

1 **Prophage-encoded methyltransferase drives adaptation of community-acquired**
2 **methicillin-resistant *Staphylococcus aureus***

3

4 Robert J. Ulrich¹, Magdalena Podkowik^{1,2}, Rebecca Tierce³, Irnov Irnov⁴, Gregory Putzel^{2,4},
5 Nora Samhadaneh^{2,4}, Keenan A. Lacey⁴, Daiane Boff⁴, Sabrina M. Morales¹, Sohei Makita⁵,
6 Theodora K. Karagounis⁶, Erin E. Zwack⁴, Chunyi Zhou⁴, Randie Kim⁶, Karl Drlica^{7,8}, Alejandro
7 Pironti^{2,4}, Harm van Bakel^{9,10,11}, Victor J. Torres^{2,4,12,*} and Bo Shopsin^{1,2,4,*}

8

9 ¹Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA

10 ²Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York,
11 NY, USA

12 ³Division of Comparative Medicine, NYU Langone Health, New York, NY, USA

13 ⁴Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA

14 ⁵Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA

15 ⁶Ronald O. Perleman Department of Dermatology, NYU Grossman School of Medicine, New
16 York, NY, USA

17 ⁷Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School,
18 Rutgers University, Newark, NJ, USA

19 ⁸Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine,
20 New York, NY, USA

21 ⁹Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New
22 York, NY, USA

23 ¹⁰Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

24 ¹¹Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

25 ¹²Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis,
26 TN, USA

27 *Co-senior authors

28

29 Co-corresponding Authors: Bo Shopsin MD, PhD, Alexandria Center for Life Science West
30 Tower, 430 E 29th St, New York, NY 10016, (212) 263-0458, bo.shopsin@nyulangone.org;
31 Victor J. Torres, PhD, 262 Danny Thomas Place MS221, Memphis, TN 38105, (901) 595-6555;
32 Victor.Torres@stjude.org; Robert J. Ulrich, MD, Alexandria Center for Life Science West Tower,
33 430 E 29th St, New York, NY 10016, (332) 207-0183, robert.ulrich@nyulangone.org

34

35 Conflict of Interest Statement: V.J.T. has received honoraria from Pfizer and MedImmune, and
36 is an inventor on patents and patent applications filed by New York University, which are
37 currently under commercial license to Janssen Biotech Inc. He is currently an advisor for
38 Moderna. All other authors: no competing interests declared.

39

40

41

42

43

44

45

46

47

48

49 **Abstract (176 words):**

50 We recently described the evolution of a community-acquired methicillin-resistant
51 *Staphylococcus aureus* (CA-MRSA) USA300 variant responsible for an outbreak of skin and
52 soft tissue infections. Acquisition of a mosaic version of the Φ 11 prophage (m Φ 11) that
53 increases skin abscess size was an early step in CA-MRSA adaptation that primed the
54 successful spread of the clone. The present report shows how prophage m Φ 11 exerts its effect
55 on virulence for skin infection without encoding a known toxin or fitness genes. Abscess size
56 and skin inflammation were associated with DNA methylase activity of an m Φ 11-encoded
57 adenine methyltransferase (designated *pamA*). *pamA* increased expression of fibronectin-
58 binding protein A (*fnbA*; FnBPA), and inactivation of *fnbA* eliminated the effect of *pamA* on
59 abscess virulence without affecting strains lacking *pamA*. Thus, *fnbA* is a *pamA*-specific
60 virulence factor. Mechanistically, *pamA* was shown to promote biofilm formation in vivo in skin
61 abscesses, a phenotype linked to FnBPA's role in biofilm formation. Collectively, these data
62 reveal a novel mechanism—epigenetic regulation of staphylococcal gene expression—by which
63 phage can regulate virulence to drive adaptive leaps by *S. aureus*.

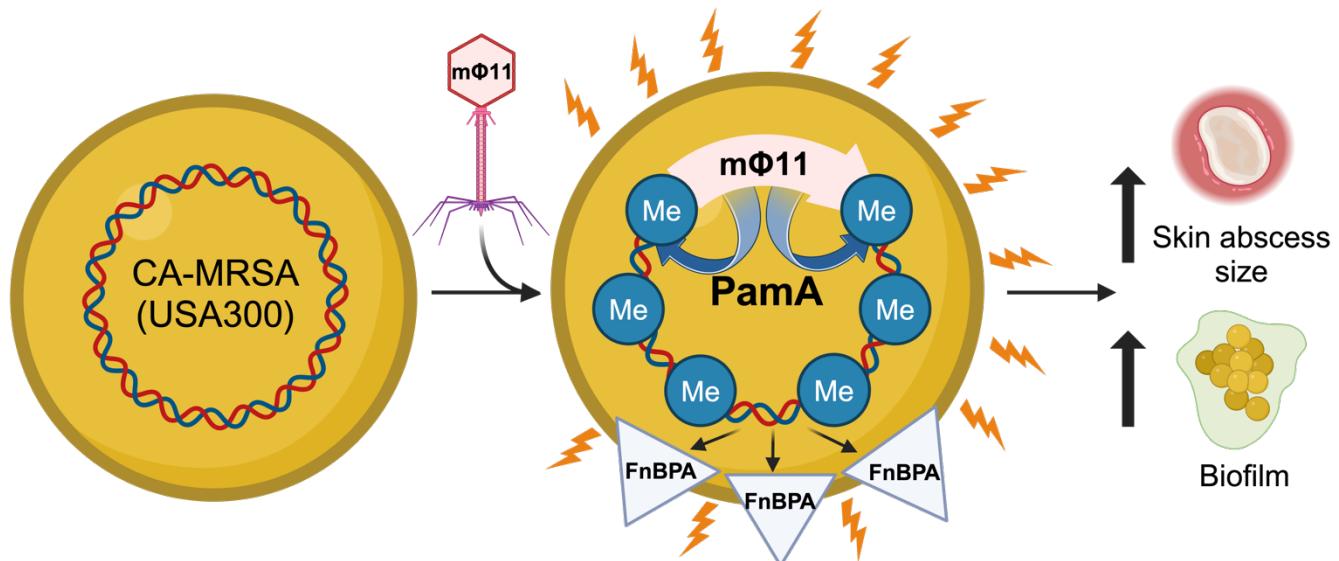
64

65

66

67

68


69

70

71

72

73 **Graphical Abstract**

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89 **Introduction**

90 Community-acquired methicillin-resistant *Staphylococcus aureus* (CA-MRSA) lineage
91 USA300 is the major cause of skin and soft tissue infection in the United States, and clonal
92 variants that cause outbreaks have become public health emergencies (1-3). The spectrum of
93 adaptive changes that arise during the course of CA-MRSA dissemination is likely to identify
94 genetic pathways critical for bacterial pathogenesis in vivo (4). We recently described a
95 genotypic cluster of CA-MRSA-USA300 that emerged in Brooklyn, NY (USA300-BKV) that was
96 uniquely positioned to offer insight into properties of emerging CA-MRSA strains (5). The
97 persistence of the Brooklyn disease cluster enabled us to use phylogenetic analysis and
98 experimental assays to identify a unique prophage that promoted large skin abscesses. That
99 pathogen advantage primed USA300-BKV for successful spread, thereby facilitating the
100 subsequent emergence of resistance to topical antimicrobials (5). Until now, it was unknown
101 how the Brooklyn cluster-associated prophage, which is a mosaic variant of the well-known *S.*
102 *aureus* generalized transducing phage Φ 11 (referred to as m Φ 11), enhanced virulence during
103 skin infection.

104 *S. aureus* strains often carry multiple prophages (6-8), which are primary drivers of *S.*
105 *aureus* evolution, diversity, and virulence (9-12). To date, studies of prophage-mediated
106 virulence in *S. aureus* have primarily focused on prophage-encoded toxin and fitness genes.
107 One example is the prophage-encoded Panton-Valentine leucocidin which is associated with
108 skin abscesses across all *S. aureus* lineages, including USA300 (13-16). In contrast, the
109 Brooklyn cluster-associated m Φ 11 is similar to most prophages in that it lacks a known
110 virulence factor, nor does its insertion disrupt a chromosomal virulence gene (5). Thus, new
111 pathogenic mechanisms are expected to derive from genetic and phenotypic analysis that
112 define m Φ 11 components driving enhanced skin abscess virulence.

113 In the present work, we report that the methylase activity of an mΦ11-encoded DNA
114 methyltransferase, which has been named *pamA* for phage adenine methyltransferase A, is
115 necessary and sufficient for the enhanced skin abscess phenotype observed with the USA300-
116 BKV clone. Moreover, we found that *pamA* rewrites the bacterial transcriptional program,
117 resulting in a marked increase in the expression and production of fibronectin-binding protein A
118 (*fnbA*; FnBPA), as determined by RNA sequencing and global proteomics. *fnbA* was necessary
119 for the *pamA*-associated skin abscess phenotype, which was in turn associated with increased
120 production of biofilms. Collectively, the data demonstrate how phage can modify DNA to
121 enhance USA300 virulence by altering the expression of core genome-encoded virulence
122 factors, thereby increasing the fitness of epidemic clones and driving leaps in adaptation.

123

124 **Results**

125 ***Genetic deletions localize the mΦ11 gene(s) responsible for increased skin infection***
126 ***virulence.***

127 Prophage mΦ11 promotes USA300-mediated tissue damage by increasing skin abscess
128 size during murine infection (**Figure S1A**), as previously reported (5). Often, hypervirulent
129 strains of *S. aureus* will exhibit differences in growth rates (17), secreted protein production (18),
130 and/or transcriptional profiles (19-21). However, strain USA300 LAC* harboring mΦ11 did not
131 show significantly altered in vitro growth kinetics, exoprotein production, hemolysis patterns, or
132 transcript levels of non-mΦ11 genes compared to the parental USA300 LAC*, as determined by
133 RNA sequencing analysis (**Figures S1B-E**). Therefore, results of the in vitro analyses did not
134 correlate with the increased virulence demonstrated by mΦ11-containing strains during skin
135 infection. These data suggest that an in vivo signal(s) is required for mΦ11-associated virulence

136 (22). Thus, *in vivo* models of infection are required to identify mechanisms underlying mΦ11-
137 mediated virulence (**Figure 1A**).

138 Annotation of the mosaic portion of mΦ11 failed to identify known virulence factors (5).
139 Consequently, we constructed three en bloc deletions within the mosaic region of mΦ11 to
140 identify candidate gene(s) (**Figure 1B**). The deletions were confirmed using whole genome
141 sequencing (**Figure S2**). As expected, deletion of the entire mosaic region containing genes in
142 the replication and lysogeny modules ($\Delta 32\text{-}64$) eliminated the mΦ11 skin abscess phenotype in
143 mice (**Figures 1C-D**). Although deletion of an upstream fragment ($\Delta 32\text{-}43$) had no impact on
144 abscess size, deletion of the center gene block ($\Delta 44\text{-}57$) eliminated the skin abscess phenotype
145 (**Figures 1C-D**). These data localized skin abscess candidates to 14 genes (44-57) in mΦ11 for
146 further analysis. Of the 14 genes, eight gene sequences were unrelated to prototypical Φ11 or
147 other known prophages and therefore were considered promising candidates for further analysis
148 (**Table S1**).

149

150 ***An mΦ11-encoded adenine methyltransferase (pamA) is responsible for increased skin***
151 ***infection virulence.***

152 Examination of the eight potential virulence genes identified a methyltransferase that
153 was absent in wild-type Φ11 (**Table S1**). The mΦ11-encoded adenine methyltransferase
154 (*pamA*) shares amino acid sequence homology with DNA adenine methyltransferases (*dam*)
155 (5), so called orphan methyltransferases that are not paired with a cognate restriction
156 endonuclease and therefore do not form an obvious restriction-modification system. DNA
157 adenine methyltransferases act independently to regulate gene expression and bacterial
158 replication (23-25). They have also been implicated in prophage-mediated pathogenicity of an

159 outbreak strain of *E. coli* (26). Thus, *pamA* represented a promising candidate gene as a novel
160 virulence factor.

161 To determine whether *pamA* is necessary for the enhanced skin abscess phenotype, we
162 engineered an in-frame, unmarked *pamA* deletion in a USA300 LAC* mΦ11 lysogen
163 (mΦ11Δ*pamA*). Sanger and whole-genome sequencing respectively confirmed the deletion and
164 the absence of adventitious secondary mutations in mΦ11 Δ*pamA* (**Figure S3**). Infection of
165 mice with mΦ11Δ*pamA* resulted in a nearly identical average skin abscess size compared to
166 that of the control Φ11 lysogen (**Figure 2A**), suggesting that *pamA* was necessary for increased
167 virulence. Complementation, by integration of constitutively expressed *pamA* into the
168 staphylococcal chromosome in single copy using the SaPI *att* site (27), confirmed that *pamA* is
169 responsible for the skin abscess phenotype (**Figure 2C**). We did not observe a difference in
170 bacterial burden at 72 h post-infection (**Figures 2B, 2D**), as previously reported for comparisons
171 between mΦ11 and Φ11 lysogens (5). Collectively, these data demonstrate that mΦ11-
172 encoded *pamA* is required for increased skin abscess size in mice.

173

174 ***pamA* increases CA-MRSA skin abscess size irrespective of other mΦ11 genes.**

175 Next, we hypothesized that *pamA* expression would increase CA-MRSA virulence
176 independent of other mΦ11 genes. Indeed, wild-type USA300 LAC* expressing *pamA*
177 (LAC*::*pamA*) produced larger abscesses than an empty vector control strain (LAC*::EV) at all
178 times post-infection (**Figure 3A**). A maximal increase in abscess area of 91% was observed at
179 48 h post-infection. Therefore, *pamA* is sufficient to increase CA-MRSA skin virulence. As with
180 mΦ11 lysogens, LAC*::*pamA* did not affect bacterial CFU recovered from skin abscesses
181 (**Figure 3B**), supporting the hypothesis that *pamA* increases abscess size by increasing tissue
182 inflammation rather than bacterial burden. To test if this hypothesis is true, we compared skin

183 abscess histology and murine cytokine production of LAC*::*pamA* and LAC*::EV at 72 h post-
184 infection. Skin abscess inflammatory burden (**Figures 3C-D**) and proinflammatory
185 cytokine/chemokine production (**Figure 3E**) were increased in LAC*::*pamA* skin abscesses
186 compared to control LAC*:EV. Together, these data demonstrate that insertion of *pamA* into a
187 USA300 LAC* background without the surrounding mΦ11 genes is sufficient to increase local
188 tissue inflammation and, thereby, skin abscess size.

189

190 ***pamA*-associated skin abscess virulence depends on methyltransferase activity.**

191 To determine whether *pamA* increases skin abscess virulence through methylase
192 activity, we identified the conserved Dam active site (NPPY) in PamA (**Figure 4A**) and
193 individually introduced several point mutations in residues previously reported to inactivate
194 methyltransferase activity (28). To confirm that the PamA point mutants were inactive, we
195 digested genomic DNA with the restriction endonuclease DpnI, an enzyme that digests at the
196 methylated target of Dam (GATC) (29). As expected, *pamA*-containing strains, but not those
197 with point mutations in *pamA*, were susceptible to DpnI digestion (**Figure 4B**).

