

1 **BatR: A novel regulator of antibiotic tolerance in *Pseudomonas aeruginosa* biofilms**

2

3 Ainelen Piazza^{1†#}, Harshanie Dasanayaka¹, Gerhard Saalbach², Carlo Martins², Eleftheria
4 Trampari³, Mark A. Webber³, Freya Harrison⁴, Jacob G. Malone^{1,5†#}

5

6 ¹ Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, NR4
7UH UK

8 ² John Innes Centre Proteomics Platform

9 ³ Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK

10 ⁴ School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4
11 7AL, UK

12 ⁵ School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich,
13 NR4 7TJ, UK

14 † Corresponding authors

15 #Address correspondence to Jacob Malone (Jacob.malone@jic.ac.uk) and Ainelen Piazza
16 (Ainelen.piazza@jic.ac.uk)

17

18

19 **ABSTRACT**

20 *Pseudomonas aeruginosa* is a multidrug-resistant opportunistic human pathogen. Chronic
21 infections are associated with biofilms, conferring resistance to antibiotics and complicating
22 treatment strategies. This study focuses on understanding the role of the uncharacterized gene
23 *PA3049*, upregulated under biofilm conditions. In the context of *P. aeruginosa* biofilms,
24 *PA3049* plays a role in withstanding antimicrobial challenges both *in vitro* and in clinically
25 validated infection models. Under sub-inhibitory concentrations of antibiotic, the deletion of
26 *PA3049* resulted in reduced pyocyanin production and altered abundance of enzymes
27 controlling denitrification, pyoverdine, and hydrogen cyanide biosynthesis. Notably, PA3049
28 directly interacts with two kinases implicated in stress response, inactivating their active sites.
29 Renamed as the Biofilm antibiotic tolerance Regulator (BatR), PA3049 is a key player in *P.*
30 *aeruginosa* biofilm maintenance and antimicrobial tolerance. These findings contribute to
31 understanding the complex bacterial lifestyle in biofilms, shedding light on a previously
32 uncharacterized gene with significant implications for combating multidrug-resistant
33 infections.

34 **IMPORTANCE**

35 *P. aeruginosa* is a multidrug-resistant ESKAPE pathogen that causes chronic biofilm-based
36 infections and is a leading cause of mortality in cystic fibrosis (CF) patients. Understanding
37 the molecular mechanisms underlying *P. aeruginosa* biofilm resilience and antimicrobial
38 resistance is crucial for developing effective therapeutic interventions. This study focuses on
39 characterizing the gene *PA3049*, now known as the biofilm antibiotic tolerance Regulator
40 (*batR*). BatR plays a central role within *P. aeruginosa* biofilms, orchestrating adaptive
41 responses to antimicrobial challenges. Our work sheds light on the contribution of *batR* to
42 biofilm biology and its relevance in lung infections, where subinhibitory antibiotic
43 concentrations make BatR pivotal for bacterial survival. By advancing our understanding of *P.*

44 *aeruginosa* biofilm regulation, this study holds significant promise for the development of
45 innovative approaches against biofilm-associated infections to mitigate the growing threat of
46 antimicrobial resistance.

47 **INTRODUCTION**

48 *Pseudomonas aeruginosa* is a virulent, opportunistic human pathogen and one of the ESKAPE
49 group of bacteria (1) that are leading causes of multidrug-resistant, nosocomial bacterial
50 infections. *P. aeruginosa* presents a significant challenge in healthcare settings where it causes
51 highly persistent, chronic infections, primarily affecting catheter and cannula implants (2), burn
52 or other major injury victims (3), chronic wounds (4), and immunocompromised patients (5).
53 In 2015, multidrug-resistant *P. aeruginosa* led to an estimated 4,500 attributable deaths and
54 68,000 infections in the EEA (6), while over 30% of *P. aeruginosa* isolates reported to EARS-
55 Net in 2018 were resistant to at least one regularly monitored group of antimicrobials (7). *P.*
56 *aeruginosa* is also a major respiratory pathogen, causing both acute and chronic lung infections.
57 Pulmonary infections caused by *P. aeruginosa* are a major cause of mortality and morbidity in
58 people with the genetic disorder cystic fibrosis (8, 9).

59 Chronic *P. aeruginosa* infections are frequently associated with biofilms, which enable it to
60 evade host immune responses and confer broad resistance/tolerance to antimicrobial agents,
61 complicating treatment strategies. Bacterial biofilms exhibit common traits and phenotypic
62 characteristics, including cell-to-cell communication (quorum sensing), the production and
63 deployment of extracellular polymeric substances and extracellular DNA (eDNA), and the
64 spatially structured control of motility, adhesins and c-di-GMP levels (10).

65 The upregulation of genes linked to stationary phase adaptation, environmental stress and
66 anaerobiosis further underscores the distinct features associated with biofilm growth (11, 12).
67 Additionally, the spatial arrangement of cells within the biofilm community, exposed to
68 multiple resource gradients, introduces heterogeneity in cell physiology and metabolism that

69 plays an important role in antibiotic tolerance. This diversity includes significant
70 subpopulations of less metabolically active (dormant) cells, which contribute to the notable
71 tolerance of biofilms to antibiotics designed to target active metabolic processes (13). For
72 example, dormant cells within oxygen-depleted zones of *P. aeruginosa* biofilms exhibit lower
73 overall mRNA transcript abundance and increased tolerance to ciprofloxacin and tobramycin
74 (13).

75 Increased antimicrobial tolerance has also been associated with the global metabolic
76 adaptations that arise in response to the biofilm environment (14). *P. aeruginosa* showcases
77 this adaptability through its ability to grow anaerobically using nitrate as an alternative electron
78 acceptor (15). The relevance of metabolic adaptions in response to antibiotics was underscored
79 by an *in vitro* screen for tobramycin-resistant *P. aeruginosa* PA14 mutants that revealed a
80 significant proportion of resistant mutants with transposon insertions in energy metabolism
81 genes (16).

82 Although a consensus has emerged on the role of many biofilm-associated traits, the large
83 number of uncharacterized genes reported as differentially expressed under biofilm conditions
84 highlights the substantial gaps that remain in our understanding of this complex bacterial
85 lifestyle (17). Among the minority of upregulated loci in dormant, biofilm-dwelling *P.*
86 *aeruginosa* cells is the small, uncharacterised gene *PA3049* (13). *PA3049* is predicted to encode
87 a 70-residue cytoplasmic hydrophilin; part of a family of small, extremely hydrophilic, glycine-
88 rich proteins that contribute to desiccation/osmotic stress tolerance in plants and yeast, but
89 whose role in bacteria is less well understood (18).

90 *PA3049* is annotated as a homolog of the *Escherichia coli* ribosome modulator factor (RMF)
91 (13). RMF, a ribosomally associated protein, facilitates ribosome hibernation by associating
92 with 100S ribosome dimers and modulates *E. coli* translation during the stationary phase (19).
93 Unlike other ribosome components or associated proteins, *rmf* expression is inversely

94 dependent on growth rate, indicating its potential involvement in the bacterial stress response
95 (19). Classified as a hydrophilin, RMF accumulates under hyperosmotic stress conditions (18).
96 RMF deletion in *E. coli* is linked to decreased aminoglycoside tolerance, potentially due to the
97 location of its ribosome binding site (20). However, while RMF is crucial for ribosome
98 hibernation in *E. coli* (21), PA3049 apparently does not fulfil a similar function in *P. aeruginosa*
99 (22). Deleting *PA3049* in *P. aeruginosa* compromises membrane integrity in biofilm-forming
100 cells, suggesting a potential role in maintaining cell viability for the dormant subpopulation
101 (13). Nonetheless, despite its conservation in sequenced *P. aeruginosa* strains and likely
102 functionality in biofilms, the precise role of *PA3049* in *P. aeruginosa* biofilm formation remains
103 unknown (22).

104 Here, we used a combination of bioinformatics, infection biology and molecular microbiology
105 to determine the distribution of *PA3049* across bacterial genomes, its importance for host
106 infection and biofilm formation, its contribution to antimicrobial tolerance and its mechanism
107 of action in *P. aeruginosa*. *PA3049*-like genes are widespread in γ -proteobacteria, with a
108 substantial degree of sequence and structural divergence predicted between the
109 *Pseudomonadales* and *Enterobacterales*.

110 *PA3049* plays an important role in the formation of biofilm architecture and enabling
111 established biofilms to withstand antimicrobial challenge. These global traits were traced to a
112 narrow set of phenotypic and protein abundance shifts, with *PA3049* deletion leading to reduced
113 pyocyanin production and altered abundance of enzymes controlling denitrification,
114 pyoverdine and hydrogen cyanide biosynthesis. Finally, we showed that *PA3049* interacts
115 directly with two different kinases; *SrkA* and *GlpK* that have recently been linked to antibiotic
116 tolerance, suggesting an *in vivo* mechanism of action. Given the importance of *PA3049* for *P.*
117 *aeruginosa* antimicrobial tolerance and biofilm maintenance, we renamed this gene Biofilm
118 antibiotic tolerance Regulator (BatR).

119 **RESULTS**

120 ***PA3049* homologs are widespread in γ -proteobacteria.**

121 To uncover the role of *PA3049* (*batR*) in *P. aeruginosa*, we first compared its predicted structure
122 with that of *E. coli* RMF and assessed the wider distribution of *batR*-like genes in bacterial
123 genomes. An alignment of BatR and RMF sequences, sharing 49.09% identity, shows a 15-
124 residue C-terminal extension on BatR that is absent from RMF (Fig. 1a). AlphaFold three-
125 dimensional protein structure prediction of BatR highlighted a marked difference in the fold of
126 the protein C-terminus compared to its *E. coli* homolog. BatR contains a predicted α -helix of
127 12 residues at the C terminus (red boxed) in addition to the two α helices connected by a 13-
128 amino acid linker region that comprise *E. coli* RMF (Fig. 1b).

129 A phylogenetic tree of RMF homologs revealed that they are confined to the γ -proteobacteria
130 class (Fig. 1c), with genes associated with RMF showing distinct evolutionary paths across
131 diverse bacterial orders. Notably, *batR* in Pseudomonadales forms a distinct cluster that
132 diverges significantly from other bacterial orders. This divergence is particularly evident for
133 the Enterobacterales, including *E. coli* and *Yersinia pestis*; and Vibrionales including *Vibrio*
134 *cholerae*, where RMF homologs have been shown to play roles in ribosome hibernation (23).
135 While *rmf* and *batR* appear to share an ancestral root, their divergent structure and phylogeny,
136 supported by the existing literature (22) are consistent with an alternative functional role for
137 BatR.

138 ***batR* protects *P. aeruginosa* biofilms from sub-inhibitory concentrations (SIC) of
139 antibiotics *in vitro*.**

140 Given the heightened abundance of *batR* transcripts in dormant *P. aeruginosa* cells within
141 biofilms (13), we assessed the importance of *batR* in biofilm formation and its effects on
142 antimicrobial tolerance. To do this, we generated a non-polar deletion mutant ($\Delta batR$) in PAO1
143 and examined the response of the mutant to antimicrobial agents when grown in liquid and on

144 solid agar. Assays were conducted using several different antibiotic classes, targeting distinct
145 metabolic processes: aminoglycosides (gentamicin, GENT), β -lactams (piperacillin, PIP) and
146 quinolones (ciprofloxacin, CIP).

147 Consistent with previous findings (22), the deletion of *batR* did not impact bacterial viability
148 or result in growth impairment in shaking cultures exposed to SIC of tested antimicrobials (see
149 Fig. S1). Additionally, the minimal inhibitory concentration (24) of all three tested antibiotics
150 was unaffected in $\Delta batR$ (Table 1). Interestingly however, $\Delta batR$ showed a small but significant
151 increase in sensitivity to PIP and CIP (12-17%), when grown on a solid surface (Fig 2a).

152 The comparison of PAO1 WT and $\Delta batR$ cultures grown in liquid medium (24) under static
153 conditions revealed no measurable effect on biofilm formation (Fig. 2b). However, the addition
154 of SIC of CIP led to a significant reduction in biofilm formation for the $\Delta batR$ strain compared
155 to WT PAO1 (Fig. 2b). Given the initial observation that sensitivity to both PIP and CIP was
156 affected on solid surfaces (Fig. 2a), we used an alternative, glass bead biofilm model (25), to
157 assess the survival of cells within established biofilms challenged with PIP. This model
158 revealed a substantial reduction in the survival of established $\Delta batR$ biofilms compared to WT
159 PAO1, for samples exposed to SIC of PIP (Fig. 2c). Notably, the $\Delta batR$ phenotype could be
160 fully rescued by the heterologous expression of *batR* (Fig. 2d). Considering the different mode
161 of action of the antibiotics tested in this study, our results suggest that the contribution of BatR
162 to *P. aeruginosa* antimicrobial tolerance may occur through a general, rather than a drug-
163 specific mechanism. A simple explanation for these phenotypes could be a nonspecific change
164 in membrane permeability. However, we discarded this hypothesis after quantifying the
165 intracellular concentration of resazurin, a fluorescent dye used as a permeability and efflux
166 marker (Fig. S2), where little difference was seen in the response of WT and $\Delta batR$ strains.

167 **BatR affects the ability of *P. aeruginosa* to withstand antimicrobial challenge in
168 established biofilms and clinically validated infection models.**

169 To assess the clinical significance of BatR in *P. aeruginosa*, we employed the established *ex*
170 *vivo* pig lung (EVPL) model (26) to simulate *P. aeruginosa* biofilm infections in CF
171 bronchioles. This model comprises two environments: the bronchiolar lung tissue surface and
172 the SCFM (Synthetic Cystic Fibrosis Medium) to mimic the luminal mucus in the human CF
173 lung (27). We first determined the efficiencies of the antibiotics PIP, CIP, and GENT to clear
174 EVPL infections. Under our test conditions, PAO1 biofilms were highly tolerant to PIP
175 treatment (Fig. S3), precluding its use in these assays. Therefore, we assessed survival of the
176 biofilms challenged with CIP at a SIC of 16 µg/ml. We recovered the biofilms at 2 d and 7 d
177 postinfection (PI) to determine CFU per EVPL section. Our results show that BatR not only
178 contributes to CIP tolerance, but also plays a key role in biofilm establishment within the EVPL
179 model at 2 d PI (Fig. 3a). However, by 7 d PI, while *P. aeruginosa* remained viable on the lung
180 tissue, *batR* did not appear to contribute significantly to biofilm formation or CIP tolerance,
181 although there was a decrease in tolerance to CIP treatment in the WT strain (Fig. 3a). These
182 findings suggest a role for BatR in biofilm establishment and antibiotic tolerance in *P.*
183 *aeruginosa* infections, particularly in early stages of CF. We further explored these phenotypes
184 in an *in vitro* biofilm model designed to mimic the conditions found in chronic wounds (28).
185 Survival comparisons in biofilms without CIP challenge revealed no differences between WT
186 and Δ batR strains. However, significant differences were observed for PAO1 Δ batR biofilms
187 treated with different concentrations of CIP, compared to WT PAO1 in this model (Fig. 3b).
188 Next, we examined the biofilm architecture in infected lung pieces, with and without SIC of
189 CIP in the EVPL + SCFM. Replica sets of infected lung pieces were fixed at both 2 d and 7 d
190 PI and sections stained with H & E (Haematoxylin & Eosin) to visualise the total biofilm mass
191 and tissue architecture. At 7 d PI, the EVPL biofilms show the typical “sponge”-like appearance
192 consisting of extracellular matrix punctuated by gaps, resembling CF biofilms observed *in vivo*
193 (29-31). However, there were clear qualitative differences in the biofilm observed between the

194 $\Delta batR$ and WT strains, as shown in Fig. 4. The matrix covering the biofilm structure appeared
195 thicker in the WT biofilm when challenged with SIC of CIP, something that is not observed in
196 the biofilm formed by the $\Delta batR$ strain (Fig. 4). These observations suggest that *batR* may play
197 a role in influencing biofilm architecture, particularly in response to SIC of antibiotics.

