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Abstract 33 

Understanding how immune history influences influenza immunity is essential for 34 

developing effective vaccines and therapeutic strategies. This study investigates the 35 

antigenic imprinting of influenza hemagglutinin (HA) and neuraminidase (NA) using a 36 

mouse model with sequential infection by four seasonal H1N1 strains. Our findings 37 

reveal that, among pre-2009 H1N1 strains, the extent of infection history correlates 38 

with the restriction of antibody responses to antigenically drifted HA, but not NA. This 39 

suggests the mouse model failed to recapitulate NA imprinting in humans, likely due 40 

to the difference in NA immunodominance hierarchy between humans and mice. 41 

Nevertheless, pre-existing antibodies induced by infection with pre-2009 influenza 42 

virus impeded both functional HA and NA antibody responses against a 2009 43 

pandemic H1N1 strain. Overall, this study provides insights into antigenic imprinting 44 

for influenza virus, as well as the limitations of using mouse models for studying 45 

antigenic imprinting. 46 

 47 

Importance 48 

Influenza viruses continue to pose a significant threat to human health, with vaccine 49 

effectiveness being a persistent concern. One important factor is the individual 50 

immune history can influence subsequent antibody responses. While many studies 51 

have focused on how pre-existing antibodies influence the induction of anti-HA 52 

antibodies after influenza virus infections or vaccinations, the impact on anti-NA 53 

antibodies has been less extensively investigated. In this study, using a mouse 54 

model, we highlighted within the pre-2009 H1N1 strains, a greater extent of immune 55 

history negatively affected anti-HA antibodies but positively influenced anti-NA 56 

antibody responses. However, for the 2009 pandemic H1N1 strain, which underwent 57 
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with antigenic shift, both anti-HA and anti-NA antibody responses have been 58 

impeded by the antibodies induced by pre-2009 H1N1 virus infection. These findings 59 

have important implications for enhancing our understanding of antigenic imprinting 60 

on anti-HA and anti-NA antibody response and for developing more effective 61 

vaccination strategies. 62 

 63 

Introduction 64 

During each influenza virus infection, the human immune system produces a 65 

polyclonal antibody response targeting the two main surface glycoproteins of 66 

influenza virus: hemagglutinin (HA) and neuraminidase (NA). HA, the predominant 67 

surface antigen, consists of a globular head domain containing the receptor binding 68 

site and a stem domain with the molecular machinery to facilitate cell entry through 69 

fusion of the viral and host membranes [1]. In contrast, the NA protein aids virus 70 

release by cleaving terminal sialic acids, enabling nascent virus particles to detach 71 

from the host cell membrane [2]. For a long time, it was believed that an effective 72 

humoral immune response to influenza virus primarily involved antibodies against 73 

HA. However, recent studies have shown that anti-NA antibodies can also play a 74 

substantial antiviral role, independent of the HA antibody response [3-5].  75 

 76 

Almost everyone has been infected by influenza virus since their childhood and 77 

experiences reinfection by antigenically drifted strains on a regular basis [6]. The 78 

antigenic imprinting theory suggests that immune history can influence the 79 

magnitude and quality of antibody responses to a subsequent infection [7, 8]. A 80 

striking example is during the 2009 H1N1 “swine flu” pandemic, older individuals 81 

appeared to exhibit lower relative mortality rates compared to other age groups, 82 
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possibly attributed to their exposure during childhood to antigenically similar H1N1 83 

strains originating from the 1918 'Spanish flu' pandemic [9, 10]. However, 84 

understanding the impact of age-dependent immune history on the antibody 85 

response to the 2009 H1N1 pandemic virus remains largely elusive, primarily due to 86 

the complexity of human experiences with infection and vaccination. 87 

 88 

Due to the abundance of HA on the influenza virus surface, antigenic imprinting is 89 

most often applied to anti-HA antibody responses [11-15]. A noteworthy example is 90 

that early childhood infections with either H1N1 or H3N2 influenza viruses confer 91 

protection against H5N1 and H7N9 viruses later in life. This is likely due to the 92 

generation of anti-HA cross-reactive antibodies targeting shared epitopes across 93 

these diverse strains [16]. However, antigenic imprinting on NA is less well 94 

characterized [17, 18]. Moreover, the effect of the extent of immune history on both 95 

