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Abstract

The brain consists of a vastly interconnected network of regions, the connectome. By
estimating the statistical interdependence of neurophysiological time series, we can measure
the functional connectivity (FC) of this connectome. Pearson’s correlation (rp) is a common
metric of coupling in FC studies. Yet rp does not account properly for the non-stationarity of
the signals recorded in neuroimaging. In this study, we introduced a novel estimator of coupled
dynamics termed multiscale detrended cross-correlation coefficient (MDCs). Firstly, we
showed that MDC3z had higher accuracy compared to rp using simulated time series with known
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coupling, as well as simulated functional magnetic resonance imaging (fMRI) signals with
known underlying structural connectivity. Next, we computed functional brain networks based
on empirical magnetoencephalography (MEG) and fMRI. We found that by using MDCs we
could construct networks of healthy populations with significantly different properties
compared to rp networks. Based on our results, we believe that MDCs3 is a valid alternative to

re that should be incorporated in future FC studies.

Author Summary

The brain consists of a vastly interconnected network of regions. To estimate the connection
strength of such networks the coupling between different brain regions should be calculated.
This can be achieved by using a series of statistical methods that capture the connection
strength between signals originating across the brain, one of them being Pearson’s correlation
(rp). Despite its benefits, rp is not suitable for realistic estimation of brain network architecture.
In this study, we introduced a novel estimator called multiscale detrended cross-correlation
coefficient (MDCsy). Firstly, we showed that MDC3 was more accurate than rp using simulated
signals with known connection strength, as well as simulated brain activity emerging from
realistic brain simulations. Next, we constructed brain networks based on real-life brain
activity, recorded using two different methodologies. We found that by using MDC3 we could
construct networks of healthy populations with significantly different properties compared to
re networks. Based on our results, we believe that MDCs3 is a valid alternative to rp that should

be incorporated in future studies of brain networks.
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Introduction

Neuroscientific research has undergone a profound transformation in the last 100 years.
Berger’s invention of electroencephalography (EEG) (1) made it possible to record and
evaluate neural activity in a non-invasive manner. Initially, studies relied on univariate (i.e.,
single time series) analysis of the brain dynamics. This started to change towards the end of
the 20th century with the first functional connectivity (FC) studies (2,3). This new field does
not rely only on anatomical connections, it rather studies functional connections that can be
created between directly or indirectly coupled neuronal populations. In more mathematical
terms, the brain regions are considered nodes on a graph, interconnected by edges (4). These

edges are defined by the statistical relationship of the neuronal time series under investigation.

Several different FC estimators have been introduced with Pearson’s correlation (rp)
being one of the first applied in FC studies (2,3). Some drawbacks of this method (e.g.,
unreliable assessment of non-linear relationships) and the growing interest in exploring other
aspects of FC, lead to the introduction of newer methodologies such as phase locking value
(PLV) (5), phase lag index (PLI) (6), synchronization likelihood (SL) (7) and mutual
information (M) (8,9). The use of different FC estimators can greatly influence the topology
of the networks (10-12). Such differences can be especially problematic when non-healthy
populations are being investigated, — e.g., in Alzheimer’s disease patients (13) — complicating
the reproducibility and meta-analysis of studies. It is then important that an informed choice is
made before selecting an FC estimator. Nevertheless, rp is still widely used (14) due to its
simplicity and interpretability. An important advantage of rp is the capacity to identify positive

and negative correlations, which is not always the case with other estimators.

Signals can be divided into two categories: i) stationary and ii) non-stationary. A time
series Xt — where t indicates the discrete time — is completely stationary when the joint

probability distributions of {Xu1 , X2, Xtz ..., X} and {Xu+k , Xeo+k , X3+k ..., Xtn+k} are identical


https://doi.org/10.1101/2024.04.16.589689
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.16.589689; this version posted April 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Multiscale Detrended Cross-Correlation Coefficient

81 for any set of time points t1, t2, t3...,tn and any integer k. While this definition is easily
82  understood, it is rather unrealistic. Hence, a less strict definition for weak stationarity has been
83  used to classify physiological signals. According to this, the mean and variance of a time series
84  remain constant. In line with that, the covariance of two weakly stationary signals will also be
85  constant throughout the propagation of time. On the other hand, non-stationary signals have
86  varying mean and variance. Additionally, the covariance between two non-stationary signals
87  will be time-dependent (15). Figure 1 shows an exemplary case of these weakly-stationary and
88  non-stationary signals. From now on, any reference to stationary signals corresponds weakly-
89  stationary signals. Most biosignals are non-stationary (16). As a result, calculating the rp — a
90 standardized covariance — of two biosignals can be misleading. A solution to this issue was
91  given with the introduction of the detrended cross-correlation coefficient (DCCC) (17). DCCC
92  makes use of the averaged variance and covariance of smaller sections of the signals (see
93  Section “Multiscale Detrended Cross-Correlation Coefficient” below). In this study, we
94  propose an extension of DCCC termed multiscale detrended cross-correlation coefficient
95  (MDCG:y;). Contrary to DCCC, the output of MDCszdoes not depend on the scale (window length)
96  resulting in easier interpretation of the results. To show this, we compared MDC3 to rp using
97  simulated time series with: i) known coupling and ii) known causal interactions [i.e., effective
98  connectivity (EC)]. We also demonstrated the differences between the two estimators in
99  magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI)

100  recordings.
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102 Figure 1 || Example of weakly-stationary and non-stationary signals generated using auto-regressive fractionally integrated
103 moving-average (ARFIMA) processes (see Simulated time series). The mean and variance of weakly-stationary signals remain
104 constant throughout time, while they vary in non-stationary signals.

105 Methods

106  Multiscale Detrended Cross-Correlation Coefficient

107  Before introducing MDC3z we briefly describe DCCC (17), upon which MDCs3 is based. DCCC
108 was introduced as a more accurate coupling estimator between non-stationary time series.
109 DCCC is calculated for several scales (s) (or window lengths) as follows. For every scale
110  (window length), the two signals X and Y are divided into N non-overlapping windows of length
111 s. Preliminary analysis with 50% overlapping windows did not show significant benefits
112 compared to non-overlapping windows. For the sake of computational speed, non-overlapping
113 windows were chosen. In every window the linear trend is removed, leaving the detrended
114  signals X; and Y;, where i is the index of the window. Detrending is performed in order to
115  counteract (at least partially) any spurious coupling emerging due to autocorrelation effects
116  (18). Then, the covariance between the two signals and the variances of the two signals are

117  estimated for every window. Finally, the ratio of average covariance and the square root of the
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product of average variances is calculated. Equation 1 provides the mathematical formulation

of these steps.