198 **BatR induces the production of specific virulence factors in the EVPL model under CIP
199 challenge.**

200 To understand the impact of BatR on *P. aeruginosa* biology in the EVPL model, we quantified
201 the production of key virulence-associated exoproducts (27). After washing the lung tissues
202 twice in PBS to remove planktonic cells, we measured virulence factor production by biofilms
203 growing on the lung tissue surface. Despite non-significant changes in siderophore abundance
204 (pyoverdine and pyochelin, Fig. S4), a notable increase in blue colouration, indicative of
205 pyocyanin production, was evident in the WT strain compared to $\Delta batR$ when treated with CIP
206 on day 2 (Fig. 5 a,b).

207 **BatR induces specific changes in the PAO1 proteome under antimicrobial challenge.**

208 Next, to investigate the physiological changes associated with BatR during antibiotic challenge
209 in *P. aeruginosa* biofilms, we conducted a comparative proteomic analysis between the WT
210 and $\Delta batR$ PAO1 strains, in the presence and absence of SIC of the antibiotic PIP. High-
211 resolution mass spectrometry following TMT labelling detected an average of 4,581 individual
212 proteins in each sample (S1 Data), representing ~80% of the predicted total *P. aeruginosa*
213 PAO1 proteome (32). BatR was exclusively detected in the WT PAO1 strain. Surprisingly,
214 limited differences were detected between the proteomes of the two strains (Fig. S5, S1 Data),
215 suggesting that the impact of *batR* deletion is quite specific under the conditions tested.
216 Of 21 proteins decreased in the $\Delta batR$ strain in the absence of PIP challenge (Table 2), seven
217 (PA0617-PA0633) are components of a predicted bacteriophage. In addition, we saw reduced
218 abundance of proteins involved in transport & metabolism; two heat shock proteins and four

219 proteins of unknown function in the $\Delta batR$ strain. Conversely, 14 proteins were increased in
220 the $\Delta batR$ strain, including Rubredoxin-1, Type VI secretion system components and the
221 Phenazine-1-carboxylate N-methyltransferase PhzM (Table 3).

222 For cells subjected to PIP challenge (S1 Data), *batR* deletion is associated with significantly
223 decreased abundance of 11 proteins (Table 4), including components of the Hydrogen cyanide
224 (HCN) and Pyoverdine (PWD) synthesis pathways, quorum sensing and transcriptional
225 regulators, and iron transport proteins. Deletion of *batR* significantly increased abundance of
226 only twelve proteins under PIP challenge. These proteins play roles in energy production and
227 conversion, especially nitrate respiration, primary metabolism, and Type VI secretion (Table
228 5).

229 To further explore the suggested connection between BatR and PVD and HCN production, we
230 grew WT and $\Delta batR$ strains in the presence of SIC of the antibiotics PIP, CIP, and GENT, and
231 quantified PVD and HCN production. Contrary to expectations, PVD production was
232 significantly increased in the $\Delta batR$ strain under PIP challenge in liquid media (Fig. 6a).
233 Likewise, exposure of WT and $\Delta batR$ strains to Feigl Anger solution, showed enhanced HCN
234 production in the $\Delta batR$ strain when challenged with PIP (Fig. 6d). These results confirm the
235 link between BatR and both phenotypes but suggest that the association may be highly
236 dependent on growth conditions. Consistent with results from the EVPL assays, we did not
237 observe a significant increase in siderophore production under CIP or GENT challenge
238 conditions in the $\Delta batR$ strain (Fig. 6 b,c). These findings suggest that, while *batR* deletion
239 leads to a general antibiotic/biofilm tolerance phenotype, some of the specific proteomic
240 changes observed are antibiotic-specific.

241 **BatR interacts with two kinase enzymes.**

242 To understand the molecular basis of BatR function, we next investigated its interactions with
243 other PAO1 proteins by performing a co-immunoprecipitation (Co-IP) analysis (S2 Data). M2-

244 tagged BatR pulled down several cytoplasmic proteins, indicating potential direct regulatory
245 mechanisms (Table 6). Independent validation of strongly co-precipitating proteins was
246 conducted using Bacterial Two-Hybrid (B2H) analysis. This confirmed specific interactions
247 between BatR and two structurally diverse kinase enzymes: Glycerol phosphate kinase (GlpK)
248 and Stress response kinase A (SrkA) (Fig. 7a). These interactions are noteworthy given the
249 recently established roles of both proteins in antimicrobial tolerance and stress response (33,
250 Liu Y, 2022 #12, 34).

251 To gain additional insight into the potential interaction between BatR and GlpK / SrkA, we
252 used AlphaFold 2 (35) to create three dimensional models of all three proteins. These models
253 allowed us to dock BatR onto GlpK and SrkA, predicting potential interaction residues and
254 providing valuable structural information. Interestingly, the BatR residue W₅₂ was common to
255 both predicted interaction interfaces (Fig. 7 b,c). This residue is highly conserved among
256 *Pseudomonas* BatR homologs but is missing from *E. coli* RMF (Fig. S6).

257 **GlpK (PA3582)** is an ATP-dependent glycerol kinase that catalyses the first step in the
258 metabolism of glycerol, producing glycerol 3-phosphate (G3P) during aerobic microbial
259 metabolism in *P. aeruginosa* (36). G3P accumulation is associated with reduced cell growth,
260 diminished pyocyanin production, lowered tolerance to oxidative stress and increased
261 kanamycin susceptibility in *P. aeruginosa* (34). The observed phenotypes in the Δ batR strain
262 align with those linked to G3P accumulation (Figures 2, 3 & 5), suggesting a potential role for
263 BatR in suppressing GlpK activity. The interaction between BatR and GlpK is predicted to be
264 electrostatic, with the amino acids from BatR (W₄₄, E₄₆ and W₅₂) and GlpK (V₃₂₆, N₃₂₈ and
265 Y₃₃₅) being involved (Fig. 7b). We propose that BatR's binding suppresses GlpK activity as the
266 binding may interfere with the ATP/ADP predicted binding site (residues 314 & 318, Table 7).
267 Consistent with the expected consequences of G3P accumulation, batR deletion significantly

268 affected PAO1 growth and survival when cultured in M9 containing succinate & glycerol, as
269 previously described (34) (Fig. 8a).

270 **SrkA (PA0486)** is a eukaryotic-like serine-threonine protein kinase, whose protective role in
271 antimicrobial and environmental stress has been characterised in *E. coli* (33, 37). This protein
272 is linked to a reactive oxygen species (ROS) cascade, and a deficiency of *srkA* stimulates stress-
273 induced programmed cell death (PCD) even after stress dissipated. The deletion of *batR* in *P.*
274 *aeruginosa* strain PAO1 leads to reduced survival rates following antibiotic treatment in
275 biofilms (Figure 2&3), despite no observed changes in MIC values (Table 1), consistent with
276 SrkA dysregulation in *E. coli* (33). Additionally, BatR exhibits a protective role against
277 hydrogen peroxide (H₂O₂) stress in PAO1 (Fig. 8b), like SrkA in *E. coli*, supporting a potential
278 connection between BatR and SrkA in stress response pathways. The interaction between BatR
279 and SrkA is also predicted to be electrostatic, involving specific amino acid residues from both
280 BatR (R₂₆, W₄₄, E₄₆ and W₅₂) and SrkA (N₃₂, Y₃₄, P₁₁₃, A₂₃₄, G₂₃₅, Y₂₇₆ and F₂₉₃) (Fig. 7c). We
281 propose that the binding of BatR suppresses the kinase activity of SrkA, possibly impacting its
282 role in ATP binding (residue 33 predicted to bind ATP, see Table 8). This interaction might
283 enhance cellular resistance to stress. To test this hypothesis, we overexpressed *srkA* in the WT
284 and Δ *batR* strains. The overproduction of SrkA in both strains resulted in increased lethality
285 and enhanced pyocyanin production in pellicle biofilms grown in liquid medium (Figure 8c).
286 It is noteworthy that pyocyanin production occurs underneath growing pellicles when *srkA* is
287 overexpressed. Given the lack of characterisation of *srkA* in *P. aeruginosa* so far, we propose
288 a potential role in regulating antimicrobial stress and pyocyanin production, two phenotypes
289 associated with *batR* in this study.

290 **DISCUSSION**

291 In this study, we characterise the *P. aeruginosa* hydrophilin BatR and determine its role in
292 antimicrobial tolerance and biofilm formation, and its potential clinical significance. *batR*

293 homologs exhibit a high degree of conservation within diverse bacteria, particularly in γ -
294 proteobacterial species (23). The identification of a well-supported clade of Pseudomonadales
295 carrying *batR* homologs that is both genetically and structurally distinct from the characterised
296 Enterobacterales/Vibrionales *rmf* clade suggests a divergent evolutionary path for these genes,
297 and a distinct cellular function for BatR. The well characterised *batR* homolog in *E. coli*; *rmf*,
298 contributes to ribosome hibernation and tolerance to the aminoglycoside antibiotics gentamicin
299 and netilmicin (20, 38). Consistent with this, the binding site of this hibernation factor is near
300 to those described for these antibiotics, thus potentially interfering with its mechanism of action
301 (23). Conversely, the contribution of *batR* to antimicrobial tolerance is not linked to
302 antimicrobial mode-of-action, making it highly unlikely that BatR functions solely via
303 ribosomal inhibition, as previously suggested.

304 BatR contributes to both biofilm formation and antibiotic tolerance in conditions like those in
305 CF infections. Our data suggest that BatR is particularly important during the early stages of *P.*
306 *aeruginosa* lung tissue infection at sub-inhibitory concentrations of antibiotics. This is relevant
307 in CF patients since they are typically subject to extended antibiotic regimes, but the drugs do
308 not necessarily reach the entire lung at inhibitory concentrations (39). Both WT and $\Delta batR$
309 strains formed sponge-like biofilm structures, characteristic of CF infections after 7 days PI in
310 the EVPL model. However, upon challenge with CIP the $\Delta batR$ strain formed a less resistant
311 biofilm structure on the surface of the EVPL bronchiolar tissue compared to the WT strain.
312 Interestingly, whilst these differences were visually obvious, similar CFU were recovered from
313 tissue infected by both genotypes at 7 days. This is consistent with a large fraction of dead or
314 unculturable cells in WT biofilms, as previously observed for *P. aeruginosa* PA14 biofilms
315 (27). Noteworthy, transcriptomic analysis of *P. aeruginosa* strain PA14 in EVPL model
316 revealed significant differential expression of *batR* at 7 days compared with 1 day PI (40). BatR
317 is also involved in *P. aeruginosa* biofilm tolerance in the synthetic chronic wound model of

318 diabetic foot infections. This is consistent with the finding that *batR* expression is differentially
319 increased in burn wound infections (41), and underscores the versatility of *batR* in mediating
320 *P. aeruginosa* pathogenesis across various infection settings.

321 BatR function appears to be consistently associated with pyocyanin production. This molecule
322 was notably reduced in $\Delta batR$ following exposure to CIP in the EVPL model (Figure 5). Acting
323 as a potent electron acceptor, pyocyanin influences cellular redox balance, inducing oxidative
324 stress in host cells and ultimately leading to cell damage and lysis (42). Within the oxygen-
325 limited environment of *P. aeruginosa* biofilms, pyocyanin is crucial for metabolic continuity
326 and significantly impacts the biofilm's response to antibiotic treatments (43-45). Our proteomic
327 results align with previous research demonstrating the induction of denitrification enzymes by
328 phenazine deficiency in *P. aeruginosa* biofilms (46). Additionally, upregulation of the
329 permease FeoB (Table X) by *batR* facilitates efficient iron uptake in biofilms, highlighting the
330 intricate interplay between BatR, phenazine metabolism and iron homeostasis (47). Consistent
331 with our H&E staining results (Figure 4), pyocyanin production has been linked to biofilm
332 architecture and eDNA production in *P. aeruginosa* (48), contributing to the observed
333 differences in biofilm structure.

334 Finally, to understand the molecular basis of BatR function we investigated its protein
335 interaction partners within the cell. Through screening, two proteins; SrkA and GlpK, were
336 identified. BatR interaction with SrkA and GlpK control antimicrobial tolerance and virulence
337 factor production of *P. aeruginosa* PAO1 biofilms. Thus, BatR may have potential therapeutic
338 utility as a target for the control of *P. aeruginosa* infections. Similarly to *E. coli*, SrkA in *P.*
339 *aeruginosa* may have a regulatory role in stress mediated PCD, mediated by BatR interaction.
340 *E. coli* SrkA is partially regulated by the Cpx envelope stress-response system, which has both
341 protective and destructive roles that help bacteria make a live-or-die decision in response to
342 stress (33). Interestingly, transcription of *rmf* is also induced by the Cpx system in *E. coli*,

343 suggesting a link between them (49). Our results also suggest the involvement of SrkA in
344 regulating pyocyanin production in *P. aeruginosa*, although further research is necessary to
345 fully understand this link.

346 G3P metabolism has been characterized in *P. aeruginosa* due to its relevance to CF infections
347 (34): glycerol is released from the cleavage of phosphatidylcholine, the major lung surfactant
348 in CF patients (50). G3P is involved in maintaining cellular homeostasis, and increased levels
349 of G3P lead to reduced pyocyanin production and resistance to kanamycin (34). This represents
350 a clear example of bacterial antibiotic resistance closely correlated with physiological
351 metabolism (51, 52). However, the specific mechanism by which G3P accumulation induces
352 phenotypic alterations in *P. aeruginosa* PAO1 remains unclear.

353 Our current view of the mechanism of action of this novel post-transcriptional regulator, BatR,
354 expressed under biofilm conditions that plays a role under antimicrobial stress in the
355 opportunistic human pathogen *P. aeruginosa*, is sketched in Fig. 9.

356 In conclusion, our findings expand the understanding of molecular mechanisms contributing
357 to antimicrobial tolerance in *P. aeruginosa* biofilms. These results have broad implications for
358 the functions of uncharacterised proteins induced under biofilm conditions, shedding light on
359 their pivotal role in orchestrating multifaceted processes. This deeper insight enhances our
360 ability to develop targeted therapeutic interventions to combat biofilm-associated challenges.

361

362 MATERIALS AND METHODS

363 Bioinformatic analysis.

364 A phylogenetic tree of RMF proteins was constructed using 765 publicly available protein
365 sequences from the NCBI database. The dataset was curated based on a criterion of 50%
366 sequence identity and 40% query cover to ensure the representation of diverse homologs while
367 maintaining a reasonable level of similarity. The multiple sequence alignment was performed

368 using Clustal Omega (v1.2.4), generating an alignment matrix with 137 columns and 135
369 distinct patterns. Phylogenetic signal analysis revealed 82 parsimony-informative sites, 33
370 singleton sites, and 22 constant sites. Manual curation was done to remove the repetitive
371 sequences and false hits. The phylogeny estimation was done using IQ-TREE, (multicore
372 v1.6.12), employing the maximum likelihood (ML) criterion. The tree visualization was done
373 using iTOL (v6.8.1), representation chosen was an unrooted tree with branch lengths
374 proportional to the inferred evolutionary distances between sequences. The clade colours were
375 assigned at order level of the taxonomy.

