

1 **Barley powdery mildew invasion coincides with the dynamic accumulation of**
2 **leaf apoplastic extracellular vesicles that are associated with host stress**
3 **response proteins**

4 Hannah Thieron ¹, Pietro Spanu ², Miriam Buhl ³, Charlotte Hülsmann ¹, Charlotte Kummer ¹,
5 Fatih Demir ^{4,7}, Pitter Huesgen ^{4,5,6}, Ralph Panstruga ^{1,8}

6

7 ¹ Unit for Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University,
8 52074 Aachen, Germany

9 ² Imperial College, Department of Life Sciences, Imperial College Road, London, SW7 2AZ,
10 London, U.K.

11 ³ Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital,
12 52074 Aachen, Germany

13 ⁴ Molecular and Biological Systems Analytics, ZEA-3 Analytics, Forschungszentrum Jülich,
14 52428 Jülich, Germany

15 ⁵ Biochemistry and Functional Proteomics, Institute for Biology II, University of Freiburg,
16 79104 Freiburg, Germany

17 ⁶ CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104
18 Freiburg, Germany

19 ⁷ Current address: Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark

20 [#] Corresponding author; e-mail panstruga@bio1.rwth-aachen.de

21

22 **Running head:** EV dynamics during barley powdery mildew infection

23

24 **ORCIDs:**

25 Hannah Thieron 0000-0002-0670-7328

26 Pietro Spanu 0000-0001-8928-6049

27 Miriam Buhl 0000-0003-0627-9228

28 Fatih Demir 0000-0002-5744-0205

29 Pitter Huesgen 0000-0002-0335-2242

30 Ralph Panstruga 0000-0002-3756-8957

31

32

33 **Abbreviations**

34 AWF apoplastic wash fluid

35 EV extracellular vesicle

36 hpi hours post inoculation

37 NTA nanoparticle tracking analysis

38 PME polymer-mediated enrichment

39 RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase

40

41 **Word counts**

42 Abstract 239 words

43 Main text 7997 words

44

45 **Abstract**

46 The mutual exchange of extracellular vesicles across kingdom borders is a feature of many
47 plant-microbe interactions. The occurrence and cargos of extracellular vesicles has been
48 studied in several instances, but their dynamics in the course of infection have remained
49 elusive. Here we used two different procedures, differential high-speed centrifugation and
50 polymer-based enrichment, to collect extracellular vesicles from the apoplastic wash fluid of
51 barley (*Hordeum vulgare*) leaves challenged by its fungal powdery mildew pathogen,
52 *Blumeria hordei*. Both methods yielded extracellular vesicles of similar quality and
53 morphological characteristics, though the polymer approach was associated with higher
54 reproducibility. We noted that extracellular vesicles derived from the apoplastic wash fluid
55 constitute polydisperse populations that are selectively responsive to leaf infection by *B.*
56 *hordei*. Extracellular vesicles of ~100 nm – 300 nm diameter became progressively more
57 abundant, in particular from 72 hours post inoculation onwards, resulting in a major peak
58 late during fungal infection. Vesicles of ~300 nm – 500 nm showed similar accumulation
59 dynamics but reached much lower levels, suggesting they might constitute a separate
60 population. Proteome analysis uncovered an enrichment of biotic stress response proteins
61 associated with the extracellular vesicles. The barley t-SNARE protein Ror2, the ortholog of
62 the PEN1 marker protein of extracellular vesicles in *Arabidopsis thaliana*, accumulates in
63 extracellular vesicles during powdery mildew infection, hence also qualifying as a potential
64 marker protein. Our study serves as a starting point for investigating the role of extracellular
65 vesicles at different stages of plant-microbe interactions.

66

67 **Introduction**

68 Extracellular vesicles (EVs) are evolutionarily conserved structures of ~30-1,000 nm in size
69 surrounded by a lipid bilayer and secreted by cells into the extracellular space (Colombo *et*
70 *al.* 2014). During the last decades, their role as mediators of intra- and inter-organismal cell-
71 cell communication has been established in various kingdoms of life, inducing physiologically
72 relevant changes in recipient cells (Tkach & Théry 2016; Rybak & Robatzek 2019; U Stotz *et*
73 *al.* 2022). Particularly well-explored in mammalian studies, their diverse cargo biomolecules,
74 in various cell states and diseases underscore their potential for biomarker development and
75 novel therapeutics (Herrmann *et al.* 2021; Stranford & Leonard 2017).

76 The presence of EVs in plants and their potential as mediators of cell-cell communication
77 remained unremarked for over 50 years after their first description (Aist & Williams 1971;
78 Halperin & Jensen 1967; Shaw & Manocha 1965). However, this topic has gained increasing
79 attention in plant biology in recent years. EVs have been observed in apoplastic wash fluids
80 (AWF) derived from various plant parts — leaves, roots, imbibing seeds, pollen, and fruits
81 (Rutter & Innes 2017; Cai *et al.* 2018; Ju *et al.* 2013; Prado *et al.* 2014). In plant-microbe
82 interactions, evidence is accumulating to suggest the involvement of EVs in the mutual
83 manipulation of plant hosts and their colonizing microbes (Cai *et al.* 2021; Qiao *et al.* 2023).

84 In such encounters, EVs were first discovered in *Arabidopsis thaliana* infected by the
85 bacterial pathogen *Pseudomonas syringae* (Rutter & Innes 2017). Various types of cargo
86 molecules, including nucleic acids (Ruf *et al.* 2022), proteins (He *et al.* 2021), and cell wall
87 components (La Canal & Pinedo 2018; Bellis *et al.* 2022) have been found in association with
88 EVs. Small RNAs of 18-25 nucleotides in size are frequently described as associated with EVs
89 and are thought to mediate mutual cross-kingdom gene silencing in pathogenic (Cai *et al.*
90 2019) and mutualistic (Qiao *et al.* 2023) plant-microbe encounters. Apart from canonical
91 small RNAs, circular RNAs (Zand Karimi *et al.* 2022), rRNA fragments (Kusch *et al.* 2023;
92 Panstruga & Spanu 2024) and mRNAs (Kwon *et al.* 2021; Ruf *et al.* 2022; Wang *et al.* 2024)
93 have been linked to these vesicles. Proteins associated with plant EVs are often enriched in
94 stress- and immunity-related proteins, but also RNA-binding proteins possibly involved in
95 RNA-loading onto EVs (Rutter & Innes 2017; Regente *et al.* 2017; He *et al.* 2021). Microbial
96 EVs are generally thought to promote plant colonisation and were reported to be connected
97 to modulating primary metabolism and virulence (Hill & Solomon 2020; Solé *et al.* 2015;
98 Rutter *et al.* 2022). Despite the well-established association of different types of

99 biomolecules with plant- and microbe-derived EVs, the precise localisation of these, inside or
100 outside of EVs, remains in many cases unresolved and a matter of an ongoing debate (Nasfi
101 & Kogel 2022; Zand Karimi *et al.* 2022; Cai *et al.* 2018).

102 EVs have diverse biogenesis pathways, which are best characterised in the animal/human
103 field; they are broadly classified into apoptotic bodies from dying cells, microvesicles
104 shedding off the plasma membrane, and exosomes derived from multivesicular bodies
105 (Greening & Simpson 2018; Cocucci & Meldolesi 2015). In addition to these categories, at
106 least two plant-specific EV types—exocyst-positive organelle-derived EVs (EXPO) and
107 membrane tubules—have been proposed (Roth *et al.* 2019; Wang *et al.* 2010). The
108 identification of marker proteins potentially discriminating EVs of different origin is pivotal
109 for exploring EV functions. These markers for example, can, be used to track EV
110 subpopulations by immunological or microscopy techniques (Bağcı *et al.* 2022). In
111 *Arabidopsis*, the tetraspanin TET8 has been suggested as a marker for exosome-like EVs
112 since it colocalises with the multivesicular body marker ARA6 (Cai *et al.* 2018). Other EV
113 populations in *Arabidopsis* are identified by the patellin protein PATL1 and the syntaxin (t-
114 SNARE protein) PEN1 (Rutter & Innes 2017).

115 Powdery mildew is a common disease of angiosperm plants. It is caused by obligate
116 biotrophic ascomycete fungi that colonise above ground plant tissues (Glawe 2008).
117 Accumulating evidence points to a cross-kingdom transfer of EVs in the course of plant-
118 powdery mildew interactions. For example, upon infection of barley (*Hordeum vulgare*) and
119 *Arabidopsis thaliana* with their compatible powdery mildew fungi, multivesicular bodies
120 accumulate at plant-pathogen contact sites (An *et al.* 2006; Micali *et al.* 2011). The fusion of
121 multivesicular bodies with the plasma membrane not only results in the direct release of
122 molecules from the lumen into the extracellular space but also supposedly leads to the
123 discharge of intraluminal vesicles, generating exosome-like EVs (Micali *et al.* 2011).
124 Moreover, both the *Arabidopsis* EV marker PEN1 and its barley ortholog, Ror2, associate
125 with multivesicular bodies and have been observed to accumulate extracellularly in
126 pathogen-induced cell wall appositions (papillae) during both compatible and incompatible
127 interactions (Bhat *et al.* 2005; Assaad *et al.* 2004; Böhlenius *et al.* 2010; Meyer *et al.* 2009).
128 Finally, we and others gathered evidence, both *in silico* and *in vivo*, suggesting the natural
129 exchange of sRNAs in the barley-*Blumeria hordei* pathosystem, potentially facilitated
130 through EVs (Kusch *et al.* 2018; Kusch *et al.* 2023; Hunt *et al.* 2019). This notion is further

131 corroborated by the earlier discovery of the phenomenon of “host-induced gene silencing”
132 (HIGS), i.e. the suppression of pathogen transcripts in their natural environment by the
133 expression of complementary double-stranded RNAs inside host cells, in the context of the
134 barley-*B. hordei* interaction (Nowara *et al.* 2010).

135 In general, separation and characterisation of plant EVs follow procedures similar to those
136 established in other organisms. In plants, leaf AWF typically serves as the source material,
137 which differs from body fluids or cell culture media often used in other systems (Rutter &
138 Innes 2017). Differential centrifugation remains the method of choice for EV enrichment in
139 both plants and other types of organisms (Gardiner *et al.* 2016). However, the long handling
140 times pose a severe disadvantage for this experimental route. Polymer-mediated
141 precipitations, now often used in other organisms for EV isolation and functional studies,
142 have not been employed in plants yet (Martínez-Greene *et al.* 2021). This isolation
143 procedure relies on niches in polymer structures to capture EVs (Grunt *et al.* 2020).

144 Irrespective of the first preparative step, usually a second purification step is conducted to
145 reduce co-purifying contaminants or separate EV subtypes. The identified EV content
146 depends on both the isolation procedure and the efforts to distinguish genuine EV cargo and
147 from co-purifying contaminants (Clos-Sansalvador *et al.* 2022; Taylor & Shah 2015).

148 Here we explored further the role of EVs in the interaction between barley and its obligate
149 biotrophic fungal pathogen, *B. hordei*. We undertook a comparative characterisation of EVs
150 isolated using two distinct EV isolation protocols (differential ultracentrifugation and
151 polymer-based enrichment (PME)) and characterised the obtained EVs regarding their
152 morphology and abundance by transmission electron microscopy and nanoparticle tracking
153 analysis (NTA). Through a time-course experiment spanning all developmental stages of the
154 asexual *B. hordei* life cycle, we monitored the size and abundance of EVs and tracked the
155 accumulation of the *Arabidopsis* EV marker ortholog Ror2. Complementing this
156 comprehensive characterisation, we compiled an EV proteome catalogue and assessed
157 potential marker proteins using a protease protection assay and size exclusion
158 chromatography.

159

160 **Materials and Methods**

161 **Plant and pathogen cultivation**

162 Barley (*H. vulgare* L. cv. "Margret") was grown in So-Mi513 soil (HAWITA, Vechta, Germany)
163 or Bio Topferde torffrei soil (HAWITA, Vechta, Germany) under a long day cycle (16 h light at
164 23 °C, 8 h darkness at 20 °C) at 60%-65% relative humidity and a light intensity of 105-120
165 $\mu\text{mol s}^{-1} \text{m}^{-2}$. Seven-day-old barley plants were inoculated with *B. hordei* strain K1; the
166 infected plants were kept under controlled conditions in a growth chamber with a long day
167 cycle (12 h light at 20 °C, 12 h dark at 19 °C) at ca. 60% relative humidity and 100 $\mu\text{mol s}^{-1} \text{m}^{-2}$
168 light intensity.

169 **AWF extraction and EV isolation**

170 AWF was extracted from non-inoculated barely plants or after inoculation with *B. hordei*
171 strain K1. Trays of both inoculated and non-inoculated plants were covered with lids and
172 incubated prior to AWF extraction. Approximately 30 g of leaf fresh weight was collected
173 and vacuum-infiltrated with potassium vesicle isolation buffer (Kusch *et al.* 2023). Excess
174 buffer was carefully removed and the leaves were placed with cut ends down in 20-ml
175 syringes. The syringes were inserted into 50-ml centrifuge tubes. AWF was collected by
176 centrifugation at 400 g for 12 min at 4 °C. Cellular debris was removed by passing the AWF
177 through a 0.45- μm syringe filter and further centrifugation at 10,000 g for 30 min at 4 °C. EVs
178 were isolated from AWF by ultracentrifugation according to a recently published protocol
179 (Rutter *et al.* 2017). The AWF was first centrifuged for 1 h at 40,000 g (4 °C) and the
180 supernatant subsequently for 1 h at 100,000 g (4 °C) to collect two EV fractions, termed P40
181 and P100. Alternatively, a single EV sample was collected by PME using the "PME exosomes
182 enrichment kit" (IST Innuscreen, Berlin, Germany) according to the manufacturer's
183 instructions. All EV pellets were dissolved in 20 mM Tris-HCl (pH 7.5). When indicated, EVs
184 were further purified by passing through qEVoriginal/70 nm size exclusion chromatography
185 columns (IZON, Lyon, France). EVs were either stored at 4 °C if morphology was analysed or
186 snap-frozen and stored at -80 °C for other types of subsequent analysis.

187 **Trypan blue staining**

188 Staining with trypan blue was performed as described before (Mulaosmanovic *et al.* 2020).
189 The barley leaves were cleared in ethanol:acetic acid (3:1) for two days. The cleared leaves

190 were then stained using 0.01% trypan blue in dH₂O (w/v) for four hours. Leaves were
191 washed and then stored in dH₂O.

192 **Protein extraction and immunoblot analysis**

193 Total protein extracts were prepared as described previously (Rutter & Innes 2017) by
194 homogenising approximately 200 µl frozen leaf tissue in 400 µl protein extraction buffer
195 (150 mM NaCl, 50 mM Tris pH 7.5, 0.1% (v/v)) and centrifuging for 10 min at 12,000 g (4 °C)
196 to remove cell debris. Alternatively, total protein extraction was performed using phenol as
197 described (Thomas *et al.* 2015). Proteins were denatured in 6x loading buffer (12% SDS, 47%
198 glycerol, 60 mM Tris pH 6.8, 9% DTT (v/v)), by heating at 99 °C for 10 min and then subjected
199 to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When indicated, protein gels
200 were stained with silver as described (Chevallet *et al.* 2006) or Quick Coomassie Stain
201 (Protein Ark, Rotherham, UK) according to the manufacturer's instructions. Alternatively,
202 proteins were transferred to a nitrocellulose membrane and used for immunodetection.
203 Antibodies were purchased from Eurogentec (Liège, Belgium, custom-made polyclonal
204 αRor2, (Collins *et al.* 2003), Agrisera (Vännäs, Sweden, αPsbA/D1 - AS05 084, αPR-1 - AS10
205 687, αRbcL - AS03 037, αCPN60A1 - AS12 2613), Dako A/S custom (Glostrup, Denmark, αPR-
206 17b, provided by Hans-Thordal Christensen lab) or Cell Signaling Technologies (Danvers, MA,
207 USA, α-rabbit IgG-HRP, #7074). Chemiluminescence detection of antigen-antibody
208 complexes was performed with SuperSignal™ West Pico or Femto Western substrate
209 (Thermo Fisher Scientific, Darmstadt, Germany). As a loading control, membranes were
210 stained in Ponceau S (Applichem, Darmstadt, Germany) solution (0.05% (w/v) in 5% (v/v)
211 acetic acid).

