
Prediction of acoustic tinnitus suppression using resting state
EEG: An explainable AI approach

Payam S. Shabestari1, Stefan Schoisswohl2,3, Zino Wellauer4, Adrian Naas5, 6, Tobias
Kleinjung1, Martin Schecklmann2, Berthold Langguth2, Patrick Neff1,2,7,8*

1 Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital
Zurich, University of Zurich, Switzerland
2 Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg,
Germany
3 Department of Psychology, Universitaet der Bundeswehr München, Neubiberg,
Germany
4 Department of Comparative Language Science, University of Zurich, Zurich,
Switzerland
5 Bern University of Applied Sciences, Business School, Institute New Work, Bern,
Switzerland
6 University of Fribourg/Freiburg, Department of Psychology, Fribourg/Freiburg,
Switzerland
7 Centre for Cognitive Neuroscience and Department of Psychology, University of
Salzburg, Austria
8 Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Campus
Biotech, Geneva, Switzerland

* patrick.neff@uzh.ch

Abstract

Tinnitus, characterized by the perception of sound without an external source, affects a
significant portion of the population and can lead to considerable individual suffering,
yet understanding of its suppression remains limited. Understanding neural traits of
tinnitus suppression may be crucial for developing accurate predictive models in tinnitus
research and treatment. This study aims to classify individuals capable of brief acoustic
tinnitus suppression (BATS; also known as residual inhibition) based on their
independent resting state EEG (n=102), exploring the classification’s robustness on
various sample splits, and the relevance of resulting specific EEG features in the spirit of
explainable AI. A comprehensive set of EEG features, including band power in standard
frequency bands, spectral entropy, aperiodic slope and offset of the power spectrum, and
connectivity, was included in both sensor and source space. Binary classification of the
BATS status was performed using a comprehensive set of standard classifiers and
Pearson correlation for feature selection, which addresses multicollinearity, avoiding
complex dimensionality reduction techniques. Feature importance was assessed using
Gini impurity metrics, allowing interpretation of the directionality of identified neural
features. The Random Forest model showed the most consistent performance, with its
majority voting mechanism effectively reducing overfitting and providing reliable
predictions, and was therefore chosen for subsequent feature interpretation analysis.
Our classification task demonstrated high accuracy across the various BATS split
thresholds, suggesting that the choice of threshold does not significantly influence the
underlying pattern in the data. We achieved classification accuracies of 98% for sensor
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and source models and 86% for the connectivity model in the main split. Looking at
identified important features, our findings align with and extend existing neuroscience
research in tinnitus by discovering highly specific and novel neural features in naive
resting-state data predictive of BATS. Gamma power is identified as the most
important feature in the sensor model, followed by alpha power, which fits current
models of sensory processing, prediction, and updating (gamma) as well as inhibitory
(alpha) frameworks. The overall spectral shape of the EEG power spectrum tends to be
more normal in +BATS individuals, as reflected in the aperiodic offset and slope
features. In the source model, important features are lateralized in that the gamma
feature is more prominent in the left core auditory network, whereas the alpha feature is
distributed more sparsely over the right hemisphere in line with auditory attention data.
Furthermore, we identified several hotspots in the temporal, insular, parietal,
parahippocampal, medial prefrontal, and (posterior) cingulate cortex implicated in
sensory processing, gating, attention, and memory processes. Relevant network features
were found in a hyperconnected bilateral auditory network (within the network), while
the full auditory network was hyperconnected to limbic regions (between networks),
which may reflect an intact sensory gating mechanism aiding tinnitus suppression. This
study’s implications extend to improving the understanding and prediction of tinnitus
loudness perception and tinnitus distress as well as its (acoustic) suppression.
Furthermore, our approach underscores the importance of careful feature selection,
model choice, and validation strategies in analyzing complex neurophysiological data.
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Introduction 1

Chronic subjective tinnitus is defined as the persistent and conscious auditory 2

perception of tonal or composite noise in the absence of an equivalent external physical 3

acoustic source, which can evolve into a more complex syndrome termed ‘tinnitus 4

disorder’ marked by high levels of tinnitus-related distress [1, 2]. With a prevalence of 5

about 14.4%, tinnitus is a common condition in the global population with many of 6

those affected experiencing severe burden [3], and suffer from several comorbidities such 7

as depression or anxiety disorders [4]. Currently, no effective treatment for tinnitus is 8

established or on the horizon and the available treatment approaches only focus on 9

secondary symptoms such as quality of life management [5–7]. Typically, tinnitus is 10

thought to evolve as a consequence of noise trauma and/or hearing loss [8], whereby the 11

resulting lack of peripheral auditory input provokes maladaptive pathological changes in 12

the auditory pathway as well as the central nervous system putatively responsible for 13

the perception of the auditory phantom sound perception tinnitus [9–11]. These 14

pathological alterations further translate into distinctive tinnitus-related spontaneous 15

brain activity patterns; here, increased activity in the delta and gamma frequency bands 16

and decreased activity in the alpha frequency band in (sensory) auditory cortical regions 17

have been reported by electroencephalography (EEG) or magnetoencephalography 18

(MEG) by several research groups [12–15]. Moreover, tinnitus-related alterations in 19

functional global and modality-specific networks have been reported [16]. Generally, 20

these alterations include increased connectivity within and between the auditory 21

network, the default mode network, the attention networks, and the visual network. 22

In past studies, various machine learning approaches were applied to differentiate the 23

tinnitus population from healthy controls using resting state EEG data with high 24

accuracy [17–20]. However, to this day, machine learning studies concerning active 25

manipulation of tinnitus have not been carried-out within the tinnitus population. 26

A large portion of individuals with tinnitus (60-80%) are capable of undergoing 27

temporary suppression of the subjective tinnitus perception to some degree following 28

sound stimulation with either white noise, sine tones, or various (complex) modulated or 29

filtered stimuli [21–27]. Brief Acoustic Tinnitus Suppression (BATS), established as 30

”residual inhibition” or ”forward masking” [28,29], is theorized to result from a 31

temporary recovery of imbalanced inhibitory and excitatory neuronal activity in the 32

auditory cortex and/or reduced firing of neurons along the auditory pathway [30]. While 33

studying the subcortical auditory pathway below the brainstem in human participants is 34

challenging, so far only three studies focused on cortical activity related to BATS on a 35

group level, besides three single case studies showing heterogeneous findings [31–33]: 36

Kahlbrock and Weisz [34] observed a decline in pathologically enhanced activity in the 37

delta frequency range, whereas King and colleagues’s study indicated elevated power 38

spectral density concerning gamma and alpha activity [35]. Similarly, we could 39

demonstrate in our former study [36] that participants who experience BATS had 40

enhanced alpha activity in general compared to participants without BATS. In contrast 41

to King and colleagues’ study, however, we observed reduced gamma band amplitudes. 42

