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Abstract 25 

The brain consists of a vastly interconnected network of regions, the connectome. By 26 

estimating the statistical interdependence of neurophysiological time series, we can measure 27 

the functional connectivity (FC) of this connectome. Pearson’s correlation (rP) is a common 28 

metric of coupling in FC studies. Yet rP does not account properly for the non-stationarity of 29 

the signals recorded in neuroimaging. In this study, we introduced a novel estimator of coupled 30 

dynamics termed multiscale detrended cross-correlation coefficient (MDC3). Firstly, we 31 

showed that MDC3 had higher accuracy compared to rP using simulated time series with known 32 
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coupling, as well as simulated functional magnetic resonance imaging (fMRI) signals with 33 

known underlying structural connectivity. Next, we computed functional brain networks based 34 

on empirical magnetoencephalography (MEG) and fMRI. We found that by using MDC3 we 35 

could construct networks of healthy populations with significantly different properties 36 

compared to rP networks. Based on our results, we believe that MDC3 is a valid alternative to 37 

rP that should be incorporated in future FC studies.  38 

Author Summary 39 

The brain consists of a vastly interconnected network of regions. To estimate the connection 40 

strength of such networks the coupling between different brain regions should be calculated. 41 

This can be achieved by using a series of statistical methods that capture the connection 42 

strength between signals originating across the brain, one of them being Pearson’s correlation 43 

(rP). Despite its benefits, rP is not suitable for realistic estimation of brain network architecture. 44 

In this study, we introduced a novel estimator called multiscale detrended cross-correlation 45 

coefficient (MDC3). Firstly, we showed that MDC3 was more accurate than rP using simulated 46 

signals with known connection strength, as well as simulated brain activity emerging from 47 

realistic brain simulations. Next, we constructed brain networks based on real-life brain 48 

activity, recorded using two different methodologies. We found that by using MDC3 we could 49 

construct networks of healthy populations with significantly different properties compared to 50 

rP networks. Based on our results, we believe that MDC3 is a valid alternative to rP that should 51 

be incorporated in future studies of brain networks.  52 

 53 

 54 

 55 
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Introduction 56 

Neuroscientific research has undergone a profound transformation in the last 100 years. 57 

Berger’s invention of electroencephalography (EEG) (1) made it possible to record and 58 

evaluate neural activity in a non-invasive manner. Initially, studies relied on univariate (i.e., 59 

single time series) analysis of the brain dynamics. This started to change towards the end of 60 

the 20th century with the first functional connectivity (FC) studies (2,3). This new field does 61 

not rely only on anatomical connections, it rather studies functional connections that can be 62 

created between directly or indirectly coupled neuronal populations. In more mathematical 63 

terms, the brain regions are considered nodes on a graph, interconnected by edges (4). These 64 

edges are defined by the statistical relationship of the neuronal time series under investigation.   65 

Several different FC estimators have been introduced with  Pearson’s correlation (rP) 66 

being one of the first applied in FC studies (2,3). Some drawbacks of this method (e.g., 67 

unreliable assessment of non-linear relationships) and the growing interest in exploring other 68 

aspects of FC, lead to the introduction of newer methodologies such as phase locking value 69 

(PLV) (5), phase lag index (PLI) (6), synchronization likelihood (SL) (7) and mutual 70 

information (MI) (8,9). The use of different FC estimators can greatly influence the topology 71 

of the networks (10–12). Such differences can be especially problematic when non-healthy 72 

populations are being investigated, – e.g., in Alzheimer’s disease patients (13) – complicating 73 

the reproducibility and meta-analysis of studies. It is then important that an informed choice is 74 

made before selecting an FC estimator. Nevertheless, rP is still widely used (14) due to its 75 

simplicity and interpretability. An important advantage of rP is the capacity to identify positive 76 

and negative correlations, which is not always the case with other estimators. 77 

Signals can be divided into two categories: i) stationary and ii) non-stationary. A time 78 

series Xt – where t indicates the discrete time – is completely stationary when the joint 79 

probability distributions of {Xt1 , Xt2 , Xt3  …, Xtn} and {Xt1+k , Xt2+k , Xt3+k  …, Xtn+k} are identical 80 
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for any set of time points t1, t2, t3…,tn and any integer k. While this definition is easily 81 

understood, it is rather unrealistic. Hence, a less strict definition for weak stationarity has been 82 

used to classify physiological signals. According to this, the mean and variance of a time series 83 

remain constant. In line with that, the covariance of two weakly stationary signals will also be 84 

constant throughout the propagation of time. On the other hand, non-stationary signals have 85 

varying mean and variance. Additionally, the covariance between two non-stationary signals 86 

will be time-dependent (15). Figure 1 shows an exemplary case of these weakly-stationary and 87 

non-stationary signals. From now on, any reference to stationary signals corresponds weakly-88 

stationary signals. Most biosignals are non-stationary (16). As a result, calculating the rP – a 89 

standardized covariance – of two biosignals can be misleading. A solution to this issue was 90 

given with the introduction of the detrended cross-correlation coefficient (DCCC) (17). DCCC 91 

makes use of the averaged variance and covariance of smaller sections of the signals (see 92 

