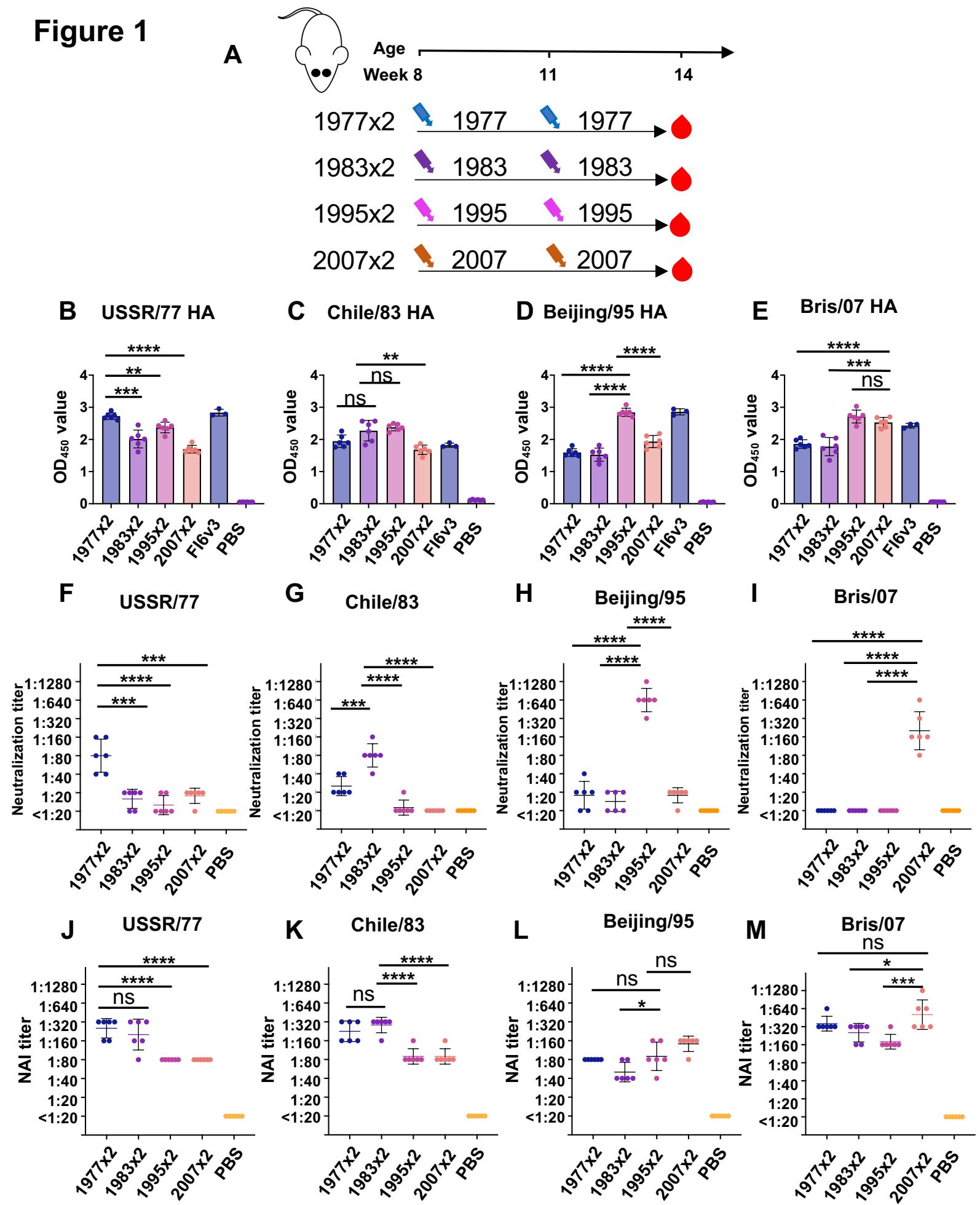
668 32. Johnston TS, Li SH, Painter MM, Atkinson RK, Douek NR, Reeg DB, et al.
669 Immunological imprinting shapes the specificity of human antibody responses against SARS-
670 CoV-2 variants. *Immunity.* 2024. Epub 2024/03/16. doi: 10.1016/j.jimmuni.2024.02.017.
671 PubMed PMID: 38490198.

672 33. Tortorici MA, Addetia A, Seo AJ, Brown J, Sprouse K, Logue J, et al. Persistent
673 immune imprinting occurs after vaccination with the COVID-19 XBB.1.5 mRNA booster in
674 humans. *Immunity.* 2024. Epub 2024/03/16. doi: 10.1016/j.jimmuni.2024.02.016. PubMed
675 PMID: 38490197.