This observation further emphasizes specific oscillatory signatures of tinnitus patient 43

subtypes related to the ability to induce short-term tinnitus suppression via acoustic 44

stimulation. Currently, there seems to be convergence regarding the role of alpha in 45

BATS with most studies reporting an increase while in other frequency bands, especially 46

gamma, the results are diverging and partly contradicting. 47

To the best of our knowledge, no former study attempted to predict tinnitus 48

suppression, ‘off-states’, or specifically BATS from (naive) resting state M/EEG data. 49

In contrast to former studies in BATS probing short-term state-like neural responses 50

during BATS or classification thereof, this approach may elucidate how individual 51

trait-like or phenotypic neural signatures influence the ability to suppress tinnitus. We 52
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therefore consider elaboration on trait-specific (oscillatory) brain activity patterns 53

associated with BATS to be of high interest, given the potential to accurately identify 54

individuals with the ability to acoustically suppress their tinnitus. Automatic, 55

high-accuracy classification and insights gained from resulting, distinctive features 56

would enable us to better understand the BATS phenomenon and basic mechanism of 57

tinnitus on the neural level. Explainable AI has the potential to surpass traditional 58

analysis methods by enabling a comprehensive examination of models and important 59

features [37]. Furthermore, this approach could foster (objective) diagnostic options, 60

tinnitus subtyping, and identification of individual treatment options like sound 61

therapies [38]. Related to that, it was recently shown that certain EEG features such as 62

frequency band power and functional connectivity could predict treatment response to a 63

sound-based intervention with 98-100% accuracy [39]. 64

Currently, it remains unclear which trait-like factors or signatures of (oscillatory) 65

brain activity and connectivity can predict BATS. Hence, the objective of the present 66

work is to apply automatic classification algorithms to evaluate if distinctive EEG 67

sensor, source, and connectivity features are predictive of BATS. 68

Materials and methods 69

Data sets 70

The EEG and behavioral data used in this study were sourced from two distinct labs at 71

the universities of Regensburg, Germany, and Zurich, Switzerland. The Regensburg 72

dataset encompassed 79 participants who actively participated in two neurobehavioral 73

experiments investigating BATS with EEG. These experiments received ethical approval 74

from the internal ethics review board of the Faculty of Medicine, Regensburg, under 75

reference numbers 17-819-101 and 18-1054-101. The Zurich validation set consisted of 76

29 participants partaking in a neuromodulation study where EEG and BATS were 77

assessed during baseline measurements. Ethical approval for the Zurich study was 78

obtained from the Cantonal Ethics Committee (KEK, Zurich; BASEC-Nr. 2020-02027). 79

All individuals included in the studies pertaining to the dataset at hand provided 80

informed consent for both their participation in the studies and the utilization of their 81

data for future analyses. The experiments were conducted in strict compliance with the 82

ethical principles outlined in the Declaration of Helsinki. 83

For more comprehensive details and descriptive statistics related to the data sets, 84

readers are referred to the supplementary material tables S1 Table and S2 Table. 85

Feature extraction 86

An overview of our method pipeline is shown in Fig 1. Following the preprocessing and 87

epoching of the EEG data, a set of frequency domain features, comprising oscillatory 88

power estimation, non-oscillatory parameters, and information measures, was extracted 89

for each EEG epoch, with calculations performed individually at the level of each 90

electrode and brain region. The features computed per electrode consisted of: Sensor 91

space spectral power values averaged within the five canonical M/EEG frequency bands 92

(comprising 310 features), average spectral Shannon entropy (comprising 310 93

features) [40,41], and non-oscillatory parameters, such as the slope and offset of power 94

spectral density at each electrode (comprising 124 features) [42]. For each designated 95

brain region extracted from Desikan-Killiany [43] atlas (source space), the features 96

computed encompass the average spectral power across five distinct frequency bands 97

within the epochs (comprising 340 features). See the supplementary section for a 98

detailed explanation of how each feature set was computed. The (standard) frequency 99
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bands utilized for computing features encompass: Delta (0.5-4.5 Hz), Theta (4.5-8.5 Hz), 100

Alpha (8.5-13.5 Hz), Beta (15-30 Hz) and Gamma (30-80 Hz) [44]. 101

Fig 1. Overview of the analysis pipeline. EEG data collected from 73 participants
(main dataset) was divided into 2-second epochs after preprocessing. Sensor space
features with high correlation were merged using Pearson correlation. Data was
partitioned into training and test sets, and a 10-fold cross-validation was performed on
the training set. Further analysis involved ranking features based on their importance
and exploring their directional impact. A parallel process was applied to the epochs
using features computed in the source space. The outcomes of these analyses were
utilized to calculate spectral connectivity features in each frequency band and between
brain regions (labels) in the source space. Furthermore, all procedures were performed
on an additional, independent EEG dataset of 29 participants to validate and
benchmark the results.

Due to the intrinsic correlation between spectral power values in the sensor space 102

and source space, we divided the features into two distinct sets. Feature set 1, which 103

pertains to the sensor space, was employed to explore the significance and direction of 104

spectral power and spectral entropy in canonical frequency bands, as well as 105

non-oscillatory activity in predicting BATS. By exploiting the classification results of 106

feature set 1, it was narrowed-down into feature set 2 in source space, focusing solely on 107

spectral power values associated with brain regions. This procedure will help to 108

investigate the specific contribution of individual brain regions (or labels) in the 109

prediction of BATS. 110

Further, coherence metrics across frequency bands and brain regions identified as 111

important through source space analysis were computed (refer to Section S8 Text in the 112

supplementary materials for more details). For the analysis of functional connectivity 113

patterns across different resting-state brain networks, the Desikan-Killiany atlas was 114

utilized [43] and brain regions were organized into networks as delineated in the 115

supplementary Table S3 Table. Seven large-scale functionally segregated 116

networks [45, 46] were categorized, including visual (VSN), somatomotor (SMN), dorsal 117

attention (DAN), ventral attention (VAN), limbic (LBN), frontoparietal (FPN), and 118

default mode (DMN) networks. Recognizing the particular importance of the auditory 119

network (AUN) in tinnitus, we incorporated nine distinct sub-networks along with most 120

contributing brain regions detected within the AUN network. Labels for the left or right 121

hemisphere were included if the corresponding label in the other hemisphere was 122

missing to account for the brain’s bi-hemispheric functional organization. 123

Classification pipeline 124

Features with correlation coefficients exceeding 0.9 were merged using Pearson 125

correlation. The selected set of features significantly improved the model’s 126

interpretability and its ability to generalize across different datasets. Then, the 127

classification process was performed by shuffling the epochs and then randomly splitting 128

them into a 70% training and a 30% test set. Following this initial split, a 10-fold 129

cross-validation procedure was carried-out exclusively on the training set, and finally, 130

the classification algorithm’s accuracy was computed using the test set as follows: 131

accuracy =
#TP

#TP +#FN +#FP
(1)

where #TP represents the count of true positives, signifying correctly classified 132

epochs from individuals with BATS. #FN corresponds to the count of false negatives, 133
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encompassing misclassified epochs from individuals with +BATS, and #FP denotes the 134

count of false positives, including individuals incapable of persistently suppressing 135

tinnitus (-BATS) but have been incorrectly assigned to the other class. In our analysis, 136

we employed 10 widely recognized classifiers from the scikit-learn python 137

package [47]. These classifiers comprise: Random Forest (RF) [48], Gradient 138

Boosting [49], Quadratic Discriminant Analysis (QDA) [50], Naive Bayes [51], Decision 139

