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21

Eigenmodes can be derived from various structural brain properties, including cortical22

surface geometry1 and interareal axonal connections comprising an organism’s connectome2.23

Pang and colleagues map geometric and connectome eigenmodes to spatial patterns of24

human brain activity, assessing whether brain connectivity or geometry provide greater25

explanatory power of brain function3. The authors find that geometric eigenmodes are26

superior predictors of cortical activity compared to connectome eigenmodes. They conclude27

that this supports the predictions of neural field theory (NFT)4, in that “brain activity is28

best represented in terms of eigenmodes derived directly from the shape of the cortex, thus29

emphasizing a fundamental role of geometry in constraining dynamics”. The experimental30

comparisons favoring geometric eigenmodes over connectome eigenmodes, in conjunction31

with specific statements regarding the relative efficacy of geometry in representing brain32

activity, have been widely interpreted to mean that geometry imposes stronger constraints33

on cortical dynamics than connectivity5-9. Here, we reconsider the comparative experimental34

evidence focusing on the impact of connectome mapping methodology. Utilizing established35

methods to mitigate connectome construction limitations, we map new connectomes for the36

same dataset, finding that eigenmodes derived from these connectomes reach comparable37

accuracy in explaining brain activity to that of geometric eigenmodes. We conclude that the38

evidence presented to support the comparative proposition that “eigenmodes derived from39

brain geometry represent a more fundamental anatomical constraint on dynamics than the40
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connectome” may require reconsideration in light of our findings. Pang and colleagues41

present compelling evidence for the important role of geometric constraints on brain42

function, but their findings should not be interpreted to mean that geometry has superior43

explanatory power over the connectome.44

45

High-resolution connectome mapping46

47

Pang and colleagues analyzed connectomes mapped at very high resolution (~32k48

vertices/nodes per hemisphere). High-resolution connectome mapping is challenging and49

susceptible to biases and inaccuracies10,11. For example, assigning streamline endpoints to50

vertices of the cortical surface mesh implies accurate identification of endpoint locations51

with a precision of the inter-vertex distance. Accumulation of integration errors during52

streamline propagation can exceed this tolerance, leading to unreliable connectivity53

estimates. While methods are available to alleviate this source of inaccuracy12, they do not54

appear to have been used by Pang and colleagues. Another consideration is gyral bias13 –the55

tendency for streamlines to preferentially terminate at gyral crowns rather than sulcal fundi,56

leading to biased connectivity estimates. Gyral bias is visibly prominent for the connectomes57

used by Pang and colleagues (Fig.2b of Pang et al.3, also see Supplementary Fig. S1).58

Additionally, the authors analyzed binarized connectomes, where continuous connectivity59

strength information was converted to binary values. While binarization simplifies the60

connectome, it may result in information loss and reduced robustness to tractography61

inaccuracies. Given these observations, we sought to evaluate the impact of addressing62

these issues on the “comparatively poor performance of connectome eigenmodes”.63

64

We mapped new connectomes for the same individuals analyzed by Pang and colleagues,65

using established methods to alleviate gyral bias as well as to improve streamline66

assignments and tractography accuracy. Our pipeline included: i) combined intensity67

normalization and bias field correction of the diffusion MRI data14,15; ii) anatomically68

constrained tractography with streamlines seeded from the white-gray matter boundary69

using tissue-type segmentation to improve tractography accuracy16; iii) gyral bias1370

reduction via these changes to the tractography pipeline (steps i and ii) relative to the71

pipeline used by Pang and colleagues, or regression of streamline counts against cortical72

curvature during connectome postprocessing; iv) retainment of connectome weights to73

preserve the broad range of interareal connection strengths17, rather than reducing to an74

oversimplified binary connectivity representation18; and, v) connectome spatial smoothing to75

account for imprecision in streamline endpoint determination12. We mapped connectome76

eigenmodes from weighted connectomes pruned to a connection density of 10% and77
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evaluated the impact of alternative densities (see Supplementary Material: Factors78

influencing reconstruction accuracy of connectome eigenmodes). The above methods are79

established and commonly used to reconstruct connectomes for purposes other than80

computing eigenmodes10-18.81

82

Connectome and geometric eigenmodes can explain brain activity equally well83

84

Our connectome eigenmodes explained brain activity with substantially higher accuracy85

than those used by Pang and colleagues for both resting-state (AUC; our connectomes:86

74.8% [74.4% to 75.2%], Pang: 65.7% [65.1% to 66.2%]) and task conditions (AUC; our87

connectomes: 84.0% [82.9% to 85.0%], Pang: 78.2% [76.7% to 79.7]). Critically, our88

connectome eigenmodes performed equally as well as geometric eigenmodes for both89

resting-state (AUC; our connectomes: 74.8% [74.4% to 75.2%], geometry: 75.5% [75.1% to90

75.9%]) and task conditions (AUC; our connectomes: 84.0% [82.9% to 85.0%], geometry:91

83.1% [82.1% to 84.1%]). This suggests that the “comparatively poor performance of the92

connectome eigenmodes” used by Pang and colleagues may be a consequence of93

unaddressed challenges in mapping high-resolution connectomes (Fig. 1, see Supplementary94