198 For in vivo studies, we used the *S. aureus* strain containing *pamAP65T*, since this
199 substitution exhibited the most significant decrease in Dam methylation activity (28). Consistent
200 with the hypothesis that the methylation activity of PamA contributes to the increased abscess
201 size, LAC*::*pamAP65T* produced abscesses that were 32-47% smaller than LAC*::*pamA*
202 abscesses and similar in size to LAC*::EV control (**Figure 4C**). The P65T amino acid change
203 eliminated the *pamA*-mediated large-size skin abscess size phenotype without affecting tissue
204 bacterial burden in the underlying tissues (**Figure 4D**). We conclude that the DNA methylation
205 activity of PamA increases abscess virulence.

206

207 **Identification of genes involved in *pamA*-mediated virulence.**

208 We proceeded to investigate whether *pamA* epigenetically regulates bacterial gene(s)
209 that result in the hyper-abscess phenotype. Notably, *pamA* is constitutively expressed in
210 LAC*::*pamA*, allowing us to bypass the *in vivo* induction needed to produce mΦ11-related
211 phenotypes. Thus, we performed RNA-seq with LAC*::*pamA* and LAC*::EV strains during
212 exponential growth in nutrient restrictive (RPMI) medium chosen to resemble nutrient availability
213 under infectious conditions in human plasma (30). LAC*::*pamA* induced widespread
214 transcriptional changes in CA-MRSA compared to the LAC*::EV control, with 483 genes
215 differentially expressed (232 overexpressed, 250 under-expressed, adjusted $P < 0.05$) (**Figure**
216 **5A**). The most significantly upregulated gene in LAC*::*pamA* compared to LAC*::EV encodes
217 fibronectin-binding protein A (*fnbA*; FnBPA) (**Figure 5A**). qRT-PCR confirmed a 15-fold increase
218 in *fnbA* transcription in the LAC*::*pamA* strain compared to LAC*::EV (**Figure 5B**). FnBPA is a
219 *S. aureus* cell-wall anchored protein that binds adhesive matrix molecules, increasing *S. aureus*
220 invasion into non-professional phagocytic cells (31-33). FnBPA also induces platelet
221 aggregation (34), promotes biofilm formation (35-37), and has been implicated as a virulence
222 factor in endocarditis (38), sepsis (39), implant infections (40), and skin and soft tissue
223 infections (41). Collectively, these observations suggest that *fnbA* plays a role in *pamA*-
224 mediated virulence.

225

226 ***pamA* increases biofilm production *in vitro* and *in vivo* by increasing FnBPA.**

227 The upregulation of *fnbA* expression observed in *pamA* containing strains, coupled with
228 its association with biofilm-related infections (42) suggest that *pamA* increases the formation of
229 biofilms. Indeed, we found that LAC*::*pamA* nearly doubled biofilm production compared to
230 LAC*::EV in an *in vitro* biofilm assay (**Figure 6A**). This phenotype reverted to LAC*::EV when

231 *pamA* contained an inactivating point mutation (**Figure 6A**). Thus, the methylase activity of
232 *pamA* increases biofilm production.

233 Biofilm has traditionally been associated with device-related infections (43, 44),
234 endocarditis (45), and osteomyelitis (46). However, we and others have found that biofilms also
235 form during *S. aureus* deep tissue abscess infections (47, 48). Additionally, skin abscess size
236 correlates with *in vitro* biofilm formation with *S. aureus* (49). To determine whether *pamA*-
237 mediated biofilms form *in vivo*, we quantified biofilm production in skin abscess tissue of
238 LAC*::*pamA* and LAC*::EV control strains by immunofluorescent staining of extracellular
239 bacterial DNA (48), an abundant component of *S. aureus* biofilms (50). LAC*::*pamA* strains
240 produced six-fold more biofilm compared to the LAC*::EV control (**Figures 6B-C**). Thus, *pamA*
241 stimulates biofilm production in skin abscesses, supporting the idea that *pamA*-mediated biofilm
242 production is important for pathogenesis of the skin abscess phenotype.

243 To test whether FnBPA production was increased in *pamA*-associated biofilms, we
244 compared levels of FnBPA in biofilms from LAC*::*pamA* and LAC*::EV control strains. Bacterial
245 cell-wall-associated proteins from *in vitro* biofilms, as determined by SDS-PAGE, are shown in
246 **Figure 6D**. A distinct, high molecular weight protein band was observed to be more abundant in
247 LAC*::*pamA* compared to control strain LAC*::EV; there was otherwise considerable similarity in
248 the distributions of the corresponding bands obtained from the two strains. Consistent with our
249 transcriptional data, the high molecular weight protein band was identified as FnBPA by mass
250 spectrometry (**Figure S4**) and confirmed by western blot (**Figure 6E**).

251 To determine whether FnBPA was responsible for increased biofilm production, we
252 compared biofilm formation in a *fnbA*-inactivated mutant of LAC*::*pamA* (LAC*::*pamA* plus
253 *fnbA*::*bursa*) and a control strain carrying an empty vector (LAC*::EV plus *fnbA*::*bursa*). The
254 results show that LAC*::*pamA* plus *fnbA*::*bursa* phenocopied the biofilm production of the

255 LAC*:EV strain (**Figure 6F**); thus, the *fnbA* inactivation reversed the biofilm-enhancing effect of
256 *pamA*. Western blot of cell wall-associated proteins from biofilm-associated bacteria confirmed
257 that LAC*:pamA increased FnBPA production (**Figure 6G**). Thus, *pamA* increases biofilm
258 production in USA300 LAC* by increasing production of FnBPA.

259

260 ***pamA* increases skin infection virulence through fibronectin-binding protein A (*fnbA*).**

261 To investigate if *fnbA* was responsible for *pamA*-associated skin abscess virulence, we
262 compared LAC*:pamA plus *fnbA::bursa* mutant and control LAC*:pamA strains. Strain
263 LAC*:pamA plus *fnbA::bursa* produced 56-62% smaller abscesses than strain LAC*:pamA
264 (**Figure 7A**). At the same time, inactivation of *fnbA* did not affect abscess size in the LAC*:EV
265 control, indicating that the upregulation of *fnbA* by *pamA* is required for the observed phenotype.
266 We found no difference in abscess tissue bacterial CFU related to the presence of *pamA* or
267 *fnbA* (**Figure 7B**), supporting the idea that *fnbA* is necessary for the increased inflammatory
268 response seen in LAC*:pamA.

269 To ensure that the in vivo phenotype is specific to *pamA*, and not an artifact of *pamA*
270 overexpression, we compared mice infected with an *fnbA*-inactivated mutant of mΦ11
271 (LAC*/mΦ11:*fnbA::bursa*) to those infected with control strain LAC*/mΦ11. The results show
272 that *fnbA* is critical for the increased virulence observed with mΦ11 containing strains (**Figures**
273 **7C-E**), indicating that overexpression alone cannot explain the increased skin infection virulence
274 demonstrated in LAC*:pamA. We conclude that LAC*:pamA can provide insights into the role
275 of *pamA* in the virulence of mΦ11-containing strains and that *fnbA* is an essential downstream
276 virulence factor in the *pamA* regulatory pathway underlying increased virulence during skin
277 infection.

278

279 **Discussion**

280 The present findings, in conjunction with previous molecular epidemiology observations
281 (5), indicate that the mechanism by which mΦ11 primed the epidemic USA300 Brooklyn clone
282 for success is via a phage adenine methyltransferase (*pamA*) that increases bacterial virulence
283 during skin abscess infection. We discovered that *pamA* mediates this increase by rewiring the
284 strain through epigenetic modifications that induce expression of *fnbA*, a virulence factor
285 essential for the enhanced virulence of mΦ11-containing USA300. Interestingly, we found that
286 *fnbA* is not a skin abscess virulence factor in the absence of *pamA*. FnBPA is, in turn,
287 associated with increased abscess inflammation and an increased ability to form biofilms.
288 Successful spread of the Brooklyn clone after acquisition of mΦ11 is tied to subsequent
289 selection of antimicrobial resistance (5). Thus, analysis of the USA300-phage interaction in the
290 context of infection identified an unappreciated role for epigenetics in the evolution of virulence
291 in *S. aureus* and ultimately antimicrobial resistance in patients.

292 Recent reports link the *E. coli* prophage Φstx104-encoded methyltransferase
293 (M.EcoGIII) to global transcriptional changes in a hypervirulent strain O101:H4 variant that is
294 associated with an outbreak of hemolytic uremic syndrome (HUS) (26). Thus, the phenomenon
295 of prophage methyltransferase acquisition in epidemic strains may be common. However, the
296 contribution of M.EcoGIII transcriptional regulation to virulence of *E. coli* O101:H4 is confounded
297 by the observation that ΦStx104 encodes Shiga toxin genes *stxA* and *B* that cause HUS. To our
298 knowledge, mΦ11 is the only example in which differential regulation of a core virulence factor
299 by a phage-encoded methyltransferase is sufficient for elevated virulence during infection.

300 To date, studies on the role of prophage in pathogenesis focus largely on the role of
301 prophage-encoded secreted toxins and immune modulators (51). Nevertheless, many, if not
302 most, prophages lack known virulence or fitness factors (12) and frequently contain orphan

303 methyltransferases (52). Thus, our findings, and those in *E. coli*, support the idea that prophage-
304 mediated regulation of host bacterial gene expression may be a critical feature of the bacterium-
305 phage interaction. In this connection, we note that Φ N315 phage-encoded *sprD*, a regulatory
306 RNA, can enhance virulence in *S. aureus* (53, 54). This finding suggests the existence of
307 alternative routes to hypervirulence with phage that involves gene regulation.

308 Our results, and those of M.EcoGIII in *E. coli*, also support the idea that DNA
309 methylation has implications beyond that of bacterial defense against foreign DNA. Recent work
310 showed that horizontal acquisition of phage-encoded methyltransferases and associated
311 changes in gene expression are linked to speciation in *V. cholera* (55) and *M. abscessus* (56).
312 In contrast, although restriction-modification systems are well characterized in *S. aureus*
313 (reviewed in (57)), little has been known about the role of methyltransferases in staphylococcal
314 gene regulation. Thus, the present study forms a knowledge base whereupon the role of
315 methyltransferase in the pathogenesis of staphylococcal disease can now be interrogated by
316 genome-wide mapping to assess the role of DNA modification events in staphylococcal
317 virulence.

318 Two additional comments are relevant to the work described above. First, our present
319 and prior (5) findings that m Φ 11 phenotypes are specific to in vivo analyses supports the notion
320 that in vitro analyses of virulence genes and regulators do not necessarily correlate with
321 virulence during infection (58). This may be especially true for phage-mediated virulence, where
322 induction is often critical to stimulate expression of phage-encoded genes (59). Therefore, future
323 investigations to determine prophage effects on virulence should prioritize in vivo models.
324 Second, the observation that biofilm is associated with virulence during skin abscesses caused
325 by USA300 is concordant with a prior study linking biofilm and deep tissue abscesses (41).
326 Accordingly, we suggest that skin infection should be included in the established MRSA

327 infectious syndromes (e.g. device infections, endocarditis, osteomyelitis) with which biofilm is
328 traditionally associated.

329 In summary, our report identifies molecular mechanisms underlying the relationship
330 between prophage, virulence, and the emergence of an adapted CA-MRSA clone. Several
331 questions concerning the role of phage-encoded methyltransferases are raised by the present
332 study. For example, what is the host tissue-specific signal *in vivo* and does it require phage (or
333 phage gene) induction? Moreover, how does *pamA* alter methylation patterns and what specific
334 difference in methylation is responsible for increased *fnbA* expression and the enlarged abscess
335 phenotype? Third, is the phage-encoded methyltransferase mechanism of gene regulation
336 useful in other ecological contexts, such as colonization? And, lastly, what is the frequency and
337 distribution of orphan methyltransferase in natural populations of phage and *S. aureus*? Implicit
338 in these questions is the view that phage are independently evolving entities that have acquired
339 pathogenesis-adaptive genes. This behavior optimizes their existence as parasites, which they
340 have fine-tuned through multiple functions that enhance the fitness of their bacterial hosts.

341 **Methods**

342 *Bacterial strains and growth conditions*

343 Bacterial strains, plasmids, and oligonucleotides used in this study are described in

344 **Table 1.** *S. aureus* colony formation was on 5% sheep blood agar (SBA) or tryptic soy agar

345 (TSA) plates and *E. coli* was on Luria Bertani (LB) plates. *S. aureus* strains were grown in tryptic

346 soy broth (TSB) medium at 37°C with orbital shaking at 180 rpm. Plates and media were

347 supplemented with selective antibiotics when appropriate [ampicillin (Amp) 100 µg/mL,

348 chloramphenicol (Cm) 10 µg/mL, erythromycin 5 µg/mL (Erm) or CdCl₂ (Cd) 0.4 mM unless

349 stated otherwise]. Transductions were performed with phage 80α using established protocols

350 (60); transductants were selected on TSA plates with appropriate antibiotics. PCR amplifications

351 used Phusion™ Plus PCR Master Mix (Thermo Scientific, #F631) and oligonucleotides from

352 Integrated DNA Technologies (IDT). Detailed strain construction methods are provided in

353 **Supplemental Method A.** Briefly:

354 Strains containing in-frame deletions (RU39, RU42, RU47, and RU108) were engineered

355 in strain LAC*/mΦ11 (BS989) by allelic exchange with cloning plasmid pIMAY (61). Deletions

356 were confirmed by Sanger sequencing (Psomagen, Inc.) and comparative sequence analysis

357 (**Figures S2, S3**), as outlined below.

358 Strains containing a single-copy chromosomal insertion of a constitutively expressed

359 *pamA* (P_{sarA}-sodRBS-*pamA*) or empty vector (EV) were generated by insertion of pRU7 or

360 pJC1111, respectively, at the *S. aureus* pathogenicity island 1 (SapI1) site of strain BS656 (27),

361 then transducing the mutation with phage 80α into LAC* (resulting in strains RU121 and RU131)

362 or LAC*/mΦ11Δ*pamA* (resulting in strains RU129 and RU128). The presence and location of

363 the P_{sarA}-sodRBS-*pamA* and EV inserts were confirmed by PCR.

