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Eigenmodes can be derived from various structural brain properties, including cortical
surface geometry' and interareal axonal connections comprising an organism’s connectome’.
Pang and colleagues map geometric and connectome eigenmodes to spatial patterns of
human brain activity, assessing whether brain connectivity or geometry provide greater
explanatory power of brain function®. The authors find that geometric eigenmodes are
superior predictors of cortical activity compared to connectome eigenmodes. They conclude
that this supports the predictions of neural field theory (NFT)*, in that “brain activity is
best represented in terms of eigenmodes derived directly from the shape of the cortex, thus
emphasizing a fundamental role of geometry in constraining dynamics”. The experimental
comparisons favoring geometric eigenmodes over connectome eigenmodes, in conjunction
with specific statements regarding the relative efficacy of geometry in representing brain
activity, have been widely interpreted to mean that geometry imposes stronger constraints
on cortical dynamics than connectivity”’. Here, we reconsider the comparative experimental
evidence focusing on the impact of connectome mapping methodology. Utilizing established
methods to mitigate connectome construction limitations, we map new connectomes for the
same dataset, finding that eigenmodes derived from these connectomes reach comparable
accuracy in explaining brain activity to that of geometric eigenmodes. We conclude that the
evidence presented to support the comparative proposition that “eigenmodes derived from

brain geometry represent a more fundamental anatomical constraint on dynamics than the
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connectome” may require reconsideration in light of our findings. Pang and colleagues
present compelling evidence for the important role of geometric constraints on brain
function, but their findings should not be interpreted to mean that geometry has superior

explanatory power over the connectome.

High-resolution connectome mapping

Pang and colleagues analyzed connectomes mapped at very high resolution (~32k
vertices/nodes per hemisphere). High-resolution connectome mapping is challenging and

. . . . 10,11
susceptible to biases and inaccuracies™

. For example, assigning streamline endpoints to
vertices of the cortical surface mesh implies accurate identification of endpoint locations
with a precision of the inter-vertex distance. Accumulation of integration errors during
streamline propagation can exceed this tolerance, leading to unreliable connectivity
estimates. While methods are available to alleviate this source of inaccuracy', they do not
appear to have been used by Pang and colleagues. Another consideration is gyral bias'® —the
tendency for streamlines to preferentially terminate at gyral crowns rather than sulcal fundi,
leading to biased connectivity estimates. Gyral bias is visibly prominent for the connectomes
used by Pang and colleagues (Fig.2b of Pang et al.’, also see Supplementary Fig. S1).
Additionally, the authors analyzed binarized connectomes, where continuous connectivity
strength information was converted to binary values. While binarization simplifies the
connectome, it may result in information loss and reduced robustness to tractography

inaccuracies. Given these observations, we sought to evaluate the impact of addressing

these issues on the “comparatively poor performance of connectome eigenmodes”.

We mapped new connectomes for the same individuals analyzed by Pang and colleagues,
using established methods to alleviate gyral bias as well as to improve streamline
assignments and tractography accuracy. Our pipeline included: i) combined intensity
normalization and bias field correction of the diffusion MRI data'*'®; ii) anatomically
constrained tractography with streamlines seeded from the white-gray matter boundary
using tissue-type segmentation to improve tractography accuracy'®; i) gyral bias"
reduction via these changes to the tractography pipeline (steps i and ii) relative to the
pipeline used by Pang and colleagues, or regression of streamline counts against cortical
curvature during connectome postprocessing; iv) retainment of connectome weights to
preserve the broad range of interareal connection strengths'’, rather than reducing to an
oversimplified binary connectivity representation'®; and, v) connectome spatial smoothing to

. .. . . . . . 12
account for imprecision in streamline endpoint determination ™. We mapped connectome

eigenmodes from weighted connectomes pruned to a connection density of 10% and
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78  evaluated the impact of alternative densities (see Supplementary Material: Factors

79  influencing reconstruction accuracy of connectome eigenmodes). The above methods are
80  established and commonly used to reconstruct connectomes for purposes other than

81 computing eigenmodes™*®.

82

83  Connectome and geometric eigenmodes can explain brain activity equally well

84

85  Our connectome eigenmodes explained brain activity with substantially higher accuracy

86  than those used by Pang and colleagues for both resting-state (AUC; our connectomes:

87  74.8% [74.4% to 75.2%], Pang: 65.7% [65.1% to 66.2%]) and task conditions (AUC; our
88  connectomes: 84.0% [82.9% to 85.0%], Pang: 78.2% [76.7% to 79.7]). Critically, our

89  connectome eigenmodes performed equally as well as geometric eigenmodes for both

90  resting-state (AUC; our connectomes: 74.8% [74.4% to 75.2%], geometry: 75.5% [75.1% to
91  75.9%]) and task conditions (AUC; our connectomes: 84.0% [82.9% to 85.0%], geometry:
92 83.1% [82.1% to 84.1%]). This suggests that the “comparatively poor performance of the
93  connectome eigenmodes” used by Pang and colleagues may be a consequence of

94  unaddressed challenges in mapping high-resolution connectomes (Fig. 1, see Supplementary
95  Material for detail).

