

Multiscale Detrended Cross-Correlation Coefficient

Multiscale Detrended Cross-Correlation Coefficient: Estimating Coupling in Nonstationary Neurophysiological Signals

Orestis Stylianou^{1,2,9,10,11*}, Gianluca Susi^{3,4}, Martin Hoffmann^{1,2}, Isabel Suárez-Méndez^{3,4},
David López-Sanz^{4,5}, Michael Schirner^{1,2,6,7,8}, Petra Ritter^{1,2,6,7,8*}

¹Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany

²Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany

³Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid, Madrid, Spain

⁴Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain

⁵Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Complutense University of Madrid, Madrid, Spain.

⁶Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience Berlin, Germany

⁷Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117 Berlin, Germany

⁸Einstein Center Digital Future, Wilhelmstraße 67, 10117 Berlin, Germany

⁹Department of Neurology, Immanuel Clinic Rüdersdorf, Rüdersdorf, Germany

¹⁰Department of Surgery, Immanuel Clinic Rüdersdorf, Rüdersdorf, Germany

¹¹Medical University Brandenburg, Germany

*Corresponding authors: orestisstylianou@rocketmail.com, petra.ritter@bih-charite.de

Abstract

The brain consists of a vastly interconnected network of regions, the connectome. By estimating the statistical interdependence of neurophysiological time series, we can measure the functional connectivity (FC) of this connectome. Pearson's correlation (r_P) is a common metric of coupling in FC studies. Yet r_P does not account properly for the non-stationarity of the signals recorded in neuroimaging. In this study, we introduced a novel estimator of coupled dynamics termed multiscale detrended cross-correlation coefficient (MDC_3). Firstly, we showed that MDC_3 had higher accuracy compared to r_P using simulated time series with known

Multiscale Detrended Cross-Correlation Coefficient

33 coupling, as well as simulated functional magnetic resonance imaging (fMRI) signals with
34 known underlying structural connectivity. Next, we computed functional brain networks based
35 on empirical magnetoencephalography (MEG) and fMRI. We found that by using MDC_3 we
36 could construct networks of healthy populations with significantly different properties
37 compared to r_P networks. Based on our results, we believe that MDC_3 is a valid alternative to
38 r_P that should be incorporated in future FC studies.

39 **Author Summary**

40 The brain consists of a vastly interconnected network of regions. To estimate the connection
41 strength of such networks the coupling between different brain regions should be calculated.
42 This can be achieved by using a series of statistical methods that capture the connection
43 strength between signals originating across the brain, one of them being Pearson's correlation
44 (r_P). Despite its benefits, r_P is not suitable for realistic estimation of brain network architecture.
45 In this study, we introduced a novel estimator called multiscale detrended cross-correlation
46 coefficient (MDC_3). Firstly, we showed that MDC_3 was more accurate than r_P using simulated
47 signals with known connection strength, as well as simulated brain activity emerging from
48 realistic brain simulations. Next, we constructed brain networks based on real-life brain
49 activity, recorded using two different methodologies. We found that by using MDC_3 we could
50 construct networks of healthy populations with significantly different properties compared to
51 r_P networks. Based on our results, we believe that MDC_3 is a valid alternative to r_P that should
52 be incorporated in future studies of brain networks.

53
54
55

Multiscale Detrended Cross-Correlation Coefficient

56 **Introduction**

57 Neuroscientific research has undergone a profound transformation in the last 100 years.
58 Berger's invention of electroencephalography (EEG) (1) made it possible to record and
59 evaluate neural activity in a non-invasive manner. Initially, studies relied on univariate (i.e.,
60 single time series) analysis of the brain dynamics. This started to change towards the end of
61 the 20th century with the first functional connectivity (FC) studies (2,3). This new field does
62 not rely only on anatomical connections, it rather studies functional connections that can be
63 created between directly or indirectly coupled neuronal populations. In more mathematical
64 terms, the brain regions are considered nodes on a graph, interconnected by edges (4). These
65 edges are defined by the statistical relationship of the neuronal time series under investigation.