364 To construct strains with inactivating *pamA* point mutations, complementary
365 oligonucleotides that contained the desired *pamA* mutation were used to amplify P_{sarA} -sodRBS-
366 *pamA* from pRU7 template DNA, then the amplification products were sewn together by overlap
367 extension PCR (62). P_{sarA} -sodRBS-*pamAP65A*, P_{sarA} -sodRBS-*pamAP65T* and P_{sarA} -sodRBS-
368 *pamAP66A* fragments were inserted into pJC1111 with Gibson assembly resulting in pRU8,
369 pRU9 and pRU10, respectively. pRU8, pRU9, and pRU10 were transformed into competent *E.*
370 *Coli* DH5 α (New England Biolabs, #C2987H) per manufacturer instructions, electroporated into
371 BS656 for insertion into the *SapI1* *att* site (27), and transduced into LAC* with phage 80 α ,
372 resulting in strains RU161, RU162, and RU164, respectively. Point mutations were confirmed by
373 Sanger sequencing.

374 To construct strains with *fnbA::bursa* transposon insertions, phage 80 α lysate of strain
375 NE186 (*fnbA::bursa*, Erm r) (63) was used to transduce RU121, RU129, and BS989, generating
376 RU169, RU170, and RU171, respectively. PCR amplification across the *fnbA::bursa* insertion
377 site was performed to confirm the transposon insertion.

378

379 *Mapping deletions using whole genome sequencing (WGS)*

380 Extracted purified gDNA was quantified with the Quant-it picogreen dsDNA assay kit
381 (Invitrogen, #P7589) prior to library prep. Samples were normalized by concentration and
382 libraries prepared with the Illumina DNA prep (M) Tagmentation kit (#20018705). Each library
383 was combined equimolar and sequenced as paired-end 150-bp reads using the Illumina
384 Novaseq 6000 system with the S1 300 cartridge and flow cell.

385 For WGS analysis, BWA v0.7.17 (64) was used to map the raw short-read sequences of
386 the *S. aureus* samples (strains LAC*, BS989, RU39, RU42, RU47, and RU108) to a *S. aureus*
387 reference assembly (NCBI accession GCF_015475575) and the m Φ 11 phage (GenBank

388 accession PP554657), resulting in one alignment file per sample. The depth of mapped reads
389 was computed with bedtools v2.30.0 (65) using the command `bedtools genomecov -iBAM`
390 `file.bam -d`, where `file.bam` stands for each of the sample alignment files. This output files
391 tabulating contig name, start site, end site, and number of reads covering each base. Read
392 coverage per base were loaded into R v4.2.0 (R Core Team, 2021) for visualization. Plots were
393 created with ggplot2 (66).

394

395 *Growth Curves*

396 Overnight cultures were diluted (1:1000) into fresh TSB or RPMI medium (Sigma-
397 Aldrich, #R6504) and growth was monitored at 37°C in 100-well (150 µL-well) honeycomb
398 plates (Thermo Scientific, #12871511), using a Bioscreen C Analyzer (Thermo Labsystems),
399 measuring OD₆₀₀ at 30-min intervals. The curves represent averaged values from three
400 biological samples. Each biological sample was run as ten technical replicates.

401

402 *Secreted protein preparation*

403 Overnight cultures were pelleted, washed with sterile PBS, OD normalized, and diluted
404 1:200 into TSB medium for growth at 37°C shaking at 180 rpm. After 6 h and 24 h, cells were
405 centrifuged at ~3,200 x g for 15 minutes to remove bacteria and aliquots (1.3 mL) of
406 supernatant were passed through 0.2 µM filter (Thermo Scientific, #723-2520). The
407 supernatants were precipitated with 100% trichloroacetic acid using established protocols (67).

408

409 *Animal Infections*

410 Five-week-old female Swiss Webster mice (Envigo) were anesthetized with Avertin
411 (2,2,2-tribromoethanol dissolved in tert-Amyl alcohol and diluted in sterile PBS to a final

412 concentration of 2.5% vol/vol) intraperitoneal injection (300 μ L). Mice were shaved with
413 mechanical clippers and $\sim 1 \times 10^7$ CFU of bacteria was injected (100 μ L) subcutaneously into
414 each flank using Adson forceps (68). For daily abscess measurements, mice were briefly
415 anesthetized with inhaled isoflurane. Abscess diameter was measured with digital calipers
416 (Thermo Scientific, #14-648-17). Abscess area was quantified using digital photography and
417 ImageJ (69). Measurements were standardized to a centimeter ruler in-frame. At 72 h post-
418 infection, mice were euthanized, and abscesses excised with an 8mm punch biopsy (Integra
419 Life Sciences). Tissue biopsies were either prepared for histology as described below or
420 homogenized for CFU enumeration and/or cytokine analysis. If both CFU enumeration and
421 histology or other preparation was required, left flank biopsies were homogenized for CFU
422 enumeration while right flank biopsies were used for the additional analysis, to minimize bias.
423 For homogenization, biopsy samples were added to 2 mL conical screw cap tubes (Thermo
424 Scientific, #023-681-344 and #02-681-358) with sterile PBS (1mL) and a single 0.25" ceramic
425 sphere (MP Biomedicals, #116540034), weighed, and homogenized by three cycles in a
426 FastPrep-24 homogenizer (MP Biomedicals) at four m/s for 60 s. Homogenates were serially
427 diluted in sterile PBS and plated on TSA for CFU enumeration. For cytokine analysis, 1x Halt
428 protease inhibitor cocktail (Thermo Scientific, #78429) was added to homogenates and samples
429 were stored at -80°C.

430

431 *Histology*

432 Skin biopsies were immobilized in cassettes (Simport Scientific, #M490-2), fixed in 10%
433 formalin for 72 h at 4°C, washed in sterile PBS three times for 20 min, then dehydrated with
434 increasing concentrations of ethyl alcohol (EtOH) before storage in 70% EtOH at 4°C. Fixed and
435 dehydrated specimens were embedded in paraffin and 5 μ m sections were performed through

436 the center of the abscess for H&E and gram staining. Slides were scored for inflammatory
437 burden (mild/moderate/severe) and abscess architecture (nodular/diffuse) by a board-certified
438 dermatopathologist (RK), who was blinded to the sample identity throughout.

439

440 *Cytokine analysis*

441 Skin abscess cytokine profiles were obtained using the MILLIPLEX MAP Mouse
442 Cytokine/Chemokine Magnetic Bead Panel (Millipore Sigma, MCYTMAG-70K-PX32). Samples
443 were prepared as per manufacturer's instructions. Data were acquired using a Luminex
444 MABPIX instrument and analyzed using xPONENT software (Millipore). Statistical analyses
445 were performed for each individual cytokine.

446

447 *DpnI digestion*

448 gDNA was extracted from strains RU121, RU129, RU161, RU162, and RU164, digested
449 using DpnI (New England Biolabs, #R0176S) per manufacturer protocol, separated on a 1%
450 agarose gel containing SYBERSafe (Thermo Scientific, #S33102) and imaged in a Chemidoc
451 Imager (Bio-Rad Laboratories).

452

453 *RNA preparation and sequencing*

454 For transcriptional profiling of strains LAC* and LAC*/mΦ11 (**Figure S1E**), two
455 independent overnight cultures were diluted (1:100) into fresh TSB medium (5 mL) and grown at
456 37°C shaking at 180 rpm to early (3 h) or late exponential growth phase (6 h). For transcriptional
457 profiling of strains LAC*::EV and LAC*::pamA (**Figures 5A-B**), three independent overnight
458 cultures were diluted (1:100) into RPMI medium (15 mL) and incubated at 37°C with shaking at
459 180 rpm to exponential growth phase (5 h).

460 For RNA extraction, cells were concentrated by centrifugation (3,400 x g for five min),
461 resuspended in 1 mL Trizol (Invitrogen, #15596026), and disrupted using lysis matrix B (MP
462 Biomedicals, #116911050) tubes in a FastPrep-24 (MP Bio) at six m/s, for 30s, three times.
463 Samples were centrifuged at 12,000 x g for 10 min at 4°C and the upper phase was transferred
464 into a new RNA-free tube containing ice cold Trizol (500 µL), gently mixed, and incubated (five
465 min) at room temperature, then chloroform (200 µL) was added and samples were centrifuged
466 at 12,000 x g for 15 min at 4°C. The aqueous phase was mixed with isopropanol (500 µL) and
467 transferred to RNeasy column (Qiagen #74004) for washing and RNA elution. RNA was
468 visualized on the Agilent 2100 Bioanalyzer system using a Bioanalyzer Nanochip run with the
469 Prokaryote setting. Libraries were prepared with total RNA (500 ng per sample) of the high-
470 quality samples (RNA integrity number 9-10) using the Illumina stranded Total RNA Prep,
471 Ligation with Ribo-Zero Plus kit (#20040529) per manufacturer's instructions. PCR Amplification
472 was run with 11 total cycles. The libraries were visualized on the Agilent 4200 Tapestation
473 System and concentration was quantified by Qubit (Thermo Scientific). Libraries were pooled
474 equimolar and sequenced as paired-end 50 bases on the Illumina Novaseq 6000 system on one
475 lane of the SP 100 cycle flow cell kit.

476

477 *RNA sequencing analysis*

478 For RNA sequencing of strains LAC* and LAC*/mΦ11 (**Figure S1E**), we used previously
479 established analysis methods (70), with the addition of the mΦ11 sequence to the reference
480 genome. For RNA sequencing of strains LAC*::EV and LAC*::*pamA* (**Figure 5A**), we created a
481 reference assembly by appending the pJC1111 sequence to the AH-LAC assembly (NCBI
482 accession number GCF_015475575.1) and annotating with NCBI Prokaryotic Genome
483 Annotation Pipeline (PGAP) (71). However, the sequence of *pamA* was too short for processing

484 by PGAP, so we manually added it to the gff and genbank annotation files that PGAP produced.
485 We used Bowtie2 v2.4.1 (Langmead & Salzberg, 2012) to align the raw short-read sequences of
486 LAC*::*pamA* and LAC*::EV to the reference assembly. Using the alignment files generated for
487 each sample, the *featureCounts* command in Subread v2.0.1 (Liao et al., 2014) was used to
488 count the reads mapping to each gene in the reference. Read counts per gene and sample
489 were loaded into R v4.2.0 (R Core Team, 2021) for differential expression analysis using the
490 package DESeq2 v1.36.0 (Love et al., 2014). The function DESeq with default settings was
491 used to normalize for library size differences, to estimate dispersion, and to fit negative binomial
492 generalized least squares (GLM) models for each gene. Differential expression testing was
493 performed using the Wald test as implemented by DESeq2. The resulting p values were
494 adjusted using a false discovery rate (FDR) of 10%.

495

496 *Quantitative Reverse Transcriptase PCR (qRT-PCR)*

497 RNA was isolated from LAC*::*pamA* and LAC*::EV at exponential growth as described
498 above. DNA was removed with Turbo DNase DNA free kit (Invitrogen, #AM2238), and cDNA
499 was synthesized using the Superscript III First-Strand Synthesis System (Invitrogen,
500 #18080051). qRT-PCR was performed using TaqMan™ Universal PCR Master Mix (Thermo
501 Scientific, #4304437) and primers/probes (IDT) specific to *pamA*, *fnbA*, and *rpoB*. Three
502 independent biological samples of each strain were run in duplicate and *rpoB* was used to
503 normalize gene expression. Settings on the C1000 CFX96 machine (Bio-Rad Laboratories)
504 were as follows: 50°C for two min, 95°C for 10 min, then 40 cycles [95°C for 15s and 60°C for 1
505 min]. $2^{-\Delta\Delta Ct}$ method was used to calculate the relative fold gene expression (72).

506

507 *In vitro biofilm assays*

508 Overnight broth cultures of were diluted (1:100) into fresh TSB medium supplemented
509 with 0.25% glucose (TSBG), aliquoted into 96-well (200 μ L-well) tissue-culture treated
510 polystyrene plates (Corning, #CLS3799), and incubated statically at 37°C for 24 h. Supernatants
511 were discarded and adherent biofilms were washed three times with sterile PBS (200 μ L), fixed
512 with 100% ethanol (200 μ L), and stained with crystal violet 0.1% w/v (200 μ L) at RT for 15 min.
513 Residual stain was discarded and biofilms were washed three times. Crystal violet was eluted
514 with 33% acetic acid (200 μ L) incubated for 10 min, then samples were diluted (1:4) in PBS and
515 quantified by measuring OD₅₉₅ using a Synergy neo2 plate reader (BioTek).

516

517 *Biofilm cell-wall associated protein preparation*

518 Overnight cultures were diluted (1:100) into fresh TSBG, aliquoted into six-well (3.6 mL)
519 tissue-culture treated polystyrene plates (Corning, #CLS3516), and incubated statically for at
520 37°C for 24 h. Supernatants were discarded, biofilms were washed two times with 3.6 mL sterile
521 PBS, resuspended in 1 mL sterile PBS, normalized to OD₆₀₀, and centrifuged (12,000 x g for two
522 min). Biofilm pellets were washed twice with PBS (1 mL), re-suspended in a 48 μ L mixture of
523 lysostaphin (20 μ g/mL), 1x Halt Protease Inhibitor in TSM buffer (10 mM MgCl₂ 500 mM
524 Sucrose in 50 mM Tris, pH7.5), and incubated for 30 min at 37°C. Samples were centrifuged
525 (12,000 x g for two min) and the supernatant (36 μ L) was mixed with 4x SDS (12 μ L) sample
526 buffer [200mM Tris-Cl (pH 6.8), 588mM beta-mercaptoethanol, 8% SDS, 0.08% bromophenol
527 blue, 40% glycerol, 50mM EDTA]. Samples were boiled for 10 min and stored at -80C.

528

529 *Coomassie staining and Immunoblotting*

530 Proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis
531 SDS-PAGE (12% gel; Bio-Rad Laboratories, #4561043), visualized using InstantBlue

532 Coomassie dye (Abcam, #50-196-3787), and transferred to nitrocellulose membrane for
533 analysis by immunoblot. The membrane was incubated in Everyblot Blocking Buffer (Bio-rad
534 Laboratories, #12010020) for five min blocking at RT, then primary antibody (1:2000 dilution of
535 anti-FnBPA antibody, Abnova, #PAB16068) overnight at 4°C, then secondary antibody
536 (1:25,000 dilution of Alexa Flour 680-conjugated goat anti-rabbit IgG, Invitrogen, #A21076) for
537 one hour at RT. Images were acquired with the Odyssey Clx imaging system and Image Studio
538 software (Li-Cor Biosciences).

539

540 *Protein identification by mass spectrometry*

541 High molecular weight bands noted on the LAC*::*pamA* biofilm cell-wall associated
542 protein preparation (**Figure 6D**) were manually excised from gel lanes and stored in 1 mL 1%
543 acetic acid. As a control, similar high molecular weight areas in LAC*::EV lanes and one PBS
544 control lane were excised in the same manner. The proteins were in-gel digested using trypsin
545 as previously described (73). Sample processing, mass spectrometry, and data analysis was
546 performed as described in **Supplemental Method B**.