Tree [52], Radial Basis Function (RBF) kernel SVM [53], Gaussian Process [54], 140

k-nearest neighbors [55], Convolutional Neural Network [56] and linear SVM [57]. By 141

utilizing such a diverse set of classifiers, it was evaluated if the classification task is 142

robust across classifiers and the different thresholds for BATS. 143

After benchmarking the set of classifiers, the best performing model was selected 144

and subjugated to feature importance analysis. Feature importance was determined 145

based on the mean and standard deviation of the reduction in impurity within each tree, 146

known as Gini impurity metric (see section S8 Text in supplementary materials). 147

Subsequently, we retrained the model, using only the top 100 features identified through 148

this process. To assess the significance and directional impact of features (sensor space, 149

source space, or spectral connections) in predicting the two classes (i.e., +BATS and 150

-BATS), we utilized the SHAP (SHapley Additive exPlanations) Python package [58]. 151

Validation 152

To validate and benchmark our results, we utilized a distinct validation dataset, which 153

is detailed in the Data sets section. The same methodology as detailed in 154

sections Feature extraction and Classification pipeline was applied to the validation 155

dataset, including the computation of predefined feature sets both in the sensor and 156

source space as well as spectral connectivity measures. For classification, a BATS 157

threshold of -1 was employed to categorize participants into two groups: those who did 158

show acoustical suppression of their tinnitus (with values less than or equal to -1) and 159

those who did not (with values larger than -1). Note, the scale ranged from 0 indicating 160

no suppression to -5 indicating full suppression. Moreover, we computed models where 161

the BATS labels (i.e., +BATS and -BATS) of the data split were randomly shuffled so 162

each label consisted of a mixture of true and false labels (50% mixture). This allowed 163

for validation of our models and the related ground truth assumption, namely, the 164

ability to suppress tinnitus based on individuals’ self-reports. 165

Results 166

In the analysis of the main dataset, statistically significant higher Minimum Masking 167

Levels (MML) were observed in the -BATS group compared to the +BATS group. This 168

result indicates a potential correlation between the ability to acoustically suppress 169

tinnitus and the MML (mean difference = 7.63 dB, S2 Table). Additionally, while not 170

reaching the level of statistical significance, there was a trend towards higher tinnitus 171

loudness levels in the -BATS group (mean difference = 8.58 dB), which is in line with 172

the MML finding and suggests a relationship between tinnitus maskability during sound 173

presentation and residual inhibition after sound presentation. 174

Sensor space 175

As a result of the feature correlation check, 92 features, which accounted for 12.4% of 176

the original 744, were excluded due to their high correlation. We furthermore assessed 177

the accuracy of our models on test data by setting the BATS threshold to five different 178

values (here: perceived tinnitus loudness during +BATS): 90, 80, 70, 60, and 50, as 179
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illustrated in Fig 2. For consistency in subsequent classification tasks conducted in the 180

source space and connectivity analysis, we adopted RF as our standard classifier and set 181

the threshold for +BATS to 90 (see for more details). Notably, our ancillary 182

randomly-shuffled label models analysis for this threshold resulted in an accuracy of 183

51.7% for the RF model, providing clear evidence for the feasibility of our choice of 184

ground truth in this analysis. After selecting the top 100 most important features and 185

retraining the model, we achieved an accuracy of 98.6% for the RF model on the test 186

data. Subsequently, by assessing the importance of these features, we discovered that 187

the power spectrum averaged over the gamma and alpha frequency bands exerted the 188

most significant influence on the model’s predictions for both classes, namely +BATS 189

and -BATS, as depicted in Fig 3.A. Investigating the directional impact of these 190

features, we observed that spectral power values in the gamma frequency range had a 191

bidirectional effect on predicting both classes, with a tendency of high gamma feature 192

values predicting +BATS. Moreover, higher alpha feature values apparently exert a 193

more significant impact on predicting individuals with +BATS, suggesting that 194

individuals with tinnitus who show higher alpha activity during an independent EEG 195

resting-state measurement are more likely to successfully show inhibition of their 196

tinnitus. Channels identified as important contributors by the classification are depicted 197

in Fig 3.B and mostly covering auditory, sensory, and/or attentional networks. Yet, 198

given well-known issues of volume conduction, diffusion, and smearing in M/EEG sensor 199

level localization, source-localized data, as presented in the next section, is more feasible 200

for further interpretation. Entropy values were calculated in order to extend the 201

assessment of power values by contributing measures of orderliness or informational 202

value. Looking at the impact on the model output (SHAP values) in Fig 3.A and D, 203

entropy feature values confirm the bidirectional outcome for gamma and the positive 204

influence of alpha power on tinnitus suppression by showing an inversion of the 205

distribution of the power effects. Furthermore, power values in alpha and gamma are 206

negatively correlated, shown in Fig 3.D in the right-most subplot. Finally, aperiodic 207

parameters complement the results of the feature set showing that +BATS is related to 208

lower aperiodic offsets and steeper slopes (resulting in a larger area under the curve), 209

which reflects more periodic (i.e., oscillatory) activity or ‘normal’ power frequency 210

spectrum in individuals with +BATS (Fig 3.C). 211

Fig 2. Performance of the classifiers. Visualization of the performance (accuracy)
of the ten distinct classifiers on 2-second EEG epochs with 10,332 data points and 652
features in sensor space. Classifiers were applied using varying BATS thresholds from 90
to 50 with a step size of 10.