Section “Multiscale Detrended Cross-Correlation Coefficient” below). In this study, we 93 

propose an extension of DCCC termed multiscale detrended cross-correlation coefficient 94 

(MDC3). Contrary to DCCC, the output of MDC3 does not depend on the scale (window length) 95 

resulting in easier interpretation of the results. To show this, we compared MDC3 to rP using 96 

simulated time series with: i) known coupling and ii) known causal interactions [i.e., effective 97 

connectivity (EC)]. We also demonstrated the differences between the two estimators in 98 

magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) 99 

recordings. 100 
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  101 

Figure 1 || Example of weakly-stationary and non-stationary signals generated using auto-regressive fractionally integrated 102 
moving-average (ARFIMA) processes (see Simulated time series). The mean and variance of weakly-stationary signals remain 103 
constant throughout time, while they vary in non-stationary signals. 104 

Methods 105 

Multiscale Detrended Cross-Correlation Coefficient 106 

Before introducing MDC3 we briefly describe DCCC (17), upon which MDC3 is based. DCCC 107 

was introduced as a more accurate coupling estimator between non-stationary time series. 108 

DCCC is calculated for several scales (s) (or window lengths) as follows. For every scale 109 

(window length), the two signals X and Y are divided into N non-overlapping windows of length 110 

s. Preliminary analysis with 50% overlapping windows did not show significant benefits 111 

compared to non-overlapping windows. For the sake of computational speed, non-overlapping 112 

windows were chosen. In every window the linear trend is removed, leaving the detrended 113 

signals 𝑋̂𝑖 and 𝑌̂𝑖, where i is the index of the window. Detrending is performed in order to 114 

counteract (at least partially) any spurious coupling emerging due to autocorrelation effects 115 

(18). Then, the covariance between the two signals and the variances of the two signals are 116 

estimated for every window. Finally, the ratio of average covariance and the square root of the 117 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.16.589689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.16.589689
http://creativecommons.org/licenses/by/4.0/


Multiscale Detrended Cross-Correlation Coefficient 

6 

 

product of average variances is calculated. Equation 1 provides the mathematical formulation 118 

of these steps.  119 

𝐷𝐶𝐶𝐶(𝑠) =
1

𝑁
∑ 𝑐𝑜𝑣𝑋̂𝑖𝑌̂𝑖

𝑁
𝑖=1

√
1

𝑁
∑ 𝑣𝑎𝑟𝑋̂𝑖

 
1

𝑁
∑ 𝑣𝑎𝑟𝑌̂𝑖

𝑁
𝑖=1

𝑁
𝑖=1

          (1) 120 

 DCCC is reminiscent of rP since both estimators range between -1 and 1 with negative 121 

values corresponding to anticorrelation and positive values corresponding to correlation (19). 122 

In 2014 Kristoufek showed that DCCC was more accurate than rP (20) in synthetic non-123 

stationary signals of known coupling. These results warrant the use of DCCC in FC studies, 124 

since neuronal time series are non-stationary (16). Unfortunately, the use of a multitude of 125 

scales (window lengths) makes it hard to interpret. Figure 2 shows a case where different scales 126 

(window lengths) result in different coupling estimation, sometimes even with a different sign. 127 

Are the two signals correlated or anticorrelated and to what extent? It is not possible to draw a 128 

clear conclusion. We believe that MDC3 could offer a mathematically sound solution to this 129 

problem. 130 
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 131 
Figure 2 || Detrended cross-correlation coefficient (DCCC) values for a 4 seconds-long pair of MEG signals at different scales 132 
(window lengths). 133 

 The estimation of MDC3 starts by calculating DCCC for different scales (window 134 

lengths). To avoid any arbitrary choice of scales (window lengths), we define frequencies (f) 135 

for which we would like to study the coupling of the time series. These frequencies can be 136 

converted to scales (window lengths) using the sampling rate (SR) of the signals (s=SR/f). First 137 

the DCCC for every frequency is calculated. Then, the two signals are detrended – in this case 138 

as a whole – and their cross-spectral density is estimated. We finally calculate the weighted 139 

average of DCCC, based on the relative power of each frequency in the cross-spectral density. 140 

The distribution of DCCC – similarly to rP‘s distribution – can be skewed, so DCCC values are 141 

normalized using Fisher’s z transform (21,22) before the calculation of the weighted average. 142 

Details about MDC3 can be found in Figure 3 and the pseudo-code in Table 1. In this form 143 

MDC3 cannot construct directed graphs, i.e. the FC matrix obtained is symmetric. Using cross-144 
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covariance we can extend MDC3 and create directed graphs. Details about this directed variant 145 

can be found in the Appendix. MATLAB, Python, and R versions of MDC3 are available at: 146 

https://github.com/BrainModes/mdc3 (The code will be made available upon the acceptance 147 

of the manuscript). 148 

Table 1 || Multiscale detrended cross-correlation coefficient (MDC3) pseudo-code 149 