HA and NA simultaneously remains unclear. 96 

 97 

In this study, we aim to mimic human conditions in mice by sequentially infecting 98 

them with up to four antigenically distinct influenza viruses and challenging them with 99 

the 2009 H1N1 pandemic virus. We highlight the extent of immune history can 100 

influence the induction of both anti-HA and anti-NA antibodies. Additionally, the 101 

binding epitopes targeted by anti-NA antibodies following pre-2009 H1N1 virus 102 

infection in the mouse model may differ from those observed in humans. These 103 

results suggest that consideration of immune history is crucial for vaccine design. 104 

Moreover, caution must be exercised when using mouse models to investigate 105 

antigenic imprinting effects in humans. 106 

 107 
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Results 108 

Establishment of a Mouse Model for Sequential Infections with Heterologous 109 

Influenza (H1N1) Viruses 110 

To mimic human sequential infections, we selected four pre-2009 H1N1 influenza 111 

strains: A/USSR/90/1977 (USSR/77), A/Chile/1/1983 (Chile/83), A/Beijing/262/1995 112 

(Beijing/95), and A/Brisbane/59/2007 (Bris/07). These strains, chosen for their role 113 

as vaccine seed strains, are antigenically distinct from each other [19]. To minimize 114 

genetic background interference, we integrated their HA and NA genes into the 115 

A/Puerto Rico/8/1934 (H1N1) virus backbone using the "6+2" reverse genetic 116 

approach [20]. 117 

 118 

Prior to the sequential infection experiments, we assessed the cross-reactive 119 

antigenicity of HA and NA from each virus. Eight-week-old BALB/c mice were 120 

infected twice, 21 days apart, with four sets of homologous viruses. Plasma samples 121 

were collected 21 days after the second infection (Figure 1A). We performed ELISA 122 

and microneutralization assay on each sample to evaluate binding and neutralizing 123 

capacities against all four H1N1 viruses. Binding assays revealed cross-reactive 124 

binding antibodies to the HA in mice (Figure 1B-E), while H1N1 cross-neutralization 125 

was minimal against the three heterologous strains compared to the homologous 126 

strain (Figure 1F-I). Notably, strong cross-reactive NA inhibition (NI) was observed 127 

via enzyme-linked lectin assay (ELLA) in each group (Figure 1J-1M), supporting the 128 

hypothesis that antigenic drift in HA and NA may occur asynchronously [21, 22]. 129 

 130 

These findings set the stage for interpreting results from a more comprehensive 131 

experimental design involving sequential infection with different heterologous strains. 132 
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Four-week-old BALB/c mice were divided into four groups: Group 1 was infected 133 

once with Bris/07; Group 2 underwent sequential infection with Beijing/95 followed by 134 

Bris/07, 12 weeks apart; Group 3 was sequentially infected with Chile/83, Beijing/95, 135 

and Bris/07, each 12 weeks apart; Group 4 experienced sequential infection with 136 

USSR/77, Chile/83, Beijing/95, and finally Bris/07, again 12 weeks apart (Figure 2A). 137 

Two control groups were included: Group 5, infected once with USSR/77 and 138 

sampled after 39 weeks; and Group 6, comprising 40-week-old mice infected once 139 

with Bris/07. Plasma samples from all groups except Group 5 were collected 21 days 140 

post-last infection. 141 

 142 

Functional HA and NA Antibodies Show Opposite Trends Following Sequential 143 

Infection with Heterologous Influenza Viruses  144 

To investigate antigenic imprinting, we first analyzed plasma binding to the HA 145 

proteins of the four viruses. Sequential infection with heterologous H1N1 viruses 146 

induced cross-reactive binding antibodies against all four strains (p<0.0001) (Figure 147 

2B-2E). Interestingly, mice infected only with Bris/07 (Group 1) showed lower binding 148 

to its cognate HA protein compared to those previously infected with heterologous 149 

viruses. Mice in Group 5, infected only with USSR/77, developed cross-reactive 150 

binding antibodies to all four viruses (Figure 2B-2E). This suggests that exposure to 151 

earlier circulating strains contributes to cross-reactivity to drifted viruses, albeit 152 

slightly reduced compared to the parental virus, lasting at least for 43 weeks. 153 