Source space 212

Following the merging of features with high correlation, a total of 263 features, 213

constituting 77% of the original 340, were excluded from our dataset. Subsequently, we 214

trained the model and classified the data using these refined features, resulting in an 215

accuracy of 97.8% for the RF model on the test data. Examining the overall importance 216

of spectral power values within different frequency bands across brain labels indicated 217

that delta, theta, and beta oscillations accounted for 10.3%, 13.3%, and 19.2% of the 218

total feature importance, respectively. However, alpha and gamma oscillations 219

contributed substantially more significantly, making up 27.2% and 29.8% of the total 220

feature importance. This importance order aligns with results from the classification 221

process performed in sensor space features. Fig 4 displays the key brain labels that 222

contribute the most to the classification task, along with their predictive direction. The 223

source model extends the findings of sensor space locations in the previous model by 224
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Fig 3. Importance order and direction of the sensor space features on
predicting +BATS. A. On the left sub-panel, a list of sensor space features, arranged
in decreasing order of importance in the classification procedure, is presented. The
chart showcases the combined significance of features within each feature category for
forecasting -BATS (absence of tinnitus acoustic suppression) and +BATS (presence of
tinnitus acoustic suppression), indicated by blue and red colors correspondingly. The
horizontal axis shows the averaged SHAP values associated with each feature category.
Feature classes with higher average SHAP values have a greater impact on the
prediction of targets. On the right sub-panel, the chart includes a collection of data
points (i.e., single EEG epochs), which are placed horizontally across the x-axis,
representing their respective SHAP values. Additionally, the color of each data point
(epoch) reflects the feature values, with a gradient from red to blue representing high
and low values. B. Channels of significance in the alpha (left panel) and gamma (right
panel) frequency ranges are highlighted in red. C. Partial dependence plot displays the
interaction between two feature sets (aperiodic offset and aperiodic slope) in predicting
the class of individuals with +BATS. As the aperiodic offset decreases and the aperiodic
slope increases, collectively indicating a reduction in non-oscillatory brain activity, there
is a higher probability of predicting individuals with +BATS. D. The x-axis of the
scatter plots represents the values of alpha power (left and right sub-panels) and gamma
power features (middle sub-panel). Each data point corresponds to an individual
observation (i.e., a single EEG epoch) in the dataset. The y-axis represents the SHAP
values associated with each feature for the same set of data points, and color gradients
represent a third variable, namely, alpha entropy (left panel), gamma entropy (middle
sub-panel), and gamma power (left and right subpanel). The baseline (y = 0, dotted
line) represents the model’s mean prediction of +BATS across all instances. Dots above
the baseline indicate positive feature contribution, while dots below indicate negative
feature contribution.

confining features to functionally-segregated brain regions. In general, alpha power was 225

more pronounced in the right brain hemisphere whereas gamma power seems to exert a 226

bias to the left hemisphere (Fig 4.A and B), at least regarding temporal and (primary) 227

auditory fields. Furthermore, identified labels in primary auditory regions (transverse 228

temporal, middle temporal) extend to non-auditory regions associated with sensory 229

integration (superior parietal, supramarginal, precentral and paracentral), executive and 230

attentional control (superior frontal, frontal pole), memory (parahippocampal, posterior 231

cingulate), and limbic emotional (interface) integration (insula, rostral anterior cingulate, 232

and temporal pole), for alpha and gamma, respectively. In the insula, high alpha power 233

is not predictive of +BATS, whereas the opposite pattern can be observed for alpha 234

power in the rostral anterior and the posterior cingulate cortex, and superior frontal 235

gyrus. In the remaining labels of the alpha band, the impact on the model’s output is 236

bidirectional or mixed. Gamma power is predictive of +BATS in (left) transverse 237

temporal gyrus, rostral anterior cingulate cortex, and paracentral gyrus whereas it is 238

not predictive in superior parietal and supramarginal gyri. For the remaining labels in 239

gamma, their influence on the model’s output is observed to be bidirectional or variable. 240

Fig 4. The most contributing brain labels in prediction of +BATS. In both
the alpha (A) and gamma (B) frequency range, brain labels that significantly
contributed to predicting individuals with +BATS are denoted by circles. Brain labels
shared with the validation dataset are highlighted in blue, while those not matching are
colored in black. The importance and directionality of these brain labels in predicting
+BATS are displayed in the right subpanels of A and B, respectively.
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Connectivity 241

We calculated the coherence connectivity measure within the resting state network’s 242

brain labels and between the important brain labels identified in the source space 243

analysis. The coherence measures were computed for each epoch, and 20 features out of 244

102 features were excluded due to high correlations (19.6%). Consequently, the training 245

phase involved 82 features, encompassing connections between resting state networks 246

and auditory network brain labels within two frequency ranges, specifically alpha and 247

gamma. After training the model, we achieved an accuracy of 86.3%. The most 248

important connections for both frequency ranges are presented in Fig 5. Overall, the 249

predictive feature set of this model is driven by important gamma connections between 250

several networks and nodes while important connectivity in the alpha frequency band 251

was limited to 3 between-network connections and 2 intra-auditory network connections 252

(hyperconnectivity between bilateral primary auditory fields in superior and transverse 253

temporal gyrus as well as superior parietal gyrus. Interestingly, all alpha 254

between-network connections (i.e., VAN and DMN or DGN, AUN and DAN) were not 255

predictive of +BATS indicating a global and trait-like decoupling of these networks 256

+BATS individuals. In contrast, intra-auditory network connections in the alpha band 257

(i.e., between superior temporal, parietal, and transverse temporal gyri) are predictive of 258

+BATS. Gamma connectivity predictive of +BATS resulted between AUN and SMN, 259

AUN and LBN, AUN and DGN, SMN and FPN, and VAN and DAN, while the 260

remaining connectivity features had mixed or negative impact on the model output (i.e., 261

VAN and DGN, AUN and FPN, VAN and LBN, and VAN and SMN). Finally, a single 262

intra-auditory network connection in the gamma frequency band predictive of +BATS 263

was found between left superiorparietal gyrus and right superiortemporal gyrus. 264

Fig 5. Importance order and direction of the connectivity features on
predicting +BATS. A. The list of connections, sorted by importance in the
classification process along with their directionality in predicting +BATS and -BATS, is
presented. The y-axis tick labels, colored in purple and light brown, represent
connections in the alpha and gamma frequency ranges, respectively. B. The contrast
between average connectivity across participants with +BATS and -BATS in alpha
(upper panel) and gamma (bottom panel) within resting-state networks is depicted
using circular graphs. The color gradient ranges from red to blue, indicating stronger
connections in individuals with BATS ability to low values, indicating individuals with
-BATS. C. The most important connections within the AUN network in the
classification process are visualized on a glass brain. Purple and light brown indicate
connections in the alpha and gamma frequency ranges, respectively.