376 **Bacterial strains and growth media.**

377 Bacterial strains and plasmids used in this study are listed in Table 9. Unless otherwise stated,
378 *P. aeruginosa* PAO1 and *E. coli* DH5 α strains were routinely cultured in lysogeny broth (LB
379 (JH, 1972 #6)) at 37°C solidified with 1.5% w/v agar where appropriate. For Gly + Succinate
380 growth curves, PAO1 strains were grown in M9 salts supplemented with 1 mM MgSO₄, 1 mM
381 CaCl₂ (53), adding 20 mM succinate and 20 mM glycerol as the carbon sources. For growth
382 curves, measurements were taken every 30 min for up to 48 h on a FLUOstar nano plate reader
383 (BMG) with the plate being incubated at 37°C under static or planktonic conditions, as
384 indicated.

385 Carbenicillin (Carb) was used at 100 μ g/ml, Kanamycin (Kan) at 50 μ g/ml, Tetracycline (Tet)
386 at 12.5 μ g/ml for *E. coli* and 100 μ g/ml for *P. aeruginosa*, IPTG at 0.5 mM, and X-gal at 40
387 μ g/ml. The antibiotics Piperacillin (PIP), Gentamicin (GENT), and Ciprofloxacin (CIP) were
388 employed at concentrations optimized for each experiment, with details provided accordingly.

389 **Molecular biology techniques and Genetic manipulation of PAO1.**

390 These procedures were performed as previously described (54). All pTS1 plasmid inserts were
391 synthesised and cloned into pTS1 by Twist Bioscience.

392 The ORF of *batR* and *srkA* were amplified by PCR with primers batR_EcoRI_F / batR_XhoI_R
393 and srkA_EcoRI_F / srkA_XhoI_R (Table 10), respectively, and ligated between the EcoRI
394 and XhoI sites of pME6032. For the flag-tagged *batR* construction in pME6032, primers
395 batR_EcoRI_F and 3xflag_batR_XhoI (Table 10) were used. Bacterial-2-hybrid plasmids were
396 made by Gibson assembly (*glpK*) and restriction cloning (*batR*, *acpP*, *srkA*, *pslC*, *pilG*, and
397 *ribA*) into the XbaI and KpnI sites of pKNT25 and pUT18C using the primers indicated in
398 Table 10.

399 **MIC determination.**

400 Minimum inhibition concentrations of antibiotics were determined by the broth microdilution
401 method (24) following the EUCAST guidelines, using Mueller-Hinton broth. The Sub
402 Inhibitory Concentration (SIC) was defined as being 1/4 of the lowest antibiotic concentration
403 that inhibited visible growth after overnight incubation at 37°C.

404 **Inhibition disc assay.**

405 Bacterial cultures were grown in LB medium at 37°C to mid-log phase, $A_{600\text{nm}}=0.5$, and 150
406 μl were spread on each plate. Discs containing the antibiotics/H₂O₂ were gently placed on the
407 agar and plates were incubated inverted overnight. The normalized width of the antimicrobial
408 “halo” (NW_{halo}) of each disk was determined after (55).

409 **Glass beads biofilms and Crystal Violet (CV) assays.**

410 These assays were performed as described elsewhere (25) with the following modifications.
411 Ten independent biological replicates were included: five PIP-exposed biofilm lineages
412 (challenged with 0.25× MIC of PIP for 90 min) and five unexposed control lineages. Cells
413 recovered from the beads were serial diluted and spotted onto LB plates for CFU counting.
414 For the CV assay, the $A_{590\text{nm}}$ was measured at using a SPECTROstar nano plate reader (BMG
415 Labtech).

416 **Membrane permeability assays.**

417 These assays were performed as described elsewhere (56).

418 **EVPL infection model.**

419 EVPL was prepared as previously described (27, 57). Porcine lungs were obtained from two
420 local butchers (Quigley and Sons, Cubbington; and Taylor's Butcher, Earlsdon) and dissected
421 on the day of delivery under sterile conditions. Following infection of bronchiolar tissue pieces,
422 500 µl of SCFM ± 16 µg/ml CIP was added to each well. Tissue pieces were incubated at 37°C
423 for 2 and 7 d. Uninfected controls were included. EVPL biofilm recovery and assessment of
424 bacterial load and virulence factors production were determined as described elsewhere (27).

425 **Haematoxylin & eosin staining.**

426 H & E staining was assayed as previously described (27). The infected/uninfected EVPL tissue
427 pieces were fixed and sent to the University of Manchester Histology Core Facility for paraffin
428 wax embedding, sectioning, and mounting. Samples were de-paraffinized and stained in
429 Mayer's hemalum solution (Merck Millipore) and counterstained in eosin Y solution (Merck
430 Millipore). Images were taken using a Zeiss Axio Imager Z2 light microscope with the Zeiss
431 AxioCam 506 and Zeiss Zen Blue v2.3 pro software.

432 **Synthetic chronic wound infection model.**

433 These assays were performed as previously described (28).

434 **Quantitative Proteomics (TMT) for expression analysis.**

435 The detailed protocol is presented in the supplemental materials section (S3 Data). The mass
436 spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via
437 the PRIDE (58) partner repository with the dataset identifier PXD050997 and
438 10.6019/PXD050997.

439 **Hydrogen cyanide (HCN) production.**

440 The Feigl-Anger assay was employed to detect HCN production. These assays were performed
441 as described elsewhere (59).

442 **Co-Immunoprecipitation and mass spectrometry analysis.**

443 The detailed protocol is presented in the supplemental materials section (S4 Data). Data are
444 available via ProteomeXchange with identifier PXD050995.

445 **Bacterial 2 hybrid assays.**

446 These assays were performed as described elsewhere (60) with some modifications. The ORFs
447 of *batR*, *acpP*, *pilG*, *pslC*, *ribA*, *srkA* and *glpK* were cloned into pKT25 and pUT18C using
448 either conventional restriction enzyme cloning or Gibson assembly, as indicated in Table 10.

449 **Data presentation and statistical analyses.**

450 All graphs and one-way ANOVA followed by post-hoc Tukey's Multiple Comparison Test,
451 where appropriate, were performed using GraphPad Prism version 5.04 for Windows,
452 www.graphpad.com.

453

454 **ACKNOWLEDGMENTS**

455 The authors would like to Govind Chandra for his feedback on bioinformatic analysis. This
456 work was supported by BBSRC Grants BB/X010996/1, BBS/E/J/000PR9797, and
457 BB/T004363/1. AP's placement in FH's lab was supported by the Flexible Talent Mobility
458 Award Scheme (FTMA).

459

460 **FIGURE LEGENDS**

461 **FIG 1. a. Sequence alignment of BatR and RMF.** The amino acid sequences were aligned
462 using ClustalW and black asterisks mark conserved residues in both proteins. **b. AlphaFold**
463 **model of BatR** (magenta), overlaid onto the structure of *E. coli* RMF (cyan). Note the
464 additional alpha-helix predicted for BatR (red boxed) at the C-terminus of the predicted
465 structure. **c. The phylogenetic relationship between BatR/RMF homologs.** The tree is based
466 on 765 proteins homologous to BatR/RMF from γ -proteobacteria.

467 **FIG 2. a. Antibiotic disk diffusion assay.** Results are represented as the normalized width of
468 the antimicrobial halo (NW halo), calculated as described in (55). Differences in inhibition
469 were significant between WT and $\Delta batR$ strains ($F_{5,50}=52.52$, $P<0.0001$) and post hoc analysis
470 showed significant differences between WT and $\Delta batR$ strain under PIP and CIP treatments
471 ($p<0.0001$ ***)) and non-significant (ns) effect with GENT. **b. Biofilm formation.** Crystal
472 Violet absorbance ($A_{590\text{nm}}$) after 24-h static growth in LB medium. Treated samples were
473 incubated in the presence of SIC of antibiotics PIP, GENT, and CIP. NT=not treated. ANOVA
474 $F_{7,32}=49.35$; $p<0.0001$, post hoc analysis showed this was only significant for CIP treatment
475 ($p<0.0001$ ***). **c. Glass Beads Biofilm survival.** Bacterial recovery (CFU/bead) from
476 established biofilms grown on glass beads for 24h following treatment with SIC of PIP for 90
477 min. **d. Glass Beads Biofilm survival complementation.** Strains: WT PAO1 strain carrying
478 the empty vector pME6032 (WT-pME6032) and $\Delta batR$ either carrying the empty vector
479 pME6032 ($\Delta batR$ -pME6032) or overexpressing $batR$ ($\Delta batR$ -pME- $batR$). ANOVA
480 $F_{2,12}=6.414$; $p=0.0127$, post hoc analysis showed this was significant for WT-pME6032 (PIP)
481 vs $\Delta batR$ -pME6032 (PIP) and for $\Delta batR$ -pME6032 (PIP) vs $\Delta batR$ -pME- $batR$ (PIP) ($p<0.05$ *).
482 **FIG 3. a. Ex Vivo Pig Lung (EVPL) Model.** Growth of *P. aeruginosa* PAO1 strain (WT) and
483 $\Delta batR$, on 15 pieces of EVPL bronchiole (five replicate pieces of tissue infected per strain from
484 five independent lungs) plus Synthetic Cystic Fibrosis Medium (SCFM), with and without 16
485 $\mu\text{g}/\text{ml}$ CIP treatment. Colony forming units (CFU) were retrieved from biofilms after 2 d and
486 7 d growth at 37°C. Bars denote mean for each genotype across all five lungs, and asterisks
487 denote a significant difference under that condition. ANOVA $F_{7,112}=19.90$; $p<0.0001$, post hoc
488 analysis showed significant differences for WT 2d vs $\Delta batR$ 2d; WT 2d vs $\Delta batR$ +CIP 2d;
489 $\Delta batR$ 2d vs WT+CIP 2d, ($p<0.0001$ ***); and for WT 7d vs WT+CIP 7d; WT 7d vs
490 $\Delta batR$ +CIP 7d ($p<0.05$ *). **b. Synthetic Chronic Wound (SCW) Model.** Viability of *P.*
491 *aeruginosa* PAO1 (WT) and the $\Delta batR$ strain living in established biofilms (24 h), treated with

492 different concentrations of CIP in the cell suspension on top of the matrices. Dots represent the
493 average from three biological replicates and error bars indicate the standard deviation. ANOVA
494 found a significant difference in biofilm survival between WT and $\Delta batR$ under 64 μ g/ml CIP
495 treatment.

496 **FIG 4. Haematoxylin and eosin (H & E) stained sections of EVPL bronchiolar tissue with**
497 **SCFM medium infected with *P. aeruginosa* at 7 d post infection.** EVPL was infected with
498 *P. aeruginosa* PAO1 WT and $\Delta batR$, with uninfected tissue as a negative control. The x20
499 magnification images from the sections are shown here for non-treated tissues (SCFM) and
500 treated with CIP (SCFM + CIP). The cartilage and tissue surface (lower half of each image)
501 stain pink and the bacterial biofilm stain purple, including the bacterial cells and biofilm matrix.
502 Representative images of phenotypes at day 7 PI are shown here, but the same results were
503 observed for all biological replicates analysed.

504 **FIG 5. a. Production of pyocyanin (A₆₉₅) by *P. aeruginosa* WT and $\Delta batR$ in the EVPL**
505 **model.** Significant differences in pyocyanin production between WT and $\Delta batR$ under CIP
506 treatment (ANOVA $F_{3,32} = 16.10$, $p < 0.0001^{***}$), post hoc analysis showed significant
507 differences ($p < 0.0001^{***}$) for WT vs WT (CIP), WT vs $\Delta batR$ (CIP); $\Delta batR$ vs WT (CIP) and
508 $\Delta batR$ vs $\Delta batR$ (CIP). **b. *P. aeruginosa* biofilms on squares of bronchiolar tissue.** The blue
509 pigmentation is typical of *P. aeruginosa* and is a mixture of the exoproducts pyoverdine and
510 pyocyanin; note the increased intensity of blue colour in the WT strain grown in SCFM exposed
511 to CIP.

512 **FIG 6. a, b, c. Pyoverdine production.** Fluorescence (PWD) relative to growth (A₆₀₀) of WT
513 and $\Delta batR$ PAO1 cells in liquid medium with and without PIP (a), CIP (b) and GENT (c). PVD:
514 relative fluorescence measured at 460 nm (excitation: 400 nm) for the strains at 65 h. **d. HCN**
515 **production.** Feigl-Anger assay showing release of HCN from WT and $\Delta batR$ PAO1 strains.
516 Three independent biological replicates are shown. The blue pigmentation corresponds to HCN

517 release; note the increased intensity of blue colour in the $\Delta batR$ PAO1 strain when challenged
518 with PIP (blue boxed).

519 **FIG 7. BatR interacts with two kinase-like proteins. a.** Representative image of qualitative
520 β -galactosidase assays on agar plates. pKT25 and pUT18C fusions are shown in rows and
521 columns, with the indicated protein/empty vector present in each case. Positive control (+):
522 pKT25-zip and pUT18C-zip encoding the two adenylate cyclase fragments, T25 and T18, each
523 fused to the leucine zipper domain of the yeast transcriptional activator GCN4. **b** and **c** are
524 cartoon representations of BatR (magenta) modelled onto the proteins GlpK of SrkA (35),
525 respectively. The interacting residues are shown in yellow and the W₅₂ residue is labelled.

526 **FIG 8. BatR interacts with Glycerol phosphate kinase (GlpK) and Stress response kinase**
527 **A (SrkA). a. Growth of *P. aeruginosa* PAO1 strains with 20 mM succinate and 20 mM**
528 **glycerol as the carbon sources.** The mean growth for 3 biological replicates for strains WT
529 (35) and $\Delta batR$ (blue) is shown as a solid line and standard deviation shown as dotted lines.
530 Cells were grown for 48 h at 37°C under static conditions. **b. Hydrogen peroxide (H₂O₂)**
531 **sensitivity assay.** Photographs of the bacterial culture plates 1 d after incubation at 37°C
532 showing halos corresponding to inhibition zones of bacterial growth around the H₂O₂ disks,
533 indicating bacterial sensitivity. Phenotypes of the WT and $\Delta batR$ (highly sensitive) strains are
534 shown. The concentration of H₂O₂ on each disk is shown (0.35-6.0 %). **c. Biofilm pellicle assay**
535 **showing 1 d biofilm and pyocyanin production.** Photograph of static cultures of the WT and
536 the $\Delta batR$ strains overexpressing *srkA* grown without (-) and with (+) 0.05 mM IPTG
537 demonstrating mature biofilm at air-liquid interface. Two biofilm characteristics were
538 observed: pellicle (arrowed) and pyocyanin production (blue coloration; red boxed).

539 **FIG 9. Schematic representation of BatR mechanism of action. a. BatR-GlpK interaction**
540 **and its impact on G3P metabolism in *P. aeruginosa* PAO1.** G3P, crucial for various cellular
541 processes, can be imported from the extracellular environment or derived from glycerol

542 phosphorylation via GlpK activity. The accumulation of G3P reduces antibiotic resistance,
543 pyocyanin production, oxidative stress tolerance, and twitching motility. GlpK activity is
544 suppressed upon interaction with BatR, potentially resulting in decreased G3P levels and
545 increased pyocyanin and antimicrobial resistance. **b. BatR-SrkA interaction and its**
546 **implications in stress-mediated bacterial PCD and pyocyanin production:** SrkA, plays a
547 protective role against stressors such as H₂O₂ and antibiotics, controls pyocyanin production,
548 and interacts with BatR. This interaction is hypothesised to be crucial for SrkA's protective
549 function and suggests a novel mechanism for stress response modulation in *P. aeruginosa*.