547

548 *Quantification of abscess tissue biofilm by immunohistochemistry*

549 The following methods were adapted from prior work (48). Skin biopsies were fixed with
550 periodate-lysine-paraformaldehyde buffer overnight at 4°C, dehydrated in sucrose (30%) for 24
551 hours, and frozen in optimum cutting temperature compound (Themo Scientific, #1437365). For
552 *S. aureus* staining, 10 µm-thick skin sections were incubated in bovine serum albumin (2%;
553 BSA) in Tris-buffered saline (TBS) with the primary antibody [1:400 dilution of rabbit anti-*S.*
554 *aureus* (Abcam, #20920)] at 4°C overnight. The sections were washed three times with 1% BSA
555 in TBS and incubated with the secondary antibody [1:500 dilution of goat anti-rabbit IgG-AF488

556 (Invitrogen, #A-1108)] and DAPI at 4°C for 1 h. For 5-methylcytosine (5-mC) staining, 10 um-
557 thick skin sections were permeabilized with hydrogen chloride (1.5M, Fisher Chemical) to allow
558 the 5-mC antibody to stain the biofilm. The sections were washed twice with PBS and incubated
559 in 2% BSA plus TBS with primary antibody [1:80 dilution rabbit anti-5-mC antibody (Cell
560 Signaling Technology, #D3S2Z) at 4°C overnight. The sections were washed three times with
561 1% BSA in TBS and incubated with secondary antibody [1:500 dilution goat anti-rabbit IgG-
562 AF488] and DAPI at 4°C for 1 h. The sections were again washed three times with 1% BSA in
563 TBS and then mounted with cover glass over tissue sections using ProLong Diamond Antifade
564 Mountant (Invitrogen). All of the antibodies were diluted in blocking solution. Imaging and
565 analysis were performed as previously described (48), with the exception that thresholds of 5-
566 mC and DAPI fluorescence intensity were determined based on the staining from mock (sterile
567 PBS) infected skin biopsies.

568

569 *Statistics*

570 For comparisons of two groups, normality was determined using the Shapiro-Wilk test. If
571 data were normally distributed, unpaired t-tests were performed. If data were not normally
572 distributed, Mann-Whitney test was used. For comparison of more than two groups, if normality
573 was determined, ANOVA with Tukey's multiple comparisons test was used. If any group was not
574 non-normally distributed, Kruskal-Wallis test with multiple comparisons was performed.
575 Analyses were performed using Prism version 9.4.1 for Macintosh (GraphPad Software,
576 www.graphpad.com).

577

578 *Data Availability*

579 Values for all data points in graphs are reported in the Supporting Data Values file. RNA-
580 sequencing files are deposited in NCBI GEO, accession GSE255351 (corresponding to **Figure**
581 **S1**) and GSE252862 (corresponding to **Figure 5A**). Whole genome sequencing of *S. aureus*
582 strains constructed during this study are deposited in NCBI SRA database, accession
583 PRJNA1090089. The sequence of prophage mΦ11 can be accessed as GenBank accession
584 PP554657. Additional data will be made available upon request.

585

586 *Study Approval*

587 All animal experiments were reviewed and approved by the Institutional Animal Care and
588 Use Committee (IACUC protocol #107203) of New York University Langone Medical Center
589 (NYULMC). All experiments were performed according to NIH guidelines and U.S. federal law.

590

591 **Author Contributions:** RJJ, BS, and VJT designed the study; RJJ, MP, RT, II, KL, DB, SMM,
592 SM, TK, EEZ, CZ, and RK performed experiments and generated data; RJJ, RT, SM, GP, NS,
593 AP, and HVB analyzed data; RJJ, BS, and VJT secured funding; RJJ wrote the initial draft. All
594 authors contributed substantial revisions and approved the final version of the manuscript.

595

596 **Acknowledgements:** We thank Francois-Xavier Stubbe at University of Namur for assistance
597 with bioinformatic data analysis; Adam J. Ratner, Andrew J. Darwin, and Jeffery N. Weiser for
598 assistance with experimental design; Boris Reizis for mentorship, resources, and support; John
599 Chen at National University of Singapore for helpful discussions during the project design; The
600 NYU Langone Health Genome Technology Center (RRID:SCR_017929), Experimental
601 Pathology Research Laboratory (RRID:SCR_017928), and Beatrix Ueberheide and the NYU
602 Langone Health Proteomics Laboratory (RRID:SCR_017926) with support from NIH Shared

603 Instrumentation Grant 1S10OD010582-01A1. This work was supported by the National Institute
604 of Allergy and Infectious Diseases at the NIH K08AI163457 (RJU), 1TL1TR001447 (RJU),
605 R01AI137336 and R01AI140754 (BS and VJT), The New York State Department of Health
606 ECRIP (RJU), Pew Latin American Fellows Program (DB), and the National Institute of Arthritis
607 and Musculoskeletal and Skin Diseases at the NIH T32AR064184 (TKK). The content is solely
608 the responsibility of the authors and does not necessarily represent the official views of the NIH.
609 The *fnbA::bursa* mutant strains were created from NE186 of the Nebraska transposon mutant
610 library (Network of Antimicrobial Resistance in *S. aureus* program), which was supported under
611 the NIH-National Institute of Allergy and Infectious Diseases contract HHSN272200700055C.
612 This work was supported in part through the computational and data resources and staff
613 expertise provided by Scientific Computing and Data at the Icahn School of Medicine at Mount
614 Sinai and supported by the Clinical and Translational Science Awards (CTSA) grant
615 UL1TR004419 from the National Center for Advancing Translational Sciences. Research
616 reported in this publication was also supported by the Office of Research Infrastructure of the
617 National Institutes of Health under award number S10OD026880 and S10OD030463. The
618 graphical abstract and Figure 1A were created using BioRender.com.

619

620 **Footnotes**

621 Current affiliations: RT is currently in the Zuckerman Institute at Columbia University, New York,
622 NY. II is currently at International Flavors & Fragrances, Palo Alto, CA. KAL is currently a Senior
623 Scientist at Regeneron, Inc, Tarrytown, NY. RK is currently in the Dermatology department at
624 Mount Sinai Icahn School of Medicine, New York, NY, USA. CZ is currently in the Department of
625 Pathology and Microbiology at University of Nebraska Medical Center, Omaha, NE.

626

627 **References**

628 1. Weber JT. Community-associated methicillin-resistant *Staphylococcus aureus*. *Clin
629 Infect Dis.* 2005;41 Suppl 4:S269-72.

630 2. Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, Boyle-Vavra S, et
631 al. Community-acquired methicillin-resistant *Staphylococcus aureus* in children with no
632 identified predisposing risk. *JAMA*. 1998;279(8):593-8.

633 3. Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, et al.
634 Methicillin-resistant *S. aureus* infections among patients in the emergency department. *N
635 Engl J Med.* 2006;355(7):666-74.

636 4. Li M, Du X, Villaruz AE, Diep BA, Wang D, Song Y, et al. MRSA epidemic linked to a
637 quickly spreading colonization and virulence determinant. *Nat Med.* 2012;18(5):816-9.

638 5. Copin R, Sause WE, Fulmer Y, Balasubramanian D, Dyzenhaus S, Ahmed JM, et al.
639 Sequential evolution of virulence and resistance during clonal spread of community-
640 acquired methicillin-resistant *Staphylococcus aureus*. *Proc Natl Acad Sci U S A.* 2019.

641 6. Dini M, Shokohizadeh L, Jalilian FA, Moradi A, and Arabestani MR. Genotyping and
642 characterization of prophage patterns in clinical isolates of *Staphylococcus aureus*. *BMC
643 Res Notes.* 2019;12(1):669.

644 7. McCarthy AJ, Witney AA, and Lindsay JA. *Staphylococcus aureus* temperate
645 bacteriophage: carriage and horizontal gene transfer is lineage associated. *Front Cell
646 Infect Microbiol.* 2012;2:6.

647 8. Sweet T, Jr., Sindi S, and Sistrom M. Going through phages: a computational approach
648 to revealing the role of prophage in *Staphylococcus aureus*. *Access Microbiol.*
649 2023;5(6):acmi000424.

650 9. Xia G, and Wolz C. Phages of *Staphylococcus aureus* and their impact on host
651 evolution. *Infect Genet Evol.* 2014;21:593-601.

652 10. Copin R, Shopsin B, and Torres VJ. After the deluge: mining *Staphylococcus aureus*
653 genomic data for clinical associations and host-pathogen interactions. *Curr Opin*
654 *Microbiol.* 2018;41:43-50.

655 11. Bae T, Baba T, Hiramatsu K, and Schneewind O. Prophages of *Staphylococcus aureus*
656 Newman and their contribution to virulence. *Mol Microbiol.* 2006;62(4):1035-47.

657 12. Ingmer H, Gerlach D, and Wolz C. Temperate Phages of *Staphylococcus aureus*.
658 *Microbiol Spectr.* 2019;7(5).

659 13. Kaneko J, Kimura T, Narita S, Tomita T, and Kamio Y. Complete nucleotide sequence
660 and molecular characterization of the temperate staphylococcal bacteriophage phiPVL
661 carrying Panton-Valentine leukocidin genes. *Gene.* 1998;215(1):57-67.

662 14. Gillet Y, Issartel B, Vanhems P, Fournet JC, Lina G, Bes M, et al. Association between
663 *Staphylococcus aureus* strains carrying gene for Panton-Valentine leukocidin and highly
664 lethal necrotising pneumonia in young immunocompetent patients. *Lancet.*
665 2002;359(9308):753-9.

666 15. Otter JA, Kearns AM, French GL, and Ellington MJ. Panton-Valentine leukocidin-
667 encoding bacteriophage and gene sequence variation in community-associated
668 methicillin-resistant *Staphylococcus aureus*. *Clin Microbiol Infect.* 2010;16(1):68-73.

669 16. Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, et al.
670 Community-acquired methicillin-resistant *Staphylococcus aureus* carrying Panton-
671 Valentine leukocidin genes: worldwide emergence. *Emerg Infect Dis.* 2003;9(8):978-84.

672 17. Thurlow LR, Joshi GS, and Richardson AR. Virulence strategies of the dominant
673 USA300 lineage of community-associated methicillin-resistant *Staphylococcus aureus*
674 (CA-MRSA). *FEMS Immunol Med Microbiol.* 2012;65(1):5-22.

675 18. Balasubramanian D, Ohneck EA, Chapman J, Weiss A, Kim MK, Reyes-Robles T, et al.
676 *Staphylococcus aureus* Coordinates Leukocidin Expression and Pathogenesis by
677 Sensing Metabolic Fluxes via RpiRc. *MBio.* 2016;7(3).

678 19. Bonar EA, Bukowski M, Hydzik M, Jankowska U, Kedracka-Krok S, Groborz M, et al.
679 Joint Genomic and Proteomic Analysis Identifies Meta-Trait Characteristics of Virulent
680 and Non-virulent *Staphylococcus aureus* Strains. *Front Cell Infect Microbiol.* 2018;8:313.

681 20. Altman DR, Sullivan MJ, Chacko KI, Balasubramanian D, Pak TR, Sause WE, et al.
682 Genome Plasticity of agr-Defective *Staphylococcus aureus* during Clinical Infection.
683 *Infect Immun.* 2018;86(10).

684 21. Li M, Diep BA, Villaruz AE, Braughton KR, Jiang X, DeLeo FR, et al. Evolution of
685 virulence in epidemic community-associated methicillin-resistant *Staphylococcus aureus*.
686 *Proc Natl Acad Sci U S A.* 2009;106(14):5883-8.

687 22. Little JW. *Phages.* 2005:37-54.

688 23. Adhikari S, and Curtis PD. DNA methyltransferases and epigenetic regulation in
689 bacteria. *FEMS Microbiol Rev.* 2016;40(5):575-91.

690 24. Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A, Fries R, et al. The
691 Epigenomic Landscape of Prokaryotes. *PLoS Genet.* 2016;12(2):e1005854.

692 25. Nye TM, Fernandez NL, and Simmons LA. A positive perspective on DNA methylation:
693 regulatory functions of DNA methylation outside of host defense in Gram-positive
694 bacteria. *Crit Rev Biochem Mol Biol.* 2020;55(6):576-91.

695 26. Fang G, Munera D, Friedman DI, Mandlik A, Chao MC, Banerjee O, et al. Genome-wide
696 mapping of methylated adenine residues in pathogenic *Escherichia coli* using single-
697 molecule real-time sequencing. *Nat Biotechnol.* 2012;30(12):1232-9.

698 27. Chen J, Yoong P, Ram G, Torres VJ, and Novick RP. Single-copy vectors for integration
699 at the SaPI1 attachment site for *Staphylococcus aureus*. *Plasmid.* 2014;76:1-7.

700 28. Kossykh VG, Schlagman SL, and Hattman S. Conserved sequence motif DPPY in
701 region IV of the phage T4 Dam DNA-[N-adenine]-methyltransferase is important for S-
702 adenosyl-L-methionine binding. *Nucleic Acids Res.* 1993;21(15):3563-6.

703 29. Siwek W, Czapinska H, Bochtler M, Bujnicki JM, and Skowronek K. Crystal structure and
704 mechanism of action of the N6-methyladenine-dependent type IIM restriction
705 endonuclease R.DpnI. *Nucleic Acids Res.* 2012;40(15):7563-72.

706 30. Mader U, Nicolas P, Depke M, Pane-Farre J, Debarbouille M, van der Kooi-Pol MM, et
707 al. *Staphylococcus aureus* Transcriptome Architecture: From Laboratory to Infection-
708 Mimicking Conditions. *PLoS Genet.* 2016;12(4):e1005962.

709 31. Ahmed S, Meghji S, Williams RJ, Henderson B, Brock JH, and Nair SP. *Staphylococcus*
710 *aureus* fibronectin binding proteins are essential for internalization by osteoblasts but do
711 not account for differences in intracellular levels of bacteria. *Infect Immun.*
712 2001;69(5):2872-7.

713 32. Dziewanowska K, Patti JM, Deobald CF, Bayles KW, Trumble WR, and Bohach GA.
714 Fibronectin binding protein and host cell tyrosine kinase are required for internalization
715 of *Staphylococcus aureus* by epithelial cells. *Infect Immun.* 1999;67(9):4673-8.

716 33. Peacock SJ, Foster TJ, Cameron BJ, and Berendt AR. Bacterial fibronectin-binding
717 proteins and endothelial cell surface fibronectin mediate adherence of *Staphylococcus*

718 aureus to resting human endothelial cells. *Microbiology (Reading)*. 1999;145 (Pt
719 12):3477-86.

720 34. Fitzgerald JR, Loughman A, Keane F, Brennan M, Knobel M, Higgins J, et al.
721 Fibronectin-binding proteins of *Staphylococcus aureus* mediate activation of human
722 platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to
723 the FcgammaRIIa receptor. *Mol Microbiol*. 2006;59(1):212-30.