Material for detail).95

96

97

Reconstruction accuracy differences between our connectome eigenmodes and geometric98

eigenmodes were modest. These differences were greatest for low-frequency eigenmodes,99

but converged to zero at higher frequencies, never exceeding a difference of 1% after100

inclusion of 150 eigenmodes or more. Supplementary analyses were conducted to determine101

the relative impact on reconstruction accuracy of each connectome mapping step. Using102

weighted connectomes and controlling for gyral bias were the most important steps in103

achieving accurate connectome eigenmode reconstructions (supplementary Figs. S2-S10).104

105

Comparison of connectome and geometric eigenmodes106

107

The spatial profiles of our connectome eigenmodes were similar to that of the geometric108

eigenmodes, whereas weaker spatial similarity was evident between geometric eigenmodes109

and the connectome eigenmodes used by Pang and colleagues (see Fig. 2 and110

supplementary Fig. S11). Our results indicate a greater degree of overlap between brain111

geometry and our connectome eigenmodes. Shared information between geometry and112

connectivity may be a contributing factor to the high reconstruction accuracy of both bases.113

We also carried out supplementary analyses to evaluate the influence of connection length114
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on the explanatory power of connectome eigenmodes (supplementary Figs. S12, S13).115

Crucially, despite the similarity between geometry and connectome eigenmodes, partial116

correlation evaluations indicate that both long and short anatomical connections enable117

connectome eigenmodes to capture sources of spatial variance in brain activity that elude118

geometric counterparts.119

120

Concluding remarks121

122

Pang and colleagues assert that “structural eigenmodes derived solely from the brain’s123

geometry provide a more compact, accurate and parsimonious representation of its124

macroscale activity than alternative connectome-based models”. We mapped connectomes125

for the same individuals using sophisticated techniques10-18 and found that connectome126

eigenmodes are as effective as geometric eigenmodes in explaining resting-state and task-127

evoked brain activity. The comparatively poor performance of the connectomes used by128

Pang and colleagues may therefore be attributed to unaddressed concerns in connectome129

reconstruction. Connectome eigenmodes provided marginally higher reconstruction accuracy130

than geometry at low frequencies (first 10-30 eigenmodes), underscoring the potential131

significance of structural connections in shaping large-scale functional hierarchies.132

Nonetheless, we view these modest differences as insufficient grounds to substantiate133

conclusions on superiority.134

135

We found similarities in the cortical spatial profiles of connectome and geometric136

eigenmodes, suggesting a tight relationship between cortical geometry and cortico-cortical137

connectivity. White-matter connections reflect geometric characteristics, wherein regions in138

closer spatial proximity exhibit stronger connectedness14 (see Fig. S3). Conversely, the139

brain's geometric features may be sculpted by interareal connectivity; it is hypothesized140

that the forces generated by axonal elongations gradually shape cortical folding patterns15.141

The interplay between brain geometry and connectivity remains a fertile area for future142

exploration. We found that short-range connections were important to connectome143

explanatory power at higer frequencies; short connections are likely to conform to cortical144

surface geometry, and therefore disambiguating the effects of connectivity and geometry145

across short ranges will be challenging.146

147

The work of Pang and colleagues has been construed as pitting the geometric and148

connectome eigenmode bases against one another5-8, even if this was not the authors'149

intention9. While geometric eigenmodes may be more parsimonious than their structural150

connectome counterparts, our results demonstrate that specific comments predicated on an151
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inferior explanatory capacity of connectome eigenmodes should be tempered to avoid152

continued misinterpretation. Our results also highlight challenges of connectome mapping153

and the importance of utilizing state-of-the-art connectome reconstruction techniques for154

broad conclusions regarding brain structure and function to be robust.155

156

157

158
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159
Fig. 1 Connectome and geometric eigenmodes explain resting-state and task-based brain activity equally well.160
(a, b) Replication of results by Pang and colleagues. Plots show accuracy in explaining resting-state (a) and161
task-evoked activity (b) as a function of the number of eigenmodes. Area under curve (AUC) is shown to162
provide a summary of reconstruction accuracy. Inset shows the difference in reconstruction accuracy between163
geometric and connectome eigenmodes. Shading indicates 95% confidence intervals. A nonparametric paired164
test was used to assess statistical significance; instances where the connectome (blue) or geometry (red) provide165
a significantly higher reconstruction accuracy (FDR corrected) are marked above the inset and the total counts166
are reported in the top right corner. (c, d) Same as (a,b), but for our connectome eigenmodes. (e, f) Heatmaps167
show differences in reconstruction accuracy between geometric and our connectome eigenmodes across168
individual subjects and task contrasts. Red indicates superior explanatory power of geometric eigenmodes; blue169
indicates superior explanatory power of connectome eigenmodes.170
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171