Validation 265

We conducted an ancillary analysis using a validation dataset to assess the 266

generalizability of our findings and whether the identified important brain labels were 267

consistent across different recording systems (see S6 Fig and S7 Fig) and varied levels of 268

+BATS obtained from different response scales (see S5 Fig). Spectral power values were 269

computed in brain parcels, following the same methodology outlined in section Feature 270

extraction. Feature merging was performed to address high correlations, resulting in 107 271

(68.5%) features being retained from the initial 340 features and data classification was 272

carried out in the sensor space, using the remaining features with a selected loudness 273

threshold value of -1. An RF model was employed, and an accuracy of 99.1% was 274

achieved on the test data, using the top 100 most important features. When comparing 275

the important brain labels obtained from the validation dataset analysis with the top 10 276
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most important brain labels from the main dataset, we observed that in the alpha 277

frequency range, 7 out of the 10 brain labels were important in both datasets. The 3 278

non-overlapping brain labels were the paracentral gyrus, insula, and posterior cingulate. 279

Notably, the reason for their absence in the validation set was the presence of high 280

correlations with other brain parcels, which led to their removal in the initial feature 281

merging step. Specifically, the paracentral gyrus exhibited high correlation with labels: 282

postcentral, posterior cingulate, superior parietal, and supramarginal. The insula 283

displayed high correlation with brain labels: lateral orbitofrontal, medial orbitofrontal, 284

pars opercularis, pars orbitalis, pars triangularis, rostral middle frontal, and superior 285

temporal, and the posterior cingulate was removed due to its high correlation with the 286

supramarginal label. In the gamma frequency range, 7 out of the 10 most important 287

brain labels matched between the two datasets. Similarly, 3 out of the 10 brain labels 288

did not appear in the validation dataset. These were the rostral anterior cingulate (due 289

to high correlation with superiortemporal and temporal pole), paracentral (due to high 290

correlation with postcentral, posterior cingulate, superior parietal, and supramarginal), 291

and superior parietal (due to high correlation with supramarginal). 292

Finally, we conducted training and testing of a RF model on the validation data 293

using connectivity features computed as described in Section Feature extraction. This 294

analysis resulted in an accuracy of 82.2%. When we compared the most important 295

connections derived from the main dataset with those from the validation dataset, we 296

found that most of the important connections were present in the validation dataset’s 297

results, while both the order and the extent of the feature list vary considerably. In 298

general, considering that there is a 70% match between the important brain labels in 299

both the alpha and gamma frequency ranges and taking into account that the remaining 300

labels were dropped due to the feature merging process, we can conclude that the 301

validation dataset successfully validated the findings from the main dataset. This level 302

of consistency supports the robustness and reliability of our results across different 303

datasets and recording systems. 304

Discussion 305

In the present study, we aimed to ascertain if specific sensor, source, or connectivity 306

features of resting state EEG from individuals with tinnitus predict tinnitus suppression 307

by auditory stimulation. We showed that high classification accuracy can be found for 308

several BATS threshold levels (split validation) and in an independent dataset. 309

Important neural features were identified and subjected to model impact and 310

directionality (of effects) analysis, which resulted in specific patterns of neural 311

signatures aligning and extending current models of tinnitus. In the absence of any 312

directly comparable previous work (i.e., prediction of acoustic tinnitus suppression from 313

naive (EEG) resting state data and not by experimental state-like BATS data), 314

referential discussion within the tinnitus literature in the following section is inherently 315

limited. We first discuss the classification workflow and results, followed by an 316

integrative discussion of resulted neural features with respect to tinnitus and general 317

brain models following the sequence of analysis steps (see Fig 1). Limitations, future 318

directions, and the conclusion will finally complement the discussion. 319

Classification 320

Our analysis demonstrated the feasibility of robustly classifying individuals with regards 321

to acoustically-induced tinnitus suppression based on naive EEG resting state 322

recordings. We demonstrated that the classification task remains robust and 323

consistently yields high accuracy on unseen data for various BATS threshold values (see 324
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Fig 2). This was further confirmed by our ancillary randomly-shuffled label model 325

analysis, which resulted in almost chance-level accuracy (51.7%). In contrast to classical 326

approaches that focus primarily on designing classifiers, even complex ones, to achieve 327

high accuracy without a deep exploration of the underlying dynamics, the emphasis of 328

this work is distinct: The focus lies not in classification per se, but in meaningful, 329

explainable outcomes that foster the understanding of the underlying patterns. Showing 330

that various simple models consistently yield high classification accuracy implies that 331

the problem inherently possesses a global minimum in the parameter space for all 332

classifiers. This implies that various simple models converge to the same optimal 333

solution, indicating robustness and reliability across different approaches to 334

classification. Beyond that, we assessed the importance and directionality of the feature 335

classes for different loudness threshold levels, as illustrated in supplementary Fig S5 Fig. 336

This ancillary analysis further highlighted consistency in both importance and direction 337

across the class of features. Any (usually small) variations observed may be mostly 338

attributed to the random selection of training and test sets, shuffling or data imbalance. 339

This suggests that the choice of the threshold does not strongly influence the data’s 340

underlying pattern. This robustness indicates that the features have been well-designed 341

and offer clear separability between the two classes, resulting in consistent model 342

performance across different thresholds. The ultimate choice of a 10% BATS threshold 343

(tinnitus loudness threshold at 90% after stimulation) for the main analysis is thus 344

solely motivated to create a balanced dataset. This threshold results in a distribution 345

where 47.9% of individuals have +BATS, and 52.1% have -BATS, which ultimately 346

reduces model bias and leads to fairer predictions. 347

Since preserving the inherent meaning of our features is important, we did not 348

employ advanced feature selection or reduction techniques like PCA [59] or NCA [60], 349

which involve linear combinations of features. We instead utilized Pearson correlation 350

approach to merge features that exhibit high correlations to address the issue of 351

multicollinearity in our dataset while keeping features interpretable. This process 352

reduced dataset dimensionality, eliminated multicollinearity, and mitigated overfitting, 353

retaining essential data for classification. However, features that exhibit a non-linear 354

connection may be retained despite potentially showing a weak Pearson correlation, as 355

the Pearson correlation specifically assesses linear associations. Merging such features 356

based on correlation could be detrimental in certain configurations. Moreover, choosing 357

the wrong threshold for merging the features can lead to either under-merging 358

(retaining too many features) or over-merging (losing important information). 359

We ultimately selected the RF model to classify individuals with respect to their 360

ability to suppress their tinnitus for several reasons: First, its majority voting 361

mechanism naturally mitigates the risk of overfitting and helps lower variance error, 362

promoting more robust and reliable predictions [48] (see supplementary table S4 Table). 363

Second, RF is known for being less sensitive to hyperparameter choices compared to 364

other models. Third, it offers a measure of feature importance through the Gini 365

impurity metric [61]. Additionally, it consistently demonstrated superior performance 366

across various loudness thresholds, further validating its suitability for the task. Lastly, 367

RF is an ensemble which is helpful if unbalanced data is present, in contrast to other 368

classifier methods. Therefore, its inclusion and application on different BATS splits can 369

be considered as optimal. 370

Features with low importance may have limited impact on the model’s predictive 371

capabilities and can potentially be removed to simplify the interpretation of the model. 372