1¢N
i—1 COVy .y
NZl_l X7

DCCC(s) =

(1)

1N _1¢N N
[FE varg 35X, varg,

DCCC is reminiscent of rp since both estimators range between -1 and 1 with negative
values corresponding to anticorrelation and positive values corresponding to correlation (19).
In 2014 Kristoufek showed that DCCC was more accurate than rp (20) in synthetic non-
stationary signals of known coupling. These results warrant the use of DCCC in FC studies,
since neuronal time series are non-stationary (16). Unfortunately, the use of a multitude of
scales (window lengths) makes it hard to interpret. Figure 2 shows a case where different scales
(window lengths) result in different coupling estimation, sometimes even with a different sign.
Avre the two signals correlated or anticorrelated and to what extent? It is not possible to draw a
clear conclusion. We believe that MDC3 could offer a mathematically sound solution to this

problem.
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133 (window lengths).

134 The estimation of MDC; starts by calculating DCCC for different scales (window
135 lengths). To avoid any arbitrary choice of scales (window lengths), we define frequencies (f)
136  for which we would like to study the coupling of the time series. These frequencies can be
137  converted to scales (window lengths) using the sampling rate (SR) of the signals (s=SR/f). First
138 the DCCC for every frequency is calculated. Then, the two signals are detrended — in this case
139 as a whole — and their cross-spectral density is estimated. We finally calculate the weighted

140 average of DCCC, based on the relative power of each frequency in the cross-spectral density.

141 The distribution of DCCC — similarly to rp‘s distribution — can be skewed, so DCCC values are
142  normalized using Fisher’s z transform (21,22) before the calculation of the weighted average.
143  Details about MDC3 can be found in Figure 3 and the pseudo-code in Table 1. In this form

144 MDCs; cannot construct directed graphs, i.e. the FC matrix obtained is symmetric. Using cross-
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145  covariance we can extend MDCs and create directed graphs. Details about this directed variant
146  can be found in the Appendix. MATLAB, Python, and R versions of MDC3; are available at:

147  https://github.com/BrainModes/mdc3 (The code will be made available upon the acceptance

148  of the manuscript).

149  Table 1 || Multiscale detrended cross-correlation coefficient (MDCs) pseudo-code

INPUTS: time series X; time series Y; minimum frequency; maximum frequency; frequency
step; sampling rate; detrending degree

frequencies = ([minimum frequency, maximum frequency], increment = frequency step)

scales = sampling rate / frequencies

for every window length

for every non-overlapping window
detrend (window of time series X, window of time series Y, degree = detrending degree)
covariance XY (window of time series X, window of time series Y)
variance X (window of time series X )
variance Y (window of time series Y)

dccc = mean (covariance XY) / sgrt([mean (variance X)*mean (variance Y)])

[detrended X, detrended Y] = detrend (time series X, time series Y, degree = detrending degree)
power of frequencies = cross-spectral density (detrended X, detrended Y)

weights = power of each frequency / sum(power of frequencies)

MDC3= tanh {sum [tanh-1 (dccc)*weights]}

OUTPUT: MDC3
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Figure 3 || Demonstration of multiscale detrended cross-correlation coefficient (MDC3) using a 4 seconds-long pair of MEG

152 signals with a sampling rate of 1000 Hz. A: The two signals (green and purple) are divided into smaller non-overlapping
153 windows of length s, in this example s=500. B: Each window is detrended. C: The variances (upper panel) and covariance
154 (lower panel) are calculated for every window. D: The detrended cross-correlation coefficient (DCCC) is estimated for several
155 scales (window lengths). The black bar is the DCCC when s=500. E: The cross-spectral density of the two time series is
156 calculated. The red asterisks correspond to the frequencies used for the estimation of DCCC, while the blue disk corresponds
157 to 2Hz (i.e., s=500). MDCs; is calculated by taking the weighted average of DCCC, where the weight of each frequency is
158 defined by the relative proportion of its power to the total cross-spectral power.
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159  Simulated Time Series
160 ARFIMA Processes
161  In order to validate the efficacy of MDC3 we simulated pairs of auto-regressive fractionally
162 integrated moving-average (ARFIMA) processes with known cross-correlation, as in

163  Kiristoufek (20). These series are created as follows:

100

164 A= zan(d)sA,t_n

n=0

100

165 B = Z tn(d)es tn

n=0

166 ¢4 is sampled from a standard normal distribution. In order to inject cross-correlation (see

167  Appendix for proof) p between the two time series, we set eg = pey + &4/ 1 — p?, with & being

r(n+d)

168  sampled from a standard normal distribution. a,(d) = D@’

where I' is the gamma

169  function. The parameter d defines the non-stationarity of the simulated signal; d < 0.5
170  corresponds to stationary time series, d = 0.5 corresponds to non-stationary time series.

171 Higher values of d indicate a higher level of non-stationarity.

172 We wanted to study the coupling for both stationary and non-stationary time series. So
173 we employed the same parameters as Kristoufek (20): 1) d = [0.1,1.4] with increments of 0.1
174 and ii) p = [—0.9,0.9] with increments of 0.1. To demonstrate the benefits of MDC3 in real-
175  life neuronal time series, our simulations consisted of two types. The first type aimed to emulate
176  EEG/MEG signals with three different lengths: 1000, 5000 & 10000 data points. We assumed
177  that their sampling rate was 250 Hz, corresponding to 4, 20 & 40 seconds of recordings. MDCs3
178  was calculated for frequencies between 0.5 and 31 Hz with increments of 0.5. In the second
179  type, we wanted to study how lower sampling rates, seen in fMRI, will affect our methodology.
180  The created signals consisted of 100, 200 & 500 data points. In this case we assumed that the

181  sampling rate was 1Hz, meaning that the simulated time series corresponded to 100, 200 and

10
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182 & 500 seconds. MDC3z was calculated for frequencies between 0.01 to 0.12 Hz with increments
183  of 0.01. In both types, the maximum frequencies were selected so there were at least 8 data
184  points in every window. We decided to detrend the time series using a second-degree
185  polynomial, since preliminary analysis showed better results compared to linear detrending.

