
 

 

Enhancer-driven cell type comparison reveals similarities 
between the mammalian and bird pallium  

Nikolai Hecker1,2,3,†, Niklas Kempynck1,2,3,†, David Mauduit1,2,3, Darina Abaffyová1,2,3, Roel 
Vandepoel1,2,3, Sam Dieltiens1,2,3, Ioannis Sarropoulos4, Carmen Bravo González-Blas2,3, 
Elke Leysen2,5, Rani Moors2,5, Gert Hulselmans1,2,3, Lynette Lim2,5, Joris De Wit2,5, Valerie 
Christiaens1,2,3, Suresh Poovathingal2, Stein Aerts1,2,3,* 

1 Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, 
Belgium. 
2 VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.  
3 Department of Human Genetics, KU Leuven, Leuven, Belgium.  
4 Center for Molecular Biology of Heidelberg University, Heidelberg University, Germany. 
5 Department of Neurosciences, KU Leuven, Leuven, Belgium. 

† these authors contributed equally 

* Corresponding author. Email: stein.aerts@kuleuven.be 

Abstract 

Combinations of transcription factors govern the identity of cell types, which is reflected by 
enhancer codes in cis-regulatory genomic regions. Cell type-specific enhancer codes at 
nucleotide-level resolution have not yet been characterized for the mammalian neocortex. It 
is currently unknown whether these codes are conserved in other vertebrate brains, and 
whether they are informative to resolve homology relationships for species that lack a 
neocortex such as birds. To compare enhancer codes of cell types from the mammalian 
neocortex with those from the bird pallium, we generated single-cell multiome and spatially-
resolved transcriptomics data of the chicken telencephalon. We then trained deep learning 
models to characterize cell type-specific enhancer codes for the human, mouse, and chicken 
telencephalon. We devised three metrics that exploit enhancer codes to compare cell types 
between species. Based on these metrics, non-neuronal and GABAergic cell types show a 
high degree of regulatory similarity across vertebrates. Proposed homologies between 
mammalian neocortical and avian pallial excitatory neurons are still debated. Our enhancer 
code based comparison shows that excitatory neurons of the mammalian neocortex and the 
avian pallium exhibit a higher degree of divergence than other cell types. In contrast to existing 
evolutionary models, the mammalian deep layer excitatory neurons are most similar to 
mesopallial neurons; and mammalian upper layer neurons to hyper- and nidopallial neurons 
based on their enhancer codes. In addition to characterizing the enhancer codes in the 
mammalian and avian telencephalon, and revealing unexpected correspondences between 
cell types of the mammalian neocortex and the chicken pallium, we present generally 
applicable deep learning approaches to characterize and compare cell types across species 
via the genomic regulatory code. 
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Introduction 

Genomic enhancers form the core part of gene regulatory networks (GRNs) that maintain the 
identity of cell types. GRNs comprise combinations of transcription factors (TFs) that bind to 
specific transcription factor binding sites (TFBS) in enhancer regions to regulate the 
expression of target genes. These combinations of TFBS form enhancer codes that are 
characteristic for the identity of cell types (1–3). Several tools have been developed to 
leverage single-cell RNA-seq (scRNA-seq) and chromatin accessibility (scATAC-seq) data to 
identify cell type specific GRNs (4, 5). However, characteristic combinations of TFBS for a cell 
type are difficult to detect using these methods. Sequence-based deep learning models have 
shown major advances to delineate which sequence patterns in enhancer regions are 
important for cell type specific chromatin accessibility or gene expression (6, 7). They have 
contributed substantially to identify TFBS specific to mammalian interneurons (8, 9), fly brain 
cell types (10), mouse liver cells (11), and mouse embryonic stem cells (12). Furthermore, 
deep learning models have been applied to predict chromatin accessibility across mammalian 
brain cell types (13, 14), to compare enhancer codes of melanocytes across species (15), and 
to identify potential enhancer regions linked to the evolution of neocortex expansion and vocal 
learning (8, 16). As these deep learning models allow us to identify enhancer codes in cell 
type-specific enhancer regions, we hypothesized that they may shed light on cell type 
conservation across species. 
 
Vertebrate telencephala pose ideal examples to study the conservation of enhancer codes as 
they comprise a variety of cell types that are expected to be maintained by either similar or 
diversified GRNs across species (17). Despite shared developmental trajectories, 
telencephala of different vertebrate brains display a strikingly different neuroanatomy (18). As 
an iconic example, the six-layered neocortex is found in mammals but is absent in other 
vertebrates (17). Different homologies between structures of the vertebrate telencephalon 
have been suggested based on their developmental origin and circuitry (19–21). Single cell 
sequencing has been used to compare the transcriptome of cells from the mammalian 
neocortex, reptilian three-layered cortex, and three telencephalic nuclei in song birds (22–24). 
Both non-neuronal and neuronal cortical cell types have overall conserved molecular identities 
between human, marmoset, and mouse despite transcriptomic differences (24). GABAergic 
neurons were found to be conserved between the reptilian cortex and mammalian neocortex 
based on scRNA-seq data, whereas cross-species relationships of excitatory neurons could 
not be clearly assigned based on transcriptome comparisons (22). However, groups of turtle 
excitatory neurons resemble either upper layer or deep layer neurons of the mammalian 
neocortex (22). For songbirds, two nuclei related to vocal learning (HVC and robust nucleus 
of the arcopallium) have been suggested to exhibit similarities to distinct mammalian 
neocortical neurons but do not have the same developmental origin as their potential 
mammalian counterparts (23). Thus, how the majority of the avian telencephalic cell types 
relate to those of other vertebrates has yet to be deciphered. While transcriptome comparisons 
suggest some similarities between telencephalic cell types across vertebrates, they do not 
take into account genomic signatures in enhancer regions that may provide additional insights 
into the conservation of cell types. 
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Results 

Transcriptome similarities between avian and mammalian telencephalic 
cell types 
To compare cell types and dissect enhancer codes in the mammalian telencephalon, we 
analyzed two mouse brain and two human cortex single-cell datasets (Fig. 1) (4, 24–26). Cell 
types in human and mouse cerebral cortex have 1-1 homology relationships at a subclass 
level which we recapitulate based on transcriptome comparisons with SAMap, a method that 
optimizes transcriptome correspondences and gene orthology relationships (27) (Methods, 
fig. S1A and B). These 1-1 correspondences agree with previous findings by Bakken et al. 
(24). To compare mammalian cell types with those from another amniote lineage, we 
generated chicken telencephalon single-cell multiome and spatially-resolved transcriptomics 
(Stereo-seq) datasets containing 23,179 cells and 27,487 spatial bins (28). 
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Fig. 1. Conserved cell types in mouse and human single cell data sets.  
UMAPs show clusters of cells and corresponding cell types for mouse telencephalon (A, B) and human cortex 
single cell data sets (C, D). Pictograms indicate the approximate brain regions from which the data was sampled. 
AST, Astrocytes; D1/2MSN, D1/2 medium spiny neurons; DG GRC, Dentate gyrus granule cells; DG NBL, Dentate 
gyrus granule cell neuroblasts; EXC CA1/3, Cornu Ammonis 1/3 hippocampal excitatory neurons; EXC CLA, 
Claustrum excitatory neurons; EXC L2/3/4/5/6 IT, Layer 2/3/4/5/6 intra-telencephalic excitatory neurons; EXC L5 
PT, Layer 5 pyramidal tract excitatory neurons; EXC L6 CT, Layer 6 corticothalamic excitatory neurons; EXC L6b, 
Layer 6b excitatory neurons; EXC NP, Layer 5 near-projecting excitatory neurons; EXC PIR, Piriform cortex 
excitatory neurons; EXC RSP, Retrosplenial excitatory neurons; INH LAMP5, LAMP5 lateral ganglionic eminence 
derived interneurons; INH PVALB, PVALB medial ganglionic eminence derived interneurons; INH SST, SST medial 
ganglionic eminence derived interneurons; INH STR, Striatum derived interneurons; INH VIP, VIP lateral ganglionic 
eminence derived interneurons; IOL, Intermediate oligodendrocytes; MGL, Microglia; OL, Oligodendrocytes; OPC, 
Oligodendrocyte precursors; RGL, Radial-glial like cells; VASC, Vascular endothelial cells. 
 
Clusters of chicken telencephalon cells map to distinct locations in the chicken telencephalon 
including the striatum, nidopallium or hyperpallium, mesopallium, entopallium, and 
hippocampal region based on spatially-resolved transcriptomics data (Fig. 2A). Besides non-
neuronal cell types, we identified seven clusters of GABAergic and eight clusters of 
glutamatergic neurons using known marker genes for mammalian brain cell types (Fig. 2B). 
We detected clusters corresponding to the major interneuron subclasses PVALB+, SST+ and 
LAMP5+ by their cognate markers supporting previous findings, and VIP-like interneurons by 
known marker genes though not by expression of VIP itself (23). Similarly, cell types of the 
striatum, D1/D2 medium spiny neurons (D1/2MSN) and other striatal-like GABAergic neurons 
express mammalian marker genes. Glutamatergic neurons could not easily be assigned to 
mammalian cell types by known marker genes, although we detected one cluster of RORB+ 
cells in the entopallium, in-line with previous findings (29). To identify potential additional 
homologies between cell types and to corroborate our marker-based assignments, we 
employed SAMap to match chicken to mouse cell types (27) (Methods). SAMap suggests an 
unambiguous 1-1 correspondence between mammalian and bird GABAergic neuron 
subclasses, as well as between all non-neuronal cell types (Fig. 2C). The identification of 
correspondences of most excitatory neurons are more ambiguous although several chicken 
telencephalon clusters exhibit preferences for different mouse neurons subclasses, including 
EXC GLU-1 (nido- and hyperpallium) to neocortex layer 2/3 intratelencephalic (L2/3 IT) 
neurons, EXC GLU-2 (nido- and hyperpallium) and EXC GLU-3 (entopallium) to L4 IT neurons, 
EXC GLU-4/5/7 (mesopallium) to deeper layer neurons, and EXC GLU-6 (medial pallium) and 
EXC GLU-8 to hippocampal or dentate gyrus cell types. In addition to SAMap derived cell type 
correspondences, we confirmed the transcriptome similarities by comparing the correlation of 
expression levels of 1:1 orthologous genes across avian and mammalian cell types (fig. S2) 
(22). In conclusion, most chicken cell types which transcriptomes exhibit correspondences to 
the different mouse brain cell types are localized in distinct nuclei or regions of the chicken 
telencephalon.  
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Fig. 2. Cell types of the chicken telencephalon and expression of marker genes.  
(A) The UMAP shows clusters of single cells and inferred cell types or assigned cluster labels (left). Single cell 
clusters were mapped to spatially-resolved transcriptomics data (Stereo-seq). Spatial spots are assigned to single 
cell clusters based on the highest density of mapped clusters labels (right). The pictogram shows anatomical 
subdivisions of the chicken telencephalon. (B) The expression of characteristic marker genes is shown per chicken 
telencephalon cell type. Dot sizes indicate the fraction of nuclei of a cluster that express the gene. (C) 
Transcriptomes of chicken telencephalon cell types were compared to mouse brain cell type transcriptomes using 
a mouse brain single nuclei gene expression data set (30). Triangles highlight potential cell type homologs for 
excitatory neurons. 

Enhancer codes of non-neuronal cell types are highly conserved between 
birds and mammals 
After finding similarities between avian and mammalian cell types based on transcriptomes, 
the question arises whether we can find genomic signatures in the form of genomic enhancer 
codes in accessible regions that reflect cell type homologies. Our rationale is that while 
enhancer regions are not necessarily sequence-conserved across more distantly related 
species, cell-type specific gene regulation through TFs is often conserved (31–33). In 
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agreement with this assumption, the correlation of 1-1 ortholog TF expression is sufficient to 
delineate which cell types are similar between mouse and chicken (fig. S2) (22). If TF mediated 
gene regulation is conserved during evolution, we expect selective pressures that preserve 
specific combinations of TFBS that form enhancer codes in cis-regulatory regions. 
 