550

551 **SUPPLEMENTAL MATERIAL**

552 **FIG S1.** Growth curves are shown for strains WT (35), $\Delta batR$ (blue) in LB medium and WT
553 (35), $\Delta batR$ (black) in LB medium supplemented with SIC of CIP, GENT or PIP. The mean
554 growth for 3 biological replicates is shown as a solid line and standard deviation shown as
555 dotted lines. Cells were grown for 24 h at 37°C under shaking conditions.

556 **FIG S2. Membrane permeability assays.** Drug accumulation as measured by resazurin
557 fluorescence at excitation 544 nm and emission of 590 nm (544,590) is shown. Lines indicate
558 average from 3 biological replicates, with 4 technical replicates for each.

559 **FIG S3.** Log of total CFU of *P. aeruginosa* strain PAO1 WT recovered from the EVPL model
560 following treatment with antibiotics. Each strain was grown on EVPL tissue for 48 h then
561 transferred to antibiotic or PBS as a control for 18 h and the CFU/lung determined.

562 **FIG S4. Production of siderophores by *P. aeruginosa* WT and $\Delta batR$ biofilms in the EVPL**
563 **model.** Units are as follows: for pyoverdine (PWD), fluorescence with excitation/emission of
564 400±20/460±20 nm per CFU and pyochelin (PCH), fluorescence with excitation/emission of
565 360±35/460±20 nm per CFU of *P. aeruginosa*. Graphs **a** and **c** show PVD production at 2 d

566 and 7 d PI, respectively. Graphs **b** and **d** show PCH production at 2 d and 7 d PI, respectively.

567 The bars denote means and an ANOVA test shows non-significant differences.

568 **FIG S5.** Proteomic analysis: Scatterplot representing pairwise comparison of mean log2
569 protein abundance values for *P. aeruginosa* WT and $\Delta batR$, with and without PIP challenge. A
570 complete list of genes and information on their predicted functions are given in Table 2 and
571 Table 3.

572 **FIG S6.** Multiple sequence alignment of selected BatR homologs. ClustalW was used to align
573 RMF of *E. coli* and BatR homologs of different *Pseudomonas* species. The sequence alignment
574 was visualized using Geneious software. The conserved tryptophan residue at position 52 in
575 *Pseudomonas* spp. is shown (arrowed).

576 **S1 Data.** Integrated proteomic data comparing PAO1 WT and $\Delta batR$ (\pm PIP). Contains
577 underlying data for Fig S5. (XLSX).

578 **S2 Data.** Co-IP data comparing PAO1 WT-pME-*batR* and pME-3xFLAG-*batR*. Contains
579 underlying data for Table 6. (XLSX).

580 **S3 Data.** Protocol used for Quantitative Proteomics (TMT) for expression analysis. (DOCX)

581 **S4 Data.** Protocol used for Co-Immunoprecipitation and mass spectrometry analysis. (DOCX)

582

583 REFERENCES

- 584 1. Rice LB. 2008. Federal funding for the study of antimicrobial resistance in nosocomial
585 pathogens: no ESKAPE. *J Infect Dis* 197:1079-81.
- 586 2. Shigemura K, Arakawa S, Sakai Y, Kinoshita S, Tanaka K, Fujisawa M. 2006. Complicated urinary
587 tract infection caused by *Pseudomonas aeruginosa* in a single institution (1999–2003).
588 *International Journal of Urology* 13:538-542.
- 589 3. Chitkara YK, Feierabend TC. 1981. Endogenous and exogenous infection with *Pseudomonas*
590 *aeruginosa* in a burns unit. *Int Surg* 66:237-40.
- 591 4. Mulcahy LR IV, Lewis K. 2014. *Pseudomonas aeruginosa* biofilms in disease. *Microb Ecol*
592 doi:10.1007/s00248-013-0297-x.
- 593 5. Kielhofner M, Atmar RL, Hamill RJ, Musher DM. 1992. Life-Threatening *Pseudomonas*
594 *aeruginosa* Infections in Patients with Human Immunodeficiency Virus Infection. *Clinical*
595 *Infectious Diseases* 14:403-411.
- 596 6. Cassini A, Hogberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat
597 M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Ouakrim DA, Oliveira TC, Struelens MJ,

598 Suetens C, Monnet DL, Burden of AMRCG. 2019. Attributable deaths and disability-adjusted
599 life-years caused by infections with antibiotic-resistant bacteria in the EU and the European
600 Economic Area in 2015: a population-level modelling analysis. *Lancet Infect Dis* 19:56-66.

601 7. ECDPC. 2019. Surveillance of antimicrobial resistance in Europe 2018 doi:10.2900/22212.
602 European Centre for Disease Prevention and Control, Stockholm.

603 8. Lyczak JB CC, Pier GB. 2002. Lung infections associated with cystic fibrosis. . *Clin Microbiol Rev*
604 doi: 10.1128/CMR.15.2.194-222.2002.

605 9. Pressler T, Bohmova C, Conway S, Dumcius S, Hjelte L, Høiby N, Kollberg H, Tümmler B, Vavrova
606 V. 2011. Chronic *Pseudomonas aeruginosa* infection definition: EuroCareCF Working Group
607 report. *Journal of Cystic Fibrosis* 10:S75-S78.

608 10. Boyd CD OTG. 2012. Second messenger regulation of biofilm formation: breakthroughs in
609 understanding c-di-GMP effector systems. *Annu Rev Cell Dev Biol* doi:10.1146/annurev-
610 cellbio-101011-155705.

611 11. Serra DO HR. 2014 Stress responses go three dimensional - the spatial order of physiological
612 differentiation in bacterial macrocolony biofilms. *Environ Microbiol* doi:10.1111/1462-
613 2920.12483.

614 12. Piazza A PL, Ciancio Casalini L, Sisti F, Fernández J, Malone JG, Ottado J, Serra DO, Gottig N. .
615 2022. Cyclic di-GMP Signaling Links Biofilm Formation and Mn(II) Oxidation in *Pseudomonas*
616 *resinovorans*. *mBio* doi:<https://doi.org/10.1128/mbio.02734-22>.

617 13. Williamson KS RL, Perez-Osorio AC, Pitts B, McInnerney K, Stewart PS FM. 2012. Heterogeneity
618 in *Pseudomonas aeruginosa* biofilms includes expression of ribosome hibernation factors in
619 the antibiotic tolerant subpopulation and hypoxia-induced stress response in the metabolically
620 active population. *J Bacteriol* 194:2062-73.

621 14. Crabbé A JP, Bjarnsholt T, Coenye T. 2019. Antimicrobial Tolerance and Metabolic Adaptations
622 in Microbial Biofilms. *Trends Microbiol* doi:10.1016/j.tim.2019.05.003.

623 15. Schobert M JD. 2010. Anaerobic physiology of *Pseudomonas aeruginosa* in the cystic fibrosis
624 lung. *International Journal of Medical Microbiology* 300:549-556.

625 16. Schurek KN MA, Taylor PK, Wiegand I, Semenec L, Khaira BK, Hancock RE. 2008. Novel genetic
626 determinants of low-level aminoglycoside resistance in *Pseudomonas aeruginosa*. *Antimicrob Agents
627 Chemother* doi:10.1128/AAC.00507-08.

628 17. Kaleta MF PO, Zampaloni C, Garcia-Alcalde F, Parker M & Sauer K. 2022. A previously
629 uncharacterized gene, PA2146, contributes to biofilm formation and drug tolerance across the
630 γ-Proteobacteria. *npj Biofilms and Microbiomes* 8:54.

631 18. Garay-Arroyo A C-FJ, Garciarrubio A, Covarrubias AA. 2000. Highly hydrophilic proteins in
632 prokaryotes and eukaryotes are common during conditions of water deficit. *J Biol Chem*
633 doi:10.1074/jbc.275.8.5668.

634 19. Yamagishi M MH, Wada A, Sakagami M, Fujita N, Ishihama A. 1993. Regulation of the
635 *Escherichia coli* rmf gene encoding the ribosome modulation factor: growth phase- and growth
636 rate-dependent control. . *EMBO J* doi:10.1002/j.1460-2075.1993.tb05695.x.

637 20. McKay SL PD. 2015. Ribosome hibernation facilitates tolerance of stationary-phase bacteria to
638 aminoglycosides. *Antimicrob Agents Chemother* doi:10.1128/AAC.01532-15.

639 21. Wada A YY, Fujita N, Ishihama A. 1990. Structure and probable genetic location of a "ribosome
640 modulation factor" associated with 100S ribosomes in stationary-phase *Escherichia coli* cells.
641 *Proc Natl Acad Sci* doi:10.1073/pnas.87.7.2657.

642 22. Akiyama T WK, Schaefer R, Pratt S, Chang CB, Franklin MJ. 2017. Resuscitation of *Pseudomonas*
643 *aeruginosa* from dormancy requires hibernation promoting factor (PA4463) for ribosome
644 preservation. *PNAS* 114:3204–209.

645 23. Prossliner T WK, Sørensen MA, Gerdes K. 2018. Ribosome Hibernation. *Annu Rev Genet*
646 doi:10.1146/annurev-genet-120215-035130.

647 24. (ESCMID) ESoCMaID. 2022. European Committee for Antimicrobial Susceptibility Testing
648 (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).

649 Reading guide for broth microdilution.
650 https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2022_manuals/Reading_guide_BMD_v_4.0_2022.pdf. Accessed
651

652 25. Trampari E HE, Wickham GJ, Ravi A, de Oliveira Martins L, Savva GM & Webber MA. 2021. Exposure of *Salmonella* biofilms to antibiotic concentrations rapidly selects resistance with collateral tradeoffs. *npj Biofilms Microbiomes* doi:<https://doi.org/10.1038/s41522-020-00178-0>.

653 26. Harrison F MA, Higgins S, Diggle SP. 2014. Development of an ex vivo porcine lung model for
654 studying growth, virulence, and signaling of *Pseudomonas aeruginosa*. *Infect Immun*
655 doi:10.1128/IAI.01554-14.

656 27. Harrington NE SE, Harrison F. 2020. Building a better biofilm - Formation of in vivo-like biofilm
657 structures by *Pseudomonas aeruginosa* in a porcine model of cystic fibrosis lung infection.
658 *Biofilm* 2.

659 28. Werthén M HL, Jensen PØ, Sternberg C, Givskov M, Bjarnsholt T. 2010. An in vitro model of
660 bacterial infections in wounds and other soft tissues. *APMIS* doi:10.1111/j.1600-0463.2009.02580.x.

661 29. Bjarnsholt T JP, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Høiby
662 N. 2009. *Pseudomonas aeruginosa* biofilms in the respiratory tract of cystic fibrosis patients. *J Pediatr Pulmonol* doi:10.1002/ppul.21011.

663 30. Henderson AG EC, Button B, Abdullah LH, Cai LH, Leigh MW, DeMaria GC, Matsui H, Donaldson
664 SH, Davis CW, Sheehan JK, Boucher RC, Kesimer M. 2014. Cystic fibrosis airway secretions
665 exhibit mucin hyperconcentration and increased osmotic pressure. *J Clin Invest*
666 doi:10.1172/JCI73469.

667 31. Baltimore RS CC, Smith GJ. 1989. Immunohistopathologic localization of *Pseudomonas*
668 *aeruginosa* in lungs from patients with cystic fibrosis. Implications for the pathogenesis of
669 progressive lung deterioration. *Am Rev Respir Dis* doi:10.1164/ajrccm/140.6.1650.

670 32. Reales-Calderón JA Sun Z, Mascaraque V, Pérez-Navarro E, Vialás V, Deutsch EW, Moritz RL, Gil
671 C, Martínez JL, Molero G. 2021. A wide-ranging *Pseudomonas aeruginosa* PeptideAtlas build:
672 a useful proteomic resource for a versatile pathogen. *Journal of Proteomics* 239.

673 33. Dorsey-Oresto A LT, Mosel M, Wang X, Salz T, Drlica K, Zhao X. 2013. YihE kinase is a central
674 regulator of programmed cell death in bacteria. *Cell Rep* doi:10.1016/j.celrep.2013.01.026.

675 34. Liu Y SW, Ma L, Xu R, Yang C, Xu P, Ma C, Gao C. 2022. Metabolic Mechanism and Physiological
676 Role of Glycerol 3-Phosphate in *Pseudomonas aeruginosa* PAO1. *mBio*
677 doi:10.1128/mbio.02624-22.

678 35. Jumper J ER, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek
679 A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B,
680 Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M,
681 Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli
682 P, Hassabis D. 2021. Highly accurate protein structure prediction with AlphaFold. *Nature*
683 doi:10.1038/s41586-021-03819-2.

684 36. Schweizer HP JR, Po C. 1997. Structure and gene-polypeptide relationships of the region
685 encoding glycerol diffusion facilitator (glpF) and glycerol kinase (glpk) of *Pseudomonas*
686 *aeruginosa*. *Microbiology* doi:<https://doi.org/10.1099/00221287-143-4-1287>.

687 37. Zheng J HC, Singh VK, Martin NL, Jia Z. 2007. Crystal structure of a novel prokaryotic Ser/Thr
688 kinase and its implication in the Cpx stress response pathway. *Mol Microbiol*
689 doi:10.1111/j.1365-2958.2007.05611.x.

690 38. Tkachenko AG KN, Karavaeva EA, Shumkov MS. 2015. Putrescine controls the formation of
691 *Escherichia coli* persister cells tolerant to aminoglycoside netilmicin. *FEMS Microbiol Lett*
692 doi:10.1111/1574-6968.12613.

693

694

695

696

697

698 39. Heijerman H WE, Conway S, Touw D, Döring G. 2009. Consensus Working Group: Inhaled
699 medication and inhalation devices for lung diseases in patients with cystic fibrosis: a European
700 consensus. *J Cyst Fibros* doi:10.1016/j.jcf.2009.04.005.

701 40. Harrington NE AF, Garcia-Maset R, Harrison F. 2022. *Pseudomonas aeruginosa* transcriptome
702 analysis in a cystic fibrosis lung model reveals metabolic changes accompanying biofilm
703 maturation and increased antibiotic tolerance over time. *bioRxiv*
704 doi:10.1101/2022.06.30.498312:2022.06.30.498312.

705 41. Bielecki P PJ, Wos-Oxley ML, Loessner H, Glik J, Kawecki M, Nowak M, Tümmeler B, Weiss S, dos
706 Santos VA. 2011. In-vivo expression profiling of *Pseudomonas aeruginosa* infections reveals
707 niche-specific and strain-independent transcriptional programs. *PLoS One*
708 doi:10.1371/journal.pone.0024235.

709 42. Mavrodi D. BRF, Delaney S.M., Soule M.J., Phillips G., Thomashow L.S. . 2001. Functional
710 analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from
711 *Pseudomonas aeruginosa* PAO1. *J Bacteriol* doi:10.1128/JB.183.21.6454-6465.2001.

712 43. Dietrich LE TT, Price-Whelan A, Newman DK. 2008. Redox-active antibiotics control gene
713 expression and community behavior in divergent bacteria. *Science*
714 doi:10.1126/science.1160619.