 154 

Conversely, neutralizing activity against Bris/07 was highest in mice infected only 155 

with this virus (Group 1 and Group 6), and decreased with the number of sequential 156 

infections and the distance from the prime to the Bris/07 boost (Figure 2I). This trend 157 
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suggests a potential relationship between immune priming and viral neutralization 158 

activity, where a greater extent of prior infection history may limit the production of 159 

neutralizing antibodies. Although Group 5 mice showed relatively strong cross-160 

reactive binding capacity to Beijing/95 and Bris/07 (Figure 2D-2E), no neutralization 161 

was observed in the microneutralization assay (Figure 2H-2I), indicating USSR/77 162 

infection-induced antibodies may target non-neutralizing epitopes or the affinity of 163 

induced antibodies is relatively low. Comparison of neutralizing antibody responses 164 

to Bris/07 in Groups 1 and 6 revealed similarities in immune responses between 165 

young and elderly mice (Figure 2I). 166 

 167 

Influenza A viruses can be classified into group 1 and 2. We investigated binding 168 

cross-reactivity of antibodies towards other human as well as avian group 1 viruses, 169 

including A/Puerto Rico/8/1934 (H1N1), A/California/07/2009 (H1N1), 170 

A/Japan/305/1957 (H2N2), A/duck/Laos/2006 (H5N1), and 171 

A/chicken/Netherlands/2014 (H5N8) (Figure 3B-G). Trends observed were similar to 172 

those with the four human H1N1 viruses from 1977 to 2007 (Figure 1B-1E). Using a 173 

mini-HA protein derived from the stem domain of Bris/07,[23] we found that stem-174 

binding antibodies may contribute to the targeting of group 1 HAs (Figure 3D). No 175 

cross-binding antibody responses were observed against group 2 HA proteins, 176 

including those from A/Uruguay/716/2007 (H3N2), A/Anhui/1/2013 (H7N9), and 177 

A/Jiangxi/346/2013 (H10N8) (Figure 3H-J), highlighting the specificity of these 178 

interactions and the antigenic distinctions within and between these viral groups. 179 

 180 

Antigenic imprinting is believed to be primarily influenced by HA antibodies, but the 181 

role of NA antibodies remains unclear. We analyzed HA and NA via 182 
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hemagglutination inhibition assay (HAI) and neuraminidase inhibition assay (NAI). 183 

Mice with previous heterologous virus infections exhibited lower HAI titers against 184 

Bris/07 than with homologous Bris/07 infection (Figure 4A), while a contrasting 185 

pattern was observed in NAI results, with heightened functional NAI antibody titers in 186 

groups with more infection experiences (Figure 4B). These data suggest more 187 

boosts lead to increased antibody responses to conserved sites in NA and show an 188 

opposite effect of antigenic imprinting for HA and NA against a specific virus at the 189 

same time. 190 

 191 

Impact of Antigenic Shift on Establishment of Antigenic Imprinting  192 

Sequential infection with four strains induced cross-binding antibodies against Cal/09, 193 

but no neutralization activity was observed (Figure 3C and S1A). This raises 194 

questions about the role of antigenic shift in the development of antigenic imprinting, 195 

particularly during the 2009 pandemic. When we challenged mice from Groups 1-4 196 

with a lethal dose of Cal/09 (Figure 5A), all previously infected mice provided 100% 197 

protective efficacy in body weight recovery and survival (Figure S2A-S2B). A 198 

significant reduction in viral load in the lungs was observed in Group 2-4 which the 199 

mice have more than two rounds of heterologous infection (Groups 2-4) (p<0.05) 200 

(Figure S2C). Plasma collected 21 days post Cal/09 viral infection showed 201 

diminished neutralization, HAI, and NAI against Cal/09 for heterologous 202 

immunization compared to Bris/07  homologous immunization (Figure 5B-5D), 203 

suggesting concurrent antigenic imprinting phenomena induced by shifts in both HA 204 

and NA genes. It is interesting that we also observed this imprinting effect is less on 205 

NAI, compared to neutralizing activity and HAI (Figure 5D). 206 

 207 
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To understand the mechanism of antigenic imprinting against Cal/09 NA, we 208 

compared amino acid residues in the NA of Cal/09 with those of the four pre-2009 209 

H1N1 strains. We focused on amino acid residues that are completely conserved 210 

across the four pre-2009 NAs of interest, but differed in Cal/09 NA (Figure 6A). 211 

These residues are highlighted on the surface of Cal/09 NA structure (Figure 6B). 212 

Many of these mutations surround the NA active site, such as I149, N220, Q249, 213 