INPUTS: time series X; time series Y; minimum frequency; maximum frequency; frequency 

step; sampling rate; detrending degree 

frequencies = ([minimum frequency, maximum frequency], increment = frequency step)  

scales = sampling rate / frequencies 

for every window length 

    for every non-overlapping window 

        detrend (window of time series X, window of time series Y, degree = detrending degree) 

        covariance XY (window of time series X, window of time series Y) 

        variance X (window of time series X ) 

        variance Y (window of time series Y) 

    dccc = mean (covariance XY) / sqrt([mean (variance X)*mean (variance Y)]) 

[detrended X, detrended Y] = detrend (time series X, time series Y, degree = detrending degree)  

power of frequencies = cross-spectral density (detrended X, detrended Y)  

weights = power of each frequency / sum(power of frequencies)  

MDC3= tanh {sum [tanh-1 (dccc)*weights]}  

OUTPUT: MDC3 
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 150 
Figure 3 || Demonstration of multiscale detrended cross-correlation coefficient (MDC3) using a 4 seconds-long pair of MEG 151 
signals with a sampling rate of 1000 Hz. A: The two signals (green and purple) are divided into smaller non-overlapping 152 
windows of length s, in this example s=500. B: Each window is detrended. C: The variances (upper panel) and covariance 153 
(lower panel) are calculated for every window. D: The detrended cross-correlation coefficient (DCCC) is estimated for several 154 
scales (window lengths). The black bar is the DCCC when s=500. E: The cross-spectral density of the two time series is 155 
calculated. The red asterisks correspond to the frequencies used for the estimation of DCCC, while the blue disk corresponds 156 
to 2Hz (i.e., s=500). MDC3 is calculated by taking the weighted average of DCCC, where the weight of each frequency is 157 
defined by the relative proportion of its power to the total cross-spectral power. 158 
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Simulated Time Series 159 

ARFIMA Processes 160 

In order to validate the efficacy of MDC3 we simulated pairs of auto-regressive fractionally 161 

integrated moving-average (ARFIMA) processes with known cross-correlation, as in 162 

Kristoufek  (20). These series are created as follows: 163 

𝐴 =  ∑ 𝛼𝑛(𝑑)𝜀𝐴,𝑡−𝑛

100

𝑛=0

 164 

𝐵 =  ∑ 𝛼𝑛(𝑑)𝜀𝐵,𝑡−𝑛

100

𝑛=0

 165 

𝜀𝐴 is sampled from a standard normal distribution. In order to inject cross-correlation (see 166 

Appendix for proof) ρ between the two time series, we set 𝜀𝐵 =  𝜌𝜀𝐴 + 𝜀√1 − 𝜌2, with 𝜀 being 167 

sampled from a standard normal distribution. 𝛼𝑛(𝑑) =
𝛤(𝑛+𝑑)

𝛤(𝑛+1)𝛤(𝑑)
, where Γ is the gamma 168 

function. The parameter 𝑑 defines the non-stationarity of the simulated signal; 𝑑 < 0.5 169 

corresponds to stationary time series, 𝑑 ≥ 0.5 corresponds to non-stationary time series. 170 

Higher values of 𝑑 indicate a higher level of non-stationarity.  171 

 We wanted to study the coupling for both stationary and non-stationary time series. So 172 

we employed the same parameters as Kristoufek (20): i) 𝑑 = [0.1,1.4] with increments of 0.1 173 

and ii) 𝜌 = [−0.9,0.9] with increments of 0.1. To demonstrate the benefits of MDC3 in real-174 

life neuronal time series, our simulations consisted of two types. The first type aimed to emulate 175 

EEG/MEG signals with three different lengths: 1000, 5000 & 10000 data points. We assumed 176 

that their sampling rate was 250 Hz, corresponding to 4, 20 & 40 seconds of recordings. MDC3 177 

was calculated for frequencies between 0.5 and 31 Hz with increments of 0.5. In the second 178 

type, we wanted to study how lower sampling rates, seen in fMRI, will affect our methodology. 179 

The created signals consisted of 100, 200 & 500 data points. In this case we assumed that the 180 

sampling rate was 1Hz, meaning that the simulated time series corresponded to 100, 200 and 181 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.16.589689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.16.589689
http://creativecommons.org/licenses/by/4.0/


Multiscale Detrended Cross-Correlation Coefficient 

11 

 

& 500 seconds. MDC3 was calculated for frequencies between 0.01 to 0.12 Hz with increments 182 

of 0.01. In both types, the maximum frequencies were selected so there were at least 8 data 183 

points in every window. We decided to detrend the time series using a second-degree 184 

polynomial, since preliminary analysis showed better results compared to linear detrending. 185 