On the other hand, if feasible and of interest, one could consider their effect on the 373

model’s output as well. As an example, when examining non-oscillatory features of 374

power spectrum density, including PSD offset and slope, we observed that as moving 375

towards lower offset values and higher slope values (indicating reduced aperiodic 376
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activity), the model tends to predict the class of individuals who consistently showed 377

tinnitus suppression (+BATS). This relationship is illustrated in Fig 3.C. Taken 378

together, the proposed and applied classification method seems to be very feasible to 379

investigate trait-like neural features with regards to their predictive value on the ability 380

to (acoustically) suppress tinnitus. 381

Neurophysiological relevance 382

Sensor space 383

In the first segment of our discussion, we focus on the model and features regarding the 384

EEG sensor space. First, it’s worth noting that higher gamma power values were more 385

predictive of +BATS, with a distinct bias towards positive predictions but some 386

negative extremes as well. In the absence of directly comparable experimental data, the 387

discussion here is limited to links to general resting state data of tinnitus (trait-like) and 388

to links to neural signatures during BATS (state-like). The latter comparison is 389

especially precarious given the absence of state-like data and results in our study. Yet, 390

looking at the pattern of positively-biased but bidirectional pattern of gamma features, 391

our analysis aligns with the findings of Sedley et al. [31], where they argued that there 392

was a positive correlation between tinnitus intensity and gamma band oscillations in the 393

auditory cortex among a majority of patients (8 out of 14), suggesting an increased 394

thalamocortical input and cortical gamma response associated with higher tinnitus 395

loudness. Conversely, all four patients exhibiting residual excitation (i.e., tinnitus 396

loudness exceeding the baseline loudness before sound stimulation) demonstrated an 397

inverse correlation between perceived tinnitus intensity and auditory cortex gamma 398

oscillations. In a further study, it was shown that gamma oscillations are consistently 399

more present during BATS [32], which was recently confirmed by another study [35], 400

where an increase in alpha and gamma frequency bands during BATS was shown. 401

Contrary to these positive gamma findings, two other studies could not find gamma 402

and/or high frequency oscillation effects in BATS [34,62]. In our previous study, we 403

observed decreased low gamma or high beta power post-stimulation (at 31 Hz), which 404

was not linked to BATS [36]. The BATS experimental data regarding gamma thus 405

seems to be inconclusive and, as introduced, considering general resting state data from 406

tinnitus and basic literature about gamma or neural oscillations might be more 407

productive. In comparison to healthy controls, increased gamma power in rest in 408

individuals with chronic subjective tinnitus has been found in several studies [12–14,63]. 409

In addition, some resting-state studies have shown a positive correlation between 410

tinnitus loudness and gamma oscillations in auditory fields [64,65], which was also 411

critically discussed in a position paper [66]. The pattern of increased high-frequency or 412

gamma oscillations in tinnitus resting-state seems to be stable, with little contradicting 413

evidence, and may be interpreted with the theorized higher neural synchrony in cortical 414

auditory fields due to tinnitus [9, 67]. Mapping these considerations back to our novel 415

data, we certainly can assume that the gamma findings, including some bidirectional 416

effects possibly related to individual differences, are reflected in our findings. Yet, it is 417

not understood in detail how gamma oscillations may contribute to an active 418

suppression of tinnitus. Gamma oscillations, typically in the range of 30-100 Hz, are 419

closely associated with sensory processing, attention, and the integration of cortical 420

information [68,69]. In the context of the auditory system, higher gamma power could 421

reflect enhanced cortical excitability and increased neural synchrony within auditory 422

pathways, which might be instrumental in the modulation or suppression of tinnitus. 423

We thus theorize that increased trait-like gamma power and/or dynamics, as found in 424

our study, might be aiding the cortical (auditory) system to suppress tinnitus. In 425

addition, current considerations regarding the predictive brain might extend this 426
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reasoning by introducing that higher gamma activity in auditory cortical fields could be 427

interpreted as the brain’s attempt to enhance the precision of auditory predictions or to 428

amplify the prediction error related to the phantom sound of tinnitus [32,70,71]. This 429

increased activity could serve to better predict and, therefore, more effectively cancel 430

out the internal representation of tinnitus, leading to its suppression. 431

Second, looking at the second most important identified feature, alpha power, the 432

discussion of our finding of increased alpha power predictive of +BATS is more 433

straightforward both given the clear direction of results and the results’ fit to current 434

theoretical models. Reduced (trait-like) alpha power in tinnitus has been consistently 435

shown in resting state studies [12,72] and is theorized to be reflective of a disrupted 436

(auditory) inhibitory system in tinnitus. Findings of reduced GABA, a major inhibitory 437

neurotransmitter, concentration levels in cortical auditory fields may further 438

corroborate the hypothesis of a defective inhibitory system in tinnitus [73, 74]. A single 439

study also showed that observed lower resting alpha power in tinnitus is correlated to 440

higher gamma power linking the two major inhibitory and excitatory neural 441

oscillations [63]. We could demonstrate a similar correlation in our analysis of +BATS 442

prediction (see Fig 3.D). Furthermore, experimental data in BATS showing increases of 443

alpha power during BATS confirms that BATS may temporarily restore normal cortical 444

inhibition and thus suppress the perceived tinnitus sound [75]. Taken together, our 445

results add to the importance of alpha regarding cortical inhibition and (acoustic) 446

tinnitus suppression by establishing its importance as a trait-like feature in individuals 447

with tinnitus, which has not been shown before. 448

Finally, aperiodic parameters complemented the results of the sensor feature set, 449

demonstrating that +BATS is related to lower aperiodic offsets and steeper slopes, 450

which suggest more periodic (i.e., oscillatory) activity over the entire power spectrum in 451

individuals with +BATS (Fig 3.C). This observation fits considerations of 452

thalamo-cortical dysrhythmia in tinnitus [76–78], expressed by a flatter overall M/EEG 453

(resting state) spectrum and increases in high-frequency power (i.e., gamma). 454

Source space 455

Source localization of the identified most important features of the sensor model, 456

gamma and alpha power, was motivated to constrain these findings to specific 457

functionally-segregated brain regions. The discussion so far assumed that the effects to 458

be mainly originating from cortical (bilateral) auditory fields, which is confirmed by the 459

resulting sensor locations spanning lateral and posterior sensors (see Fig 3.D) and the 460

bulk or previous literature. Regarding frequency-specific contributions in identified 461

brain labels, global functional eminence of the alpha and gamma band in the context of 462

tinnitus and sensory processes have to be elucidated: The prominence of alpha power in 463

the right hemisphere and gamma in the left hemisphere suggests a division of labor 464

between the hemispheres in general brain functioning [79]. Alpha oscillations generally 465

reflect inhibitory processes and reduced cortical arousal [80], whereas gamma 466

oscillations typically code sensory processing, attention, and the integration of cortical 467

information [69]. Mapping these global and normal brain mechanisms to tinnitus and 468

especially to trait-like features predicting tinnitus suppression is challenging in the 469

absence of any relevant previous resting state data in tinnitus considered with 470

lateralization of neural oscillations. Yet, our findings suggest that there is a correlation 471

between the level of predictive gamma power in the left transverse temporal gyrus and 472

predictive alpha power in the right transverse temporal gyrus (as shown in Fig 4.A and 473