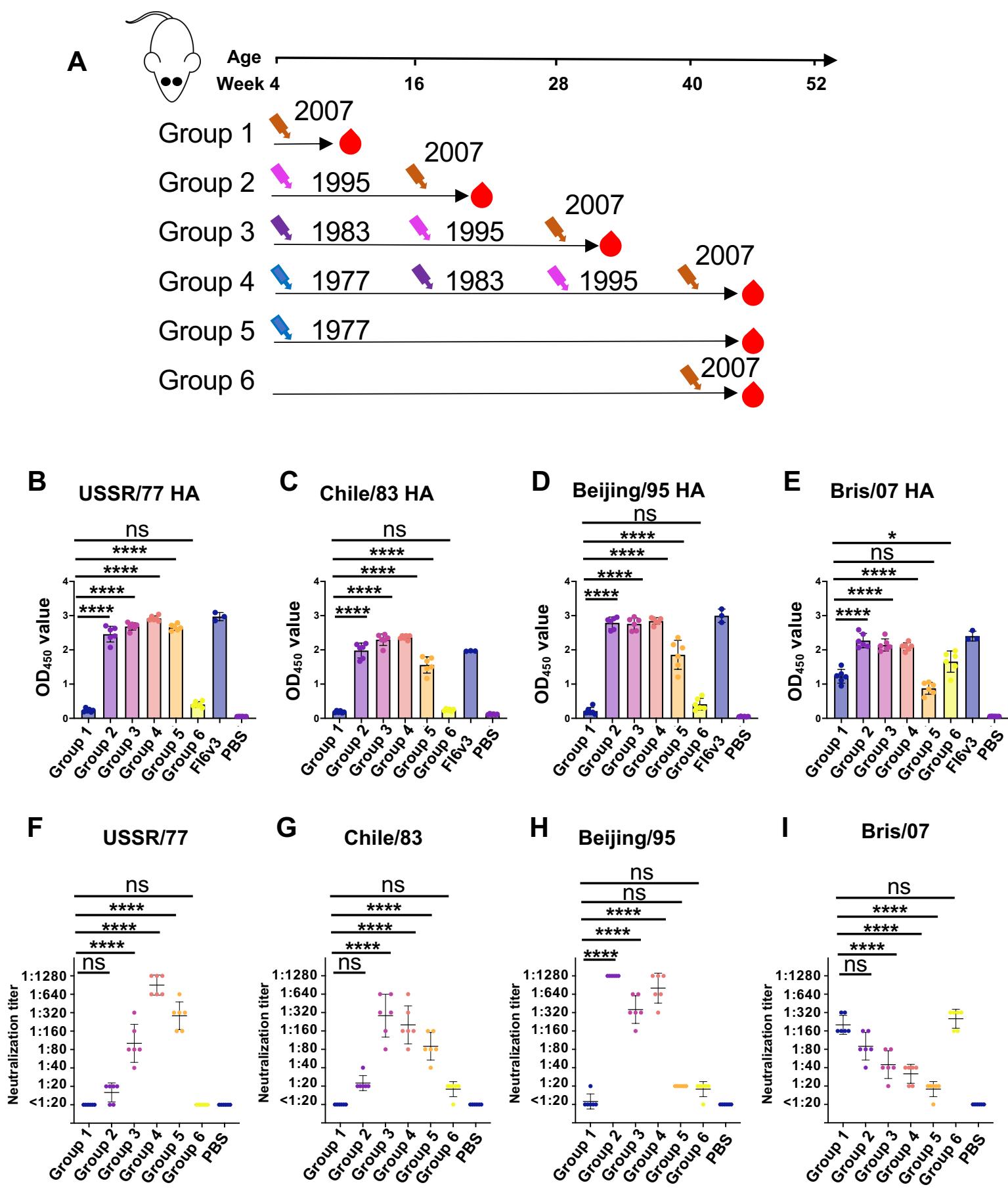
676 34. Andrews SF, Huang Y, Kaur K, Popova LI, Ho IY, Pauli NT, et al. Immune history
677 profoundly affects broadly protective B cell responses to influenza. *Sci Transl Med.*
678 2015;7(316):316ra192. Epub 2015/12/04. doi: 10.1126/scitranslmed.aad0522. PubMed
679 PMID: 26631631; PubMed Central PMCID: PMCPMC4770855.

680 35. Li GM, Chiu C, Wrammert J, McCausland M, Andrews SF, Zheng NY, et al.
681 Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly
682 cross-reactive memory B cells. *Proc Natl Acad Sci U S A.* 2012;109(23):9047-52. Epub
683 2012/05/23. doi: 10.1073/pnas.1118979109. PubMed PMID: 22615367; PubMed Central
684 PMCID: PMCPMC3384143 with MedImmune on the influenza-virus-specific human
685 monoclonal antibodies.

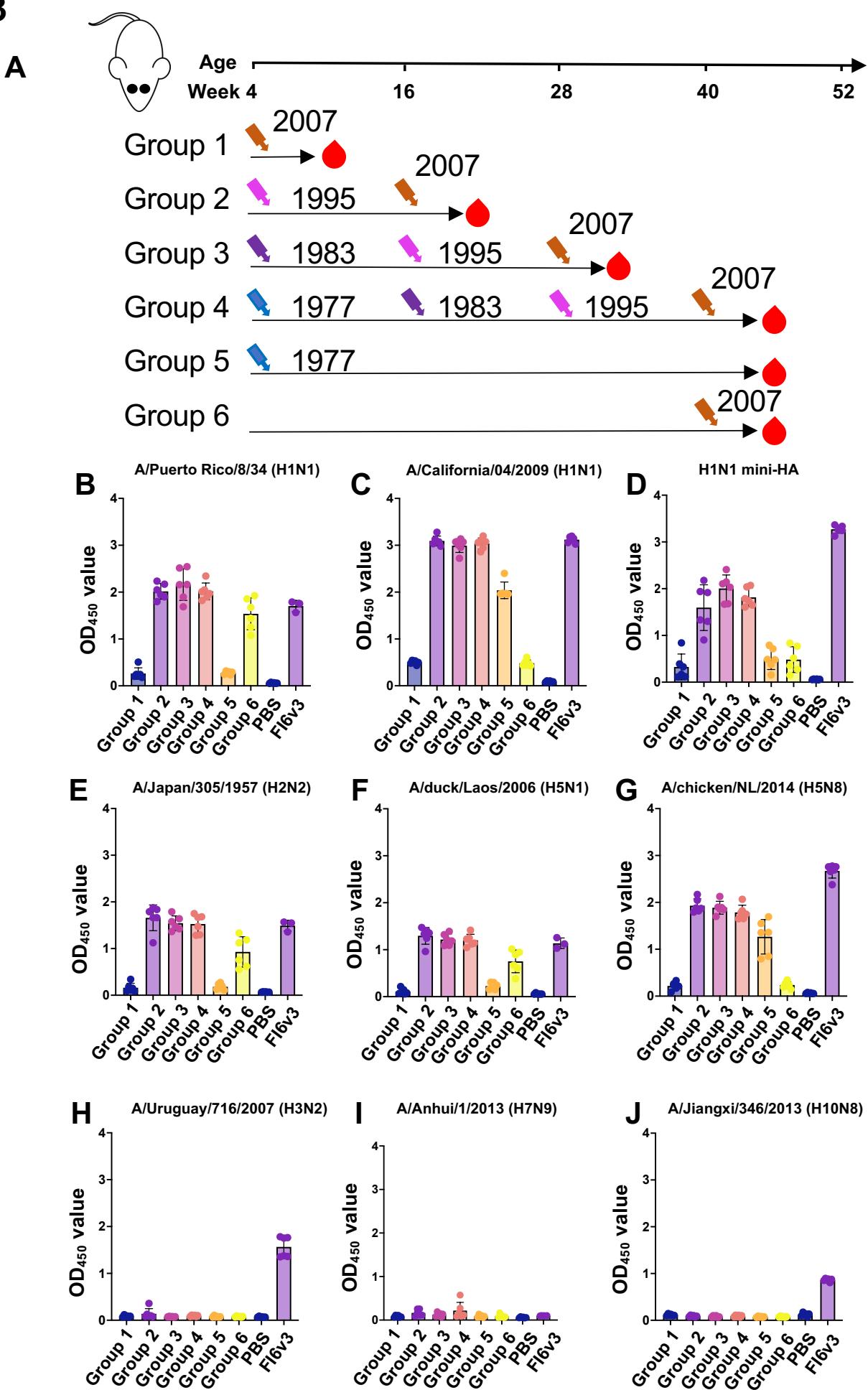
686 36. Li Y, Myers JL, Bostick DL, Sullivan CB, Madara J, Linderman SL, et al. Immune
687 history shapes specificity of pandemic H1N1 influenza antibody responses. *J Exp Med.*
688 2013;210(8):1493-500. Epub 2013/07/17. doi: 10.1084/jem.20130212. PubMed PMID:
689 23857983; PubMed Central PMCID: PMCPMC3727314.