To test this assumption, we used genomic regions with differential chromatin accessibility 
between telencephalic cell types as a proxy for potential enhancer regions and investigated 
them with deep learning models. In particular, we trained deep learning models to predict cell 
types directly from DNA sequences of differentially accessible regions (DARs) for the different 
telencephalic cell types (Fig. 3A). We trained separate models for the two mouse brain 
(DeepMouseBrain1&2), two human cortex (DeepHumanCortex1&2), and the chicken 
telencephalon (DeepChickenBrain) datasets, respectively (fig. S3). The use of independently 
trained models for two mouse and two human datasets allows us to infer robust cross-species 
predictions. To verify that our models are capable of identifying homologous cell types based 
on their enhancer codes, we first evaluated whether the deep learning models can recapitulate 
the cell type homologies between birds and mammals that we would expect based on 
transcriptome comparisons. We evaluated their prediction performance on cell type-specific 
DARs of non-neuronal cell types and neurons grouped into three broad categories: medium 
spiny neurons (MSN), interneurons, and excitatory neurons. For each chicken cell type in our 
dataset, we used the top 100 DARs with the highest log-fold change per cell type and predicted 
mammalian cell types with the DeepMouseBrain and DeepHumanCortex models (Fig. 3B). 
Scoring mouse or human regions in the same manner gives identical results (fig. S4, A and 
B). Similarly to the SAMap comparison between chicken and mouse (Fig. 2C), we find near 
1:1 correspondences between avian and mammalian non-neuronal cell types directly from 
accessible DNA sequences. Excitatory neurons, MSN and interneurons grouped together are 
also classified correctly. The same regions scored by the human models validate these 
matches. These findings confirm the transcriptomic cell type matches and suggest that our 
models show a robust generalization in classifying previously unseen sequences from 
different species. 
 
Secondly, we asked whether the deep learning models that were trained independently on 
data from different species learned the same sequence features, that is, enhancer codes that 
correspond to TFBS. To identify sequence features, we used both gradient based (SHAP) 
contribution scores (34, 35) and in-silico-mutagenesis (ISM) (36, 37) to derive nucleotide 
contribution scores at each position of the sequence of a DAR. These nucleotide contribution 
scores describe the importance of each nucleotide per sequence for predicting a specific cell 
type and allow us to identify important regulatory subsequences, or motifs, corresponding to 
TFBS that are characteristic for cell type identity. As an illustrative example, we investigated 
the enhancer code of the mouse “fms intronic regulatory element” (FIRE) that regulates the 
expression of the Csf1r gene in microglia (38). This region has indeed microglia-specific 
chromatin accessibility in our dataset and Csf1r is specifically expressed in microglia (Fig. 3C). 
The enhancer’s nucleotide importance scores are highly correlated (average pairwise 
Spearman correlation = 0.45, average P-value = 1.78 x 10-11) for all of our models and all 
species, and detect previously validated TFBS as the most important features of the sequence 
(Fig. 3D). Nucleotide importance scores derived from other models with different architectures 
and training methods agree with the ones obtained from our models (39, 40) (Fig. 3D, 
Methods). To further validate the model predictions, we performed in vitro mutagenesis via 
massive parallel reporter assays (MPRA) in the BV2 mouse cell line. The in vitro enhancer 
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activity profile of this microglia cell line shows decreases in activity specifically for nucleotide 
changes that distort predicted TFBS. This confirms the nucleotide importance scores, as well 
as previously experimentally identified TFBS in this enhancer (Fig. 3D) (38). Additionally, we 
find a previously unidentified Mafb-like binding site in all mammalian models that is confirmed 
by the MPRA activity. These results indicate that our models independently learned the same 
features for explaining their predictions for the mouse microglia enhancer. This suggests 
conservation of the microglia enhancer code across the three amniote species, and provides 
confidence in our trained model to enable cross-species comparisons and to detect important 
cis-regulatory features.  
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Fig. 3. Cross species enhancer modeling.  
(A) Overview of enhancer model architecture and workflow. For each of the five brain datasets, a model was 
trained. (B) Cross-species model predictions from the mouse (left) and human (right) models on the top 100 DARs 
per chicken cell type. The median prediction score per region is shown. Both mouse and human predictions are 
the consensus of the two respective models per species. Excitatory (EXC), medium spiny neuron (MSN) and 
interneuron (INT) cell types are grouped into broad cell type categories. (C) scRNA-seq UMAP of mouse brain cells 
from the DeepMouseBrain1 dataset (4) showing the microglia-specific expression of the Csf1r gene (top). The cell-
type specific chromatin accessibility of the microglia enhancer FIRE (mm10 chr18:61108475-61108975), regulating 
Csf1r expression, in microglia is depicted underneath. (D) Nucleotide contribution scores of FIRE obtained from 
the five enhancer models (order: DeepMouseBrain1, DeepMouseBrain2, DeepHumanCortex1, 
DeepHumanCortex2, DeepChickenBrain), from a microglia ChromBPNet model and from Enformer are shown. 
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ISM scores are shown for a consensus of all five enhancer models, the ChromBPNet model and Enformer. Finally, 
IVM based MPRA activity in mouse BV2 cells is shown. Previously identified TF binding sites are highlighted, as 
well as an uncharacterized potential Mafb binding site. 
 
Given that our models trained on data from different species learned similar enhancer codes 
for different cell types, we can utilize them for assessing homologies between cell types. We 
illustrate this for a candidate enhancer in mouse astrocytes (Fig. 4A). This region is located 
inside an intron of Prdm16 and is conserved (sequence identity 60%) and specifically 
accessible in both chicken and mouse astrocytes (log-fold change 5.33 and 5.32) (Fig. 4A). 
During development, Prdm16 is expressed in radial glia and contributes to cell migration 
through transcriptional silencing (41). In adult mammalian and avian brains, Prdm16 is a 
characteristic astrocyte marker gene (Fig. 4B). The DeepMouseBrain, DeepChickenBrain, and 
DeepHumanCortex models accurately predict this region as being specific to astrocytes (Fig. 
4A & fig. S5A). To compare the similarity of learned astrocyte enhancer codes between our 
chicken, human, and mouse models, we computed nucleotide contribution scores for all cell 
types and compared them with contribution scores derived from the other models (Methods). 
This allowed us to assess for which cell types two models learned the most similar enhancer 
codes. In particular, we compared nucleotide contribution scores that our DeepMouseBrain1 
model learned for explaining astrocytes with nucleotide contribution scores for all cell types 
derived from our DeepChicken and DeepHuman brain models (Methods). Nucleotide 
contribution scores for the astrocyte class of the DeepChicken model show a high degree of 
similarity to nucleotide contributions scores for the astrocyte class of the DeepMouseBrain1 
model suggesting similar enhancer code specific to astrocytes (Spearman correlation 
coefficient of 0.63, p-value = 9.81 x 10-55). As we observed for the microglia enhancer (Fig. 
4D), the sequence features with high importance scores correspond to potential TFBS. The 
DeepMouseBrain2 and the DeepHumanCortex models identify these TFBS as well (fig. S5B). 
In addition, the sequence alignment between the mouse and chicken regions shows that point 
mutations and insertions occur at nucleotides that the models do not deem important, while 
the identified TFBS remain conserved. The same applies for the importance scores of the 
chicken homologous region (fig. S5C). As a negative control, contribution scores for the 
chicken intermediate oligodendrocyte (IOL) cell type do not indicate any important TFBS in 
this region and are anti-correlated with the mouse astrocyte contribution scores (Spearman 
correlation of -0.25, p-value= 1.66 x 10-8) (Fig. 4C). Furthermore, the presence of Rora/b 
binding sites exhibits negative contribution scores towards predicting this sequence as an IOL 
region. Hence, the correlation between nucleotide contribution scores can be used to compare 
for which cell types two different models learned the most similar enhancer codes, which 
reflects cell type homologies.  
 
Next, we used the nucleotide importance score correlation to compare the similarity of 
enhancer codes across all mammalian and avian telencephalic cell types. In particular, we 
calculated the median Spearman correlation between the nucleotide contribution scores of the 
top 100 DARs in chicken ranked by log-fold change and all of the per cell type contribution 
scores of the mouse and human models for those DARs. As expected, the correlation between 
contribution scores is higher for homologous cell types than for non-homologous cell types, 
also when the comparison is done on the top 100 mouse and human DARs (Fig. 4D, fig. S4, 
C to E). This strategy enables cell type comparison based on cell-type-specific nucleotide 
contribution scores, which represent the underlying gene regulatory code that the models 
learn.  
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To further investigate the specific TFBS per cell type learned by our models, we used TF-
MoDISco (42) to infer cell type characteristic sequence patterns for each set of cell type 
specific DARs (log-fold change=1.5). To identify learned patterns that are shared across cell 
types and species, we compared the learned patterns of all models against each other using 
the MEME suite and clustered them into 42 groups of motifs (fig. S6-7) (43, 44). In addition, 
we screened all learned patterns against the cistarget database (4). The majority of learned 
patterns resembles TFBS (Data availability). The learned TFBS patterns correlate with 
differential TF expression across astrocytes, oligodendrocytes, and microglia (Fig. 4E). For 
example, concordant patterns and expression of genes are found for Nfia, Rorb, Rfx4, and 
Lhx2 in astrocytes, Sox10 and Olig2 in Oligodendrocytes; and Spi1 and Cebpa in microglia. 
In agreement with astrocyte specific TFBS that we identified with TF-MoDISco, the potential 
astrocyte enhancer region within the PRDM16 intron harbors Nfia, Rorb, and Lhx2 binding 
sites that our models consider important for identifying this region as astrocyte specific (Fig. 
4A).  
 
To evaluate whether the learned TFBS motifs can be used to distinguish different cell types, 
we evaluated the correlation of their average number of instances across cell types and 
species to cluster cell types (fig. S8). We then performed hierarchical clustering based on the 
correlation of motifs between the human, mouse, and chicken cell types. The cell types of the 
three different species cluster into astrocytes, oligodendrocytes, microglia, interneurons, MSN, 
and excitatory neurons based on the correlation of learned TFBS motifs, which indicates 
shared enhancer codes across the species (fig. S7). Furthermore, broad cell type categories 
including MSN, interneurons, neurons of the hippocampus or medial pallium, and excitatory 
neurons of the neocortex and pallium can be characterized by a set of five TFBS motifs, which 
are shared between human, mouse, and chicken. (Fig. 4F). MEF2 binding sites are important 
to predict most neuronal cell types; and EGR TFBS are important for MSN and IT cortical or 
hyper-, nido-, or entopallial excitatory neurons (Fig. 4F). In contrast LHX/DLX binding sites are 
characteristic for astrocytes, and GABAergic neurons including MSN and interneurons. RFX 
binding sites were detected for astrocytes, MSN, neurons of the hippocampus or medial 
pallium, cortical layer L2/3, and chicken hyper-/nidopallium (EXC GLU-1). AP-1 factor family 
binding sites are learned by our models for predicting MSN and mammalian IT neurons, similar 
to previous findings (13). Hence, our models learned the same TFBS for the amniote species 
to distinguish broad neuronal cell type categories. The comparison of patterns thus represents 
a third strategy to employ enhancer models across species, besides the model prediction 
scores and the correlation of attribution scores. 
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Fig. 4. Conservation of enhancer code in vertebrate brain cell types. 
(A) scATAC tracks of the PRDM16 region in chicken (galGal6 chr21:1148446-1148946) and mouse (mm10 
chr4:154506677-154507177) showing astrocyte specificity. (B) scRNA-seq UMAPs of Prdm16 expression in 
mouse (DeepMouseBrain1 dataset) and chicken. (C) DeepMouseBrain1 and DeepChickenBrain predictions on the 
mouse region, accompanied by DeepMouseBrain1 contribution scores for the astrocyte class and 
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DeepChickenBrain contribution scores for the astrocyte and intermediate oligodendrocyte classes. Point mutations 
and insertions in the mouse sequence when aligned to the chicken sequence are indicated in red and blue 
respectively. TFs that potentially bind to nucleotide features with high contribution scores are indicated and 
assigned based on their similarity to known TFBS motifs and cell-type specific expression. (D) Cross-species 
nucleotide contribution scores Spearman correlation between the DeepMouseBrain models and 
DeepChickenBrain for the top 100 DARs per chicken cell type. The median of the correlation per region is shown. 
The correlations are the consensus of two comparisons between DeepMouseBrain1&2 and DeepChickenBrain. 
Excitatory neuron, MSN and interneuron cell types are grouped in broad cell type categories. (E) Averaged 
contribution scores of characteristic sequence patterns are indicated for mouse (left) and chicken (right) astrocytes 
(AST), oligodendrocyte precursors (OPC), mature oligodendrocytes (OL), and microglia (MGL). The size of letters 
indicates their nucleotide contribution. Potential TFs that correspond to the sequence patterns are indicated based 
on known TFBS and the correlation of their expression with averaged importance scores. The scaled mean 
expression of TFs per cell type is shown by red circles. (F) Heatmap depicting the average number of instances of 
sequence patterns that are characteristic for broad cell type categories. Cell types of the different species are 
indicated in black, orange, and blue for mouse, chicken, and human cell types respectively. 