212 **Transmission electron microscopy**

213 EVs in 0.2 M HEPES (pH 7.5) were allowed to adsorb on glow discharged formvar-carbon-
214 coated nickel grids (Maxtaform, 200 mesh, Science Services GmbH, Munich, Germany) for 7
215 min. Negative staining was performed with 0.5% uranyl acetate (in aqua dest., Science
216 Services GmbH, Munich, Germany) or 1% phosphotungstic acid (in aqua dest., Science
217 Services GmbH, Munich, Germany). Grids were air-dried and imaged using a Hitachi HT7800
218 transmission electron microscope (Hitachi, Tokyo, Japan) operating at an acceleration
219 voltage of 100 kV.

220 **NTA analysis**

221 NTA analysis was performed with a NanoSight NS300 and NanoSight software version 3.2
222 (Malvern, Worcestershire, UK). EV samples were diluted with MilliQ H₂O to a final volume of
223 1 ml right before measurement. Ideal measurement concentrations were determined by
224 pre-testing the ideal particle per frame value (20-100 particles/frame). The following settings
225 were chosen according to the manufacturer's manual using the 488 nm laser with a camera
226 level of 12, a slider shutter of 1,200, and a slider gain of 146. Per sample, five to six videos of
227 each 60 s with 25 frames per s were captured at a constant temperature of 25 °C and
228 assuming a water-like viscosity. Of the six captured videos, all videos passing the validity
229 assessment by the software were analysed with a detection threshold of seven and blur size
230 and maximum jump distance set to automatic. In addition, raw data was normalised against
231 the leaf fresh weight of the individual experiment and further analysed using Microsoft Excel
232 for Mac version 16.55 (21111400) by merging the raw data of separate biological replicates
233 with the same treatment. Data were plotted in GraphPad (Boston, MA, USA) Prism version 8.

234 **Protein identification by mass spectrometry**

235 Samples for mass spectrometry were prepared using the single-pot, solid-phase-enhanced
236 sample-preparation (SP3) technology (Hughes *et al.* 2019) before being subjected to a
237 trypsin digest over night at 37 °C. Samples were dimethyl labelled on peptide-level for 2h
238 using 30 mM sodium cyanoborohydride and 30 mM ¹²CH₂O for control and 30 mM ¹³CD₂O
239 for *B. hordei*-infected samples (Boersema *et al.* 2009). Reactions were quenched with 100
240 mM Tris after 2h labelling at 37°C, combined in a 1:1 ratio, and purified with custom-packed
241 C18 StageTips (Rappsibler *et al* 2007). Peptides were analysed by nano HPLC-MS/MS with a
242 Ultimate 3000 nanoRSLC (Thermo Fisher Scientific, Darmstadt, Germany) operated in a two-
243 column setup (2 cm PepMap C18 trap, 75 µm ID, and 25 cm Acclaim PepMap C18 analytical
244 column, 75 µm ID, Thermo Fisher Scientific, Darmstadt, Germany), coupled to a Bruker
245 impactII Q-TOF instrument using gradient and acquisition parameters as described (Misas
246 Villamil *et al.* 2019). Peptides were identified with the MaxQuant software package (Tyanova
247 *et al.* 2016), version 1.6.10.43, using the *B. hordei* and *H. vulgare* UniProt reference
248 proteomes (downloaded December 2019) including isoform-specific sequences and
249 appended standard contaminants as database. For the query, up to one missed cleavage was
250 allowed, and cysteine carboxyamidomethylation (57.0214 Da), lysine and N-terminal
251 dimethylation (¹²CH₂O 28.0313 Da; ¹³CD₂O 34.0631 Da) were set as labels, and methionine

252 oxidation as a variable modification. The false discovery rate for spectrum, peptide and
253 protein identification was set to 0.01.

254 Only proteins observed in at both biological replicates and identified with at least two
255 unique peptides were considered in further analysis. Transmembrane domains and signal
256 peptides were predicted using TMHMM version 2.0 (Krogh *et al.* 2001);
257 <https://services.healthtech.dtu.dk/services/TMHMM-2.0/> and SignalP version 5.0 ((Almagro
258 Armenteros *et al.* 2019); <https://services.healthtech.dtu.dk/services/SignalP-5.0/>),
259 respectively.

260 **Protease protection assay**

261 PME-derived EVs were resuspended in 20 mM Tris-HCl (pH 7.5). Proteinase K digest was
262 performed as described previously (Chow *et al.* 2019). Samples were split into three equal
263 parts and treated with proteinase K at a final concentration of 5 µg/ml, in the absence or
264 presence of 0.05% Triton X-100. One part was kept untreated. All parts were incubated at 37
265 °C for 1 h prior to denaturing protein gel electrophoresis and immunoblot analysis.
266 Alternatively, a protease protection assay (Rutter & Innes 2017) was performed. The EV
267 sample was split into four equal parts and treated with 100 µg/ml trypsin, 5% Triton X-100 or
268 pre-treated with 5% Triton X-100 followed by treatment with 100 µg/ml trypsin. Triton X-100
269 treatment was carried out on ice for 30 min. Proteins were digested with trypsin at 37 °C for
270 1 h. All samples, including the control sample, were subjected to the same incubation
271 temperatures and times.

272

273 **Results**

274 **The protein profile of barley leaf AWF changes in response to powdery mildew infection**

275 To extract AWF, we established a procedure originally developed for barley (Rohringer *et al.*
276 1983) and further amended it according to a recently reported method ((Rutter & Innes
277 2017); Figure 1A – see Materials and Methods for further details). We collected AWF from
278 non-inoculated (control) and *B. hordei*-inoculated primary barley leaves and visualised its
279 protein content by sodium dodecyl sulfate polyacrylamide gel electrophoresis and silver
280 staining. All AWF-derived protein samples (collected at 0, 24 and 72 hours post inoculation
281 (hpi)) showed a markedly different protein pattern compared to a corresponding whole leaf
282 extract sampled at 72 hpi (Figure 1B). Prominent protein bands of the whole leaf extract
283 were mostly absent or underrepresented in the AWF samples; conversely, pronounced
284 protein bands of the AWF samples were essentially unrecognizable in the whole leaf extract.
285 We also noticed that the AWF protein profile changed in the course of *B. hordei* infection:
286 Samples derived from AWF collected at 24 and 72 hpi showed overall additional and/or
287 more intense bands as compared to the non-inoculated (0 hpi) AWF control sample (Figure
288 1B).

289 We further analysed samples of total leaf extract and AWF (collected at 0, 24 and 72 hpi) by
290 immunoblot analysis. We probed the blots with antibodies directed against photosystem II
291 protein D1 (PsbA/D1, a thylakoid membrane marker protein; (Huokko *et al.* 2021), Ror2 (a t-
292 SNARE protein and the barley ortholog of the established *Arabidopsis* EV marker PEN1;
293 (Collins *et al.* 2003)) and the defence-related protein PR-1 (pathogenesis-related protein 1;
294 (Pečenková *et al.* 2022)). While we detected as expected strong bands using the α PsbA/D1
295 antibody in the leaf extract at all time-points indicated, the signal was below detection limit
296 in all AWF samples, suggesting little, if any, chloroplastic/cytoplasmic contamination in the
297 AWF (Figure 1C). This observation was supported by a comparison of unprocessed (non-
298 infiltrated) leaves and leaves subjected to AWF isolation stained with trypan blue to visualise
299 dead cells (Supplemental Figure1). The Ror2 protein was undetectable prior to pathogen
300 challenge in both leaf and AWF samples; however, bands of weak (leaf extract) or medium
301 (AWF) intensity were present in the samples collected at 24 and 72 hpi. In the case of the
302 AWF-derived samples, signal intensity at 72 hpi was higher than at 24 hpi. A similar pattern
303 was seen for the accumulation of PR-1: The protein was below detection limit in leaf extract

304 collected at 0 h and 24 hpi and only weakly recognizable in the 72-hpi sample. In the AWF
305 samples, the protein was not detectable at 0 hpi and increased in abundance from 24 hpi to
306 72 hpi, showing a strong signal at the latter time-point (Figure 1C). Based on the combined
307 examination of protein extracts by protein gel electrophoresis (Figure 1B) and immunoblot
308 analysis (Figure 1C) at two time points following inoculation with *B. hordei*, we conclude that
309 (1) the modified extraction protocol yields AWF with minimised chloroplastic/cytosolic
310 protein contamination, and that (2) the method is sensitive enough to detect pathogen-
311 induced changes in the AWF-associated protein profile. Considering the pronounced changes
312 in the AWF protein pattern seen at 72 hpi and accumulation of the PEN1 ortholog Ror2, we
313 focused on this time-point for the following analyses.

314 **The barley leaf apoplast contains a heterogeneous population of prototypical EVs**

315 To isolate crude EVs from barley leaf AWF, we compared two different methods. First, we
316 used a sequential differential ultracentrifugation protocol to collect two EV fractions
317 pelleted at 40,000 *g* (P40) and 100,000 *g* (P100; (Rutter & Innes 2017); Figure2A).
318 Alternatively, we captured EVs by polymer-mediated enrichment (PME, (Grunt *et al.* 2020);
319 Figure2B). To validate the presence of vesicle-like structures, we performed transmission
320 electron microscopy on P40, P100, and PME fractions isolated from the AWF of non-
321 inoculated and inoculated (sampled at 72 hpi) barley leaves. Electron microscopy samples
322 were stained with uranyl acetate except the PME fraction, for which phosphotungstic acid
323 was used, because uranyl acetate stained polymers used during isolation of EVs by PME
324 (Supplemental Figure2).

325 The P40 fraction frequently contained particles of varying size with a characteristic cup
326 shape (Figure2C). The cup shape is a known technical artefact of the negative staining of
327 spherical lipid-bilayer compartments and is commonly used as an indicator for vesicles
328 (Théry *et al.* 2006; Chernyshev *et al.* 2015). The presumed vesicles were accompanied by
329 smaller granular particles that did not display any apparent lipid bilayer and smaller, less
330 electron-dense particles (Figure 2C). Inoculation with *B. hordei* did not affect the
331 morphology of the vesicles observed at 72 hpi, and smaller grainy objects were still
332 sporadically present, while electron-light objects were largely absent (Figure2C). The small
333 granular objects, which were less predominant in the P40 fraction, were the main
334 constituent of the P100 fraction and characteristic cup-shaped vesicles were only

335 occasionally visible (Figure2C). Circular objects present in the P100 fraction appeared larger
336 than those collected from the P100 fraction of non-inoculated leaf tissue (Figure2C). Their
337 granular appearance was reminiscent of ribulose-1,5-bisphosphate carboxylase/oxygenase
338 (RuBisCO) complexes previously documented in other species (Raunser *et al.* 2009; Bowien
339 & Mayer 1978). However, we did not detect RuBisCO by immunoblotting of the P100
340 fraction (Supplemental Figure 3), essentially excluding that the circular objects represent
341 RuBisCo complexes. Comparing the constituents recovered at 40,000 *g* and 100,000 *g*, we
342 conclude that centrifugation at 40,000 *g* is sufficient to isolate vesicle-like structures from
343 barley leaf AWF, while higher centrifugation force (100,000 *g*) yields mostly granular
344 particles of unknown origin and identity. Particles isolated by PME mostly comprised
345 characteristic cup-shaped vesicles of different size (Figure2D). Additionally, smaller electron-
346 light particles similar to those observed in the P40 fraction and, rarely, small grainy particles
347 were present. Infection by *B. hordei* (72 hpi), did not change the observed vesicle
348 morphology compared to the P40 fraction (Figure2D). Together, these results demonstrate
349 that PME-derived EVs largely resemble the centrifugation based P40 fraction. We, thus,
350 conclude that characteristic vesicles that have cup-shaped morphology in electron
351 microscopic analysis can be isolated from the barley leaf apoplast using two different
352 methods.

353 We further compared EVs isolated from the same starting material by either
354 ultracentrifugation or PME in immunoblots probed with α Ror2, α PR-1 and α PsbA/D1.
355 Overall, we observed similar protein patterns (Figure 2E), supporting the conclusion that
356 comparable EV populations can be isolated with both methods. At 72 hpi, Ror2 was
357 detectable in both P40- and PME-derived EV preparations, with a stronger signal in the PME
358 than in the P40-based sample. Interestingly, Ror2 was also detectable in supernatant
359 samples (the EV-depleted AWF). There, the opposite trend was seen (Figure 2E). This
360 indicates that extracellular Ror2 is both associated with EVs and present in the vesicle-free
361 fraction. Surprisingly, PR-1 was also detected in both EV preparations following pathogen
362 challenge, with a stronger signal in the PME-derived EV sample. Moreover, we observed a
363 stronger signal for PR-1 in the supernatant of both centrifugation- and PME-derived EVs,
364 indicating that the majority of this protein is secreted *via* the canonical pathway, i.e. not
365 associated with EVs. The band corresponding to RuBisCO, visible after Ponceau staining of
366 the proteins blotted on the membrane, suggests that there is some intracellular

367 contamination in both displayed EV preparations; however, it is weaker in the PME sample.
368 Together with the electron micrographs (Figure 2C and D), the presented data indicate that
369 PME is better suited than ultracentrifugation to enrich EVs and their associated proteins (e.g.
370 Ror2), and to reduce intracellular contaminants related to the isolation procedure.

371 Next, we determined the size (hydrodynamic diameter) and abundance of particles
372 recovered in ultracentrifugation- and PME-based EV preparations *via* NTA. NTA profiles
373 obtained for P40-, P100- and PME-derived EVs each revealed a typical size distribution
374 pattern for polydisperse samples (Vogel *et al.* 2021), i.e. a broad distribution with several
375 peaks (Figure 3). A main peak between 100 nm and 300 nm was evident in the P40 and PME
376 samples and became more prominent in samples from infected leaves, which was also
377 reflected by a strong increase in frequency of these in PME samples (Figure 3A, C, and D). In
378 addition, a second, more moderate peak of particles between 400 nm and 500 nm in size
379 became more prominent in PME samples following challenge with *B. hordei*, which might
380 represent a second pathogen-responsive EV population (Figure 3C, Supplemental Figure 5B).
381 Interestingly, the size distribution of P100 samples derived from non-inoculated tissue
382 largely resembled the distribution of the corresponding P40 preparation, likely because the
383 small circular objects observed in the P100 sample in electron microscopy (Figure 2C) were
384 below the operation range of the NTA device (Figure 3B). Alternatively, the results might
385 indicate that the centrifugation time at 40,000 *g* is insufficient to pellet dense particles.
386 However, we found that longer centrifugation time rather affects particle integrity instead of
387 improving their separation, in line with observations from other systems (Supplemental
388 Figure 4; (Taylor & Shah 2015)). We noticed that in PME samples obtained from both non-
389 inoculated and inoculated leaves, the harvest of particles per ml/g fresh weight was higher
390 compared to the fraction isolated by centrifugation, and the associated variance was also
391 lower (compare Figure 3A and 3B with Figure 3C). This outcome further substantiates that
392 PME is more efficient and reproducible than high-speed centrifugation to enrich EVs from
393 barley leaf AWF. In summary, we conclude that the barley leaf apoplast contains a
394 heterogenous population of EVs with a main population of ~100 nm - 300 nm in diameter.
395 Further, this population rises after infection with *B. hordei*, suggesting a selective response
396 of barley to the fungal pathogen.