B), and the typical functioning preferences of the two hemispheres, particularly in the 474

bilateral auditory cortex. This implies that normal brain functioning may be facilitating 475

(acoustic) tinnitus suppression. Predictive trait-like gamma power in the left primary 476

auditory cortex, namely transverse temporal or Heschl gyrus, may signify an adaptive 477
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neural process aimed at minimizing the sensory prediction errors that underlie the 478

perception of tinnitus. In turn, such a minimization of prediction errors may contribute 479

to successful tinnitus suppression. 480

In the insula, high alpha power is not predictive of +BATS, whereas the opposite 481

pattern can be observed for alpha power in the rostral anterior cingulate cortex, 482

posterior cingulate cortex, and superior frontal gyrus. In the rostral anterior cingulate 483

cortex, predictive trait-like alpha power could be linked to a functioning or maintained 484

active tinnitus noise canceling system mediated through thalamocortical relays [81]. A 485

correlative EEG resting state study has identified the anterior cingulate complex, 486

including the rostral anterior cingulate cortex, to be involved in tinnitus perception [82]. 487

Yet, the authors did not find any effects in the alpha frequency band. Moreover, also 488

critical for our data, M/EEG source localization of deep, medial, and ventral structures 489

like the subcallosal area, identified as the key node in the tinnitus noise-cancelling 490

system [81,83], is challenging and possibly unreliable. Given structural vicinity and 491

functional overlap of the anterior cingulate complex’ subregions (i.e., rostral anterior 492

cingulate cortex, pregenual anterior cingulate cortex, and subgenual anterior cingulate 493

cortex), it was proposed by [84] to extend the functional locus of the key node of the 494

noise-canceling system to the entirety of the ventromedial prefrontal cortex. Predictive 495

trait-like alpha power in the posterior cingulate cortex could be both reflective of an 496

intact DMN including its inhibitory properties and/or normal modes of memory 497

processing, which could imply that tinnitus is not filled-in from the hippocampus as 498

proposed in recent models [85,86]. In similar veins, predictive alpha in (superior) frontal 499

regions could be indicative of functioning control (networks) within the tinnitus brain, 500

allowing for better attentional (or auditory gating) control and possibly suppression of 501

the phantom sound perception [87]. Looking at gamma, its lack in superior parietal 502

regions may be correlated to an absence of integration with other sensory systems 503

(cross-modal compensation) and/or intact attentional or inhibitory control as in alpha 504

and the posterior cingulate cortex [88,89]. Finally, the same could be true for a similar 505

pattern in the rostral anterior cingulate cortex and, analogously to higher predictive 506

alpha power in the same region, linked to an (intact) tinnitus noise canceling system. 507

Notably, identified regions also play a role in large and small-scale networks, such as, 508

for example, the posterior cingulate cortex, a critical node in the default mode network. 509

The involvement of the insula and the rostral anterior cingulate cortex highlights their 510

significance in the salience network or ventral attention network, crucial for detecting 511

and filtering salient external stimuli and internal events, thereby facilitating the 512

transition between activated networks such as the default mode network and the central 513

executive or frontoparietal network. The superior frontal gyrus and the frontal pole, 514

implicated in executive function and attentional control, are key components of the 515

frontoparietal network, underscoring their role in directing attention and managing 516

cognitive resources, which could be particularly relevant in modulating attention 517

towards or away from tinnitus sounds [90]. Additionally, the involvement of sensory 518

integration and executive regions suggests a complex interplay between auditory 519

processing and higher-order cognitive functions, emphasizing the multisensory and 520

multidimensional nature of tinnitus perception within these overarching neural networks. 521

Network aspects are further analyzed and discussed in the following section discussing 522

our network model. 523

Connectivity 524

Looking at auditory connectivity, the specific intra-auditory alpha and gamma 525

connections in +BATS individuals most probably reflect functioning inhibitory circuitry 526

enabling the suppression of tinnitus (see Fig 5.C. The here observed intact connectivity 527

contradicts findings of disrupted resting state alpha networks in individuals with 528
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tinnitus [91], implying that an intact intra-auditory network may support BATS. In the 529

same study, authors found a resting state hyperconnection in the gamma frequency 530

range which could be explained by differences in the analysis (i.e., resting state 531

case-control design in the former study vs. within-group prediction in our study). In 532

general, the resting state auditory network literature in tinnitus is not unequivocal, with 533

conflicting results explained by the heterogeneity of the investigated tinnitus samples 534

and/or applied methods [16]. 535

On the large-scale network level, in the gamma frequency band, the most important 536

connection of the connectivity RF model is found between AUN and SMN possibly 537

related to increased sensory integration and/or attempts to minimize sensory prediction 538

errors. Notably, both networks include the transverse temporal gyrus, which highlights 539

their intrinsic connection and, thus, functional coupling. Further, a hyperconnection 540

between AUN and the LBN could be representative of a trait-like intact noise canceling 541

system [81], which may be further corroborated by a similar hyperconnection between 542

AUN and the DGN including bilateral caudate, putamen, pallidum, and thalamus. 543

However, given the large-scale character of investigated networks, more precise 544

identification of medioventral key nodes of the proposed noise-canceling system (i.e., 545

subgenual cingulate cortex and/or anterior cingulate cortex complex as well as the 546

thalamus), can not be provided with our current data and analyses. Contrary to these 547

hyperconnections, a hypoconnection between AUN and the (control) network FPN 548

could be characteristic of a trait-like pattern of less attentional control and/or 549

memory-related connectivity in +BATS individuals. This could imply that individuals 550

with +BATS may not have developed aberrant network activity. The observed 3 551

hypoconnections between large-scale networks in the alpha frequency band, namely 552

between VAN and DMN, AUN and DAN, and VAN and DGN, respectively, may echo 553

the hypoconnection between AUN and FPN in the gamma frequency band. This would 554

further corroborate the emerging pattern of hyperconnected auditory and/or potential 555

noise-canceling networks in the absence of interactions between other large-scale 556

networks and/or with the hyperconnected networks predicting +BATS. 557

Taken together, connectivity results of our 3rd model unfathomed a global pattern of 558

intact intra-auditory connections in both frequency bands possibly implying functioning 559

inhibitory and/or integrating auditory circuitry. Beyond that, large-scale networks are 560

mostly hypoconnected, except auditory sensory as well as auditory limbic interactions, 561

indicating normal functioning and/or an unimpaired noise-canceling system. 562

Behavioral differences 563

In our analysis, we observed higher MML and a trend towards higher tinnitus loudness 564

levels in the -BATS group, suggesting a potential relationship between tinnitus 565

perceptual intensity and the ability to achieve BATS. This observation is intriguing, 566

especially given the absence of significant differences in tinnitus duration between 567

groups, a marker often associated with tinnitus chronification. By crossing a non-linear 568

threshold where the system’s adaptive responses may become maladaptive, certain 569

inhibitory and/or neuroplastic mechanisms necessary for tinnitus suppression may 570

become less effective [92, 93]. This observation points to a need for further investigation 571

into the neural and perceptual dynamics that limit tinnitus modulation. 572

Limitations and future directions 573

The current study has some limitations that inform future studies in BATS, tinnitus 574

research, and/or the methods applied. 575

Classifier feature importance values and related ordered lists are delicate to interpret. 576