724 35. Herman-Bausier P, El-Kirat-Chatel S, Foster TJ, Geoghegan JA, and Dufrene YF.
725 *Staphylococcus aureus* Fibronectin-Binding Protein A Mediates Cell-Cell Adhesion
726 through Low-Affinity Homophilic Bonds. *mBio*. 2015;6(3):e00413-15.

727 36. Vergara-Irigaray M, Valle J, Merino N, Latasa C, Garcia B, Ruiz de Los Mozos I, et al.
728 Relevant role of fibronectin-binding proteins in *Staphylococcus aureus* biofilm-associated
729 foreign-body infections. *Infect Immun*. 2009;77(9):3978-91.

730 37. O'Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, et al. A novel
731 *Staphylococcus aureus* biofilm phenotype mediated by the fibronectin-binding proteins,
732 FnBPA and FnBPB. *J Bacteriol*. 2008;190(11):3835-50.

733 38. Que YA, Haefliger JA, Piroth L, Francois P, Widmer E, Entenza JM, et al. Fibrinogen
734 and fibronectin binding cooperate for valve infection and invasion in *Staphylococcus*
735 *aureus* experimental endocarditis. *J Exp Med*. 2005;201(10):1627-35.

736 39. Shinji H, Yosizawa Y, Tajima A, Iwase T, Sugimoto S, Seki K, et al. Role of fibronectin-
737 binding proteins A and B in in vitro cellular infections and in vivo septic infections by
738 *Staphylococcus aureus*. *Infect Immun*. 2011;79(6):2215-23.

739 40. Arciola CR, Campoccia D, and Montanaro L. Implant infections: adhesion, biofilm
740 formation and immune evasion. *Nat Rev Microbiol*. 2018;16(7):397-409.

741 41. Kwiecinski J, Jin T, and Josefsson E. Surface proteins of *Staphylococcus aureus* play an
742 important role in experimental skin infection. *APMIS*. 2014;122(12):1240-50.

743 42. Gries CM, Biddle T, Bose JL, Kielian T, and Lo DD. *Staphylococcus aureus Fibronectin*
744 *Binding Protein A Mediates Biofilm Development and Infection. Infect Immun.*
745 2020;88(5).

746 43. Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH, and Ribeiro VST. Antimicrobial
747 Treatment of *Staphylococcus aureus* Biofilms. *Antibiotics (Basel)*. 2023;12(1).

748 44. Stoodley P, Nistico L, Johnson S, Lasko LA, Baratz M, Gahlot V, et al. Direct
749 demonstration of viable *Staphylococcus aureus* biofilms in an infected total joint
750 arthroplasty. A case report. *J Bone Joint Surg Am*. 2008;90(8):1751-8.

751 45. Elgarably H, Hussain ST, Shrestha NK, Blackstone EH, and Pettersson GB. Current
752 Hypotheses in Cardiac Surgery: Biofilm in Infective Endocarditis. *Semin Thorac*
753 *Cardiovasc Surg*. 2016;28(1):56-9.

754 46. Brady RA, Leid JG, Calhoun JH, Costerton JW, and Shirtliff ME. Osteomyelitis and the
755 role of biofilms in chronic infection. *FEMS Immunol Med Microbiol*. 2008;52(1):13-22.

756 47. May JG, Shah P, Sachdeva L, Micale M, Kruper GJ, Sheyn A, et al. Potential role of
757 biofilms in deep cervical abscess. *Int J Pediatr Otorhinolaryngol*. 2014;78(1):10-3.

758 48. Lacey KA, Serpas L, Makita S, Wang Y, Rashidfarrokhi A, Soni C, et al. Secreted
759 mammalian DNases protect against systemic bacterial infection by digesting biofilms. *J*
760 *Exp Med*. 2023;220(6).

761 49. Mansour SC, Pletzer D, de la Fuente-Nunez C, Kim P, Cheung GYC, Joo HS, et al.
762 Bacterial Abscess Formation Is Controlled by the Stringent Stress Response and Can
763 Be Targeted Therapeutically. *EBioMedicine*. 2016;12:219-26.

764 50. Sugimoto S, Sato F, Miyakawa R, Chiba A, Onodera S, Hori S, et al. Broad impact of
765 extracellular DNA on biofilm formation by clinically isolated Methicillin-resistant and -
766 sensitive strains of *Staphylococcus aureus*. *Sci Rep.* 2018;8(1):2254.

767 51. Malachowa N, and DeLeo FR. Mobile genetic elements of *Staphylococcus aureus*. *Cell*
768 *Mol Life Sci.* 2010;67(18):3057-71.

769 52. Murphy J, Mahony J, Ainsworth S, Nauta A, and Sinderen Dv. Bacteriophage Orphan
770 DNA Methyltransferases: Insights from Their Bacterial Origin, Function, and Occurrence.
771 *Applied and Environmental Microbiology.* 2013;79(24):7547-55.

772 53. Chabelskaya S, Gaillot O, and Felden B. A *Staphylococcus aureus* small RNA is
773 required for bacterial virulence and regulates the expression of an immune-evasion
774 molecule. *PLoS Pathog.* 2010;6(6):e1000927.

775 54. Pichon C, and Felden B. Small RNA genes expressed from *Staphylococcus aureus*
776 genomic and pathogenicity islands with specific expression among pathogenic strains.
777 *Proc Natl Acad Sci U S A.* 2005;102(40):14249-54.

778 55. Chao MC, Zhu S, Kimura S, Davis BM, Schadt EE, Fang G, et al. A Cytosine
779 Methyltransferase Modulates the Cell Envelope Stress Response in the Cholera
780 Pathogen [corrected]. *PLoS Genet.* 2015;11(11):e1005666.

781 56. Bryant JM, Brown KP, Burbaud S, Everall I, Belardinelli JM, Rodriguez-Rincon D, et al.
782 Stepwise pathogenic evolution of *Mycobacterium abscessus*. *Science.* 2021;372(6541).

783 57. Sadykov MR. Restriction-Modification Systems as a Barrier for Genetic Manipulation of
784 *Staphylococcus aureus*. *Methods Mol Biol.* 2016;1373:9-23.

785 58. Pragman AA, and Schlievert PM. Virulence regulation in *Staphylococcus aureus*: the
786 need for in vivo analysis of virulence factor regulation. *FEMS Immunol Med Microbiol.*
787 2004;42(2):147-54.

788 59. Goerke C, Koller J, and Wolz C. Ciprofloxacin and trimethoprim cause phage induction
789 and virulence modulation in *Staphylococcus aureus*. *Antimicrob Agents Chemother*.
790 2006;50(1):171-7.

791 60. Krausz KL, and Bose JL. Bacteriophage Transduction in *Staphylococcus aureus*: Broth-
792 Based Method. *Methods Mol Biol*. 2016;1373:63-8.

793 61. Monk IR, Shah IM, Xu M, Tan MW, and Foster TJ. Transforming the untransformable:
794 application of direct transformation to manipulate genetically *Staphylococcus aureus* and
795 *Staphylococcus epidermidis*. *MBio*. 2012;3(2).

796 62. Thornton JA. Splicing by Overlap Extension PCR to Obtain Hybrid DNA Products.
797 *Methods Mol Biol*. 2016;1373:43-9.

798 63. Fey PD, Endres JL, Yajjala VK, Widholm TJ, Boissy RJ, Bose JL, et al. A genetic
799 resource for rapid and comprehensive phenotype screening of nonessential
800 *Staphylococcus aureus* genes. *MBio*. 2013;4(1):e00537-12.

801 64. Li H, and Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
802 transform. *Bioinformatics*. 2009;25(14):1754-60.

803 65. Quinlan AR, and Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
804 features. *Bioinformatics*. 2010;26(6):841-2.

805 66. Wickham H. ggplot2: Elegant Graphics for Data Analysis. <https://ggplot2.tidyverse.org>.
806 2023.

807 67. Zheng X, Marsman G, Lacey KA, Chapman JR, Goosmann C, Ueberheide BM, et al.
808 The cell envelope of *Staphylococcus aureus* selectively controls the sorting of virulence
809 factors. *Nat Commun*. 2021;12(1):6193.

810 68. Klopfenstein N, Cassat JE, Monteith A, Miller A, Drury S, Skaar E, et al. Murine Models
811 for Staphylococcal Infection. *Curr Protoc*. 2021;1(3):e52.

812 69. Schneider CA, Rasband WS, and Eliceiri KW. NIH Image to ImageJ: 25 years of image
813 analysis. *Nat Methods*. 2012;9(7):671-5.

814 70. Dyzenhaus S, Sullivan MJ, Alburquerque B, Boff D, van de Guchte A, Chung M, et al.
815 MRSA lineage USA300 isolated from bloodstream infections exhibit altered virulence
816 regulation. *Cell Host Microbe*. 2023;31(2):228-42 e8.

817 71. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al.
818 NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Res*. 2016;44(14):6614-24.

819 72. Livak KJ, and Schmittgen TD. Analysis of relative gene expression data using real-time
820 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*. 2001;25(4):402-8.

821 73. Rona G, Miwatani-Minter B, Zhang Q, Goldberg HV, Kerzhnerman MA, Howard JB, et
822 al. D-type cyclins regulate DNA mismatch repair in the G1 and S phases of the cell
823 cycle, maintaining genome stability. *bioRxiv*. 2024.

824 74. Boles BR, Thoendel M, Roth AJ, and Horswill AR. Identification of genes involved in
825 polysaccharide-independent *Staphylococcus aureus* biofilm formation. *PLoS One*.
826 2010;5(4):e10146.

827 75. Monk IR, Tree JJ, Howden BP, Stinear TP, and Foster TJ. Complete Bypass of
828 Restriction Systems for Major *Staphylococcus aureus* Lineages. *mBio*.
829 2015;6(3):e00308-15.

830 76. Novick RP. Genetic systems in staphylococci. *Methods Enzymol*. 1991;204:587-636.

831 77. Benson MA, Lilo S, Wasserman GA, Thoendel M, Smith A, Horswill AR, et al.
832 *Staphylococcus aureus* regulates the expression and production of the staphylococcal
833 superantigen-like secreted proteins in a Rot-dependent manner. *Mol Microbiol*.
834 2011;81(3):659-75.

835 78. Geisinger E, George EA, Chen J, Muir TW, and Novick RP. Identification of ligand
836 specificity determinants in AgrC, the *Staphylococcus aureus* quorum-sensing receptor. *J
837 Biol Chem.* 2008;283(14):8930-8.

838 79. Anderson EE, Dyzenhaus S, Ilmain JK, Sullivan MJ, van Bakel H, and Torres VJ. SarS
839 Is a Repressor of *Staphylococcus aureus* Bicomponent Pore-Forming Leukocidins.
840 *Infect Immun.* 2023;91(4):e0053222.

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858

859 **Tables and Figures**

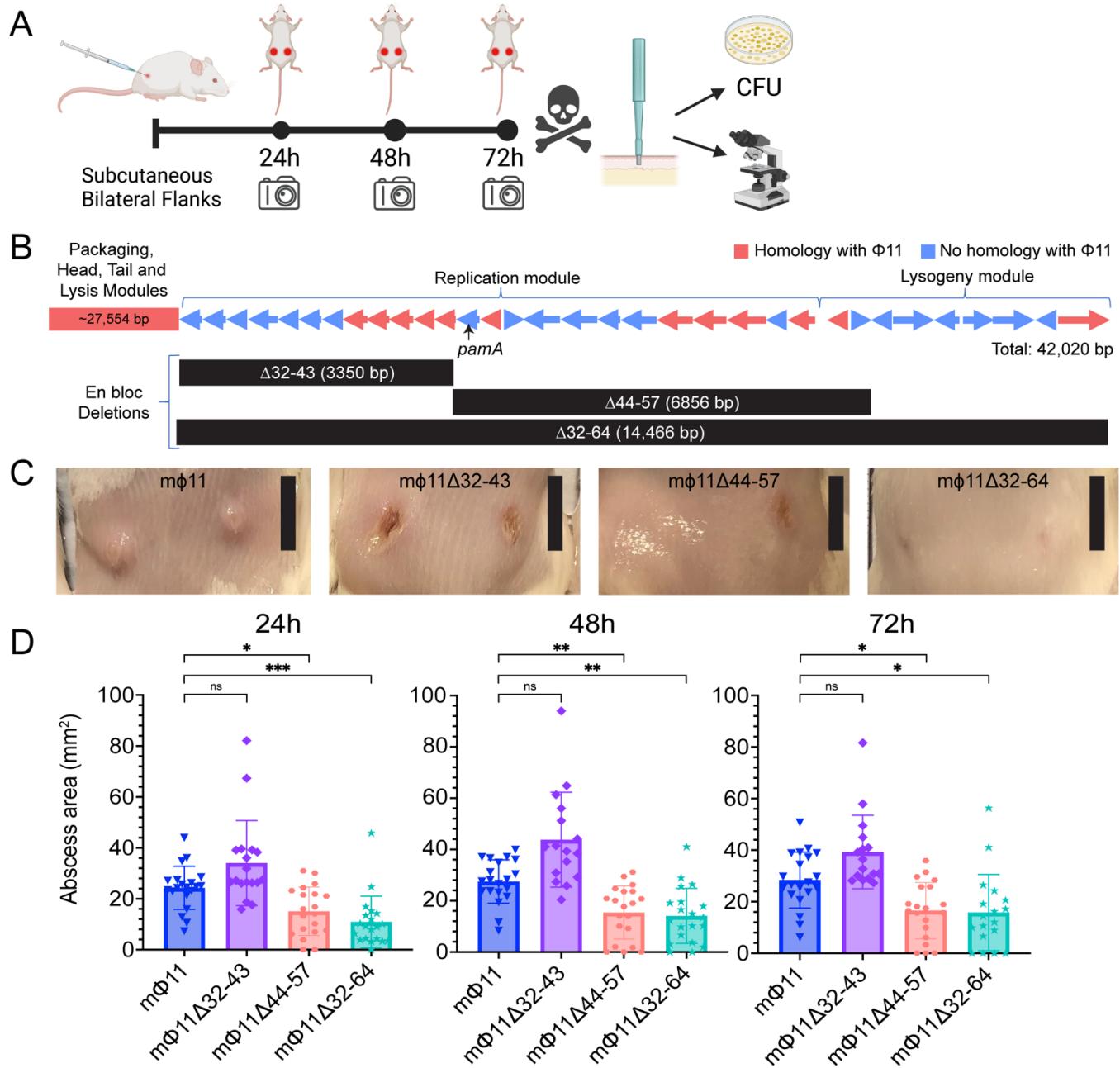
860 **Table 1: Strains, Plasmids, Oligonucleotides, and Probes Used in this Study**