K342, S343, N344 and N372. It is noted that most of these mutations are in the 214 

major antigenic sites for the NA protein [24]. Moreover, several studies reported that 215 

some of the NA antibodies that bind outside the active site can inhibit NA activity by 216 

steric hindrance [3, 25]. On the other hand, the glycosylation profiles have been also 217 

changed and may influence the antibody response in Cal/09 NA. For example, NWS 218 

at 455-457 in four pre-2009 N1 stains goes to GWS in Cal/09 N1 and 434 where it 219 

goes from KTT (1977 and 1983 N1) to NTT (glycan in 1995 and 2007 N1) to NTI 220 

(Cal/09). Taken together, NA antibodies induced by sequential infection of pre-2009 221 

viruses in the mouse model may dominantly target to the epitopes located in and 222 

around the active site that are conserved in pre-2009 strains, but mutated in Cal/09. 223 

Therefore, these imprinted antibodies are escaped by Cal/09 virus. This observation 224 

further supports the notion that the antigenic disparity in the NA gene may contribute 225 

to antigenic imprinting following infection with the Cal/09 virus. 226 

  227 

Similar analysis has been performed for pre-2009 and Cal/09 HA amino acid 228 

residues (Figure S3A). Residues on the HA head domain are highlighted on the 229 

surface of Cal/09 HA structure (Figure S3B). It is interesting that similar types of 230 

conserved residues are located closed to the receptor binding site (K145, G158, 231 
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N159, T187) among four pre-2009 stains, but we don’t observe the same boosting 232 

effects in HA after sequential infection, as shown in the NA.  233 

 234 

Discussion 235 

The concept of original antigenic sin (OAS), first described by Thomas Francis Jr in 236 

the late 1950s in relation to the influenza virus, has recently been redefined as 237 

antigenic imprinting or antigenic seniority [26, 27]. This phenomenon has also been 238 

extended to other viruses, such as Dengue virus and SARS-CoV-2 [28-33]. Studies 239 

on influenza virus have primarily focused on the HA protein, including monoclonal 240 

antibody screening, functional epitope identification, and structural analysis [34-38]. 241 

As a result, most observations regarding antigenic imprinting in influenza have 242 

focused on the HA. Consequently, the potential impact of antigenic imprinting on the 243 

NA protein has been somewhat overlooked. 244 

 245 

In our study, we showed antigenic imprinting on the NA protein may produce both 246 

positive and negative effects. When dealing with antigenic drift, pre-existing B cell 247 

memory from pre-2009 H1N1 viruses may enhance the production of functional NA 248 

antibodies against antigenically similar strains through cross-reactivity. However, 249 

when encountering a new strain with significant epitope changes due to viral 250 

antigenic shift (Cal/09), this pre-existing memory may hinder, but not eliminate, the 251 

generation of functional NA antibodies against the new strain. Our findings indicate 252 

that pre-existing memory can have dual roles in the context of subsequent viral 253 

infections. 254 

 255 
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Previous research by O'Donnell et al. observed that ferrets with prior seasonal H1N1 256 

infections did not show evidence of original antigenic sin when exposed to the 2009 257 

pandemic H1N1 virus [39]. Their study, focusing on antigenic imprinting, employed a 258 

prime-boost strategy but did not explore the influence of the extent of immune history 259 

on this phenomenon. In contrast, our study aimed to bridge this gap. We found that a 260 

single prior exposure to a pre-2009 H1N1 strain does not influence the neutralizing 261 

antibody response to the Cal/09 strain, which is consistent with observations from 262 

O'Donnell et al [39]. Additionally, our research sheds light on how infection history 263 

affects antibody responses to both HA and NA, emphasizing the need to consider 264 

the extent and complexity of the immune history in understanding antigenic 265 

imprinting and its implications for influenza virus evolution and immunity. 266 

 267 

Another notable aspect of our study is the implication of different immunodominant 268 

NA epitopes across various animal species. Daulagala et al. noted lower cross-NAI 269 

activity in ferret sera after single H1N1 viral infection with virus strains between 1977 270 

to 1991, while our mouse model displayed apparent cross-reactivity among NA 271 

strains from different years [18]. Our hypotheses to explain this observation is the 272 

immunodominant epitopes for NA antibody binding induced by ferrets may differ from 273 

those induced by mice (Figure 1J-1M). This discrepancy underscores the possibility 274 

of species-specific grouping of immunodominant NA epitopes, similar to a pattern 275 

also observable in HA. Liu et al. previously demonstrated that, in mice, the antigenic 276 

epitopes Sb and Cb2 are immunodominant, while ferret sera predominantly 277 

recognize antigenic epitope Sa [40]. Validating the NA immunodominant epitopes 278 

and identifying the hierarchy of the NA immunodominant sites in humans could 279 

provide valuable information for the rational design of universal vaccines. 280 
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 281 