715 44. Dietrich LE OC, Price-Whelan A, Sakhtah H, Hunter RC, Newman DK. . 2013. Bacterial
716 community morphogenesis is intimately linked to the intracellular redox state. *J Bacteriol*
717 doi:10.1128/JB.02273-12.

718 45. Schiessl KT HF, Jo J, Nazia SZ, Wang B, Price-Whelan A, Min W, Dietrich LEP. 2019. Phenazine
719 production promotes antibiotic tolerance and metabolic heterogeneity in *Pseudomonas*
720 *aeruginosa* biofilms. *Nat Commun* doi:10.1038/s41467-019-08733-w.

721 46. Lin Y-C SM, Cornell WC, Silva GM, Okegbe C, Price-Whelan A, Vogel C, Dietrich LEP. 2018.
722 Phenazines regulate Nap dependent denitrification in *Pseudomonas aeruginosa* biofilms. *J*
723 *Bacteriol* doi:<https://doi.org/10.1128/JB.00031-18>.

724 47. Wang Y WJ, Danhorn T, Ramos I, Croal L, Newman DK 2011. Phenazine-1-carboxylic acid
725 promotes bacterial biofilm development via ferrous iron acquisition. *J Bacteriol*
726 doi:10.1128/JB.00396-11.

727 48. Das T IA, Klare W, Manefield M. 2016. Role of Pyocyanin and Extracellular DNA in Facilitating
728 *Pseudomonas aeruginosa* Biofilm Formation, Microbial Biofilms - Importance and Applications
729 doi:<http://dx.doi.org/10.5772/63497>.

730 49. Raivio TL LS, Price NL. 2013. The *Escherichia coli* Cpx envelope stress response regulates genes
731 of diverse function that impact antibiotic resistance and membrane integrity. *J Bacteriol*
732 doi:10.1128/JB.00105-13.

733 50. Son MS MW, Kang Y, Nguyen DT, Hoang TT. 2007. In vivo evidence of *Pseudomonas aeruginosa*
734 nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. *Infect Immun*
735 doi:<https://doi.org/10.1128/IAI.01807-06>.

736 51. Stokes JM LA, Lobritz MA, Collins JJ. 2019. Bacterial metabolism and antibiotic efficacy. . *Cell*
737 *Metab* doi:<https://doi.org/10.1016/j.cmet.2019.06.009>.

738 52. Lopatkin AJ BS, Manson AL, Stokes JM, Kohanski MA, Badran AH, Earl AM, Cheney NJ, Yang JH,
739 Collins JJ. 2021. Clinically relevant mutations in core metabolic genes confer antibiotic
740 resistance. *Science* doi:<https://doi.org/10.1126/science.aba0862>.

741 53. JH M. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory.

742 54. Stuart D. Woodcock KS, Richard H. Little, Danny Ward, Despoina Sifouna, James K. M.
743 Brown, Stephen Bornemann, Jacob G. Malone. 2021. Trehalose and α -glucan mediate distinct
744 abiotic stress responses in *Pseudomonas aeruginosa*. *PLoS Genet*
745 doi:<https://doi.org/10.1371/journal.pgen.1009524>.

746 55. M Martí BF, A Serrano-Aroca. 2018. Antimicrobial Characterization of Advanced Materials for
747 Bioengineering Applications. *J Vis Exp* doi:10.3791/57710

748 56. Trampari E ZC, Gotts K, Savva GM, Bavro VN, Webber MA. 2022. Cefotaxime Exposure Selects
749 Mutations within the CA-Domain of envZ Which Promote Antibiotic Resistance but Repress
750 Biofilm Formation in *Salmonella*. *Microbiol Spectr* doi:10.1128/spectrum.02145-21.
751 57. Harrington NE SE, Alav I, Allen F, Moa, J, Harrison F. 2021. Antibiotic Efficacy Testing in an Ex
752 vivo Model of *Pseudomonas aeruginosa* and *Staphylococcus aureus* Biofilms in the Cystic
753 Fibrosis Lung. *J Vis Exp* doi:10.3791/62187.
754 58. Perez-Riverol Y BJ, Bandla C, Hewapathirana S, García-Seisdedos D, Kamatchinathan S, Kundu
755 D, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaíno JA. 2022.
756 The PRIDE database resources in 2022: A Hub for mass spectrometry-based proteomics
757 evidences. *Nucleic Acids* doi:10.1093/nar/gkab1038.
758 59. Pacheco-Moreno A SF, Ford JJ, Trippel C, Uszkoreit S, Ferrafiat L, Grenga L, Dickens R, Kelly N,
759 Kingdon AD, Ambrosetti L, Nepogodiev SA, Findlay KC, Cheema J, Trick M, Chandra G, Tomalin
760 G, Malone JG, Truman AW. 2021. Pan-genome analysis identifies intersecting roles for
761 *Pseudomonas* specialized metabolites in potato pathogen inhibition. *eLife*
762 doi:10.7554/eLife.71900.
763 60. Catriona M. A. Thompson JPJH, Govind Chandra, Carlo Martins, Gerhard Saalbach, Supakan
764 Panturat, Susannah M. Bird, Samuel Ford, Richard H. Little, Ainelen Piazza, Ellie Harrison,
765 Robert W. Jackson, Michael A. Brockhurst, Jacob G. Malone. 2023. Plasmids manipulate
766 bacterial behaviour through translational regulatory crosstalk. *PLoS Biol*
767 doi:<https://doi.org/10.1371/journal.pbio.3001988>.

768

769 **TABLES**

770 **Table 1.** Minimal inhibitory concentration (MIC)

771

Antimicrobial	MIC ^a	
	WT PAO1	$\Delta batR$ PAO1
Piperacillin	64	64
Gentamycin	8	8
Ciprofloxacin	0.5	0.5

772 ^a Expressed in μ g/mL unless indicated otherwise.

773

774 **Table 2.** COG pathway analysis of proteins decreased in the $\Delta batR$ strain.

Locus tag	Gene	Product	Cog
General function prediction only			
PA0617		Probable bacteriophage protein	General function prediction only
PA0618		Probable bacteriophage protein	General function prediction only
PA0619		Probable bacteriophage protein	General function prediction only
PA0620		Probable bacteriophage protein	General function prediction only
PA0623		Probable bacteriophage protein	General function prediction only
PA0626		Phage tail protein	General function prediction only
PA0633		Phage tail protein	General function prediction only

PA0803		VOC domain-containing protein	Function unknown
PA2853		Major outer membrane lipoprotein (Outer membrane lipoprotein I)	Function unknown
PA3796		DUF937 domain-containing protein	Function unknown
PA1625		AI-2E family transporter	General function prediction only
Transport & Metabolism			
PA3224		3-phosphoglycerate kinase	metabolism
PA3280	<i>oprO</i>	Porin O	Inorganic ion transport and metabolism
PA3113	<i>trpF</i>	N-(5'-phosphoribosyl) anthranilate isomerase (PRAI)	Amino acid transport and metabolism
PA1906		HIT family protein	Nucleotide transport and metabolism Carbohydrate transport and metabolism
PA2594		PBPb domain-containing protein	Inorganic ion transport and metabolism
PA2941		VWFA domain-containing protein	Coenzyme metabolism
Translation, Posttranslational modification, protein turnover, chaperones			
PA3049	<i>rmf/batR</i>	<i>Ribosome modulation factor</i>	<i>Translation, ribosomal structure, and biogenesis</i>
PA5195	<i>yrfH</i>	Heat shock protein 15	Translation, ribosomal structure, and biogenesis
PA4762	<i>grpE</i>	Protein GrpE (HSP-70 cofactor)	Posttranslational modification, protein turnover, chaperones
Membrane			
PA1041		Probable outer membrane protein	Cell envelope biogenesis, outer membrane – Cell motility and secretion

775

776

Table 3. COG pathway analysis of proteins increased in the *ΔbatR* strain.

Locus tag	Gene	Product	Cog
Energy production and conversion			
PA5351	<i>rubA 1</i>	Rubredoxin-1 (Rdxs)	Energy production and conversion
Lipid Metabolism			
PA0286	<i>desA</i>	Delta-9 fatty acid desaturase	Lipid metabolism
PA3157	<i>wbpC</i>	Probable acetyltransferase	Lipid metabolism
Type VI secretion system			
PA1658	<i>hsIC2</i>	Type VI secretion system contractile sheath large subunit	Intracellular trafficking, secretion, and vesicular transport

PA2366	<i>hsIC3</i>	Uricase PuuD	Intracellular trafficking, secretion, and vesicular transport
PA2367	<i>hcp</i>	Type VI secretion system tube protein	Intracellular trafficking, secretion, and vesicular transport
PA0071	<i>tagR1</i>	FGE-sulfatase domain-containing protein	Hcp secretion island I (HSI-I) type VI secretion system
PA2361	<i>icmF3</i>	IcmF-related_N domain-containing protein	Intracellular trafficking, secretion, and vesicular transport
Secondary metabolites biosynthesis, transport, and catabolism			
PA4209	<i>phzM</i>	Phenazine-1-carboxylate N-methyltransferase	phenazine biosynthetic process
PA4143	<i>cyaB</i>	Probable toxin transporter	transmembrane transport
Inorganic ion transport and metabolism			
PA1436		Probable Resistance-Nodulation-Cell Division (RND) efflux transporter	
Signal transduction mechanisms			
PA4154	<i>ygiM</i>	SH3b domain-containing protein	Signal transduction mechanisms
Unknown function			
PA4297	<i>tadG</i>	TadG	Function unknown
PA2030		Transmembrane protein	Function unknown

777
778
779

Table 4. COG pathway analysis of proteins decreased in the *ΔbatR* strain under PIP challenge.

Locus tag	Gene	Product	Cog
Quorum sensing			
PA0998	<i>pqsC</i>	2-heptyl-4(1H)-quinolone synthase subunit	acyl-carrier-protein - Secondary metabolites biosynthesis, transport, and catabolism - Lipid metabolism
PA4341		Probable transcriptional regulator	Transcription
HCN production			
PA2193	<i>hcna</i>	Hydrogen cyanide synthase subunit HcnA	Energy production and conversion - General function prediction only
PA2194	<i>hcnb</i>	Hydrogen cyanide synthase subunit HcnB	General function prediction only
pyoverdine synthesis			
PA2386	<i>pvdA</i>	L-ornithine N(5)-monooxygenase	Secondary metabolites biosynthesis, transport, and catabolism
PA2402	<i>pvdI</i>	Pyoverdine peptide synthetase	Secondary metabolites biosynthesis, transport, and catabolism - Lipid metabolism - Secondary metabolites biosynthesis, transport, and catabolism

PA2413	<i>pvdH</i>	L-2,4-diaminobutyrate:2-ketoglutarate 4-aminotransferase	Amino acid transport and metabolism - Coenzyme metabolism
Transcription/Translation			
PA2511	<i>antR</i>	Probable transcriptional regulator	Transcription
PA3049	<i>rmf/batR</i>	<i>Ribosome modulation factor</i>	<i>Translation, ribosomal structure, and biogenesis</i>
Transport			
PA2512	<i>antA</i>	Anthranilate dioxygenase large subunit	Inorganic ion transport and metabolism
PA4358	<i>feoB</i>	Ferrous iron transport protein B	Inorganic ion transport and metabolism

780
781
782

Table 5. COG pathway analysis of proteins increased in the $\Delta batR$ strain under PIP challenge.

Locus tag	Gene	Product	Cog
Type VI Secretion System Proteins			
PA0263; PA1512; PA5267	<i>Hcp</i>	Major exported protein	Intracellular trafficking, secretion, and vesicular transport
PA2367	<i>hcp3</i>	Type VI secretion system tube protein Hcp	Intracellular trafficking, secretion, and vesicular transport
Metabolism			
PA1897		Fatty acid hydroxylase domain-containing protein	Lipid metabolism
Energy production - Nitrate Respiration Proteins			
PA0520	<i>nirQ</i>	Denitrification regulatory protein	General function prediction only
PA0524	<i>norB</i>	Nitric oxide reductase subunit B	Posttranslational modification, protein turnover, chaperones - Inorganic ion transport and metabolism
PA3391	<i>nosR</i>	Regulatory protein	Transcription - Energy production and conversion
PA3392	<i>nosZ</i>	Nitrous-oxide reductase precursor	Energy production and conversion
Energy production			
PA5351	<i>rubA1</i>	Rubredoxin-1	Energy production and conversion
Transport			
PA1436		Probable Resistance-Nodulation-Cell Division (RND) efflux transporter	Defence mechanisms – Inorganic ion transport and metabolism
General function prediction only			
PA0633		Phage tail protein	

783
784

Table 6. BatR interacting proteins.

785

Accession	Gene	log fold change	apv	Product
Q51390	<i>glpK2</i>	6.643856	2.28E-15	Glycerol kinase 2
Q9HZF9	<i>rmf</i>	6.643856	2.28E-15	Ribosome modulation factor
O54439	<i>acpP1</i>	6.643856	2.28E-15	Acyl carrier protein 1
Q9I1N6	<i>psIC</i>	6.150153	1.05E-10	PsIC
P46384	<i>pilG</i>	5.064366	2.47E-07	Protein PilG
Q9HWX6	<i>nusB</i>	4.297705	2.28E-04	Transcription antitermination protein NusB
Q9HWY1	<i>ribA</i>	3.912171	6.89E-04	GTP cyclohydrolase-2
Q9HZG2	<i>PA3046</i>	3.722466	0.00102	Uncharacterized protein
Q9I4Q5	<i>PA1069</i>	3.65581	5.92E-04	Uncharacterized protein
Q9HXI8	<i>iscS</i>	3.505764	0.00102	Cysteine desulfurase IscS
Q9I0X9	<i>PA2503</i>	3.199751	0.006032	Uncharacterized protein
P42810	<i>PA4667</i>	3.114367	0.009501	TPR repeat-containing protein PA4667
Q9HZV0	<i>PA2897</i>	3.068155	0.006658	Probable transcriptional regulator
Q9HXI7	<i>iscR</i>	3.02556	0.014421	IscR
Q9I5R6	<i>coq7</i>	3.015605	0.007976	3-demethoxyubiquinol 3-hydroxylase
Q9HVX2	<i>PA4445</i>	3.013998	0.01486	GTP cyclohydrolase 1 type 2 homolog
Q9HYZ5	<i>minE</i>	2.710614	0.04354	Cell division topological specificity factor
Q9I513	<i>purM</i>	2.709291	0.021917	Phosphoribosylformylglycinamidine cyclo-ligase
O52761	<i>rplQ</i>	2.704429	0.021917	50S ribosomal protein L17
Q9HV50	<i>glmM</i>	2.571677	0.034564	Phosphoglucosamine mutase
Q9I0H4	<i>hmp</i>	2.564622	0.04354	Flavohemoprotein1
Q9HWE0	<i>rplV</i>	2.561937	0.034689	50S ribosomal protein L22
Q9I6G3	<i>PA0328</i>	2.541515	0.046616	Autotransporter domain-containing protein
Q9HUG9	<i>hldE</i>	2.540275	0.04354	Bifunctional protein HldE
Q9I632	<i>srkA</i>	2.486714	0.04354	Stress response kinase A
Q9HWF1	<i>rplR</i>	2.447844	0.04354	50S ribosomal protein L18

786

787

Table 7. Predicted GlpK (PA3582) active and binding sites (source www.uniprot.org)

Type	POSITION(S)	DESCRIPTION
Binding site	12	ADP
Binding site	12	ATP
Binding site	12	sn-glycerol 3-phosphate
Binding site	13	ATP
Binding site	14	ATP
Binding site	16	ADP
Binding site	82	Glycerol
Binding site	82	sn-glycerol 3-phosphate
Binding site	83	glycerol
Binding site	83	sn-glycerol 3-phosphate

Binding site	134	glycerol
Binding site	134	sn-glycerol 3-phosphate
Binding site	243	glycerol
Binding site	243	sn-glycerol 3-phosphate
Binding site	244	glycerol
Binding site	265	ADP
Binding site	265	ATP
Binding site	308	ADP
Binding site	308	ATP
Binding site	312	ATP
Binding site	408	ADP
Binding site	408	ATP
Binding site	412	ADP

788

789

Table 8. Predicted SrkA (PA0486) active and binding sites (source www.uniprot.org)

Type	POSITION(S)	DESCRIPTION
Site	33	ATP
Active site	199	Proton acceptor
Binding site	204	Mg2+
Active site	216	
Binding site	216	Mg2+

790

791

Table 9. Strains and plasmids used in this study.