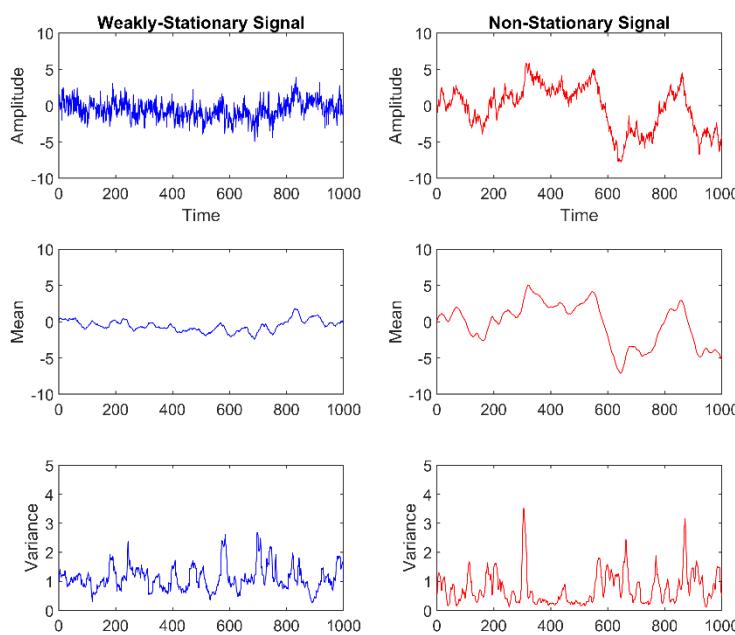
66 Several different FC estimators have been introduced with Pearson's correlation (r_P)
67 being one of the first applied in FC studies (2,3). Some drawbacks of this method (e.g.,
68 unreliable assessment of non-linear relationships) and the growing interest in exploring other
69 aspects of FC, lead to the introduction of newer methodologies such as phase locking value
70 (PLV) (5), phase lag index (PLI) (6), synchronization likelihood (SL) (7) and mutual
71 information (MI) (8,9). The use of different FC estimators can greatly influence the topology
72 of the networks (10–12). Such differences can be especially problematic when non-healthy
73 populations are being investigated, – e.g., in Alzheimer's disease patients (13) – complicating
74 the reproducibility and meta-analysis of studies. It is then important that an informed choice is
75 made before selecting an FC estimator. Nevertheless, r_P is still widely used (14) due to its
76 simplicity and interpretability. An important advantage of r_P is the capacity to identify positive
77 and negative correlations, which is not always the case with other estimators.

78 Signals can be divided into two categories: *i*) stationary and *ii*) non-stationary. A time
79 series X_t – where t indicates the discrete time – is *completely stationary* when the joint
80 probability distributions of $\{X_{t1}, X_{t2}, X_{t3} \dots, X_{tn}\}$ and $\{X_{t1+k}, X_{t2+k}, X_{t3+k} \dots, X_{tn+k}\}$ are identical

Multiscale Detrended Cross-Correlation Coefficient

81 for any set of time points $t_1, t_2, t_3, \dots, t_n$ and any integer k . While this definition is easily
82 understood, it is rather unrealistic. Hence, a less strict definition for *weak stationarity* has been
83 used to classify physiological signals. According to this, the mean and variance of a time series
84 remain constant. In line with that, the covariance of two weakly stationary signals will also be
85 constant throughout the propagation of time. On the other hand, non-stationary signals have
86 varying mean and variance. Additionally, the covariance between two non-stationary signals
87 will be time-dependent (15). **Figure 1** shows an exemplary case of these weakly-stationary and
88 non-stationary signals. From now on, any reference to stationary signals corresponds weakly-
89 stationary signals. Most biosignals are non-stationary (16). As a result, calculating the r_P – a
90 standardized covariance – of two biosignals can be misleading. A solution to this issue was
91 given with the introduction of the detrended cross-correlation coefficient (DCCC) (17). DCCC
92 makes use of the averaged variance and covariance of smaller sections of the signals (see
93 Section “**Multiscale Detrended Cross-Correlation Coefficient**” below). In this study, we
94 propose an extension of DCCC termed *multiscale detrended cross-correlation coefficient*
95 (MDC_3). Contrary to DCCC, the output of MDC_3 does not depend on the scale (window length)
96 resulting in easier interpretation of the results. To show this, we compared MDC_3 to r_P using
97 simulated time series with: *i*) known coupling and *ii*) known causal interactions [i.e., effective
98 connectivity (EC)]. We also demonstrated the differences between the two estimators in
99 magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI)
100 recordings.