Enhancer codes of GABAergic neurons are conserved between birds and 
mammals 
Using the same three strategies for comparing enhancer codes, we investigated avian and 
mammalian MSN and interneurons in more detail. In both mouse and chicken, lateral 
ganglionic eminence (LGE) derived D1/2MSN are exclusively found in the striatum, whereas 
medial (MGE) and caudal ganglionic eminence derived (CGE) interneurons occupy cortical 
areas in mammals and pallial areas in chicken (Fig. 5A). Two clusters of inhibitory neurons 
are preferentially mapped to the septum and globus pallidus in the chicken Stereo-seq data 
(fig. S9); structures that are not part of any of the analyzed mammalian data sets. The 
entopallium contains exclusively PVALB+ interneurons based on our mapping from single-cell 
to spatially resolved transcriptomics data. This is supported by the localized expression of 
PVALB in the entopallium (Fig. 5A). The transcriptomes of GABAergic neuron types can be 
clearly matched across mammals and birds supporting their previously suggested 
conservation across amniotes (Fig. 2C) (22, 23).  
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Fig. 5. Conserved enhancer codes of GABAergic neurons across mouse and chicken. 
(A) Localization of MSN (top), interneurons (middle), and PVALB expression are shown in chicken spatially-
resolved transcriptomics data (Stereo-seq) (bottom). Cell types are assigned to spatial spots based on the highest 
density of mapped single cell clusters. (B) Cross-species nucleotide contribution scores Spearman correlation 
between the DeepMouseBrain models and DeepChickenBrain for the top 100 DARs of medium spiny neurons and 
interneurons. The heatmap shows the consensus of the median correlation coefficients from the two comparisons 
between DeepChickenBrain and the two mouse models (DeepMouseBrain1&2). Mouse cell types annotated with 
an asterisk only contain contribution scores from DeepMouseBrain2 (Methods). (C) Averaged contribution scores 
of characteristic sequence patterns are indicated for mouse (top) and chicken (bottom) medium spiny and 
interneurons. The size of letters indicates their nucleotide contribution. Potential TFs that correspond to the 
sequence patterns are indicated based on known TFBS and the correlation of their expression with the averaged 
nucleotide importance scores. The scaled mean expression of TFs per cell type is shown by red circles. 
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Fig. 6: Identification of an intronic medium spiny neuron enhancer inside Foxp2. 
(A) scRNA-seq UMAP showing FOXP2 expression is specific to D1MSN and striatal-like inhibitory neurons (INH 
STR) in chicken telencephalon single cell data (top), and highest expression in striatum in spatially resolved 
transcriptomics (Stereo-seq) data (bottom). (B) scATAC tracks of the FOXP2 region in chicken (galGal6 
chr1:26118953-26119453, left) and mouse (mm10 chr6:15369301-15369801, right) showing D1MSN specificity. 
(C) DeepMouseBrain1 and DeepChickenBrain contribution scores for their D1MSN classes for both the mouse 
(top) and chicken sequence (bottom); shown is the reverse complement of the sequence. Point mutations and 
insertions in the mouse sequence when aligned to the chicken sequence are indicated in red and blue respectively 
and vice versa in the chicken sequence. TFs that potentially bind to nucleotide features with high contribution 
scores are indicated and assigned based on their similarity to known TFBS motifs and cell-type specific expression. 
(D-E) GFP expression in the mouse brain driven by the D1/2MSN enhancer sequence within the mouse Foxp2 
intron (D) and the orthologous sequence within the chicken FOXP2 intron (E). The striatum is delimited by dashed 
lines. 
 
To assess whether we can recapitulate the conservation of GABAergic neurons also at the 
level of enhancer codes, we investigated the predictions and learned features of our deep 
learning models. Note that the resolution of the ATAC signal limits the ability to distinguish 
between SST and PVALB interneuron types, and between LAMP5 and VIP at the level of 
chromatin accessibility (fig. S10). Nonetheless, our models are able to distinguish between 
D1/2MSN, MGE-derived and CGE-derived interneurons based on their prediction scores (fig. 
S11) and based on the correlation of derived nucleotide contribution scores (Fig. 5B).  
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Learned enhancer codes for predicting D1/2MSN and interneurons correspond to binding sites 
for key TFs and are correlated with TF expression (Fig. 5C). Particularly, Meis2 and Hlf binding 
sites are characteristic for spiny neuron enhancers. In contrast, basic helix-loop-helix (bHLH) 
factor binding sites likely corresponding to Tcf4 and binding sites of Nfib are characteristic for 
interneurons. Homeodomain factor binding sites, which could correspond to different DLX-
family TFs or Zhfx3, are characteristic for all MSN and interneurons. Dlx1/2/5 are key TFs of 
cortical GABAergic neurons (3). As an example for a MSN specific putative enhancer, we 
identified a region in an intron of FOXP2 that is specifically accessible in D1/2MSN and 
striatum-like inhibitory neurons (INH STR). This region is highly conserved in sequence 
(sequence identity: 94.9%) and ATAC signal (log-fold change 3.66 and 3.80) between mouse 
and chicken (Fig. 6A & B). FOXP2 is a marker gene for D1/2MSN (Fig. 6A) and an important 
gene for plasticity in the striatum, as well as striatum-dependent learning of skills, including 
speech (45, 46). Mutations in FOXP2 alter the length of MSN dendrites and have been linked 
to the evolution of language and speech deficits in humans (47). The mouse, human, and 
chicken models detect MEIS2 and homeodomain factor binding sites to be characteristic of 
D1/2MSN in agreement with the TFBS identified by TF-MoDISco (Fig. 4F). We assessed the 
activity of this enhancer candidate in vivo by incorporating it into an AAV vector along with a 
GFP-reporter and administering it to a mouse brain via injection (Methods). The reporter 
specifically expressed GFP in the striatum and striatum-like amygdalar nucleus, in agreement 
with our predictions and observed scATAC signal (Fig. 6D, fig. S12A and B, fig. S13). 
Additionally, there was a slight expression observed in the thalamus, a brain area absent from 
our current mouse datasets and models. Although the sequence is highly conserved, the 
chicken enhancer lacks an Egr1 binding site due to two point mutations compared to the 
mouse enhancer. As an example for an interneuron specific enhancer candidate, we identified 
regions near the interneuron-marker gene ELAVL2, that are specifically accessible for SST-
interneurons in chicken and mouse, showing conserved enhancer codes of SST interneurons 
(fig. S14). Our analyses suggest that enhancer codes of GABAergic neurons are conserved 
between mammals and birds. 

Enhancer codes suggest similarities between mammalian and avian 
excitatory neurons 
In contrast to the conservation of GABAergic neurons, homologies between pallial avian and 
mammalian cortical excitatory neurons are highly debated (48). Building on our findings for 
non-neuronal and GABAergic neurons, we investigated whether the trained enhancer models 
provide additional insights into the conservation or divergence between excitatory neurons of 
birds and mammals.  
 
We identified eight clusters of excitatory neurons in the chicken telencephalon that are 
localized to the hyper-, nido-, ento-, and medial pallium (Fig. 7A). The localization of these 
excitatory neuron cell types agrees with the subdivision of the avian pallium defined by the 
Avian Brain Consortium (49). The only exception being that we do not observe a split between 
hyper- and nidopallium in agreement with previous findings for zebra finch brains (50). Instead, 
the spatial transcriptomics data suggests two excitatory neuron cell types that are both 
distributed across the nido- and hyperpallium. Based on transcriptome comparisons using 
SAMap, excitatory neuron clusters of the chicken nido- and hyperpallium (GLU-1 and GLU-2) 
exhibit the highest similarities to mammalian IT neurons of cortical layers L2/3 and L4, 
excitatory neurons in the piriform cortex (PIR), and amygdala (Fig. 2C, fig. S1). The avian 
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entopallium excitatory neuron transcriptome (GLU-3) shows a moderate similarity to 
mammalian L4 IT neurons and exhibits a characteristic expression of RORB as previously has 
been observed (29) (Fig. 5C). In contrast, transcriptomes of excitatory neurons of the chicken 
mesopallium (GLU-4/5/7) show the highest resemblances to excitatory neurons of the 
mammalian deeper layer cortical neurons including L5/6 IT neurons, L6 corticothalamic (CT) 
neurons, and neurons of the claustrum. Chicken excitatory neurons that are localized to the 
medial pallium (GLU-6) exhibit the highest similarities to mammalian hippocampal Cornu 
Ammonis (CA) neurons and the amygdala. The GLU-8 cluster in the chicken medial pallium 
shows the highest similarity to mammalian dentate gyrus (DG) neuroblasts (NBL). GLU-8 
shows a characteristic expression of SOX11, a TF involved in neurogenesis in mammals (51) 
(Fig. 2B). A subpopulation of the GLU-8 cells localizes adjacent to the medial pallium while 
the entire cluster likely includes additional cells undergoing neurogenesis (Fig. 7A). As a 
positive control, we compared transcriptomes of mammalian cortical cell types between 
human and mouse. With the exception of L6 IT neurons, SAMap matches neuronal cell types 
of different cortical layers between human and mouse (fig. S1). While L2/3 IT neurons are 
properly matched they also exhibit some similarity to L5 extra-telencephalic (L5 PT) neurons. 
In contrast to mammalian excitatory neuron similarities, transcriptome comparisons by SAMap 
suggest 1:many or many:many homologies between excitatory neurons of the chicken and 
mammalian telencephalon. However, avian meso-, ento-, hyper/nidopallium, and medial 
pallium, show the highest similarities to either mammalian cortical deep layer, L4 IT, upper 
layer neurons or neurons of the hippocampus, respectively (Fig. 2C, fig. S1). 
 
Next, we employed the DeepMouseBrain and DeepHumanCortex models to investigate 
whether enhancer codes suggest similar correspondences between excitatory neurons of the 
avian and mammalian pallium. For the top 100 DARs per excitatory neuron type in chicken, 
we calculated cross species predictions and nucleotide contribution score correlations with 
mouse and human cell types present in the DeepMouseBrain and DeepHumanCortex models 
(Fig. 7B, fig. S11A, fig. S15A). The correlation between nucleotide contribution scores largely 
recapitulates the evolutionary relationships between mouse and human excitatory neurons 
(fig. S15B and C). As was observed for excitatory neurons as a broad category (Fig. 4D), the 
enhancer code of chicken excitatory neuron clusters only correlates with mouse excitatory 
neurons. Chicken hyper- and nidopallium excitatory neurons (EXC GLU-1 and GLU-2) exhibit 
similarities to mammalian upper layer excitatory cortical neurons and neurons of the piriform 
cortex, whereas chicken mesopallium cluster EXC GLU-7 is most similar to mammalian deep 
layer neurons L6 CT and L6b (Fig. 7B, fig. S6). As we expected, chicken neurons of the medial 
pallium exhibit the highest similarity in nucleotide contribution score to mouse hippocampal or 
dentate gyrus cell types. Nucleotide contribution scores of chicken entopallium neurons (EXC 
GLU-3) are moderately correlated with mammalian L4 IT or L5 IT neurons, although this 
correlation is substantially lower than correlations observed between L6 CT and mesopallium 
cell types. As we observed for the transcriptome comparisons, the deep learning models 
suggest 1:many or many:many correspondences between the enhancer codes of most avian 
and mammalian excitatory neuron subclasses. In agreement with the transcriptome 
comparisons, the strongest correspondences of enhancer codes are between mammalian 
upper layer neurons or piriform cortex to avian hyper- or nidopallium; and L6 CT neurons to 
avian mesopallium neurons. 
 
To investigate whether these correspondences are also reflected in learned TFBS, we 
identified TFBS patterns across species that are important for differentiating between 
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excitatory neuron subclasses, in the same manner as we did for GABAergic and non-neuronal 
cell types above. Among others, the most characteristic learned motifs resemble binding sites 
of Rfx3, Rorb, Tbr1, and basic helix-loop-helix (bHLH) that likely correspond to the TCF-family, 
ATOH-family, or NEUROD-family TFs (Fig. 7C). Potential binding sites of Rfx3 are most 
characteristic for mammalian L2/3 IT, piriform cortex, avian hyper-/nidopallium neurons (EXC 
GLU-1), mammalian neurons of the hippocampus/dentate gyrus, and avian medial pallium, in 
agreement with their correlated enhancer codes (Fig. 7B, fig. S6). The learned importance of 
Rorb and Tbr1 motifs is correlated with their expression (Fig. 7C). Rorb expression is specific 
to L4 IT neurons in mice and to the chick entopallium, whereas Tbr1 is more widely expressed 
across the mammalian neocortex and chicken pallium with highest expression in deeper layers 
of the neocortex and in avian entopallium (Fig. 7D). Potential binding sites of Tbr1 are learned 
to be most characteristic for L4/5 IT, L6 CT neurons, and excitatory neurons of the claustrum 
in mouse regions (fig. S16). For chicken regions, DeepChickenBrain learned potential TBR1 
binding sites to be characteristic for the entopallium and nidopallial neurons of cluster EXC 
GLU-2. Both our DeepMouseBrain and DeepChickenBrain models learned bHLH TFBS likely 
corresponding to Neurod1/2 to be important for hippocampal/dentate gyrus and medial pallium 
neurons. While the DeepBrainChicken model suggest bHLH motifs, likely corresponding to 
TCF-family TFs, to be most characteristic for all excitatory neuron types of mesopallium, our 
mammalian models suggest them to be important for L4/5 IT and L6 CT neurons. Potential 
binding sites of Nfib are most characteristic for mammalian L6 CT and avian mesopallium 
neurons.  
 