In conclusion, our study offers substantial insights into the dynamics of the human 282 

immune response to influenza viruses, particularly to both HA and NA. It highlights 283 

how the extent of infection history influences antibody responses, a critical factor in 284 

the context of antigenic drift and shift. These findings have important implications for 285 

enhancing our understanding of influenza and for developing more effective 286 

vaccination. 287 

 288 

Materials and methods 289 

Cells 290 

HEK293T and MDCK cells were cultured in Dulbecco’s Modified Eagle’s Medium 291 

(DMEM, high glucose; Gibco) supplemented with 10% heat-inactivated fetal bovine 292 

serum (FBS; Gibco), 1% penicillin-streptomycin (Gibco), and 1% Gluta-Max (Gibco). 293 

Cells were passaged every 3-4 days using 0.05% Trypsin-EDTA solution (Gibco).  294 

 295 

Protein Expression and Purification 296 

Mini-HA #4900 [23], A/Chile/1/1983 (H1N1) HA, A/Puerto Rico/8/1934 (H1N1) HA, 297 

and A/Japan/305/1957 (H2N2) HA proteins were fused with an N-terminal gp67 298 

signal peptide and a C-terminal BirA biotinylation site, thrombin cleavage site, 299 

trimerization domain, and Hisx6 tag. These were then cloned into a customized 300 

baculovirus transfer vector. Recombinant bacmid DNA was generated using the Bac-301 

to-Bac system (Thermo Fisher Scientific), following the manufacturer’s instructions. 302 

Baculovirus was produced by transfecting purified bacmid DNA into adherent Sf9 303 

cells using Cellfectin reagent (Thermo Fisher Scientific), as per the manufacturer’s 304 

instructions. The baculovirus was amplified in adherent Sf9 cells at a multiplicity of 305 
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infection (MOI) of 1. Recombinant proteins were expressed by infecting 1L of 306 

suspension Sf9 cells at an MOI of 1. After three days of post-infection, Sf9 cells were 307 

centrifuged at 4000 × g for 25 min, and soluble recombinant proteins were purified 308 

from the supernatant using Ni Sepharose excel resin (Cytiva), followed by size 309 

exclusion chromatography with a HiLoad 16/100 Superdex 200 prep grade column 310 

(Cytiva) in 20 mM Tris-HCl pH 8.0, 100 mM NaCl. Proteins were concentrated using 311 

an Amicon spin filter (Millipore Sigma) and filtered through 0.22 µm centrifuge Tube 312 

Filters (Costar). Protein concentration was determined by Nanodrop (Fisher 313 

Scientific), and proteins were aliquoted, flash-frozen in a dry-ice ethanol mixture, and 314 

stored at -80°C until use. 315 

 316 

HA proteins A/Brisbane/59/2007 (H1N1) (NR-28607), A/California/04/2009 (H1N1) 317 

pdm09 (NR-15749), A/duck/Laos/3295/2006 (H5N1) (NR-13509), 318 

A/chicken/Netherlands/14015531/2014 (H5N8) (NR-50110), A/Uruguay/716/2007 319 

(H3N2) (NR-15168), A/Anhui/1/2013 (H7N9) (NR-44081), and A/Jiangxi/346/2013 320 

(H10N8) (NR-49440) were obtained from BEI Resources, NIAID, NIH 321 

(https://www.beiresources.org/). 322 

 323 

Recombinant Virus Construction and Purification 324 

H1N1 recombinant viruses A/USSR/90/1977 (HA, NA) x A/Puerto Rico/8/1934 325 

(H1N1) (NR-3666), A/Chile/1/1983 (HA, NA) x A/Puerto Rico/8/1934 (H1N1) (NR-326 

3585), A/Beijing/262/1995 (HA, NA) x A/Puerto Rico/8/1934 (H1N1) (NR-3571), and 327 