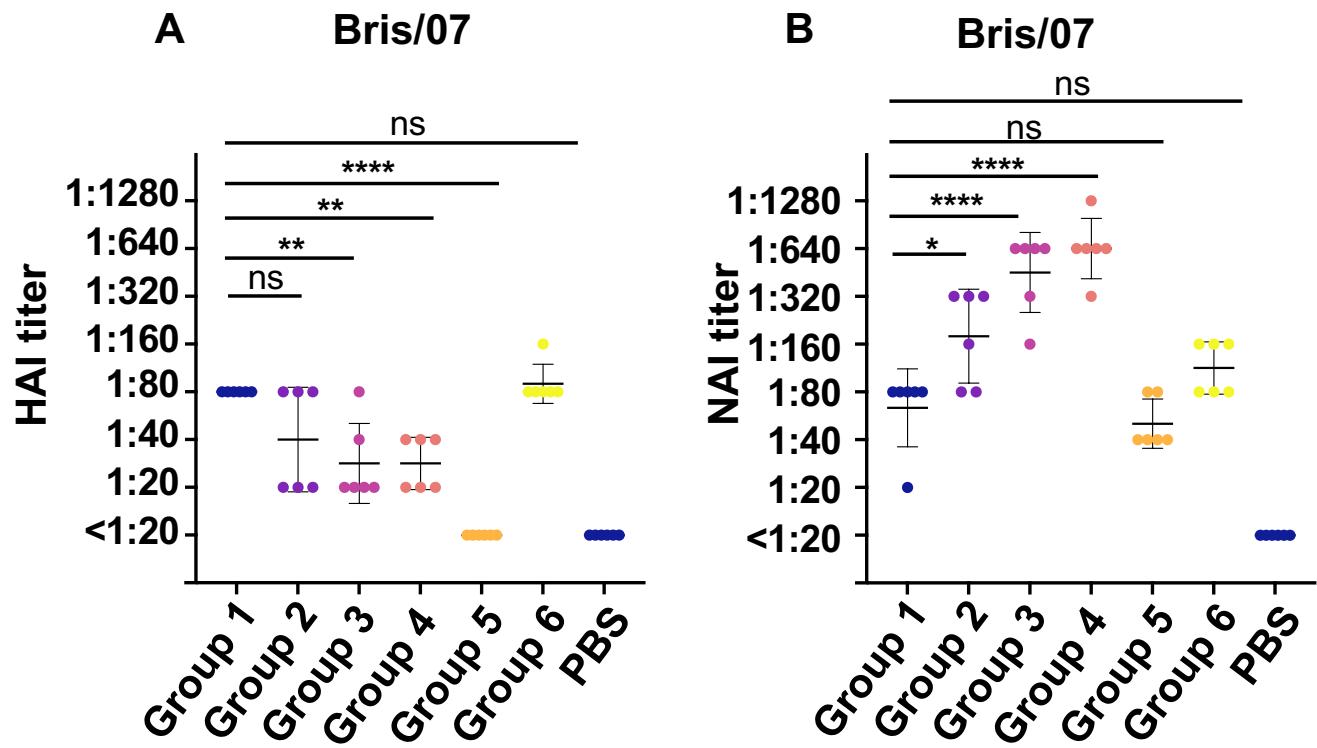

690 37. Linderman SL, Chambers BS, Zost SJ, Parkhouse K, Li Y, Herrmann C, et al.
691 Potential antigenic explanation for atypical H1N1 infections among middle-aged adults
692 during the 2013-2014 influenza season. *Proc Natl Acad Sci U S A.* 2014;111(44):15798-803.
693 Epub 2014/10/22. doi: 10.1073/pnas.1409171111. PubMed PMID: 25331901; PubMed
694 Central PMCID: PMCPMC4226110.

695 38. Tan YC, Blum LK, Kongpachith S, Ju CH, Cai X, Lindstrom TM, et al. High-
696 throughput sequencing of natively paired antibody chains provides evidence for original
697 antigenic sin shaping the antibody response to influenza vaccination. *Clin Immunol.*
698 2014;151(1):55-65. Epub 2014/02/15. doi: 10.1016/j.clim.2013.12.008. PubMed PMID:
699 24525048; PubMed Central PMCID: PMCPMC4006370.


700 39. O'Donnell CD, Wright A, Vogel L, Boonnak K, Treanor JJ, Subbarao K. Humans and
701 ferrets with prior H1N1 influenza virus infections do not exhibit evidence of original
702 antigenic sin after infection or vaccination with the 2009 pandemic H1N1 influenza virus.
703 *Clin Vaccine Immunol.* 2014;21(5):737-46. Epub 2014/03/22. doi: 10.1128/CVI.00790-13.
704 PubMed PMID: 24648486; PubMed Central PMCID: PMCPMC4018878.

705 40. Liu STH, Behzadi MA, Sun W, Freyn AW, Liu WC, Broecker F, et al. Antigenic sites
706 in influenza H1 hemagglutinin display species-specific immunodominance. *J Clin Invest.*
707 2018;128(11):4992-6. Epub 2018/09/07. doi: 10.1172/JCI122895. PubMed PMID:
708 30188868; PubMed Central PMCID: PMCPMC6205383.