Strain	Bacteriology	Description	Citation
LAC*	<i>S. aureus</i>	USA300 LAC cured of <i>erm</i> resistance plasmid pUSA03 (clone AH1263), clonal complex (CC) 8	(74)
BS989	<i>S. aureus</i>	LAC*/mΦ11	(5)
BS990	<i>S. aureus</i>	LAC*/Φ11	(5)
RU42	<i>S. aureus</i>	LAC*/mΦ11Δ32-64	This work
RU47	<i>S. aureus</i>	LAC*/mΦ11Δ32-43	This work
RU108	<i>S. aureus</i>	LAC*/mΦ11Δ44-57	This work
RU39	<i>S. aureus</i>	LAC*/mΦ11ΔpamA	This work
IM08	<i>E. coli</i>	K-12, strain DC10B engineered to mimic the type I adenine methylation profile of <i>S. aureus</i> CC8. Available on BEI resources NR-49806.	(75)
RN4220	<i>S. aureus</i>	Restriction defective derivative of NCTC8325 cured of Φ11, Φ12, and Φ13	(76)
BS656	<i>S. aureus</i>	RN4220 with pRN7023 [shuttle vector containing SaPI1 <i>inf</i>]	(27)
RU116	<i>S. aureus</i>	BS656::pJC1111(P _{sarA} -sodRBS-pamA)	This work
RU120	<i>S. aureus</i>	BS656::pJC1111	This work
RU121	<i>S. aureus</i>	LAC*::pJC1111(P _{sarA} -sodRBS-pamA)	This work
RU128	<i>S. aureus</i>	LAC*/mΦ11ΔpamA::pJC1111	This work
RU129	<i>S. aureus</i>	LAC*::pJC1111	This work

RU131	<i>S. aureus</i>	LAC*/mΦ11ΔpamA::pJC1111(P _{sarA} -sodRBS-pamA)	This work
RU138	<i>S. aureus</i>	LAC*/mΦ11::pJC1111	This work
RU152	<i>S. aureus</i>	BS656::pJC1111(P _{sarA} -sodRBS-pamAP65A)	This work
RU154	<i>S. aureus</i>	BS656::pJC1111(P _{sarA} -sodRBS-pamAP65T)	This work
RU156	<i>S. aureus</i>	BS656::pJC1111(P _{sarA} -sodRBS-pamAP66A)	This work
RU161	<i>S. aureus</i>	LAC*::pJC1111(P _{sarA} -sodRBS-pamAP65A)	This work
RU162	<i>S. aureus</i>	LAC*::pJC1111(P _{sarA} -sodRBS-pamAP65T)	This work
RU164	<i>S. aureus</i>	LAC*::pJC1111(P _{sarA} -sodRBS-pamAP66A)	This work
NE186	<i>S. aureus</i>	JE2, fnbA::bursa	(63)
RU169	<i>S. aureus</i>	LAC*::pJC1111(P _{sarA} -sodRBS-pamA) +fnbA::bursa	This work
RU170	<i>S. aureus</i>	LAC*::pJC1111+fnbA::bursa	This work
RU171	<i>S. aureus</i>	LAC*/mΦ11+fnbA::bursa	This work
Plasmid	Resistance	Description	Citation
pIMAY	Cm	Allelic exchange plasmid for <i>S. aureus</i> ; pIMC5 with tetracycline and inducible secY antisense from pKOR1	(61)
pRU1	Cm	pIMAY with <i>pamA</i> deletion insert (591 bp upstream <i>pamA</i> and 600 bp downstream of <i>pamA</i>)	This work
pRU2	Cm	pIMAY with Δ32-64 deletion insert (985 bp upstream mΦ11 gene 32 and 969 downstream mΦ11 gene 64)	This work
pRU3	Cm	pIMAY with Δ32-43 deletion insert (985 bp upstream mΦ11 gene 32 and 995 downstream mΦ11 gene 43)	This work
pRU4	Cm	pIMAY with Δ44-57deletion insert (985 bp upstream <i>pamA</i> and 995 bp downstream of mΦ11 gene 57)	This work

pos1- P_{sarA^-} $sodRBS-$ GFP	Amp (<i>E. Coli</i>), Erm (<i>S. aureus</i>)	pOS1 containing <i>sarA</i> promoter, <i>sod</i> ribosome binding site, and GFP (also called pOS1sGFP)	(77)
pJC1111	Cd	SapI1 <i>attS</i> suicide vector	(78)
PRU7	Cd	pJC1111(P_{sarA} - <i>sodRBS</i> - <i>pamA</i>)	This work
PRU9	Cd	pJC1111(P_{sarA} - <i>sodRBS</i> - <i>pamAP65A</i>)	This work
PRU10	Cd	pJC1111(P_{sarA} - <i>sodRBS</i> - <i>pamAP65T</i>)	This work
PRU11	Cd	pJC1111(P_{sarA} - <i>sodRBS</i> - <i>pamAP66A</i>)	This work
Oligonucleotide	Direction	5'-3' Sequence	Citation
ORU1	fwd	cctcgaggctgacggtatcgataagcttGTCATACTCTAGTATT TCGTCTGGATTG	This work
ORU2	rev	TTTCCTAGCGCAATTATCGTTATAGA	This work
ORU3	fwd	tctataaacgataattgcgctaggaaaACTGTAATGTACTTCCA TGTGCC	This work
ORU4	rev	tggcggccgctagaactagtggatccCAGCATTGTTGATAAC AGAGTAGGT	This work
ORU5	fwd	cctcgaggctgacggtatcgataagcttAAACGCAGTACGATA GTCAATATCC	This work
ORU6	rev	GATACAGGAGATGACAATGATGATTAAC	This work
ORU7	fwd	gttaatcatcattgtcatctcctgtatcATGGTATCATATCGGTAT CAAATAACGATT	This work

oRU8	rev	tggcgccgctagaactagtggatccCGAAATCAGTTACGA TTACATTACCTGT	This work
oRU9	fwd	gttaatcatcattgtcatctctgtatcACTCATTGTGCACCTCTA TAAACG	This work
oRU10	fwd	tctataaacgataattgcgctaggaaaCAGTTAAATATCTTTA GATCGTGACTAGC	This work
oRU11	rev	tggcgccgctagaactagtggatccGGAAGCCCAAATGCA AGAATTAC	This work
oRU15	fwd	AAGCTTATCGATACCGTCGACCTCGAGG	This work
oRU16	rev	GGATCCACTAGTTCTAGAGCGGCCGCCA	This work
oRU17	fwd	cctcgaggtcgacgtatcgataagctCCTGCCATTCTTAAA CATTGGTTATAA	This work
oRU41	fwd	GCTGGCGGCCGCTGCATGCCTGCAG	This work
oRU42	rev	ATTCGAGCTCGGTACCCGGGATCC	This work
oRU43	fwd	gctggcgccgctgcattgcctgcagCTGATATTTTACTAAA CCAAATGC	This work
oRU44	rev	CTACTGTAATGTAATTCCATAAATAATCATCCTCCT AAGGTACC	This work
oRU45	fwd	CCTTAGGAGGATGATTATTATGGAAGTACATTAC AGTAGTAAAC	This work
oRU46	rev	attcgagctcggtacccgggatccTCATTGTGCACCTCTATA AACG	This work
oRU70	fwd	GACCGTATGGCGCGTTCATAAAAAC	This work


oRU71	rev	GTTTTATGAACGCGCCATACGGTC	This work
oRU72	fwd	GACCGTATGGCGTGTTCATAAAAAC	This work
oRU73	rev	GTTTTATGAACACGCCATACGGTC	This work
oRU74	fwd	GACCGTATGCCGGGTTCATAAAAAC	This work
oRU75	rev	GTTTTATGAACCCGGCATACGGTC	This work
oRU80	fwd	CATGTTCTTCCTGCGTTATCC	This work
oRU81	rev	GCATTAGAATAGGCGCGC	This work
oRU84	fwd	GAGATTGTGTTGTTCCCTTAAC	This work
oRU85	rev	GGGTTTCTGATGACTTGAATA	This work
IM151	fwd	TACATGTCAAGAATAAACTGCCAAAGC	(61)
IM152	rev	AATACCTGTGACGGAAGATCACTTCG	(61)
qRT-PCR target	Direction	5'-3' Sequence	Citation
<i>rpoB</i>	fwd	GAACATGCAACGTCAAGCAG	(79)
<i>rpoB</i>	rev	AATAGCCGCACCAGAACATCAC	(79)
<i>rpoB</i>	probe	HEX/TACAGGTATGGAACACGTTGCAGCA/BHQ_1	(79)
<i>pamA</i>	fwd	GACTGGTCTGAGGACATTGTTT	This work
<i>pamA</i>	rev	GTGTCTGTTCTGCGGGTATT	This work
<i>pamA</i>	probe	HEX/TTATGAACCCGCCATACGGTCGAA/BHQ_1	This work
<i>fnbA</i>	fwd	GTCCTGCATGAGGTTCTACTTT	This work
<i>fnbA</i>	rev	CAGATGTAGCGGAAGCTAAGG	This work

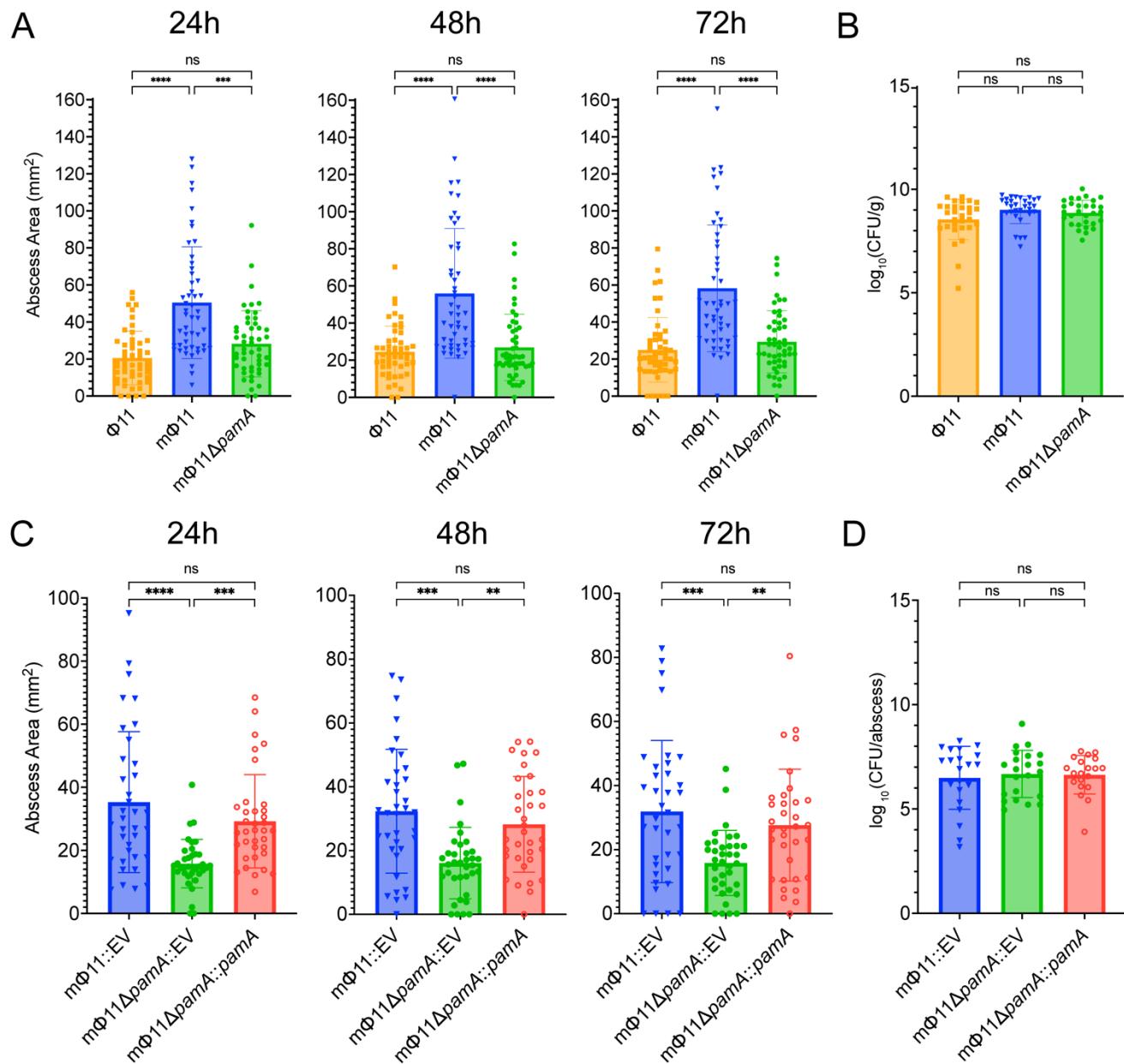
<i>fnbA</i>	probe	5HEX/ACCCGTTTC/ZEN/CACTTCGCGTTACT/3IAB kFQ	This work
-------------	-------	---	-----------

861

862

863

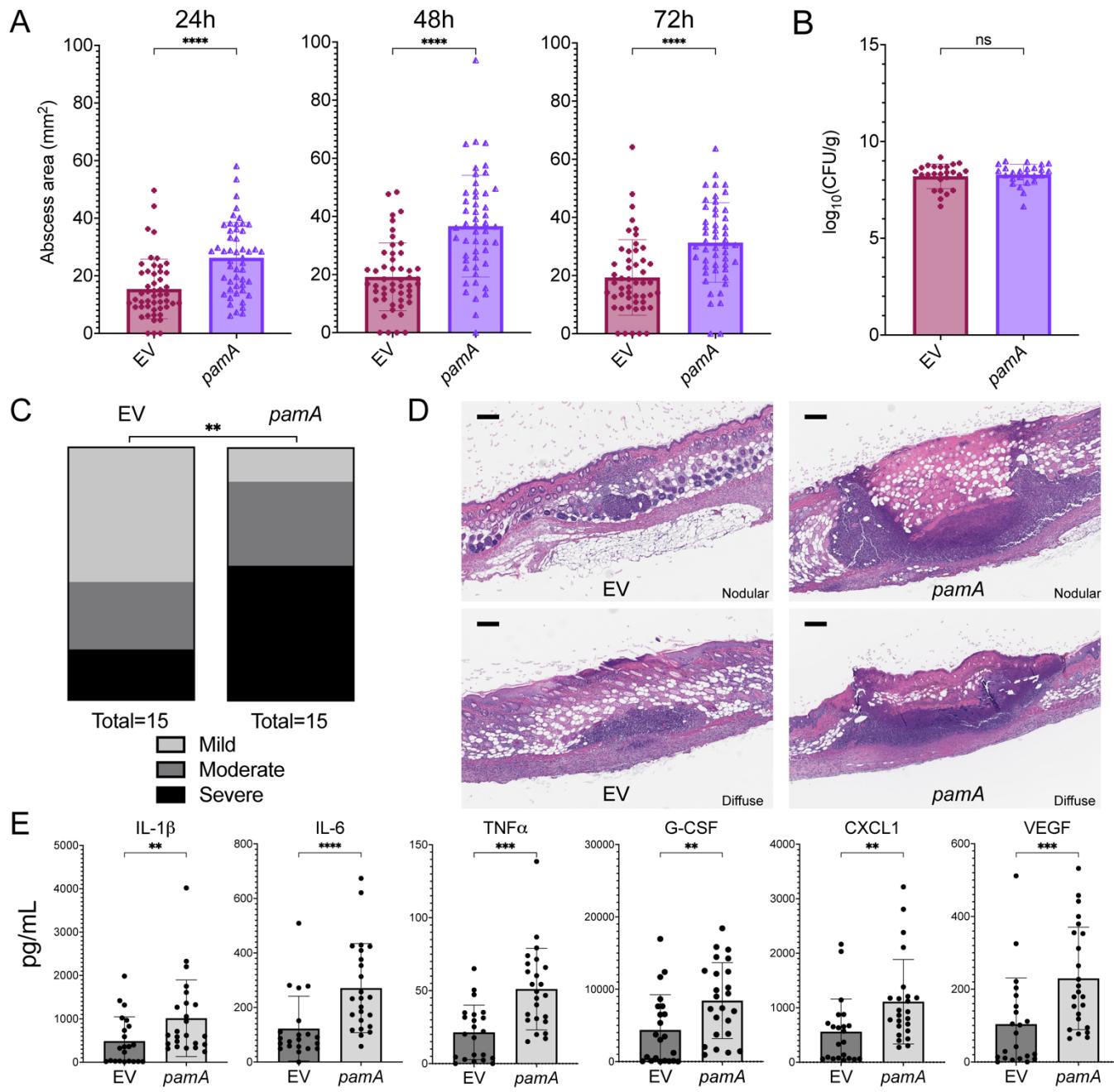
864


865 **Figure 1. Effect of en block deletions on the mΦ11-mediated skin abscess phenotype. (A)**