A/Brisbane/59/2007 (HA, NA) x A/Puerto Rico/8/1934 (H1N1) (NR-41797) were 328 

obtained from BEI Resources, NIAID, NIH. Recombinant viruses were constructed 329 

using a reverse genetics system, as previously described [20]. Briefly, constructed 330 
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HA and NA DNA plasmids were cloned and transfected into human embryonic 331 

kidney 293T cells (ATCC) and Madin-Darby canine kidney (MDCK) cells with a 6-332 

segment plasmid encoding essential viral proteins and virus-like RNA of PR8. 333 

Supernatants were injected into 8-10 day old embryonated chicken eggs for viral 334 

rescue at 37°C for 48 hours. Viruses were plaque-purified on MDCK cells grown in 335 

Dulbecco’s Modified Eagles Medium (DMEM, Gibco) containing 10% fetal bovine 336 

serum (FBS, Gibco) and a penicillin-streptomycin mix (100 units/mL penicillin and 337 

100 μg/mL streptomycin, Gibco). Individual plaques were picked, injected into 338 

embryonated eggs, and viral RNAs were extracted from allantoic fluids. HA and NA 339 

segments were confirmed by Sanger sequencing. 340 

 341 

Mouse Infection and Sample Collection 342 

BALB/c mice were anesthetized with ketamine and xylazine, and intranasally 343 

infected with 105 PFU of influenza virus, previously diluted in PBS. Mouse plasma 344 

samples were collected in tubes containing heparin as an anticoagulant on day 21 345 

post-infection. The experiments were conducted in the University of Hong Kong's 346 

Biosafety Level 2 (BSL2) facility. The study protocol adhered strictly to the 347 

recommendations and was approved by the University of Hong Kong’s Committee 348 

on the Use of Live Animals in Teaching and Research (CULATR 5598-20). 349 

 350 

Enzyme-linked immunosorbent assay 351 

Nunc MaxiSorp ELISA plates (Thermo Fisher Scientific) were coated overnight at 352 

4°C with 100 μl of recombinant proteins at 1 μg/mL in 1× PBS. The next day, plates 353 

were washed three times with 1× PBS containing 0.05% Tween 20 and blocked with 354 

100 μl of Chonblock blocking/sample dilution ELISA buffer (Chondrex Inc, Redmond, 355 
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US) for 1 hour at room temperature. Plasma samples, diluted 1:100, were incubated 356 

for 2 hours at 37°C. Plates were then washed three times and incubated with 357 

horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG antibody (GE 358 

Healthcare) diluted 1:5,000 for 1 hour at 37°C. After five washes with PBS containing 359 

0.05% Tween 20, 100 μL of 1-Step™ TMB ELISA Substrate Solution (Thermo Fisher 360 

Scientific) was added to each well. Following a 15-minute incubation, the reaction 361 

was stopped with 50 μL of 2 M H2SO4 solution, and absorbance was measured at 362 

450 nm using a Sunrise (Tecan, Männedorf, Switzerland) absorbance microplate 363 

reader. 364 

 365 

Microneutralization assay 366 

For the microneutralization (MN) assay, MDCK cells were prepared in each well of 367 

96-well cell culture plates one day before the assay, ensuring a 100% confluent 368 

monolayer. Cells were washed once with phosphate-buffered saline (PBS; Gibco) 369 

and replaced with minimal essential media (MEM; Gibco) containing 25 mM HEPES 370 

(Gibco) and 100 U/mL penicillin-streptomycin (PS; Gibco). All plasma samples for 371 

the MN assay were heat-inactivated at 56°C for 30 minutes. Two-fold serial dilutions 372 

were performed on the heated plasma to create dilution series ranging from 1:20 to 373 

1:2560. These dilutions were mixed with 100 TCID50 of viruses in an equivalent 374 

volume and incubated at 37°C for 1 hour. The mixture was then inoculated into cells 375 

and incubated at 37°C for another hour. Cell supernatants were discarded and 376 

replaced with MEM containing 25 mM HEPES, 100 U/mL PS, and 1 μg/mL TPCK-377 

trypsin (Sigma). Plates were incubated at 37°C for 72 hours, and virus presence was 378 

detected by a hemagglutination assay, with results recorded as the MN50 titer. 379 

 380 
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Hemagglutination-Inhibition (HAI) Assays 381 

Plasma samples were serially diluted two-fold in a 96-well round-bottom plate in a 382 

total volume of 25 μl of phosphate-buffered saline (PBS). After dilution, 25 μl of virus 383 