186  We ran 1000 simulations for each model.

187 We wanted to see how closely the two estimators (MDC3z and rp) are to the real
188  coupling. For every d, p and signal length we calculated the root mean squared error (RMSE)
189  of MDCsz and rp. Then, simulations of the same d and signal length were grouped together. As
190  aresult, we ended up with 14 pairs (one for each value of d) of 19-points (one for each value
191  of p) distributions, for every signal length (see Figure 4 for a graphical representation of the
192  distributions). We compared every pair of distributions using a paired t-test or Wilcoxon signed
193  rank test, depending on the normality of the underlying distributions (evaluated using Lilliefors
194  test). Finally, Benjamini-Hochberg (BH) correction (23) was used to counteract the effect of
195  multiple comparisons. Throughout the manuscript a comparison was considered statistically

196  significant when BH-adjusted p<0.05.

197  Simulated fMRI

198  While ARFIMA processes can create signals with known coupling, they do not represent
199 realistic neuronal time series. For this reason, we decided to estimate the EC of fMRI signals
200  and contrast it with the directed variant of MDCs. One of the most widely used EC estimators
201 is dynamic causal modeling (DCM) (24), which estimates EC based on the constraints set by a
202  SC matrix. Acquisition of both SC matrices (through diffusion tensor imaging) and fMRI is a
203  lengthy and costly procedure. Thankfully, recent developments in the field of brain simulation
204  speed up this process. We simulated the fMRI of 100 “subjects” using The Virtual Brain (TVB)

205  (25,26). Based on the SC matrix of each subject (see next paragraph), we simulated the fMRI

11
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206  signal of 68 brain regions — according to the Desikan-Killiany atlas (27) — using the Reduced

207  Wong Wang (28) neural mass model:

208 Xk :W]NSk+IO +]NGZCI€]S]
J
209 H(xy) = axi —b
(i) = 1 —exp [—d(ax, — b)]

. S
210 Se=— T—" + (1 - SOH®Y

N

211  H(xy) and Sj correspond to the firing rate and synaptic gating variable of the population at the
212 k™ cerebral region, respectively. G is a global scaling factor and Cy; is the structural connection
213  strength between the k™ and j" regions. The description and default values of the rest of

214 parameters can be found in Table 12 of Sanz-Leon et al. (29).

215 The simulated SC matrices were based the real SC matrix retrieved from

216  https://zenodo.org/record/4263723#.Y7-8Q-zMLMI (found in

217  “QL_20120814_Connectivity.zip”). The real SC matrix was divided into 4 quadrants. The values
218  within each quadrant were randomly shuffled. Additionally, 30% of the connections of each
219  quadrant were changed. Their new value was randomly selected from a normal distribution of
220 mean and standard deviation based on the SC values of each quadrant. This shuffling and
221  random allocation of values was also done in the accompanying tract lengths matrix created
222  after loading “QL 20120814 Connectivity.zip” on TVB. These steps ensured that the
223  simulated brains were different enough from the template, bust they were still biologically
224  plausible. We then proceeded with simulating 21 minutes of fMRI time series using the
225  Reduced Wong Wang model. The selection of appropriate parameters in brain simulations is
226  crucial. A common practice is to perform a grid search with different combinations of

227  parameters and compare it to properties of empirical brain activity. We varied G, w and J, while

12
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228  using the default values of the rest of the parameters. G was in the [0.1,29.9] range with
229  increments of 0.1. J was in the [0,1] range with increments of 0.1. Finally, J was in the [0.2609,
230  0.4609] range with increments of 0.05. We estimated the FC matrix of each simulated fMRI
231  dataset using rp. We also estimated the FC of the empirical fMRI signal (also retrieved from

232  https://zenodo.org/record/4263723#.Y7-8Q-zMLMI) using rp. We then compared the

233 similarities of empirical and simulated FC using Spearman’s correlation. The most realistic
234  simulation (Spearman’s correlation 0.34) was produced when G=0.2, w=0.1 and J=0.42 while

235  the rest of the parameters were kept in their default values.

236 After obtaining the simulated fMRI signals, we could proceed with the comparison
237  between MDCs and rp. While FC is simple to understand and estimate, it is merely a statistical
238  relationship between signals. On the other hand, DCM’s constraints allow for a depiction of
239  brain connectivity based on a more detailed network model of the brain. Hence, the EC — as
240  captured by DCM —was chosen as the ground truth of our comparison. In DCM a realistic SC
241  connectivity matrix is used as a template. Applying a forward model to the underlying SC can
242  simulate fMRI signals. A parameter of this forward model is an EC matrix, which can be fine-
243  tuned in order to produce realistic fMRI time series. Investigation of whole-brain networks
244 with traditional DCM is a time-consuming process, which can be accelerated with regression
245  dynamic causal modeling (rDCM) (30-32) [available at the Translational Algorithms for
246  Psychiatry-Advancing Science (TAPAS) toolbox (33)]. rDCM offers a simplified version of
247  DCM without severe loss in accuracy [for further details please see Fréssle et al.]. In order to
248  study the effect of signal length we analyzed the first 5, 10, 15 and 20 minutes of the simulated
249  fMRI. This resulted in 12 matrices (4 signal lengths x 3 metrics) (Table 2) for every simulated
250  brain. Since the EC matrix is not constrained between -1 and 1 as MDC3z and rp, we calculated
251  the Z-scores of every EC, MDC3z and rp matrix, which we then used for the comparisons. Using

252  EC as our ground truth, we calculated the RMSE of MDCsz and rp for each simulation. This
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253  resulted in 8 (2 FC estimators x 4 signal lengths)100-point (100 simulated brains) distributions.
254  We compared every pair of distributions using a paired t-test or Wilcoxon signed rank test,
255  depending on the normality of the underlying distributions (evaluated using Lilliefors test). The
256 4 p values were adjusted using BH correction. MDC3z was calculated for the frequencies
257  between 0.011 to 0.17 Hz with increments of 0.01. 0.17 Hz was selected as the highest cutoff
258  so each window during the estimation of MDC3 had 8 datapoints. Second-degree polynomials

259  were fitted for the detrending in MDC3.