96

97

98  Reconstruction accuracy differences between our connectome eigenmodes and geometric

99  eigenmodes were modest. These differences were greatest for low-frequency eigenmodes,
100 but converged to zero at higher frequencies, never exceeding a difference of 1% after

101 inclusion of 150 eigenmodes or more. Supplementary analyses were conducted to determine
102 the relative impact on reconstruction accuracy of each connectome mapping step. Using
103 weighted connectomes and controlling for gyral bias were the most important steps in

104  achieving accurate connectome eigenmode reconstructions (supplementary Figs. S2-S10).
105

106 ~ Comparison of connectome and geometric eigenmodes

107

108  The spatial profiles of our connectome eigenmodes were similar to that of the geometric
109  eigenmodes, whereas weaker spatial similarity was evident between geometric eigenmodes
110  and the connectome eigenmodes used by Pang and colleagues (see Fig. 2 and

111 supplementary Fig. S11). Our results indicate a greater degree of overlap between brain

112 geometry and our connectome eigenmodes. Shared information between geometry and

113 connectivity may be a contributing factor to the high reconstruction accuracy of both bases.

114  We also carried out supplementary analyses to evaluate the influence of connection length
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115  on the explanatory power of connectome eigenmodes (supplementary Figs. S12, S13).

116  Crucially, despite the similarity between geometry and connectome eigenmodes, partial
117 correlation evaluations indicate that both long and short anatomical connections enable
118  connectome eigenmodes to capture sources of spatial variance in brain activity that elude
119  geometric counterparts.

120

121  Concluding remarks

122

123 Pang and colleagues assert that “structural eigenmodes derived solely from the brain's
124 geometry provide a more compact, accurate and parsimonious representation of its

125  macroscale activity than alternative connectome-based models”. We mapped connectomes
126  for the same individuals using sophisticated techniques'®'® and found that connectome
127  eigenmodes are as effective as geometric eigenmodes in explaining resting-state and task-
128  evoked brain activity. The comparatively poor performance of the connectomes used by
129  Pang and colleagues may therefore be attributed to unaddressed concerns in connectome
130  reconstruction. Connectome eigenmodes provided marginally higher reconstruction accuracy
131 than geometry at low frequencies (first 10-30 eigenmodes), underscoring the potential

132 significance of structural connections in shaping large-scale functional hierarchies.

133 Nonetheless, we view these modest differences as insufficient grounds to substantiate

134 conclusions on superiority.

135

136 We found similarities in the cortical spatial profiles of connectome and geometric

137  eigenmodes, suggesting a tight relationship between cortical geometry and cortico-cortical
138 connectivity. White-matter connections reflect geometric characteristics, wherein regions in
139 closer spatial proximity exhibit stronger connectedness™ (see Fig. S3). Conversely, the

140  brain's geometric features may be sculpted by interareal connectivity; it is hypothesized
141  that the forces generated by axonal elongations gradually shape cortical folding patterns®.
142 The interplay between brain geometry and connectivity remains a fertile area for future
143 exploration. We found that short-range connections were important to connectome

144 explanatory power at higer frequencies; short connections are likely to conform to cortical
145  surface geometry, and therefore disambiguating the effects of connectivity and geometry
146  across short ranges will be challenging.

147

148  The work of Pang and colleagues has been construed as pitting the geometric and

149 connectome eigenmode bases against one another®, even if this was not the authors'

150  intention’. While geometric eigenmodes may be more parsimonious than their structural

151 connectome counterparts, our results demonstrate that specific comments predicated on an
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152 inferior explanatory capacity of connectome eigenmodes should be tempered to avoid

153 continued misinterpretation. Our results also highlight challenges of connectome mapping
154  and the importance of utilizing state-of-the-art connectome reconstruction techniques for
155  broad conclusions regarding brain structure and function to be robust.

156

157

158
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159

160 Fig. 1 Connectome and geometric eigenmodes explain resting-state and task-based brain activity equally well.
161 (a, b) Replication of results by Pang and colleagues. Plots show accuracy in explaining resting-state (a) and
162 task-evoked activity (b) as a function of the number of eigenmodes. Area under curve (AUC) is shown to

163 provide a summary of reconstruction accuracy. Inset shows the difference in reconstruction accuracy between
164 geometric and connectome eigenmodes. Shading indicates 95% confidence intervals. A nonparametric paired
165 test was used to assess statistical significance; instances where the connectome (blue) or geometry (red) provide
166 a significantly higher reconstruction accuracy (FDR corrected) are marked above the inset and the total counts
167 are reported in the top right corner. (c, d) Same as (a,b), but for our connectome eigenmodes. (e, f) Heatmaps
168 show differences in reconstruction accuracy between geometric and our connectome eigenmodes across

169 individual subjects and task contrasts. Red indicates superior explanatory power of geometric eigenmodes; blue
170 indicates superior explanatory power of connectome eigenmodes.
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173 Fig. 2 Spatial comparison of geometric and connectome eigenmodes. (a) Cortical surface rendering of
174 geometric (first row), exponential distance rule (EDR, second row) and connectome (third row) eigenmodes
175 mapped by Pang and colleagues. Final row shows eigenmodes derived from our connectomes. (b) The

176 connectivity-based eigenmodes (EDR and connectome) were compared to the geometric eigenmodes. Heatmaps
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show the spatial similarity across eigenmode pairs, quantified by the magnitude of the Pearson’s correlation.
Similar eigenmodes were matched by maximum weighted matching. The squares denoting matched eigenmode
pairs are magnified in the heatmaps. (c) A permutation-based nonparametric test was used to evaluate the
statistical significance of observed similarities compared to null signals of similar spatial frequency. The gray
shade indicates the 95% confidence interval as per the permutaion test. Red ticks along x axis indicate matched
pairs with significant similarities (FDR corrected p<0.05) and the total number of significant matches is
depicted in red above y axis. The insets present three exemplar pairs of matched cortical eigenmodes (matched

to geometric modes 4, 6, and 24).
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186 Code and data availability