866 Schematic of skin infection workflow. CFU, colony forming units. Created with BioRender.com.

867 **(B)** Map of mΦ11 in strain USA300-BKV, adapted with permission from (5), with en bloc

868 deletion locations. Arrows indicate predicted ORFs and the direction of the transcription of


869 genes within the unique mΦ11 modules. Homologous (red) and non-homologous (blue) ORFs
870 are shown, as compared to prototypical Φ11. Black arrow indicates *pamA*. Black bars beneath
871 the gene map correspond to the gene blocks deleted from the indicated strain. **(C)**
872 Representative images of skin abscesses 72 h after subcutaneous infection with the indicated
873 strains. Scale bar (black) is 1cm. **(D)** Skin abscess infections with en bloc deletion mutants. Skin
874 abscess area of LAC* lysogens containing mΦ11 (blue, N=20, strain BS989), mΦ11Δ32-43
875 (purple, N=16-18, strain RU47), mΦ11Δ44-57 (salmon, N=20, strain RU108) and mΦ11Δ32-64
876 (cyan, N=18-20, strain RU42) at 24, 48, and 72 hours after subcutaneous infection with $\sim 10^7$
877 CFU of bacteria. Data are pooled from two independent experiments and represent mean \pm SD.
878 Statistical significance was determined with the Kruskall-Wallis test and Dunn's multiple
879 comparisons test, * $P\leq .05$, ** $P\leq .01$, *** $P\leq .001$.

880

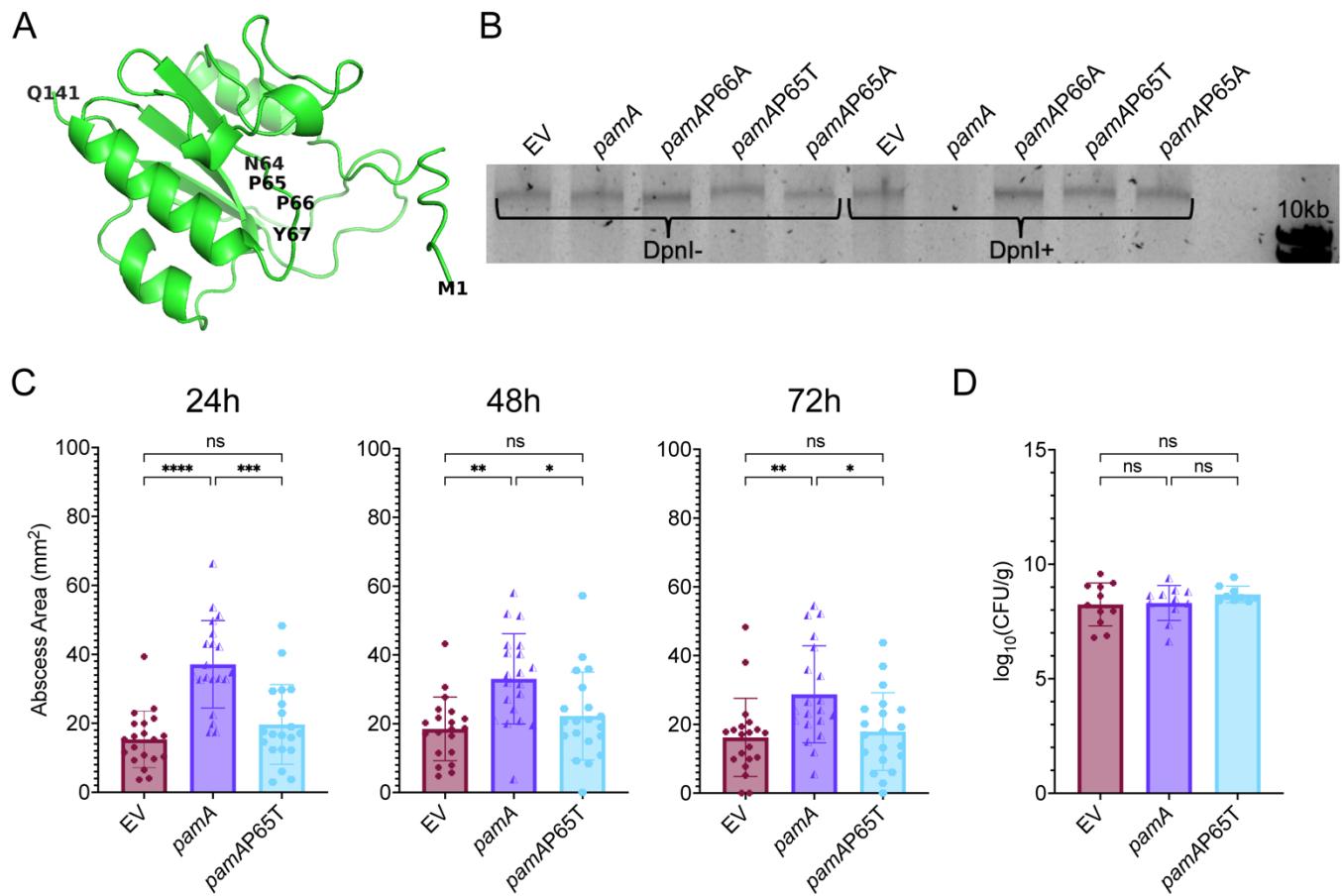
881 **Figure 2. mΦ11 phage adenine methyltransferase (*pamA*) increases skin abscess size**
882 **without affecting tissue bacterial burden (A)** Effect of *pamA* on skin abscess size. Abscess
883 area of LAC* lysogens containing Φ11 (orange, N=50 abscesses, strain BS990), mΦ11 (blue,
884 N=48-50 abscesses, strain BS989), and mΦ11Δ*pamA* (green, N=50 abscesses, strain RU39) at
885 24, 48, and 72 h after infection with $\sim 1.5 \times 10^7$ CFU of bacteria per abscess. Results are pooled

886 from four independent experiments. Data represent mean \pm SD. Statistical significance was
887 determined with the Kruskall-Wallis test and Dunn's multiple comparisons test, *** $P\leq.001$,
888 **** $P\leq.0001$. **(B)** *pamA* skin abscess phenotype and bacterial burden. Skin abscesses
889 infections with Φ 11 (orange, N=30 abscesses, strain BS990), m Φ 11 (blue, N=30 abscesses,
890 strain BS989), or m Φ 11 Δ *pamA* (green, N=30 abscesses, strain RU39) lysogens in LAC*. CFU
891 were enumerated at 72 h. Data represent mean \pm SD. Statistical significance was determined
892 with the Kruskall-Wallis test and Dunn's multiple comparisons test. **(C)** Effect of *pamA*
893 complementation on abscess size. Abscess area of LAC* containing m Φ 11::EV (blue, N=36
894 abscesses, strain RU138), m Φ 11 Δ *pamA*::EV (green, N=36 abscesses, strain RU128),
895 m Φ 11 Δ *pamA*::*pamA* (red, N=34-36 abscesses, strain RU131) after infection with \sim 1x10⁷ CFU of
896 bacteria for the indicated times. EV, empty vector. Results are pooled from four independent
897 experiments. Data represent mean \pm SD. Statistical significance was determined with the
898 Kruskall-Wallis test and Dunn's multiple comparisons test, *** $P\leq.001$, **** $P\leq.0001$. **(D)**
899 Bacterial burden in abscesses. Skin abscesses of LAC* containing m Φ 11::EV (blue, N=22
900 abscesses, strain RU138), m Φ 11 Δ *pamA*::EV (green, N=22 abscesses, strain RU128), and
901 m Φ 11 Δ *pamA*::*pamA* (red, N=20 abscesses, strain RU131) were harvested at 72 h and CFU
902 enumerated. Of note, CFU/abscess is shown due to missing abscess weights during one of the
903 replicate experiments. With the available weight adjusted data we found no significant
904 differences between strains (data not shown). Data represent mean \pm SD. Statistical
905 significance was determined with the Kruskall-Wallis test and Dunn's multiple comparisons test.

907 **Figure 3. pamA increases skin abscess size and inflammation in the absence of mΦ11.**

908 (A) Effect of pamA on skin abscess size. Abscess area of LAC* with empty vector (EV)

909 (maroon, N=50 abscesses, strain RU129) or constitutively expressed pamA (purple, N=50


910 abscesses, strain RU121) integrated into the chromosome in single copy after infection in with

911 ~1x10⁷ CFU of bacteria per abscess for the indicated times. Data are pooled from four
912 independent experiments and represent mean \pm SD. Statistical significance was determined
913 with the Mann-Whitney test, **** $P\leq.0001$. **(B)** Effect of *pamA* on CFU recovered from skin
914 abscesses. Skin abscesses (N=25 abscesses per strain) from two independent infections in
915 panel A were harvested at 72h. Data represent mean \pm SD of CFU recovered. Statistical
916 significance was determined with the Mann-Whitney test. **(C)** Effect of *pamA* on skin
917 inflammation. Biopsies of skin abscess (N=15 per strain, pooled from two independent
918 experiments) from LAC* containing EV (strain RU129) or *pamA* (strain RU121) were stained
919 with H&E and inflammatory burden graded by a blinded dermatopathologist. Statistical
920 significance was determined with chi-square test ($P = 0.0014$). **(D)** Representative images of
921 skin abscess biopsies from panel C. One representative image from each strain is presented
922 according to dermatopathologist classification as nodular (above) or diffuse (below) architecture.
923 **(E)** Effect of *pamA* on local proinflammatory and vascular proliferation cytokines. Biopsy of skin
924 abscesses from three independent experiments of LAC* with EV control (N=22 abscesses,
925 strain RU129) or *pamA* (N=24 abscesses, strain RU121) were homogenized and the indicated
926 cytokine levels measured. Data represent mean \pm SD. Statistical significance was determined
927 with the Mann-Whitney test, ** $P\leq.01$, *** $P\leq.001$, **** $P\leq.0001$.

928

929

930

932 **Figure 4. The *pamA*-mediated skin abscess phenotype depends on the methylase activity**
933 **of PamA. (A)** Predicted structure of mΦ11 PamA. Amino acid backbone represented in green,
934 with N-terminus (M1), C-terminus (Q141) and putative active site (N64, P65, P66, Y67)
935 highlighted. Generated by AlphaFold, visualized using PyMol Molecular Graphics System,
936 Version 2.5.2 (Schrödinger, LLC). **(B)** Effect of PamA point mutants on methylase activity.
937 Genomic DNA was isolated from LAC* strains containing the indicated *pamA* alleles and
938 digested with DpnI (DpnI+) or PBS control (DpnI-), then visualized on a 1% agarose gel. The
939 analysis confirms that PamA methylates at the predicted GATC site and that PamA point
940 mutants lack methylation activity. EV, empty vector. **(C)** Skin abscess size. Abscess area of
941 LAC* with EV (maroon, N=20 abscesses, strain RU129), *pamA* (purple, N=20 abscesses, strain

942 RU121), and *pamAP65T* (cyan, N=20 abscesses, strain RU162) at the indicated time points
943 after skin infection with $\sim 1 \times 10^7$ CFU of bacteria per abscess. Data are pooled from two
944 independent experiments and represent mean \pm SD. Statistical significance was determined
945 with the Kruskall-Wallis test and Dunn's multiple comparisons test, * $P \leq .05$, ** $P \leq .01$, *** $P \leq .001$,
946 **** $P \leq .0001$. **(D)** Bacterial burden in abscesses. Skin abscesses from infections in panel C
947 (N=9-11 abscesses per strain) were harvested at 72h and CFU enumerated. Data represent
948 mean \pm SD. Statistical significance was determined with the Kruskall-Wallis test and Dunn's
949 multiple comparisons test.