We ran 1000 simulations for each model.  186 

 We wanted to see how closely the two estimators (MDC3 and rP) are to the real 187 

coupling. For every 𝑑, ρ and signal length we calculated the root mean squared error (RMSE) 188 

of MDC3 and rP. Then, simulations of the same 𝑑 and signal length were grouped together. As 189 

a result, we ended up with 14 pairs (one for each value of d) of 19-points (one for each value 190 

of ρ) distributions, for every signal length (see Figure 4 for a graphical representation of the 191 

distributions). We compared every pair of distributions using a paired t-test or Wilcoxon signed 192 

rank test, depending on the normality of the underlying distributions (evaluated using Lilliefors 193 

test). Finally, Benjamini-Hochberg (BH) correction (23) was used to counteract the effect of 194 

multiple comparisons. Throughout the manuscript a comparison was considered statistically 195 

significant when BH-adjusted p<0.05. 196 

Simulated fMRI 197 

While ARFIMA processes can create signals with known coupling, they do not represent 198 

realistic neuronal time series. For this reason, we decided to estimate the EC of fMRI signals 199 

and contrast it with the directed variant of MDC3. One of the most widely used EC estimators 200 

is dynamic causal modeling (DCM) (24), which estimates EC based on the constraints set by a 201 

SC matrix. Acquisition of both SC matrices (through diffusion tensor imaging) and fMRI is a 202 

lengthy and costly procedure. Thankfully, recent developments in the field of brain simulation 203 

speed up this process. We simulated the fMRI of 100 “subjects” using The Virtual Brain (TVB) 204 

(25,26). Based on the SC matrix of each subject (see next paragraph), we simulated the fMRI 205 
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signal of 68 brain regions – according to the Desikan-Killiany atlas (27) – using the Reduced 206 

Wong Wang (28) neural mass model: 207 

𝑥𝑘 = 𝑤𝐽𝑁𝑆𝑘 + 𝐼𝑜 + 𝐽𝑁𝐺 ∑ 𝐶𝑘𝑗𝑆𝑗

𝑗

 208 

𝐻(𝑥𝑘) =
𝑎𝑥𝑘 − 𝑏

1 − exp [−𝑑(𝑎𝑥𝑘 − 𝑏)]
 209 

𝑆̇𝑘 = −
𝑆𝑘

𝜏𝑠
+ (1 − 𝑆𝑘)𝐻(𝑥𝑘)𝛾 210 

𝐻(𝑥𝑘) and 𝑆𝑘 correspond to the firing rate and synaptic gating variable of the population at the 211 

kth cerebral region, respectively. 𝐺 is a global scaling factor and 𝐶𝑘𝑗 is the structural connection 212 

strength between the kth and jth regions. The description and default values of the rest of 213 

parameters can be found in Table 12 of Sanz-Leon et al. (29).  214 

 The simulated SC matrices were based the real SC matrix retrieved from 215 

https://zenodo.org/record/4263723#.Y7-8Q-zMLMI (found in 216 

“QL_20120814_Connectivity.zip”). The real SC matrix was divided into 4 quadrants. The values 217 

within each quadrant were randomly shuffled. Additionally, 30% of the connections of each 218 

quadrant were changed. Their new value was randomly selected from a normal distribution of 219 

mean and standard deviation based on the SC values of each quadrant. This shuffling and 220 

random allocation of values was also done in the accompanying tract lengths matrix created 221 

after loading “QL_20120814_Connectivity.zip” on TVB. These steps ensured that the 222 

simulated brains were different enough from the template, bust they were still biologically 223 

plausible. We then proceeded with simulating 21 minutes of fMRI time series using the 224 

Reduced Wong Wang model. The selection of appropriate parameters in brain simulations is 225 

crucial. A common practice is to perform a grid search with different combinations of 226 

parameters and compare it to properties of empirical brain activity. We varied G, w and J, while 227 
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using the default values of the rest of the parameters. G was in the [0.1,29.9] range with 228 

increments of 0.1. J was in the [0,1] range with increments of 0.1. Finally, J was in the [0.2609, 229 

0.4609] range with increments of 0.05. We estimated the FC matrix of each simulated fMRI 230 

dataset using rP. We also estimated the FC of the empirical fMRI signal (also retrieved from 231 

https://zenodo.org/record/4263723#.Y7-8Q-zMLMI) using rP. We then compared the 232 

similarities of empirical and simulated FC using Spearman’s correlation. The most realistic 233 

simulation (Spearman’s correlation 0.34) was produced when G=0.2, w=0.1 and J=0.42 while 234 

the rest of the parameters were kept in their default values.  235 

 After obtaining the simulated fMRI signals, we could proceed with the comparison 236 

between MDC3 and rP. While FC is simple to understand and estimate, it is merely a statistical 237 

relationship between signals. On the other hand, DCM’s constraints allow for a depiction of 238 

brain connectivity based on a more detailed network model of the brain. Hence, the EC – as 239 

captured by DCM –was chosen as the ground truth of our comparison. In DCM a realistic SC 240 

connectivity matrix is used as a template. Applying a forward model to the underlying SC can 241 

simulate fMRI signals. A parameter of this forward model is an EC matrix, which can be fine-242 

tuned in order to produce realistic fMRI time series. Investigation of whole-brain networks 243 

with traditional DCM is a time-consuming process, which can be accelerated with regression 244 

dynamic causal modeling (rDCM) (30–32) [available at the Translational Algorithms for 245 