260  Table 2 || Demonstration of the connectivity matrices used in the analysis of simulated fMRI
261  signals. Multiscale detrended cross-correlation (MDCs), Pearson’s correlation (rp) and
262  regression dynamic causal modeling (rDCM) were used to obtain connectivity matrices of the
263  simulated fMRI signals. In every subject, the matrices were obtained for the first 5, 10, 15 and
264 20 minutes (Min) of the signal.

5 Min MDC3;3 10 Min MDCs3 15 Min MDC3 20 Min MDC3;
5 Min rDCM 10 Min rDCM 15 Min rDCM 20 Min rDCM
5 Minrp 10 Min rp 15 Min rp 20 Min rp

265
266  Empirical Time Series
267  MEG Dataset

268 The MEG dataset consisted of eyes closed resting-state recordings of 20 elderly healthy
269  participants (12 females, aged 71.5 = 4.03 years), acquired using a 306-channel (102
270  magnetometers and 204 planar gradiometers) Vectorview MEG system (Elekta AB,
271  Stockholm, Sweden) placed inside a magnetically shielded room (VacuumSchmelze GmbH,
272  Hanau, Germany) located at the Laboratory of Cognitive and Computational Neuroscience
273  (Madrid, Spain). MEG data were acquired with a sampling rate of 1000 Hz and an online [0.1
274 - 330] Hz anti-alias band-pass filter. All participants provided informed consent. To allow
275  subject-specific source reconstruction, individual T1-weighted MRI scans were also available
276  for each participant. MRI images were recorded at the Hospital Universitario Clinico San
277  Carlos (Madrid, Spain) using a 1.5 T General Electric MRI scanner with a high-resolution
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278 antenna and a homogenization PURE filter (fast spoiled gradient echo sequence, with
279  parameters: repetition time/echo time/inversion time = 11.2/4.2/450 ms; flip angle = 12°; slice

280  thickness = 1 mm; 256x256 matrix; and field of view = 256 mm).

281 The MEG recordings were preprocessed offline using a tempo-spatial filtering
282  algorithm (Taulu and Hari 2009) (Maxfilter Software v2.2, correlation limit of 0.9 and
283  correlation window of 10 s) to eliminate magnetic noises and compensate for head movements
284  during the recording. The continuous MEG data were imported into MATLAB (R2017b,
285  Mathworks, Inc.) using the Fieldtrip Toolbox (34) (https://www.fieldtriptoolbox.org/). An
286  independent component-based algorithm was used to remove the effects of ocular and cardiac
287  signals from the data, together with external noises. Source reconstruction was performed using
288 minimum  norm  estimates (35) with the  software  Brainstorm  (36)

289  (https://neuroimage.usc.edu/brainstorm/). In order to model the orientation of macrocolumns

290  of pyramidal neurons the dipole orientations were considered to be normal to the cortical
291  surface of the participant [see (37)]. Neural time series were finally collapsed to the regions of
292 interest (ROI) of the Desikan-Killiany atlas (27). The data were band-pass filtered between 0.5

293  and 45 Hz using FIR filtering.

294 For every participant we analyzed multiple (ranging from 45 to 61) 4 seconds segments.
295  We estimated the FC of each segment using MDCs and rp. Then, we calculated the node
296  strength of the brain regions by summing up the strength of every incoming and outgoing
297  connection for every cortical area. Finally, we averaged the node strengths for all segments, so
298  every participant had one set of node strength values. Again, we employed a series of paired t-
299  tests or Wilcoxon signed rank tests — depending on the normality of the distributions (Lilliefors
300 test) — to compare the node strengths of the MDCs and rp created networks. The p-values of

301 each comparison group were adjusted using BH correction. MDC3s was calculated for the
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302  frequencies between 0.5 and 45 Hz. Second-degree polynomials were fitted for the detrending

303 in MDCa.

304 fMRI Dataset

305 Finally, we analyzed 767 healthy, young adults (426 females) from the Human Connectome
306  Project (HCP) (38). The fMRI time series were already preprocessed according to the HCP
307  standards (39). Details about the participants can be found in the attached CSV file in the

308  Supplementary Information (fMRI Subjects Information).

309 For the FC estimation we used only the first eyes open resting-state period of 14.4
310  minutes. The dataset had a left-to-right and right-to-left echo-planar imaging (EPI) encoding.
311  We calculated the FC using MDCs and rp for both EPI. We then averaged the FC matrices of
312  the two EPI using Fisher’s z transform, as suggested by Smith et al. (38). This resulted in one
313  MDCsand one rp FC matrix per subject. We compared the strength of each connection through
314  aseries of Wilcoxon signed rank tests that were later corrected using BH. MDC3 was calculated
315  for the frequencies between 0.011 to 0.17 Hz with increments of 0.01. 0.17 Hz was selected as
316  the highest cutoff, so each window had 8 datapoints. Second degree polynomials were fitted

317  for the detrending in MDC3.

318
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Results
Simulated Time Series

As shown in Figure 4 MDCs is a more accurate estimator of coupling in the simulated

ARFIMA signals in almost every case. Only some small difference can be observed for
stationary signals (d <0.5); but as we transition to non-stationary time series (d >0.5), the
RMSE of rp is significantly higher.
A Datapoints: 100 Datapoints: 500 D Datapoints: 1000
MH”H !”HH” ;IHMI
mmnl i” m.mﬂ" ll
B Datapoints: 200 Datapoints: 5000 F Datapoints: 10000
mnl ‘ ” ll‘ mndil H
0102 03 04 05 06 0.7 (JB 09 1 11121314 0.1 02 03 04 0506 07dﬂB 09 1 11121314 01020304 0506 (S?dOB 09 1 11121314 -MDC5.Pearson'sCorrelanon

Figure 4 || Root mean squared error (RMSE) of MDCs and Pearson’s correlation for different levels of non-stationairity (d)
and signal length (panels A-F). We simulated auto-regressive fractionally integrated moving-average (ARFIMA) processes
with varying d, signal length and coupling strength (p). p was used to estimate the RMSE of MDC3 and Pearson’s correlation.
Pairs of distributions whose difference was statistically significant (Benjamini-Hochberg adjusted p<0.05) are fully colored.