187

188  We have made all our code and supplementary data publicly available to facilitate

189  replication of these complementary analyses. The supplementary code and data to this
190  commentary is available from the following repository: https://github.com/sina-

191  mansour/brain_eigenmodes

192
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275 Supplementary Material

276

277  Eigenmode reconstruction coefficients

278

279  We estimated geometric eigenmode coefficients using the linear regression model outlined in
280  the supporting scripts openly provided by Pang and colleagues. Linear regression was used
281 because the geometric eigenmodes provided by the authors were not orthonormal

282 (0<]r|<0.1). In contrast, graph Laplacian-based eigenmodes (e.g., EDR and connectome)
283 were orthonormal (r=0) and thus the dot product was used to estimate eigenmode

284 coefficients, as described in equations 4,5 of Pang et al. (2023). We note that the

285  coefficients from linear regression (without an intercept) and the dot product are equivalent
286 if the eigenvectors are orthonormal.

287

288 Factors influencing reconstruction accuracy of connectome eigenmodes

289

290  We mapped connectomes for the same individuals analyzed by Pang and colleagues to

291  generate connectome eigenmodes and reconstruct individual resting-state functional

292 connectivity matrices and task-evoked activity maps (for 47 different task contrasts). As
293  discussed above, we implemented established methods to alleviate several biases in the

294  connectome mapping pipeline®™. Subsequent sections will detail these procedures and

295  evaluate their specific influence on reconstruction accuracy.

296

297  Connectome density. Binarizing connectomes at lower densities, particularly when utilizing
298  group-average connection strength as the threshold criterion, may result in the unintended
299  removal of genuine structural connections. Notably, due to the exponential decay in the

12,14
h

300  prevalence of connections as a function of streamline lengt , a stringent threshold (low

27 n line with

301  density) is likely to disproportionately eliminate long-range connections
302  evaluations reported by Pang and colleagues®, our findings (Fig. S2.b) verify that increasing
303  the binarization density (from 0.1% to 1%) yields improvements in connectome eigenmode
304  reconstruction accuracy for rest (AUC: from 65.7% to 71.7%) and task conditions (AUC:
305  from 78.2% to 81.6%).

306

307  Alleviating gyral bias. Upon inspection, the surface projections of connectome eigenmodes
308  manifested noticeable gyral bias (Fig. S1, also visible in Fig.1 of the original article). Gyral
309  bias is a known issue in tractography whereby regions located on the gyral ridges receive a

310  proportionally higher number of streamlines relative to those in the gyral wall and sulci®.

311  After thresholding, gyral bias may lead to disproportionate removal of sulcal connections,
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312  and hence underrepresenting sulcal connectivity. Previous studies have proposed different
313  strategies to mitigate this bias’*. Here, we used two alternative approaches to control for
314  this bias and assessed their influence on reconstruction accuracy. First, we performed a

315  linear adjustment to regress cortical curvature from connectivity strength. This correction
316  step was performed before density thresholding to mitigate the risk of excessive removal of
317  sulcal connections. As presented in Fig. S2.c, this correction for binarized connectomes

318  results in a further increase in reconstruction accuracy of connectome eigenmodes for both
319 rest (AUC: from 71.7% to 73.1%) and task (AUC: from 81.6% to 82.9%) conditions. We
320  also considered an alternative tractography pipeline to reduce the gyral bias (detailed in the
321  ensuing section).

322

323  Tractography pipeline. To investigate whether the underperformance of connectome

324  eigenmodes was attributable to gyral and other tractography biases, we employed an

325  alternative tractography pipeline to minimize the impact of such biases. Streamline

326  tractography was conducted with MRtrix3*" and adopted previously used steps detailed

327  elsewhere®. In contrast to the pipeline used by Pang and colleagues, we incorporated

328  combined intensity normalization and bias field correction of the diffusion-weighted imaging
329  data”'® and seeded streamlines from the white-gray matter boundary computed from 5-

330  tissue-type segmentation to perform anatomically constrained tractography (ACT)". As

331 illustrated in Fig. S1, these steps substantially reduced gyral bias. As further corroborated in
332 Fig. S2.d, when gyral and other tractography biases are alleviated, connectomic eigenmodes
333  demonstrate enhanced reconstruction performance, obviating the need for explicit curvature
334  adjustments as discussed in the preceding section. Specifically, to evaluate the incremental
335  benefit of the tractography changes, a group average weighted connectivity matrix was

336  constructed from the new tractograms, followed by binarization using a 1% density

337  threshold (without regression of gyral bias). Resulting binary connectomes yielded

338  eigenmodes with increased reconstruction accuracy across both rest (AUC: from 71.7% to
339  74.2%) and task (AUC: from 81.6% to 83.1%) conditions. This verifies that mitigating

340  gyral bias, whether via linear confound regression (Fig. S2.c) or tractography procedures
341 (Fig. S2.d) improves reconstruction accuracy.