Psychiatry-Advancing Science (TAPAS) toolbox (33)]. rDCM offers a simplified version of 246 

DCM without severe loss in accuracy [for further details please see Frässle et al.]. In order to 247 

study the effect of signal length we analyzed the first 5, 10, 15 and 20 minutes of the simulated 248 

fMRI. This resulted in 12 matrices (4 signal lengths x 3 metrics) (Table 2) for every simulated 249 

brain. Since the EC matrix is not constrained between -1 and 1 as MDC3 and rP, we calculated 250 

the Z-scores of every EC, MDC3 and rP matrix, which we then used for the comparisons. Using 251 

EC as our ground truth, we calculated the RMSE of MDC3 and rP for each simulation. This 252 
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resulted in 8 (2 FC estimators x 4 signal lengths)100-point (100 simulated brains) distributions. 253 

We compared every pair of distributions using a paired t-test or Wilcoxon signed rank test, 254 

depending on the normality of the underlying distributions (evaluated using Lilliefors test). The 255 

4 p values were adjusted using BH correction. MDC3 was calculated for the frequencies 256 

between 0.011 to 0.17 Hz with increments of 0.01. 0.17 Hz was selected as the highest cutoff 257 

so each window during the estimation of MDC3 had 8 datapoints. Second-degree polynomials 258 

were fitted for the detrending in MDC3. 259 

Table 2 || Demonstration of the connectivity matrices used in the analysis of simulated fMRI 260 

signals. Multiscale detrended cross-correlation (MDC3), Pearson’s correlation (rP) and 261 

regression dynamic causal modeling (rDCM) were used to obtain connectivity matrices of the 262 

simulated fMRI signals. In every subject, the matrices were obtained for the first 5, 10, 15 and 263 

20 minutes (Min) of the signal.  264 

5 Min MDC3 10 Min MDC3 15 Min MDC3 20 Min MDC3 

5 Min rDCM 10 Min rDCM 15 Min rDCM 20 Min rDCM 

5 Min rP 10 Min rP 15 Min rP 20 Min rP 

 265 

Empirical Time Series 266 

MEG Dataset 267 

The MEG dataset consisted of eyes closed resting-state recordings of 20 elderly healthy 268 

participants (12 females, aged 71.5 ± 4.03 years), acquired using a 306-channel (102 269 

magnetometers and 204 planar gradiometers) Vectorview MEG system (Elekta AB, 270 

Stockholm, Sweden) placed inside a magnetically shielded room (VacuumSchmelze GmbH, 271 

Hanau, Germany) located at the Laboratory of Cognitive and Computational Neuroscience 272 

(Madrid, Spain). MEG data were acquired with a sampling rate of 1000 Hz and an online [0.1 273 

- 330] Hz anti-alias band-pass filter. All participants provided informed consent. To allow 274 

subject-specific source reconstruction, individual T1-weighted MRI scans were also available 275 

for each participant. MRI images were recorded at the Hospital Universitario Clínico San 276 

Carlos (Madrid, Spain) using a 1.5 T General Electric MRI scanner with a high-resolution 277 
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antenna and a homogenization PURE filter (fast spoiled gradient echo sequence, with 278 

parameters: repetition time/echo time/inversion time = 11.2/4.2/450 ms; flip angle = 12°; slice 279 

thickness = 1 mm; 256×256 matrix; and field of view = 256 mm). 280 

The MEG recordings were preprocessed offline using a tempo-spatial filtering 281 

algorithm (Taulu and Hari 2009) (Maxfilter Software v2.2, correlation limit of 0.9 and 282 

correlation window of 10 s) to eliminate magnetic noises and compensate for head movements 283 

during the recording. The continuous MEG data were imported into MATLAB (R2017b, 284 

Mathworks, Inc.) using the Fieldtrip Toolbox (34) (https://www.fieldtriptoolbox.org/). An 285 

independent component-based algorithm was used to remove the effects of ocular and cardiac 286 

signals from the data, together with external noises. Source reconstruction was performed using 287 

minimum norm estimates (35) with the software Brainstorm (36) 288 

(https://neuroimage.usc.edu/brainstorm/). In order to model the orientation of macrocolumns 289 

of pyramidal neurons the dipole orientations were considered to be normal to the cortical 290 

surface of the participant [see (37)]. Neural time series were finally collapsed to the regions of 291 

interest (ROI) of the Desikan-Killiany atlas (27). The data were band-pass filtered between 0.5 292 

and 45 Hz using FIR filtering. 293 

For every participant we analyzed multiple (ranging from 45 to 61) 4 seconds segments. 294 

We estimated the FC of each segment using MDC3 and rP. Then, we calculated the node 295 

strength of the brain regions by summing up the strength of every incoming and outgoing 296 

connection for every cortical area. Finally, we averaged the node strengths for all segments, so 297 

every participant had one set of node strength values. Again, we employed a series of paired t-298 

tests or Wilcoxon signed rank tests – depending on the normality of the distributions (Lilliefors 299 

test) – to compare the node strengths of the MDC3 and rP created networks. The p-values of 300 

each comparison group were adjusted using BH correction. MDC3 was calculated for the 301 
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frequencies between 0.5 and 45 Hz. Second-degree polynomials were fitted for the detrending 302 

in MDC3.  303 

fMRI Dataset 304 

Finally, we analyzed 767 healthy, young adults (426 females) from the Human Connectome 305 