To validate the enhancer code-derived correspondences between GLU-7 and L6b and CT 
neurons, and between GLU-1 and L2/3 and PIR neurons, we inspected regions that are 
specifically accessible either in the avian mesopallium cell type GLU-7 or in the 
nido/hyperpallial excitatory neuron cluster GLU-1. A representative region for GLU-7 neurons 
is located approximately 10 kb upstream of the GLU-7 marker gene KIAA1217 (Fig. 7E, fig. 
S17A). Characteristic of GLU-1, we identified a region that is specifically accessible in GLU-1 
located near ZNF804B (Fig. 7F, fig. S18). We assessed the activity of both of these enhancer 
candidates with enhancer reporter assays in vivo in mouse brains (Fig. 7G). The KIAA1217 
enhancer shows a faint but specific expression in deep layer of the mouse neocortex, in 
agreement with the predicted correspondence to L6 CT and L6b cells by our models. In 
addition, the enhancer shows a strong activity outside of the cortex in the hippocampus and 
thalamus (fig. S12C). This activity pattern has been shown to be characteristic to AAV-PHP.eB 
infections and may not reflect cell type specific activity in the hippocampus (52, 53). In 
agreement with the patterns that we detected to be characteristic for mammalian L6 CT 
neurons and avian GLU-7 neurons, DeepMouseBrain and DeepChickenBrain suggest NFIB- 
and BHLH TFBS to be most important for the KIAA1217 enhancer prediction (Fig. 7H). To 
verify that similar enhancer codes are characteristic for chicken mesopallium (GLU-7) and 
mouse L6 CT neurons, we investigated whether the ortholog of KIAA1217 in mice, Etl4, 
contains a potential enhancer region that harbors similar TFBS as the potential KIAA1217 
chicken enhancer region. We indeed observed potential bHLH factor and Nfib binding site 
patterns similar to the ones in the chicken KIAA1217 region inside of an intronic region of Etl4 
that is differentially accessible in mouse L6 CT neurons, and that has a high prediction score 
for the L6 CT class in DeepMouseBrain1&2 (fig. S17). Next, we tested the activity of the 
candidate GLU-1 enhancer near ZNF804B in the mouse brain. This chicken enhancer indeed 
drives the reporter GFP expression in L2/3 IT and PIR neurons (Fig. 7G, fig. S12D) as 
predicted by the enhancer models and transcriptome based comparisons GLU-1 to L2/3 IT 
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and PIR correspondence. It contains several potential EGR1 and MEF2C binding sites, which 
are characteristic for excitatory neurons (Fig. 7I, Fig. 4F).  
 
Overall, the analysis of enhancer codes and transcriptome comparisons suggest different 
degrees of similarities between particular avian and mammalian cell types. We present four 
approaches for computing cell type similarities: (i) transcriptome comparison, (ii) predictions 
from sequence-based deep learning models, (iii) correlation of derived nucleotide contribution 
scores, and (iv) similarities of TFBS motifs. To summarize the similarity between avian and 
mammalian cell types, we aggregated these four cell type similarity metrics into an average 
cell type similarity (Fig. 8, A and B, fig. S19). The combined similarity confirms one-to-one 
correspondences of non-neuronal cell types, MSN and interneurons. Excitatory neurons 
overall show many-to-many matches with the highest similarities found between GLU-7 and 
L6 CT, and GLU-1 and L2/3 IT neurons, suggesting a conserved enhancer code for these cell 
types. 
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Fig. 7. Enhancer code of excitatory neurons in chicken and mouse. 
(A) Chicken telencephalon excitatory neurons show a distinct localization to either the hyper- and nidopallium (top 
left), entopallium (top right), mesopallium (bottom left), or medial pallium (bottom right) in spatially resolved 
transcriptomics data (Stereo-seq). Spatial spots are assigned to cell types based on the highest density of mapped 
single cell clusters. (B) Median nucleotide contribution scores Spearman correlation heatmap for the top 100 DARs 
of the chicken glutamatergic neurons. Contribution scores were calculated by DeepChickenBrain for the 
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glutamatergic classes and by the DeepMouseBrain models for all cell types. The correlation scores that were only 
scored with DeepMouseBrain2 are indicated with an asterisk. (C) Averaged contribution scores of characteristic 
sequence patterns are indicated for mouse (top) and chicken (bottom) excitatory neurons. The size of letters 
indicates their nucleotide contribution. Potential TFs that correspond to the sequence patterns are indicated based 
on known TFBS and their expression. The scaled mean expression of TFs per cell type is shown by red circles. 
(D) Expression of RORB (left) and TBR1 (right) is shown in chicken (top) and mouse (bottom) spatially-resolved 
transcriptomics data (Stereo-seq). RORB shows its highest expression in chicken entopallium and a characteristic 
expression in mouse layer 4 of the neocortex. Tbr1 expression is more widespread across the chicken pallium and 
neocortex but highest in chicken entopallium and mouse layer 6. (E) Chromatin accessibility profiles in the 
KIAA1217 locus (galGal6 chr2:17294276-17294776) showing specific accessibility of EXC GLU-7. (F) Chromatin 
accessibility profiles in the ZNF804B locus (galGal6 chr2:21373470-21373970) showing specific accessibility of 
EXC GLU-1. (G) GFP expression driven by the KIAA1217 (left) and the ZNF804B enhancer (right) in the mouse 
primary somatosensory cortex (SSp). The different cortical layers (L) are indicated, as well as the corpus callosum 
(cc) and the CA1 stratum oriens (CA1so) and pyramidal layer (CA1sp). (H) Nucleotide contribution scores for the 
chicken KIAA1217 enhancer candidate scored by DeepMouseBrain2 and DeepChickenBrain for the classes of cell 
types EXC L6 CT and EXC GLU-7 respectively. TFs that potentially bind to nucleotide features with high 
contribution scores are indicated and assigned based on their similarity to known TFBS motifs and cell-type specific 
expression. (I) Nucleotide contribution scores for the chicken ZNF804B enhancer candidate scored by 
DeepMouseBrain1 and DeepChickenBrain for the classes of cell types EXC L2/3 IT and EXC GLU-1 respectively. 
TFs that potentially bind to nucleotide features with high contribution scores are indicated and assigned based on 
their similarity to known TFBS motifs and cell-type specific expression. 
 

 
Fig. 8. Overview of regulatory code matching methods between chicken-mouse and chicken-human brain 
cell types. 
(A) Combined cell-type similarity scores consisting of SAMap score, prediction scores, contribution score 
correlation and motif correlation between all available chicken and mouse cell types. The circle size depends on 
the mean score of all four metrics. SAMap scores are obtained from Fig. 2D. The predictions and contribution 
scores are the average median of scores on chicken regions with DeepMouseBrain models and scores on mouse 
regions with DeepChickenBrain. Motif correlation scores are merged for matching cell types in DeepMouseBrain1-
DeepChickenBrain and DeepMouseBrain2-DeepChickenBrain. All scores were standardized between 0 and 1. 
Negative correlation scores were made zero. (B) Combined cell-type similarity scores between all available chicken 
and human cell types consisting of the same metrics as (A). SAMap scores are merged scores from the two human 
datasets against the chicken dataset. The predictions and contribution scores are the average median of scores 
on chicken regions with DeepHumanCortex models and scores on human regions with DeepChickenBrain. For 
VASC, the predictions and contribution scores correlations only come from DeepHumanCortex1 on chicken 
regions. Motif correlation scores are merged for matching cell types in DeepHumanCortex1-DeepChickenBrain 
and DeepHumanCortex2-DeepChickenBrain. All scores were standardized between 0 and 1. Negative correlation 
coefficients were set to zero. Asterisks indicate cell types which do not have correspondences to neocortical cell 
types based on our analysis. Consequently, enhancer code metrics only show low similarities to any cell type that 
is part of the human neocortex data sets.  
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Discussion 
We trained independent deep learning models on mammalian and avian genomic sequences 
to identify enhancer codes that are sufficient to identify major brain cell types, including 
astrocytes, microglia, oligodendrocytes, spiny neurons, interneurons, and excitatory neurons. 
These enhancer codes comprise TF binding site combinations and arrangements that are 
characteristic for the identity of the different cell types in the telencephalon and are conserved 
across mammals and birds. Our results agree with previous findings that TFs are the main 
components of conserved core regulatory circuits that define animal body plans and cell type 
identity (31–33). While gene expression and properties of homologous cell types may show 
larger variation between species, core sets of TFs have been found to show a high degree of 
conservation. For instance, developmental programs of cells in the retina are regulated by a 
set of key TFs that is conserved across vertebrates (54, 55). Also, the key TFs underlying 
heart development are conserved from the fruit fly to human (56). Genomic signatures of such 
TF combinations that form enhancer codes can be conserved across evolutionary distances 
as far as fishes and sponges (57). This conservation of enhancer codes is the foundation for 
training cell type specific deep learning models on accessible chromatin regions. Deep 
learning models have been successfully applied to predict chromatin accessibility for primate 
and mouse neocortical cell types indicating conservation of the mammalian neocortical 
enhancer code (13, 14). 
 
We show here that enhancer codes are conserved across mammal and bird telencephalic cell 
types and present three computational strategies on how to utilize the conservation of 
enhancer codes to assess cell type similarities between species, as a complement to 
transcriptome-based similarities. These computational strategies only require the enhancer 
codes to be conserved, but the enhancer sequences themselves need not to be conserved. 
This enables our approach to be utilized for comparisons between evolutionary distant species 
such as mammals and birds even if very few or none of the enhancer regions are alignable 
(e.g., not projected via liftOver) between the species. While the applicability of our approaches 
is limited by the number of cells per cell type and the resulting resolution of clusters in scATAC-
seq data, it shows a similar performance for cell types with a sufficient number of cells when 
compared to transcriptome-based comparisons (fig. S9). Advances in scATAC-seq 
technologies will resolve these limitations in future datasets, as the number of sequenced cells 
is increasing. Cell type annotation of single-cell data sets is often performed based on known 
marker genes, integration with reference atlases, or models trained on a subset of genes (58). 
For different species these analyses are limited to orthologous genes that either have to be 
specified or inferred with sophisticated tools such as SAMap or SATURN (27, 59, 60). For 
scATAC-seq data this usually requires relying on multiome data with both gene expression 
and ATAC-seq modalities. Our approach circumvents the need for an additional gene 
expression modality or known orthologs, once a model has been trained on cell types from an 
annotated reference species atlas. Hence, enhancer codes identified by deep learning models 
provide a means to compare cell types solely based on the genome sequence and chromatin 
accessibility.  
 
While excitatory neurons, as a broad class, share characteristic enhancer codes between 
species, most of the excitatory neuron subclasses show 1:many or many:many homologies 
between mammals and birds based on their enhancer codes. Whether these 
correspondences of enhancer codes extend beyond brain regions that current data allows us 
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to investigate such as the mammalian amygdala, entorhinal cortex, or avian arcopallium will 
be interesting to address in future studies. The similarities that we observed between avian 
and mammalian excitatory neurons neither agree with previous evolutionary models proposed 
based on shared developmental trajectories, nor with models based on vertebrate brain 
circuitry (61–63). Puelles et al. proposed the tetrapartite model for vertebrate brain homology 
by tracing the expression of a set of marker genes during development (21). The tetrapartite 
model suggests the avian hyperpallium (DPall) to be homologous to the mammalian neocortex 
but not the nidopallium (VPall or DVR) (21). In contrast, our enhancer code and transcriptome 
comparisons suggest that one of the excitatory neuron cell types of the chicken nido-
/hyperpallium (EXC GLU-1) exhibits the highest similarity to mammalian L2/3 IT and PIR 
neurons. We validated this correspondence for a chicken enhancer, which shows activity in 
the upper layer of mouse neocortex and piriform cortex by enhancer reporter assays (Fig. 7G, 
fig. S12). The tetrapartite model has been questioned by Briscoe et al., who suggested that 
the cell types of the mammalian neocortex and non-mammalian pallium originated from a 
common amniote ancestor based on investigating bulk RNA-seq and in situ hybridization in 
late stage chick (E14) and alligator (stage 26) embryos, the closest extant bird relatives (20, 
64). 
 