The same results can be seen in realistic fMRI simulations. As Figure 5 shows, the
RMSE was significantly smaller when MDCs was used as an FC estimator in all signal lengths.
We also see that as the signal length increases, the RMSE of rp increases while the RMSE of

MDC3 decreases.
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341  Figure 5 || Root mean squared error (RMSE) of multiscale detrended cross-correlation coefficient (MDC3) and Pearson’s
342 correlation, for four different signal lengths (5 minutes, 10 minutes, 15 minutes and 20 minutes). We simulated realistic fMRI
343 signals using The Virtual Brain. The effective connectivity of the simulated brains — calculated using regression dynamic
344  causal modeling (rDCM)—was used to estimate the RMSE of MDC3 and Pearson’s correlation.

345 Neurophysiological Time Series
346  Figure 6 shows the difference of the node strengths between the MDCs and rp networks as

347  estimated using MEG tracings. Significant differences can be seen in 7 channels (10%), where

348  the rp network had mainly higher node strengths seen by the blue color.

349

-0.1

350
351
352 Figure 6 | Difference between the node strengths calculated during eyes closed resting-state magnetoencephalography:
353 lateral view (up); medial view (down). The colors represent the difference (MDCs- rp) in the node strengths while the numbers
354 indicate the brain regions whose node strength was significantly different between the two estimators (BH-adjusted

355  p<0.05). The numbers correspond to the regions of interest as defined in the Desikan-Killiany atlas (27), list
356  provided in the Supplementary Information (Additional Analysis).

357 For the last real-life dataset, we analyzed fMRI recordings from HCP. As Figure 7

358  shows, the two networks had different connectivity strengths. In some instances, rp found
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higher coupling than MDC3z and in some other cases lower. These observations were validated

statistically, since 97% (69599 out of 71631) of the comparisons were significantly different.

Lu[2(5-8

e

0.2

-0.2
Figure 7 || Averaged functional connectivity matrices using multiscale detrended-cross correlation coefficient (MDCs),

Pearson’s correlation (re), and the difference between them (MDCs-rp ) using eyes open resting-state functional magnetic
resonance imaging.
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385 Discussion
386 In this study we introduced the statistical metric MDCz — a weighted average of DCCC — for
387  estimating coupling in a system. Our simulations with signals of known coupling showed that
388  MDC; is a more accurate estimator of the model's coupling parameters than rp. The exemplary
389  FC analysis of MEG and fMRI data also showed that the use of MDC3 could lead to significant

390 differences in the connectivity matrices compared to re.

391 We simulated 1000 pairs of time series of different coupling strengths, signal lengths
392  and degrees of non-stationarity. For each pair we calculated MDC3 and rp. As explained in the
393 Introduction, and shown in Figure 1, the variance and covariance of stationary signals remain
394  constant, meaning that MDCsz and rp will be similar. This is not the case for non-stationary
395  series whose variance and covariance heavily depend on time. Our simulations confirm that,
396  since the RMSE of MDCs was significantly smaller in every case, except for fairly stationary
397  signals (Figure 4). The discrepancy between the two estimators increased greatly with higher
398 levels of non-stationarity. Similar findings have been reported for DCCC in Kristoufek (20).
399  We also simulated a series of fMRI signals using TVB. We could not simulate realistic
400 neuronal time series with known coupling, so we decided to use the EC matrices of the
401  simulations as ground truth. The results showed that MDCs3 is closer to the EC compared to rp
402  (Figure 5). We also observed that as the length of the signals increased the accuracy of MDC3
403  increased, contrary to rp. Smith et al. (40) decided to validate FC estimators using the
404  underlying SC as ground truth. While we considered this approach, we decided to use EC
405 instead. The choice was based on the two following reasons. Firstly, SC cannot entirely predict
406  FC (41). Secondly, the lack of negative values in SC would not allow for accurate study of
407  negatively correlated brain regions. For the sake of completeness, we also compared MDCs3
408  and rp of the simulated fMRI signals using SC as ground truth. This time, rp was found to be a

409  better estimator, albeit with a narrow margin (see Additional Analysis in Supplementary
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410 Information ). An interesting byproduct of this analysis was that rp was similar to SC, while
411 EC and MDC3 were similar to the tract length matrices used for the construction of the
412  simulations. While this finding is interesting, it is beyond the scope of this study and should be
413  revised in future studies. The matrices of each simulation can be found in the Supplementary
414  Information (TVBMatrices). Finally, we repeated our MDC3 and rp comparisons this time
415  using the simulations from Smith et al. (40). In the majority of cases MDCz was more accurate,
416  especially when EC was used as ground truth. The complete results of the additional analysis

417  can be found in the Supplementary Information (Additional Analysis).

418 Of course, statistical significance in simulations without real-life benefits would not
419  warrant the use of MDCs. To demonstrate its advantages, we used MEG and fMRI datasets.
420  As shown in Figure 6, using MDCs and rp as FC estimators resulted in significantly different
421  brain networks. In some cases, the node strengths of the rp networks were higher, while in
422  others they were lower. After analyzing the FC matrices of the fMRI dataset, we saw that
423  almost all connections were significantly different between the two matrices (Figure 7). Once
424 again, some connections were stronger and some weaker when rp was used. A homogenous
425  overestimation or underestimation would not have been a serious drawback since FC studies
426  usually rely on relative comparisons and not on the exact values themselves. But it seems that
427  in some regions rp would give lower values and in others higher, presenting a rather false
428  picture of the brain network. At a first glance, someone might be dismissive of this, since it is
429  well known that different estimators can lead to different FC matrices (11-13). This would
430  have been the case if we had not seen the higher reliability of MDC3 both from a mathematical
431  standpoint (Methods) and in simulations (Results). We then suggest that MDC3 should be
432  preferred over rp. Even if MDCs is computationally more expensive, today's computational