397 **Evidence for the dynamic accumulation of separate barley leaf EV populations during**
398 **fungal pathogenesis**

399 Next, we investigated how barley leaf EVs accumulate throughout the full course of infection
400 by isolating EVs *via* PME either prior to inoculation (0 hpi) or at 8, 24, 48, 72, 96, and 120 hpi
401 with *B. hordei*. Their overall abundance increased as fungal proliferation progressed, in
402 particular at 96 hpi and 120 hpi, reaching an overall abundance of almost 25-fold at 120 hpi
403 in comparison to vesicles from non-inoculated control samples (Figure 4A, Supplemental
404 Figure 5A). While the size distribution profile remained largely consistent over the time-
405 course of infection, a major peak became apparent as the infection progressed (Figure 4A, B;
406 Supplemental Figure 5A). Dividing the data into 100 nm bins revealed that this peak is
407 caused primarily by a notable increase in particles ranging from 100 nm to 200 nm and 200
408 nm to 300 nm in diameter (Figure 4B). Vesicles of these two size classes did not change
409 drastically until after 72 hpi (~1- to 2.5-fold), but rose dramatically ~10- and 50-fold 96 hpi
410 and 120 hpi, respectively, compared to non-infected controls. Vesicles ranging from 300 nm
411 to 400 nm and 400 nm to 500 nm in diameter showed a similar dynamic, but accrued much
412 lower levels at 96 hpi and 120 hpi (~2- to 3-fold compared to the non-infected control
413 sample). The differential accumulation profile suggests that they might represent a separate
414 EV population compared to the main peak caused by vesicles of 100 nm to 300 nm in
415 diameter (Supplemental Figure 5B).

416 **Ror2 partly associates with EVs**

417 To complement the NTA data, we monitored the accumulation of the potential EV marker
418 protein Ror2 in vesicle, supernatant and total leaf extract samples by immunoblot analysis in
419 the course of fungal infection. In the vesicle samples, monomeric Ror2 (predicted molecular
420 mass of 34 kDa) was below detection limit prior to pathogen challenge (0 hpi), but from 24
421 hpi onwards, its levels increased steadily as fungal infection progressed (Figure 4C). Besides
422 the monomeric Ror2 species, an additional specific Ror2 signal at a molecular mass of
423 around 75 kDa was detectable in vesicle samples derived from non-inoculated leaves (0 hpi).
424 This signal gradually decreased in intensity, reaching detection limit at later stages of fungal
425 infection (from 48 hpi onwards). The 75-kDa Ror2 variant could also be recognized in total
426 leaf extract of barley wild type, but not of *ror2-1* mutant plants (Supplemental Figure 5C). In
427 total leaf extract, both Ror2 signals (34 kDa and 75 kDa) remained essentially unaltered in
428 intensity in the course of fungal infection (Figure 5D). In the vesicle samples, the 75 kDa
429 species was resistant to treatment with up to 4M urea (Supplemental Figure 5D). In contrast
430 to the vesicle samples, this variant was below detection limit in the corresponding

431 supernatant samples, which nonetheless revealed a similar dynamics of the monomeric (34
432 kDa) Ror2 signal as seen in the respective vesicle samples in the course of fungal infection
433 (Supplemental Figure 5E). Taken together, the data suggests that Ror2 in part associates
434 with EVs. It further hints at opposing accumulation dynamics of monomeric Ror2 and a 75-kDa
435 Ror2 variant in the vesicles upon challenge with *B. hordei*.

436 **The barley leaf apoplastic EV proteome contains many stress-related proteins and is only**
437 **in part responsive to *B. hordei* infection**

438 To better understand the proteins associated with EVs derived from the barley leaf apoplast
439 and to explore potential EV markers, we isolated crude EVs from AWF from non-inoculated
440 barley leaves and leaves sampled at 72 hpi by ultracentrifugation and examined them using
441 label-free mass spectrometry. Our analysis identified in total 216 proteins based on two
442 replicates, consisting each of a non-inoculated and an inoculated sample. Seventy of these
443 proteins were present in both replicates and had a unique peptide count of at least two
444 (Table 1). Interestingly, two of the three most abundant proteins were RuBisCO large
445 subunit-binding proteins (subunits alpha and beta; A0A8I6W9H5 and A0A8I6YA55,
446 respectively). RuBisCO large subunit-binding proteins are proteins of the chaperonin 60
447 family. The detection of cytosolic proteins is not unexpected as molecules associated with
448 EVs to some extent represent the cytosolic content of their donor cells (Hurwitz *et al.* 2016).
449 Moreover, the human chaperonin 60 (CPN60/HSP60) is a marker of exosomes, particularly in
450 cancer cells (Caruso Bavisotto *et al.* 2017). The barley genome encodes two CPN60 isoforms
451 that share high amino acid sequence similarities with human CPN60 (Supplemental Figure
452 6A), which is also reflected by comparable predicted 3D structures of the Arabidopsis, barley
453 and human proteins (Supplemental Figure 6B). Using an antibody directed against
454 Arabidopsis CPN60 subunit alpha we confirmed the accumulation of barley CPN60 in EVs in
455 comparison to AWF or supernatant, but not compared to total leaf extract (Supplemental
456 Figure 6C). Further marker candidates are the two 14-3-3 domain-containing proteins
457 (M0X3R2, F2CRF1), given that 14-3-3 proteins have been proposed to represent markers of
458 human exosomes (Choi *et al.* 2015).

459 Other noteworthy proteins detected in the crude EV proteome are cell wall remodelling
460 enzymes (A0A8I6YK01, A0A8I6WZ78, A0A8I6Y6U2, A0A8I6Y217, and F2D5M4) that might aid
461 the reorganisation of the extracellular space for the passage of EVs. In line with previous

462 publications investigating plant EV proteomes (Rutter & Innes 2017; Regente *et al.* 2017), we
463 found 31 proteins (~22% of all identified proteins) that are known to or likely to be involved
464 in either biotic or abiotic stress responses (Table 1), some of which have already been
465 described in the barley-*B. hordei* interaction (e.g. PR-5 (AOA287Q809, (Lambertucci *et al.*
466 2019)). It is striking that many of the stress-related proteins can be classified as
467 pathogenesis-related proteins (13 proteins, ~19% of all identified proteins, Table 1). This is
468 surprising since most pathogenesis-related proteins have an amino-terminal signal peptide
469 and are delivered to the extracellular space *via* the conventional secretion pathway.
470 However, the total number of proteins with a predicted signal peptide (~30% of all identified
471 proteins, Table 1) was moderate. Further, we identified several proteins that are reported to
472 be secreted but lack a canonical amino-terminal signal peptide such as a carboxypeptidase
473 (AOA8I7B2A7) and A1 peptidases (AOA8I6YYE1, AOA8I6X3I7, M0XRM3, and AOA8I6Y3Y6;
474 (Kusumawati *et al.* 2008; Agrawal *et al.* 2010; Segarra *et al.* 2003)). In summary, these results
475 suggest EVs may be mediators of a distinctive secretion pathway in barley, especially for
476 stress-related proteins. Alternatively, these proteins may loosely associate and thus co-
477 purify with EVs.

478 In the samples collected at 72 hpi, 18 proteins had a log2 fold change >2 in the label-free
479 quantification compared to samples derived from uninfected tissue, or were only detected
480 in samples from infected tissue (Table 1). Among these, the portion of stress-related
481 proteins was even larger compared to non-inoculated tissue (12 proteins, ~66%), in
482 particular the fraction of already characterised or probable pathogenesis-related proteins
483 (10 proteins, ~55%). We found PR-1a and PR-1b, also associated with P40 and PME EV
484 preparations as well as the supernatant (Figure 2E, Supplemental Figure 6D); interestingly
485 PR-1a and PR-1b often serve as markers for conventionally secreted proteins in immunoblots
486 (Wang & Fobert 2013). Only two proteins were uniquely present after inoculation: the 40S
487 ribosomal protein S8 (F2D483) and a β-1,3-glucanase (AOA8I6WTD6), which is classified as
488 member of the PR-2 proteins in the context of plant-microbe interactions (Dos Santos &
489 Franco 2023). Together with the NTA results (Figure 3 and 4), our findings indicate that the
490 *B. hordei*-induced changes are rather quantitative than qualitative, which is in line with a
491 previous study investigating *Arabidopsis* EVs upon infection with the bacterial pathogen
492 *Pseudomonas syringae* (Rutter & Innes 2017).

493 **Ror2 might qualify as an EV marker**

494 Finally, we wanted to assess whether proteins identified by mass spectrometry in crude P40
495 samples as well as the barley orthologue of *Arabidopsis* EV marker PEN1, Ror2, are directly
496 associated with barley leaf EVs. We probed size exclusion chromatography fractions and
497 protease-treated EV samples using the antibody raised against Ror2 (Supplemental Figure
498 5E) and antibodies directed against PR-1 and PR-17b. The latter (AOA8I6YZ79) was
499 represented by 13 unique peptides and hence one of the most abundant proteins isolated
500 from the AWF of inoculated leaves. Additionally, we selected PR-1, as surprisingly both PR-1a
501 (F2DMI6) and PR-1b (P35793) were detected by protein mass spectrometry. Size exclusion
502 chromatography is a common strategy to purify crude EV samples based on separation from
503 soluble proteins and other small molecules by size. Here, we used this chromatographic
504 technique to provide evidence of whether a protein is firmly associated or just co-isolated
505 with EVs. We observed that EVs primarily elute in chromatography fractions 2-4, and the
506 NTA profile of the fraction with the highest concentrations of EVs mirrored that of crude EVs
507 (Supplemental Figure 7). Only the ~75-kDa Ror2 signal described above (cf. Figure 4C) was
508 observed in the fractions even though the monomeric signal (34 kDa) is present in the
509 supernatant of the same sample (Figure 5A). This signal was most abundant in fractions 2-4,
510 which coincide with EV elution. Additionally, it was detected in fraction 7, suggesting the
511 presence of different pools of Ror2 present in crude EV samples. Both PR-1 and PR-17b
512 eluted in later fractions (PR-1 in fractions 11-16, PR-17b in fractions 10-11) where soluble
513 proteins are expected, indicating that these proteins are co-isolated, likely due to aggregate
514 formation or technical artefacts, possibly arising from their high abundance in the apoplast,
515 or a loose attachment to EVs (Figure 5A).

516 Protease protection assays are valuable tools to determine if a protein resides in the EV
517 lumen or outside (Chow *et al.* 2019; Chaya *et al.* 2023; Théry *et al.* 2018). Equal amounts of
518 PME-derived EV samples were treated with either proteinase K or trypsin in the presence or
519 absence of Triton X-100, or were left untreated. Proteins within the EV lumen are expected
520 to be protected by the lipid membrane and remain intact after exposure to the protease but
521 to be digested when detergent (Triton X-100) is added. Surprisingly, the results differed
522 between the protocols applied (trypsin or proteinase K). Ror2 was partially digested only
523 when both trypsin and the detergent were present, suggesting that Ror2 is present in the EV
524 lumen (Figure 5C). This notion is supported by the observation that the Ror2-specific ~75-
525 kDa signal elutes in SEC fractions together with EVs (Figure 5A). On the other hand, when

526 proteinase K was applied, Ror2 could no longer be detected once proteinase K was included
527 (irrespective of the presence or absence of Triton X-100), indicating that the t-SNARE protein
528 is not protected from digestion and, thus, is unlikely to reside in the EV lumen (Figure 5B). In
529 addition to the Ror2-specific antibody, we also used an antibody directed against PEN1, the
530 ortholog of Ror2 in *A. thaliana*. This antibody cross-reacts with the PEN1 ortholog of the
531 grass species *Sorghum bicolor* (Chaya *et al.* 2023). We also observed cross-reaction of the
532 α PEN1 antibody with barley Ror2. In the protection assay, the signal generated by the α PEN1
533 antibody was protected from digestion with trypsin in the absence of Triton X-100 (Figure
534 5C). However, in three out of four replicates, we detected no Ror2 signal in the detergent-
535 only control when α PEN1 was used, hinting at a possible interference of Triton X-100 with
536 this antibody and/or the activation of a vesicle-resident protease in the presence of the
537 detergent. Similar to Ror2, in the absence of the detergent PR-17b was also protected in the
538 protection assay with trypsin but digested in the assay with proteinase K (Figure 5C).
539 Together with the SEC results described above (Figure 5A), the former hints at a potentially
540 loose connection of PR-17b to EVs. As for the α PEN1 antibody, though less pronounced, we
541 noticed a reduction in signal intensity for PR-17b in the sample with the detergent but
542 lacking trypsin (Figure 5C). Interestingly, PR-1 appeared to be completely resistant to both
543 trypsin and proteinase K digestion, as a signal with unaltered intensity could still be detected
544 when Triton X-100 was added, even though both barley PR-1 proteins (PR-1a and PR-1b)
545 possess multiple cleavage sites for both proteases (Supplemental Figure 8). CPN60 was only
546 tested with trypsin but also seemed to be protected, making it an additional EV marker
547 candidate next to Ror2.

548

549 **Discussion**

550 Previous studies have highlighted the involvement of EVs in interactions with various
551 microbes, ranging from pathogenic fungi to mutualistic bacteria (Cai *et al.* 2018; Li *et al.*
552 2022). Here, we present evidence demonstrating the pathogen-induced accumulation of EVs
553 in the interaction with an obligate biotrophic fungal pathogen. Utilizing transmission
554 electron microscopy, NTA and proteomic analyses, we conducted an in-depth
555 characterisation of EVs obtained from the apoplast of both non-inoculated and inoculated
556 barley leaves using two distinct isolation methods. Currently, differential ultracentrifugation
557 is the primary method of choice for plant EV isolation, although challenging to establish in
558 systems where upscaling is difficult (Rutter & Innes 2017; Cai *et al.* 2018; Regente *et al.*
559 2009). The PME procedure and differential ultracentrifugation revealed EVs with similar
560 quality and morphological characteristics (Figure 2, Figure 3), suggesting that both methods
561 are equally suited for EV isolation. This facilitated a time-course experiment, which revealed
562 that barley responds to infection by the powdery mildew fungus with an increase in
563 apoplastic EV abundance. These pathogen-responsive EVs likely comprise at least two
564 distinct EV populations that vary in size and accumulation pattern (Figure 4, Supplemental
565 Figure 5). As recently reported for EVs isolated from the monocot sorghum, the barley EV
566 proteome was found to be enriched in stress-related proteins, especially following
567 inoculation (Table 1). This finding, coupled with the aforementioned evidence for
568 population-specific accumulation profiles (Figure 4, Supplemental Figure 5), suggests a
569 biological function of EVs in the interaction of barley with *B. hordei*.

570 The apoplastic space is a well-known battleground in plant-microbe interactions (Du *et al.*
571 2016; Doeblemann & Hemetsberger 2013), including the challenge of barley by powdery
572 mildew (Felle *et al.* 2004; Sargent 1977). The vesicles in this location may play roles in the
573 outcome of the interaction. A key objective of this study was thus to establish a reliable and
574 reproducible isolation procedure for barley leaf AWF-derived EVs. For this, to observe
575 inoculation-induced changes in the apoplast, leaf-derived AWF with minimal cytosolic
576 contamination is essential as starting material. Matching this criterion is pivotal for an
577 accurate study of the vesicles, as liposomes resulting from cellular membrane damage can
578 confound genuine EV analysis (Théry *et al.* 2018). We adapted existing protocols (Rutter *et*
579 *al.* 2017; Rohringer *et al.* 1983) to achieve a reduction of cytosolic contamination below
580 detection limits (Figure 1). Moreover, we confirmed differential protein accumulation, e.g. of

581 the canonical stress response protein PR-1, in the barley apoplast upon inoculation with the
582 powdery mildew pathogen, emphasizing the presumed significance of the extracellular
583 defence response after challenge with *B. hordei* (Figure 1; (Tamás *et al.* 1997)). Employing
584 the established protocol based on ultracentrifugation (Rutter & Innes 2017) alongside a
585 novel polymer-based approach, to our knowledge not previously used in plants (Grunt *et al.*
586 2020), revealed similar morphology and size distributions for EVs isolated by both methods
587 (Figure 2, Figure 3). However, there were notable differences in reproducibility, reflected by
588 the larger confidence intervals for samples derived by ultracentrifugation in NTA (Figure 3).
589 This is in line with PME having higher recovery rates from the used starting material, at the
590 cost of lower specificity (Théry *et al.* 2018). Nevertheless, we consider PME a viable
591 alternative for isolating EVs in barley and other plants, especially when larger EV quantities
592 are needed for downstream analyses, because changes induced by *B. hordei* inoculation are
593 still reflected with high fidelity (Figure 3). Additionally, size exclusion chromatography
594 proved effective in further purifying barley EVs following their isolation by PME
595 (Supplemental Figure 7).