172
Fig. 2 Spatial comparison of geometric and connectome eigenmodes. (a) Cortical surface rendering of173
geometric (first row), exponential distance rule (EDR, second row) and connectome (third row) eigenmodes174
mapped by Pang and colleagues. Final row shows eigenmodes derived from our connectomes. (b) The175
connectivity-based eigenmodes (EDR and connectome) were compared to the geometric eigenmodes. Heatmaps176
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show the spatial similarity across eigenmode pairs, quantified by the magnitude of the Pearson’s correlation.177
Similar eigenmodes were matched by maximum weighted matching. The squares denoting matched eigenmode178
pairs are magnified in the heatmaps. (c) A permutation-based nonparametric test was used to evaluate the179
statistical significance of observed similarities compared to null signals of similar spatial frequency. The gray180
shade indicates the 95% confidence interval as per the permutaion test. Red ticks along x axis indicate matched181
pairs with significant similarities (FDR corrected p<0.05) and the total number of significant matches is182
depicted in red above y axis. The insets present three exemplar pairs of matched cortical eigenmodes (matched183
to geometric modes 4, 6, and 24).184

185
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Code and data availability186

187

We have made all our code and supplementary data publicly available to facilitate188

replication of these complementary analyses. The supplementary code and data to this189

commentary is available from the following repository: https://github.com/sina-190

mansour/brain_eigenmodes191
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Supplementary Material275

276

Eigenmode reconstruction coefficients277

278

We estimated geometric eigenmode coefficients using the linear regression model outlined in279

the supporting scripts openly provided by Pang and colleagues. Linear regression was used280

because the geometric eigenmodes provided by the authors were not orthonormal281

(0<|r|<0.1). In contrast, graph Laplacian-based eigenmodes (e.g., EDR and connectome)282

were orthonormal (r=0) and thus the dot product was used to estimate eigenmode283

coefficients, as described in equations 4,5 of Pang et al. (2023). We note that the284

coefficients from linear regression (without an intercept) and the dot product are equivalent285

if the eigenvectors are orthonormal.286

287

Factors influencing reconstruction accuracy of connectome eigenmodes288

289

We mapped connectomes for the same individuals analyzed by Pang and colleagues to290

generate connectome eigenmodes and reconstruct individual resting-state functional291

connectivity matrices and task-evoked activity maps (for 47 different task contrasts). As292

discussed above, we implemented established methods to alleviate several biases in the293

connectome mapping pipeline5-13. Subsequent sections will detail these procedures and294

evaluate their specific influence on reconstruction accuracy.295

296

Connectome density. Binarizing connectomes at lower densities, particularly when utilizing297

group-average connection strength as the threshold criterion, may result in the unintended298

removal of genuine structural connections. Notably, due to the exponential decay in the299

prevalence of connections as a function of streamline length12,14, a stringent threshold (low300

density) is likely to disproportionately eliminate long-range connections26,27. In line with301

evaluations reported by Pang and colleagues3, our findings (Fig. S2.b) verify that increasing302

the binarization density (from 0.1% to 1%) yields improvements in connectome eigenmode303

reconstruction accuracy for rest (AUC: from 65.7% to 71.7%) and task conditions (AUC:304

from 78.2% to 81.6%).305

306

Alleviating gyral bias. Upon inspection, the surface projections of connectome eigenmodes307

manifested noticeable gyral bias (Fig. S1, also visible in Fig.1 of the original article). Gyral308

bias is a known issue in tractography whereby regions located on the gyral ridges receive a309

proportionally higher number of streamlines relative to those in the gyral wall and sulci8.310

After thresholding, gyral bias may lead to disproportionate removal of sulcal connections,311
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and hence underrepresenting sulcal connectivity. Previous studies have proposed different312

strategies to mitigate this bias28,29. Here, we used two alternative approaches to control for313

this bias and assessed their influence on reconstruction accuracy. First, we performed a314

linear adjustment to regress cortical curvature from connectivity strength. This correction315

step was performed before density thresholding to mitigate the risk of excessive removal of316

sulcal connections. As presented in Fig. S2.c, this correction for binarized connectomes317

results in a further increase in reconstruction accuracy of connectome eigenmodes for both318

rest (AUC: from 71.7% to 73.1%) and task (AUC: from 81.6% to 82.9%) conditions. We319

also considered an alternative tractography pipeline to reduce the gyral bias (detailed in the320

ensuing section).321

322

Tractography pipeline. To investigate whether the underperformance of connectome323

eigenmodes was attributable to gyral and other tractography biases, we employed an324

alternative tractography pipeline to minimize the impact of such biases. Streamline325

tractography was conducted with MRtrix321 and adopted previously used steps detailed326

elsewhere30. In contrast to the pipeline used by Pang and colleagues, we incorporated327

combined intensity normalization and bias field correction of the diffusion-weighted imaging328

data9,10 and seeded streamlines from the white-gray matter boundary computed from 5-329

tissue-type segmentation to perform anatomically constrained tractography (ACT)11. As330

illustrated in Fig. S1, these steps substantially reduced gyral bias. As further corroborated in331

Fig. S2.d, when gyral and other tractography biases are alleviated, connectomic eigenmodes332

demonstrate enhanced reconstruction performance, obviating the need for explicit curvature333

adjustments as discussed in the preceding section. Specifically, to evaluate the incremental334

benefit of the tractography changes, a group average weighted connectivity matrix was335

constructed from the new tractograms, followed by binarization using a 1% density336

threshold (without regression of gyral bias). Resulting binary connectomes yielded337

eigenmodes with increased reconstruction accuracy across both rest (AUC: from 71.7% to338