Project (HCP) (38). The fMRI time series were already preprocessed according to the HCP 306 

standards (39). Details about the participants can be found in the attached CSV file in the 307 

Supplementary Information  (fMRI Subjects Information).  308 

For the FC estimation we used only the first eyes open resting-state period of 14.4 309 

minutes. The dataset had a left-to-right and right-to-left echo-planar imaging (EPI) encoding. 310 

We calculated the FC using MDC3 and rP for both EPI. We then averaged the FC matrices of 311 

the two EPI using Fisher’s z transform, as suggested by Smith et al. (38). This resulted in one 312 

MDC3 and one rP FC matrix per subject. We compared the strength of each connection through 313 

a series of Wilcoxon signed rank tests that were later corrected using BH. MDC3 was calculated 314 

for the frequencies between 0.011 to 0.17 Hz with increments of 0.01. 0.17 Hz was selected as 315 

the highest cutoff, so each window had 8 datapoints. Second degree polynomials were fitted 316 

for the detrending in MDC3. 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 
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Results 325 

Simulated Time Series 326 

As shown in Figure 4 MDC3 is a more accurate estimator of coupling in the simulated 327 

ARFIMA signals in almost every case. Only some small difference can be observed for 328 

stationary signals (d <0.5); but as we transition to non-stationary time series (d ≥0.5), the 329 

RMSE of rP is significantly higher. 330 

 331 

Figure 4 || Root mean squared error (RMSE) of MDC3 and Pearson’s correlation for different levels of non-stationairity (d) 332 
and signal length (panels A-F). We simulated auto-regressive fractionally integrated moving-average (ARFIMA) processes 333 
with varying d, signal length and coupling strength (ρ). ρ was used to estimate the RMSE of MDC3 and Pearson’s correlation. 334 
Pairs of distributions whose difference was statistically significant (Benjamini-Hochberg adjusted p<0.05) are fully colored. 335 

 The same results can be seen in realistic fMRI simulations. As Figure 5 shows, the 336 

RMSE was significantly smaller when MDC3 was used as an FC estimator in all signal lengths. 337 

We also see that as the signal length increases, the RMSE of rP increases while the RMSE of 338 

MDC3 decreases. 339 
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 340 

Figure 5 || Root mean squared error (RMSE) of multiscale detrended cross-correlation coefficient (MDC3) and Pearson’s 341 
correlation, for four different signal lengths (5 minutes, 10 minutes, 15 minutes and 20 minutes). We simulated realistic fMRI 342 
signals using The Virtual Brain. The effective connectivity of the simulated brains – calculated using regression dynamic 343 
causal modeling (rDCM)– was used to estimate the RMSE of MDC3 and Pearson’s correlation. 344 

Neurophysiological Time Series 345 

Figure 6 shows the difference of the node strengths between the MDC3 and rP networks as 346 

estimated using MEG tracings. Significant differences can be seen in 7 channels (10%), where 347 

the rP network had mainly higher node strengths seen by the blue color. 348 

 349 

 350 

 351 

Figure 6 || Difference between the node strengths calculated during eyes closed resting-state magnetoencephalography: 352 
lateral view (up); medial view (down). The colors represent the difference (MDC3- rP) in the node strengths while the numbers 353 
indicate the brain regions whose node strength was significantly different between the two estimators (BH-adjusted 354 
p<0.05). The numbers correspond to the regions of interest as defined in the Desikan-Killiany atlas (27), list 355 
provided in the Supplementary Information  (Additional Analysis). 356 

For the last real-life dataset, we analyzed fMRI recordings from HCP. As Figure 7 357 

shows, the two networks had different connectivity strengths. In some instances, rP found 358 
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higher coupling than MDC3 and in some other cases lower. These observations were validated 359 

statistically, since 97% (69599 out of 71631) of the comparisons were significantly different.  360 

 361 

Figure 7 || Averaged functional connectivity matrices using multiscale detrended-cross correlation coefficient (MDC3), 362 
Pearson’s correlation (rP), and the difference between them (MDC3-rP ) using eyes open resting-state functional magnetic 363 
resonance imaging. 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 
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Discussion 385 

In this study we introduced the statistical metric MDC3 – a weighted average of DCCC – for 386 

estimating coupling in a system. Our simulations with signals of known coupling showed that 387 

MDC3 is a more accurate estimator of the model's coupling parameters than rP. The exemplary 388 

FC analysis of MEG and fMRI data also showed that the use of MDC3 could lead to significant 389 

differences in the connectivity matrices compared to rP.  390 

 We simulated 1000 pairs of time series of different coupling strengths, signal lengths 391 

and degrees of non-stationarity. For each pair we calculated MDC3 and rP. As explained in the 392 