596 An initial characterisation of EVs isolated from the leaf apoplast of naïve (untreated) barley
597 plants (Schlemmer *et al.* 2021) exhibited similar morphology of vesicle-like structures as
598 observed in our electron micrographs (Figure 2C. Moreover, the size range of EVs as
599 estimated from electron micrographs (~100 nm – 250 nm) reported by Schlemmer and co-
600 workers overlaps substantially with our findings (Figure 2C; (Schlemmer *et al.* 2021)).
601 However, we noted discrepancies in size estimates by NTA measurements between the
602 published and our own data; these may be caused by various factors such as the barley
603 cultivar used or differences in experimental procedures and sample handling (Figure 3;
604 (Schlemmer *et al.* 2021)). This divergence emphasises the necessity for standardised
605 documentation of protocols to enable comparability of findings within and between species
606 (reviewed in (Pinedo *et al.* 2021)). In a recent report from the monocot *Sorghum bicolor*, EVs
607 from the P40 fraction were also reported to be polydisperse with a mean size of ~170 nm
608 and ~190 nm after density purification (Chaya *et al.* 2023). Notably, comparison of monocot-
609 (~100 nm – 500 nm, Figure 3; (Schlemmer *et al.* 2021; Chaya *et al.* 2023)) and dicot-derived
610 EVs (~50 nm – 300 nm, (Rutter & Innes 2017; Janda *et al.* 2023) from the present and
611 previous reports reveals slight differences in their size distribution but could also reflect
612 species-specific variation.

613 Our study suggests that the accumulation of barley EVs is an active response of the host
614 plant to inoculation with the obligate biotrophic pathogen, *B. hordei*. We show that in
615 particular the quantities of EVs between ~100 nm - 300 nm in diameter increase up to ~10-
616 to 50-fold higher at 96 hpi and 120 hpi compared to the non-infected control sample (Figure
617 4). This substantial increase in EV numbers in later infection stages coincides with fungal
618 microcolony development and incipient leaf surface proliferation (Both *et al.* 2005). Whether
619 EV accumulation is a host response linked to particular infection stages or simply correlates
620 with the amount of fungal biomass remains an open question. However, we argue that the
621 altered EV populations primarily originate from the plant. This notion is supported by the
622 fact that the predominant ~100 nm - 300 nm EV population is already detectable (at basal
623 levels) in the samples from non-inoculated leaves. In addition, the fungal mode of infection
624 is restricted to the epidermal cell layer, rendering a substantial contribution to the total leaf
625 EV population rather unlikely.

626 Vesicles of ~300 nm - 500 nm in diameter exhibited similar accumulation during fungal
627 infection to the ~100 nm - 300 nm vesicles. However, while they also increased markedly at
628 96 hpi and 120 hpi, they reached considerably lower levels than the ~100 nm - 300 nm EV
629 population (only ~2- to 3-fold as compared to ~10- to 50-fold; Figure 4A). Based on this
630 distinction we propose that (1) the larger-sized vesicle population might be different from
631 the smaller-sized main population and that (2) these vesicles are potentially secreted *via* a
632 different route. The latter notion is based on the fact that in other systems the biogenesis
633 pathway is an important factor determining EV size (Mathivanan *et al.* 2010). Accordingly,
634 the EV populations could be also associated with different cargo molecules. However, we
635 cannot rule out that the larger vesicles of ~300 nm - 500 nm in diameter result from
636 artefactual fusion events of vesicles from the ~100 nm - 300 nm population that accumulate
637 to very high levels during fungal infection, generated during our experimental procedures.

638 The t-SNARE protein Ror2 is an ortholog of a known EV marker (PEN1) in plants like
639 *Arabidopsis*, *Nicotiana benthamiana* and sorghum (Rutter & Innes 2017; Chaya *et al.* 2023;
640 Zhang *et al.* 2020). We detected two specific Ror2 signals in the immunoblots of vesicle
641 samples, corresponding to 34 kDa and ~75 kDa in molecular mass. These signals showed an
642 opposing dynamic in the course of fungal infection (Figure 4C). While the 34-kDa signal is
643 indicative of monomeric Ror2 (Collins *et al.* 2003), the ~75-kDa signal potentially represents
644 a (homo)dimer or a Ror2-containing SNARE complex (Arien *et al.* 2003). SDS resistance of the

645 ~75-kDa signal rather suggests a SNARE complex, though urea resistance (Supplemental
646 Figure 5E) also challenges this interpretation (Fasshauer *et al.* 2002; Kubista *et al.* 2004).
647 Hence, the nature and biological relevance of the ~75-kDa signal remains unclear at this
648 stage. Despite its detection in EV immunoblots (Figure 4C), Ror2 was not found in our
649 proteomics data (Table 1). This is likely because membrane-resident proteins are generally
650 more challenging to detect, which is also reflected by the overall low number of identified
651 proteins with transmembrane domains in our dataset (six proteins, ~9%, Table 1), a
652 common phenomenon in protein mass spectrometry (Souda *et al.* 2011; Bender & Schmidt
653 2019). On the other hand, a trypsin protection assay using the Ror2 antibody indicated its
654 presence in EVs as cargo, making it, together with the observation of the specific ~75-kDa
655 signal eluting in EV fractions in SEC, a strong EV marker candidate (Figure 5). The fact that we
656 did not detect Ror2 with the α PEN1 antibody in the detergent-only treatment indicates
657 interference of TritonX-100 with at least the PEN1 antibody and underscores the importance
658 of incorporating this control in protease protection assays.

659 EVs from *Arabidopsis*, sunflower, and sorghum, as well as high-speed centrifugation pellets
660 collected from tomato cell culture medium, are associated with stress-related proteins
661 (Rutter & Innes 2017; Regente *et al.* 2017; He *et al.* 2021; Gonorazky *et al.* 2012). Consistent
662 with these earlier findings, the barley EV proteome was also enriched in stress-related
663 proteins, particularly after inoculation with *B. hordei* (Table 1). However, their number in our
664 dataset derived from crude EVs was substantially higher as compared to the proteomes of
665 purified EVs. This discrepancy might be explained by the loose association of this type of
666 proteins with EVs, which might get lost during purification by size exclusion chromatography.
667 In line with the high number of stress-related proteins in crude EVs, we found two abundant
668 pathogenesis-related proteins (PR-1 and PR-17b) that did not co-purify in size exclusion
669 chromatography with the vesicles (Figure 5A). However, the trypsin protection assay
670 indicated that PR-17b is protected (Figure 5C), perhaps due to interaction with glycoproteins
671 on the EV surface. This protection might be compromised upon membrane destabilisation
672 following detergent addition or by shear forces during size exclusion chromatography. We
673 speculate that this behaviour indicates that PR-17b (and perhaps other (PR) proteins) are
674 constituents of an acquired vesicle corona which forms after secretion and might play a role
675 in EV uptake and other functions (Yerneni *et al.* 2022; Tóth *et al.* 2021; Liam-Or *et al.* 2024).

676 The current study dissects time-dependent EV release upon biotic stress (powdery mildew
677 infection). Thus, it serves as a starting point for investigating the role of EVs at different
678 stages of plant-microbe interactions. By establishing PME of vesicles, a scalable alternative
679 method for plant EV isolation, the output of which is comparable to the routinely used
680 ultracentrifugation, we enable feasible EV analysis in a challenging plant-microbe system,
681 the interaction of barley with *B. hordei*. Combined with size exclusion chromatography, PME
682 is an alternative for the isolation and purification of plant EVs. Furthermore, we unravel an
683 infection stage-dependent EV response involving distinct EV populations, a phenomenon
684 worth exploring in other plant-microbe interactions. Finally, our findings add to the growing
685 evidence linking plant EVs to stress-related proteins. In conjunction with our recent data for
686 cross-kingdom RNA interference mediated by plant EVs (Kusch *et al.* 2023), our study
687 signifies the involvement of barley leaf EVs in the *B. hordei* interaction, prompting future
688 investigations into the roles of the distinct EV populations.

689

690 **Funding**

691 This work was supported by DFG project number 433194101 (grant PA 861/22-1 to R.P.) in
692 the context of the Research Unit consortium FOR5116 “exRNA”. H.T. was subsidised by a
693 RWTH Aachen scholarship for doctoral students. P.D.S. was funded by a research fellowship
694 from the Leverhulme Trust (RF-2019-053), a research award by the Alexander von Humboldt
695 Foundation (GBR 1204122 GSA), and a Theodore von Kármán Fellowship (RWTH Aachen).

696

697 **Acknowledgements**

698 We thank Prof. Wilhelm Jähnen-Dechent for granting access to the NTA machine and Steffen
699 Gräber for the great technical support. We further thank Prof. Hans-Thordal Christensen for
700 providing PR-17 and PEN1 antibodies. We thank all lab members for fruitful discussions.

701

702 **Conflict of interest**

703 The authors declare they have no competing interests.

704

705 **Data availability**

706 The mass spectrometry proteomics data have been deposited to the ProteomeXchange
707 Consortium via the PRIDE partner repository (Perez-Riverol *et al.* 2022) with the dataset
708 identifier PXD050823 (Reviewer login details: Username: reviewer_pxd050823@ebi.ac.uk;
709 Password: xEZRIXVN).

710

711 **Author contributions**

712 RP, HT and PDS conceived the study. HT, CH and CK performed immunoblots. MB conducted
713 electron microscopy. HT performed NTA and protection assays. FD executed mass
714 spectrometry. HT analysed the data. HT drafted the manuscript. RP and PDS edited the
715 manuscript with the help of co-author contributions. All authors have read and approved the
716 final manuscript version.

717 **References**

718 Agrawal GK, Jwa N-S, Lebrun M-H, Job D, Rakwal R (2010) Plant secretome: unlocking secrets
719 of the secreted proteins. *Proteomics*, doi: 10.1002/pmic.200900514.

720 Ahmed NU, Park J-I, Seo M-S *et al.* (2012) Identification and expression analysis of chitinase
721 genes related to biotic stress resistance in *Brassica*. *Molecular Biology Reports*, doi:
722 10.1007/s11033-011-1139-x.

723 Aist JR, Williams PH (1971) The cytology and kinetics of cabbage root hair penetration by
724 *Plasmodiophora brassicae*. *Canadian Journal of Botany*, doi: 10.1139/b71-284.

725 Almagro Armenteros JJ, Tsirigos KD, Sønderby CK *et al.* (2019) SignalP 5.0 improves signal
726 peptide predictions using deep neural networks. *Nature Biotechnology*, doi:
727 10.1038/s41587-019-0036-z.

728 An QL, Hückelhoven R, Kogel KH, van Bel AJE (2006) Multivesicular bodies participate in a cell
729 wall-associated defence response in barley leaves attacked by the pathogenic powdery
730 mildew fungus. *Cellular Microbiology*, 8, 1009–1019.

731 Anisimova OK, Shchennikova AV, Kochieva EZ, Filyushin MA (2021) Pathogenesis-Related
732 genes of PR1, PR2, PR4, and PR5 families are involved in the response to *Fusarium*
733 infection in garlic (*Allium sativum* L.). *International Journal of Molecular Sciences*, doi:
734 10.3390/ijms22136688.

735 Arien H, Wiser O, Arkin IT, Leonov H, Atlas D (2003) Syntaxin 1A modulates the voltage-gated
736 L-type calcium channel (Ca(v)1.2) in a cooperative manner. *Journal of Biological
737 Chemistry*, doi: 10.1074/jbc.M301401200.

738 Bağcı C, Sever-Bahçekapılı M, Belder N, Bennett APS, Erdener ŞE, Dalkara T (2022) Overview
739 of extracellular vesicle characterization techniques and introduction to combined
740 reflectance and fluorescence confocal microscopy to distinguish extracellular vesicle
741 subpopulations. *Neurophotonics*, doi: 10.1117/1.NPh.9.2.021903.

742 Beers EP, Jones AM, Dickerman AW (2004) The S8 serine, C1A cysteine and A1 aspartic
743 protease families in *Arabidopsis*. *Phytochemistry*, doi: 10.1016/j.phytochem.2003.09.005.

744 Beffa RS, Neuhaus JM, Meins F (1993) Physiological compensation in antisense
745 transformants: specific induction of an "ersatz" glucan endo-1,3-beta-glucosidase in
746 plants infected with necrotizing viruses. *Proceedings of the National Academy of Sciences
747 of the United States of America*, doi: 10.1073/pnas.90.19.8792.

748 Bellis D de, Kalmbach L, Marhavy P, Daraspe J, Geldner N, Barberon M (2022) Extracellular
749 vesiculo-tubular structures associated with suberin deposition in plant cell walls. *Nature
750 Communications*, doi: 10.1038/s41467-022-29110-0.

751 Bender J, Schmidt C (2019) Mass spectrometry of membrane protein complexes. *Biological
752 Chemistry*, doi: 10.1515/hsz-2018-0443.

753 Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJR (2009) Multiplex peptide
754 stable isotope dimethyl labeling for quantitative proteomics. *Nature Protocols*, doi:
755 10.1038/nprot.2009.21.

756 Both M, Csukai M, Stumpf MPH, Spanu PD (2005) Gene expression profiles of *Blumeria
757 graminis* indicate dynamic changes to primary metabolism during development of an
758 obligate biotrophic pathogen. *Plant Cell*, **17**, 2107–2122.

759 Bowien B, Mayer F (1978) Further studies on the quaternary structure of D-ribulose-1, 5-
760 bisphosphate carboxylase from *Alcaligenes eutrophus*. *European Journal of Biochemistry*,
761 doi: 10.1111/j.1432-1033.1978.tb12426.x.

762 Bryngelsson T, Sommer-Knudsen J, Gregersen PL, Collinge DB, Ek B, Thordal-Christensen H
763 (1994) Purification, characterization, and molecular cloning of basic PR-1-type
764 pathogenesis-related proteins from barley. *Molecular Plant-Microbe Interactions*, doi:
765 10.1094/MPMI-7-0267.

766 Cai Q, He B, Jin H (2019) A safe ride in extracellular vesicles - small RNA trafficking between
767 plant hosts and pathogens. *Current Opinion in Plant Biology*, doi:
768 10.1016/j.pbi.2019.09.001.

769 Cai Q, He B, Wang S *et al.* (2021) Message in a bubble: Shuttling small RNAs and proteins
770 between cells and interacting organisms using extracellular vesicles. *Annual Review of
771 Plant Biology*, doi: 10.1146/annurev-arplant-081720-010616.

772 Cai Q, Qiao L, Wang M *et al.* (2018) Plants send small RNAs in extracellular vesicles to fungal
773 pathogen to silence virulence genes. *Science*, doi: 10.1126/science.aar4142.

774 Caruso Bavisotto C, Cappello F, Macario AJL *et al.* (2017) Exosomal HSP60: a potentially
775 useful biomarker for diagnosis, assessing prognosis, and monitoring response to
776 treatment. *Expert Review of Molecular Diagnostics*, doi:
777 10.1080/14737159.2017.1356230.