74.2%) and task (AUC: from 81.6% to 83.1%) conditions. This verifies that mitigating339

gyral bias, whether via linear confound regression (Fig. S2.c) or tractography procedures340

(Fig. S2.d) improves reconstruction accuracy.341

342

Smoothed weighted connectivity. Pang and colleagues used binarized matrices to estimate343

the connectome eigenmodes3. Binarization can obscure meaningful variations in connectivity344

strengths. Studies using tractography and tract tracing techniques have previously indicated345

that interareal connection strengths vary by multiple orders of magnitude12,14. This is346

particularly evident in the high-resolution connectomes discussed here (Fig. S3); such that347

binarized high-resolution connectomes may fail to include long-range structural connections348
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due to their comparatively lower strengths. Established connectome mapping guidelines349

assert that binarization may oversimplify the connectivity matrix and recommend the350

adoption of weighted connectomes13. We therefore computed Laplacian eigenmodes using351

weighted connectomes. First, connectome spatial smoothing (8mm FWHM) was applied to352

enhance the interindividual reliability of high-resolution connectomes and reduce streamline353

endpoint location innacuracies6,31. Compared to binary connectomes, where connectome354

density can strongly influence network topology and attributes, removal of the weakest355

elements from a weighted structural connectome matrix has only minor influence, due to356

the range of the connection strength distribution32. As such, following connectome357

smoothing (which intrinsically increases connectome density, Fig S3), we used a more358

lenient threshold to prune the connectomes at 10% density prior to eigenmode estimation.359

360

To construct the adjacency matrix, we integrated this connectivity data with local361

connections, akin to the authors' approach3. This step is requisite to form a fully connected362

matrix, which, in turn, is requisite for the eigenmode calculation. While the binary version363

employed by the authors utilized a logical OR operator, we use the equivalent weighted364

operation of summation (�� =�푐표푛푛푒푐竡표竡푒 + �푙표푐�푙.�푙표푐�푙, where �� denotes the365

matrix that combines tractography-based connectivity with local vertex adjacency). The366

local connection weights were multiplied by a small scaler (�푙표푐�푙 = 10−6) to ensure that367

the results were primarily influenced by the connectome weights. The eigenmodes resulting368

from this final step served as our alternative connectome eigenmodes. Notably, when369

comparing the gain of this last step against the eigenmodes constructed from binarization370

of the updated tractography pipeline (previous section), the smooth weighted alternative371

connectome eigenmodes resulted in relatively modesl performance improvements for both372

rest (AUC: from 74.2% to 74.8%) and task (AUC: from 83.1% to 84.0%) conditions (see373

Fig. S2.e).374

375

Systematic evaluation of parameters.376

377

Our analyses indicated that several decisions in structural connectome reconstruction378

contribute to the observed improvements. To quantify the sensitivity of these improvements379

to different parameter choices, we conducted a systematic evaluation (see Figs. S4 to S10).380

Given the large number of possible parameter combinations across the connectome mapping381

pipeline, it is computationally infeasible to explore every permutation (e.g., connectome382

density, gyral bias correction, tractography pipeline, binary vs. weighted, smoothing383

strength, global-local combinations). As a result, we systematically examined the impact of384

changing a single parameter while keeping other parameters constant.385
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386

Figs S4, S5, & S6 evaluate the effect of binary connectome density on different387

connectomes (with or without gyral bias correction). This shows that densities between388

0.5% to 1% consistently yield high reconstruction acccuracies when constructing389

eigenmodes from binary connectomes (regardless of gyral bias correction). Moreover, we390

also evaluated the effect of density for pruned weighted connectomes (Fig S8); our results391

indicate that when using weighted connectomes, densities above 0.5% are remarkably392

better than lower densities. In contrast to binary counterparts, increasing the density of393

weighted eigenmodes above 1% did not detriment reconstruction accuracy (Fig S8). Figs S7394

and S9 examine the impact of performing connectome spatial smoothing. Notably, using395

connectome smoothing, particularly with wide kernels (6-10mm FWHM) can result in396

marginal improvements in reconstruction accuracy. Finally, as shown in Fig S10, we397

evaluated the impact of changing the global-local combination parameter (�푙표푐�푙) and398

found that it had negligible impact on reconstruction accuracy.399

400

Eigenmode similarity comparison.401

402

In Fig. 2, the geometric and connectivity-based eigenmodes were spatially compared to403

assess the degree of similarity between eigenmodes. To this end, for all connectivity-based404

eigenmodes, a 200x200 similarity matrix was computed that quantified the absolute value405

of the Pearson’s correlation between the eigenmode basis set with the geometric406

eigenmodes. This quantified the degree of spatial correspondence between two sets of407

eigenmode bases. Next, a maximum weighted matching (via linear sum assignment using a408

modified Jonker-Volgenant algorithm with no initialization33,34) was used to find optimal409

matching pairs of eigenmodes such that the total spatial correspondence between410

eigenmodes were maximized. To evaluate the spatial interdependencies between the411

matched pairs, a permutation-based non-parametric spin-test was implemented35.412