Strain	Description	Reference
<i>P. aeruginosa</i>		
WT PAO1	Wild-type <i>Pseudomonas aeruginosa</i> PAO1	1
ΔbatR PAO1	Non-polar deletion of <i>PA3049</i> (<i>batR</i>)	This study
<i>E. coli</i>		
DH5α	<i>endA1</i> , <i>hsdR17</i> (r _K -m _K ⁺), <i>supE44</i> , <i>recA1</i> , <i>gyrA</i> (Nal ^r), <i>relA1</i> , Δ(<i>lacIZYA-argF</i>) U169, <i>deoR</i> , Φ80dlacΔ(<i>lacZ</i>)M15	2
BTH101	<i>F</i> -, <i>cya-99</i> , <i>araD139</i> , <i>galE15</i> , <i>galK16</i> , <i>rpsL1</i> (<i>Str</i>), <i>hsdR2</i> , <i>mcrA1</i> , <i>mcrB1</i> .	3
Plasmids		
pTS1	Tet ^R , suicide vector; <i>ColE1</i> -replicon, <i>IncP-1</i> , <i>Mob</i> , <i>lacZ</i>	4
pTS1- <i>batR</i> vector	pTS1 with Δ <i>batR</i> constructs as BamHI-HindIII inserts	This study
pME6032	Tet ^R , P _K , 9.8 kb pVS1 derived shuttle vector	5

pME- <i>batR</i>	pME6032 containing the ORF of <i>batR</i> between the EcoRI-XhoI restriction sites	This study
pME-3xFLAG- <i>batR</i>	pME6032 containing the 3x-Flag-tagged BatR ORF using EcoRI-XhoI restriction sites encoded in the outer primers (used in Co-IP assay)	
pKT25	Plasmid for constructing N-terminal fusions to T25, 3 Kan ^R	3
pKT25-BatR	pKT25 with the ORF of <i>batR</i> cloned within the XbaI/KpnI sites (used in B2H assay)	This study
pKT25-AcpP	pKT25 with the ORF of <i>acpP</i> (<i>PA2966</i>) cloned within the XbaI/KpnI sites (used in B2H assay)	This study
pKT25-PslC	pKT25 with the ORF of <i>pslC</i> (<i>PA2233</i>) cloned within the XbaI/KpnI sites (used in B2H assay)	This study
pKT25-PilG	pKT25 with the ORF of <i>pilG</i> (<i>PA0408</i>) cloned within the XbaI/KpnI sites (used in B2H assay)	This study
pKT25-RibA	pKT25 with the ORF of <i>ribA</i> (<i>PA4407</i>) cloned within the XbaI/KpnI sites (used in B2H assay)	This study
pKT25-SrkA	pKT25 with the ORF of <i>srkA</i> (<i>PA0486</i>) cloned within the XbaI/KpnI sites (used in B2H assay)	This study
pKT25-GlpK	pKT25 with the ORF of <i>glpK</i> (<i>PA3582</i>) cloned within the XbaI/KpnI sites using Gibson assembly (B2H assay)	This study
pUT18C	Plasmid for constructing C-terminal fusions to T18, 3 Carb ^R	3
pUT18C-BatR	pUT18C with the ORF of <i>batR</i> cloned within the XbaI/KpnI sites (used in B2H assay)	This study
pUT18C-AcpP	pUT18C with the ORF of <i>acpP</i> (<i>PA2966</i>) cloned within the XbaI/KpnI sites (used in B2H assay)	This study
pUT18C-PslC	pUT18C with the ORF of <i>pslC</i> (<i>PA2233</i>) cloned within the XbaI/KpnI sites (used in B2H assay)	This study
pUT18C-PilG	pUT18C with the ORF of <i>pilG</i> (<i>PA0408</i>) cloned within the XbaI/KpnI sites (used in B2H assay)	This study
pUT18C-RibA	pUT18C with the ORF of <i>ribA</i> (<i>PA4407</i>) cloned within the XbaI/KpnI sites (used in B2H assay)	This study
pUT18C-SrkA	pUT18C with the ORF of <i>srkA</i> (<i>PA0486</i>) cloned within the XbaI/KpnI sites (used in B2H assay)	This study

pUT18C-GlpK	pUT18C with the ORF of <i>glpK</i> (<i>P43582</i>) cloned within the <i>Xba</i> I/ <i>Kpn</i> I sites using Gibson assembly (B2H assay)	This study
pKT25-Zip	pKT25 carrying the leucine zipper of GCN4, Kan ^R	3 (used as positive control in B2H assay)
pUT18-zip	pUT18 carrying the leucine zipper of GCN4, Kan ^R	3 (used as positive control in B2H assay)

792

793 **References**

794

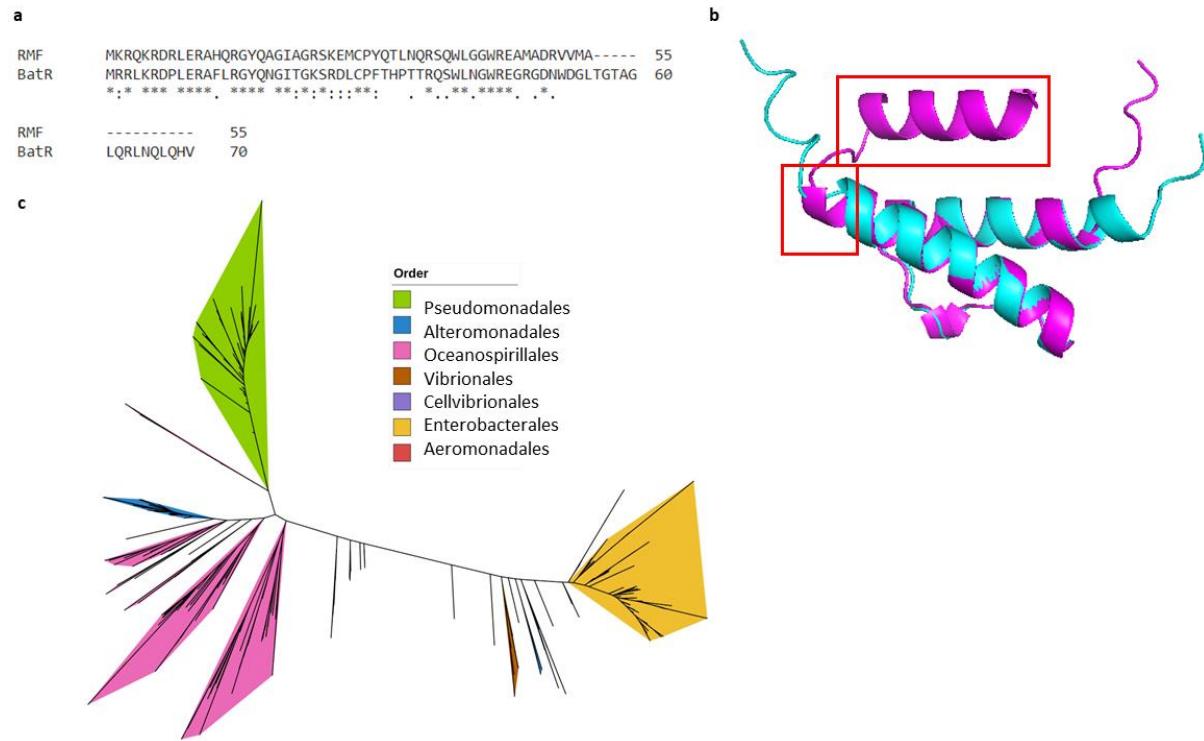
795 1. Holloway, B.W., *Genetic recombination in Pseudomonas aeruginosa*. Journal of
796 General Microbiology, 1955. **13**(3): p. 572-81.

797 2. Woodcock, D.M., et al., *Quantitative evaluation of Escherichia coli host strains for*
798 *tolerance to cytosine methylation in plasmid and phage recombinants*. Nucleic Acids
799 Res, 1989. **17**(9): p. 3469-78.

800 3. Karimova G, Pidoux J, Ullmann A, Ladant D. 1998. A bacterial two-hybrid system
801 based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A
802 95:5752-5756.

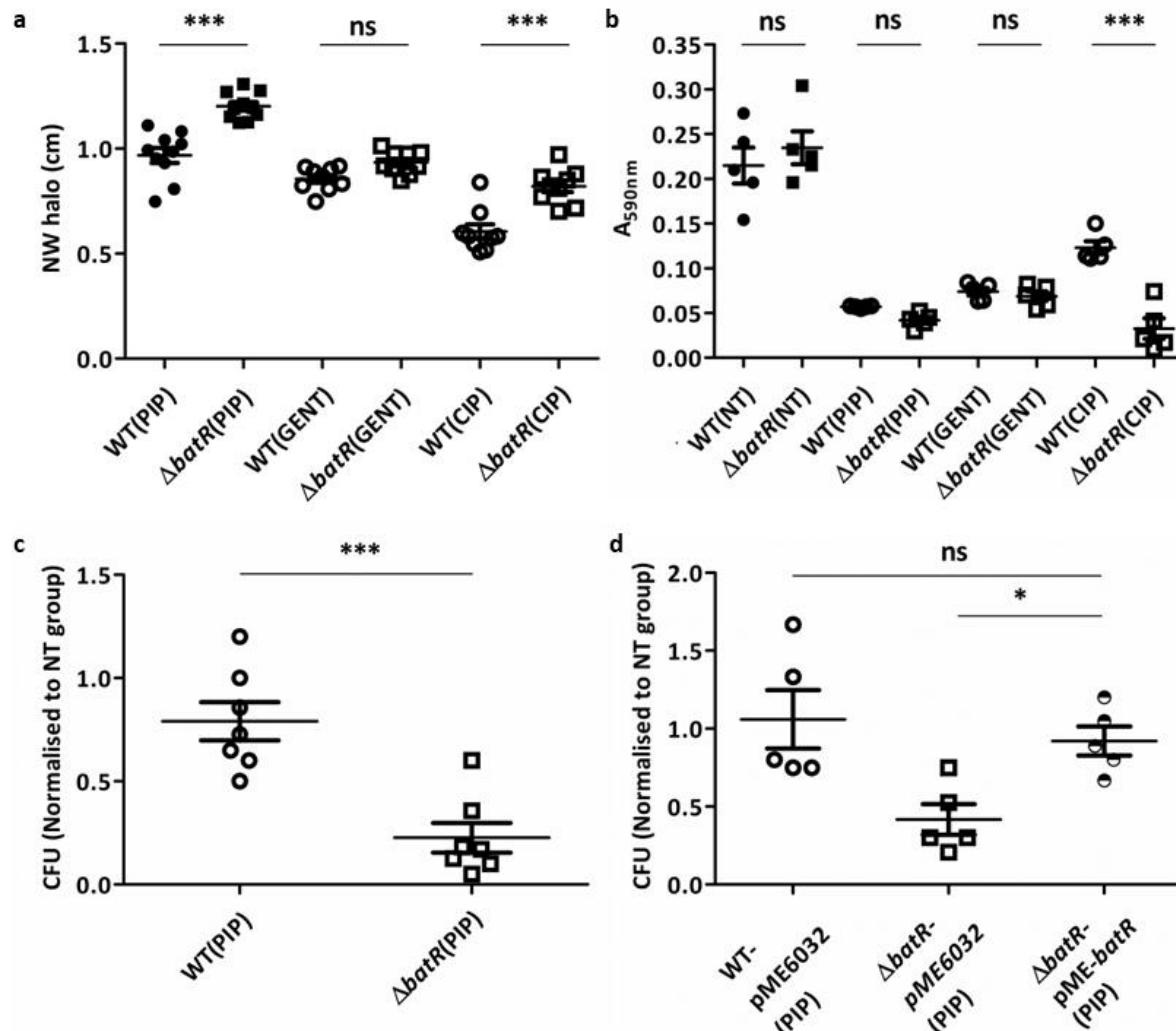
803 4. Scott, T.A., et al., *An L-threonine transaldolase is required for L-threo-beta-hydroxy-*
804 *alpha-amino acid assembly during obafluorin biosynthesis*. Nature Communications,
805 2017. **8**.

806 5. Heeb, S., et al., *Small, stable shuttle vectors based on the minimal pVS1 replicon for*
807 *use in gram-negative, plant-associated bacteria*. Mol Plant Microbe Interact, 2000.
808 **13**(2): p. 232-7.