The lack of cell types that resemble neocortical cell types in the amphibian telencephalon 
indeed suggests that the neocortical and reptilian/avian pallial neurons originated in the 
amniote ancestor (65). Our analysis of the chicken telencephalon supports the similarity 
between avian pallial and mammalian neocortical neurons. The evolutionary model by Briscoe 
et al. and previous transcriptome based comparisons suggest homology relationships 
between avian entopallium and mammalian L4 IT neurons (20, 29). While our analysis 
suggests some similarity between entopallium and L4 IT neurons, they are weaker than 
similarities observed between other pairs of cell types. The highest correspondence in 
enhancer code and transcriptome are surprisingly between a group of avian mesopallial 
neurons (EXC GLU-7) and mammalian L6 CT and L6b neurons. By contrast, Briscoe et al. 
suggested, based on gene expression and connectome similarities that the DVR, which 
includes the mesopallium, contains most similar neurons to the upper layer of the mammalian 
neocortex and the Wulst, which is part of the hyperpallium, to deep layer cell types in the 
neocortex (64). These differences to our findings may be in part attributed to investigating 
embryonic chicks and not juvenile chicken as analyzed in our study but are likely also due to 
the use of bulk RNA-seq. Bulk RNA-seq does not allow distinguishing between different cell 
types in the same tissue and their actual localization.  
 
Three-dimensional imaging and tracing of pigeon brain fibers suggest that the avian 
telencephalon contains circuits that are similar to the ones of the mammalian neocortex (19). 
In contrast to enhancer code based similarities, circuit connectivities of mesopallial neurons 
resemble the ones of upper layer neocortical neurons, because neither have corticofugal 
projections (19). Given that the similarities between avian and mammalian telencephalic 
circuits do not correspond to assumed developmental origins, it has been suggested that they 
are a product of convergent evolution (63). Similar conclusions have been made for the vocal 
circuit of songbirds. By comparing single-cell RNA-seq and in situ hybridization, Colquitt et al. 
suggest that the songbird HVC in the posterior of the nidopallium resembles the mammalian 
piriform cortex, amygdala, and neocortex (23). While HVC excitatory neurons show 
widespread similarities to neurons of different neocortical layers based on the analysis by 
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Colquitt et al., they also show their highest similarities to L2/3 IT neurons as our results suggest 
for nidopallial cell types. 
 
Similar to our findings for birds, excitatory neurons of the turtle telencephalon do not have 1:1 
homologs in mammalian neocortical cell types but their similarity is grouped by upper layer-
like or deep layer-like neurons (22). Whereas we observe a clear separation of neocortex deep 
layer-like neurons in the mesopallium and upper layer-like neurons in the hyper- and 
nidopallium, turtle upper- and deep layer-like neurons are localized in the same layer of the 
reptilian dorsal cortex (22). As we find different degrees of conservation of enhancer codes 
across avian pallial and neocortical cell types that do not match the circuitry nor developmental 
origins, avian pallial excitatory neurons are likely either a product of convergent evolution or 
diversification and neofunctionalization as has been suggested for the evolution of the 
cerebellar nuclei in vertebrates and the hypothalamus in teleosts (66, 67). In line with the 
evolutionary model by Briscoe et al. (20), this means that neocortical neuron-like enhancer 
codes were present in cell types of the amniote ancestor and were either diversified or co-
opted into different mammalian neocortical and avian pallial cell types. 
 
In contrast to gene expression, enhancer codes can be directly traced across the genomes of 
related species to inform about evolutionary conservation. This provides a means to study cell 
type evolution through changes in candidate enhancers and the impact of genomic variants. 
As such, our models can be employed for studying how nucleotide changes are associated 
with cell type specificity as previously shown (10, 15). In past studies, we verified that 
enhancer codes for melanoma states are conserved between mammal and zebrafish cell lines 
and can be used to identify variants in the genomes of melanoma patients (15, 68). The 
models presented in this study can be used to complement efforts for studying the impact of 
genomic variants and their association with mental or cognitive traits and disorders (69). 
Ultimately, improved versions of our models hold the potential to screen genomes and 
annotate genomic loci by cell type specificity or to investigate the presence or absence of 
specific cell types or cell states. 
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Methods 

Chicken telencephalon multiome 

Tissue preparations 
TRANSfarm (3360 Bierbeek, Belgium) provided chicken brains from healthy domestic 
chickens (P15, Gallus gallus/plofkip). Animal samples were handled according to KU Leuven 
ethical guidelines. The telencephalon was dissected from brains and either snap-frozen in 
liquid nitrogen or preserved for cryosectioning. To preserve the chicken telencephalons for 
cryosectioning, the whole telencephalon was frozen in isopentane precooled for 10 min in a 
beaker on dry ice. Coronal cryosections were dissected out at approximately 5 mm from the 
anterior of the brain and visually inspected for the presence of the lateral ventricle in parallel 
orientation to the longitudinal fissure. 

Sample preparation 

Two different sample types of chicken brain were used to isolate nuclei: dissected 
telencephalon snap-frozen in liquid nitrogen and a cryosectioned sample (12x 50 µm 
sections). The following procedure was followed to extract the nuclei: the tissues were 
resuspended in 300 µl nuclei lysis buffer comprising 10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 
mM MgCl2, 0.1% Nonidet P40, 1 mM dithiothreitol and 1U/µl RNasin ribonuclease inhibitor 
(Promega) in nuclease-free water, pipeted until homogenized, 1 ml nuclei lysis buffer was 
added and samples were incubated on ice for 5 min. Nuclei were pelleted by centrifugation at 
500 g for 5 min at 4°C and resuspended in 1x PBS, 1% BSA, 1U/µl RNasin ribonuclease 
inhibitor. Nuclei were centrifuged another time at 500 g for 5 min at 4°C and resuspended 
again in 1x PBS, 1% BSA, 1U/µl RNasin ribonuclease inhibitor. DAPI was added to the 
samples at a conc. of 0.5 µg/ml and incubated for 10 min. DAPI positive nuclei were sorted on 
a MA900 Sony cell sorter (Sony Biotechnology). The sorted nuclei were centrifuged at 500 g 
for 5 min at 4°C and resuspended in a 1 x nuclei buffer (10x Genomics) supplemented with 1 
mM dithiothreitol and 1U/µl RNasin ribonuclease inhibitor. 

Library generation 

Single-cell libraries were generated using the 10X Chromium Single-Cell Instrument and 
NextGEM Single Cell Multiome ATAC+Gene Expression kit (10X Genomics) according to the 
manufacturer’s protocol. In brief, the single nuclei of chicken brains were incubated for 60 min 
at 37°C with a transposase that fragments the DNA in open regions of the chromatin and adds 
adapter sequences to the ends of the DNA fragments. After generation of nanoliter-scale gel 
bead-in-emulsions (GEMs), GEMs were incubated in a C1000 Touch Thermal Cycler (Bio-
Rad) under the following program: 37°C for 45 min, 25°C for 30 min, and hold at 4°C. 
Incubation of the GEMs produced 10x barcoded DNA from the transposed DNA (for ATAC) 
and 10x barcoded, full-length cDNA from poly-adenylated mRNA (for GEX). This was followed 
by a quenching step that stopped the reaction. After quenching, single-cell droplets were 
broken and the transposed DNA and full-length cDNA were isolated using Cleanup Mix 
containing Silane Dynabeads. To fill gaps and generate sufficient mass for library construction, 
the transposed DNA and cDNA were amplified via PCR: 72°C for 5 min; 98°C for 3 min; seven 
cycles of 98°C for 20 s, 63°C for 30 s, 72°C for 1 min; 72°C for 1 min; and hold at 4°C. The 
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pre-amplified product was used as input for both ATAC library construction and cDNA 
amplification for gene expression library construction. Illumina P7 sequence and a sample 
index were added to the single-strand DNA during ATAC library construction via PCR: 98°C 
for 45 s; 7–9 cycles of 98°C for 20 s, 67°C for 30 s, 72°C for 20 s; 72°C for 1 min; and hold at 
4°C. The sequencing-ready ATAC library was cleaned up with SPRIselect beads (Beckman 
Coulter). Barcoded, full-length pre-amplified cDNA was further amplified via PCR: 98°C for 3 
min; 6–9 cycles of 98°C for 15 s, 63°C for 20 s, 72°C for 1 min; 72°C for 1 min; and hold at 
4°C. Subsequently, the amplified cDNA was fragmented, end-repaired, A-tailed, and index 
adaptor ligated, with SPRIselect cleanup in between steps. The final gene expression library 
was amplified by PCR: 98°C for 45 s; 5–16 cycles of 98°C for 20 s, 54°C for 30 s, 72°C for 20 
s, 72°C for 1 min; and hold at 4°C. The sequencing-ready GEX library was cleaned up with 
SPRIselect beads. 

Sequencing 
Before sequencing, the fragment size of every library was analyzed using the Bioanalyzer 
high-sensitivity chip. All 10x scATAC libraries were sequenced on a NextSeq2000 instrument 
(Illumina) or on a NovaSeq6000 instrument (Illumina) with the following sequencing 
parameters: 51 bp read 1 – 8 bp index 1 – 24 bp index 2 – 51 bp read 2 and for 10x GEX 
libraries the following sequencing parameters were used: 28 bp read 1 - 10 bp index 1 - 10 bp 
index 2 - 90 bp read 2. 

Chicken telencephalon spatially resolved transcriptomics (Stereo-seq) 
 
All the spatial analysis performed in work was done using BGI’s STomics platform. The 
sections below detail the methods used for the spatial library preparation and sequencing.  

Tissue preparation for cryo-sectioning 
All animal experiments were performed according to KU Leuven ethical guidelines. Healthy 
domestic chickens (P15, Gallus gallus/plofkip) provided by TRANSfarm (3360 Bierbeek, 
Belgium) were used for the experiments. Brains were dissected out and immediately snap-
frozen in iso-pentane for 10 min. Afterwards, brains were embedded in Tissue-Tek OCT cryo 
embedding compound. 10 µm coronal cryosections were done at CT=14°C, OT=11°C. The 
used area of chicken telencephalon cryosections is the same as described above. 5-10 OCT 
scrolls of 70 um section thickness were collected into DNA lo-bind 2 ml Eppendorf tubes. Ice 
cold PBS was used for washing the tissue to remove the OCT matrix from the tissue. Total 
RNA was extracted from the washed tissue sections using the innuPREP mini RNA kit 
(Analytik Jen; Cat. No. AJ 845-KS-2040250). The RNA quality was assessed using RNA Nano 
kit (Agilent). Only tissue with RIN > 7 was used for the spatial analysis. 

Optimization of tissue permeabilization 
The tissue optimization was performed using the Stereo-seq Permeabilization kit (Cat. No. 
111KP118) and Stereo-seq chip set P (Cat. No. 110CP118) according to the manufacturer’s 
protocol (Stereo-seq permeabilization set user manual, Ver A1). Briefly, 4 permeabilization 
chips were removed from the storage buffer and washed with nuclease free water and dried 
at 37*C. Next, 4 consecutive 10 µm tissue sections were prepared from the tissue cryo-block 
and placed on the permeabilization chip and thawed the tissue layer to attach to the surface 
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of the chip. After drying the tissue on 37*C hot plate, the chip is then dipped into 100% 
methanol at -20*C and incubated for 30 mins to fix the tissue. Post fixation the tissue 
permeabilization test is performed on these chips by permeabilizing the tissue with PR enzyme 
prepared in 0.01N HCl (pH 2.0), at 4 different time points ranging from 6 mins to 30 mins. After 
the permeabilization, the chips were rinsed with 0.1X SSC buffer before reverse transcription. 
Reverse transcription is carried out at 42*C for 1 hr in the dark. Tissue removal is performed 
at 55*C for 1 hr using the TR enzyme to clear the tissue before imaging. Fluorescence imaging 
is performed in the TRITC channel with 10X objective, following the imaging guidelines 
provided by the manufacturer (Guide book for Image QC & microscope assessment and 
imaging, Ver A5). The optimal permeabilization time is assessed based on the strongest 
fluorescence signal with the lowest signal diffusion (crispness of the RNA footprint). Based on 
our assessment, we found the most optimal permeabilization time for the mouse brain to be X 
mins and for the chicken brain section to be Y mins. 

