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ABSTRACT

Early embryonic development is characterized by the transition from maternal factor reliance to zygotic control.
These processes set the stage for the embryo's basic structure and cellular differentiation. While relatively
detailed knowledge exists of the transcriptional events during early development, little is known about the
concurrent metabolic processes. Understanding these processes, however, is important since they are linked
to cell fate determination and organ and tissue formation. The primary reasons for the limited progress in the
field are technical limitations due to the small amount of material available during early embryonic time
windows. Here, we introduce a novel single-embryo methodology that places us in an exciting position to
analyze the early embryo’s metabolome and transcriptome in an integrated manner and at high temporal
resolution. The resulting data allow us to map concomitant metabolic and transcriptional programs in early
Drosophila embryonic development. Our results reveal that a substantial number of metabolites exhibit
dynamic patterns with some changing even before the onset of zygotic transcription. dNTPs for example show
a temporal pattern that correlates with cell division patterns in the early embryo. In summary, here we present
an operationally simple single-embryo metabolomics methodology and provide a detailed picture of early
developmental metabolic processes at unprecedented temporal resolution.

Main: In animal development the earliest stages are controlled by maternally deposited biomolecules,
including mMRNAs and metabolites. Because ultimately the maternal contributions will become insufficient to
sustain development, the zygote needs to take control. This process is collectively referred to as
maternal-to-zygotic (MZT) transition'. During this period the zygote initiates transcription of its own genome,
degrades or recycles the factors deposited by the mother, and starts producing its own biomolecules. While
processes such as zygotic genome activation (ZGA) have been studied extensively?, the metabolic details of
early development have been largely inaccessible. Studying metabolism at early stages of development is
challenging given the small amount of material available, the rapid progression of development, and, in
mammals, the continuous nutritional inputs from the mother though the placenta. As a closed system (e.g., no
further input from the mother after laying), oviparous animal models, such as Drosophila, overcome the last of
these issues, allowing us to focus exclusively on understanding embryonic metabolic programs, without any
confounding inputs from the mother. To overcome the challenge of limited material, prior studies in Drosophila
have utilized pooled embryo samples from 2 or 4-h developmental windows and focused on the metabolite
changes that occur over the entirety of embryogenesis®**. However, to understand how the zygote takes control
over its own metabolism and how zygotic metabolism integrates with transcriptomic programs, high-resolution
data are required.
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We present an operationally simple single-embryo transcriptomic and metabolomic methodology developed to
observe early developmental metabolism in real time. The resulting dataset provides an unprecedented view of
the dynamic processes underlying early developmental metabolism. We previously reported a single embryo
RNA-sequencing (RNA-seq) approach to generate high-resolution transcriptome datasets from Drosophila
embryos®®. Here we have enhanced this method by utilizing genetically different fly strains from the Drosophila
Genetic Reference Panel (DGRP) for allele specific expression analysis’®. Furthermore, we have expanded
our approach by integrating metabolomics into our methodology, enabling multi-‘omics analysis®. Our novel
approach allows us to characterize metabolite profiles and allele-specific expression during early embryonic
development (0-3 h in Drosophila) (Figure 1A).

Determining embryo age using a high-resolution transcriptome dataset. First, to determine the age for
each individual embryo we generated a single-embryo transcriptome dataset using a modified version of our
previously published approach®. Instead of directly isolating RNA, we first performed metabolite extraction
using 80% methanol and isolated the RNA from the remaining pellet using TRIzol. Within our dataset we
detected 7367 different transcripts with a minimum number of 5 unique reads in at least 5 individual embryos.
The resulting time-resolved RNA-seq dataset includes the transcriptomes of 245 single embryos and 22
unfertilized eggs (>150K unique transcripts/embryo, average of 760K reads/embryo), a resolution of around 1.4
embryos per minute, twice that of our previous study®. Figure 1B shows a t-SNE map with the inferred
differentiation trajectory indicated for embryos and unfertilized eggs. Ordering the embryos along this
pseudo-temporal trajectory reaffirmed the dispensability of manual staging (Figure S1A) and the absence of
batch effects for our protocol (Figure S1B). The transcriptome entropy of embryos along this developmental
trajectory mirrored the loss in entropy seen for differentiation trajectories of single-cells™ (Figure S1C), further
confirming the validity of our pseudo-temporal trajectory ( Figure S1C). An analysis of raw counts along the
pseudo-time trajectory showed a change in the number of transcripts over time, with older embryos containing
less transcripts (Figure S1D).

Since RacelD3 uses a correlation-based metric for the computation of the distance object, the determination of
clusters and pseudo-time trajectory are independent of normalization''. Hence, we applied the Remove
Unwanted Variation Using Control Genes (RUVg) procedure'? for data normalization and follow-up analysis. As
the set of control genes for RUVg, we used the 10 least variable genes in each gene expression quartile from
our previously published dataset®. Next, we determined the developmental stages reflected by our
pseudo-temporal trajectory. To this end we plotted the dynamic expression patterns of genes regulating
important developmental milestones of Drosophila embryogenesis, such as cellularization (nullo), germ layer
specification (snail, sna), ventral furrow formation (heartless, htl) and mitotic control (stinger, stg)'*'* (Figure
1C). This analysis positions NC 1-8 prior to pseudo-time 75, NC 9-13 between pseudo-time 76 and 146, NC 14
between 147 and 201, and the cellular blastoderm thereafter. Using our previously validated approach®, we are
also able to identify male and female embryos using their transcriptome for approximately half of the embryos
(pseudo-time 127 onwards)(Figure S1E, S1F, and Table S1) and determine sex-specific differences on gene
expression (Table S$2). In summary, these results are evidence of the unprecedented temporal resolution
achieved by using our single-embryo transcriptome methodology.

Continuous transcriptome analysis reveals dedicated expression modules for metabolic pathways.
Next, we wanted to see if certain pathways show coordinated patterns of expression during early development
and how these relate to metabolism. To identify highly correlated genes across our time window, we used
WGCNA (Weighted Gene Co-expression Network Analysis)'>'®. After merging modules with high topological
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overlap, we identified 23 modules with more than 20 genes and distinct transcriptional patterns (Figure 1D,
S$1G, and S1H). Around 58% of all transcripts fall within modules with a pattern dominated by maternal
deposition and zygotic degradation (modules 1 through 10). Only 23% show a pattern dominated by zygotic
transcription. This dominance of maternal degradation could explain the reduced number of transcripts over
time. The remaining 1418 transcripts out of 7367 did not fall within any of the identified modules (Table S3).
Using these modules we performed overrepresentation analysis of Gene Ontology (GO), KEGG and
Wikipathway terms using g:profiler (significance threshold g:SCS=0.1)""2'. Modules 4, 5, 6, 7, 9, 11 and 12
showed no significant pathway enrichment. The enrichments for the remaining modules were used to create a
network map using the Cytoscape Compound Spring Embedder (CoSE) layout function. Nodes were
color-coded based on the module in which they are enriched (Figure 1E and S1I).