Figure 1


Figure 2

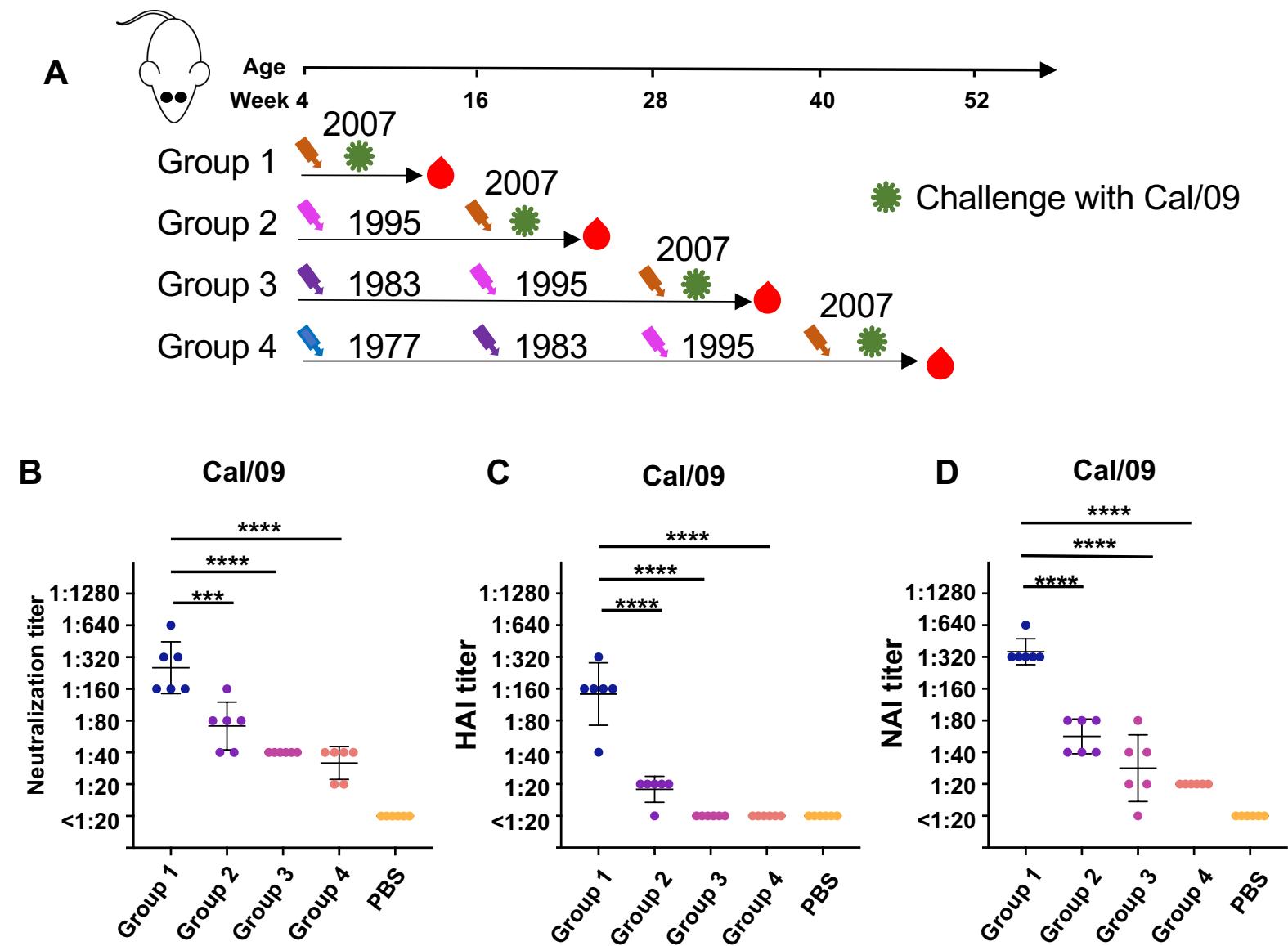

Figure 3

Figure 4

Figure 5