Multiscale Detrended Cross-Correlation Coefficient



101

102 **Figure 1** // Example of weakly-stationary and non-stationary signals generated using auto-regressive fractionally integrated
103 moving-average (ARFIMA) processes (see *Simulated time series*). The mean and variance of weakly-stationary signals remain
104 constant throughout time, while they vary in non-stationary signals.

105 Methods

106 Multiscale Detrended Cross-Correlation Coefficient

107 Before introducing MDC_3 we briefly describe DCCC (17), upon which MDC_3 is based. DCCC
108 was introduced as a more accurate coupling estimator between non-stationary time series.
109 DCCC is calculated for several scales (s) (or window lengths) as follows. For every scale
110 (window length), the two signals X and Y are divided into N non-overlapping windows of length
111 s . Preliminary analysis with 50% overlapping windows did not show significant benefits
112 compared to non-overlapping windows. For the sake of computational speed, non-overlapping
113 windows were chosen. In every window the linear trend is removed, leaving the detrended
114 signals \hat{X}_i and \hat{Y}_i , where i is the index of the window. Detrending is performed in order to
115 counteract (at least partially) any spurious coupling emerging due to autocorrelation effects
116 (18). Then, the covariance between the two signals and the variances of the two signals are
117 estimated for every window. Finally, the ratio of average covariance and the square root of the

Multiscale Detrended Cross-Correlation Coefficient

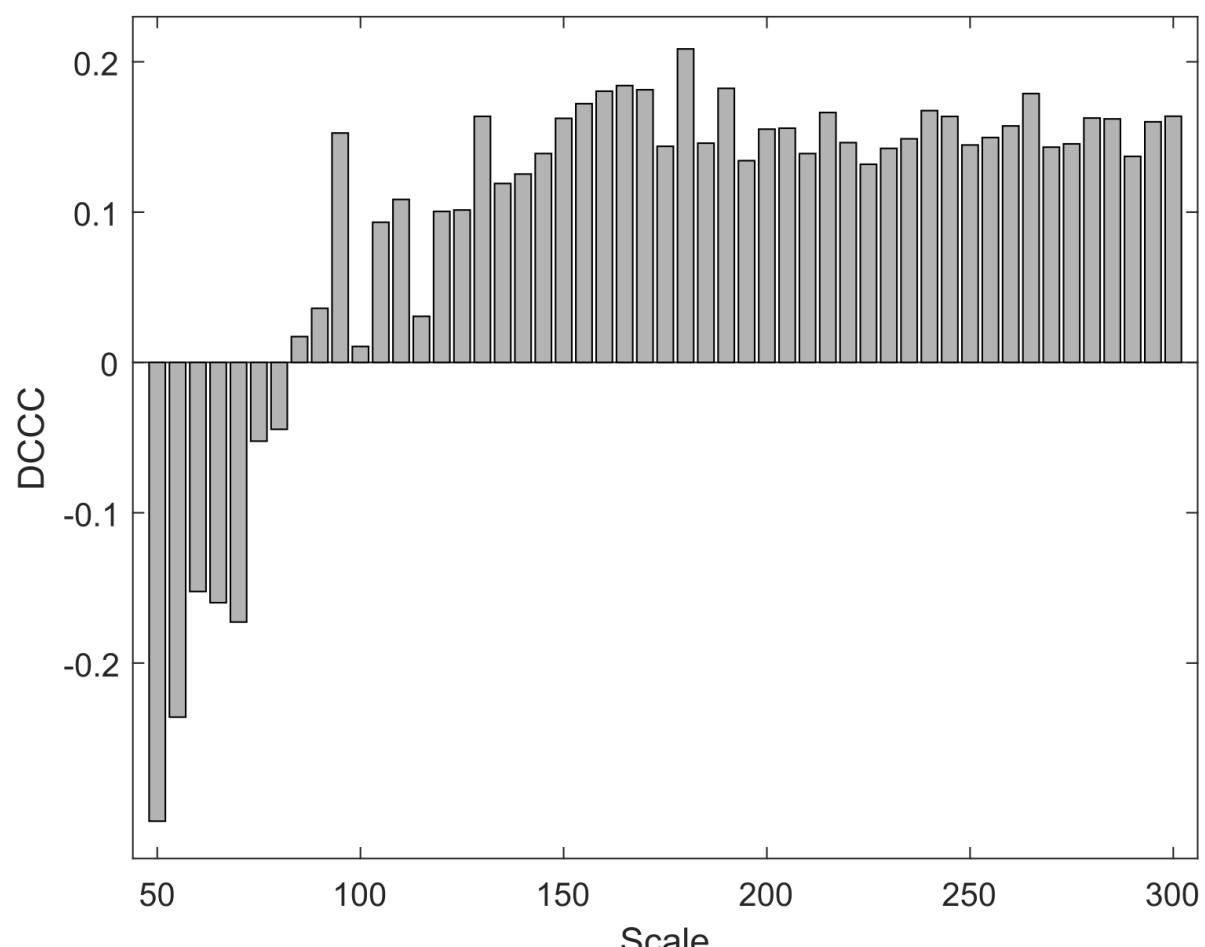
118 product of average variances is calculated. **Equation 1** provides the mathematical formulation
119 of these steps.