950

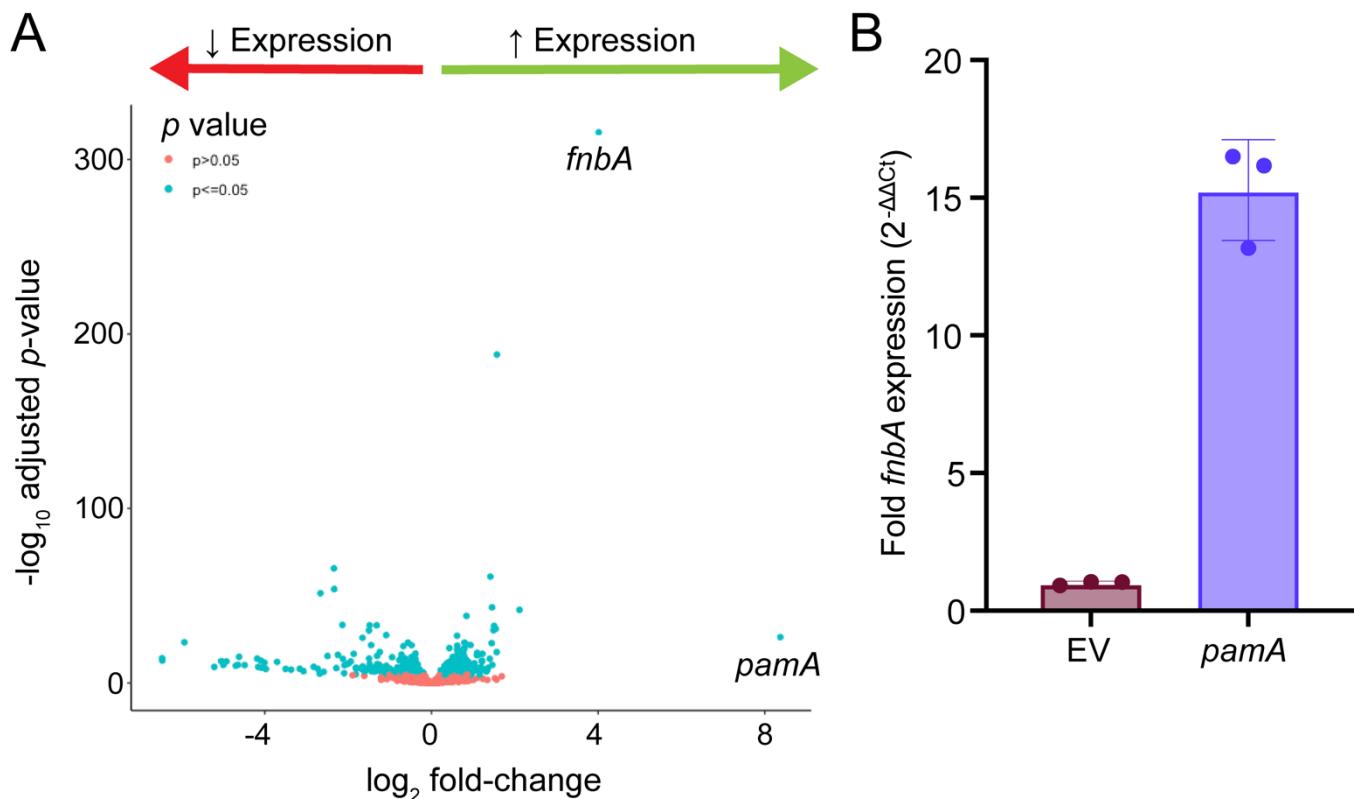
951

952

953

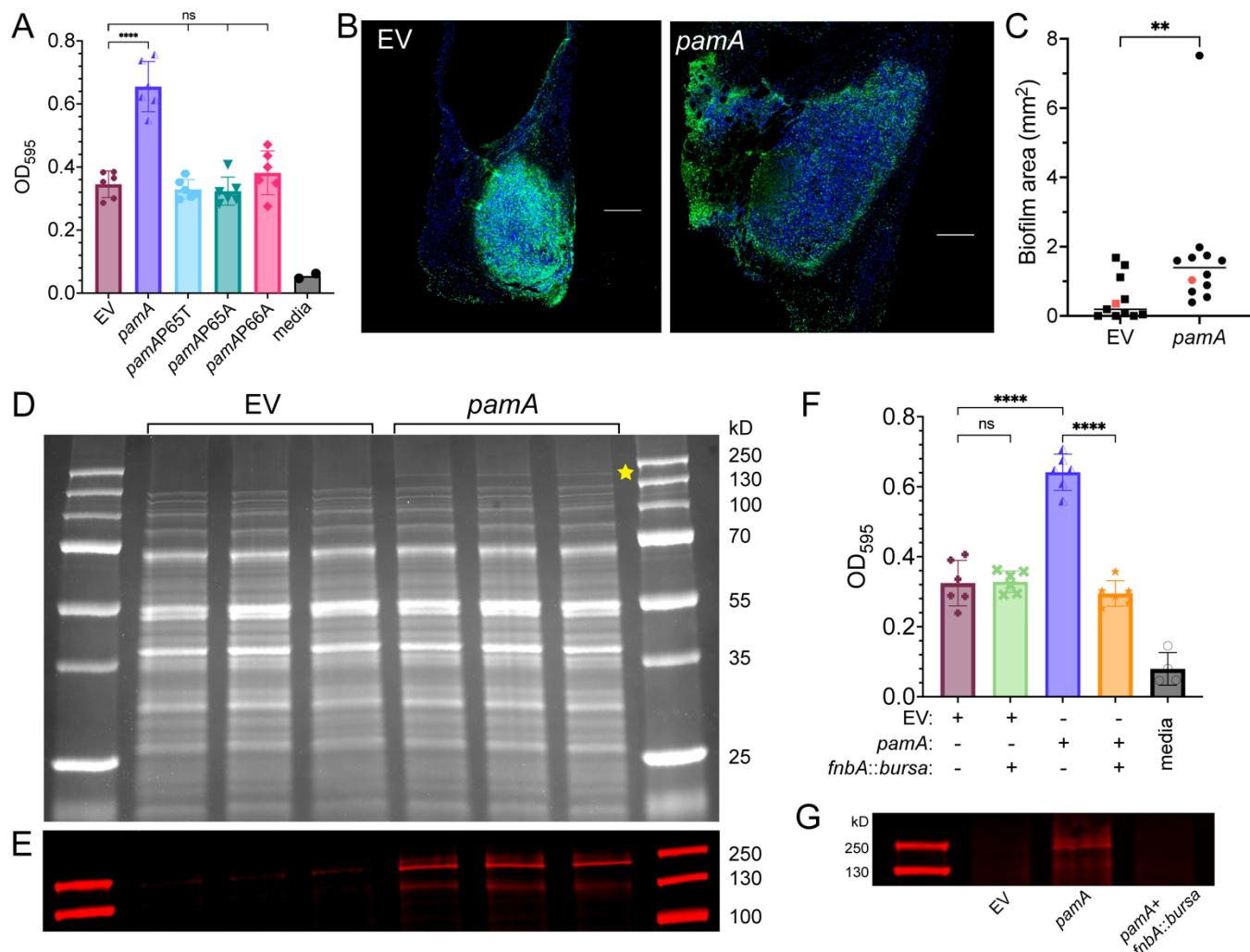
954

955


956

957

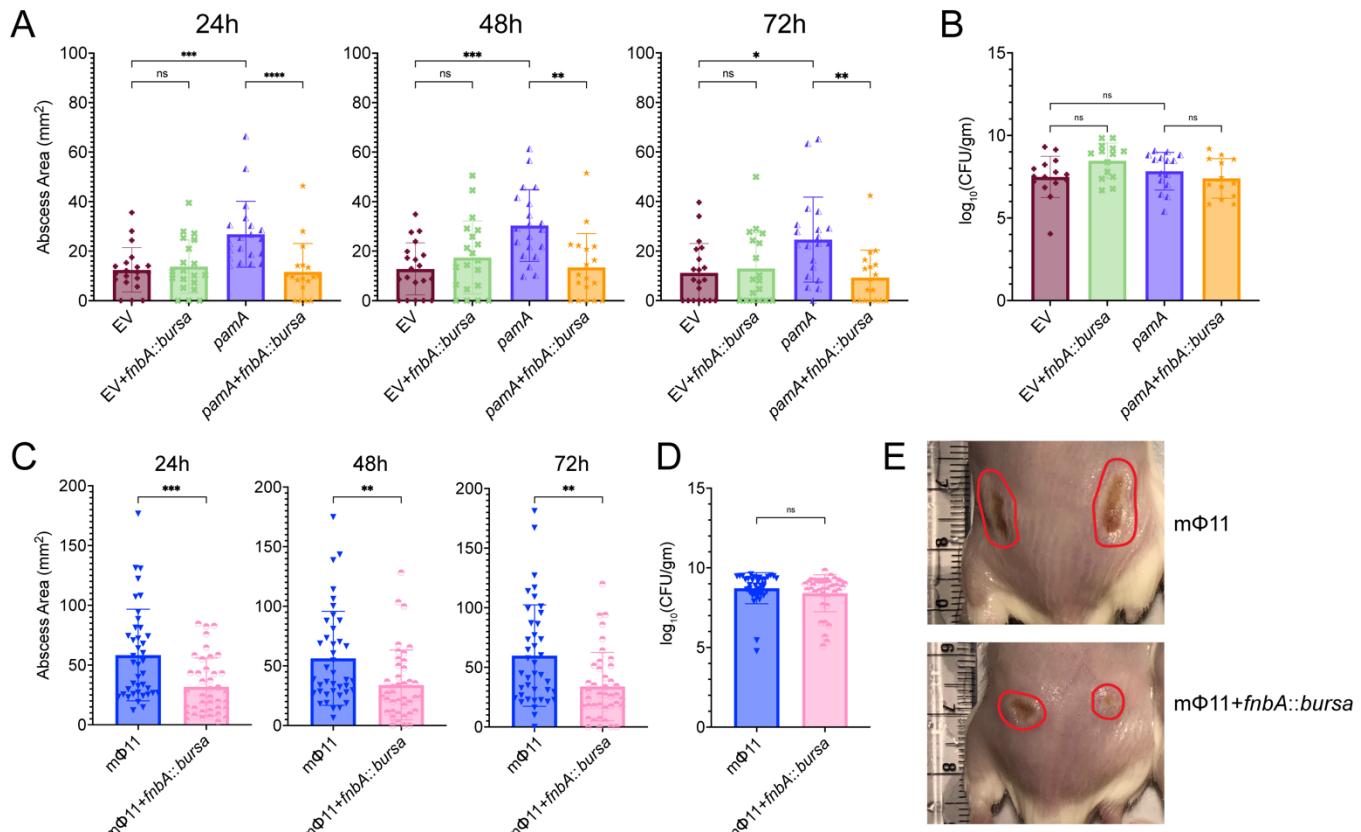
958


959

960

961

962 **Figure 5. *pamA* induces widespread transcriptional changes including a large increase in**
963 **the expression of fibronectin-binding protein A (*fnbA*; FnBPA). (A)** Whole genome
964 transcriptome. Volcano plot of RNA-sequencing data comparing LAC* strains containing *pamA*
965 (N=3 biological replicates, strain RU121) or empty vector (EV) control (N=2 biological replicates,
966 strain RU129) after 5 hours of growth in RPMI media. Data points to the right of zero (green
967 arrow) represent upregulated genes in LAC*::*pamA* and data points to the left of zero (red
968 arrow) represent downregulated genes in LAC*::*pamA*; *pamA* and *fnbA* are highlighted. Blue
969 data points represent genes that achieved statistical significance ($P \leq 0.05$); pink data points
970 indicate genes that did not. **(B)** Effect of *pamA* on *fnbA* expression. Quantitative real-time PCR
971 of *fnbA* in LAC* strains containing *pamA* or EV control. Strains were grown and prepared in the
972 same manner as panel A. Data represent mean \pm SD of three biological replicates.


973

974 **Figure 6. The methylase activity of *pamA* acts to increase biofilm production through**
 975 **fibronectin-binding protein A (*fnbA*; FnBPA). (A)** Effect of *pamA* methylase activity on biofilm
 976 production. In vitro biofilm production by LAC* strains with the indicated *pamA* alleles integrated
 977 into the chromosome, quantified by optical density after static growth for 24 h (OD). EV, empty
 978 vector control. Data represent mean \pm SD of six biological replicates per strain, pooled from two
 979 independent experiments. **(B)** Effect of *pamA* on biofilm formation in abscesses. Representative
 980 images of skin abscess tissue stained for DAPI (blue) and 5-methylcytosine (5mc, green) 72 h
 981 after infection with $\sim 1 \times 10^7$ CFU of LAC* containing *pamA* (strain RU121) or EV (strain RU129).

982 Scale bar (white) is 200 μ m. **(C)** Biofilm area of LAC* containing *pamA* (N=12 abscesses, strain
983 RU121) or EV (N=11 abscesses, strain RU129) quantified as the difference between DAPI and
984 5mC staining (48). Red data points correspond to representative images in panel B. Data was
985 pooled from two independent experiments. Statistical significance was determined with the
986 Mann-Whitney test, ** $P \leq .01$. **(D)** Cell wall proteins. Cell wall-associated proteins from biofilms of
987 LAC* strains containing *pamA* or EV (three biological replicates each) were separated by SDS-
988 PAGE and stained with Coomassie blue. Gel image is representative of two independent
989 experiments. Yellow star corresponds to the band of interest. **(E)** Identification of FnBPA bands.
990 Western blot of cell wall associated protein bands from panel D using polyclonal anti-FnBPA,
991 focusing on high molecular weight protein band area. **(F)** Biofilm production. In vitro biofilms
992 from LAC* strains containing the indicated genetic changes was quantified by optical density
993 (OD). Data represent mean \pm SD of six biological replicates per strain, pooled from two
994 independent experiments. **(G)** FnBPA production. Western blot of cell-wall associated proteins
995 during in vitro biofilm production by the indicated strains.

996

997

998

999 **Figure 7. *fnbA* deficiency reverses the *pamA*-mediated skin abscess phenotype. (A)** Effect
1000 of *fnbA* on the *pamA*-mediated skin abscess phenotype. Abscess area of LAC* with EV control
1001 (maroon, N=20 abscesses, strain RU129), EV+*fnbA*::*bursa* (green, N=18-20 abscesses, strain
1002 RU170), *pamA* (purple, N=20 abscesses, strain RU121), or *pamA*+*fnbA*::*bursa* (orange, N=18
1003 abscesses, strain RU169) after skin infection with $\sim 1 \times 10^7$ CFU of bacteria per abscess for the
1004 indicated times. Data are pooled from two independent experiments and represent mean \pm SD.
1005 Statistical significance was determined with the Kruskall-Wallis test and Dunn's multiple
1006 comparisons test, * $P \leq .05$, ** $P \leq .01$, *** $P \leq .001$, **** $P \leq .0001$. (B) Bacterial burden in abscesses.
1007 Skin abscesses in panel A (N=14-15 abscesses per strain) were harvested for CFU
1008 enumeration 72 h post-infection. Data represent mean \pm SD. Statistical significance was

1009 determined with the Kruskall-Wallis test and Dunn's multiple comparisons test. **(C)** Effect of
1010 *fnbA* on the mΦ11-mediated skin abscess phenotype; transposon insertion in *fnbA* in mΦ11-
1011 containing strains confirms that *fnbA* is necessary for the skin abscess phenotype. Abscess
1012 area of LAC* containing prophage mΦ11 (blue, N=40 abscesses, strain BS989) and
1013 mΦ11+*fnbA::bursa* (pink, N=40 abscesses, strain RU171) after infection with $\sim 1 \times 10^7$ CFU of
1014 bacteria per abscess for the indicated times. Data are pooled from four independent
1015 experiments and represent mean \pm SD. Statistical significance was determined with the Mann-
1016 Whitney test, $*P \leq .05$, $**P \leq .01$, $***P \leq .001$, $****P \leq .0001$. **(D)** Skin abscesses from infections in
1017 panel C were harvested at 72 h post-infection and CFU enumerated. Data represent mean \pm
1018 SD. Statistical significance was determined with the Kruskall-Wallis test and Dunn's multiple
1019 comparisons test. **(E)** Representative images at 72 hours post-infection of the indicated strains
1020 from panel E, abscess area circled in red.