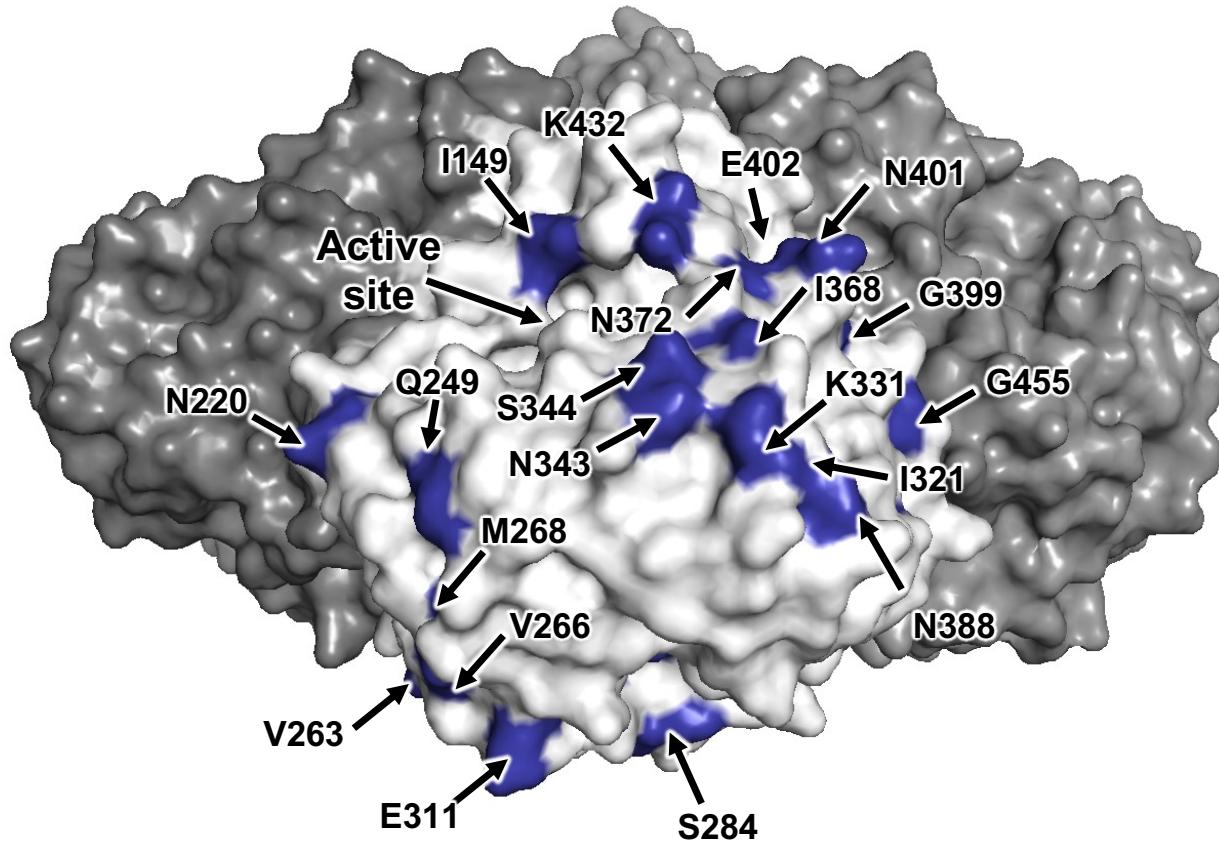
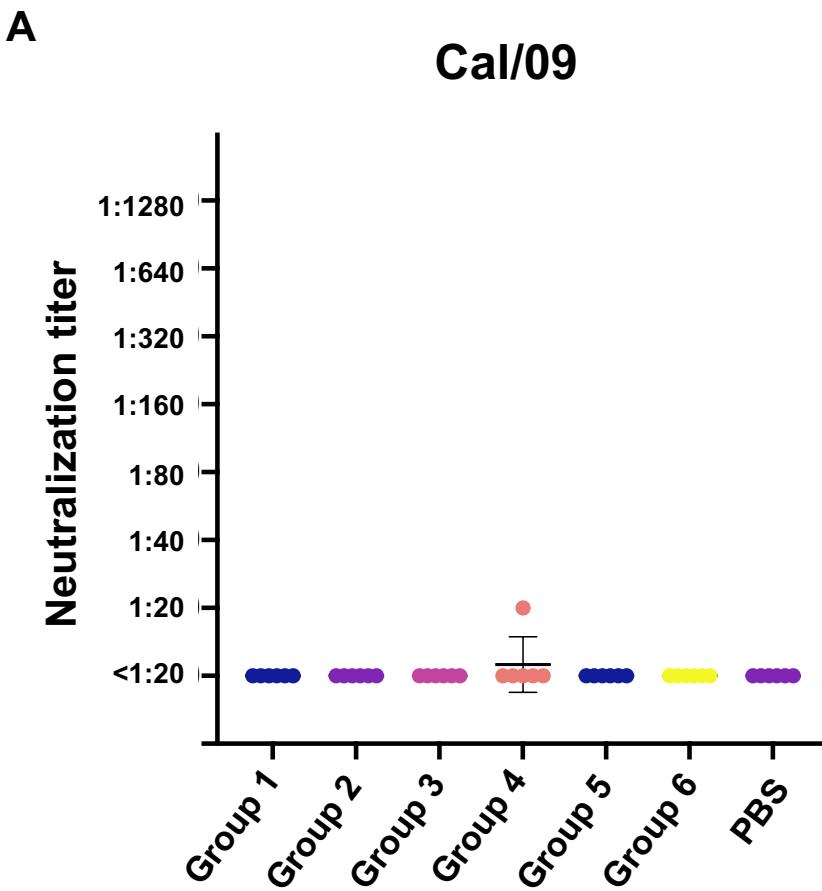