Resulting values are not straightforward to interpret per se, especially if compared to 577
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modes of interpreting inferential frequentist or Bayesian statistics results. In a RF 578

classifier, the Gini importance values, which quantify each feature’s contribution to 579

node purity and the overall quality of splits across the decision trees, do not necessarily 580

sum to 1 but are scaled relative to each other. These values, reflective of a feature’s 581

frequency in splitting and its impact on reducing node impurity, vary with the data, the 582

forest’s size, and the algorithm’s implementation, allowing for a meaningful comparison 583

of feature importance within the model’s context. SHAP values are used to explain the 584

output of machine learning models by attributing the prediction to different features. 585

They represent the contribution of each feature to the difference between the actual 586

prediction and the average prediction. Each SHAP value corresponds to a feature and 587

indicates how much that feature contributes to the prediction for a particular instance. 588

Despite the complexities inherent in interpreting Gini importance and SHAP values 589

within a RF classifier, our study’s results remain reliable and interpretable, 590

acknowledging the discussed limitations. 591

Even though our results are of high accuracy, stable over validation approaches, and 592

meaningful in resulting features, larger sample sizes are needed to further consolidate 593

and differentiate analyses and results. Yet, given our total sample size of 102 cases, the 594

presented dataset is currently the largest in the context of EEG, BATS, and tinnitus. 595

Further, future studies could incorporate additional neurophysiological measures of 596

higher spatial resolution, such as MRI, to complement the current feature sets and to 597

ensure more precise source localization based on individual structural MRI in 598

combination with scanned individual EEG electrode positions. Source localization may 599

limit the precision of some of the presented data, which is discussed transparently 600

throughout the paper. 601

To maximize the feature set included in machine learning modeling and, in 602

consequence, derive insights in the spirit of explainable AI [37], further 603

(neuro)physiological measures could be considered [94]. A maximized comprehensive 604

feature set could lead to objective diagnosis and subtypization of tinnitus and/or the 605

ability of tinnitus suppression [95,96]. 606

Finally, by mapping the unique neural signatures associated with tinnitus in 607

different individuals derived from our approach here, future studies could design 608

targeted interventions that address the specific neural underpinnings of tinnitus in each 609

individual. Such an approach would not only improve the precision of tinnitus 610

treatments but also contribute to the broader field of personalized neurotherapy, 611

optimizing interventions based on each individual’s neural fingerprint. 612

Conclusion 613

The present work represents the first attempt to predict acoustic tinnitus suppression 614

via spontaneous brain activity data. It aims to understand the potential suppression 615

factors on the neural level through automatic classification and identification of 616

distinctive features. We achieved high classification accuracy (98% for the sensor and 617

source model and 86% for the connectivity model) and identified several partly novel, 618

trait-like neural features critical for understanding tinnitus suppression. By revealing 619

specific patterns of gamma and alpha oscillations in sensors and specific brain regions, 620

our results extend current models of tinnitus, highlighting the role of auditory cortical 621

activity and its hemispheric distribution in managing phantom sound perception and 622

suppression. Furthermore, we could demonstrate that intra-auditory and cross-network 623

connectivity between large-scale (cortical) auditory and limbic networks were also 624

predictive of an individual’s ability to suppress tinnitus. Finally, by analyzing aperiodic 625

features of the EEG power spectrum, it was shown that normal averaged spectral 626

shapes are predictive of tinnitus suppression. Our approach not only advances the 627
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comprehension of the neural basis of tinnitus suppression and tinnitus in general but 628

also paves the way for objective diagnosis and personalized treatment strategies. 629

Supporting information 630

S1 Table. Sample description. Information about the samples, including sex, 631

tinnitus side, age, tinnitus duration, hearing loss, MMl, THI score, GUF score, tinnitus 632

loudness, and BATS% is presented for both the main and validation datasets. 633

S2 Table. Descriptive statistics of sample split in the main dataset. 634

S3 Table. Overview of brain regions extracted from Desikan-Killiany atlas 635

and assigned to canonical 9 sub-networks. 636

S4 Table. Random Forest classifier performance. Metrics evaluating 637

performance, such as accuracy, precision, recall, and F1-score, are provided for each 638

classification task, encompassing both the primary dataset and the validation dataset. 639

S5 Fig. Importance order and directionality of sensor space features are 640

shown for three different loudness threshold value, namely 90 (A), 70 (B) 641

and 50 (C). The dots at each plot indicate SHAP values measuring how much each 642

feature category contributes to predicting class of individuals with +BATS. Furthermore, 643

the color of each data point (epoch) represents the feature values, following a gradient 644

from red to blue, where red indicates high values, and blue signifies low values. 645

S6 Fig. Analysis of validation dataset. A. Visual representation of the 646

correlation matrix of the validation dataset, showing the relationships between various 647

pairs of features including computed features in sensor space (left panel), source space 648

(middle panel) and connectivity features (right panel). To reduce multicollinearity 649

among features, values greater than 0.9 are combined. B. Accuracy values of ten 650

distinct classifiers applied on the EEG epochs of validation dataset. C. Sensor space 651

features are organized by decreasing importance for predicting two classes: +BATS and 652

-BATS. In the left panel, the horizontal axis displays averaged SHAP values for each 653

feature category, with higher values indicating greater influence on target prediction. 654

Right panel consists of data points (epochs), representing feature categories, placed 655

along the x-axis based on their SHAP values. Data point colors range from red to blue, 656

reflecting feature values from high to low. D. Most contributing channels in classifying 657

individuals with +BATS and -BATS are colored in red in both alpha (right panel) and 658

gamma (left panel) frequency ranges. 659

S7 Fig. The list of most contributing connections in the validation dataset, 660

sorted by their importance in the classification process. Each connection’s 661

directionality is also shown. The y-axis tick labels, colored in purple and light brown, 662

correspond to connections in the alpha and gamma frequency ranges, respectively. 663

S8 Text. Supplemental information. This section outlines the EEG recording 664

procedure and data preprocessing pipeline. Furthermore, techniques for extracting 665

spectral band powers, spectral entropy, aperiodic spectral power, source space power 666

spectral density, and connectivity measures are described. Additionally, methods for 667

evaluating the importance and directionality of features are introduced. 668
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