433  capabilities make the time difference negligible.
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434 Finally, it should be noted that MDCs is still a linear FC estimator. Non-linear
435  estimators like PLV, MI, PLI, and SL still capture dynamics that MDC3 cannot. In spite of that,
436  we believe that MDCs is a valuable addition to the FC field due to its ability to capture the sign
437  of correlation (i.e., correlation vs anticorrelation); something that the aforementioned non-
438 linear estimators cannot do. A common practice in FC studies is the exclusion of
439 anticorrelations (4). Since the human brain operates with several negative feedback loops, we
440  believe that it is necessary to study anticorrelation in order to obtain more accurate brain
441  architectures, as suggested by previous studies (42,43). We decided to explore this further in
442  the Supplementary Information (Additional Analysis) using the MEG dataset. Briefly, we
443  compared the FC matrices as estimated with MDCs and PLV using two different source
444 reconstruction pipelines, i.e., with constrained and unconstrained dipoles. The first method
445  makes it possible to obtain a more realistic phase (and sign) of the reconstructed time series.
446  This benefit can be overshadowed by the inability of most FC estimators to capture the sign of
447  coupling, including PLV. As a result, such metrics could mistakenly identify correlation for
448  anticorrelation and vice versa. As expected, MDC3 detected more differences between the

449  reconstructions with constrained and unconstrained dipoles than PLV.

450 DCCC and its extension MDC3 are closely related to the scale-free analysis of signals.
451  The numerator and denominator of Equation 1 are integral parts of the detrended fluctuation
452  analysis (44) and detrended cross-correlation analysis (45) analysis, respectively. DCCC has
453  been incorporated in surrogate testing of fractal (scale-free) coupling already (12,19,46-48).
454 The main difference between the two methods is the single output of MDCs3, as opposed to
455  scale-specific correlations of DCCC. It is then clear that MDC3z cannot be used in surrogate
456  testing of fractal FC, since scale-specific estimators are necessary for such analysis. DCCC has
457  also been employed in multifractal FC (49); where different exponents capture different sizes

458  of fluctuations. Theoretically, a multifractal MDCs3 could be created as well. This is beyond the
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459  scope of the current study because we focused on improving the interpretability of DCCC. The
460 calculation of MDCs3 using different scaling exponents would add another layer of complexity
461  tothe interpretation of the outputs. Recently, a real-time algorithm for the estimation of DCCC
462  was presented (50,51), which can be extended for MDC3 as well. This means that MDC3 can
463  be used in brain-computer interfaces or clinical monitoring of patients, where constant tracking

464  of network dynamics is needed.

465 Conclusion
466  We presented a new estimator of coupling between time series termed multiscale detrended

467  cross-correlation coefficient. Using simulated data, we showed a higher accuracy over rp. The
468  differences between the two estimators were made apparent in MEG and fMRI datasets of
469  healthy populations. Here we explored the benefits of MDC3 only in neuronal time series. We
470  believe that our new method has the potential to be used in several other disciplines where
471  linear coupling of non-stationary signals is investigated. Of course, appropriate validation

472  pipelines specific to each field are recommended before any prior use.

473 Appendix

474  Auto-Regressive Fractionally Integrated Moving-Average Processes

475  Assume two distributions ¢4 and €5. €, is a standard normal distribution, meaning E[e,] =0

476  and var(gy) = 1. g = pey + €4/ 1 — p?, where ¢ is also standard normal [i.e. E[¢] = 0 and

477  var(g)=1]. The variance of €5 can be calculated as follows:

478  var(eg) = var(pe, + ey/1 — p2) = var(pe,) + var(ey1 — p2) = p?var(ey) + (1 —

479  pHvar(e) =p?+1-p?=1

480  Then the real coupling between the two distributions can be calculated as:

23


https://doi.org/10.1101/2024.04.16.589689
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.16.589689; this version posted April 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Multiscale Detrended Cross-Correlation Coefficient

cov(eg,€B)

481  p(ey, ) = Tvareavaren) = cov(ey, ep) = Elegep] — EleqlElep] = Eleqep] = E[PSAZ +

482 g1 — p?| = E|pe,®] + E[eaey/1 — p?] = pE[ea?] + /1 — p2E[e4e] = pE[e,?] +
483 J1-— Ele] = pEles®] = p(var(g,) + E[4]?) = p

484 The two ARFIMA series (A = Y18 a,(d)egs—n,B = XiX an(d)eg,—n) are the
485  cumulative sums of g4 and ez multiplied by a step-specific weight [(a,,(d)]. The only source
486  of stochasticity of A and B are ¢, and 5, meaning that the true coupling between A and B is p.
487  Directed MDC3

488  The difference of the directed variant of MDCjsis that for every detrended signal X, and Y, the
489  cross-covariance(X,, ¥;) is estimated, instead of the covariance(X,, ¥;). The maximal covariance
490  — in absolute terms — for negative lags is used for the DCCC estimation when X, is leading.
491  Similarly, the maximal covariance — in absolute terms — for positive lags is used for the DCCC

492  estimation when X, is following.
493
494
495
496
497
498
499

500

24


https://doi.org/10.1101/2024.04.16.589689
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.16.589689; this version posted April 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Multiscale Detrended Cross-Correlation Coefficient

501 References
502 1. Berger H. Uber das Elektrenkephalogramm des Menschen (On the human elec-

503 troencephalogram). Arch F Psychiatr U Nervenkrankh. 1929;87(1875):527-70.

504 2. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor
505 cortex of resting human brain using echo-planar mri. Magn Reson Med. 1995
506 Oct;34(4):537-41.

507 3. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Functional Connectivity: The Principal-
508 Component Analysis of Large (PET) Data Sets. J Cereb Blood Flow Metab. 1993 Jan
509 29;13(1):5-14.

510 4. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and
511 interpretations. Neurolmage. 2010;52(3):1059-609.

512 5. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain
513 signals. Hum Brain Mapp. 1999;8(4):194-208.

514 6. Stam CJ, Nolte G, Daffertshofer A. Phase lag index: Assessment of functional connectivity
515 from multi channel EEG and MEG with diminished bias from common sources. Hum Brain
516 Mapp. 2007 Nov;28(11):1178-93.

517 7. Stam CJ, Van Dijk BW. Synchronization likelihood: An unbiased measure of generalized
518 synchronization in multivariate data sets. Phys Nonlinear Phenom. 2002;163(3—4):236-51.