The resulting map reveals several sub-networks of related pathways dominated by specific modules. A
completely annotated network and a list of pathway enrichments can be found in Figure S11 and Table S4. A
subset is discussed here and displayed in (Figure 1E). Specifically, there is a vast web of development/cell
fate commitment related pathway terms driven by modules comprised of 1175 genes which display
transcription patterns dominated by zygotic gene expression (modules 14, 15, 16, 17 and 18, Figure 1D).
Module 23 which is enriched in muscle development pathways shows variable but overall stable expression.
The remaining modules show enrichments in pathways that are not classically associated with development
(Figure 1E and S1I). This includes modules which are enriched in pathways related to metabolism and exhibit
distinct patterns of maternal degradation (modules 1, 2, 8). Interestingly, module 2, which is enriched for
various lipid metabolic pathways also shows enrichment for vesicle transport, supporting the recently reported
importance of vesicles in nutrient sorting in the early embryo?. Seemingly uncoupled from this general pattern
of metabolic pathways are electron transport chain pathway related genes which are enriched in module 21
and are showing a highly variable pattern characterized by zygotic expression. This indicates that the
transcription of energy metabolism related genes is uncoupled from those involved in biosynthetic pathways.
The same general pattern observed for genes related to the electron transport chain is also evident in
ribosome/translation pathways (modules 21 and 22). In summary, our analysis reveals dedicated modules of
transcription with distinct patterns of expression for genes involved in developmental and metabolic pathways.

Revealing the exact onset of transcription using allele specific analysis. While the transcriptional
modules in Figure 1D reflect the patterns of transcript abundance, widespread maternal mRNA decay in early
embryos masks the true onset of gene transcription. To enable the assessment of the accurate transcriptional
activation for genes, we used two genetically different DGRP lines (males/DGRP_352, females/DGRP_737)
with known genetic variations in our crosses’®. Variant calling on the RNA-seq data derived from hybrid
offspring was carried out by a modified GATK’s workflow retaining only known and biallelic SNPs annotated to
a single gene’. We detected a total of 2453 genes with SNPs in our dataset. Since unfertilized eggs should
only contain maternal transcripts but none from the paternal allele, we excluded all transcripts with paternal
reads present in unfertilized eggs (22 in any unfertilized egg, n=395) from downstream analysis.

Upon fertilization, Drosophila embryos initially contain trace amounts of paternal mRNAs delivered by the
sperm. It is only when the zygote assumes control over its genome that transcripts from both parental alleles
become detectable. We thus used the paternal allele data to identify transcripts that are zygotically expressed
during early development. This analysis revealed that around 60% of genes (n=1476) with SNPs are
expressed from the paternal allele (minimum 3 paternal transcripts in at least 10 embryos) at some time during
our 3h window, this agrees with a previous report, which reported about 44% of genes as non-expressed
during early development®. Overrepresentation analysis showed that zygotically expressed genes are
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enriched in pathways related to transcription, with the nucleic acid metabolic process as the most enriched
pathway (Figure 1F). To establish the exact onset of transcription, generalized additive models were used to
estimate, with 95% confidence, the earliest pseudo-time where the mean expression was at least one unique
read. This analysis revealed that transcription of 76% of all zygotically transcribed genes (n=1126 is initiated
during cycle 14 within a window of 75 points in the pseudo-time (from 130 to 204), which translates to an
approximate 50 min time window (Figure 1G, Table S5). These findings are consistent with prior studies that
assessed nascent zygotic mRNAs?*. Significantly, our pseudo-time methodology accurately determines embryo
age, thus circumventing previously reported issues of mMRNA contamination from older embryos during
allele-specific analysis of zygotic genome activation®*?°. Classification of these genes into activation time
windows revealed 4 major waves of gene activation (Figure S1J), with the 2" wave representing
transcriptional activation during cycle 14. Collectively, utilizing genetically diverse Drosophila strains in our
crosses allows for allele specific analysis providing a high-resolution picture of zygotic genome activation in
Drosophila.

Single-embryo metabolomics reveals time-resolved metabolite profiles. While our transcriptome analysis
is detailed in nature, it offers limited insights into metabolic processes during development. To gain additional
insights into early embryo metabolism, we combined our high-temporal resolution transcriptional analysis with
single-embryo metabolite profiling. Here, we present this novel methodology and reveal unprecedented
insights into the molecular metabolic mechanisms underlying early development. Because individual
Drosophila embryos are small, metabolite abundances are therefore low. To narrow down the analysis on a
subset of polar metabolites, we performed LC-MS on metabolite extracts with concentrations equivalent to 10,
5 and 1 embryo. This resulted in a panel of 155 metabolites in our final analysis. To assess metabolism during
early development in a time dependent manner, we targeted this panel of metabolites on metabolite extracts
isolated from the same samples included in our pseudo-time analysis (Figure 1B, 245 single embryos and 22
unfertilized eggs). Previous work from our group demonstrates the phenotypic veracity of this single-sample
multi-'omic workflow®. Figure 2A shows a schematic for the metabolite data processing.

Despite the low sample concentration in our single embryo samples, we detected unambiguous signals for 81
metabolites (Figure S2A, Table S6 and S7). As an example, Figure 2B shows extracted ion chromatograms
for two transitions (490—391.9, 490—158.9) of dATP from two representative embryo samples chosen from
two distinct pseudo-times. Inclusion of solvent blank injection demonstrates clear signal in the biological
samples. Following data acquisition and initial processing (see methods), samples were arranged along the
pseudo-time trajectory derived from our transcriptomics analysis to reveal the dynamic behavior of individual
metabolites during early development. Figure 2C shows the metabolomics results for dATP presented along
the pseudo-time trajectory. Despite low input and relatively low dATP signal abundance, we observed a
complex pseudo-time dependent response. Importantly, these dynamic changes in dATPs levels were devoid
of batch effects (Figure S2B) and were not observed in unfertilized eggs (Figure S2C). To navigate the
inherent noise due to analytical and technical variation, especially given the single-embryo focus, we employed
data fitting and smoothing through Generalized Additive Models (GAM, Figure 2D). Sample outliers for each
metabolite were identified using a conservative prediction interval of 99.7% and subsequently excluded from
analysis. Following outlier removal, the GAM was re-run to establish the definitive pseudo-time pattern for each
specific metabolite (Figure 2E). To accommodate the differences in relative abundance and enhance the clarity
of visual data representation, graphs will show scaled data from here onwards (Table S8). Focusing on dATP,
our analysis shows initial high levels of free dATP followed by a drastic drop at around NC 8 after which
abundance remains constant for a short period of time (Figure 2E). This time window coincides with a time of
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increased nucleotide demand due to genome duplication during rapid nuclear division. During early
embryogenesis, the first 8 cell cycles last only 8 min and progressively slow down to 18 min by cycle 13%. The
dATP signal increases again during NC14, which reflects a time absent of nuclear divisions. Once the embryo
resumes nuclear divisions after NC14, dATP abundance drops again. In summary, our methodology
successfully detects 81 individual metabolites in single embryo samples (Table S8), providing an
unprecedented view of early embryo metabolism. Utilizing the previously determined transcriptome
pseudo-time we can attribute metabolite abundance to individual embryos. This approach allows us to observe
early developmental metabolism in a continuous manner and provides a detailed understanding of the dynamic
metabolic processes underlying embryonic development. Moreover, the dynamic pattern of dATP abundance
aligns with the time course of nuclear divisions during early development.