[four hemagglutinating units (HAU)] in PBS were added to each well and incubated 384 

for 30 minutes. Then, 50 μl of a 1.0% (vol/vol) solution of turkey erythrocytes was 385 

added, and the mixture was gently stirred. After 30 minutes at room temperature, the 386 

plates were read, and titers were determined as the lowest concentration of 387 

monoclonal antibody that fully inhibited agglutination. HAI assays were performed in 388 

duplicate. 389 

 390 

Enzyme-linked lectin assay (ELLA) 391 

ELLA experiments were performed as described below. Briefly, each well of a 96-392 

well microtiter plate (Thermo Fisher) was coated with 100 μl of fetuin (Sigma) at a 393 

concentration of 25 μg/mL in coating buffer (KPL coating solution; SeraCare) and 394 

incubated overnight at 4°C. The following day, 50 μl of plasma samples at the 395 

indicated dilution in 2-(N-morpholino) ethanesulfonic acid (MES) buffer (pH 6.5), 396 

containing 20 mM CaCl2, 1% bovine serum albumin, and 0.5% Tween 20, were 397 

mixed with an equal volume of H1N1 virus. This mixture was added to the fetuin-398 

coated wells and incubated for 18 hours at 37°C. The plate was then washed six 399 

times with PBS containing 0.05% Tween 20. Subsequently, 100 μl of horseradish 400 

peroxidase-conjugated peanut agglutinin lectin (PNA-HRPO, Sigma–Aldrich) in MES 401 

buffer (pH 6.5) with CaCl2 and 1% bovine serum albumin was added to each well 402 

and incubated for 2 hours at room temperature in the dark. Following this, the plate 403 

was washed six times and developed with 1-Step™ TMB ELISA Substrate Solutions 404 

(Thermo Fisher Scientific). The absorbance was measured at 450 nm using a 405 
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SpectraMax M2 microplate reader (Molecular Devices). Data points were analyzed 406 

using Prism software, and the 50% inhibition concentration (IC50) was determined as 407 

the concentration at which 50% of the neuraminidase (NA) activity was inhibited, 408 

compared to the negative control. 409 

 410 
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Figure 1. Binding, neutralizing and NAI antibodies induced by sequential 430 

homologous viral infection 431 

(A) Experimental design and sample collection. Six mice in each group were 432 

inoculated intranasally with sequential homologous H1N1 virus infection strategy 433 

(1 × 105 PFU). (B-E) Binding antibodies against (B) USSR/77 HA, (C) Chile/83 HA, 434 

(D) Beijing/95 HA, and (E) Bris/07 HA were tested by ELISA. (F-I) Neutralizing 435 

antibodies against (F) USSR/77 virus, (G) Chile/83 virus, (H) Beijing/95 virus and (I) 436 

Bris/07 virus were assessed by virus neutralization assay. (J-M) NAI antibody 437 

against (J) USSR/77 virus, (K) Chile/83 virus, (L) Beijing/95 virus and (M) Bris/07 438 

virus were measured by ELLA. Data are representative of two independent 439 

experiments performed in technical duplicate. FI6v3 is an influenza Hemagglutinin 440 

(HA) stem-specific antibody, and PBS was used as a negative control. Error bars 441 

represent standard deviation. p-values were calculated using a two-tailed t-test (*p < 442 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns (not significant)). 443 

 444 

Figure 2. Binding and neutralizing antibodies after sequential viral infection 445 

(A) Experimental design and sample collection. Six mice in each group were 446 

inoculated intranasally with sequential H1N1 virus infection strategy (1 × 105 PFU). 447 

(B-E) Binding antibodies against (B) USSR/77 HA, (C) Chile/83 HA, (D) Beijing/95 448 

HA, and (E) Bris/07 HA were tested by ELISA. (F-I) Neutralizing antibodies against 449 

(F) USSR/77 virus, (G) Chile/83 virus, (H) Beijing/95 virus and (I) Bris/07 virus were 450 

assessed by virus neutralization assay. Data are representative of two independent 451 

experiments performed in technical duplicate. FI6v3 is an influenza Hemagglutinin 452 

(HA) stem specific antibody and PBS was used as a negative control. Error bars 453 
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represent standard deviation. p-values were calculated using a two-tailed t-test (*p < 454 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns (not significant)). 455 

 456 

Figure 3. Cross binding antibodies after sequential viral infection 457 

(A) Experimental design and sample collection. Six mice in each group were 458 

inoculated intranasally with sequential H1N1 virus infection strategy (1 × 105 PFU). 459 