Spatial Transcriptomics analysis 
The spatial transcriptomics analysis was performed using the Stereo-seq Transcriptomics kit 
(Cat. No. 111ST114) according to the manufacturer’s protocol (Stereo-seq Transcriptomics 
set user manual, Ver A2). Briefly, similar to the permeabilization analysis, the T-chip was 
removed from the storage buffer and washed with nuclease free water and dried at 37*C. 
Next, a 10 µm tissue section from a desired region of interest was prepared from the tissue 
cryo-block and placed on the T-chip and thawed the tissue layer to attach to the surface of the 
chip. After drying the tissue on a 37°C hot plate, the chip is then dipped into 100% methanol 
at -20°C and incubated for 30 mins to fix the tissue. The fixed tissue is then stained using the 
Qubit ssDNA reagent (Thermo Cat. No. Q10212). Fluorescence imaging of the single stranded 
DNA staining is performed in the FITC channel with 10X objective, following the imaging 
guidelines provided by the manufacturer (Guide book for Image QC & microscope assessment 
and imaging, Ver A5). Prior to permeabilization, the ssDNA-stained image is also subjected to 
QC analysis using the imageQC software as per manufacturer’s recommendation. Like the 
permeabilization protocol, the tissue permeabilization is carried out with PR enzyme prepared 
in 0.01N HCl (pH 2.0) at 37*C. The optimal permeabilization time estimated from the tissue 
permeabilization analysis is used for the transcriptomics analysis. After washing the chip, 
reverse transcription mix is added to the chip and incubated at 42*C for at least 3 hrs. Tissue 
removal from the stereo seq chip is achieved by incubating the chip in TR buffer at 55*c for 
10 minutes. cDNA release and collection is performed by incubating the chip in cDNA release 
mix overnight at 55*C and the release cDNA is purified with Ampure XP beads (Beckman 
Coulter; Cat. No. A63882) using the manufacturer's recommendation. After the quality 
assessment using bioanalyzer (Agilent), sequencing library preparation is performed using 
transposase assisted tagmentation reaction. Indexed PCR and library purification is performed 
to prepare the final sequencing library as per manufacturer’s recommendations. Final Stereo-
seq libraries were sequenced on MGI/BGI sequencing platforms and were sequenced at the 
MGI Latvia sequencing facility.  

Analysis of chicken telencephalon single cell multiome data 
Raw reads were mapped to the chicken genome assembly galGal6 (GRCg6a) with Cell 
Ranger ARC (v2.0.2, 10x Genomics) using an ENSEMBL 108 gene annotation as reference 
(70). Since ENSEMBL changed their main chicken assembly to bGalGal1 (GRC7b) and did 
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not update all the gene names for the transcripts specified for the galGal6 assembly, we 
projected gene names from bGalGal1 to galGal6. In particular, we used liftOver to project 
exons from the bGalGal1 to GRCg6a assembly and assigned gene names based on the 
overlap of exons that were projected to the same strand (at least 85% of the nucleotides) (71). 
In addition, unclear assignments such as different gene names between the assemblies, splits, 
and merging of genes were manually curated. 
The gene expression modality of the scMultiome was processed in SCANPY using the VSN 
pipelines (https://github.com/vib-singlecell-nf/vsn-pipelines, revision: 6a9c70769b) (72). Cells 
were filtered by a maximum 5% mitochondrial genes, a minimum of 200 and a maximum of 
4,500 genes per cell. Genes that were present in less than three cells were removed. Doublets 
were detected with Scrublet and assigned based on the expected doublet rate for 10x 
Chromium protocols as implemented in the VSN Scrublet pipeline (73). Gene expression 
counts were normalized per cell to a target sum of 10,000 and log-transformed. 50 principal 
components were used after principal component analysis. Sample batch effects were 
corrected with Harmony (74). Clusters were identified with Louvain clustering using a 
resolution of 2 (75). Clusters were labeled as non-neuronal cell types, medium spiny neurons, 
and interneurons based on the expression of known marker genes. Clusters with less than 
100 cells were removed. Additional clusters were annotated as excitatory based on expression 
of SLC17A6 and inhibitory based on expression of GAD1 or GAD2. Clusters that were 
assigned to the same cell type were merged. In addition, we used SAMap (version 1.0.2) to 
project cell types labels from mouse brain snRNAseq (see Methods below) to the chicken 
telencephalon scMultiome (27, 30). As input for SAMap, we compared the coding DNA 
sequences of all chicken transcripts against all mouse transcripts with tblastx and selected the 
transcript pairs with the highest BLAST score per gene pair (76). Cell types/clusters were 
specified as annotation keys and raw counts were used when running SAMap. 
The ATAC-seq modality of the scMultiome was processed with pycisTopic (4). Pseudobulks 
were generated based on assigned clusters from the gene expression modality. Barcodes with 
less than 1,000 unique fragments, a fraction of reads in peaks (FRIP) lower than 20% and a 
TSS-enrichment below 2 were removed. In addition, only barcodes were kept that satisfied 
the filtering criteria of the gene expression modality and that were not considered doublets. 
100 topics were selected for topic modeling based on topic metrics. Sample batch effects were 
corrected with Harmony (74). Up to the top 5,000 regions with the highest probability per topic 
were extracted after performing Otsu-thresholding. Differentially accessible regions (DARs) 
per cell type were computed with pycisTopic, i.e. a two-sided Wilcoxon rank-sum test on 
imputed chromatin accessibility. The imputed accessibility of all cells of per cell type is 
compared against the background composed of all other cells. Regions with a log-fold change 
of log2(1.5) and a Benjamini-Hochberg-adjusted p-value of at least 0.05 were considered for 
further analysis. 

Analysis of chicken telencephalon Stereo-seq data 
Stereo-seq data was processed with Stereopy (version 0.8.0) using bin-size=100 (77). Bins 
that express less than 20 genes and genes that were expressed in less than 3 bins were 
removed. Gene expression counts were normalized per cell to a target sum of 10,000 and log-
transformed. Cell2location (version 0.1) was used to project labels of single cell clusters to 
bins in the Stereo-seq data (30). Raw counts were used as input and the single cell data was 
filtered with cell2location’s internal filtering function (using the following parameter: 
cell_count_cutoff=5, cell_percentage_cutoff2=0.03, and nonz_mean_cutoff=1.12). For 
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mapping labels of single cell clusters to spatial bins, we set the number of expected cells per 
bin to 5. 

Analysis of mammalian brain data 

Mouse brain snRNA-seq 
Available 10X Chromium mouse brain single nucleus was downloaded from 
https://cell2location.cog.sanger.ac.uk/tutorial/mouse_brain_snrna (Nov 2020) (30). Data was 
processed using VSN-pipelines (v0.24.0). Briefly, cells with at least 500 expressed genes, less 
than 7,000 expressed genes and less than 5% mitochondrial reads were kept. This resulted 
in a data set with 40,238 cells. Scanpy (v0.5.2) was run with default parameters, using 50 
principal components, and using Leiden clustering with resolution 1.2. Clusters were manually 
annotated based on the expression of marker genes. IT neurons of the different layers were 
assigned based on known expression patterns from in situ experiments and by using a higher 
Leiden clustering resolution of 5 (78). Clusters were then merged per cell type and annotations 
were made consistent with the other analyzed single cell data sets. 

Mouse brain snATAC 
Available 10X Chromium single nucleus ATAC-seq data of the mouse brain was obtained from 
the NeMO Data Archive 
(https://data.nemoarchive.org/biccn/grant/u19_cemba/cemba/epigenome/sncell/ATACseq/m
ouse, Jun 2020) (25). Fragment files were processed with pycisTopic using the L2cluster 
annotation specified in the metadata for generating pseudobulk profiles and identifying 
consensus accessible regions (4). Barcodes with less than 1,000 unique fragments, a fraction 
of reads in peaks (FRIP) lower than 20% and a TSS-enrichment below 2.5 were removed. In 
addition, only barcodes with the following region identifiers were kept: 5D, 5E, 6D, 8B, 9J, 9H. 
This resulted in a data set with 106,462 cells. 225 topics were selected for topic modeling 
based on topic selection metrics. Up to the top 6,000 regions with the highest probability per 
topic were extracted after performing Otsu-thresholding. We then re-named cell type 
annotations from the L2cluster definition to match cell type annotations of the other data sets 
that we analyzed. DARs per cell type were computed with pycisTopic as mentioned above. 

Mouse brain scMultiome 
We used previously generated 10X multiome data of mouse cortex, hippocampus and 
striatium; see Bravo González-Blas and De Winter et al. for details (4). scRNA-seq data were 
first analyzed using VSN (v.0.27.0). Briefly, cells with at least 100 genes expressed and less 
than 1% of mitochondrial reads were kept. Doublets were removed using Scrublet (v.0.2.3), 
with default parameters. 50 PCs were used as input for harmony, which was used to correct 
batch effects due to the sample preparation protocol and the corrected PCs were used for 
dimensionality reduction and Leiden clustering (resolution 1). This resulted in 41 clusters that 
were annotated based on marker gene expression. Clusters were per cell types and the 
nomenclature was made consistent with the other analyzed single cell data sets. 
The ATAC-seq modality was processed in pycisTopic; see Bravo González-Blas and De 
Winter et al. for details (4). Briefly, the RNA-seq cell-type labels were used to create 
pseudobulks from which peaks were called with MACS2 (v.2.1.2.1) and consensus peaks 
were derived using the iterative-filtering approach. The data set was further filtered based on 
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the scATAC-seq quality, keeping cells with at least 1,000 fragments, FRiP > 0.4 and TSS > 4. 
125 topics were selected based on topic selection metrics. Up to the top 5,000 regions with 
the highest probability per topic were extracted after performing Otsu-thresholding. DARs per 
cell type were computed with pycisTopic as mentioned above. 

Mouse brain Stereo-seq 
Available mouse brain Stereo-seq data was processed with Stereopy (version 0.8.0) using 
bin-size=100 (GEO-accession: GSE256319) (77, 79). Gene expression counts were 
normalized per cell to a target sum of 10,000 and log-transformed. 

Human motor cortex SNARE-seq 
Available SNARE-seq2 data of the human motor cortex was downloaded from the NeMO Data 
Archive (24). High-quality cells (84,159) selected by Bakken et al. were used for the 
analysis. scRNA-seq data were analyzed using Seurat (v.4.0.3), using 47 PCs for 
dimensionality reduction and Leiden clustering (with resolution of 0.6). This resulted in 30 
clusters (corresponding to 19 cell types) that were manually annotated based on marker 
gene expression and cell type nomenclatures were made consistent across analyzed 
single cell data sets. 
The ATAC-seq modality was processed in pycisTopic; see Bravo González-Blas and De 
Winter et al. for details (4). 75 topics were selected for topic modeling based on topic selection 
metrics. Up to the top 5,000 regions with the highest probability per topic were extracted after 
performing Otsu-thresholding. We removed two topics which contained less than 100 regions 
after Otsu-thresholding from further analysis. DARs per cell type were computed with 
pycisTopic as mentioned above with the exception of adjusting the background. Since the 
fraction of cell types shows a high bias towards L2/3 IT neurons, which heavily affects the 
composition of the background for testing for differential accessibility, we randomly 
downsampled the background to a maximum of 3,000 cells per cell type when computing 
Wilcoxon rank-sum tests. 

Human prefrontal cortex multiome 
Available 10X multiome data of the human prefrontal cortex was obtained from the NCBI Gene 
Expression Omnibus (GEO-accession: GSE207334) (26, 80). We limited our analysis to the 
following for samples: HSB8050, HSB5871, HSB6195, HSB6154, HSB8073. Raw reads were 
retrieved from the NCBI Sequence Read Archive using the SRA toolkit 
(https://github.com/ncbi/sra-tools) and fastq-dump with the following parameters: --include-
technical --split-files Reads were mapped to the human genome assembly hg38 (GRCh38) 
with Cell Ranger ARC (v2.0.2, 10x Genomics) using an ENSEMBL 108 gene annotation (70).  
The gene expression modality of the scMultiome was processed in SCANPY using the VSN 
pipelines (https://github.com/vib-singlecell-nf/vsn-pipelines, revision: 6a9c70769b) (72). Cells 
with less than 500 genes and genes that were expressed in less than three cells were 
removed. Doublets were detected with Scrublet and assigned based on the expected doublet 
rate for 10x Chromium protocols as implemented in the VSN Scrublet pipeline (73). Gene 
expression counts were normalized per cell to a target sum of 10,000 and log-transformed. 
Sample batch effects were corrected with Harmony using 50 PCs as input (74). Clusters were 
identified with Leiden clustering using a resolution of 2 (81). Cell types were assigned to 
clusters based on the expression of known marker genes, following known expression from in 
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situ experiments in the human cortex for neurons (78). To corroborate our assignments, we 
used SAMap (version 1.0.2) to project cell types labels from mouse brain snRNAseq (see 
Methods below) to the human cortex scMultiome (27, 30). Prior to running SAMap the mouse 
brain snRNAseq data set was subset to cell types that are present in the neocortex. As input 
for SAMap, we compared the coding DNA sequences of all human transcripts against all 
mouse transcripts with tblastx and selected transcript pairs with the highest BLAST score per 
gene pair (76). Cell types/clusters were specified as annotation keys and raw counts were 
used when running SAMap. 
The ATAC-seq modality of the scMultiome was processed with pycisTopic (4). Pseudobulks 
were generated based on assigned clusters from the gene expression modality. Barcodes with 
less than 1,000 unique fragments, a fraction of reads in peaks (FRIP) lower than 25% and a 
TSS-enrichment below 3 were removed. In addition, only barcodes were kept that satisfied 
the filtering criteria of the gene expression modality and that were not considered doublets. 
100 topics were selected for topic modeling based on topic metrics. Sample batch effects were 
corrected with Harmony (74). Up to the top 5,000 regions with the highest probability per topic 
were extracted after performing Otsu-thresholding. DARs per cell type were computed with 
pycisTopic as mentioned above with the exception of adjusting the background. Since the 
fraction of cell types shows a high bias towards L2/3 IT neurons, which heavily affects the 
composition of the background for testing for differential accessibility, we randomly 
downsampled the background to a maximum of 1,500 cells per cell type when computing 
Wilcoxon rank-sum tests. 