342

343  Smoothed weighted connectivity. Pang and colleagues used binarized matrices to estimate
344  the connectome eigenmodes’. Binarization can obscure meaningful variations in connectivity
345  strengths. Studies using tractography and tract tracing techniques have previously indicated
346  that interareal connection strengths vary by multiple orders of magnitude'*™. This is

347  particularly evident in the high-resolution connectomes discussed here (Fig. S3); such that

348  binarized high-resolution connectomes may fail to include long-range structural connections
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349  due to their comparatively lower strengths. Established connectome mapping guidelines
350  assert that binarization may oversimplify the connectivity matrix and recommend the

351 adoption of weighted connectomes®. We therefore computed Laplacian eigenmodes using
352 weighted connectomes. First, connectome spatial smoothing (8mm FWHM) was applied to
353  enhance the interindividual reliability of high-resolution connectomes and reduce streamline

6,31 .
. Compared to binary connectomes, where connectome

354  endpoint location innacuracies
355  density can strongly influence network topology and attributes, removal of the weakest

356  elements from a weighted structural connectome matrix has only minor influence, due to
357  the range of the connection strength distribution®. As such, following connectome

358  smoothing (which intrinsically increases connectome density, Fig S3), we used a more

359  lenient threshold to prune the connectomes at 10% density prior to eigenmode estimation.
360

361  To construct the adjacency matrix, we integrated this connectivity data with local

362  connections, akin to the authors' approach®. This step is requisite to form a fully connected
363 matrix, which, in turn, is requisite for the eigenmode calculation. While the binary version
364  employed by the authors utilized a logical OR operator, we use the equivalent weighted

365  operation of summation (W = W onnectome + €iocal- Alocal, where W o denotes the
366  matrix that combines tractography-based connectivity with local vertex adjacency). The
367  local connection weights were multiplied by a small scaler (£;9cq1 = 107°) to ensure that
368  the results were primarily influenced by the connectome weights. The eigenmodes resulting
369  from this final step served as our alternative connectome eigenmodes. Notably, when

370  comparing the gain of this last step against the eigenmodes constructed from binarization
371  of the updated tractography pipeline (previous section), the smooth weighted alternative
372  connectome eigenmodes resulted in relatively modesl performance improvements for both
373 rest (AUC: from 74.2% to 74.8%) and task (AUC: from 83.1% to 84.0%) conditions (see
374  Fig. S2.e).

375

376  Systematic evaluation of parameters.

377

378  Our analyses indicated that several decisions in structural connectome reconstruction

379  contribute to the observed improvements. To quantify the sensitivity of these improvements
380  to different parameter choices, we conducted a systematic evaluation (see Figs. S4 to S10).
381 Given the large number of possible parameter combinations across the connectome mapping
382  pipeline, it is computationally infeasible to explore every permutation (e.g., connectome

383  density, gyral bias correction, tractography pipeline, binary vs. weighted, smoothing

384  strength, global-local combinations). As a result, we systematically examined the impact of

385  changing a single parameter while keeping other parameters constant.
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386

387  Figs S4, S5, & S6 evaluate the effect of binary connectome density on different

388  connectomes (with or without gyral bias correction). This shows that densities between
389  0.5% to 1% consistently yield high reconstruction acccuracies when constructing

390  eigenmodes from binary connectomes (regardless of gyral bias correction). Moreover, we
391  also evaluated the effect of density for pruned weighted connectomes (Fig S8); our results
392  indicate that when using weighted connectomes, densities above 0.5% are remarkably

393  better than lower densities. In contrast to binary counterparts, increasing the density of
394  weighted eigenmodes above 1% did not detriment reconstruction accuracy (Fig S8). Figs S7
395  and S9 examine the impact of performing connectome spatial smoothing. Notably, using
396  connectome smoothing, particularly with wide kernels (6-10mm FWHM) can result in

397  marginal improvements in reconstruction accuracy. Finally, as shown in Fig S10, we

398  evaluated the impact of changing the global-local combination parameter (£;0c41) and
399  found that it had negligible impact on reconstruction accuracy.

400

401 Eigenmode similarity comparison.

402

403  In Fig. 2, the geometric and connectivity-based eigenmodes were spatially compared to
404  assess the degree of similarity between eigenmodes. To this end, for all connectivity-based
405  eigenmodes, a 200x200 similarity matrix was computed that quantified the absolute value
406  of the Pearson’s correlation between the eigenmode basis set with the geometric

407  eigenmodes. This quantified the degree of spatial correspondence between two sets of

408  eigenmode bases. Next, a maximum weighted matching (via linear sum assignment using a

409  modified Jonker-Volgenant algorithm with no initialization®**

) was used to find optimal
410  matching pairs of eigenmodes such that the total spatial correspondence between

411  eigenmodes were maximized. To evaluate the spatial interdependencies between the

412 matched pairs, a permutation-based non-parametric spin-test was implemented®.

413 Specifically, for a total of 10,000 permutations, the geometric eigenmodes were collectively
414 randomly rotated to form a spatial null with similar frequency characteristics. For each

415  permutation, a maximum weighted matching method was similarly used to find the

416  matched pairs. This created a null distribution of matched eigenmode similarities for each
417  mode. Next, p-values were generated for every pair of matched eigenmodes to quantify the
418  likelihood of observing that magnitude of similarity in the null distribution. The resulting p-
419  values per matched eigenmode pair were then FDR corrected to find significant similarities

420  across all tests (Benjamini-Hochberg Procedure). This illustrated that both the EDR

421 eigenmodes (57 significant matches) and our connectome eigenmodes (62 significant
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422  matches) contained a greater degree of similarity to geometry eigenmodes than expected by
423 chance alone.