120

$$DCCC(s) = \frac{\frac{1}{N} \sum_{i=1}^N cov \hat{x}_i \hat{y}_i}{\sqrt{\frac{1}{N} \sum_{i=1}^N var \hat{x}_i \frac{1}{N} \sum_{i=1}^N var \hat{y}_i}} \quad (1)$$

121 DCCC is reminiscent of r_p since both estimators range between -1 and 1 with negative
122 values corresponding to anticorrelation and positive values corresponding to correlation (19).
123 In 2014 Kristoufek showed that DCCC was more accurate than r_p (20) in synthetic non-
124 stationary signals of known coupling. These results warrant the use of DCCC in FC studies,
125 since neuronal time series are non-stationary (16). Unfortunately, the use of a multitude of
126 scales (window lengths) makes it hard to interpret. **Figure 2** shows a case where different scales
127 (window lengths) result in different coupling estimation, sometimes even with a different sign.
128 Are the two signals correlated or anticorrelated and to what extent? It is not possible to draw a
129 clear conclusion. We believe that MDC_3 could offer a mathematically sound solution to this
130 problem.

Multiscale Detrended Cross-Correlation Coefficient



131
132 **Figure 2** || Detrended cross-correlation coefficient (DCCC) values for a 4 seconds-long pair of MEG signals at different scales
133 (window lengths).

134 The estimation of MDC_3 starts by calculating DCCC for different scales (window
135 lengths). To avoid any arbitrary choice of scales (window lengths), we define frequencies (f)
136 for which we would like to study the coupling of the time series. These frequencies can be
137 converted to scales (window lengths) using the sampling rate (SR) of the signals ($s=SR/f$). First
138 the DCCC for every frequency is calculated. Then, the two signals are detrended – in this case
139 as a whole – and their cross-spectral density is estimated. We finally calculate the weighted
140 average of DCCC, based on the relative power of each frequency in the cross-spectral density.

141 The distribution of DCCC – similarly to r_P ’s distribution – can be skewed, so DCCC values are
142 normalized using Fisher’s z transform (21,22) before the calculation of the weighted average.
143 Details about MDC_3 can be found in **Figure 3** and the pseudo-code in **Table 1**. In this form
144 MDC_3 cannot construct directed graphs, i.e. the FC matrix obtained is symmetric. Using cross-

Multiscale Detrended Cross-Correlation Coefficient

145 covariance we can extend MDC_3 and create directed graphs. Details about this directed variant
146 can be found in the **Appendix**. MATLAB, Python, and R versions of MDC_3 are available at:
147 <https://github.com/BrainModes/mdc3> (The code will be made available upon the acceptance
148 of the manuscript).