(B-J) Binding antibodies against (B) A/Puerto Rico/8/34 (H1N1) HA, (C) 460 

A/California/04/2009 (H1N1) HA, (D) H1N1 mini-HA, (E) A/Japan/305/1957 (H2N2) 461 

HA, (F) A/duck/Laos/2006 (H5N1) HA, (G) A/chicken/NL/2014 (H5N8) HA, (H) 462 

A/Uruguay/716/2007 (H3N2) HA, (I) A/Anhui/1/2013 (H7N9) HA and (J) 463 

A/Jiangxi/346/2013 (H10N8) HA were tested by ELISA. Data are representative of 464 

two independent experiments performed in technical duplicate. FI6v3 is an influenza 465 

Hemagglutinin (HA) stem specific antibody and PBS was used as a negative control. 466 

Error bars represent standard deviation. p-values were calculated using a two-tailed 467 

t-test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns (not significant)). 468 

 469 

Figure 4. HAI and NAI antibodies after sequential viral infection 470 

(A) Hemagglutination inhibiting antibody against Bris/07 H1N1 virus. (B) 471 

Neuraminidase inhibiting antibody against Bris/07 H1N1 virus. Data are 472 

representative of two independent experiments performed in technical duplicate. 473 

PBS was used as a negative control. Error bars represent standard deviation. p-474 

values were calculated using a two-tailed t-test (*p < 0.05, **p < 0.01, ***p < 0.001, 475 

****p < 0.0001, ns (not significant)). 476 

 477 
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Figure 5. Neutralizing, HAI and NAI antibodies with sequential infection history 478 

after Cal/09 H1N1 challenge 479 

(A) Experimental design and sample collection. Six mice in each group were first 480 

inoculated intranasally with sequential H1N1 virus infection strategy (1 × 105 PFU) 481 

and were challenged with Cal/09 H1N1 virus (4 × 105 PFU). (B) Neutralizing 482 

antibodies against Cal/09 H1N1 virus were assessed by virus neutralization assay. 483 

(C) Hemagglutination inhibiting antibody against Cal/09 H1N1 virus. (D) 484 

Neuraminidase inhibiting antibody against Cal/09 H1N1 virus. Data are 485 

representative of two independent experiments performed in technical duplicate. 486 

PBS was used as a negative control. Error bars represent standard deviation. p-487 

values were calculated using a two-tailed t-test (*p < 0.05, **p < 0.01, ***p < 0.001, 488 

****p < 0.0001, ns (not significant)). 489 

 490 

Figure 6. Surface residues difference among pre-2009 H1N1 NA and Cal/09 491 

H1N1 NA 492 

(A) Mutations are highlighted in blue on in a sequence alignment among four pre-493 

2009 N1 protein and Cal/09 NA. (B) Surface residues on Cal/09 NA, which differs 494 

from four pre-2009 NAs, are highlighted on the Cal/09 NA protein.  495 

 496 

Figure S1. Neutralizing antibodies after sequential viral infection against Cal/09 497 

H1N1 498 

(A) Neutralizing antibodies against Cal/09 virus were assessed by virus 499 

neutralization assay. Data are representative of two independent experiments 500 

performed in technical duplicate. PBS was used as a negative control.  501 

 502 
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Figure S2. In vivo protection against Cal/09 H1N1 virus after sequential 503 

infection 504 

 (A) The mean percentage of body weight change post-infection is shown (n = 6). 505 

The humane endpoint, which was defined as a weight loss of 25% from initial weight 506 

on day 0, is shown as a dotted line. (B) Kaplan-Meier survival curves are shown (n = 507 

6). (C) Lung viral titers on day 3 after infection are shown (n = 3). Solid black lines 508 

indicate means ± SD. p-values were calculated using a two-tailed t-test (*p < 0.05, 509 

**p < 0.01, ***p < 0.001, ****p < 0.0001, ns (not significant)). 510 

 511 

Figure S3. Surface residues difference among pre-2009 H1N1 HA and Cal/09 512 

H1N1 HA 513 

(A) Mutations are highlighted in blue on in a sequence alignment among four pre-514 

2009 HA protein and Cal/09 HA. (B) Surface residues on Cal/09 HA head domain, 515 

which differs from four pre-2009 HAs, are highlighted on the Cal/09 HA protein.  516 
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