Figure 6


A

1977-NA	MNPNQKIIITIGS CMAIGI ISLILQIGNIISIWVSHSIQTGSQNH TGICNQRI ITYENSTWVNQTYVNISNTN VAGKDT	80
1983-NA	MNPNQKIIITIGS CTTIGI ISLILQIGNIISIWVSHSIQTGSQNH TGICNQRI ITYENSTWVNQTYVNINNTN VAGKDT	80
1995-NA	MNPNQKIIITIGS SIVIGI ISLMLQIGNIISIWASHSIQTGSQNH TGICNQRI ITYENSTWVNHTYVNINNTN VAGKDK	80
2007-NA	MNPNQKIIITIGS SIAIGI ISLMLQIGNIISIWASHSIQTGSQNN TGICNQRI ITYENSTWVNHTYVNINNTN VAGEDK	80
2009-NA	MNPNQKIIITIGS CMTIGMAN LILQIGNIISIWISHSIQLGNQNQIETCNQSV ITYENN TWVNQTYVNISNTN FAAGQS	80
1977-NA	TSM LAGNSSLCP RGWAIYSKDN RIGSKGDVFVIREPFISCSHLECRTFFLTQGALLNDKHSNGTVKDRSPYRALMS	160
1983-NA	TSV LAGNSSLCP RGWAIYSKDN RIGSKGDVFVIREPFISCSHLECRTFFLTQGALLNDKHSNGTVKDRSPYRALMS	160
1995-NA	TSV LAGNSSLCS SGWA YTKDN RIGSKGDVFVIREPFISCSHLECRTFFLTQGALLNDKHSNGTVKDRSPYRALMS	160
2007-NA	TSV LAGNSSLCS SGWA YTKDN RIGSKGDVFVIREPFISCSHLECRTFFLTQGALLNDKHSNGTVKDRSPYRALMS	160
2009-NA	VSVK LAGNSSLCP SGWA YSKDN RIGSKGDVFVIREPFISCSHLECRTFFLTQGALLNDKHSNGTVKDRSPYRTLMS	160
1977-NA	CPIGE APSPYNSRFESVAWSASACHDG MGWLTIGISGPDDGAVAVLKYNGIITETIKSWRKQILRTQESECVCVNGSCFT	240
1983-NA	CPIGE APSPYNSRFESVAWSASACHDG MGWLTIGISGPDDGAVAVLKYNGIITETIKSWRKRIILRTQESECVCVNGSCFT	240
1995-NA	CPLGE APSPYNSKFEVAWSASACHDG MGWLTIGISGPDDGAVAVLKYNGIITETIKSWKRKIILRTQESECVCVNGSCFT	240
2007-NA	CPLGE APSPYNSKFEVAWSASACHDG MGWLTIGISGPDDGAVAVLKYNGIITGTIKSWKTKQILRTQESECVCVNGSCFT	240
2009-NA	CPIGE APSPYNSRFESVAWSASACHDG NWLTIIGISGPDDGAVAVLKYNGIITDTIKSWRN N ILRTQESECACVNGSCFT	240
1977-NA	MTDGPSDGPASYRIFK IEKGK TKS IELDAPNSHYEECSCYPD TGT VM CVCRDNWHGSNRPWVSNQNLDYQIGYICSG	320
1983-NA	MTDGPSNGPASYRIFK IEKGK TKS IELDAPNSHYEECSCYPD TGT VM CVCRDNWHGSNRPWVSNQNLDYQIGYICSG	320
1995-NA	MTDGPSNGAASYKIFK IEKGKVTKS IELNAPNSHYEECSCYPD TGT VM CVCRDNWHGSNRPWVSNQNLDYQIGYICSG	320
2007-NA	MTDGPSNKAASYKIFK IEKGKVTKS IELNAPNFHYEECSCYPD TGT VM CVCRDNWHGSNRPWVSNQNLDYQIGYICSG	320
2009-NA	MTDGPSNGQASYKIFR IEKGKIVKS EMNAPNYHYEECSCYPD SSE IT CVCRDNWHGSNRPWVSNQNLEYQIGYICSG	320
1977-NA	VFGDNPRPKD KGSCDPVN VDGADGVKGFS RYGNGVWIGRTKS SSRKGFEMIWDPNGWTDTSNFLVKQDV VAMTDWS	400
1983-NA	VFGDNPRPKD KGSCDPVT VDGADGVKGFS RYGNGVWIGRTKS SSRKGFEMIWDPNGWTDTSNFLVKQDV VAMTDWS	400
1995-NA	VFGDNPRPKD EGSCNPVT VDGADGVKGFS RYGNGVWIGRTKS NRLRKGFEMIWDPNGWTDTSDFSVKQDV VAMTDWS	400
2007-NA	VFGDNPRPED EGSCNPVT VDGADGVKGFS KYDNGVWIGRTKS NRLRKGFEMIWDPNGWNTDSDFSVKQDV VATTDWS	400
2009-NA	FGDNPRPNDK TGSCGPVSSNGANGVKGFS FKYGNGVWIGRTKS SSRNGFEMIWDPNGWTDNNFSIKQD VGINNEWS	400
1977-NA	GYSGSFVQHPELTGLDCMRPCFWVEL RGRPREKTT WTSGSSISFCGVNSDTV N WSWPDGAEELPFTIDK	470
1983-NA	GYSGSFVQHPELTGLDCMRPCFWVEL RGRPREKTT WTSGSSISFCGVNSDTA N WSWPDGAEELPFTIDK	470
1995-NA	GYSGSFVQHPELTGLDC RPCFWVELVRGRPRENTT WTSGSSISFCGVNSDTA N WSWPDGAEELPFTIDK	470
2007-NA	GYSGSFVQHPELTGLDC RPCFWVELVRGLPRENTT WTSGSSISFCGVNSDTA N WSWPDGAEELPFTIDK	470
2009-NA	GYSGSFVQHPELTGLDC RPCFWVEL RGRPKEN WTSGSSISFCGVNSDTV G WSWPDGAEELPFTIDK	469