Specifically, for a total of 10,000 permutations, the geometric eigenmodes were collectively413

randomly rotated to form a spatial null with similar frequency characteristics. For each414

permutation, a maximum weighted matching method was similarly used to find the415

matched pairs. This created a null distribution of matched eigenmode similarities for each416

mode. Next, p-values were generated for every pair of matched eigenmodes to quantify the417

likelihood of observing that magnitude of similarity in the null distribution. The resulting p-418

values per matched eigenmode pair were then FDR corrected to find significant similarities419

across all tests (Benjamini-Hochberg Procedure). This illustrated that both the EDR420

eigenmodes (57 significant matches) and our connectome eigenmodes (62 significant421
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matches) contained a greater degree of similarity to geometry eigenmodes than expected by422

chance alone.423

424

Subspace similarity comparison.425

426

The analyses presented in Fig. 2 quantified the degree of spatial correspondence between427

matched eigenmode pairs. However, not only can the order of eigenmodes differ between428

two sets of eigenmodes (e.g., comparing geometric eigenmodes with EDR, Pang et al. 2023429

connectome, and our connectome eigenmodes) but also a linear combination of eigenmodes430

from one design can represent an eigenmode from another design. It is therefore important431

to compare subspaces spanned by sets of eigenmodes from different designs in addition to432

comparing individual pairs. To this end, we used the Procrustes transform (PT)36, which433

finds the optimal rotation to match two linear subspaces. This method has been previously434

used in related work37, albeit with a different goal, to quantify the degree of inter-subject435

variability of eigenmodes of voxel-wise brain graphs. Given two sets of K eigenmodes, PT436

optimally transforms one set to match the other set.437

438

Specifically, we treated the geometric eigenmodes as the reference set (not transformed)439

and computed the PT that optimally maps the eigenmode of EDR, Pang's connectome and440

our connectome eigenmodes to the reference. This procedure was repeated for different441

subsets of initial eigenmodes (K from 2 to 200). The cosine similarity between each pair of442

sets of eigenmodes was computed before and after PT, resulting in two K x K matrices for443

each K and each pair of designs. Noting that the Frobenius norm of the cosine similarity444

matrices before and after PT is identical, the norm of the off-diagonal elements after PT445

provides a measure of residual distance between the two spaces. Normalizing the residual446

by the total Frobenius norm indicates the proportion of similarity in the subspaces spanned447

by the pairs of eigenmodes. Particularly, the percentage of the residual before PT retained448

after PT can be treated as a distance measure. The distance measure before and after PT449

for different pairs of designs and K can be seen in Fig. S11a,b respectively. These results450

complement the similarity evaluations presented in Fig. 2; notably, EDR and our451

connectome eigenmodes have a greater similarity to (smaller distance from) the geometric452

eigenmodes than connectome eigenmodes used by Pang and colleagues.453

454

Structural connection lengths.455

456

Formation of anatomical connections in the central nervous system is fundamentally457

constrained by wiring cost38. Long-range connections are costly and a trade-off between458
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efficient information transfer and minimal wiring cost influences connectome formation.459

This posits a potential rationale for why geometric eigenmodes perform equally well in460

reconstructing spatial patterns of brain activity, particularly at shorter wavelengths: they461

act as a surrogate for the expected presence of short-range local connections. Short462

connections are the most common, least costly and are also more likely to conform with463

cortical surface geometry than long-range connections.464

We investigated the potential influence of connection length on eigenmode formation as465

follows. First, we chose a set of streamline length thresholds as 8, 16, 32, 64mm; the466

connections contained within the five bins formed by these thresholds are shown for an467

exemplar vertex in Fig. S12.a. Then, for each threshold, we formed two pruned468

connectomes: one consisting only of streamlines longer than that threshold, and one469

consisting only of streamlines shorter than that threshold. Connectome eigenmodes were470

then computed from these pruned connectomes. This facilitated evaluation of pruned471

connectomes that exclude either long or short connections as a function of the exclusion472

threshold.473

Where a maximal streamline length is imposed and progressively decreased (Fig. S12.b),474

reconstruction accuracy remains mostly consistent; at least until that maximal length475

decreases to 8mm at which point this accuracy declines, except for accuracy with fewer476

number of modes that are most sensitive to removal of longer connections. Conversely,477

where a minimal streamline length is imposed and progressively increased (Fig. S12.c), this478

quickly becomes deleterious to the explanatory power of the connectome eigenmodes,479

particularly with greater numbers of eigenmodes that ideally capture patterns of higher480

spatial frequency.481

There are two topics of discussion that arise from these results; firstly, given that very short482

connections are far more prevalent than long connections39,40, and that the trajectories of483

such short length connections are strongly influenced by the local cortical geometry41, it is484

possible that the connectivity information encoded in short wavelength connectome485

eigenmodes closely mimics that of geometric information.486

Secondly, given that inclusion of larger numbers of eigenmodes facilitates mapping of higher487

spatial frequency components, it is intuitive that exclusion of connections of short length488

will be deleterious to the explanatory power of the resulting eigenmode bases of greater489

cardinality. As such, pruning connectomes at minimal lengths of 16mm and 32mm resulted490

in a plateau in reconstruction accuracy, observed after the initial 50 and 20 eigenmodes,491

respectively (red pointers in Fig. S13.c).492

These results are consistent with the subtle differences in reconstruction accuracy between493

geometric and connectome eigenmodes. Plots of reconstruction accuracy as a function of494

number of modes often show that connectomes offer slightly greater explanatory power495
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with a small number of modes whereas with a larger basis set geometry performs equally496

well. Using a small number of modes of long wavelength, the specificity of structural497

connectivity estimates may provide contrast that is comparably absent from a purely498

geometric parametrisation; this is supported by the preservation of explanatory power with499

a small number of connectome eigenmodes even if short connections are eliminated.500