Revealing known and novel patterns of metabolite abundance. While our understanding of the dynamics
of metabolism during early development remains limited, emphasis in Drosophila has been placed on
deoxynucleotides (dNTPs). Previous studies have demonstrated fluctuations in dNTP levels during the initial
stages of development, providing valuable insights into the metabolic dynamics associated with DNA
synthesis?"%. To verify our results and demonstrate their biological significance, we focused our initial analysis
on dNTPs temporal patterns. Our time resolved metabolite profiling shows the dynamic patterns in dNTP
abundance during the first 3h of development. Both dTTP and dATP exhibit a sharp decline as early as
pseudo-time 50, followed by an increase in abundance around pseudo-time 150 (Figure 3A,D). dCTP, while
showing a similar trend, displays a much more gradual decrease without a measurable rise at later time points
(Figure 3G). Detection of dGTP is not possible by our method, which is likely attributed to a combination of low
endogenous abundance and compound-intrinsic differences in ionization efficiency. Importantly, we validated
all dNTPs signals with reference standards (Figure S3A).

Given the low metabolite signal in our single-embryo samples, we sought additional validation for the observed
changes in samples with higher metabolite concentrations. For this purpose, we performed LC-MS on pools of
10 embryos to boost LC-MS signal intensity and minimize technical variation due to low-input. Since analysis
of metabolites in male and female embryos did not reveal any significant sex-specific differences (Figure S3B)
we disregarded sex for sample pooling. To preserve apparent developmental time, embryo metabolite extracts
were pooled based on their RNA-seq pseudo-time, dried, resuspended and analyzed. Indeed, pooled samples
demonstrated similar trends in dNTPs as those from single embryos (Figures 3B, E, H), therefore, supporting
our single-embryo approach. To further validate the significance of the changes detected in our single-embryo
dataset, we determined the abundance minima and maxima of our single-embryo smoothed temporal
trajectory (shaded areas in Figure 3A, D, G) and assigned 4 consecutive pooled samples to the respective
time windows. The results demonstrate that the initial decline in metabolite abundance is statistically significant
for all three dNTPs (Figures 3C, F, I). Importantly, our results from both, single- and pooled embryo samples,
accurately mirror published metabolomics results from hand staged pooled embryos at defined developmental
stages, confirming that dNTP's are deposited by the mother and rapidly depleted during the initial 13 rounds of
cell divisions?”?®. Our data also reveal that at the onset of cellularization, when cell divisions are paused for
approximately 30 min?®, dATP and dTTP levels stabilize and even start to increase. While this increase is
evident for both dATP and dTTP in our single-embryo time course, it is only significant for dATP using our
pooled sample analysis. Surprisingly, despite the major transcriptional events taking place, ribonucleoside
(NTP) levels were relatively stable during this 3h time window (Figure S3C-J). In summary, our single-embryo
metabolomics methodology delivers a robust picture of nucleotide dynamics during early embryogenesis at
unmatched resolution.


https://paperpile.com/c/LTP1XS/oMkA
https://paperpile.com/c/LTP1XS/HN3v+7CGt
https://paperpile.com/c/LTP1XS/HN3v+7CGt
https://paperpile.com/c/LTP1XS/DQDn
https://doi.org/10.1101/2024.04.17.589796
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.17.589796; this version posted April 20, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

In addition to replicating known patterns of metabolites during early embryogenesis, our data also provide
novel insights into 78 additional metabolites (Table S8). For example, carbamoyl-aspartate, which plays a
crucial role in the urea cycle and pyrimidine biosynthesis, exhibits an oscillating pattern (Figure 3J). This
oscillating pattern is reproduced in the pooled samples at a lower resolution (Figure 3K) and statistical
analysis of pooled samples at minima and maxima shows significance for the first two comparisons (Figure
3L). As another example, N-Acetyl Aspartate (NAA), which is predominantly found in neurons®, did not appear
until later embryogenesis. Remarkably, our data show that NAA is produced de novo during NC14, before
mature neurons develop (Figure 3M). Like for the other metabolites, the observed pattern in our single-embryo
data analysis is also captured in the pooled samples (Figure 3N) showing statistical significance (Figure 30).
Collectively, our data replicate known and reveal novel patterns of metabolite abundances. Using pooled
samples at increased concentrations, we demonstrate that our single-embryo data accurately reflect dynamic
processes during early embryonic development.

Metabolite patterns are related to gene transcription. To determine if associations exist between metabolite
levels and patterns of gene expression, we next evaluated correlations between WGCNA transcript modules
and metabolite abundances. This analysis revealed extensive correlations among transcriptional modules
(colored by module), while most metabolites (white circles) showed no significant correlation with any of the
WGCNA modules (FDR < 0.05 and Pearson R*2 > 0.25)(Figure S4A). The metabolites exhibiting significant
correlations with transcriptional modules are shown in Figure 4A and include several amino acids, nucleotide
related metabolites, NAA and GIcNAc-1-P. Given the overall absence of correlations between metabolites and
transcript modules, we hypothesize that these few metabolites are central to embryonic development. To test
this, we focused on dNTPs and its network neighbors. Analysis revealed direct positive correlations (red
connecting lines) between dNTPs and modules 1 and 2, and negative correlations (blue connecting lines) with
deoxyinosine, asparagine, and module 11 (Figure 4B). Over representation analysis for modules 1 and 2
highlighted DNA replication and glycero- and phospholipid metabolic processes as the top enriched pathways
(Figure 4C and D). Glycerophospholipids are the major lipid parts of cell membranes.