519 8. vanden Heuvel MP, Fornito A. Brain Networks in Schizophrenia. Neuropsychol Rev. 2014
520 Mar 6;24(1):32-48.

521 9. Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: Detecting and
522 evaluating dependencies between variables. Bioinformatics. 2002 Oct 1;18(Suppl
523 2):S231-40.

524  10. Lindquist M. Neuroimaging results altered by varying analysis pipelines. Nature. 2020 Jun
525 20;582(7810):36-7.

526  11. Mukli P, Nagy Z, Racz FS, Portoro I, Hartmann A, Stylianou O, et al. Two-Tiered

527 Response of Cardiorespiratory-Cerebrovascular Network to Orthostatic Challenge. Front
528 Physiol [Internet]. 2021 Mar 2;12. Available from:
529 https://www.frontiersin.org/articles/10.3389/fphys.2021.622569/full

530 12. Stylianou O, Racz FS, Eke A, Mukli P. Scale-Free Coupled Dynamics in Brain Networks
531 Captured by Bivariate Focus-Based Multifractal Analysis. Front Physiol. 2021 Feb
532 3;11(February):1-14.

533 13. Jalili M. Functional Brain Networks: Does the Choice of Dependency Estimator and
534 Binarization Method Matter? Sci Rep. 2016 Sep 15;6(1):29780.

535 14. Fornito A, Zalesky A, Bullmore ET, editors. Chapter 1 - An Introduction to Brain
536 Networks. In: Fundamentals of Brain Network Analysis [Internet]. San Diego: Academic
537 Press; 2016  [cited 2023 May 15]. p. 1-35  Available from:
538 https://www.sciencedirect.com/science/article/pii/B9780124079083000017

25


https://doi.org/10.1101/2024.04.16.589689
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.16.589689; this version posted April 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Multiscale Detrended Cross-Correlation Coefficient

539  15. Priestley MB. Non-linear and non-stationary time series analysis [Internet]. London:

540 Academic  Press. 1988  [cited 2023  Jun  21].  Available  from:
541 https://ui.adsabs.harvard.edu/abs/1988nlIns.book.....P

542  16. Semmlow J. Chapter 10 - Stochastic, Nonstationary, and Nonlinear Systems and Signals.
543 In: Semmlow J, editor. Circuits, Signals and Systems for Bioengineers (Third Edition)
544 [Internet]. Academic Press; 2018 [cited 2023 Jun 21]. p. 449-89. (Biomedical
545 Engineering). Available from:
546 https://lwww.sciencedirect.com/science/article/pii/B9780128093955000102

547  17. Zebende GF. DCCA cross-correlation coefficient: Quantifying level of cross-correlation.
548 Phys Stat Mech Its Appl. 2011 Feb;390(4):614-8.

549  18. Horvatic D, Stanley HE, Podobnik B. Detrended cross-correlation analysis for non-
550 stationary time series with periodic trends. EPL Europhys Lett. 2011 Apr 1;94(1):18007.

551  19. Podobnik B, Jiang ZQ, Zhou WX, Stanley HE. Statistical tests for power-law cross-
552 correlated processes. Phys Rev E. 2011 Dec 22;84(6):066118.

553  20. Kristoufek L. Measuring correlations between non-stationary series with DCCA
554 coefficient. Phys Stat Mech Its Appl. 2014 May;402:291-8.

555  21. Alexander RA. A note on averaging correlations. Bull Psychon Soc. 1990 Oct 5;28(4):335—
556 6.

557  22. Corey DM, Dunlap WP, Burke MJ. Averaging correlations: Expected values and bias in
558 combined pearson rs and fisher’s z transformations. J Gen Psychol. 1998;125(3):245-61.

559  23. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful
560 Approach to Multiple Testing. J R Stat Soc Ser B Methodol. 1995 Jan;57(1):289-300.

561  24. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neurolmage. 2003
562 Aug;19(4):1273-302.

563 25. Sanz Leon P, Knock S, Woodman M, Domide L, Mersmann J, Mcintosh A, et al. The

564 Virtual Brain: a simulator of primate brain network dynamics. Front Neuroinformatics
565 [Internet]. 2013 [cited 2023 Jun 21];7. Available from:
566 https://www.frontiersin.org/articles/10.3389/fninf.2013.00010

567  26. Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, et al. Brain
568 simulation as a cloud service: The Virtual Brain on EBRAINS. Neurolmage. 2022 May
569 1;251:118973.

570 27. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An
571 automated labeling system for subdividing the human cerebral cortex on MRI scans into
572 gyral based regions of interest. Neurolmage. 2006 Jul;31(3):968-80.

573  28. Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, Corbetta M. Resting-State
574 Functional Connectivity Emerges from Structurally and Dynamically Shaped Slow Linear
575 Fluctuations. J Neurosci. 2013 Jul 3;33(27):11239-52.

26


https://doi.org/10.1101/2024.04.16.589689
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.16.589689; this version posted April 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Multiscale Detrended Cross-Correlation Coefficient

576  29. Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. Mathematical framework for large-scale

577 brain network modeling in The Virtual Brain. Neurolmage. 2015 May;111:385-430.

578  30. Frassle S, Lomakina EIl, Razi A, Friston KJ, Buhmann JM, Stephan KE. Regression DCM
579 for fMRI. Neurolmage. 2017 Jul 15;155:406-21.

580 31. Frassle S, Lomakina El, Kasper L, Manjaly ZM, Leff A, Pruessmann KP, et al. A
581 generative model of whole-brain effective connectivity. Neurolmage. 2018 Oct 1;179:505—
582 29.

583  32. Fréssle S, Harrison SJ, Heinzle J, Clementz BA, Tamminga CA, Sweeney JA, et al.
584 Regression dynamic causal modeling for resting-state fMRI. Hum Brain Mapp. 2021 May
585 1,;42(7):2159-80.

586  33. Frassle S, Aponte EA, Bollmann S, Brodersen KH, Do CT, Harrison OK, et al. TAPAS:
587 An Open-Source Software Package for Translational Neuromodeling and Computational
588 Psychiatry. Front Psychiatry. 2021 Jun 2;12.