Conversely, by using a larger basis that includes short wavelength eigenmodes, geometry501

provides comparable explanatory power via an indirect proxy for the local structural502

connectivity that is biologically responsible for constraining functional activity. The strong503

prevalence of very short connections, along with the dominance of their contribution toward504

explanatory power of connectome eigenmodes, contraindicates the conventional use of large505

minimum length thresholds in tractography.506

507

Partial correlation evaluations.508

509

Evaluations of reconstruction accuracy can fail to discern whether distinct eigenmodes510

reconstruct similar or disparate sources of information. Given the observed comparable511

explanatory power of geometric and connectome eigenmodes as well as similarities between512

the two basis sets, we utilised partial correlations to assess the level of distinction between513

the two. As reconstruction accuracy was quantified by Pearson’s correlation, partial514

correlation provides a straightforward extension to measure the incremental contribution of515

either geometric or connectome basis sets while accounting for the explanatory capacity of516

the other.517

We assessed the incremental value of geometry/connectome eigenmodes across varying518

number of modes: for any fixed number of modes, we calculated partial correlations519

between the ground truth and reconstructed data while controlling for the reconstruction520

achieved by the alternative basis set. Results are presented in Fig. S13.a. Both geometry521

and connectome eigenmodes can elucidate sources of variance that are independent of the522

other basis set using the same number of modes. The presence of significant additive523

benefits for either set of modes suggests that specific sources of spatial variance in524

functional maps may be more effectively captured by that particular set.525

Across a wide range of possible numbers of modes, connectome eigenmodes consistently526

uncover significant sources of variance that elude the geometric counterpart. A similar527

pattern is also apparent for geometric eigenmodes, except in the reconstruction of task-528

evoked activity with a small number of modes (<25), where geometric eigenmodes provide529

no additional benefits to connectome reconstructions. This suggests that the similarity in530

reconstruction performance between the two sets of eigenmode bases is not due to their531
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equivalence; conversely, each set possesses a significant degree of explanatory capacity that532

is absent in the other.533

We further expanded these assessments to explore the impact of imposing length thresholds534

on the partial correlation of connectome eigenmodes, controlling for the reconstructions535

based on geometric eigenmodes. Imposing maximal length thresholds to exclude longer536

connections negatively impacted the incremental benefit of connectome eigenmodes,537

particularly when fewer number of modes were considered (see Fig. S13.b). Conversely,538

imposing minimal length thresholds to exclude shorter connections were most detrimental539

for the additive benefit of connectome eigenmodes when a higher number of modes were540

considered (see Fig. S13.c).541

This further validates the intuitive expectation that longer connections play a pivotal role in542

shaping lower frequency modes, while shorter connections contribute to the accurate543

estimation of higher frequency modes. Particularly noteworthy are the insights from Fig.544

S13.c, underscoring the distinct contribution of long-range connections to the explanatory545

power of connectome eigenmodes. For instance, even after the exclusion of connections546

shorter than 64mm—constituting over 95% of all reconstructed streamlines—the remaining547

long connections form connectome eigenmodes that significantly capture sources of variance548

not attainable by geometric modes, particularly evident with fewer than 100 modes549

considered. This underscores the impact of connections of all lengths in shaping the distinct550

sources of spatial variance captured by connectome eigenmodes.551

552
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553
Fig. S1 Gyral bias effects visible in connectome strength. (a) Surface projections of cortical curvature (left),554
connectivity strength, respectively for the original connectome from Pang et al., and connectomes after555
addressing the gyral bias via regression or tractography. (b)The severity of gyral bias can be quantified by the556
correlation between curvature and connectivity strength, showing pronounced gyral bias effects in the original557
connectomes used by Pang and colleagues (left; r = 0.48). In contrast gyral bias is substantially reduced via558
regression (center; r = 0.23) or tractography (right; r = 0.16).559

560
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561
Fig. S2 Breakdown of different steps influencing reconstruction accuracy. The format of this figure closely562
resembles the structure of Figure 2. The first two rows show results for resting state connectivity, and the last563
two rows show results for task-evoked activity. Both reconstruction accuracy and differences are presented,564
along with AUC metrics, for ease of comparison. (a) Original results reported by Pang and colleagues. (b-d)565
Improvement in reconstruction accuracy achieved from eigenmodes of different intermediary connectome566
construction steps. (b) The impact of connectome density: Increasing the density of binary connectome (from567
0.1% to 1%) improves reconstruction accuracy, resulting in a 3-5% increase in AUC. (c) Linear adjustment of568
edge strength to account for the gyral bias provides additional accuracy improvements, with a 2-3% increase in569
AUC. (d) Alternatively, similar improvements can also be achieved by mitigating the gyral bias in the570
tractography pipeline, resulting in a 2-4% increase in AUC. (e) Finally, the use of smoothed weighted571
connectomes further enhances reconstruction accuracy, leading to a 1% increase in AUC.572