Notably, the rate limiting enzymes for de-novo deoxynucleotide synthesis, ribonucleotide reductases RnrS and
RnrL, are members of the positively correlated modules 1 and 2 respectively (Table S3). A closer examination
of our single-embryo data revealed that an initial drop in dNTPs abundance coincides with the degradation of
the maternally deposited RnrS transcript, which reaches its minimum at the onset of cellularization
(pseudo-time 150, Figure 4E). Following this decline, RnrS exhibits zygotic expression after only a brief pause,
coinciding with an increase in dATP abundance. These data suggest RnrS regulation by transcript abundance
in addition to allosteric control by dNTPs®' (reviewed in a development context in ref®?). A previous study using
inhibitors showed that RNR activity in the early embryo is necessary for proper development despite the
maternal deposition of dNTPs into the egg®®. Using oocyte specific depletion of RnrS transcript*®* we show
that depletion of the maternally deposited transcript is sufficient to abrogate development. This result confirms
the requirement for maternally deposited RNR (Figure 4F). Additionally, our data reveal that
deoxyribonucleoside kinase (dnk), the rate limiting enzyme for dNTP salvage, is maternally deposited and
follows a temporal pattern similar to RrnS, albeit shifted to later time points (Figure 4G). While no significant
contributions from the salvage pathway were previously identified®, these results indicate that the salvage
pathway’s contribution to the dNTP pool during development might have been underestimated. To confirm that
this is indeed the case we depleted dnk transcripts in oocytes. In support of a significant contribution from the
salvage pathway, depletion of dnk led to decreased offspring survival, but at a lower level than RNR
knockdown (Figure 4F).
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Another example of metabolites significantly correlated with WGCNA transcript modules is NAA (Figure S4B).
This nervous system-specific metabolite is positively correlated with modules (16, 17, 18, and 19), which are
enriched in pathways associated with neuron development, as well as pentose and glucuronate
interconversions (Figure S4C-E). In conclusion, our integrated analysis of time-resolved transcriptomics and
metabolomics data in early Drosophila embryos reveals correlations between transcript modules and only a
subset of metabolites. One of these relationships is between abundance of dNTPs and transcripts for genes
involved in their biosynthesis. Crucially, we validate the significance of this relationship through maternal
knockdown experiments. This, along with the findings related to NAA, support our hypothesis that nodes within
our correlation network likely represent key processes central to embryo development.

DISCUSSION

To gain comprehensive insights into early development processes has been challenging due to the limited
amount of material, the confounding effects of pregnancy or embryo culture conditions, and the rapid
progression of early embryogenesis. In this present study, we present an innovative methodology for analyzing
dynamic metabolic processes during early embryonic development (0-3h in Drosophila). We build upon our
previously published single-embryo transcriptomics approach, which uses the transcriptome to determine the
developmental stage of the embryo®®. We enhance this methodology in two key aspects. Firstly, we use
genetically distinct Drosophila strains enabling the allele specific analysis of our transcriptome data. Secondly,
and most significantly, we integrate the isolation of polar metabolites into our workflow to perform mass
spectrometric analysis. These advancements enable, for the first time, assessment of the metabolite
abundances in single embryos throughout the time-course of early embryonic development.

To develop our time-resolved single embryo multi-‘omics analysis we had to overcome two principal analytical
challenges. First, due to rapid development and practical limitations defining the moment of fertilization, using
traditional time-based collection for embryo collection lacked necessary developmental stage precision for
informative metabolomics. To address this, we utilized single embryo RNA-seq signatures to accurately define
developmental stage. However, this also necessitated the sequential extraction — and preservation — of both
the metabolome and RNA of hundreds of embryos. We have previously demonstrated that RNA-seq following
metabolite extraction with 80% methanol fully captures the phenotype detected by samples extracted for
RNA-seq alone®. We employed this approach here, where samples were collected and homogenized in 80%
methanol, and RNA-seq was performed on the insoluble fraction to accurately stage each embryo. Then, this
RNA-based staging was used to place single embryo metabolomes across the developmental trajectory. Thus,
we are able to construct a highly detailed metabolomic map of embryonic development.

The second analytical challenge was the small size (~0.15 mm diameter) limiting the amount of metabolites
available for metabolomics analysis. Unlike sequencing ‘omics approaches, the metabolome cannot be
amplified to increase detection limits. Moreover, the metabolome is highly diverse and dynamic; it contains
compounds with a wide range of chemical properties and concentrations, and structures. As such, no single
LC-MS method can capture the entire metabolome. Thus, we turned to two orthogonal chromatography
methods (reversed phase ESI+ mode and ion-paired negative mode) to maximize compound coverage. These
were coupled to a triple quadrupole mass spectrometer, which excels at high sensitivity and specificity through
MRM based transition monitoring, for analyte detection. Early method development efforts in pooled embryo
samples allowed us to constrain the analytical scope to only compounds known to be present in these
samples. This restricted our analysis only to useful transitions, in turn increasing instrument dwell-time per
compound and, ultimately, further improving sensitivity. The power of this approach is evident in the current
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work, where we provide quantitative metabolomic coverage in high resolution across the developmental
landscape. The power of this approach is apparent in the insight gained in deoxynucleotide metabolism. The
demand for deoxynucleotides during the first stages of embryonic development is exceptionally high due to
rapid cell divisions. This demand is only partially met through maternal deposition of dNTPs and de novo
synthesis is required to sustain cell cycles after cycle 10%. Importantly, both too high and low dNTP levels in
embryos have been shown to negatively impact development®”?8, highlighting the critical need for precise
control of ANTP levels. We uncover temporal associations that are indicative of the concurrent biological
processes taking place during early embryonic development. These include rapid cell divisions during the initial
cell cycles, a temporary cessation of cell division during nuclear cycle 14, and the reinitiation of cell divisions
thereafter. Our network analysis reveals associations between the highly dynamic pattern for dNTPs and
specific transcripts modules involved in cell cycle and membrane synthesis, suggesting an interdependency of
dNTP synthesis with cell cycle and membrane synthesis for cellularization during early development. Notably,
while maternal deposition of nucleosides and de novo synthesis have been recognized as the primary sources
fulfilling the initial demand for dNTPs, our findings introduce the salvage pathway as an additional essential
contributor to proper embryonic development.

Variability in sample collection, handling, extraction, and derivatization can affect the accuracy and
reproducibility of metabolite measurements®—¢. Here, we lysed intact embryos in the metabolite extraction
solvent as the first step to ensure a stable extraction. Standardizing metabolomics procedures across different
samples and conditions can be challenging, especially when dealing with large sample cohorts. However, in
the case of Drosophila embryos, which function as a closed system and do not require an ex vivo culture step,
their metabolite composition remains unaffected by harvesting methods. Leveraging this inherent strength of
the model system, we can minimize technical noise and ensure robust data quality. Moreover, the fecundity of
Drosophila allows for large sample sizes, enabling the detection of biologically relevant differences despite
potential variability.

Analyzing multi-‘omics datasets requires sophisticated statistical and computational approaches to distinguish
true biological signals from technical noise. To simplify the complexity inherent to such types of data, various
data reduction methods including nonnegative matrix factorization, principal component analysis, and weighted
gene co-expression network analysis (WGCNA) are commonly used. In our study we opted for WGCNA, a
method that groups genes into modules based on similar expression patterns, in our context, analogous
developmental patterns. Utilizing the first principal component of each module, known as the eigengene, as a
representative transcription signal significantly reduced the number of gene-metabolite correlations from
7367*81 to 23*81. This not only enhanced computationally efficiency but also greatly reduced the multiple
testing penalty. Moreover, by performing overrepresentation analysis on those modules, we gained valuable
insights into the biological processes underlying significant correlations. Rather than focusing on individual
gene-metabolite interactions, this approach enabled us to elucidate associations between metabolites and
entire biological processes or molecular functions. The choice of generalized additive models (GAM) for
regressing pseudo-time was motivated by the complexity of transcript and metabolic patterns in the first 3
hours of embryonic development. Given the complexity of these patterns, we required a flexible, data-driven
method capable of accurately capturing sudden changes and identifying relevant maxima and minima along
the time course. Leveraging the relatively large sample sizes using Drosophila, our GAM fits accurately capture
the entire time course. Our analysis approach provides a blueprint for the future of single-cell methodologies,
particularly as technology continues to advance. Similar to our dataset, these datasets will be large and
complex, containing thousands of peaks or signals corresponding to different metabolites and transcripts.
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In summary, our single-embryo methodology offers an unprecedented dataset with great value for the
developmental biology community. By providing a detailed snapshot of molecular events at the individual
embryo level, our approach unlocks new avenues for understanding the intricate processes governing
embryonic development. Moreover, it presents a novel opportunity to investigate the impact of developmental
perturbations on metabolic pathways, shedding light on the interplay between genetic and environmental
factors during crucial stages of embryogenesis. This comprehensive dataset not only enriches our
understanding of fundamental biological processes but also opens doors for future research aimed at
unraveling the complexities of developmental metabolism and its implications for organismal health and
disease.