589  34. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open Source Software for
590 Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput Intell
591 Neurosci. 2011;2011:1-9.

592  35. H&maldinen MS, limoniemi RJ. Interpreting magnetic fields of the brain: minimum norm
593 estimates. Med Biol Eng Comput. 1994 Jan;32(1):35-42.

594  36. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: A User-Friendly
595 Application for MEG/EEG Analysis. Comput Intell Neurosci. 2011;2011:1-13.

596  37. Tadel F, Bock E, Niso G, Mosher JC, Cousineau M, Pantazis D, et al. MEG/EEG Group
597 Analysis With Brainstorm. Front Neurosci [Internet]. 2019 Feb 8;13. Available from:
598 https://www.frontiersin.org/article/10.3389/fnins.2019.00076/full

599  38. Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud G, et al.
600 Resting-state fMRI in the Human Connectome Project. Neurolmage. 2013 Oct;80:144-68.
601  39. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. The
602 minimal preprocessing pipelines for the Human Connectome Project. Neurolmage. 2013
603 Oct;80:105-24.

604  40. Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, et al.
605 Network modelling methods for FMRI. Neurolmage. 2011 Jan 15;54(2):875-91.

606 41. Honey CJ, Honey CJ, Sporns O, Sporns O, Cammoun L, Cammoun L, et al. Predicting
607 human resting-state functional connectivity from structural connectivity. Proc Natl Acad
608 Sci U S A. 2009;106(6):2035-40.

609  42. Chen GG, Chen GG, Xie C, Li SJJ. Negative Functional Connectivity and Its Dependence
610 on the Shortest Path Length of Positive Network in the Resting-State Human Brain. Brain
611 Connect. 2011 Sep;1(3):195-206.

27


https://doi.org/10.1101/2024.04.16.589689
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.16.589689; this version posted April 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Multiscale Detrended Cross-Correlation Coefficient

612 43. Zhan L, Jenkins LM, Wolfson OE, GadElkarim JJ, Nocito K, Thompson PM, et al. The

613 significance of negative correlations in brain connectivity. J Comp Neurol. 2017 Oct
614 15;525(15):3251-65.

615 44. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic
616 organization of DNA nucleotides. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip
617 Top. 1994 Feb;49(2):1685-9.

618  45. Podobnik B, Stanley HE. Detrended Cross-Correlation Analysis: A New Method for
619 Analyzing Two Nonstationary Time Series. Phys Rev Lett. 2008 Feb 27;100(8):084102.
620  46. Blythe DAJ, Nikulin VV, Miiller KR. Robust Statistical Detection of Power-Law Cross-
621 Correlation. Sci Rep. 2016 Jul 2;6(1):27089.

622  47. Stylianou O, Kaposzta Z, Czoch A, Stefanovski L, Yabluchanskiy A, Racz FS, et al. Scale-
623 Free Functional Brain Networks Exhibit Increased Connectivity, Are More Integrated and
624 Less Segregated in Patients with Parkinson’s Disease following Dopaminergic Treatment.
625 Fractal Fract. 2022 Dec 13;6(12):737.

626  48. Stylianou O, Racz FS, Kim K, Kaposzta Z, Czoch A, Yabluchanskiy A, et al. Multifractal
627 Functional Connectivity Analysis of Electroencephalogram Reveals Reorganization of
628 Brain Networks in a Visual Pattern Recognition Paradigm. Front Hum Neurosci [Internet].
629 2021 Oct 18;15. Available from:
630 https://www.frontiersin.org/articles/10.3389/fnhum.2021.740225/full

631  49. Kwapien J, Oswiecimka P, Drozdz S. Detrended fluctuation analysis made flexible to
632 detect range of cross-correlated fluctuations. Phys Rev E. 2015 Nov 30;92(5):052815.
633  50. Kaposzta Z, Czoch A, Stylianou O, Kim K, Mukli P, Eke A, et al. Real-Time Algorithm
634 for Detrended Cross-Correlation Analysis of Long-Range Coupled Processes. Front
635 Physiol [Internet]. 2022 Mar 11;13. Available from:
636 https://www.frontiersin.org/articles/10.3389/fphys.2022.817268/full

637  51. Kaposzta Z, Czoch A, Mukli P, Stylianou O, Liu DH, Eke A, et al. Fingerprints of
638 decreased cognitive performance on fractal connectivity dynamics in healthy aging.
639 GeroScience [Internet]. 2023 Dec 20 [cited 2024 Jan 2]; Available from:
640 https://doi.org/10.1007/s11357-023-01022-x

641

642 Author Contributions

643 O.S. developed MDC3, wrote the MATLAB, R and Python code for MDC3, performed data
644  analysis and interpretation, and wrote the first draft of the manuscript. G.S. performed data
645 analysis and interpretation. M.H. contributed to data interpretation. 1.S.M. performed data
646  analysis and interpretation. D.L-S. performed data analysis and interpretation M.S. performed
647  data analysis and interpretation. P.R. provided conceptual guidance, supervision and funding
648  throughout the study. All authors contributed to reviewing the manuscript and approved its
649  final version.

28


https://doi.org/10.1101/2024.04.16.589689
http://creativecommons.org/licenses/by/4.0/

650

651
652
653
654
655
656
657

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.16.589689; this version posted April 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Multiscale Detrended Cross-Correlation Coefficient

Financial Disclosure Statement

P.R. acknowledges support by Digital Europe TEF-Health 101100700, EU H2020 Virtual Brain Cloud
826421, Human Brain Project SGA2 785907; Human Brain Project SGA3 945539, ERC Consolidator
683049; German Research Foundation SFB 1436 (project ID 425899996); SFB 1315 (project ID
327654276); SFB 936 (project ID 178316478; SFB-TRR 295 (project ID 424778381); SPP Computational
Connectomics Rl 2073/6-1, Rl 2073/10-2, RI 2073/9-1; PHRASE Horizon EIC grant 101058240; Berlin
Institute of Health & Foundation Charité, Johanna Quandt Excellence Initiative; ERAPerMed Pattern-
Cog, the Virtual Research Environment at the Charité Berlin —a node of EBRAINS Health Data Cloud.

29


https://doi.org/10.1101/2024.04.16.589689
http://creativecommons.org/licenses/by/4.0/