573
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574
Fig. S3 High-resolution connectivity strength spans multiple orders of magnitude. (a,b) Histograms show the575
distribution of connection strengths in a high-resolution connectome (a) before and (b) after connectome spatial576
smoothing. Plot axes are log-transformed to highlight the presence of connection strengths spanning multiple577
orders of magnitude. (c-g) Cortical projections of high-resolution structural connectivity from an exemplary578
node/vertex situated on the left frontal cortex (c). Binary connectomes simplify the connections of a vertex to a579
binary mask; this is shown for connectomes binarized at two different density thresholds of 0.1% and 1% (d,e).580
In contrast, weighted connectomes capture the diverse range of connections with different strength magnitudes581
which is visible (f) before and (g) after connectome spatial smoothing. This figure also shows the increase in582
connection density resulting from spatial smoothing. Notably, smoothing improves reconstruction of known583
long-range connections to the exemplary node, i.e. the superior longitudinal fasciculus and the arcuate fasciculus.584

585
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586
Fig. S4 Assessing the impact of density on reconstruction accuracy of binary connectomes without gyral bias587
correction. Here, the reconstruction task was systematically repeated for varying connectome density levels588
(0.05% to 10%) while keeping other pipeline parameters constant; specifically, this test utilized the connectomes589
from Pang et al. (2023) without performing any gyral bias correction, and a binary connectome was constructed590
based on density thresholds. Line plots (left) depict the reconstruction accuracy as a function of the number of591
modes for both resting-state connectivity (top) and task-evoked activity (bottom) reconstruction. Scatter plots592
(right) display the corresponding summary AUC measures. Connectome eigenmode performance is relatively593
higher within the 0.5% to 1% density range compared to both higher and lower densities.594

595
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596
Fig. S5 Assessing the impact of density on reconstruction accuracy of binary connectomes after gyral bias597
reduction via regression. Here, the reconstruction task was systematically repeated for varying connectome598
density levels (0.05% to 10%) while keeping other pipeline parameters constant; namely, we utilized the599
connectomes from Pang et al. (2023), applied gyral bias regression, and constructed a binary connectome based600
on several density thresholds. Line plots (left) depict the reconstruction accuracy as a function of the number of601
modes for both resting-state connectivity (top) and task-evoked activity (bottom) reconstruction. Scatter plots602
(right) display the corresponding summary AUC measures. Notably, performance is higher within the 0.5% to603
1% density range compared to both higher and lower densities.604

605
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606
Fig. S6 Assessing the impact of density on reconstruction accuracy of binary connectomes after gyral bias607
reduction via tractography. Here, the reconstruction task was systematically repeated for varying connectome608
density levels (0.05% to 10%) while keeping other pipeline parameters constant; namely, we utilized the609
connectomes from our tractography pipeline that better mitigated the gyral bias, and constructed a binary610
connectome at several density thresholds. Line plots (left) depict the reconstruction accuracy as a function of611
the number of modes for both resting-state connectivity (top) and task-evoked activity (bottom) reconstruction.612
Scatter plots (right) display the corresponding summary AUC measures. Notably, performance is higher for613
densities lower than 1% compared to higher densities.614

615
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616
Fig. S7 Assessing the impact of connectome spatial smoothing on reconstruction accuracy of binary617
connectomes. Here, the reconstruction task was systematically repeated for varying smoothing kernels (up to618
10mm FWHM) while keeping other pipeline parameters constant; specifically, we utilized the connectomes from619
our tractography pipeline that better mitigated the gyral bias, performed connectome spatial smoothing, and620
constructed binary connectomes at 1% density. Line plots (left) depict the reconstruction accuracy as a function621
of the number of modes for both resting-state connectivity (top) and task-evoked activity (bottom)622
reconstruction. Scatter plots (right) display the corresponding summary AUC measures. Notably, wider623
smoothing kernels (greater than 6mmFWHM) yielded slightly improved reconstruction accuracy compared to624
weaker kernels or no smoothing. Note: The 0mm FWHM case signifies the condition where no smoothing was625
applied.626