Introduction, and shown in Figure 1, the variance and covariance of stationary signals remain 393 

constant, meaning that MDC3 and rP will be similar. This is not the case for non-stationary 394 

series whose variance and covariance heavily depend on time. Our simulations confirm that, 395 

since the RMSE of MDC3 was significantly smaller in every case, except for fairly stationary 396 

signals (Figure 4). The discrepancy between the two estimators increased greatly with higher 397 

levels of non-stationarity. Similar findings have been reported for DCCC in Kristoufek (20). 398 

We also simulated a series of fMRI signals using TVB. We could not simulate realistic 399 

neuronal time series with known coupling, so we decided to use the EC matrices of the 400 

simulations as ground truth. The results showed that MDC3 is closer to the EC compared to rP 401 

(Figure 5). We also observed that as the length of the signals increased the accuracy of MDC3 402 

increased, contrary to rP. Smith et al. (40) decided to validate FC estimators using the 403 

underlying SC as ground truth. While we considered this approach, we decided to use EC 404 

instead. The choice was based on the two following reasons. Firstly, SC cannot entirely predict 405 

FC (41). Secondly, the lack of negative values in SC would not allow for accurate study of 406 

negatively correlated brain regions. For the sake of completeness, we also compared MDC3 407 

and rP of the simulated fMRI signals using SC as ground truth. This time, rP was found to be a 408 

better estimator, albeit with a narrow margin (see Additional Analysis in Supplementary 409 
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Information ). An interesting byproduct of this analysis was that rP was similar to SC, while 410 

EC and MDC3 were similar to the tract length matrices used for the construction of the 411 

simulations. While this finding is interesting, it is beyond the scope of this study and should be 412 

revised in future studies. The matrices of each simulation can be found in the Supplementary 413 

Information  (TVBMatrices). Finally, we repeated our MDC3 and rP comparisons this time 414 

using the simulations from Smith et al. (40). In the majority of cases MDC3 was more accurate, 415 

especially when EC was used as ground truth. The complete results of the additional analysis 416 

can be found in the Supplementary Information  (Additional Analysis).  417 

 Of course, statistical significance in simulations without real-life benefits would not 418 

warrant the use of MDC3. To demonstrate its advantages, we used MEG and fMRI datasets. 419 

As shown in Figure 6, using MDC3 and rP as FC estimators resulted in significantly different 420 

brain networks. In some cases, the node strengths of the rP networks were higher, while in 421 

others they were lower. After analyzing the FC matrices of the fMRI dataset, we saw that 422 

almost all connections were significantly different between the two matrices (Figure 7). Once 423 

again, some connections were stronger and some weaker when rP was used. A homogenous 424 

overestimation or underestimation would not have been a serious drawback since FC studies 425 

usually rely on relative comparisons and not on the exact values themselves. But it seems that 426 

in some regions rP would give lower values and in others higher, presenting a rather false 427 

picture of the brain network. At a first glance, someone might be dismissive of this, since it is 428 

well known that different estimators can lead to different FC matrices (11–13). This would 429 

have been the case if we had not seen the higher reliability of MDC3 both from a mathematical 430 

standpoint (Methods) and in simulations (Results). We then suggest that MDC3 should be 431 

preferred over rP. Even if MDC3 is computationally more expensive, today's computational 432 

capabilities make the time difference negligible.  433 
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Finally, it should be noted that MDC3 is still a linear FC estimator. Non-linear 434 

estimators like PLV, MI, PLI, and SL still capture dynamics that MDC3 cannot. In spite of that, 435 

we believe that MDC3 is a valuable addition to the FC field due to its ability to capture the sign 436 

of correlation (i.e., correlation vs anticorrelation); something that the aforementioned non-437 

linear estimators cannot do. A common practice in FC studies is the exclusion of 438 

anticorrelations (4). Since the human brain operates with several negative feedback loops, we 439 

believe that it is necessary to study anticorrelation in order to obtain more accurate brain 440 

architectures, as suggested by previous studies (42,43). We decided to explore this further in 441 

the Supplementary Information  (Additional Analysis) using the MEG dataset. Briefly, we 442 

compared the FC matrices as estimated with MDC3 and PLV using two different source 443 

reconstruction pipelines, i.e., with constrained and unconstrained dipoles. The first method 444 

makes it possible to obtain a more realistic phase (and sign) of the reconstructed time series. 445 

This benefit can be overshadowed by the inability of most FC estimators to capture the sign of 446 

coupling, including PLV. As a result, such metrics could mistakenly identify correlation for 447 

anticorrelation and vice versa. As expected, MDC3 detected more differences between the 448 

reconstructions with constrained and unconstrained dipoles than PLV. 449 

DCCC and its extension MDC3 are closely related to the scale-free analysis of signals. 450 

The numerator and denominator of Equation 1 are integral parts of the detrended fluctuation 451 

analysis (44) and detrended cross-correlation analysis (45) analysis, respectively. DCCC has 452 

been incorporated in surrogate testing of fractal (scale-free) coupling already (12,19,46–48). 453 