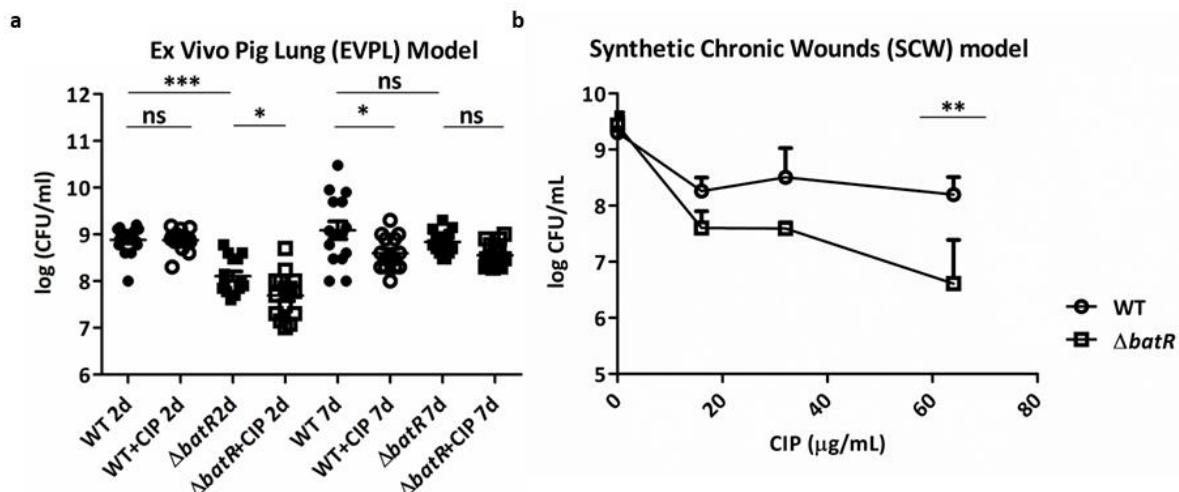

809

810 **Table 10. Primers used in this study.**

Primer name	Primer sequence	Use	Plasmid cloned into
Cloning			
batR_EcoRI_F	TATGAATTCATGAGAAGACTTAAG CGTGATCC	Restriction Digest (EcoRI)	pME6032
batR_XhoI_R	TATCTCGAGTTACACGTGCTGGAG TTGATTGAG	Restriction Digest (XhoI)	pME6032
srkA_EcoRI_F	TATGAATTCATGTCCCATCCCTTCG ACC	Restriction Digest (EcoRI)	pME6032
srkA_XhoI_R	TATCTCGAGTCAGAACAGCCGCA GCG	Restriction Digest (XhoI)	pME6032
3xflag_batR_XhoI	TATCTCGAGttaCTTGTACATCGTCGT CCTTGTAAATCCTTGTACATCGTCGT CTTGTAAATCCTTGTACATCGTCGTCC TTGTAATCggccggccCACGTGCTGG AGTTGATTGAG	Restriction Digest (XhoI) C_Flag tag Co_IP assay	pME6032
Bacterial two hybrid			
batR_XbaI_F	CAGATCTAGAATGAGAAGACTTA AGCGTGATCC	Restriction Digest	pKT25 & pUT18C


batR_KpnI_R	ATATGGTACCTTACACGTGCTGGA GTTGATTGAG	Restriction Digest	pKT25 & pUT18C
acpP_XbaI_F	CAGATCTAGACATGAGCACCATCG AAGAACG	Restriction Digest	pKT25 & pUT18C
acpP1_KpnI_R	ATATGGTACCTTATTGCTGGTGAG CAACGATG	Restriction Digest	pKT25 & pUT18C
pilG_XbaI_F	CAGATCTAGACATGGAACAGCAAT CCGACG	Restriction Digest	pKT25 & pUT18C
pilG_KpnI_R	ATATGGTACCTCAGGAAACGGCGT CCAC	Restriction Digest	pKT25 & pUT18C
pslC_XbaI_F	CAGATCTAGACATGCGCTGCGCCC TG	Restriction Digest	pKT25 & pUT18C
pslC_KpnI_R	ATATGGTACCTCACTTCCAGTAGC CTGGAAAc	Restriction Digest	pKT25 & pUT18C
ribA_XbaI_F	CAGATCTAGACGTGTCCGTCGTGT TCGTC	Restriction Digest	pKT25 & pUT18C
ribA_KpnI_R	ATATGGTACCTCACGTGGTTCCG CCTC	Restriction Digest	pKT25 & pUT18C
srkA_XbaI_F	CAGATCTAGACATGTCCCATCCCT TCGACC	Restriction Digest	pKT25 & pUT18C
srkA_KpnI_R	ATATGGTACCTCAGAACAGCCGCA GCG	Restriction Digest	pKT25 & pUT18C
glpK_pKT25_F	ACCGGGCGGGCTGCAGGGTCGAC TCTAGACATGACCGACAAGCACA ACAAGAA	Gibson	pKT25
glpK_pKT25_R	ACGACGGCCAGTGAATTCTTACTT ACTTAGGTACCCGTACAGTTCGC CGTCGTC	Gibson	pKT25
glpK_pUT18_F	CGCAGTGGAACGCCACTGCAGGT CGACTCTAGAAATGACCGACAAG CACAAACAAGAA	Gibson	pUT18C
glpK_pUT18_R	TACTTAGTTATATCGATGAATTGAG GCTCGGTACCCGTACAGTTCGCC GTCGTC	Gibson	pUT18C

813 **Figure 1.**


814

815 **Figure 2.**

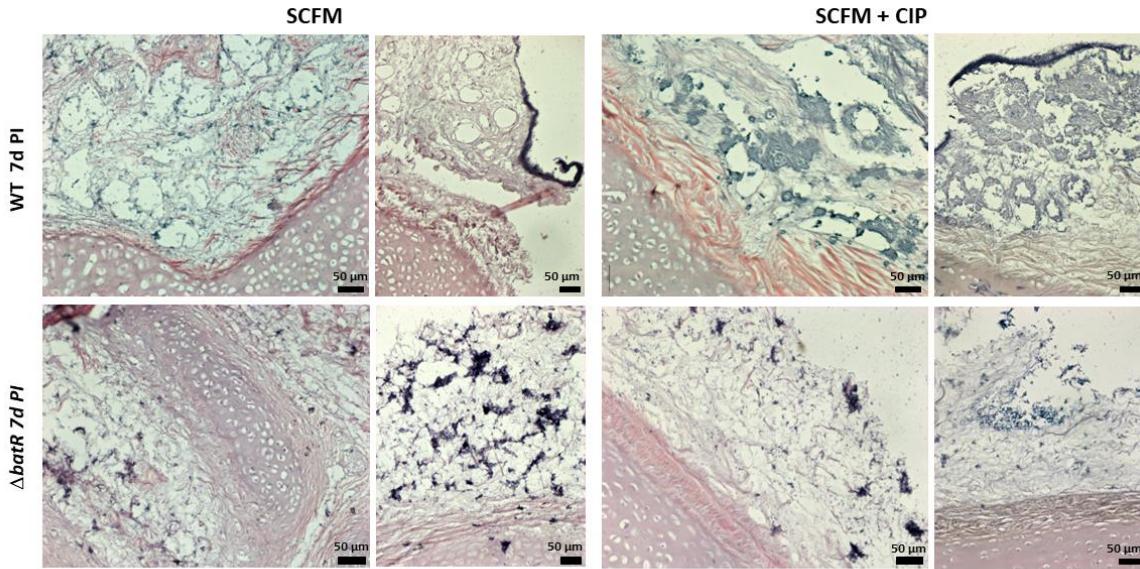

816
817

Figure 3.

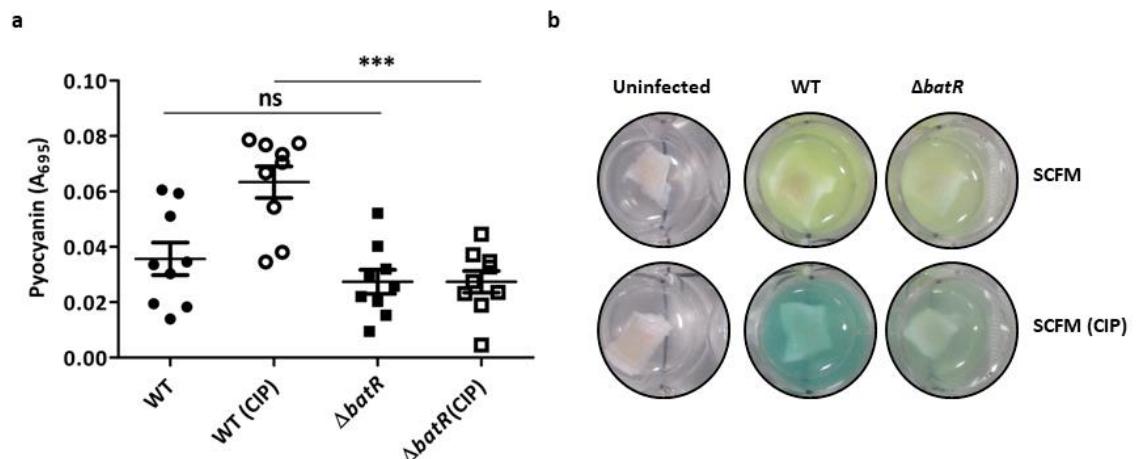

818
819
820

Figure 4.

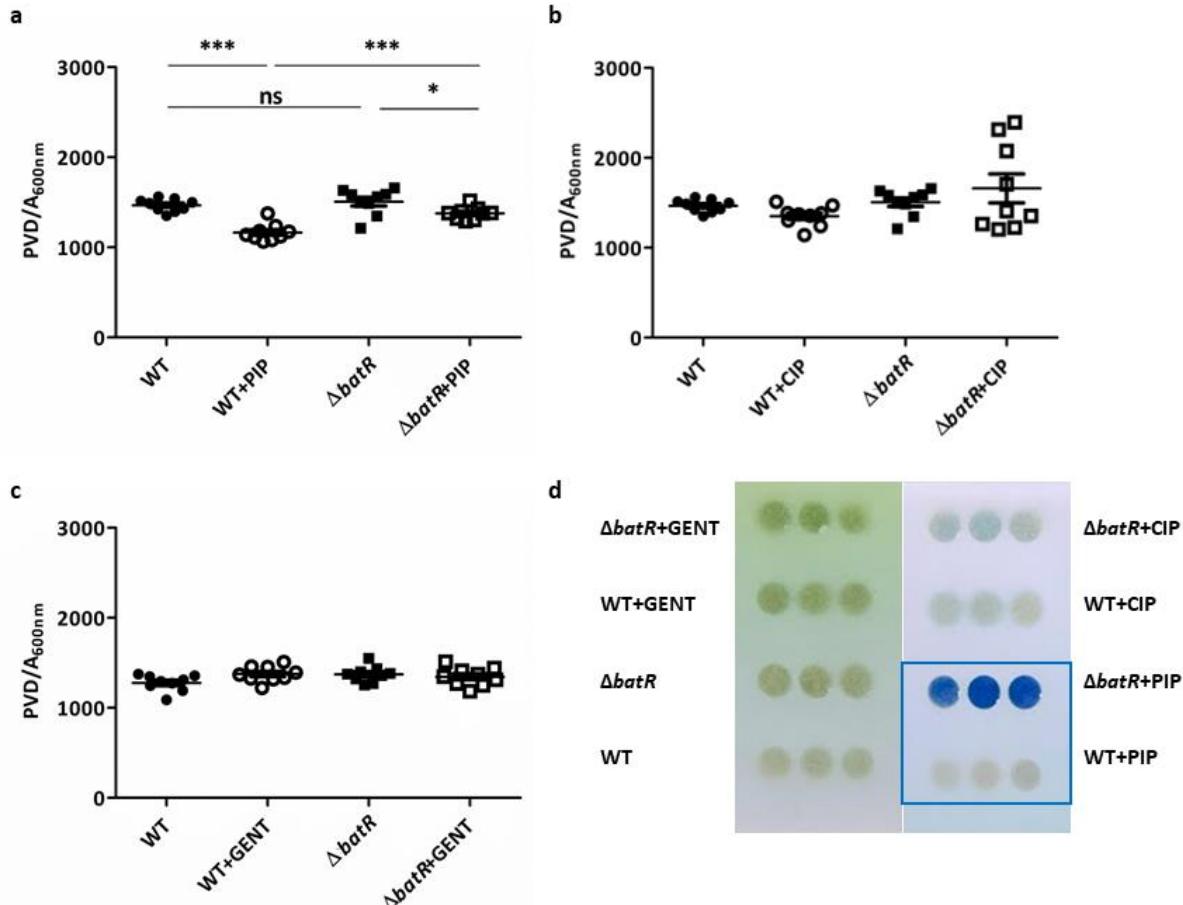

821
822

Figure 5.