B

Figure S1

Figure S2

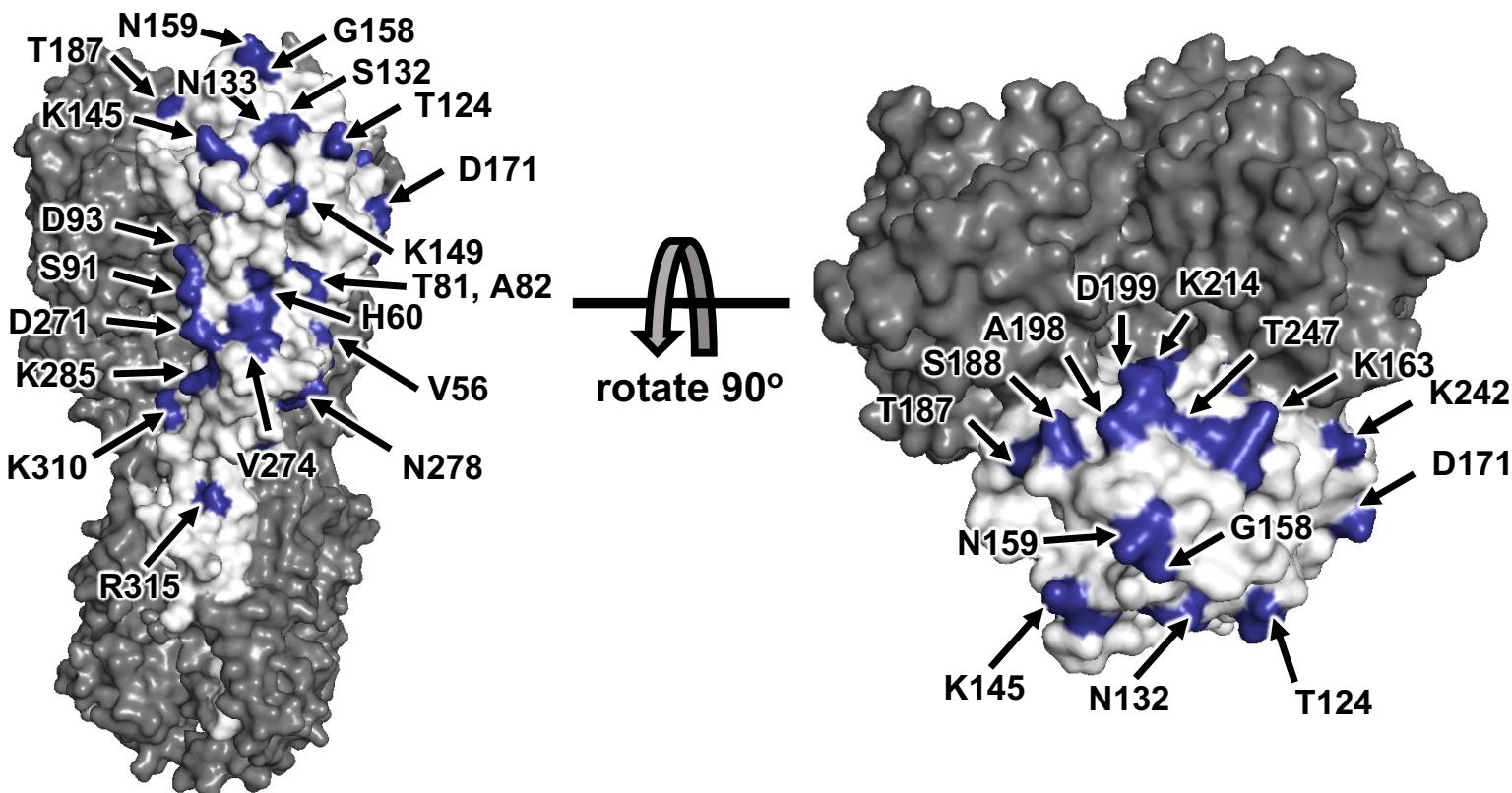


Figure S3

A

1977-HA	MKA	K	L	V	L	L	C	A	S	A	T	D	A	T	I	C	I	G	Y	H	A	N	S	T	D	T	V	T	L	E	K	N	V	T	V	T	H	S	V	N	L	E	D	S	H	N	G	K	L	C	R	L	K	G	I	A	P	Q	L	G	K	C	N	I	A	G	W	I	L	G	N	P	E	C	E	S	L	F	S	K	90							
1983-HA	MKA	K	L	V	L	L	C	A	S	A	T	D	A	T	I	C	I	G	Y	H	A	N	S	T	D	T	V	T	L	E	K	N	V	T	V	T	H	S	V	N	L	E	D	N	H	N	G	K	L	C	R	L	K	G	I	A	P	Q	L	G	K	C	S	I	A	G	W	I	L	G	N	P	E	C	E	S	L	F	S	K	90							
1995-HA	MKA	K	L	V	L	L	C	A	S	A	T	D	A	T	I	C	I	G	Y	H	A	N	S	T	D	T	V	T	L	E	K	N	V	T	V	T	H	S	V	N	L	E	D	S	H	N	G	K	L	C	R	L	K	G	I	A	P	Q	L	G	N	C	S	V	A	G	W	I	L	G	N	P	E	C	E	S	L	F	S	K	90							
2007-HA	MKV	K	L	V	L	L	C	A	S	A	T	D	A	T	I	C	I	G	Y	H	A	N	S	T	D	T	V	T	L	E	K	N	V	T	V	T	H	S	V	N	L	E	N	S	H	G	K	L	C	R	L	K	G	I	A	P	Q	L	G	N	C	S	V	A	G	W	I	L	G	N	P	E	C	E	S	L	F	S	K	90								
2009-HA	MKA	I	L	V	V	L	L	C	A	S	A	T	D	A	T	I	C	I	G	Y	H	A	N	S	T	D	T	V	T	L	E	K	N	V	T	V	T	H	S	V	N	L	E	D	K	H	N	G	K	L	C	R	L	K	G	I	A	P	Q	L	G	K	C	N	I	A	G	W	I	L	G	N	P	E	C	E	S	L	F	S	A	90						
1977-HA	K	S	W	S	Y	I	A	E	T	P	N	S	E	N	G	T	C	Y	P	G	F	A	D	Y	E	E	L	R	E	Q	L	S	S	V	S	S	F	E	R	F	E	I	F	P	K	E	S	W	P	K	H	N	V	T	R	G	V	T	A	S	C	H	K	G	K	S	S	F	Y	R	N	L	L	W	L	T	E	K	N	G	S	Y	P	N	L	S	K	180
1983-HA	K	S	W	S	Y	I	A	E	T	P	N	S	E	N	G	T	C	Y	P	G	F	A	D	Y	E	E	L	R	E	Q	L	S	S	V	S	S	F	E	R	F	E	I	F	P	K	E	S	W	P	K	H	N	V	T	R	G	V	T	A	S	C	H	K	G	K	S	S	F	Y	R	N	L	L	W	L	T	E	K	N	G	S	Y	P	N	L	S	K	180
1995-HA	E	S	W	S	Y	I	V	E	T	P	N	P	E	N	G	T	C	Y	P	G	F	A	D	Y	E	E	L	R	E	Q	L	S	S	V	S	S	F	E	R	F	E	I	F	P	K	E	S	W	P	K	H	N	V	T	R	G	V	T	A	S	C	H	K	G	K	S	S	F	Y	R	N	L	L	W	L	T	E	K	N	G	S	Y	P	N	L	S	K	179
2007-HA	E	S	W	S	Y	I	V	E	K	P	N	P	E	N	G	T	C	Y	P	G	F	A	D	Y	E	E	L	R	E	Q	L	S	S	V	S	S	F	E	R	F	E	I	F	P	K	E	S	W	P	K	H	N	V	T	R	G	V	T	A	S	C	H	K	G	K	S	S	F	Y	R	N	L	L	W	L	T	E	K	N	G	S	Y	P	N	L	S	K	179
2009-HA	S	S	W	S	Y	I	V	E	T	P	S	D	N	G	T	C	Y	P	G	F	D	I	D	Y	E	E	L	R	E	Q	L	S	S	V	S	S	F	E	R	F	E	I	F	P	K	E	S	W	P	K	H	N	V	T	R	G	V	T	A	S	C	H	K	G	K	S	S	F	Y	R	N	L	L	W	L	T	E	K	N	G	S	Y	P	N	L	S	K	180
1977-HA	S	Y	V	N	N	K	E	K	V	L	V	W	G	V	H	H	P	S	N	I	E	D	Q	K	T	I	Y	R	K	E	N	A	Y	V	S	V	V	S	N	Y	N	R	F	T	P	E	I	A	E	P	K	V	R	Q	A	G	R	I	N	Y	Y	W	T	L	E	P	G	D	T	I	I	F	E	A	G	N	L	I	A	P	W	Y	270					
1983-HA	S	Y	V	N	N	K	E	K	V	L	V	W	G	V	H	H	P	S	N	I	E	D	Q	K	T	I	Y	R	K	E	N	A	Y	V	S	V	V	S	N	Y	N	R	F	T	P	E	I	A	E	P	K	V	R	Q	A	G	R	I	N	Y	Y	W	T	L	E	P	G	D	T	I	I	F	E	A	G	N	L	I	A	P	W	Y	270					
1995-HA	S	Y	V	N	N	K	E	K	V	L	V	W	G	V	H	H	P	S	N	I	G	D	Q	R	A	I	Y	H	T	E	N	A	Y	V	S	V	V	S	N	Y	N	R	F	T	P	E	I	A	E	P	K	V	R	Q	A	G	R	I	N	Y	Y	W	T	L	E	P	G	D	T	I	I	F	E	A	G	N	L	I	A	P	W	Y	269					