The main difference between the two methods is the single output of MDC3, as opposed to 454 

scale-specific correlations of DCCC. It is then clear that MDC3 cannot be used in surrogate 455 

testing of fractal FC, since scale-specific estimators are necessary for such analysis. DCCC has 456 

also been employed in multifractal FC (49); where different exponents capture different sizes 457 

of fluctuations. Theoretically, a multifractal MDC3 could be created as well. This is beyond the 458 
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scope of the current study because we focused on improving the interpretability of DCCC. The 459 

calculation of MDC3 using different scaling exponents would add another layer of complexity 460 

to the interpretation of the outputs. Recently, a real-time algorithm for the estimation of DCCC 461 

was presented (50,51), which can be extended for MDC3 as well. This means that MDC3 can 462 

be used in brain-computer interfaces or clinical monitoring of patients, where constant tracking 463 

of network dynamics is needed.  464 

Conclusion 465 

We presented a new estimator of coupling between time series termed multiscale detrended 466 

cross-correlation coefficient. Using simulated data, we showed a higher accuracy over rP. The 467 

differences between the two estimators were made apparent in MEG and fMRI datasets of 468 

healthy populations. Here we explored the benefits of MDC3 only in neuronal time series. We 469 

believe that our new method has the potential to be used in several other disciplines where 470 

linear coupling of non-stationary signals is investigated. Of course, appropriate validation 471 

pipelines specific to each field are recommended before any prior use.  472 

Appendix 473 

Auto-Regressive Fractionally Integrated Moving-Average Processes 474 

Assume two distributions 𝜀𝐴 and 𝜀𝛣. 𝜀𝐴 is a standard normal distribution, meaning E[𝜀𝐴] = 0 475 

and var(𝜀𝐴) = 1. 𝜀𝛣 = 𝜌𝜀𝐴 + 𝜀√1 − 𝜌2, where ε  is also standard normal [i.e. E[ε] = 0 and 476 

var(ε)=1]. The variance of 𝜀𝛣 can be calculated as follows: 477 

var(𝜀𝐵) = 𝑣𝑎𝑟(𝜌𝜀𝐴 + 𝜀√1 − 𝜌2) = 𝑣𝑎𝑟(𝜌𝜀𝐴) + 𝑣𝑎𝑟(𝜀√1 − 𝜌2) = 𝜌2𝑣𝑎𝑟(𝜀𝐴) + (1 −478 

𝜌2)𝑣𝑎𝑟(𝜀) = 𝜌2 + 1 − 𝜌2 = 1 479 

Then the real coupling between the two distributions can be calculated as: 480 
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ρ(𝜀𝐴, 𝜀𝐵) = 
𝑐𝑜𝑣(𝜀𝐴,𝜀𝐵)

√𝑣𝑎𝑟(𝜀𝐴)𝑣𝑎𝑟(𝜀𝐵)
= 𝑐𝑜𝑣(𝜀𝐴, 𝜀𝐵) = 𝐸[𝜀𝐴𝜀𝐵] − 𝐸[𝜀𝐴]𝐸[𝜀𝐵] = 𝐸[𝜀𝐴𝜀𝐵] = 𝐸[𝜌𝜀𝐴

2 +481 

𝜀𝐴𝜀√1 − 𝜌2] =  𝐸[𝜌𝜀𝐴
2] + 𝐸[𝜀𝐴𝜀√1 − 𝜌2] = 𝜌𝐸[𝜀𝐴

2] + √1 − 𝜌2𝐸[𝜀𝐴𝜀] = 𝜌𝐸[𝜀𝐴
2] +482 

√1 − 𝜌2𝐸[𝜀𝐴]𝐸[𝜀] = 𝜌𝐸[𝜀𝐴
2] = 𝜌(𝑣𝑎𝑟(𝜀𝐴) + 𝐸[𝜀𝐴]2) = 𝜌 483 

The two ARFIMA series (𝐴 =  ∑ 𝛼𝑛(𝑑)𝜀𝐴,𝑡−𝑛
100
𝑛=0 , 𝐵 =  ∑ 𝛼𝑛(𝑑)𝜀𝐵,𝑡−𝑛

100
𝑛=0 ) are the 484 

cumulative sums of 𝜀𝐴 and 𝜀𝛣 multiplied by a step-specific weight [(𝛼𝑛(𝑑)]. The only source 485 

of stochasticity of A and B are 𝜀𝐴 and 𝜀𝛣, meaning that the true coupling between A and B is ρ.  486 

Directed MDC3 487 

The difference of the directed variant of MDC3 is that for every detrended signal  𝑋𝑖̂ and 𝑌𝑖̂ the 488 

cross-covariance(𝑋𝑖̂, 𝑌𝑖̂) is estimated, instead of the covariance(𝑋𝑖̂, 𝑌𝑖̂). The maximal covariance 489 

– in absolute terms – for negative lags is used for the DCCC estimation when 𝑋𝑖̂ is leading. 490 

Similarly, the maximal covariance – in absolute terms – for positive lags is used for the DCCC 491 

estimation when 𝑋𝑖̂ is following. 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 
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