778 Chaya T, Banerjee A, Rutter BD *et al.* (2023) The extracellular vesicle proteomes of *Sorghum*
779 *bicolor* and *Arabidopsis thaliana* are partially conserved. *Plant Physiology*, doi:
780 10.1093/plphys/kiad644.

781 Chernyshev VS, Rachamadugu R, Tseng YH *et al.* (2015) Size and shape characterization of
782 hydrated and desiccated exosomes. *Analytical and Bioanalytical Chemistry*, doi:
783 10.1007/s00216-015-8535-3.

784 Chevallet M, Luche S, Rabilloud T (2006) Silver staining of proteins in polyacrylamide gels.
785 *Nature Protocols*, doi: 10.1038/nprot.2006.288.

786 Choi D-S, Kim D-K, Kim Y-K, Gho YS (2015) Proteomics of extracellular vesicles: Exosomes and
787 ectosomes. *Mass Spectrometry Reviews*, doi: 10.1002/mas.21420.

788 Chow FW-N, Koutsovoulos G, Ovando-Vázquez C *et al.* (2019) Secretion of an Argonaute
789 protein by a parasitic nematode and the evolution of its siRNA guides. *Nucleic Acids*
790 *Research*, doi: 10.1093/nar/gkz142.

791 Christensen AB, Cho BH, Næsby M *et al.* (2002) The molecular characterization of two barley
792 proteins establishes the novel PR-17 family of pathogenesis-related proteins. *Molecular*
793 *Plant Pathology*, doi: 10.1046/j.1364-3703.2002.00105.x.

794 Clos-Sansalvador M, Monguió-Tortajada M, Roura S, Franquesa M, Borràs FE (2022)
795 Commonly used methods for extracellular vesicles' enrichment: Implications in
796 downstream analyses and use. *European Journal of Cell Biology*, doi:
797 10.1016/j.ejcb.2022.151227.

798 Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between
799 extracellular vesicles. *Trends in Cell Biology*, doi: 10.1016/j.tcb.2015.01.004.

800 Collins NC, Thordal-Christensen H, Lipka V *et al.* (2003) SNARE-protein-mediated disease
801 resistance at the plant cell wall. *Nature*, **425**, 973–977.

802 Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of
803 exosomes and other extracellular vesicles. *Annual Review of Cell and Developmental*
804 *Biology*, doi: 10.1146/annurev-cellbio-101512-122326.

805 Dmochowska-Boguta M, Nadolska-Orczyk A, Orczyk W (2013) Roles of peroxidases and
806 NADPH oxidases in the oxidative response of wheat (*Triticum aestivum*) to brown rust
807 (*Puccinia triticina*) infection. *Plant Pathology*, doi: 10.1111/ppa.12009.

808 Doeblemann G, Hemetsberger C (2013) Apoplastic immunity and its suppression by
809 filamentous plant pathogens. *The New phytologist*, doi: 10.1111/nph.12277.

810 Dos Santos C, Franco OL (2023) Pathogenesis-Related proteins (PRs) with enzyme activity
811 activating plant defense responses. *Plants*, doi: 10.3390/plants12112226.

812 Du Y, Stegmann M, Misas Villamil JC (2016) The apoplast as battleground for plant-microbe
813 interactions. *New Phytologist*, doi: 10.1111/nph.13777.

814 Fasshauer D, Antonin W, Subramaniam V, Jahn R (2002) SNARE assembly and disassembly
815 exhibit a pronounced hysteresis. *Nature Structural Biology*, doi: 10.1038/nsb750.

816 Felle HH, Herrmann A, Hanstein S, Hückelhoven R, Kogel K-H (2004) Apoplastic pH signaling
817 in barley leaves attacked by the powdery mildew fungus *Blumeria graminis* f. sp. *hordei*.
818 *Molecular Plant-Microbe Interactions*, doi: 10.1094/MPMI.2004.17.1.118.

819 Finnie C, Andersen CH, Borch J et al. (2002) Do 14-3-3 proteins and plasma membrane H⁺-
820 AtPases interact in the barley epidermis in response to the barley powdery mildew
821 fungus? *Plant Molecular Biology*, doi: 10.1023/a:1014938417267.

822 Gardiner C, Di Vizio D, Sahoo S et al. (2016) Techniques used for the isolation and
823 characterization of extracellular vesicles: Results of a worldwide survey. *Journal of*
824 *Extracellular Vesicles*, doi: 10.3402/jev.v5.32945.

825 Glawe DA (2008) The powdery mildews: A review of the world's most familiar (yet poorly
826 known) plant pathogens. *Annual Review of Phytopathology*, doi:
827 10.1146/annurev.phyto.46.081407.104740.

828 Gonorazky G, Laxalt AM, Dekker HL et al. (2012) Phosphatidylinositol 4-phosphate is
829 associated to extracellular lipoproteic fractions and is detected in tomato apoplastic
830 fluids. *Plant Biology*, doi: 10.1111/j.1438-8677.2011.00488.x.

831 Greening DW, Simpson RJ (2018) Understanding extracellular vesicle diversity - current
832 status. *Expert review of Proteomics*, doi: 10.1080/14789450.2018.1537788.

833 Grunt M, Failla AV, Stevic I, Hillebrand T, Schwarzenbach H (2020) A novel assay for
834 exosomal and cell-free miRNA isolation and quantification. *RNA Biology*, doi:
835 10.1080/15476286.2020.1721204.

836 Halperin W, Jensen WA (1967) Ultrastructural changes during growth and embryogenesis in
837 carrot cell cultures. *Journal of Ultrastructure Research*, doi: 10.1016/S0022-
838 5320(67)80128-X.

839 He B, Cai Q, Qiao L et al. (2021) RNA-binding proteins contribute to small RNA loading in
840 plant extracellular vesicles. *Nature Plants*, doi: 10.1038/s41477-021-00863-8.

841 Herrmann IK, Wood MJA, Fuhrmann G (2021) Extracellular vesicles as a next-generation drug
842 delivery platform. *Nature Nanotechnology*, doi: 10.1038/s41565-021-00931-2.

843 Hill EH, Solomon PS (2020) Extracellular vesicles from the apoplastic fungal wheat pathogen
844 *Zymoseptoria tritici*. *Fungal Biology and Biotechnology*, doi: 10.1186/s40694-020-00103-
845 2.

846 Hughes CS, Mogridge S, Müller T, Sorensen PH, Morin GB, Krijgsveld J (2019) Single-pot,
847 solid-phase-enhanced sample preparation for proteomics experiments. *Nature Protocols*,
848 doi: 10.1038/s41596-018-0082-x.

849 Hunt M, Banerjee S, Surana P *et al.* (2019) Small RNA discovery in the interaction between
850 barley and the powdery mildew pathogen. *BMC Genomics*, doi: 10.1186/s12864-019-
851 5947-z.

852 Huokko T, Ni T, Dykes GF *et al.* (2021) Probing the biogenesis pathway and dynamics of
853 thylakoid membranes. *Nature Communications*, doi: 10.1038/s41467-021-23680-1.

854 Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG (2016) Proteomic profiling of
855 NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific
856 biomarkers. *Oncotarget*, doi: 10.18632/oncotarget.13569.

857 Hwang S-K, Singh S, Cakir B, Satoh H, Okita TW (2016) The plastidial starch phosphorylase
858 from rice endosperm: Catalytic properties at low temperature. *Planta*, doi:
859 10.1007/s00425-015-2461-7.

860 Hyun TK, van der Graaff E, Albacete A *et al.* (2014) The *Arabidopsis* PLAT domain protein1 is
861 critically involved in abiotic stress tolerance. *PLoS One*, doi:
862 10.1371/journal.pone.0112946.

863 Janda M, Rybak K, Krassini L *et al.* (2023) Biophysical and proteomic analyses of
864 *Pseudomonas syringae* pv. *tomato* DC3000 extracellular vesicles suggest adaptive
865 functions during plant infection. *mbio*, doi: 10.1128/mbio.03589-22.

866 Jashni MK, Mehrabi R, Collemare J, Mesarich CH, Wit PJGM de (2015) The battle in the
867 apoplast: Further insights into the roles of proteases and their inhibitors in plant-
868 pathogen interactions. *Frontiers in Plant Science*, doi: 10.3389/fpls.2015.00584.

869 Ju S, Mu J, Dokland T *et al.* (2013) Grape exosome-like nanoparticles induce intestinal stem
870 cells and protect mice from DSS-induced colitis. *Molecular Therapy*, doi:
871 10.1038/mt.2013.64.

872 Jumper J, Evans R, Pritzel A *et al.* (2021) Highly accurate protein structure prediction with
873 AlphaFold. *Nature*, doi: 10.1038/s41586-021-03819-2.

874 Kayum MA, Park J-I, Nath UK, Biswas MK, Kim H-T, Nou I-S (2017) Genome-wide expression
875 profiling of aquaporin genes confer responses to abiotic and biotic stresses in *Brassica*
876 *rapa*. *BMC Plant Biology*, doi: 10.1186/s12870-017-0979-5.

877 Krogh A, Larsson B, Heijne G von, Sonnhammer EL (2001) Predicting transmembrane protein
878 topology with a hidden Markov model: application to complete genomes. *Journal of*
879 *Molecular Biology*, doi: 10.1006/jmbi.2000.4315.

880 Kubista H, Edelbauer H, Boehm S (2004) Evidence for structural and functional diversity
881 among SDS-resistant SNARE complexes in neuroendocrine cells. *Journal of Cell Science*,
882 doi: 10.1242/jcs.00941.

883 Kusch S, Frantzeskakis L, Thieron H, Panstruga R (2018) Small RNAs from cereal powdery
884 mildew pathogens may target host plant genes. *Fungal Biology*, doi:
885 10.1016/j.funbio.2018.08.008.

886 Kusch S, Singh M, Thieron H, Spanu PD, Panstruga R (2023) Site-specific analysis reveals
887 candidate cross-kingdom small RNAs, tRNA and rRNA fragments, and signs of fungal RNA
888 phasing in the barley-powdery mildew interaction. *Molecular Plant Pathology*, doi:
889 10.1111/mpp.13324.

890 Kusumawati L, Imin N, Djordjevic MA (2008) Characterization of the secretome of
891 suspension cultures of *Medicago* species reveals proteins important for defense and
892 development. *Journal of Proteome Research*, doi: 10.1021/pr800291z.

893 Kwon S, Rupp O, Brachmann A *et al.* (2021) mRNA inventory of extracellular vesicles from
894 *Ustilago maydis*. *Journal of Fungi*, doi: 10.3390/jof7070562.

895 La Canal L de, Pinedo M (2018) Extracellular vesicles: A missing component in plant cell wall
896 remodeling. *Journal of Experimental Botany*, doi: 10.1093/jxb/ery255.

897 Lambertucci S, Orman KM, Das Gupta S *et al.* (2019) Analysis of barley leaf epidermis and
898 extrahaustorial proteomes during powdery mildew infection reveals that the PR5
899 thaumatin-like protein TLP5 is required for susceptibility towards *Blumeria graminis* f. sp.
900 *hordei*. *Frontiers in Plant Science*, doi: 10.3389/fpls.2019.01138.

901 Li D, Li Z, Wu J *et al.* (2022) Analysis of outer membrane vesicles indicates that
902 glycerophospholipid metabolism contributes to early symbiosis between *Sinorhizobium*

903 *fredii* HH103 and soybean. *Molecular Plant-Microbe Interactions*, doi: 10.1094/MPMI-11-
904 21-0288-R.

905 Liam-Or R, Faruqu FN, Walters A *et al.* (2024) Cellular uptake and in vivo distribution of
906 mesenchymal-stem-cell-derived extracellular vesicles are protein corona dependent.
907 *Nature Nanotechnology*, doi: 10.1038/s41565-023-01585-y.

908 Lu P-P, Yu T-F, Zheng W-J *et al.* (2018) The wheat Bax inhibitor-1 protein interacts with an
909 aquaporin TaPIP1 and enhances disease resistance in *Arabidopsis*. *Frontiers in Plant*
910 *Science*, doi: 10.3389/fpls.2018.00020.

911 Martínez-Greene JA, Hernández-Ortega K, Quiroz-Baez R *et al.* (2021) Quantitative
912 proteomic analysis of extracellular vesicle subgroups isolated by an optimized method
913 combining polymer-based precipitation and size exclusion chromatography. *Journal of*
914 *Extracellular Vesicles*, doi: 10.1002/jev2.12087.

915 Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: Extracellular organelles important in
916 intercellular communication. *Journal of Proteomics*, doi: 10.1016/j.jprot.2010.06.006.

917 Micali CO, Neumann U, Grunewald D, Panstruga R, O'Connell R (2011) Biogenesis of a
918 specialized plant-fungal interface during host cell internalization of *Golovinomyces orontii*
919 haustoria. *Cellular Microbiology*, **13**, 210–226.

920 Misas Villamil JC, Mueller AN, Demir F *et al.* (2019) A fungal substrate mimicking molecule
921 suppresses plant immunity via an inter-kingdom conserved motif. *Nature*
922 *Communications*, doi: 10.1038/s41467-019-09472-8.

923 Misas-Villamil JC, van der Hoorn RAL, Doeblemann G (2016) Papain-like cysteine proteases
924 as hubs in plant immunity. *New Phytologist*, doi: 10.1111/nph.14117.

925 Mostek A, Börner A, Badowiec A, Weidner S (2015) Alterations in root proteome of salt-
926 sensitive and tolerant barley lines under salt stress conditions. *Journal of Plant Physiology*,
927 doi: 10.1016/j.jplph.2014.08.020.

928 Mulaosmanovic E, Lindblom TUT, Bengtsson M *et al.* (2020) High-throughput method for
929 detection and quantification of lesions on leaf scale based on trypan blue staining and
930 digital image analysis. *Plant Methods*, doi: 10.1186/s13007-020-00605-5.

931 Nasfi S, Kogel K-H (2022) Packaged or unpackaged: Appearance and transport of
932 extracellular noncoding RNAs in the plant apoplast. *ExRNA*, doi: 10.21037/exrna-22-11.

933 Nowara D, Gay A, Lacomme C *et al.* (2010) HIGS: Host-Induced Gene Silencing in the obligate
934 biotrophic fungal pathogen *Blumeria graminis*. *Plant Cell*, **22**, 3130–3141.

935 Pál M, Kovács V, Vida G, Szalai G, Janda T (2013) Changes induced by powdery mildew in the
936 salicylic acid and polyamine contents and the antioxidant enzyme activities of wheat lines.
937 *European Journal of Plant Pathology*, doi: 10.1007/s10658-012-0063-9.

938 Panstruga R, Spanu P (2024) Transfer RNA and ribosomal RNA fragments - emerging players
939 in plant-microbe interactions. *New Phytologist*, doi: 10.1111/nph.19409.

940 Pečenková T, Pejchar P, Moravec T et al. (2022) Immunity functions of Arabidopsis
941 pathogenesis-related 1 are coupled but not confined to its C-terminus processing and
942 trafficking. *Molecular Plant Pathology*, doi: 10.1111/mpp.13187.

943 Perez-Riverol Y, Bai J, Bandla C et al. (2022) The PRIDE database resources in 2022: A hub for
944 mass spectrometry-based proteomics evidences. *Nucleic Acids Research*, doi:
945 10.1093/nar/gkab1038.

946 Pinedo M, La Canal L de, Marcos Lousa C de (2021) A call for Rigor and standardization in
947 plant extracellular vesicle research. *Journal of Extracellular Vesicles*, doi:
948 10.1002/jev2.12048.

949 Prado N, Alché JdD, Casado-Vela J et al. (2014) Nanovesicles are secreted during pollen
950 germination and pollen tube growth: A possible role in fertilization. *Molecular Plant*, doi:
951 10.1093/mp/sst153.