424

425  Subspace similarity comparison.

426

427  The analyses presented in Fig. 2 quantified the degree of spatial correspondence between
428  matched eigenmode pairs. However, not only can the order of eigenmodes differ between
429  two sets of eigenmodes (e.g., comparing geometric eigenmodes with EDR, Pang et al. 2023
430  connectome, and our connectome eigenmodes) but also a linear combination of eigenmodes
431  from one design can represent an eigenmode from another design. It is therefore important
432  to compare subspaces spanned by sets of eigenmodes from different designs in addition to
433 comparing individual pairs. To this end, we used the Procrustes transform (PT)*, which
434 finds the optimal rotation to match two linear subspaces. This method has been previously
435  used in related work®, albeit with a different goal, to quantify the degree of inter-subject
436  variability of eigenmodes of voxel-wise brain graphs. Given two sets of K eigenmodes, PT
437  optimally transforms one set to match the other set.

438

439  Specifically, we treated the geometric eigenmodes as the reference set (not transformed)
440  and computed the PT that optimally maps the eigenmode of EDR, Pang's connectome and
441  our connectome eigenmodes to the reference. This procedure was repeated for different

442 subsets of initial eigenmodes (K from 2 to 200). The cosine similarity between each pair of
443  sets of eigenmodes was computed before and after PT, resulting in two K x K matrices for
444  each K and each pair of designs. Noting that the Frobenius norm of the cosine similarity
445  matrices before and after PT is identical, the norm of the off-diagonal elements after PT
446  provides a measure of residual distance between the two spaces. Normalizing the residual
447 by the total Frobenius norm indicates the proportion of similarity in the subspaces spanned
448 by the pairs of eigenmodes. Particularly, the percentage of the residual before PT retained
449  after PT can be treated as a distance measure. The distance measure before and after PT
450  for different pairs of designs and K can be seen in Fig. S11a,b respectively. These results
451 complement the similarity evaluations presented in Fig. 2; notably, EDR and our

452  connectome eigenmodes have a greater similarity to (smaller distance from) the geometric
453  eigenmodes than connectome eigenmodes used by Pang and colleagues.

454

455  Structural connection lengths.

456

457  Formation of anatomical connections in the central nervous system is fundamentally

458  constrained by wiring cost®. Long-range connections are costly and a trade-off between
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459  efficient information transfer and minimal wiring cost influences connectome formation.
460  This posits a potential rationale for why geometric eigenmodes perform equally well in
461 reconstructing spatial patterns of brain activity, particularly at shorter wavelengths: they
462  act as a surrogate for the expected presence of short-range local connections. Short

463  connections are the most common, least costly and are also more likely to conform with
464  cortical surface geometry than long-range connections.

465  We investigated the potential influence of connection length on eigenmode formation as
466  follows. First, we chose a set of streamline length thresholds as 8, 16, 32, 64mm; the
467  connections contained within the five bins formed by these thresholds are shown for an
468  exemplar vertex in Fig. S12.a. Then, for each threshold, we formed two pruned

469  connectomes: one consisting only of streamlines longer than that threshold, and one

470  consisting only of streamlines shorter than that threshold. Connectome eigenmodes were
471  then computed from these pruned connectomes. This facilitated evaluation of pruned
472  connectomes that exclude either long or short connections as a function of the exclusion
473 threshold.

474 Where a maximal streamline length is imposed and progressively decreased (Fig. S12.b),
475  reconstruction accuracy remains mostly consistent; at least until that maximal length
476  decreases to 8mm at which point this accuracy declines, except for accuracy with fewer
477  number of modes that are most sensitive to removal of longer connections. Conversely,
478  where a minimal streamline length is imposed and progressively increased (Fig. S12.c), this
479  quickly becomes deleterious to the explanatory power of the connectome eigenmodes,
480  particularly with greater numbers of eigenmodes that ideally capture patterns of higher
481 spatial frequency.

482  There are two topics of discussion that arise from these results; firstly, given that very short

¥4 "and that the trajectories of

483 connections are far more prevalent than long connections
484  such short length connections are strongly influenced by the local cortical geometry®, it is
485  possible that the connectivity information encoded in short wavelength connectome

486  eigenmodes closely mimics that of geometric information.

487  Secondly, given that inclusion of larger numbers of eigenmodes facilitates mapping of higher
488  spatial frequency components, it is intuitive that exclusion of connections of short length
489  will be deleterious to the explanatory power of the resulting eigenmode bases of greater

490  cardinality. As such, pruning connectomes at minimal lengths of 16mm and 32mm resulted
491 in a plateau in reconstruction accuracy, observed after the initial 50 and 20 eigenmodes,
492  respectively (red pointers in Fig. S13.c).

493  These results are consistent with the subtle differences in reconstruction accuracy between

494  geometric and connectome eigenmodes. Plots of reconstruction accuracy as a function of

495  number of modes often show that connectomes offer slightly greater explanatory power
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496  with a small number of modes whereas with a larger basis set geometry performs equally
497  well. Using a small number of modes of long wavelength, the specificity of structural

498  connectivity estimates may provide contrast that is comparably absent from a purely

499  geometric parametrisation; this is supported by the preservation of explanatory power with
500  a small number of connectome eigenmodes even if short connections are eliminated.

501 Conversely, by using a larger basis that includes short wavelength eigenmodes, geometry
502  provides comparable explanatory power via an indirect proxy for the local structural

503  connectivity that is biologically responsible for constraining functional activity. The strong
504  prevalence of very short connections, along with the dominance of their contribution toward
505  explanatory power of connectome eigenmodes, contraindicates the conventional use of large
506  minimum length thresholds in tractography.