2007-HA	S	Y	A	N	N	K	E	K	V	L	V	W	G	V	H	H	P	S	N	I	E	D	Q	K	A	L	Y	H	T	E	N	A	Y	V	S	V	V	S	N	Y	N	R	F	T	P	E	I	A	E	P	K	V	R	Q	A	G	R	I	N	Y	Y	W	T	L	E	P	G	D	T	I	I	F	E	A	G	N	L	I	A	P	W	Y	269					
2009-HA	S	Y	I	N	D	K	E	K	V	L	V	W	G	V	H	H	P	S	N	I	E	D	Q	K	A	L	Y	H	T	E	N	A	Y	V	S	V	V	S	N	Y	N	R	F	T	P	E	I	A	E	P	K	V	R	Q	A	G	R	I	N	Y	Y	W	T	L	E	P	G	D	T	I	I	F	E	A	G	N	L	I	A	P	W	Y	270					
1977-HA	A	F	A	L	I	N	R	G	F	G	S	G	I	I	T	S	N	A	S	M	D	E	C	D	T	K	C	Q	T	P	Q	G	A	I	N	S	L	P	F	Q	N	I	H	P	V	T	I	G	E	C	P	K	V	R	Q	A	G	R	I	N	Y	Y	W	T	L	E	P	G	D	T	I	I	F	E	A	G	N	L	I	A	P	W	Y	360				
1983-HA	A	F	A	L	I	N	R	G	F	G	S	G	I	I	T	S	N	A	S	M	D	E	C	D	A	K	C	Q	T	P	Q	G	A	I	N	S	L	P	F	Q	N	V	H	P	V	T	I	G	E	C	P	K	V	R	Q	A	G	R	I	N	Y	Y	W	T	L	E	P	G	D	T	I	I	F	E	A	G	N	L	I	A	P	W	Y	360				
1995-HA	A	F	A	L	I	N	R	G	F	G	S	G	I	I	T	S	N	A	S	M	D	E	C	D	A	K	C	Q	T	P	Q	G	A	I	N	S	L	P	F	Q	N	V	H	P	V	T	I	G	E	C	P	K	V	R	Q	A	G	R	I	N	Y	Y	W	T	L	E	P	G	D	T	I	I	F	E	A	G	N	L	I	A	P	W	Y	359				
2007-HA	A	F	A	L	I	N	R	G	F	G	S	G	I	I	T	S	N	A	S	M	D	E	C	D	A	K	C	Q	T	P	Q	G	A	I	N	S	L	P	F	Q	N	V	H	P	V	T	I	G	E	C	P	K	V	R	Q	A	G	R	I	N	Y	Y	W	T	L	E	P	G	D	T	I	I	F	E	A	G	N	L	I	A	P	W	Y	359				
2009-HA	A	F	A	M	E	R	N	A	G	S	G	I	I	T	S	D	P	V	H	D	C	N	T	C	Q	P	K	G	A	I	N	S	L	P	F	Q	N	I	H	P	V	T	I	G	E	C	P	K	V	R	Q	A	G	R	I	N	Y	Y	W	T	L	E	P	G	D	T	I	I	F	E	A	G	N	L	I	A	P	W	Y	360								
1977-HA	M	I	D	G	W	Y	G	H	H	Q	N	E	Q	G	S	G	I	A	D	Q	K	S	T	Q	N	A	I	N	G	I	T	N	K	V	N	S	I	E	K	M	N	T	Q	F	T	A	V	G	K	E	F	N	K	L	E	K	R	M	E	N	L	N	K	V	D	D	G	F	L	I	W	T	Y	N	A	E	L	V	L	E	N	R	450					
1983-HA	M	I	D	G	W	Y	G	H	H	Q	N	E	Q	G	S	G	I	A	D	Q	K	S	T	Q	N	A	I	N	G	I	T	N	K	V	N	S	I	E	K	M	N	T	Q	F	T	A	V	G	K	E	F	N	K	L	E	K	R	M	E	N	L	N	K	V	D	D	G	F	L	I	W	T	Y	N	A	E	L	V	L	E	N	R	450					
1995-HA	M	M	D	G	W	Y	G	H	H	Q	N	E	Q	G	S	G	I	A	D	Q	K	S	T	Q	N	A	I	N	G	I	T	N	K	V	N	S	I	E	K	M	N	T	Q	F	T	A	V	G	K	E	F	N	K	L	E	K	R	M	E	N	L	N	K	V	D	D	G	F	L	I	W	T	Y	N	A	E	L	V	L	E	N	R	449					
2007-HA	M	M	D	G	W	Y	G	H	H	Q	N	E	Q	G	S	G	I	A	D	Q	K	S	T	Q	N	A	I	N	G	I	T	N	K	V	N	S	I	E	K	M	N	T	Q	F	T	A	V	G	K	E	F	N	K	L	E	K	R	M	E	N	L	N	K	V	D	D	G	F	L	I	W	T	Y	N	A	E	L	V	L	E	N	R	449					
2009-HA	M	M	D	G	W	Y	G	H	H	Q	N	E	Q	G	S	G	I	A	D	Q	K	S	T	Q	N	A	I	N	G	I	T	N	K	V	N	S	I	E	K	M	N	T	Q	F	T	A	V	G	K	E	F	N	K	L	E	K	R	M	E	N	L	N	K	V	D	D	G	F	L	I	W	T	Y	N	A	E	L	V	L	E	N	R	450					
1977-HA	T	L	D	F	H	D	S	N	V	K	N	L	Y	E	K	V	K	S	Q	L	K	N	A	K	E	I	G	N	G	C	F	E	F	Y	H	K	C	N	E	C	M	E	S	V	K	N	G	T	Y	D	Y	P	K	Y	E	S	K	L	N	RE	I	D	G	V	K	L	E	S	M	G	V	Y	Q	I	L	I	Y	S	T	V	A	S	540					
1983-HA	T	L	D	F	H	D	S	N	V	K	N	L	Y	E	K	V	K	S	Q	L	K	N	A	K	E	I	G	N	G	C	F																																																									

B