https://doi.org/10.1101/2024.04.17.589796
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.17.589796; this version posted April 20, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

METHODS

Fly stocks and embryo collection
Drosophila genetic reference panel (DGRP) 737 and 352 lines®® from Bloomington Stock Center (#83729 and

#83728, respectively) were kept in incubators at 25°C with 60% humidity and a 12-hour light-dark cycle. All
flies were raised at constant densities on standardized cornmeal food (Bloomington recipe), Fly food M
(LabExpress, Michigan, USA), and DGRP_737 virgin females and DGRP_352 males transferred into 3
different embryo collection cages for 60 mm petri dishes (Genesee Scientific, USA) 3-4 days after eclosion.
Quality control (QC) samples for metabolomics analysis (0-3 h post fertilization embryos) were collected a day
before embryo collection started on 8-9 days old flies. An additional cage with only DGRP_737 virgin females
was used for unfertilized eggs collection. In all experiments, food plates were changed and discarded twice
before embryo or unfertilized egg collection started. For each sample collection, food plates were changed in
time intervals to get 0-1 h samples and processed immediately or incubated for 1 or 2 more hours at 25 °C (1-2
h or 2-3 h samples, respectively). Samples were transferred into a pluriStrainer® 150 yM cell strainer
(pluriSelect, USA) and washed with tap water, dechorionated by incubation in 3% sodium hypochlorite (PURE
BRIGHT® bleach, KIK international LLC) for 4 min, washed in 120 mM NaCl (Sigma-Aldrich, USA) with 0.03%
Triton X-100 (Fisher Scientific, USA) solution, and finally washed in ultrapure water (PURELAB® Ultra, ELGA).
Single embryos or unfertilized eggs were transferred into 2 ml screw-cap tubes pre-filled with 1.4 mm ceramic
beads (OMNI international, USA) using a 20/0 liner brush (Royal & Langnickel®, USA), snap-frozen on dry ice,
and stored at -80°C.

Metabolite extraction

Frozen embryos or unfertilized eggs were homogenized in 1 mL 80% methanol (v/v) (Optima™ LC/MS Grade,
Fisher Chemical™) by bead-beating at 6 m/s for 30 seconds at 4°C using a Bead Ruptor Elite homogenizer
coupled with Bead Ruptor Cryo Cooling Unit (OMNI international, USA). Samples were centrifuged for 10
minutes at 17,000 x g at 4°C and 800 pL of the soluble metabolite fraction transferred to new 1.5 mL tubes,
dried (~3 h) in a Genevac EZ-2 series evaporator (ATS Life Sciences Scientific Products) using low-BP
lamp-off settings, and stored at -80°C. A similar process was carried out for the QC samples except that
soluble metabolite fractions were combined into a single sample (n=300 embryos), mixed by vortex for 15
seconds, and a volume equivalent to 4.5 embryos aliquoted into different 1.5 mL tubes before drying the
metabolite extracts.

RNA isolation

After metabolite extraction, the pellet, ceramic beads, and remaining metabolite soluble fraction (~200 uL) of
each sample was dried (~1 h) in a Genevac EZ-2 series evaporator using low-BP lamp-off settings. Total RNA
isolation was then carried out as described in detail in Pérez-Mojica et al., 2023°. In brief, 500 uL TRIzol™
(Invitrogen, USA) and 50 uL Gibco™ phosphate buffered saline pH 7.2 (Thermo Fisher Scientific, USA) were
added to each sample mixing thoroughly. After 5 min incubation at room temperature, 100 pL chloroform
(Sigma-Aldrich, USA) were added, samples mixed by vortex, incubated 2 min at room temperature, centrifuged
for 15 minutes at 12,000 x g at 4 °C, and RNA-containing aqueous phase pipetted into a new 1.5 mL tube.
RNA was precipitated by adding 250 uL ice-cold isopropanol (Sigma-Aldrich, USA) and 2 yL GlycoBlue™
(Thermo Fisher, USA), samples mixed by hand, incubated for 10 min at RT, and centrifuged for 10 minutes at
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12,000 x g at 4°C. After discarding the supernatant, RNA pellets were washed with 1 ml 75% (v/v) ethanol
(Pharmco, USA), air-dried, and stored at -80°C until library preparation for RNA-seq.

Library preparation and RNA-seq

RNA-seq was carried out following our previously published step by step protocol for single-egg RNA-seq,
which is based on the CEL-Seq2 method®®* . In short, RNA was resuspended in 8 uL nuclease-free water
(Invitrogen, USA) and 120 nL dispensed using the I.DOT (Dispendix) into a 384-well plate holding 240 nL of
primer-mix including 192 different cell barcodes with unique molecular identifiers (UMI). After first-strand
(SuperScript Il, Thermo Fisher Scientific) and second strand synthesis (E. coli DNA Pol |, Thermo Fisher
Scientific) was completed, barcoded samples (n=384) were mixed into pools containing 96 samples per pool (4
libraries). cDNA was cleaned up using AMPure XP reagent (Beckman Coulter, USA) and in vitro transcription
performed (MEGAscript T7 Transcription Kit, Thermo Fisher Scientific) during 16 h at 37°C. The resulting
amplified RNA was fragmented using ExoSAP-IT (Thermo Fisher Scientific, USA), cleaned up using
RNACIlean XP (Beckman Coulter, USA), and used for first strand synthesis. Each library was diluted 1:10
(cDNA:H,0), an 11-cycle PCR amplification performed, and samples cleaned up using AMPure XP reagent
(Beckman Coulter, USA). Custom paired-end sequencing (read 1 = 15 bp; read 2 = 250 bp) was performed
using the NovaSeq 6000 instrument (lllumina) by the Genomics Core at Van Andel Institute. Sequencing depth
for each individual embryo or unfertilized egg was on average 3.4 M reads, with 84% of the sequences with a
Q-score = 30 (FastQC version 0.11.9)%.