952 Qiao SA, Gao Z, Roth R (2023) A perspective on cross-kingdom RNA interference in
953 mutualistic symbioses. *New Phytologist*, doi: 10.1111/nph.19122.

954 Raunser S, Magnani R, Huang Z et al. (2009) Rubisco in complex with Rubisco large subunit
955 methyltransferase. *Proceedings of the National Academy of Sciences of the United States
956 of America*, doi: 10.1073/pnas.0810563106.

957 Regente M, Corti-Monzón G, Maldonado AM, Pinedo M, Jorrín J, La Canal L de (2009)
958 Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome
959 marker proteins. *FEBS Letters*, doi: 10.1016/j.febslet.2009.09.041.

960 Regente M, Pinedo M, San Clemente H, Balliau T, Jamet E, La Canal L de (2017) Plant
961 extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. *Journal
962 of Experimental Botany*, doi: 10.1093/jxb/erx355.

963 Rohringer R, Ebrahim-Nesbat F, Wolf G (1983) Proteins in intercellular washing fluids from
964 leaves of barley (*Hordeum vulgare* L.). *Journal of Experimental Botany*, doi:
965 10.1093/jxb/34.12.1589.

966 Roth R, Hillmer S, Funaya C *et al.* (2019) Arbuscular cell invasion coincides with extracellular
967 vesicles and membrane tubules. *Nature Plants*, doi: 10.1038/s41477-019-0365-4.

968 Ruf A, Oberkofler L, Robatzek S, Weiberg A (2022) Spotlight on plant RNA-containing
969 extracellular vesicles. *Current Opinion in Plant Biology*, doi: 10.1016/j.pbi.2022.102272.

970 Rutter BD, Chu T-T-H, Dallery J-F, Zajt KK, O'Connell RJ, Innes RW (2022) The development of
971 extracellular vesicle markers for the fungal phytopathogen *Colletotrichum higginsianum*.
972 *Journal of Extracellular Vesicles*, doi: 10.1002/jev2.12216.

973 Rutter BD, Innes RW (2017) Extracellular vesicles isolated from the leaf apoplast carry stress-
974 response proteins. *Plant Physiology*, doi: 10.1104/pp.16.01253.

975 Rutter BD, Rutter KL, Innes RW (2017) Isolation and quantification of plant extracellular
976 vesicles. *Bio-protocol*, doi: 10.21769/BioProtoc.2533.

977 Rybak K, Robatzek S (2019) Functions of extracellular vesicles in immunity and virulence.
978 *Plant Physiology*, doi: 10.1104/pp.18.01557.

979 Santén K, Marttila S, Liljeroth E, Bryngelsson T (2005) Immunocytochemical localization of
980 the pathogenesis-related PR-1 protein in barley leaves after infection by *Bipolaris*
981 *sorokiniana*. *Physiological and Molecular Plant Pathology*, doi:
982 10.1016/j.pmpp.2005.04.006.

983 Sargent C (1977) Barley epidermal apoplast structure and modification by powdery mildew
984 contact. *Physiological Plant Pathology*, doi: 10.1016/0048-4059(77)90058-3.

985 Schlemmer T, Barth P, Weipert L *et al.* (2021) Isolation and characterization of barley
986 (*Hordeum vulgare*) extracellular vesicles to assess their role in RNA spray-based crop
987 protection. *International Journal of Molecular Sciences*, doi: 10.3390/ijms22137212.

988 Segarra CI, Casalangué CA, Pinedo ML, Ronchi VP, Conde RD (2003) A germin-like protein of
989 wheat leaf apoplast inhibits serine proteases. *Journal of Experimental Botany*, doi:
990 10.1093/jxb/erg139.

991 Shaw M, Manocha MS (1965) Fine structure in detached, senescent wheat leaves. *Canadian
992 Journal of Botany*, doi: 10.1139/b65-084.

993 Solé M, Scheibner F, Hoffmeister A-K *et al.* (2015) *Xanthomonas campestris* pv. *vesicatoria*
994 secretes proteases and xylanases via the Xps type II secretion system and outer
995 membrane vesicles. *Journal of Bacteriology*, doi: 10.1128/jb.00322-15.

996 Souda P, Ryan CM, Cramer WA, Whitelegge J (2011) Profiling of integral membrane proteins
997 and their post translational modifications using high-resolution mass spectrometry.
998 *Methods*, doi: 10.1016/j.ymeth.2011.09.019.

999 Stranford DM, Leonard JN (2017) Delivery of biomolecules via extracellular vesicles: A
1000 budding therapeutic strategy. *Advances in Genetics*, doi: 10.1016/bs.adgen.2017.08.002.

1001 Tamás L, Huttová J, Žigová Z (1997) Accumulation of stress-proteins in intercellular spaces of
1002 barley leaves induced by biotic and abiotic factors. *Biologia Plantarum*, doi:
1003 10.1023/A:1001028226434.

1004 Taylor DD, Shah S (2015) Methods of isolating extracellular vesicles impact down-stream
1005 analyses of their cargoes. *Methods*, doi: 10.1016/j.ymeth.2015.02.019.

1006 Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of
1007 exosomes from cell culture supernatants and biological fluids. *Current Protocols*, doi:
1008 10.1002/0471143030.cb0322s30.

1009 Théry C, Witwer KW, Aikawa E *et al.* (2018) Minimal information for studies of extracellular
1010 vesicles 2018 (MISEV2018): A position statement of the International Society for
1011 Extracellular Vesicles and update of the MISEV2014 guidelines. *Journal of Extracellular
1012 Vesicles*, doi: 10.1080/20013078.2018.1535750.

1013 Thomas M, Huck N, Hoehenwarter W, Conrath U, Beckers GJM (2015) Combining metabolic
1014 ¹⁵N labeling with improved tandem MOAC for enhanced probing of the
1015 phosphoproteome. In: *Plant Phosphoproteomics*. (ed. Schulze WX), pp. 81–96. Springer
1016 New York, New York, NY.

1017 Tkach M, Théry C (2016) Communication by extracellular vesicles: Where we are and where
1018 we need to go. *Cell*, doi: 10.1016/j.cell.2016.01.043.

1019 Tóth EÁ, Turiák L, Visnovitz T *et al.* (2021) Formation of a protein corona on the surface of
1020 extracellular vesicles in blood plasma. *Journal of Extracellular Vesicles*, doi:
1021 10.1002/jev2.12140.

1022 Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass
1023 spectrometry-based shotgun proteomics. *Nature Protocols*, doi: 10.1038/nprot.2016.136.

1024 U Stotz H, Brotherton D, Inal J (2022) Communication is key: Extracellular vesicles as
1025 mediators of infection and defence during host-microbe interactions in animals and
1026 plants. *FEMS Microbiology Reviews*, doi: 10.1093/femsre/fuab044.

1027 Vogel R, Savage J, Muzard J *et al.* (2021) Measuring particle concentration of multimodal
1028 synthetic reference materials and extracellular vesicles with orthogonal techniques: Who
1029 is up to the challenge? *Journal of Extracellular Vesicles*, doi: 10.1002/jev2.12052.

1030 Wang J, Ding Y, Wang J *et al.* (2010) EXPO, an exocyst-positive organelle distinct from
1031 multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis
1032 in *Arabidopsis* and tobacco cells. *Plant Cell*, doi: 10.1105/tpc.110.080697.

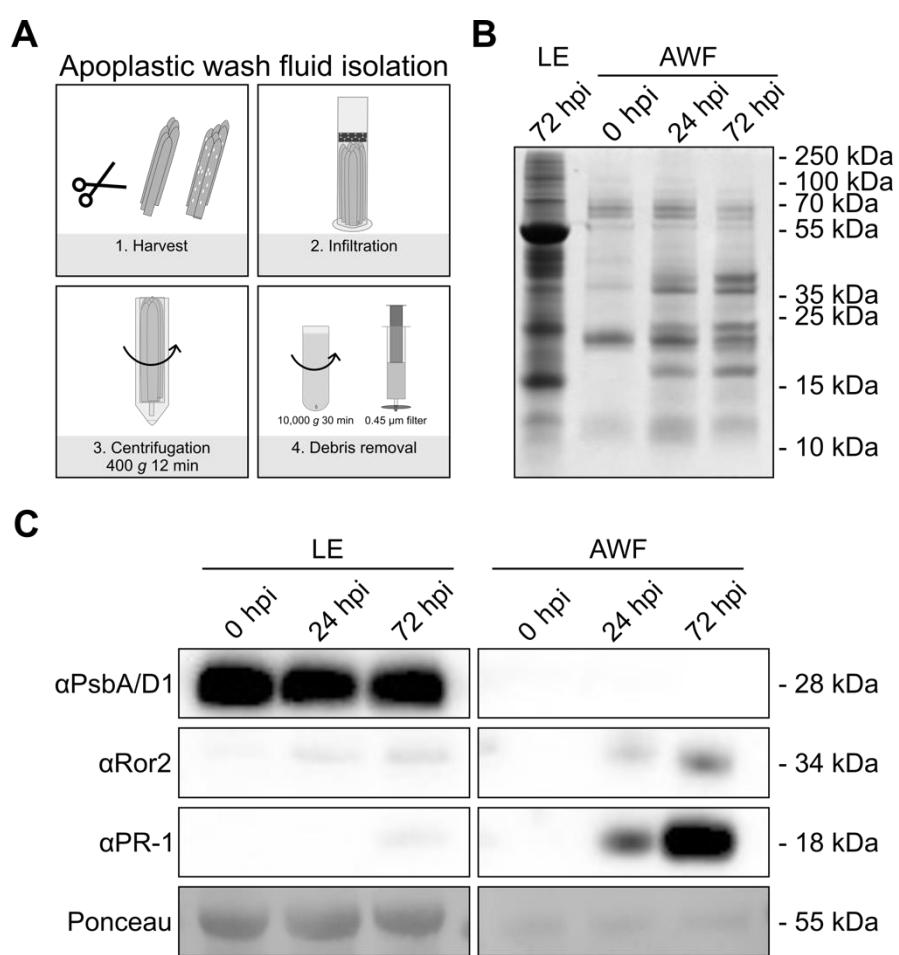
1033 Wang L, Fobert PR (2013) *Arabidopsis* clade I TGA factors regulate apoplastic defences
1034 against the bacterial pathogen *Pseudomonas syringae* through endoplasmic reticulum-
1035 based processes. *PLoS One*, doi: 10.1371/journal.pone.0077378.

1036 Wang S, He B, Wu H *et al.* (2024) Plant mRNAs move into a fungal pathogen via extracellular
1037 vesicles to reduce infection. *Cell Host & Microbe*, doi: 10.1016/j.chom.2023.11.020.

1038 Yerneni SS, Solomon T, Smith J, Campbell PG (2022) Radioiodination of extravesicular surface
1039 constituents to study the biocorona, cell trafficking and storage stability of extracellular
1040 vesicles. *Biochimica Et Biophysica Acta*, doi: 10.1016/j.bbagen.2021.130069.

1041 Yu K, Wei L, Yuan H *et al.* (2022) Genetic architecture of inducible and constitutive metabolic
1042 profile related to drought resistance in qingke (Tibetan hulless barley). *Frontiers in Plant
1043 Science*, doi: 10.3389/fpls.2022.1076000.

1044 Zand Karimi H, Baldrich P, Rutter BD *et al.* (2022) *Arabidopsis* apoplastic fluid contains sRNA-
1045 and circular RNA-protein complexes that are located outside extracellular vesicles. *Plant
1046 Cell*, doi: 10.1093/plcell/koac043.


1047 Zhang J, Qiu Y, Xu K (2020) Characterization of GFP-AtPEN1 as a marker protein for
1048 extracellular vesicles isolated from *Nicotiana benthamiana* leaves. *Plant Signaling &
1049 Behavior*, doi: 10.1080/15592324.2020.1791519.

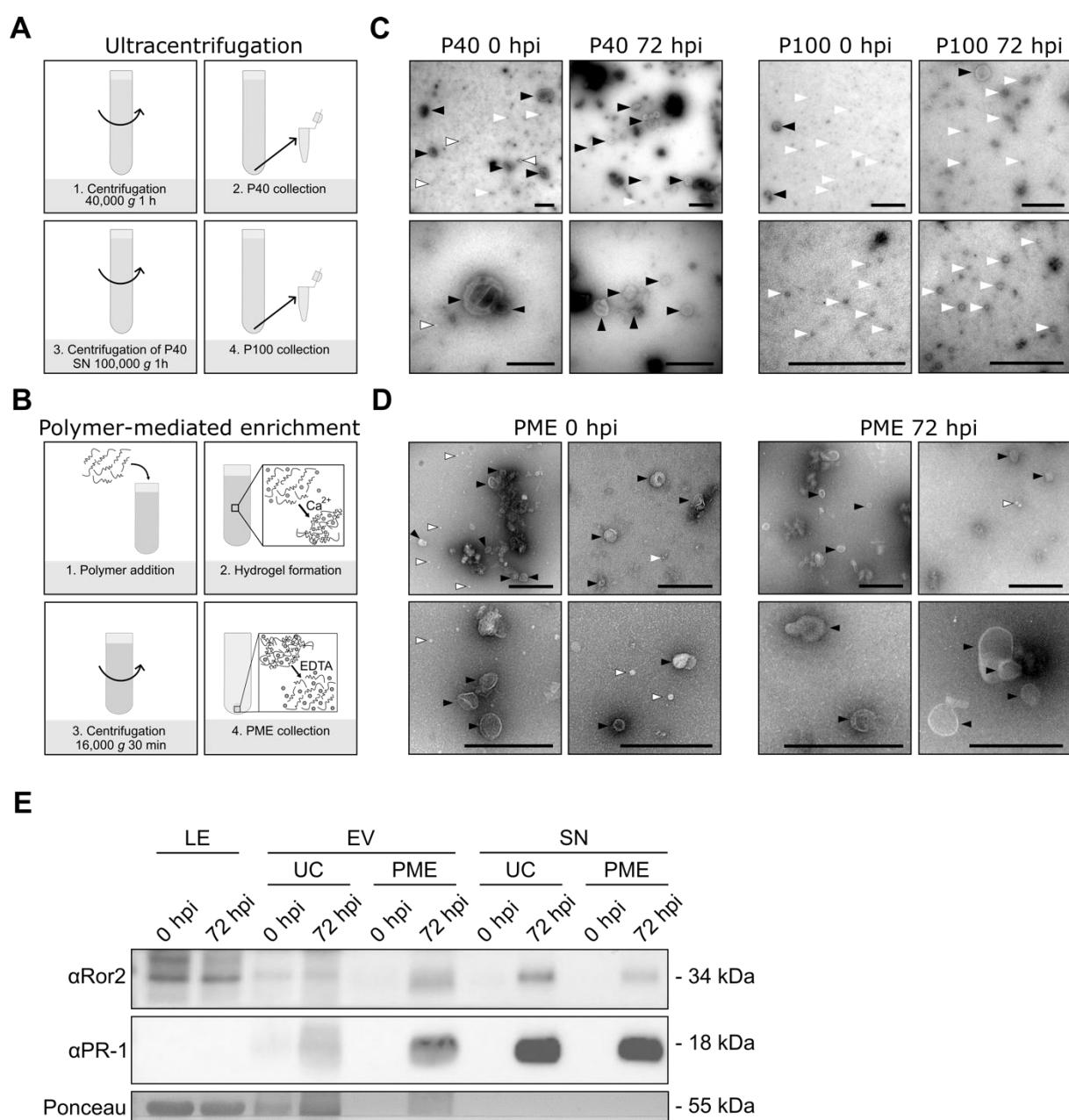
1050 Zhao T-Y, Corum III JW, Mullen J *et al.* (2006) An alkaline α -galactosidase transcript is present
1051 in maize seeds and cultured embryo cells, and accumulates during stress. *Seed Science
1052 Research*, doi: 10.1079/SSR2006243.