507

508  Partial correlation evaluations.

509

510  Evaluations of reconstruction accuracy can fail to discern whether distinct eigenmodes

511 reconstruct similar or disparate sources of information. Given the observed comparable

512  explanatory power of geometric and connectome eigenmodes as well as similarities between
513  the two basis sets, we utilised partial correlations to assess the level of distinction between
514  the two. As reconstruction accuracy was quantified by Pearson’s correlation, partial

515  correlation provides a straightforward extension to measure the incremental contribution of
516  either geometric or connectome basis sets while accounting for the explanatory capacity of
517  the other.

518  We assessed the incremental value of geometry/connectome eigenmodes across varying
519  number of modes: for any fixed number of modes, we calculated partial correlations

520  between the ground truth and reconstructed data while controlling for the reconstruction
521  achieved by the alternative basis set. Results are presented in Fig. S13.a. Both geometry
522  and connectome eigenmodes can elucidate sources of variance that are independent of the
523  other basis set using the same number of modes. The presence of significant additive

524  benefits for either set of modes suggests that specific sources of spatial variance in

525  functional maps may be more effectively captured by that particular set.

526  Across a wide range of possible numbers of modes, connectome eigenmodes consistently
527  uncover significant sources of variance that elude the geometric counterpart. A similar

528  pattern is also apparent for geometric eigenmodes, except in the reconstruction of task-
529  evoked activity with a small number of modes (<25), where geometric eigenmodes provide
530  no additional benefits to connectome reconstructions. This suggests that the similarity in

531 reconstruction performance between the two sets of eigenmode bases is not due to their
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532  equivalence; conversely, each set possesses a significant degree of explanatory capacity that
533  is absent in the other.

534  We further expanded these assessments to explore the impact of imposing length thresholds
535  on the partial correlation of connectome eigenmodes, controlling for the reconstructions

536  based on geometric eigenmodes. Imposing maximal length thresholds to exclude longer

537  connections negatively impacted the incremental benefit of connectome eigenmodes,

538  particularly when fewer number of modes were considered (see Fig. S13.b). Conversely,

539  imposing minimal length thresholds to exclude shorter connections were most detrimental
540  for the additive benefit of connectome eigenmodes when a higher number of modes were
541  considered (see Fig. S13.c).

542 This further validates the intuitive expectation that longer connections play a pivotal role in
543  shaping lower frequency modes, while shorter connections contribute to the accurate

544  estimation of higher frequency modes. Particularly noteworthy are the insights from Fig.
545  S13.c, underscoring the distinct contribution of long-range connections to the explanatory
546  power of connectome eigenmodes. For instance, even after the exclusion of connections

547  shorter than 64mm—constituting over 95% of all reconstructed streamlines—the remaining
548 long connections form connectome eigenmodes that significantly capture sources of variance
549  not attainable by geometric modes, particularly evident with fewer than 100 modes

550  considered. This underscores the impact of connections of all lengths in shaping the distinct
551  sources of spatial variance captured by connectome eigenmodes.

552
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a | Cortical projections of curvature and node strength
Curvature Pang et al. Regression Tractography

b | Gyral bias impact
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Fig. S1 Gyral bias effects visible in connectome strength. (a) Surface projections of cortical curvature (left),
connectivity strength, respectively for the original connectome from Pang et al., and connectomes after
addressing the gyral bias via regression or tractography. (b)The severity of gyral bias can be quantified by the
correlation between curvature and connectivity strength, showing pronounced gyral bias effects in the original
connectomes used by Pang and colleagues (left; r = 0.48). In contrast gyral bias is substantially reduced via

regression (center; r = 0.23) or tractography (right; r = 0.16).
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Reconstruction accuracy evaluations breakdown
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Fig. S2 Breakdown of different steps influencing reconstruction accuracy. The format of this figure closely
resembles the structure of Figure 2. The first two rows show results for resting state connectivity, and the last
two rows show results for task-evoked activity. Both reconstruction accuracy and differences are presented,
along with AUC metrics, for ease of comparison. (a) Original results reported by Pang and colleagues. (b-d)
Improvement in reconstruction accuracy achieved from eigenmodes of different intermediary connectome
construction steps. (b) The impact of connectome density: Increasing the density of binary connectome (from
0.1% to 1%) improves reconstruction accuracy, resulting in a 3-5% increase in AUC. (c) Linear adjustment of
edge strength to account for the gyral bias provides additional accuracy improvements, with a 2-3% increase in
AUC. (d) Alternatively, similar improvements can also be achieved by mitigating the gyral bias in the
tractography pipeline, resulting in a 2-4% increase in AUC. (e) Finally, the use of smoothed weighted

connectomes further enhances reconstruction accuracy, leading to a 1% increase in AUC.
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Fig. S3 High-resolution connectivity strength spans multiple orders of magnitude. (a,b) Histograms show the
distribution of connection strengths in a high-resolution connectome (a) before and (b) after connectome spatial
smoothing. Plot axes are log-transformed to highlight the presence of connection strengths spanning multiple
orders of magnitude. (c-g) Cortical projections of high-resolution structural connectivity from an exemplary
node/vertex situated on the left frontal cortex (c). Binary connectomes simplify the connections of a vertex to a
binary mask; this is shown for connectomes binarized at two different density thresholds of 0.1% and 1% (d,e).
In contrast, weighted connectomes capture the diverse range of connections with different strength magnitudes
which is visible (f) before and (g) after connectome spatial smoothing. This figure also shows the increase in
connection density resulting from spatial smoothing. Notably, smoothing improves reconstruction of known