RNA-seq data analysis, variant calling and obtaining allele specific read counts
Because the read lengths exceeded the mean fragment lengths, reads were trimmed using TrimGalore v0.6.10

with the parameters, ‘--length 15 --hardtrim5 200 --paired’. Trimmed reads were processed using a custom
Snakemake workflow (https://github.com/vari-bbc/scRNAseq; commit 834077) that calls variants using a
process partly adapted from GATK’s standard RNA-seq workflow
(https://github.com/gatk-workflows/gatk4-rnaseg-germline-snps-indels). Reads were aligned to the BDGP6.28
(dm6) genome, from Ensembl release 100, and ERCC sequences using STARsolo from STAR v 2.7.8a%*“° as
described step by step in Pérez-Mojica et al., 2023°. After read alignment, BAM files were split by the cell
barcode tag (CB) using ‘bamtools split’ from BamTools v2.5.2*'; the sample tag (SM) in each split BAM file was
made unique by appending the CB tag via ‘samtools reheader’ from SAMtools v1.17%2. Duplicate reads were
identified based on UMIs using MarkDuplicates from PicardTools v3.0.0 (http://broadinstitute.github.io/picard/)
with the parameters, ‘--BARCODE_TAG “UB” --VALIDATION_STRINGENCY SILENT’. For non allele-specific
analysis, samples with a total raw read count <150,000 or transcripts with <5 read counts on <5 samples were
fitered out from the analysis. Read count normalization, unsupervised sample clustering, transcriptome
entropy calculi, generation of a lineage tree, identification of unfertilized eggs and pseudo-temporal ordering of
samples was carried out using R package RacelD v0.3.0" as previously described®S. For allele-specific
analysis, variants were called using the joint genotyping workflow in GATK v4.4.0.0*® as suggested in Brouard
et al., 2019*. Reads with Ns in the CIGAR string were split using ‘SplitNCigarReads’. Base qualities were
recalibrated using ‘BaseRecalibrator’ and ‘ApplyBQSR’ using the DGRP2 variants’ (dm6 liftover downloaded
from https://www.hgsc.bcm.edu/arthropods/drosophila-genetic-reference-panel on Mar 30, 2021) for the set of
known variants. ‘HaplotypeCaller’ was run with the parameters, -ERC GVCF -dont-use-soft-clipped-bases
--standard-min-confidence-threshold-for-calling 20’, on each embryo (cell barcode), for each chromosome
separately to reduce runtime. Joint genotyping was conducted on each chromosome separately, by running
‘GenomicsDBImport’ then ‘GenotypeGVCFs’. Per-chromosome VCF files were sorted using ‘SortVcf then
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merged into a single VCF using ‘MergeVcfs’. Variants were filtered by running ‘VariantFiltration’ with the
parameters, ‘--window 35 --cluster 3 --filter-name "FS" -filter "FS > 30.0" --filter-name "QD" -filter "QD < 2.0"
--genotype-filter-name "GQ" --genotype-filter-expression "GQ < 15.0" --genotype-filter-name "DP"
--genotype-filter-expression "DP < 10.0", followed by ‘SelectVariants’ with the parameters, ‘--exclude-filtered
--set-filtered-gt-to-nocall’. Genic variants were annotated using ‘eff’ from SNPEff v5.1%°, with the parameters,
‘-no-downstream -no-intergenic -no-upstream’, and the pre-configured ‘BDGP6.32.105’ database. A table
containing variant coordinates, variant information and allelic depth was extracted from the VCF file using
‘VariantsToTable’ from GATK v4.4.0.0 using the parameters, ‘-F CHROM -F POS -F REF -F ALT -F TYPE -F
ANN -GF AD’.

Downstream analyses were conducted in R v4.21 and the script can be found at
https://github.com/vari-bbc/scRNAseqg/blob/main/scripts/ASE_example.Rmd. The allelic depth table was
imported as a GenomicRanges object (v1.50.2)*. Only biallelic SNPs annotated to a single gene on standard
chromosomes or “mitochondrion_genome” were retained. A SummarizedExperiment object was created to
store the variant coordinates, the sample metadata, and the REF and ALT allelic depths as separate assays.
Variants were further filtered to retain only those with at least 5 samples with > 5 read counts for each of REF
and ALT (not necessarily the same samples); for mitochondrial variants, if either REF or ALT allelic depths
passed the above filter, the variant was retained. The DGRP2 VCF file was imported and processed using the
VariantAnnotation v1.44.1 package*’, retaining only polymorphic variants between line_737 and line_352.
DGRP2 variant information was merged with the SummarizedExperiment based on matching chromosomal
coordinates, and reference and alternate alleles. Where there was a matching entry, parental origins for alleles
were determined based on the parental genotypes identified in DGRP2 and used to derive maternal and
paternal counts, which were stored as additional assays in the SummarizedExperiment object. Variants
annotated to the same gene were ranked in descending order based on the number of samples expressing
both alleles (> 0 counts), and the total counts (reference or alternate) across samples. Diagnostic plots of the
maternal and paternal counts were created by coercing the SummarizedExperiment object into a
SingleCellExperiment object (v1.20.1)*® and utilizing functions from scater v1.26.1%° on only the top-ranked
variant of each gene. We use FlyBase (release FB2024_01) to find information on gene function and gene
expression.

Weighted gene correlation network analysis (WGCNA)

To reduce the complexity of the transcriptomic data in both allele-specific and non-allele specific datasets, we
employed weighted gene coexpression network analysis via the R v4.3.0 (https://cran.r-project.org/) package
WGCNA' following a workflow similar to https://pklab.med.harvard.edu/scw2014/WGCNA.html. Before the
WGCNA was run, any genes with at least 2 unique paternally deposited reads in any unfertilized embryo were
removed from the paternally deposited data. Then the unfertilized eggs were removed from all datasets and
pseudo-times were refactored to maintain consecutive integer pseudo-times. Finally, to prevent the
allele-specific data from being too sparse, which can impact WGCNA fits, only genes with at least 2 unique
reads in 2 or more embryos were kept. Because we are investigating development patterns, the direction of
expression (upregulated or downregulated at a given pseudo-time) mattered. Therefore, all WGCNA networks
were created using a signed-hybrid correlation. The soft power threshold for each network was chosen based
on a combination of R? exceeding 0.8 and having mean connectivity in the transition from high to low (visually
this is a soft-power in the ‘elbow’ of the mean connectivity plot). For non allele-specific data we chose a
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soft-power of 6, for paternally deposited transcripts 12, and maternally deposited 7. The minimum module size
for non allele-specific data was set to 20 to allow for any developmental patterns summarized by a small
subset of genes, and for the allele-specific data the minimum module size was reduced to 10 due to these
datasets having far fewer total genes. All modules that were highly correlated (R > 0.95) were merged into one.
Pearson correlations were then used to determine which metabolites are associated with specific module
eigengenes. To account for multiple testing, p-values were adjusted using Benjamini-Hochberg to control the
false discovery rate at 5%. T A correlation network built on all pairwise module:metabolite correlations was
created using the R package igraph®® and then exported to Cytoscape (https://cytoscape.org/) via Rey3°’ for
additional visualization. Code for this workflow is available on Github
(https://github.com/vari-bbc/Drosophilia_Single_ Embryo_Workflow.