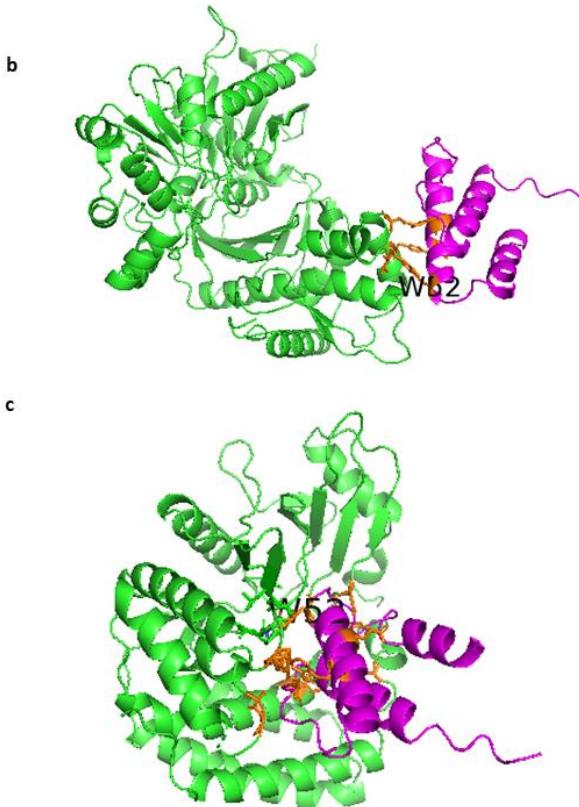
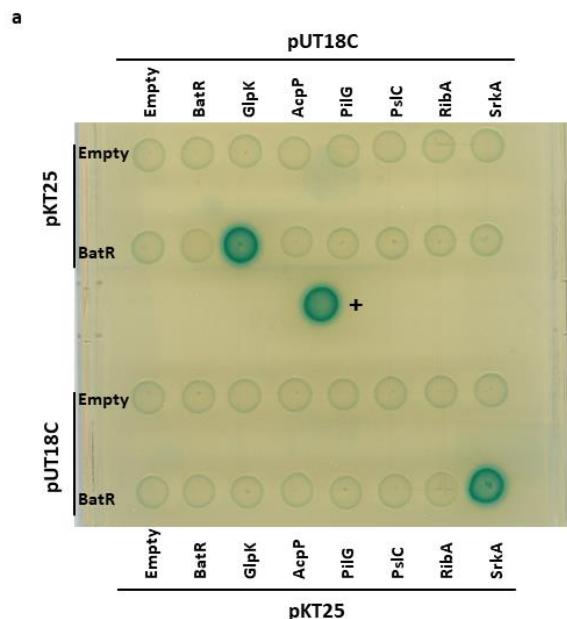
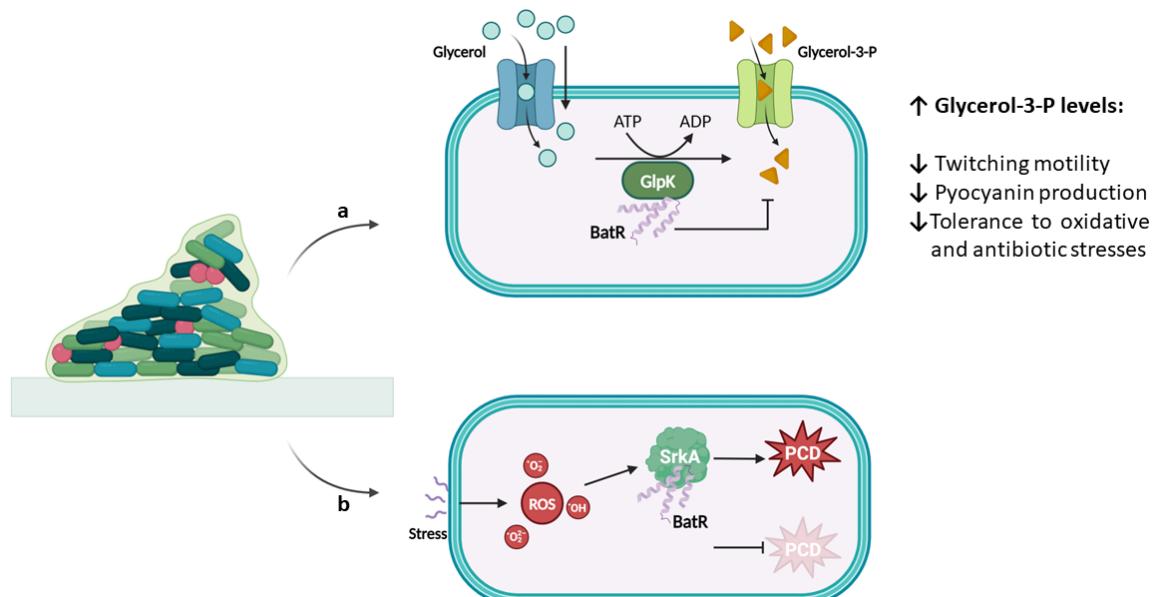
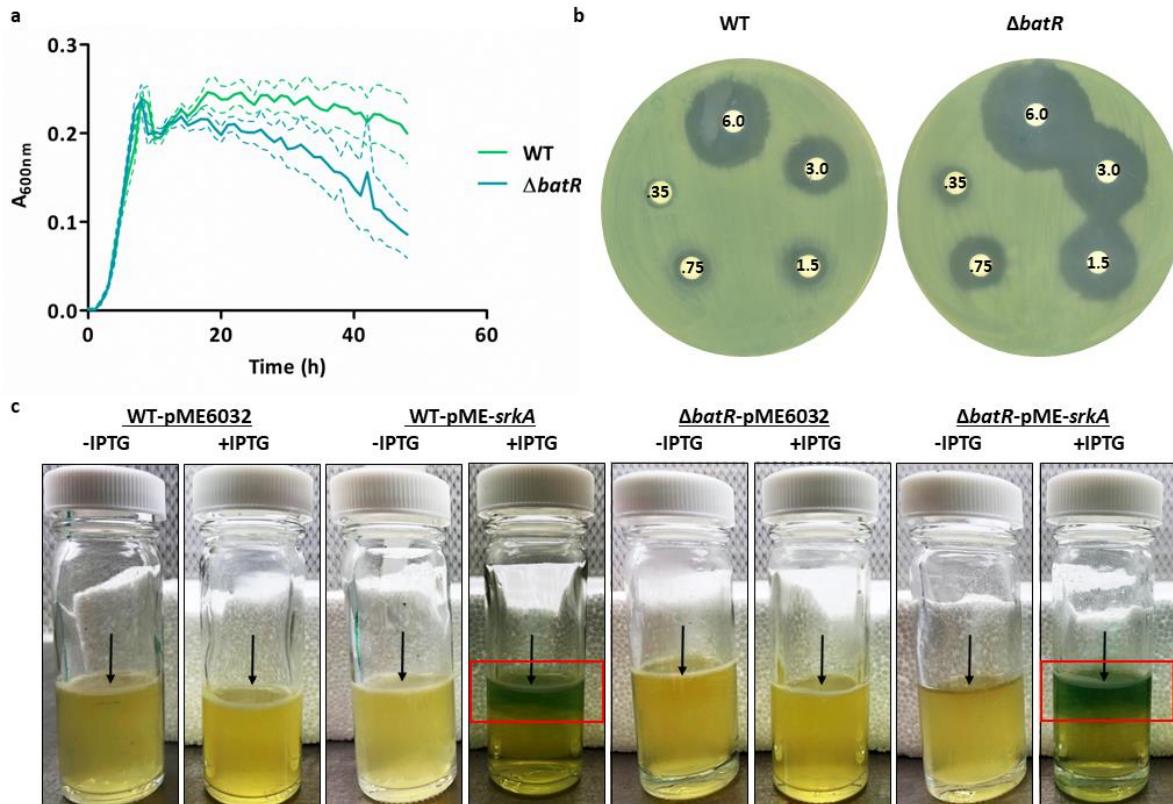
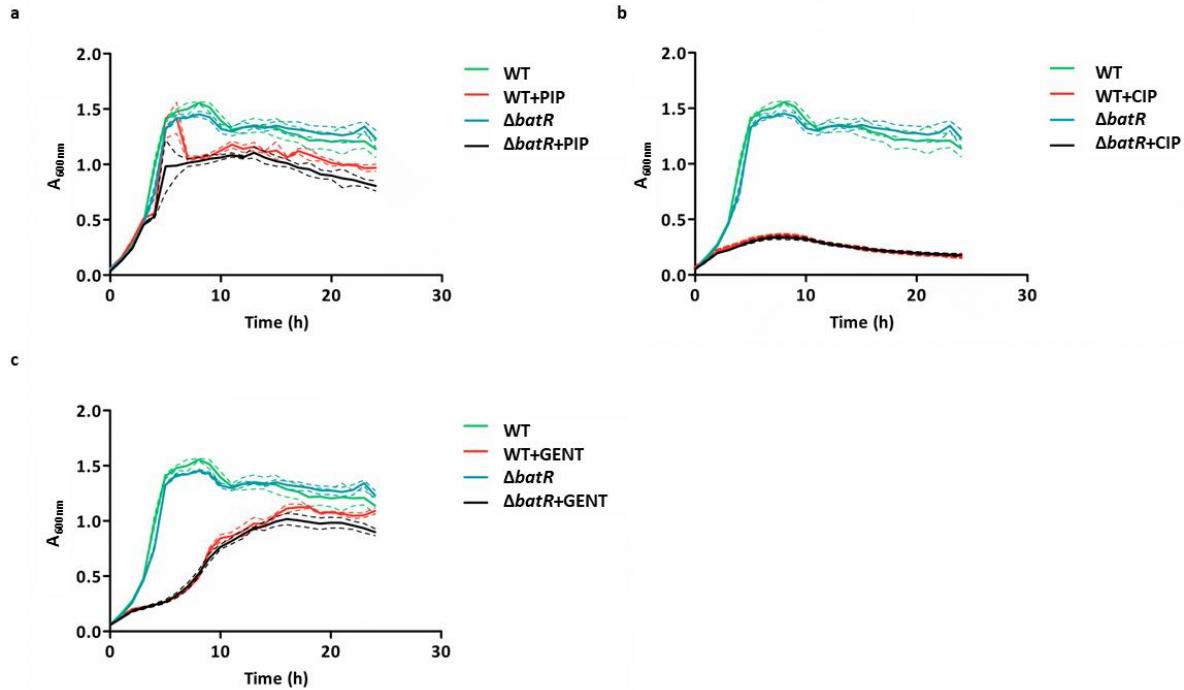
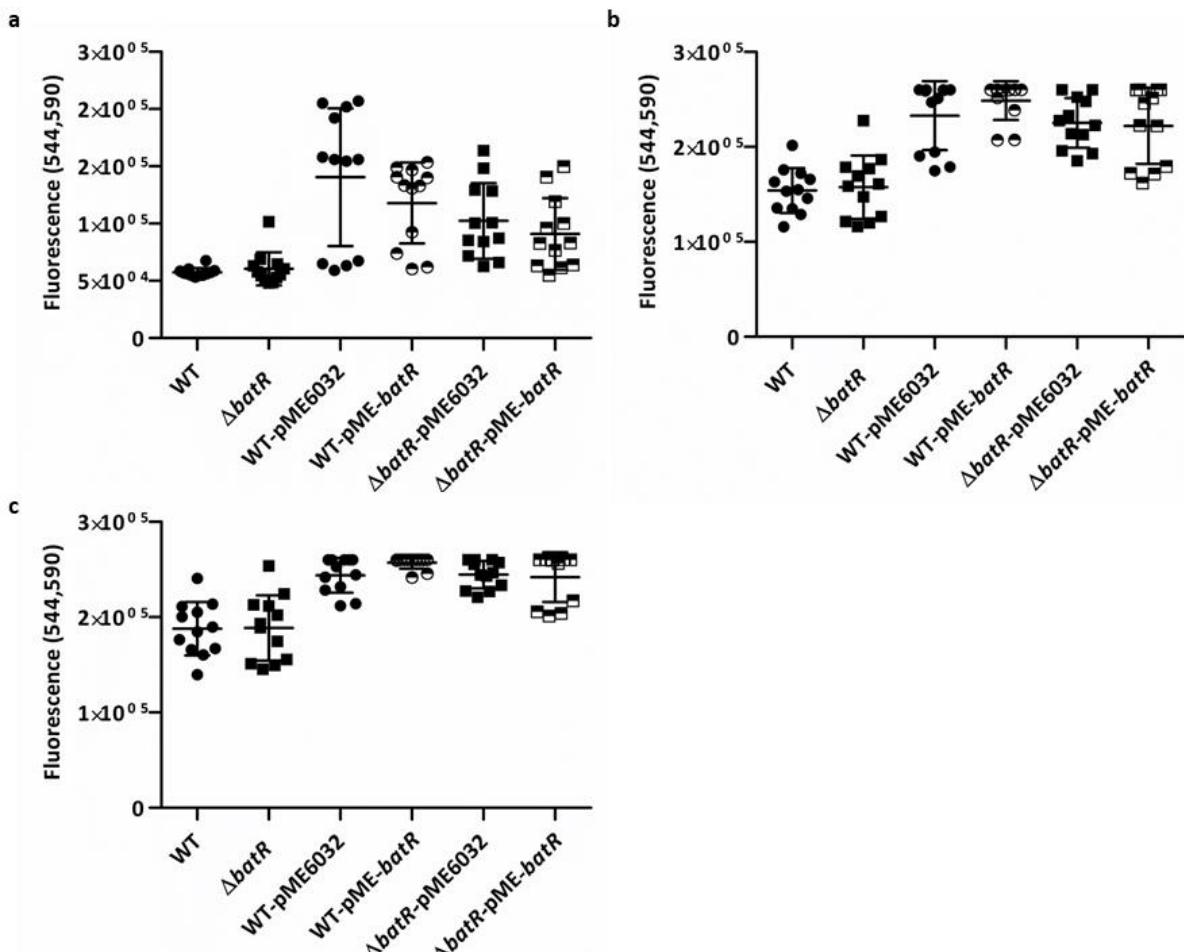


823
824

Figure 6.



825
826


Figure 7.

827
828


Figure 8.

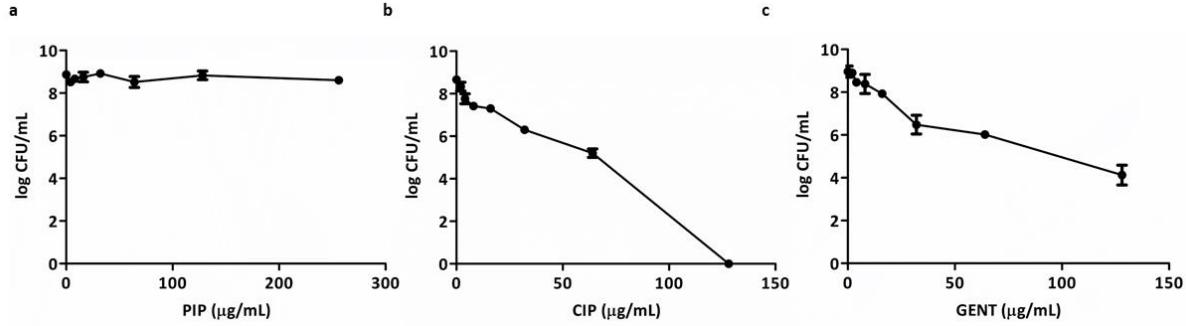

834
835

Figure S2.

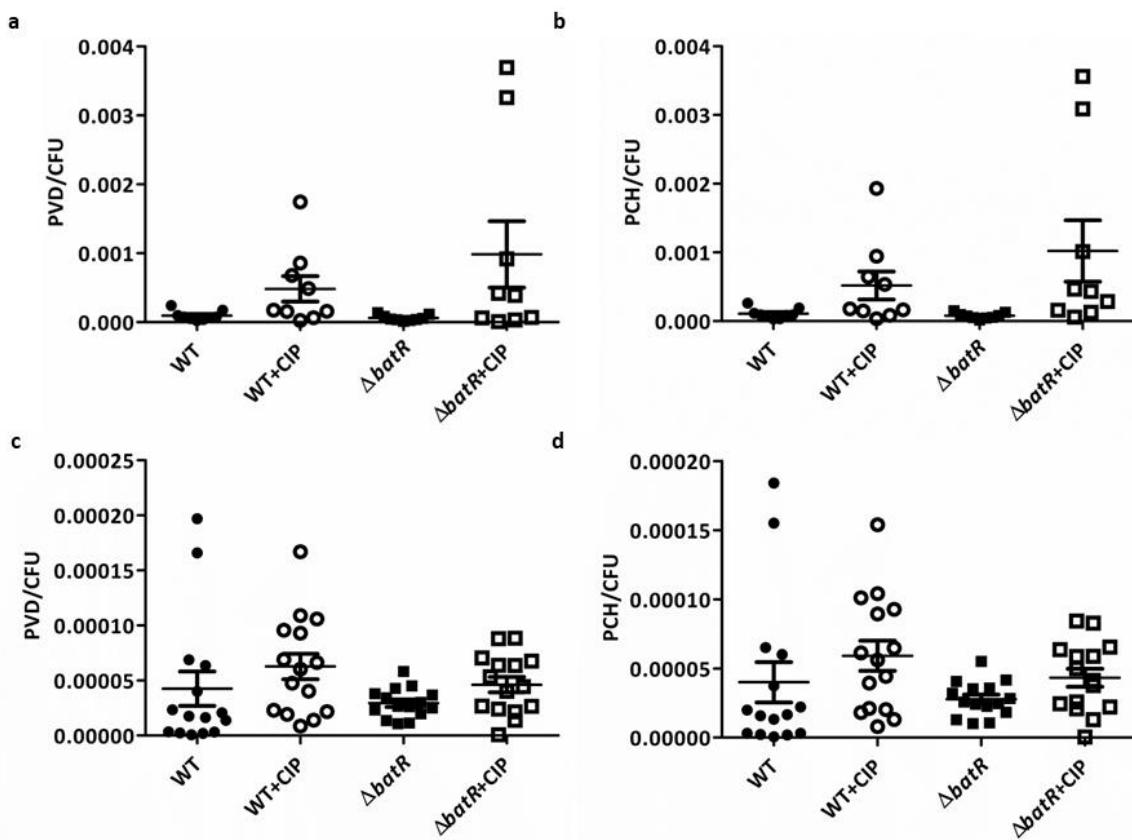

836
837

Figure S3.

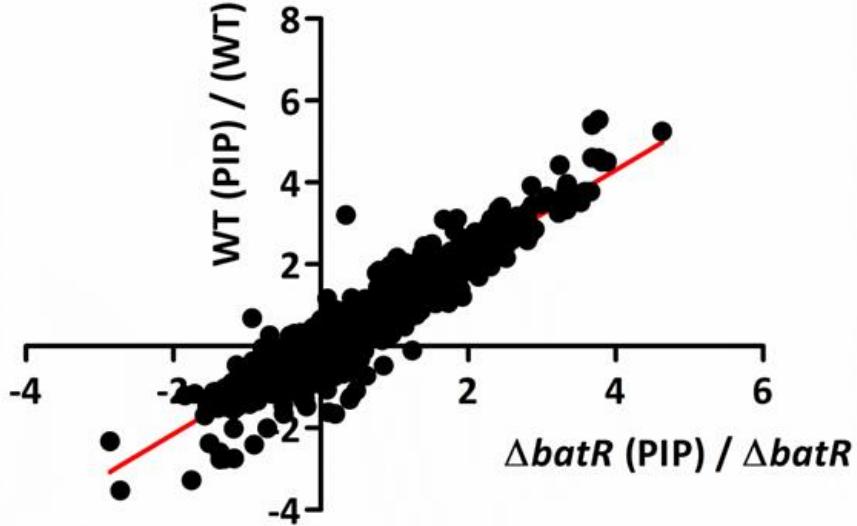

838
839

Figure S4.


840
841

Figure S5.

842
843

Figure S6.

844
845
846
847
848
849