627
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628
Fig. S8 Assessing the impact of connectome spatial smoothing on reconstruction accuracy of weighted629
connectomes. Here, the reconstruction task was systematically repeated for varying smoothing kernels (up to630
10mm FWHM) while keeping other pipeline parameters constant; specifically, we utilized the connectomes from631
our tractography pipeline that better mitigated the gyral bias, performed connectome spatial smoothing, and632
constructed a weighted connectome pruned at 10% density. The global-local adjacency combination parameter633
(�푙표푐�푙) was fixed at 10−6. Line plots (left) depict the reconstruction accuracy as a function of the number of634
modes for both resting-state connectivity (top) and task-evoked activity (bottom) reconstruction. Scatter plots635
(right) display the corresponding summary AUC measures. Notably, wider smoothing kernels yielded modestly636
improved reconstruction accuracy compared to weaker kernels or no smoothing. Note: The 0mm FWHM case637
signifies the condition where no smoothing was applied.638
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639
Fig. S9 Assessing the impact density on reconstruction accuracy of weighted connectomes. Here, the640
reconstruction task was systematically repeated for varying density levels (0.05% to 10%) while keeping other641
pipeline parameters constant; specifically, we utilized the connectomes from our tractography pipeline that642
better mitigated the gyral bias, performed connectome spatial smoothing (8mm FWHM), and constructed a643
weighted connectome pruned based on the density criterion. The global-local adjacency combination parameter644
(�푙표푐�푙) was fixed at 10−6. Line plots (left) depict the reconstruction accuracy as a function of the number of645
modes for both resting-state connectivity (top) and task-evoked activity (bottom) reconstruction. Scatter plots646
(right) display the corresponding summary AUC measures. Notably, accuracy is remarkably higher for densities647
greater than 0.5% compared to lower densities.648

649
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650
Fig. S10 Assessing the impact of the global-local combination parameter (�푙표푐�푙) on reconstruction accuracy of651
weighted connectomes. Here, the reconstruction task was systematically repeated for varying choices of �푙표푐�푙652
while keeping other pipeline parameters constant; particularly, we utilized the connectomes from our653
tractography pipeline that better mitigated the gyral bias, performed connectome spatial smoothing (8mm654
FWHM), and constructed a weighted connectome pruned at 10% density. Line plots (left) depict the655
reconstruction accuracy as a function of the number of modes for both resting-state connectivity (top) and task-656
evoked activity (bottom) reconstruction. Scatter plots (right) display the corresponding summary AUC measures.657
Notably, �푙표푐�푙 seems to have had negligible impact on the reconstruction accuracy.658

659
660
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661
Fig. S11 Assessing the distance between pairs of subspaces spanned by different eigenmodes. The x-axis denotes662
the number of eigenmodes, K, included in the subspace comparison. The y-axis denotes the pairwise eigenmode663
distances quantified by the Frobenius norm of the off-diagonal values in the K x K cosine similarity matrix. The664
y-axis is normalized to show the percentage relative to the Frobenius norm of the similarity matrix. (a) Prior to665
a Procrustes transformation, all pairs of eigenmodes show high distances, i.e. the pairs of subspaces are different666
due to a lack of alignment between eigenmode pairs. (b) Using Procrustes transformation, pairs of subspaces667
are optimally aligned. This results in a relative reduction in distance between subspaces. Particularly, distances668
between pairs of eigenmode subspaces with higher similarity would show a larger relative reduction. These669
results indicate a higher degree of similarity between EDR/Our connectome eigenmodes to the geometric670
eigenmodes (in contrast to the lower similarity to Pang et al.’s connectome eigenmodes).671

672
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673
Fig. S12 Impact of imposing connection length limits on reconstruction accuracy. (a) Structural connections674
were grouped based on streamline length. The left panel indicates the frequency of observing streamlines at675
different length bins along with projections of such connections from an exemplary node. Close to 95% of all676
streamlines were shorter than 64mm, and more than a fifth of all reconstructed streamlines are shorter than677
8mm. (b) The reconstruction accuracy tests were repeated after excluding connections longer than different678
maximal length thresholds. Imposing maximal length thresholds had relatively modest impacts on reconstruction679
accuracy, exept for cases with fewer number of modes that were negatively impacted by removal of long680
connections. (c) The same test was repeated by imposing minimal length thresholds to exclude shorter681
connections. Exclusion of short connections exerts a more pronounced detrimental impact on reconstruction682
accuracy, particularly with higher number of modes. This agrees with the intuitive expectation that longe-range683
connections influence accurate estimation of eigenmodes at longer wavelengths, whereas short-range connections684
are more influential at constructing eigenmodes at higher spatial frequencies.685

686
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687
Fig. S13 Partial correlation evaluations quantifying the incremental explanatory value of connectome and688
geometry eigenmodes. Each point represents, for a given basis set & number of modes, the partial correlation689
between functional activation and the eigenmode-based reconstruction of such, while controlling for those690
features of the functional activation explained by the alternative basis set using the same number of modes.691
Dashed gray lines indicate the significance level for a partial correlation test at α = 5%; the null hypothesis of692
no additional explanatory benefit by the basis set of interest is rejected for points above the line. (a)693
Comparison between geometric and connectome eigenmodes, using the complete tractography reconstruction in694
the latter case. The magenta curve represents the scenario where connectome eigenmodes form the basis set of695
interest while controlling for geometry; conversely, the black curve represents the scenario where geometry696
eigenmodes form the basis set of interest. (b) The partial correlation assessments after applying maximal length697
thresholds before constructing connectome eigenmodes. (c) The same test repeated for the case in which a698
minimal length threshold is instead imposed. Geometry is controlled for all curves in (b) and (c), and the699
connectome eigenmodes computed after application of the length threshold form the basis set of interest.700
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