Activation clusters

To estimate the exact transcriptional onset for each maternally and paternally deposited gene, generalized
additive models (GAM) were fit individually to the RUVg normalized allele-specific expression data via the R
v4.3.0 (https://cran.r-project.org/) package mgcv®. GAMs were fit using the restricted maximum likelihood
method and shrunken cubic splines as the smoothing term. A given gene’s activation time was set at the first
pseudo-time where the lower bound of the 95% confidence interval exceeded 1 unique read. The activation
times for each gene were then passed to the function select within the R package mixR>® to determine if the
joint distribution of activation times had multiple modes. All four possible distribution families were run (normal,
log-normal, gamma, and Weibull) with modes ranging from 1 to 6 and both equal and unequal variances were
examined. The mixture fit with the lowest Bayesian information criterion was considered the best model and
was then used to group each gene into activation clusters. For the paternally deposited data, the best fit was a
log-normal mixture, with unequal variances, and 4 modes. The function mixfit from mixR was used to fit the
mixture model and visualize the results. Code for this analysis is available on Github in the WGCNA workflow
(https://github.com/vari-bbc/Drosophilia_Single_ Embryo_Workflow).

Metabolite identification

In preparation for metabolite identification, samples were resuspended in 30 pL water (90 pL for QCs)
(Optima™ LC/MS Grade Fisher Chemical™), pulse vortexed, sonicated for 5 min at 40 kHz in a Bransonic®
bath sonicator (Branson Ultrasonics, USA), centrifuged for 3 minutes at 17,000 x g at 4°C, and transferred to
0.3 mL clear glass vials with fused-in inserts (Supelco, Millipore Sigma, USA). Samples were first run using an
ion-paired method, completely dried in a Genevac EZ-2 series evaporator (ATS Life Sciences Scientific
Products) using low-BP lamp-off settings, and stored at -80°C until later performing a non-ion-paired method.
Both methods were based on ultra-high performance liquid chromatography coupled to a 6470 ftriple
quadrupole mass spectrometer (Agilent Technologies, USA). For the ion-paired we used column ZORBAX
RRHD Extend-C18, 80A, 2.1 x 150 mm, 1.8 pm, 1200 bar pressure limit (Cat # 759700-902 from Agilent),
solvent A (H20 with 10mM Tributylamine 15mM Acetic Acid, and 0.1% Medronic Acid), and solvent C
(Methanol with 10mM Tributylamine 15mM Acetic Acid, and 0.1% Medronic Acid). For the non-ion-paired we
used column CORTECS T3 Column, 120A, 1.6 pm, 2.1 mm X 150 mm, 1/pk (Cat # 186008500 from Waters),
solvent A (H20 with 0.1% formic acid) and solvent B (90% Acetonitrile with 0.1% formic acid). We also use
99% Acetonitrile to recondition the column between runs. Randomization was performed ensuring that a
similar number of embryos and unfertilized eggs of all developmental time windows were allocated to a specific
run batch. In each run, the instrument performance on a solvent blank, a metabolite standard mix and two QCs
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injections was evaluated before starting to inject the same QC every 8-11 samples (a new QC aliquot per
batch). After metabolite determination on individual samples was performed, remaining metabolite extracts
(stored at -80°C) were resuspended, mixed according to their pseudo-time (10 embryos per pool), dried,
prepared for metabolite identification as described above, and re-run using the same ion-paired and
non-ion-paired methods. Since analysis of metabolites in male and female embryos did not reveal any
significant sex-specific differences we disregarded sex for sample pooling. The LC and MS parameters for both
methods and transitions for our screening panel of 155 metabolites can be found in Supplementary
Methods1.

Metabolite data processing and analysis
Synchronized peak integration was performed on all individual embryos, unfertilized eggs, QCs, and blanks

from all batches using Skyline v23.1.0.268%. Metabolite peak areas (raw data) were corrected for instrument
performance (within-batch correction) and batch differences (between-batch correction) using QC-based
random forest signal correction, QCspan=0.75, and coCV=20 (statTarget v1.28.0 R package)®. This
QC-correction was only applied to metabolites that showed a decrease in variance upon correction, otherwise
raw values were scaled making the average QC signal for a specific metabolite the same in all batches
(between-batch correction). Outlier detection was performed based on 99.7% prediction intervals for General
Additive Models (GAM) on the embryo metabolite values aligned according to the RNA-seq pseudo-time
trajectory (n=245). To facilitate analysis, metabolite data was divided by the average value of each metabolite
in embryos (mean normalization), making normalized data to average 1 for each metabolite. A similar data
processing was carried out for pooled samples except for outlier identification using GAM.

Sex-specific analysis of gene expression and metabolite abundance

RNA-seq normalized read counts of each transcript or normalized abundance of each metabolite were
compared between male and female embryos using splineTimeR v1.26.0%. Each embryo with known sex was
considered as a replicate in every RNA-seq cluster from RacelD analysis (time points). To mitigate potential
bias from the start and end points of the pseudo-time on the analysis, potentially driven by development rather
than sex, we generated additional clusters at the beginning and end to bias the first and last time point towards
the null. For the first cluster we used 10 embryos prior sex identification and assigned them as male or female.
For the last cluster, we duplicated the last 10 embryos in the pseudo-time and assigned them as male or
female. Transcripts with <3 reads in <10 samples were excluded from analysis. Significance for both
transcripts and metabolites was established at a Benjamini-Hochberg adjusted p-value (padj) <0.05 using three
degrees of freedom.

Rnrs and dnk RNAIi knockdown

To induce the RNAI- knock-down (KD), females carrying a Gal4-driver (BDSC_7063) were crossed with males
carrying a transgene encoding the shRNA (BDSC 44022 for RnrS, BDSC_65886 for dnk). The resulting
offspring (F1), which are producing oocytes that are KD for the target gene, were then crossed with each other,
and the pupae of the second generation (F2) were counted for 5 independent crosses. This approach allows
KD in late-stage ovaries without interfering with meiosis, or fertilization as previously described®. For control
crosses, we mated females carrying the Gal4-driver with males carrying an empty attP40 landing site
(VDRC_60100).
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DATA ACCESS

° Raw sequencing files and processed data files from this study have been deposited at NCBI Gene
Expression Omnibus (GEO) under accession number GSE263568 and will be released after publication in a
peer reviewed journal (temporal token for reviewers was provided to the editor).

° Normalized metabolite data of all unfertilized eggs and embryos included in pseudo-time analysis can
be found Table S5. Scaled metabolite data for embryos according to developmental trajectory (pseudo-time)
can be found in Table S6.