1053 Zierold U, Scholz U, Schweizer P (2005) Transcriptome analysis of *mlo*-mediated resistance in
1054 the epidermis of barley. *Molecular Plant Pathology*, doi: 10.1111/j.1364-
1055 3703.2005.00271.x.

1056

1057 **Figures**

1058

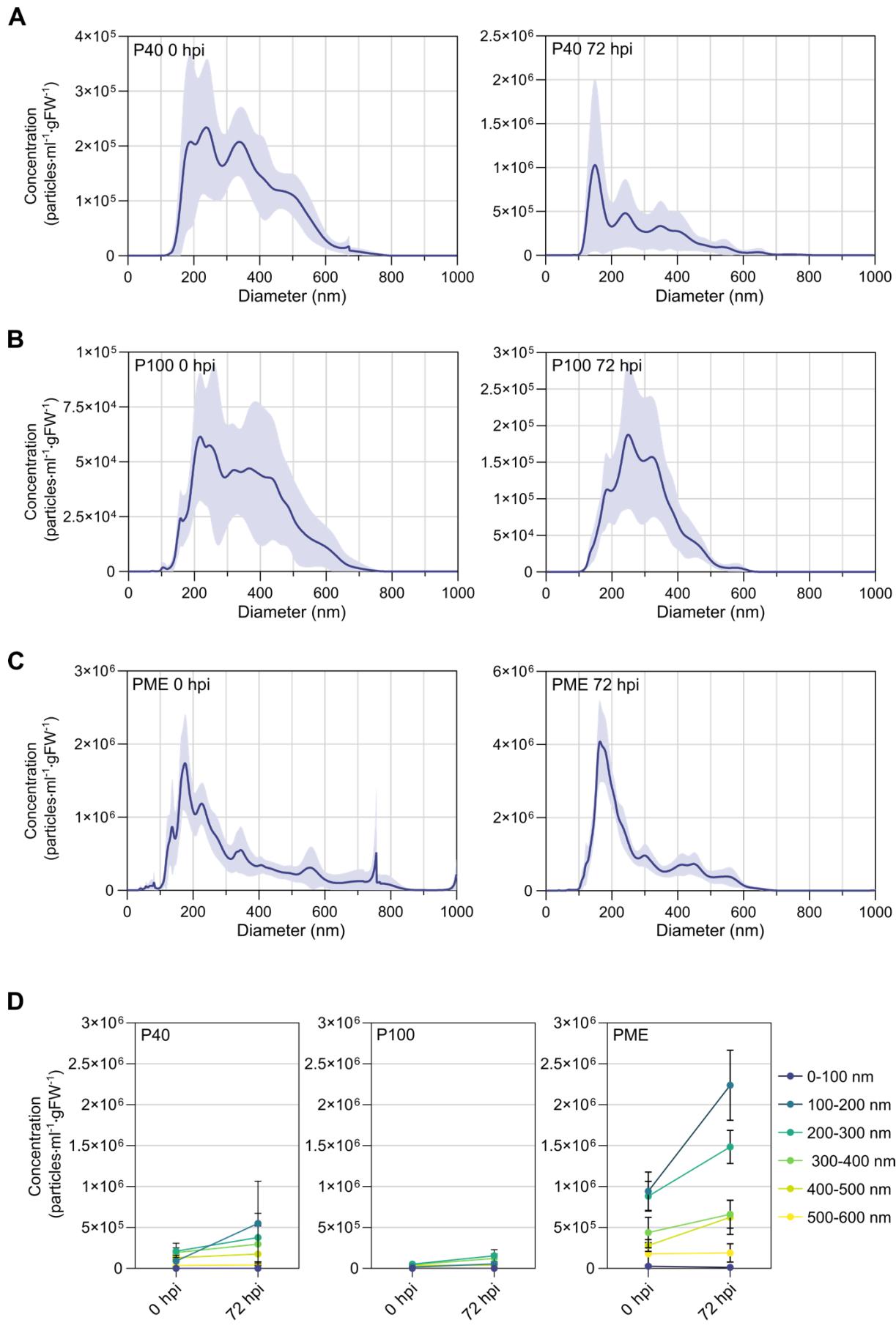

1059 **Figure 1. Challenge with *B. hordei* induces changes in the protein profile of the barley leaf**
1060 **AWF.**

1061 **A** Scheme depicting the workflow for the extraction of AWF from barley primary leaves. The
1062 procedure is based on a previously described method (Rohringer *et al.* 1983) and involves leaf
1063 harvest, the infiltration of the leaf apoplastic space with buffer, collection of the AWF by
1064 centrifugation, and removal of the debris from the AWF by filtering and centrifugation. For
1065 further details, see Materials and Methods.

1066 **B** Leaf extract or AWF was collected from barley leaves that were sampled either prior to
1067 inoculation (0 hpi, 7-day-old) or at 24 hpi (8-day-old) or 72 hpi (10-day-old) with *B. hordei*.
1068 Proteins (0.25 μg per sample) were separated by gel electrophoresis and stained with silver.
1069 The experiment was performed in two independent biological replicates with similar outcome.

1070 **C** Immunoblot of total leaf extract (LE) and AWF probed with antibodies specific for the
1071 chloroplastic/cytosolic contamination marker PsbA/D1 (predicted molecular mass 28 kDa),
1072 the potential EV marker Ror2 (predicted molecular mass 34 kDa), and the secreted defence
1073 marker PR-1 (predicted molecular mass 18 kDa). Total leaf extract and AWF was collected from
1074 barley leaves that were sampled either prior to inoculation (0 hpi) or at 24 hpi or 72 hpi with
1075 *B. hordei*. Gels were loaded with 2.5 μg protein per sample. The apparent molecular masses
1076 of proteins (given on the right) were judged by comparison with protein standards analysed
1077 on the same gel. Staining with Ponceau S (the prominent band corresponding to the large
1078 subunit of RuBisCO) served to demonstrate equal loading. The experiment was performed in
1079 three independent biological replicates with similar results.

1080

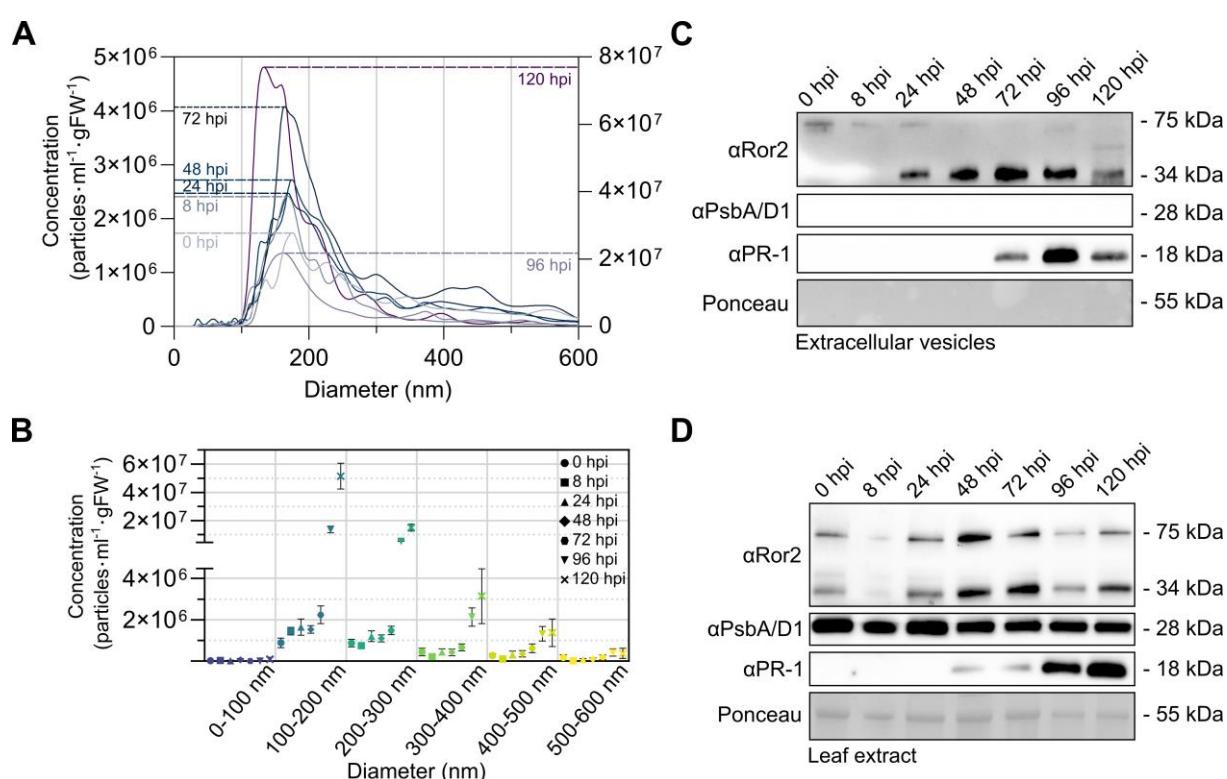

Figure 2. Characteristic cup-shaped structures are present in the P40 fraction and following PME of EVs isolated from the barley leaf AWF.

1083
1084
1085 **A** Scheme of the workflow for the isolation of crude EVs (P40 and P100) from barley AWF by
1086 differential ultracentrifugation at 40,000 g and 100,000 g (Rutter & Innes 2017). See Materials
1087 and Methods for further details.

1088 **B** Scheme of the workflow for the isolation of crude EVs from barley AWF by PME according
1089 to the manufacturer's instructions. EVs are captured in a polymer-based hydrogel in the
1090 presence of calcium (Ca^{2+}) ions and released by the addition of the Ca^{2+} chelator
1091 ethylenediaminetetraacetic acid (EDTA). See Materials and Methods for further details.

1092 **C** Transmission electron micrographs of P40 and P100 fractions isolated from AWF collected
1093 from barley leaves that were sampled either prior to inoculation (0 hpi) or at 72 hpi with *B.*
1094 *hordei*. EVs were stained using uranyl acetate. Representative images of three (non-
1095 inoculated) and four (inoculated) biological replicates are shown. Typical cup-shaped

1096 morphology – black arrowheads, small granular particles – white arrowheads, electron-light
1097 particles – white arrowheads with black outlines. Scale bars = 500 nm.
1098 **D** Transmission electron micrographs of EVs isolated *via* PME from barley leaves that were
1099 sampled either prior to inoculation (0 hpi) or at 72 hpi with *B. hordei*. EVs were stained using
1100 phosphotungstic acid. Representative images of four (non-inoculated) or three (inoculated)
1101 biological replicates are shown. Typical cup-shaped morphology – black arrowheads, small
1102 granular particles – white arrowheads, electron-light particles – white arrowheads with black
1103 outlines. Scale bars = 500 nm.
1104 **E** The barley ortholog of the Arabidopsis EV marker PEN1, Ror2, is present in EV and
1105 supernatant samples. Immunoblot of total leaf extract (LE), EV, and supernatant (SN) samples
1106 probed with α Ror2 (potential EV marker, predicted molecular mass 34 kDa) and α PR-1
1107 (secreted defence marker, predicted molecular mass 18 kDa). Leaf extract, EV and
1108 supernatant samples were isolated from leaves of 10-day-old barley plants that were either
1109 not inoculated (-) or sampled at 72 hpi with *B. hordei* (+). The gel was loaded with 5 μ g protein
1110 of total leaf extract, completely resuspended ultracentrifugation (P40) pellets, 20 μ l of PME
1111 pellets resuspended in 150 μ l Tris buffer, and 10 μ l supernatant sample. Staining with Ponceau
1112 S (the prominent band corresponding to the large subunit of RuBisCO) served to demonstrate
1113 equal loading of the gels. Apparent molecular masses of proteins (given on the right) were
1114 derived from a comparison with molecular mass standards analysed on the same gel. The
1115 experiment was repeated in two biological replicates with similar results.
1116



1119 **Figure 3. Barley leaf apoplastic EVs constitute polydisperse populations that are selectively**
1120 **responsive to infection with *B. hordei*.**

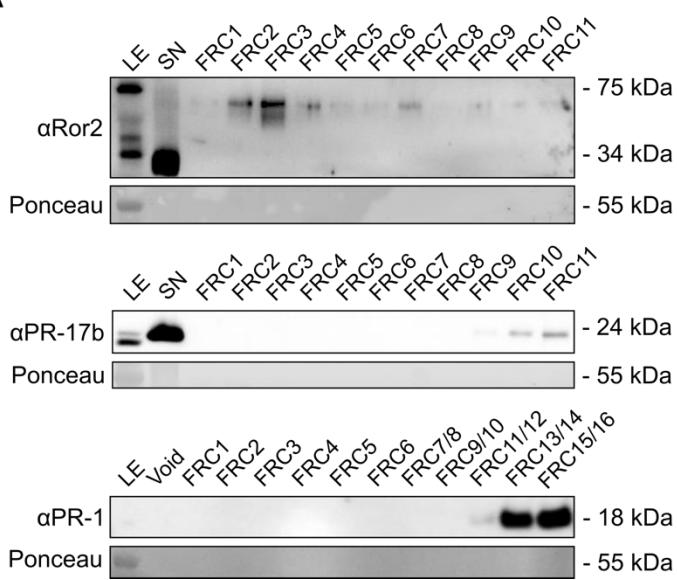
1121 **A, B, C** NTA data showing the size distribution and mean concentration within the upper and
1122 lower 95 % confidence intervals of P40- (**A**), P100- (**B**), and PME-derived (**C**) EV samples. EVs
1123 were isolated from leaves of 10-day-old barley plants that were either sampled prior to
1124 inoculation (0 hpi) or at 72 hpi with *B. hordei*. Plots are based on data from five (P40, P100)
1125 or six (PME) independent biological replicates.

1126 **D** Comparison of EV concentrations in P40, P100 and PME samples from non-inoculated (0
1127 hpi) and *B. hordei*-infected (72 hpi) plants, divided into 100 nm bins as indicated by the
1128 colour-coded legend on the right side of the plots. Points represent the mean, and error bars
1129 the standard deviation. Plots are based on data from five (P40- and P100-derived EVs) or six
1130 (PME-derived EVs) independent biological replicates. The plots are based on the dataset
1131 shown in panels **A**, **B** and **C** above.

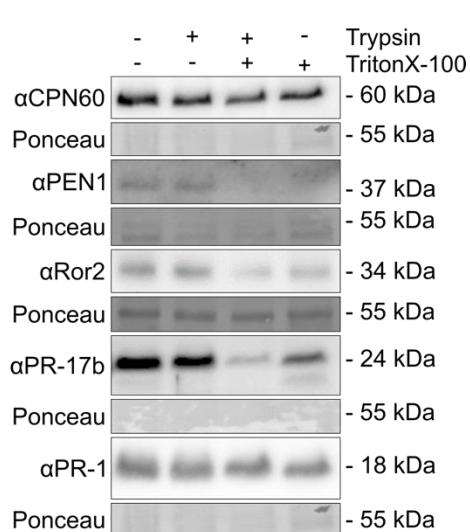
1132

1133

1134 **Figure 4. Levels of barley leaf apoplastic EVs and its associated candidate marker protein**
1135 **Ror2 increase highly during fungal infection.**


1136 **A** NTA data showing the size distribution and mean concentration of PME-derived EVs
1137 isolated from barley leaves either prior to inoculation (0 hpi) or at 8, 24, 48, 72, 96 or 120 hpi
1138 with *B. hordei*. Note the different scales used: data for time points 0, 8, 24, 48, and 72 hpi
1139 refer to the left y-axis, data for 96 hpi and 120 hpi refer to the right y-axis.

1140 **B** Concentration of EVs displayed by 100 nm size fractions sampled at different time points
1141 after inoculation with *B. hordei*. Points represent the mean, error bars 95% confidence
1142 intervals. The experiment was performed in six independent biological replicates for time
1143 points 0-72 hpi and three independent biological replicates for 96-120 hpi. The graph is
1144 based on the dataset shown in A.