long-range connections to the exemplary node, i.e. the superior longitudinal fasciculus and the arcuate fasciculus.
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Binary connectomes without gyral bias correction
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Fig. S4 Assessing the impact of density on reconstruction accuracy of binary connectomes without gyral bias
correction. Here, the reconstruction task was systematically repeated for varying connectome density levels
(0.05% to 10%) while keeping other pipeline parameters constant; specifically, this test utilized the connectomes
from Pang et al. (2023) without performing any gyral bias correction, and a binary connectome was constructed
based on density thresholds. Line plots (left) depict the reconstruction accuracy as a function of the number of
modes for both resting-state connectivity (top) and task-evoked activity (bottom) reconstruction. Scatter plots
(right) display the corresponding summary AUC measures. Connectome eigenmode performance is relatively

higher within the 0.5% to 1% density range compared to both higher and lower densities.
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Binary connectomes with gyral bias reduction via regression
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Fig. S5 Assessing the impact of density on reconstruction accuracy of binary connectomes after gyral bias
reduction via regression. Here, the reconstruction task was systematically repeated for varying connectome
density levels (0.05% to 10%) while keeping other pipeline parameters constant; namely, we utilized the
connectomes from Pang et al. (2023), applied gyral bias regression, and constructed a binary connectome based
on several density thresholds. Line plots (left) depict the reconstruction accuracy as a function of the number of
modes for both resting-state connectivity (top) and task-evoked activity (bottom) reconstruction. Scatter plots
(right) display the corresponding summary AUC measures. Notably, performance is higher within the 0.5% to

1% density range compared to both higher and lower densities.
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Binary connectomes with gyral bias reduction via tractography
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Fig. S6 Assessing the impact of density on reconstruction accuracy of binary connectomes after gyral bias
reduction via tractography. Here, the reconstruction task was systematically repeated for varying connectome
density levels (0.05% to 10%) while keeping other pipeline parameters constant; namely, we utilized the
connectomes from our tractography pipeline that better mitigated the gyral bias, and constructed a binary
connectome at several density thresholds. Line plots (left) depict the reconstruction accuracy as a function of
the number of modes for both resting-state connectivity (top) and task-evoked activity (bottom) reconstruction.
Scatter plots (right) display the corresponding summary AUC measures. Notably, performance is higher for

densities lower than 1% compared to higher densities.
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Connectome spatial smoothing for binary connectomes

10 100

'31 08 80
'S ——— g E— e —— 8- —————————
B >
0 7
c §96— 60
Q § é
33
S 5 04 — Geometry 91 == Geometry
[ — FWHM: Omm o FWHM: 0mm
on — FWHM: 2mm e FWHM: 2mm
.g ol — FWHM: 4mm ol ® FWHM: 4mm
g l = FWHM: 6mm o FWHM: 6mm
a4 I — FWHM: 8mm e FWHM: 8mm
| FWHM: 10mm FWHM: 10mm
0.0 v T T T T T T 0 T T T T T T
25 50 75 100 125 150 175 200 0 2 4 6 8 10
Number of modes FWHM (mm)
10 100
S S Y T S
0.8+ 80
>
=
> 2
o g
g §96— 60
[y
RS
B2 g
(8]
S i =
> 5 t — Geometry 1 == Geometry
;.’ g — FWHM: Omm e FWHM: Omm
7] — FWHM: 2mm e FWHM: 2mm
ﬁ ol — FWHM: 4mm ol ® FWHM: 4mm
= FWHM: 6mm o FWHM: 6mm
— FWHM: 8mm o FWHM: 8mm
FWHM: 10mm FWHM: 10mm
0.0 v T T T T T T 0 T T T T T T
25 50 75 100 125 150 Lr5 200 0 2 4 6 8 10
616 Number of modes FWHM (mm)
617 Fig. S7 Assessing the impact of connectome spatial smoothing on reconstruction accuracy of binary
618 connectomes. Here, the reconstruction task was systematically repeated for varying smoothing kernels (up to
619 10mm FWHM) while keeping other pipeline parameters constant; specifically, we utilized the connectomes from

620 our tractography pipeline that better mitigated the gyral bias, performed connectome spatial smoothing, and
621 constructed binary connectomes at 1% density. Line plots (left) depict the reconstruction accuracy as a function
622 of the number of modes for both resting-state connectivity (top) and task-evoked activity (bottom)

623 reconstruction. Scatter plots (right) display the corresponding summary AUC measures. Notably, wider

624 smoothing kernels (greater than 6mmFWHM) yielded slightly improved reconstruction accuracy compared to
625 weaker kernels or no smoothing. Note: The Omm FWHM case signifies the condition where no smoothing was
626 applied.
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Connectome spatial smoothing for weighted connectomes
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Fig. S8 Assessing the impact of connectome spatial smoothing on reconstruction accuracy of weighted
connectomes. Here, the reconstruction task was systematically repeated for varying smoothing kernels (up to
10mm FWHM) while keeping other pipeline parameters constant; specifically, we utilized the connectomes from
our tractography pipeline that better mitigated the gyral bias, performed connectome spatial smoothing, and
constructed a weighted connectome pruned at 10% density. The global-local adjacency combination parameter
(E1ocal) was fixed at 1075, Line plots (left) depict the reconstruction accuracy as a function of the number of
modes for both resting-state connectivity (top) and task-evoked activity (bottom) reconstruction. Scatter plots
(right) display the corresponding summary AUC measures. Notably, wider smoothing kernels yielded modestly
improved reconstruction accuracy compared to weaker kernels or no smoothing. Note: The Omm FWHM case

signifies the condition where no smoothing was applied.
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Weighted smoothed connectomes: effect of density
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640 Fig. S9 Assessing the impact density on reconstruction accuracy of weighted connectomes. Here, the