° All code used is available on our Github repository at
https://github.com/LempradILab/Drosophila_embryo_metabolism/.
° Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
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Figure 1. Transcriptional landscape of early Drosophila development. (A) Schematic representation of the
method: single eggs are collected, and metabolites and RNA isolated from the same sample. Metabolites are
used for metabolomics while RNA is processed for sequencing by a modified CEL-Seq2 protocol. RNA-seq
data is analyzed to determine embryo age and sex (see methods for details). (B) t--SNE map visualization of
RNA-seq of embryos (10min - 3h) and unfertilized eggs. k-medoids clusters are indicated by different colors
and the intercluster links are indicated by straight lines with the color indicating the significance of the link, from
red as the strongest to green as the weakest. (C) Normalized gene expression of dunk, disrupted underground
network; sna, snail; htl, heartless; and stg, string plotted along our pseudo-time order. Estimated time and
nuclear cycle (NC) are indicated at the top. (D) First principal component (PC1) or eigengene E of each
module generated by WGCNA plotted along our pseudo-time order. Graphs represent the gene expression
profile of all transcripts in a given module. (E) Network map of overrepresented pathways in modules,
pathways are linked according to gene-set overlap. Overrepresentation analysis using g:profiler (significance
threshold g:SCS=0.1) was used as input into Cytoscape for network visualization. (F) 10 most enriched
pathways by adj. p-value, using g:profiler (significance threshold g:SCS=0.1) of zygotically expressed genes;
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prcs, process (G) Activation pseudo-time for each of the zygotically expressed genes, the gray bar indicates
the NC 14 during which 76% of all genes start expression.

22


https://doi.org/10.1101/2024.04.17.589796
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.17.589796; this version posted April 20, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Figure 2

A

2. Peak

integration correction

1. Data acquisition LC-MS

3. Signal drift

available under aCC-BY 4.0 International license.

4. Batch
correction

6. GAM analysis
outlier identificatoin

5. Pseudo-time

7. Final GAM analysis
sample ordering

after outlier removal

200 lon 391.9 — lon 158.9 1000

5 Solvent Sample #58 Sample #90 | =

I 150-{Blank g . < 750 . o o= 1.

- o e 4 O

2ol |{ | £ sl - .

S 5 J A ¥ gs0] Y gl e i

- - - e e S — 4 A XY m °

E o #90 fgsse :\*"r AT . )
0 T 0 — ———— — !
17.0 175 17.0 175 170 175 0 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

Retention Time

Pseudo-time Pseudo-time Pseudo-time

Figure 2. Workflow for single-embryo time-resolved metabolomics.(A) Method overview. (B) lon
chromatograms for two transitions (490—391.9, 490— 158.9) of dATP for a solvent blank, sample #58, and
sample #90. (C) dATP abundance in arbitrary units (AU) plotted along the RNA-seq pseudo-time order. Arrows
indicate samples #58 and #90 plotted in B, with high or low relative dATP abundance, respectively. (D) A
generalized additive model (GAM) using the pseudo-time aligned metabolite data identifies outliers (red data

points) based on 99.7% prediction intervals (white area). (E) After outlier removal, GAM is applied again to
determine the predicted values for each metabolite (black line).
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Figure 3. Single-embryo metabolite patterns reveal accurate patterns of metabolite abundance. (A, D,
G, J, M) Metabolite relative abundance from single embryos plotted along the pseudo-time order. (B, E, H, K,
N) Metabolite relative abundance from pooled embryos (n=10/sample) plotted along the pseudo-time order.
The location of minima and maxima in the pseudo-time order is indicated by numbered colored areas. (C, F, |,
L, O) Selected pooled samples for comparison (n=4 per group) based on abundance minima and maxima of
the single-embryo pseudo-time order. Group means were compared (C, F, L) by one-way ANOVA or (I, O) by
one-tailed unpaired t-test. Means that differ significantly are indicated by *, P < 0.05; **, P < 0.01.
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Figure 4. The interrelationship between metabolisms and transcription during Drosophila
pre-gastrulation. (A) Network map of correlations between WCGNA transcript modules (colored circles) and
metabolites (white circles) using network visualization with Cytoscape. (B) Network map of dNTPs and its
neighbors. Red or blue connecting lines indicate positive or negative correlations, respectively. (C, D)
Overrepresentation analysis for transcript in modules (C) 1 or (D) 2 using g:profiler (significance threshold
g:SCS=0.1). (E) Normalized gene expression of RnrS, ribonucleoside diphosphate reductase small subunit
(closed circles); and metabolite relative abundance of dNTPs (lines) plotted along our pseudo-time order. (F)
Fractional difference in pupae count after oocyte-specific depletion of RnrS or dnk (deoxyribonucleoside
kinase) by RNAI. (G) Normalized gene expression of dnk plotted along our pseudo-time order.
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Figure S1. Bioinformatic analyses using the early embryo transcriptome. Comparison of the pseudo-time
order indicating (A) the actual collection time intervals for embryos and unfertilized eggs, colors in the top bar
indicate clusters from Figure 1B; (B) the mating cage; (C) the transcriptome entropy (D) the total number
RNA-seq raw read counts per embryo. (E) XY Plot of Sex lethal (Sxl) expression on the x-axis and
male-specific lethal 2 (msl-2) expression on the y-axis of all samples included in the pseudo-time. (F) Embryos
in pseudo-time order indicating the sex for each sample. (G) Correlation heatmap of the identified WGCNA
modules. (H) Table showing color code and total number of genes in each WGCNA module. (I) Network map
of overrepresented pathways in modules, pathways are linked according to gene-set overlap.
Overrepresentation analysis using g:profiler (significance threshold g:SCS=0.1) was used as input into
Cytoscape for network visualization. (J) Distribution of zygotic mRNAS in activation time windows indicated by
numbers.
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Figure S2. Single-embryo detection of polar metabolites. (A) Metabolite abundance in arbitrary units (AU)
for all 81 metabolites identified. (B) dATP abundance plotted along the RNA-seq pseudo-time order. Each
sample is colored according to the LC-MS run batch. (C) Comparison of dATP, dTTP, and dCTP relative
abundance between embryos (colored bars) and unfertilized eggs (open bars) during the first 3 hours of
development.
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Figure S3. Validation of dNTPs transitions, and sex and nucleotides metabolite patterns. (A) lon
chromatograms for transitions of dATP, dTTP and dCTP in commercial standards (Thermo Fisher, USA); two
transitions of dATP (490—391.9, 490—158.9), two transitions of dTTP (481—383.1, 481—158.8), and two
transitions of dCTP (466—367.9, 490—158.9) at different concentrations. (B) Examples for relative metabolite
abundance in male and female embryos. Embryos in pseudo-time order colored according to the sex for each
sample and P-value from splineTime R analysis. (C-J) Nucleotide relative abundance in embryos according to
pseudo-time order (C, E, G, 1) by single-embryo LC-MS or (D, F, H, J) in pooled samples (n=10 embryos/each).
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Figure S4. Relationship between metabolic and transcriptional patterns in the early Drosophila embryo.
(A) Network map of correlations between WCGNA transcript modules (colored circles) and metabolites (white
circles) and (B) Network map of N-Acetyl Aspartate (NAA) and its neighbors using network visualization with
Cytoscape. Red or blue connecting lines indicate positive or negative correlations, respectively. (C-F)
Overrepresentation analysis for transcript in modules C) 16, D) 17, E)18, and F) 19 using g:profiler
(significance threshold g:SCS=0.1).
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