1145 **C, D** Immunoblots probed with antibodies specific for the potential EV marker protein Ror2
1146 (predicted molecular mass 34 kDa), the secreted defence marker PR-1 (predicted molecular
1147 mass 18 kDa), and the chloroplastic/cytosolic marker PsbA (predicted molecular mass 28
1148 kDa) in PME-derived EVs (**C**) or total leaf extract (**D**) at different time points after inoculation
1149 with *B. hordei*. Gels were loaded with 20 µl of EV pellets resuspended in 150 µl Tris buffer
1150 (pH 7.5) and mixed with 6x loading dye. For total leaf extract, 5 µg protein were loaded on
1151 the gel. Molecular masses of proteins (given on the right) were estimated from comparison
1152 to a molecular mass standard analysed on the same gel. Proteins on the blots were stained
1153 with Ponceau S (the prominent band corresponding to the large subunit of RuBisCO) and this
1154 served to demonstrate equal loading. The experiment was performed in six independent
1155 biological replicates for time points 0-72 hpi and three independent replicates for time
1156 points 96-120 hpi.

1157

A

B

1158

Figure 5. Ror2 might qualify as an EV marker.

1160 **A** Immunoblots probed with antibodies specific for the potential EV marker protein Ror2
1161 (predicted molecular mass 34 kDa), the defence protein PR-17b (predicted molecular mass
1162 24 kDa), and the secreted defence marker PR-1 (predicted molecular mass 18 kDa) in total
1163 leaf extract (LE), supernatant (SN) or void, and 11-16 fractions collected by size exclusion
1164 chromatography (SEC) of PME-derived EVs derived from barley leaves at 72 hpi with *B.*
1165 *hordei*. Gels were loaded with 10 μ l supernatant, and/or 166 μ l of each SEC fraction (FRC) or
1166 SEC void volume (after lyophilisation and resuspension in 10 μ l) and mixed with 6x loading
1167 dye. For LE, 5 μ g protein were loaded on the gel. Molecular masses of proteins (given on the
1168 right) were judged according to a molecular mass standard run on the same gel. Staining
1169 with Ponceau S (the prominent band corresponding to the large subunit of RuBisCO) served
1170 to demonstrate successful transfer. The experiment was performed in three independent
1171 biological replicates for each protein.

1172 **B** Immunoblots probed with antibodies specific for the potential EV marker protein CPN60
1173 (predicted molecular mass 60 kDa), the potential EV marker protein Ror2 (predicted
1174 molecular mass 34 kDa), the *Arabidopsis* EV marker PEN1 (predicted molecular mass 37
1175 kDa), the defence protein PR-17b (predicted molecular mass 24 kDa), and the secreted
1176 defence marker PR-1 (predicted molecular mass 18 kDa) in PME-derived EVs in barley leaves
1177 sampled at 72 hpi with *B. hordei*. EVs were treated with either trypsin or Triton X-100 or pre-
1178 treated with TritonX-100 followed by trypsin. Gels were loaded with 20 μ l of treated EV
1179 pellets and mixed with 6x loading dye. Molecular masses of proteins (given on the right)
1180 were judged according to a molecular mass standard run on the same gel. The experiment
1181 was performed in seven independent biological replicates for Ror2 and PEN1, and three
1182 independent biological replicates for CPN60, PR-17b, and PR-1.

1183

1184
1185**Table 1. Proteins identified by mass spectrometry that were represented by at least two unique peptides and detected in both biological replicates^a.**

UniProt identifier	EnsemblPlants identifier	Protein designation	UP	TM	SignalP	More abundant at 72 hpi	Stress-related	Reference
A0A8I6YA55	HORVU.MOREX.r3.7HG0639380.1	RuBisCO large subunit-binding protein subunit beta	23	-	-	-	-	-
F2CTD9	HORVU.MOREX.r2.4HG0285800.1	Subtilase family protein	23	1	+	-	+	(Zierold <i>et al.</i> 2005)
A0A8I6W9H5	HORVU.MOREX.r3.2HG0102500.1	RuBisCO large subunit-binding protein subunit alpha	20	-	-	-	-	-
A0A8I6YK01	HORVU.MOREX.r3.5HG0510650.5	Beta-D-glucan exohydrolase isoenzyme Exol	19	(1)	+	-	+	(Mostek <i>et al.</i> 2015)
A0A8I6WZ78	HORVU.MOREX.r3.2HG0206500.2	Glycoside hydrolase family 3 C-terminal domain protein	18	-	-	-	-	-
A0A287EUP1	HORVU.MOREX.r2.1HG0017110.1	Peroxidase (generally classified as PR-9)	14	(1)	+	-	+	(Pál <i>et al.</i> 2013; Dmochowska-Boguta <i>et al.</i> 2013)
A0A8I6YZ79	HORVU.MOREX.r3.6HG0550840.1	Pathogenesis-related protein PR-17b	13	-	+	+	+	(Christensen <i>et al.</i> 2002)
A0A8I6WTD6	HORVU.MOREX.r3.2HG0138660.1	Glucan endo-1,3-beta-D-glucosidase (generally classified as PR-2)	13	-	+	+	+	(Beffa <i>et al.</i> 1993)
A0A8I6XTR1	HORVU.MOREX.r3.6HG0580070.1	Vacuolar proton pump subunit B	12	-	-	-	-	-
A0A8I6Y6U2	HORVU.MOREX.r3.5HG0430940.1	Cellulase domain-containing protein	11	-	+	-	-	-
A0A8I7B2A7	HORVU.MOREX.r3.2HG0117530.1	Carboxypeptidase	11	(1)	-	-	+	

A0A8I7BCV7	HORVU.MOREX.r3.4HG0397690.1	Fn3_like domain-containing protein	11	-	-	-	-	-
F2D465	HORVU.MOREX.r2.1HG0036040.1	Pathogenesis-related protein Pr-17a	11	(1)	+	-	+	(Christensen <i>et al.</i> 2002)
A0A8I6YYE1	HORVU.MOREX.r3.7HG0725070.1	Peptidase A1 domain-containing protein	10	-	-	-	+	(Jashni <i>et al.</i> 2015)
F2D5K9	HORVU.MOREX.r2.7HG0542610.1	GDSL-like Lipase/acylhydrolase	10	-	+	+	(+)	(Kusumawati <i>et al.</i> 2008)
A0A287PQV9	HORVU4Hr1G082700.8	Ribosomal protein L4/L1 family	9	-	-	-	-	-
A0A287F5Q6	HORVU1Hr1G037650.7	RuBisCO accumulation factor 1 helix turn helix domain or RuBisCO accumulation factor 1 alpha helical domain	9	-	-	-	-	-
F2CWJ3	HORVU.MOREX.r2.4HG0342010.1	Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)	8	-	-	-	-	-
A0A8I6X3I7	HORVU.MOREX.r3.3HG0224850.1	Aspartic peptidase A1	8	-	-	+	+	(Beers <i>et al.</i> 2004)
P35793	HORVU7Hr1G033620.1	Pathogenesis-related protein PRB1-3 (PR-1b)	8	-	+	+	+	(Santén <i>et al.</i> 2005; Bryngelsson <i>et al.</i> 1994)
F2D483	HORVU2Hr1G067370.1	40S ribosomal protein S8	7	-	-	+	-	-
F2DH21	HORVU.MOREX.r3.6HG0623840.1	Purple acid phosphatase	7	-	+	-	-	-
M0XRM3	HORVU.MOREX.r3.6HG0610230.1	Peptidase A1 domain-containing protein	7	-	-	-	+	(Beers <i>et al.</i> 2004)
F2DMI6	HORVU.MOREX.r3.5HG0473560.1	Pathogenesis related protein PR-1a (Hv-1a)	7	-	+	+	+	(Santén <i>et al.</i> 2005; Bryngelsson <i>et al.</i> 1994)

A0A8I6YSJ4	HORVU.MOREX.r3.6HG0566190.1	Peroxidase (generally classified as PR-9)	7	(1)	+	-	+	(Pál <i>et al.</i> 2013; Dmochowska-Boguta <i>et al.</i> 2013)
A0A287PS10	HORVU4Hr1G077240.3	40S ribosomal protein SA	6	-	-	+	-	-
A0A8I6XS54	HORVU.MOREX.r3.3HG0300600.1	Chitinase (generally classified as PR-3 or PR-4)	6	-	-	+	+	(Anisimova <i>et al.</i> 2021; Ahmed <i>et al.</i> 2012)
A0A191TDI3	HORVU.MOREX.r3.UnG0754030.1 HORVU.MOREX.r3.UnG0760960.1	ATP synthase subunit alpha	5	-	-	-	-	-
A0A8I6Y217	HORVU.MOREX.r3.3HG0318620.1	Glycoside hydrolase family 17	5	(1)	+	+	-	-
F2D5M4	HORVU.MOREX.r3.3HG0318590.1	Glycoside hydrolase family 17	5	-	-	+	-	-
A0A8I6WAC6	HORVU.MOREX.r3.2HG0112580.1	Peroxidase (generally classified as PR-9)	5	-	-	+	+	(Pál <i>et al.</i> 2013; Dmochowska-Boguta <i>et al.</i> 2013)
P00828	atpB	ATP synthase subunit beta, chloroplastic	4	-	-	-	-	-
A0A287V4V8	HORVU6Hr1G090170.1	Ribosomal protein L14p/L23e	4	-	-	+	-	-
F2DD69	HORVU.MOREX.r3.6HG0606220.1	Phosphoribulokinase	4	-	-	-	-	-
F2CVM1	HORVU.MOREX.r3.4HG0409940.1	Catalase	4	-	-	-	-	-
M0UFX2	HORVU3Hr1G026060.1	Ribosomal protein L5 or ribosomal L5P family C-terminus protein	4	-	-	-	-	-
M0VYX8	HORVU1Hr1G072060.1	30S ribosomal protein S8, chloroplastic	4	-	-	-	-	-
F2ELD1	HORVU.MOREX.r3.4HG0349070.1	Fructose-bisphosphate aldolase	4	-	-	-	-	-
M0X3R2	HORVU.MOREX.r3.2HG0173530.1	14-3-3 domain-containing protein	4	-	-	-	+	(Finnie <i>et al.</i> 2002)

F2E7Z5	HORVU.MOREX.r3.7HG0665050.1	Germin-like protein (potentially PR-15 protein)	4	-	+	-	+	(Segarra <i>et al.</i> 2003)
A0A8I6XJ65	HORVU.MOREX.r3.3HG0318380.1	Leucine rich repeat N-terminal domain-containing protein	4	-	+	+	-	-
A0A8I6Y3Y6	HORVU.MOREX.r3.6HG0610500.1	Peptidase A1 domain-containing protein	3	-	-	-	+	(Beers <i>et al.</i> 2004)
F2CSC5	HORVU.MOREX.r3.2HG0112820.1	Ribosomal protein L6 family protein	3	-	-	-	-	-
Q6RYF4	HORVU.MOREX.r3.4HG0416190.1	Coatomer subunit alpha	3	-	-	-	-	-
F2CSC5	HORVU.MOREX.r3.2HG0112820.1	Ribosomal protein L19	3	-	-	-	-	-
F2CRF1	HORVU.MOREX.r3.4HG0337050.1	14-3-3 domain-containing protein	3	-	-	-	+	(Finnie <i>et al.</i> 2002)
A0A287XW13	HORVU7Hr1G115040.1	30S ribosomal protein S17, chloroplastic	3	-	-	-	-	-
F2CTW0	HORVU.MOREX.r3.3HG0248990.1	Phosphorylase superfamily protein	3	2	-	-	(+)	(Hwang <i>et al.</i> 2016)
A0A8I6WYU4	HORVU.MOREX.r3.2HG0204520.1	Papain family cysteine protease protein	3	1	-	-	+	(Misas-Villamil <i>et al.</i> 2016)
F2DEW5	HORVU.MOREX.r3.5HG0537290.1	TCP-1/cpn60 chaperonin family	3	-	-	-	-	-
F2CV55	HORVU.MOREX.r3.2HG0112610.1	Peroxidase (generally classified as PR-9)	3	(1)	+	+	+	Dmochowska-Boguta 2013, Pal 2013
D2CVR3	HORVU.MOREX.r3.1HG0054950.1	Chitinase (generally classified as PR-3 or PR-4)	3	(1)	+	+	+	(Anisimova <i>et al.</i> 2021; Ahmed <i>et al.</i> 2012)
F2D6I8	HORVU.MOREX.r3.6HG0592050.1	Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)	2	-	-	-	-	-
A0A8I6WRK8	HORVU.MOREX.r3.2HG0188290.1	Major intrinsic protein	2	6	-	-	+	(Kayum <i>et al.</i> 2017; Lu <i>et al.</i> 2018)

0A287EWL1	HORVU1Hr1G022570.1	Ribosomal_L18e/L15P domain-containing protein	2	-	-	-	-	-
F2CRM3	HORVU1Hr1G089760.1	Ribosomal protein L7/L12 C-terminal domain or Ribosomal protein L7/L12 dimerisation domain protein	2	-	-	-	-	-
A1E9M6	rps8	30S ribosomal protein S8, chloroplastic	2	-	-	-	-	-
A0A8I6X7P9	HORVU.MOREX.r3.2HG0201390.1	Adenosylhomocysteinase	2	-	+	-	-	-
A0A287PXM5	HORVU4Hr1G084410.4	50S ribosomal protein L5, chloroplastic	2	-	-	-	-	-
F2E2K8	HORVU.MOREX.r3.2HG0133340.1	Major intrinsic proteins	2	3	-	-	+	(Kayum <i>et al.</i> 2017; Lu <i>et al.</i> 2018)
A0A8I6WF61	HORVU.MOREX.r3.2HG0172790.1	PLAT domain-containing protein	2	-	+	-	(+)	(Hyun <i>et al.</i> 2014)
M0XCF8	HORVU2Hr1G063880.5	Ribosomal protein L13	2	-	-	-	-	-
A0A8I6WFT1	HORVU.MOREX.r3.1HG0046150.1	Alpha-galactosidase	2	-	-	-	(+)	(Zhao <i>et al.</i> 2006; Yu <i>et al.</i> 2022)
A0A287Q809	HORVU5Hr1G005290.2	Thaumatin family protein (PR-5)	2	(1)	+	+	+	(Lambertucci <i>et al.</i> 2019)
F2CT91	RBCS	RuBisCO small subunit	2	-	-	-	-	-
A0A8I6XSB4	HORVU.MOREX.r3.5HG0423060.1	Thaumatin family protein (TLP5)	2	(1)	+	+	+	(Lambertucci <i>et al.</i> 2019)
P05698	rbcL	RuBisCO large subunit	2	-	-	-	-	-
M0WZI8	HORVU.MOREX.r3.6HG0609880.1	ADP/ATP translocase	2	3	-	-	-	-
A0A287SR52	HORVU5Hr1G111820.3	40S ribosomal protein S26	2	-	-	-	-	-
D2KZ38	HORVU.MOREX.r3.4HG0407580.1	Major intrinsic proteins	2	2	-	-	+	(Kayum <i>et al.</i> 2017; Lu <i>et al.</i> 2018)

1186 ^a UP = unique peptides; TM = transmembrane domain, N-terminal TMs that are likely false positive displayed in brackets; SP = signal peptide, “+”
1187 indicates the presence of signal peptide; proteins more abundant (either log2 fold change of label-free quantification >2 in both replicates, or log2
1188 fold change >2 in one of the replicates and in the other replicate only identified in the inoculated sample) at 72 hpi are marked “+” and “+” when
1189 the protein is exclusively present at 72 hpi. Proteins known or potentially involved in biotic stress responses are marked “+”, in abiotic stress
1190 responses “(+”).