Correlation of gene ortholog expression 
To compare the transcriptome of chicken and mouse telencephalon cell types with an 
alternative to SAMap, we evaluated the correlation of 1:1 gene ortholog expression following 
the approach by Tosches et al. (22). For this purpose, we obtained 1:1 orthologs of protein-
coding genes between chicken and mouse genes from ENSEMBL that were annotated as 
confident orthologs (70). We then computed the mean log-normalized expression per cell type 
in the chicken gene expression data and mouse brain snRNAseq (30). We converted mean 
expression values into z-scores per the cell types and computed Spearman correlation 
coefficients of the z-scores over the 1:1 ortholog pairs for all pairwise combinations of chicken 
and mouse cell types. To evaluate whether TFs alone are meaningful for comparing cell types, 
we performed the same analysis with 1:1 TF orthologs instead of all orthologous genes.  

In vitro saturation mutagenesis 

Library generation 
The saturation mutagenesis library used the mouse FIRE enhancer (mm10 chr18:61108596-
61108855) as initial sequence. The 259 bp sequence was mutated in silico to generate all 
possible sequences with a single nucleotide mutation resulting in 777 sequences. Nine copies 
of the wild type FIRE sequence are included in the library to reduce the risk of losing it during 
cloning and MPRA. 500 shuffled sequences are used as negative controls. A unique 11 bp 
barcode generated via FreeBarcodes (82) was added in 5’ of each sequence and the adapters 
CCAGTGCAAGTGCAG and GGCCTAACTGGCCGG were added in 5’ and 3’ respectively.  
The library was produced by Twist Bioscience and PCR amplified with the Kapa HiFi HotStart 
ReadyMix (Roche) and the primers CCAGTGCAAGTGCAG and CCGGCCAGTTAGGCC. A 
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barcoded version of the plasmid pSA351_SCP1_intron_eGFP (Addgene #206906) containing 
a 17 bp random barcode was linearized via inverted PCR with the Kapa HiFi HotStart 
ReadyMix and the primers GGCCTAACTGGCCGGCTGAGCTCCCTAGGGTACT and 
CTGCACTTGCACTGGCGACTCGAGGCTAGTCTC, followed by DpnI digestion and gel 
extraction in a 0.8% agarose gel. The amplified library and linearized plasmid were combined 
in an NEBuilder (New England Biolab) reaction with a vector to insert ratio of 1:2 for 45 min at 
50°C then dialyzed against water in a 6 cm Petri dish with a membrane filter MF-Millipore 0.05 
µm (Merck, Kenilworth, NJ) for 1 hour. The reaction was then transformed into Lucigen Endura 
ElectroCompetent Cells (Biosearch Technologies). Before culture for maxiprep, 1:100,000 of 
the transformed bacteria was plated onto an LB-agar dish with carbenicillin to estimate the 
complexity of the cloned library. A volume of bacteria corresponding to a complexity of 500 
barcodes per enhancer was put in culture for maxiprep. Maxiprep was performed using the 
Nucleobond Xtra endotoxin-free maxiprep kit (Macherey-Nagel).  
The enhancer to random barcode assignment was performed as described previously (11). 
Briefly, the cloned library was amplified with primers 
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCCCCAGTGCAAGTGCAG and 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTGGCCCTCGCAGACA. Illumina 
sequencing adapters were added during a second round of PCR with primers 
AATGATACGGCGACCACCGAGATCTACACNNNNNNNNTCGTCGGCAGCGTCAGATGTG 
and CAAGCAGAAGACGGCATACGAGATNNNNNNGTCTCGTGGGCTCGGAGATG*T. 
Reads were trimmed using Cutadapt (v.4.2) (83) with the options -g 
TCCCCAGTGCAAGTGCAG --discard-untrimmed -m 11 -l 11 for read 1 to extract the 
enhancer barcode and options -g CTGGCCCTCGCAGACA...GATCGGCGCGCCGGTCC --
discard-untrimmed -m 17 -M 17 for read 2 to extract the plasmid barcode. Reads were filtered 
to retain only those with quality > 30 using fastp (v.0.23.2) (84). 
To produce lentivirus particles, HEK 293T cells cultured at ~80% confluency in a 15 cm dish 
were transfected by using Lipofectamine 3000 reagent (Thermo Fisher Scientific) together 
with 30 μg cloned enhancer library, 20 μg psPax2 (Addgene #12260), 10 μg pMD2.G 
(Addgene #12259). Forty-eight and seventy-two hours post-transfection, medium was 
collected, combined, and spun down 5 min at 1,500 rpm. The supernatant was carefully 
collected with a blunt needle and a syringe and filtered through a 45 μm syringe disc filter 
(Millex - HV Millipore) into an Ultra-15 MWCO100 centrifugal filter (Amicon). The concentrator 
tube containing 15 ml of the supernatant was spun down at 4,000 rpm for approximately 45 
min until the desired volume was reached (~250 μl). 

Massively Parallel Reporter Assay 
Mouse BV2 cells were grown in high glucose Dulbecco’s modified Eagle’s medium (Gibco) 
supplemented with 10% FBS (Gibco) and were maintained at 37°C and 5% CO2 atmosphere. 
Cells were seeded in a 10 cm dish and transduced with 100 µl of the lentivirus library once 
they had reached ~80% confluency. 48 hours post transduction, cells are harvested with 
trypsin (Gibco). One-fifth of the cells are used to perform genomic DNA (gDNA) extraction with 
the DNeasy Blood & Tissue Kit (Qiagen). The rest of the cells are used to perform RNA 
extraction with the innuPREP RNA Mini Kit 2.0 (Analytik Jena), followed by mRNA isolation 
with the Dynabeads mRNA purification kit (Ambion) and cDNA synthesis using the GoScript 
RT Kit with oligo dT primers (Promega). The vector’s random barcode was amplified from the 
gDNA and cDNA via PCR with the Kapa HiFi HotStart ReadyMix and the primers 
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCCTACGGACCGGCGC and 
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GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTGGCCCTCGCAGACA. A second 
round of amplification was performed to add Illumina sequencing adapters with the same 
primers as for enhancer-barcode assignment. Three independent experiments were 
performed. 
Following sequencing, random barcodes were extracted from gDNA and cDNA reads using 
Cutadapt (v.4.2) (83) with the options -g 
TGCCTACGGACCGGCGCGCCGATC...TGTCTGCGAGGGCCAGC -l 17 -m 17 --discard-
untrimmed. Reads were filtered to retain only those with quality > 30 using fastp (v.0.23.2) 
(84). After assignments of the reads to enhancers based on the enhancer-barcode table, a 
count matrix with number of reads per enhancer is generated. Samples were processed using 
DESeq2 (v.1.34.0) (85), comparing the cDNA replicates versus the gDNA samples. 

In vivo validation of enhancer candidates 

Enhancer cloning in AAV vector 
500 bp enhancer sequences with 15 bp adapters (GCCCTGCGTATGAGT and 
CTGAGCTCCCTAGGG in 5’ and 3’ respectively) were synthesized from Twist Bioscience. 
pSA358_pAAV-SCP1-Intron-eGFP-CS1 (Addgene #215513) was linearized via inverted PCR 
with the Kapa HiFi HotStart ReadyMix and the primers CTGAGCTCCCTAGGGTAC and 
ACTCATACGCAGGGCC, followed by DpnI digestion and gel extraction in a 0.8% agarose 
gel. The enhancer sequences and linearized plasmid were combined in an NEBuilder (New 
England Biolab) reaction with a vector to insert ratio of 1:2 for 45 min at 50°C. The reaction 
was then transformed into Stellar competent bacteria (Takara) and plated on LB agar plate 
with carbenicillin. Following maxiprep, the plasmid is sequenced with nanopore DNA 
sequencing (Oxford Nanopore Technologies).  

AAV production 
HEK293T cells were cultured in DMEM high glucose + 10% FBS (Invitrogen). Transfection 
complex, containing PEI and OptiMEM (Invitrogen), was mixed and incubated with OptiMEM 
containing pΔF6 helper, pAAV-PHP.eB Rep/Cap (Addgene #103005) and pSA358_pAAV-
SCP1-Intron-eGFP-CS1 with an enhancer for 20 min at room temperature (RT). Before adding 
the PEI:DNA complex, growth medium was replaced with DMEM + 1% FBS. 5 h post 
transfection DMEM + 10% FBS was added. 48 h post transfection, cells were harvested and 
centrifuged at 1,000 g at 4°C for 10 min. Cell pellets where lysed in lysis buffer (150 mM NaCl 
and 50 mM Tris-HCl pH 8.5 in endotoxin free H2O). Three freeze/thaw cycles were performed 
using a dry ice/ethanol mix, and a water bath at 37°C. Next, Supernatants were collected and 
Benzonase (Sigma) was added to a final concentration of 50 U/ml. After incubating 30 min at 
37 °C, the lysates were centrifuged at 5,000 g for 20 min. Supernatant was filtered through a 
0.45 μm filter (MillexHV) and carefully layered onto iodixanol gradients (15-25-40-60%) in 25 
× 77 mm OptiSeal tubes (Beckman Coulter). Gradients were prepared using OptiPrep 
iodixanol (Sigma), 5 M NaCl, 5× PBS with 1 mM MgCl2 and 2.5 mM KCl (5× PBS-MK), and 
sterile H2O. The OptiSeal tubes containing gradient/viral load were centrifuged for 1 h 40 min 
at 50,000 RPM at 12°C in the Optima XE-100 Ultracentrifuge (Beckman Coulter). AAVs were 
collected with a 16 G needle from between the 40 and 60% layer, and 5 ml 1× PBS-MK was 
added. The diluted AAVs were desalted and concentrated by centrifugation at 5,000 g for 30 
min at 20 °C in a pre-rinsed Amicon Ultra-15 filter (Millipore) in 1× PBS-MK. After 2 desalting 
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rounds the concentrated AAV’s were washed with PBS containing 0.01% Pluronic F68 
(ThermoFisher) by centrifugation at 5,000 g for 5 min at 20°C, aliquoted and stored at -80°C. 

Tail vein injection 
C57B6/J mice of 6-8 weeks were used for this experiment. The mice were housed in 
individually ventilated cages in a room with a day-night cycle. Cages were enriched with 
housing material and extra cotton balls. Health of the mice was checked daily. Virus with 
1x1011 multiplicity of infection was diluted up to a volume of 100 µl in saline and administered 
by tail vein injection using a 0.3ml syringe. 

Tissue sampling 
21 days post-injection, the mice were sacrificed. The mice were flushed with 5 ml PBS and 
brains were dissected out. The brains were fixed overnight at 4°C in 4% PFA. After 3 washes 
with PBS, brains were incubated in 15% sucrose/PBS until saturated and next into 30% 
sucrose/PBS overnight at 4°C. 60 µm coronal sections were made using a microtome (Leica 
SM2010R) and stored in a cryoprotectant solution (30% glycerol, 30% ethylene glycol in PBS) 
at 4°C. 