641 reconstruction task was systematically repeated for varying density levels (0.05% to 10%) while keeping other
642 pipeline parameters constant; specifically, we utilized the connectomes from our tractography pipeline that

643 better mitigated the gyral bias, performed connectome spatial smoothing (8mm FWHM), and constructed a

644 weighted connectome pruned based on the density criterion. The global-local adjacency combination parameter
645 (E1ocal) was fixed at 1075, Line plots (left) depict the reconstruction accuracy as a function of the number of
646 modes for both resting-state connectivity (top) and task-evoked activity (bottom) reconstruction. Scatter plots

647 (right) display the corresponding summary AUC measures. Notably, accuracy is remarkably higher for densities
648 greater than 0.5% compared to lower densities.
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Weighted smoothed connectomes: effect of £/5¢a
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Fig. S10 Assessing the impact of the global-local combination parameter (€j0cq1) On reconstruction accuracy of
weighted connectomes. Here, the reconstruction task was systematically repeated for varying choices of €j4cai
while keeping other pipeline parameters constant; particularly, we utilized the connectomes from our
tractography pipeline that better mitigated the gyral bias, performed connectome spatial smoothing (8mm
FWHM), and constructed a weighted connectome pruned at 10% density. Line plots (left) depict the
reconstruction accuracy as a function of the number of modes for both resting-state connectivity (top) and task-
evoked activity (bottom) reconstruction. Scatter plots (right) display the corresponding summary AUC measures.

Notably, £;5cq1 Seems to have had negligible impact on the reconstruction accuracy.
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Pre-Procrustes transform residuals
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662 Fig. S11 Assessing the distance between pairs of subspaces spanned by different eigenmodes. The x-axis denotes
663 the number of eigenmodes, K, included in the subspace comparison. The y-axis denotes the pairwise eigenmode
664 distances quantified by the Frobenius norm of the off-diagonal values in the K x K cosine similarity matrix. The
665 y-axis is normalized to show the percentage relative to the Frobenius norm of the similarity matrix. (a) Prior to
666 a Procrustes transformation, all pairs of eigenmodes show high distances, i.e. the pairs of subspaces are different
667 due to a lack of alignment between eigenmode pairs. (b) Using Procrustes transformation, pairs of subspaces
668 are optimally aligned. This results in a relative reduction in distance between subspaces. Particularly, distances
669 between pairs of eigenmode subspaces with higher similarity would show a larger relative reduction. These
670 results indicate a higher degree of similarity between EDR/Our connectome eigenmodes to the geometric
671 eigenmodes (in contrast to the lower similarity to Pang et al.’s connectome eigenmodes).
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673
674 Fig. S12 Impact of imposing connection length limits on reconstruction accuracy. (a) Structural connections
675 were grouped based on streamline length. The left panel indicates the frequency of observing streamlines at
676 different length bins along with projections of such connections from an exemplary node. Close to 95% of all
677 streamlines were shorter than 64mm, and more than a fifth of all reconstructed streamlines are shorter than
678 8mm. (b) The reconstruction accuracy tests were repeated after excluding connections longer than different
679 maximal length thresholds. Imposing maximal length thresholds had relatively modest impacts on reconstruction
680 accuracy, exept for cases with fewer number of modes that were negatively impacted by removal of long
681 connections. (c) The same test was repeated by imposing minimal length thresholds to exclude shorter
682 connections. Exclusion of short connections exerts a more pronounced detrimental impact on reconstruction
683 accuracy, particularly with higher number of modes. This agrees with the intuitive expectation that longe-range
684 connections influence accurate estimation of eigenmodes at longer wavelengths, whereas short-range connections
685 are more influential at constructing eigenmodes at higher spatial frequencies.
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Partial correlation evaluations
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Fig. S13 Partial correlation evaluations quantifying the incremental explanatory value of connectome and
geometry eigenmodes. Each point represents, for a given basis set & number of modes, the partial correlation
between functional activation and the eigenmode-based reconstruction of such, while controlling for those
features of the functional activation explained by the alternative basis set using the same number of modes.
Dashed gray lines indicate the significance level for a partial correlation test at a = 5%; the null hypothesis of
no additional explanatory benefit by the basis set of interest is rejected for points above the line. (a)
Comparison between geometric and connectome eigenmodes, using the complete tractography reconstruction in
the latter case. The magenta curve represents the scenario where connectome eigenmodes form the basis set of
interest while controlling for geometry; conversely, the black curve represents the scenario where geometry
eigenmodes form the basis set of interest. (b) The partial correlation assessments after applying maximal length
thresholds before constructing connectome eigenmodes. (c) The same test repeated for the case in which a
minimal length threshold is instead imposed. Geometry is controlled for all curves in (b) and (c), and the

connectome eigenmodes computed after application of the length threshold form the basis set of interest.
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