Immunocytochemistry 
Sections were washed with 0.1% triton X-100 in PBS and permeabilized in 0.25% triton X-100 
in PBS for 30 min. Tissue was blocked with 2% BSA, 10% fetal bovine serum in 0.25% triton 
X-100-PBS for 1 h at RT. Primary antibody anti-GFP-Rabbit IgG (1/200; A-11122 Invitrogen) 
was incubated overnight at 4°C in 2% BSA, 10% goat serum in blocking solution. Secondary 
antibody AlexaFluor 488 Donkey anti-Rabbit IgG (H+L) (1/5,000; A-21206 Invitrogen) was 
incubated for 2.5 h at RT followed by 4’,6-diamidino-2-fenylindool (DAPI) (5 mM, Sigma, 
D9542) for 10 minutes at RT. In between steps, three wash steps of 10 minutes were 
performed with 0.1% triton-X in PBS. Brain sections were transferred to slides using ice cold 
0.2% gelatin in 50 mM Tris-HCl pH7.5 and mounted in Mowiol-DABCO (25% Mowiol, Sigma, 
81381, 2,5% DABCO, Sigma, D27802). Brain sections were imaged using a Nikon TiE A1R. 
 
Brain section image analysis and annotations 
 
We used image processing software Fiji (https://imagej.net/software/fiji/) to filter the images 
such that the GFP signal was as clear as possible compared to the background (86). We did 
this by adjusting brightness thresholds, using the Despeckle noise filter. We also filtered the 
image with the Remove background from image option for the KIAA1217 and ZNF804B 
enhancers. Annotating the sections for the enhancer validation experiments was done by 
using the DAPI-stained nuclei to infer regions which could then be annotated manually and by 
usage of the Allen Brain Reference atlas (https://mouse.brain-map.org/static/atlas). 

Enhancer models 

Model training 
The regions that were defined per topic were used as input data for deep learning models that 
can predict from a 500 bp sequence in which topic(s) it is accessible in a multi-class, multi-
label manner, as has been done in earlier studies (10, 11, 15). The model’s architecture was 
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updated and now consists of 5 convolutional layers, a dense layer and a classification layer 
using the Basset architecture as its foundation (36). We increased the number of filters per 
layer to 1024, 512, 512, 512, 512 respectively and added batch normalization and dropout to 
all convolutional layers and residual connections to the final two convolutional layers. Details 
of the model’s architecture for every dataset are provided in Supplementary Table S2-6. We 
used Adam Optimizer with a learning rate of 1e-3, decaying with a factor of 0.25 after no 
further increase in average validation auPR in 3 epochs. Early stopping was applied after 5 
epochs without improvement. The batch size was 128. We trained such topic models for our 
five datasets: two mouse topic models, three human topic models and one chicken topic 
model, all with nearly the same architecture. 

Transfer learning to DARs 
To obtain a per cell type classification output in our models, we applied transfer learning from 
the topic-based models to DAR-based models. For a cross-species model comparison, an 
output per cell type is more practical and beneficial compared to using topics: a cell type can 
have multiple topics, a topic can include multiple cell types and there is no guarantee that 
every cell type will have at least one topic. Therefore, for every cell type, we calculated a set 
of DARs (from pycisTopic (4) using the Wilcoxon rank sum test) and only retained regions 
which were above a certain log fold change threshold (a per model overview is provided in 
Supplementary Table S2-6). To remove potential promoter regions that may introduce a bias 
towards less cell type-specific TFBS motifs, we filtered out regions that were 500 bp up- or 
downstream of a transcription start site of any protein coding transcript. These DARs are then 
used to represent cell types. 
 
For transfer learning to these DAR-based cell types, we loaded the weights from our topic 
model in the same architecture, froze all the convolutional layers, and replaced the dense and 
classification layer. We used a learning rate of 1e-4 to only train the weights of those two 
replaced layers while the convolutional layers remained frozen. Once the validation 
performance was saturated, we automatically selected the model with the highest validation 
auPR to further finetune. The convolutional layers were unfrozen and all parameters were now 
trained with a lower learning rate of 1e-6. Unlike during topic model training, there was no 
learning rate decay implemented. Early stopping after five epochs remained, the batch size 
was 32. The final model was selected based on the highest validation auPR score. 

Model validation 
To validate the performance of our models, we split our training regions in a training, validation 
and test set with a 80-10-10% distribution. During training, the average validation auPR metric 
was used as the main measure of the model’s performance, and after training the weights at 
the epoch with the highest score were selected as the final model. This approach was used 
both in the topic model and DAR model training. An overview of the performance of all our 
models is provided in fig. S3. 

Nucleotide contribution scores 
Nucleotide contribution scores were calculated as described in (87) using a neural network 
explainability tool called SHAP DeepExplainer (34, 35). We used 500 genomic regions to 
initialize the explainer.  
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Pairwise sequence alignments 
To visualize sequence changes in conserved regions, we computed pairwise sequence 
alignments with needle from the EMBOSS framework (88) using the default parameters 
(gapopen=10.0, gapextend=0.5, endopen=10.0, endextend=0.5, aformat3=pair). 

Detection of cell type-specific sequence patterns with TF-MoDISco 
TF-MoDISco was used to infer characteristic sequence patterns separately for each cell type 
(42). We used DARs per cell type as input with a log-fold change of at least 1.5. We further 
removed promoter regions from the sets of DARs as described above and limited the input to 
regions that are in the center of pseudobulk ATAC-seq peaks. To identify regions that are in 
the center of peaks, we computed a peak imbalance score based on the pseudobulk ATAC-
seq profile for each region per cell type. In particular, we computed the center of mass of the 
pseudobulk ATAC-seq profile per region and compared the average ATAC-seq signal up- and 
downstream of the center of mass. Regions with an imbalance score larger than 1.5 were 
removed. Before employing TF-MoDISco, we computed SHAP values for the filtered sets of 
DARs. For each cell type, this set of DARs was limited to regions with a prediction of at least 
0.2. We then selected the top 5,000 or less DARs with the highest prediction score for the cell 
type for SHAP value computation. After computing SHAP values, we applied TF-MoDISco per 
type-specific DARs set with the following parameters: final_min_cluster_size=10, 
trim_to_window_size=15, initial_flank_to_add=5, final_flank_to_add=5, 
sliding_window_size=15, flank_size=5, target_seqlet_fdr=0.15, n_sample_null=5000, and 
max_seqlets_per_metacluster=50000. 
To compare TF-MoDISco patterns with known TFBS motifs and against each other, we 
converted the patterns into position weight matrices (PWMs). For this purpose, we used TF-
MoDISco’s internal function to convert contribution scores into a 2 bit information content scale 
and trimmed down the flanking regions on both ends using a threshold of 0.25. To compare 
the patterns to known TFBS motifs, we used tomtom from the MEME suite to compare the 
PWMs of the patterns against the cisTarget database using following parameters: no-ssc, 
oc=., min-overlap=5, dist=pearson, evalue, and thresh=10.0 (4, 43). Prior to running tomtom, 
we removed PWMs that had a width smaller than five. To remove PWMs with little information 
content, we computed the average Kullback-Leibler (KL) divergence per position against the 
genomic background frequencies and removed PWMs with a KL divergence smaller than 0.5. 
We employed tomtom in a similar fashion to compare all patterns of all cell types and data 
sets against each other. For comparing patterns against each other, we used tomtom with a 
threshold of 0.3. 
For identifying sequence patterns that are shared between cell types, species, or data sets, 
we clustered TF-MoDISco patterns based on the e-value that we obtained from tomtom. For 
the graph-based clustering, we limited patterns to those that have a positive activity. First, we 
constructed a graph where verticesvertices are patterns and edges contain the -log2 e-value 
as weight describing the similarity of two patterns. We added a pseudocount of 10-8 to e-values 
before log-transformation. Edges were only added if the e-value was smaller than 0.01. In 
addition, we required the overlap between two matched patterns to be at least 70% of the size 
of the larger to avoid combining patterns to be matched if one of them was only a smaller sub-
sequence of the larger pattern such as monomer and dimer patterns. We then performed 
Leiden clustering as implemented in the python leidenalg package using 
ModularityVertexPartition as partitioning method (81). 
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Training and analyzing ChromBPNet models 
ChromBPNet model training was performed as described in (87) using a pre-released version 
(89) from the ChromBPNet GitHub repository 
(https://github.com/kundajelab/chrombpnet/tree/v1.3-pre-release). We used pseudobulk MGL 
scATAC data obtained from pycisTopic from the DeepMouseBrain1 dataset (4) to make a 
scATAC profile track required for training. ChromBPNet takes 2114 bp regions as input. To 
score the 500 bp FIRE enhancer, we extended the sequence by 807 bp on both sides with its 
genomic flankings. The nucleotide contribution scores were obtained from the profile 
prediction head. 

Using the Enformer model 
For calculating the FIRE nucleotide contribution scores from Enformer (39), we centered the 
enhancer in the 393 216 bp input sequence surrounded by its genomic flankings. To only 
measure the importance of the enhancer sequence without surrounding influences, we 
masked the genomic flanks before calculating the importance scores. We used mouse track 
166 as MGL-specific ATAC track.  

Assigning transcription factors to potential binding sites 
Annotating contribution score tracks with TFs at important motifs was done by first matching 
those motifs to a large TF-motif database (4), and by manually inspecting the expression of 
the candidate TFs in the cell type of interest to find the TF with the most specific expression. 

Enhancer-code based cell type similarity metrics 

Cross-species region predictions 
From the DAR sets per cell type per dataset, we selected the top 100 regions (sorted on log 
fold change) after filtering (exclusion of promoters and non-peak-centered regions). We 
scored regions from cell types from one dataset with models trained different on 
datasets/species. From these scores per region we calculated the median prediction score 
per cell type. When consensus predictions were used from DeepMouseBrain and 
DeepHumanCortex models, we took the average of the prediction scores from both models 
for classes containing matching cell types. Also, for nucleotide contribution score Spearman 
correlation comparisons, the average of both models were used. For the DeepMouseBrain 
models, consensus cell type classes were AST, D1MSN, DG_GRC, EXC_CA1, 
EXC_L2_3_IT, EXC_L4_IT, EXC_L5_IT, EXC_L5_PT, EXC_L6_CT, EXC_L6_IT, EXC_NP, 
INH_PVALB, INH_SST, MGL, OL, OPC and VASC. For D2MSN, DG_NBL, EXC_CA3, 
EXC_CLA, EXC_L6b, EXC_PIR, INH_LAMP5, INH_STR, INH_VIP, IOL and RGL, predictions 
and contribution scores only came from DeepMouseBrain2 due to either an absence in the 
DeepMouseBrain1 dataset or too few cells (less than 350) leading to insufficient scATAC 
quality and worse prediction performance compared to DeepMouseBrain2. For the 
DeepHumanCortex models, consensus cell type classes were AST, EXC_L2_3_IT, 
EXC_L4_IT, EXC_L5_IT, EXC_L6_IT, INH_LAMP5, INH_PVALB, INH_SST, INH_VIP, MGL, 
OL and OPC. VASC predictions and contribution scores came from DeepHumanCortex1 due 
to absence of the cell type in the DeepHumanCortex2 dataset. For EXC_L6_CT and 
EXC_L6b, the same applies but in the opposite order. 
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Nucleotide contribution score Spearman correlation 
From the same set of cell-type specific regions per dataset, we computed the SHAP nucleotide 
contribution scores for every cell type (or output class) with the model that matches with the 
dataset and the other models. This results in vectors of 500 (sequence length) nucleotide 
contribution scores for all cell types per region and per model. We can use these nucleotide 
contribution scores from different models for the same region to compare how similar these 
are by using the Spearman correlation metric. Thus, for every region, we calculated the 
Spearman correlation between nucleotide contribution scores of all cell types of the model that 
matches with the dataset and the other models trained on different datasets or species. The 
correlation scores of the top 100 regions per cell type were aggregated by calculating the 
median to obtain a similarity score between all cell types on a nucleotide contribution level. To 
calculate Spearman correlations and their corresponding p-values, we used the 
scipy.stats.spearmanr function from Scipy (v1.5.3). 

Correlation of TF-MoDISco patterns 
To compare the similarity of two cell types, we computed the Spearman correlation over the 
number of instances of TF-MoDISco pattern clusters (see above). In particular, for each deep 
learning model and for each cell type, we collected the number of instances of TF-MoDISco 
patterns (called seqlets) of each cluster and normalized the numbers by the number of cell-
type specific DARs that contained any seqlet. By this way, we obtained vectors of the average 
occurrence of clustered TF-MoDISco pattern for each cell type and for each deep learning 
model. We then computed Spearman correlation coefficients between these vectors for each 
cell type of each model and each species. Here, we limited the clustered patterns to those that 
are detected in all three species. To cluster cell types based on the correlation of clustered 
TF-MoDISco patterns, we converted the pairwise Spearman correlation coefficients (SCCs) 
into a dissimilarity matrix (dissimilarity=1-SCC) and performed average linkage hierarchical 
clustering using the python package scipy.cluster.hierarchy (v1.5.3). 
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