149 **Table 1** // *Multiscale detrended cross-correlation coefficient (MDC_3) pseudo-code*

INPUTS: time series X; time series Y; minimum frequency; maximum frequency; frequency step; sampling rate; detrending degree
frequencies = ([minimum frequency, maximum frequency], increment = frequency step)
scales = sampling rate / frequencies

for every window length

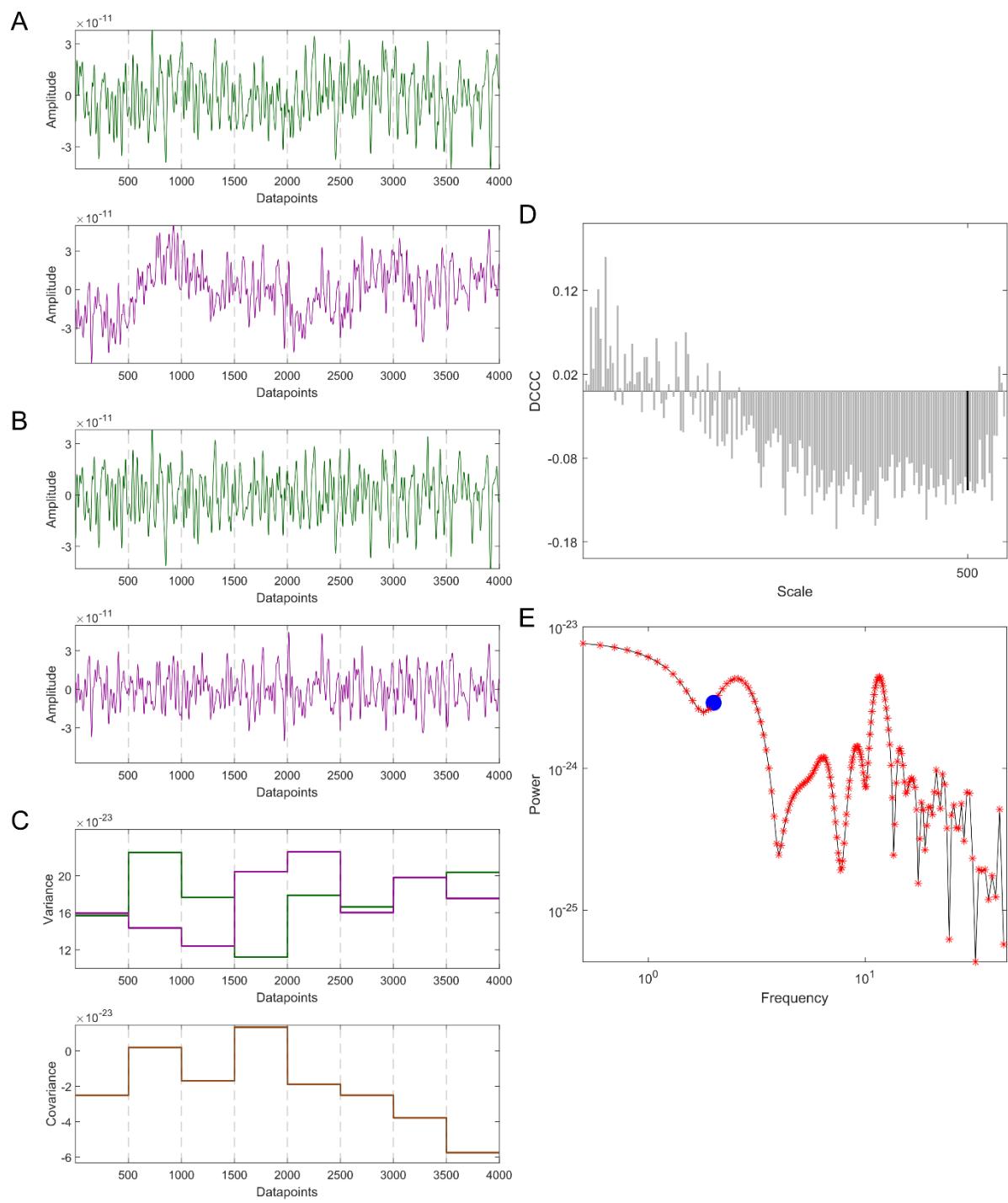
for every non-overlapping window
detrend (window of time series X, window of time series Y, degree = detrending degree)
covariance XY (window of time series X, window of time series Y)
variance X (window of time series X)
variance Y (window of time series Y)

dccc = mean (covariance XY) / sqrt([mean (variance X)*mean (variance Y)])

[detrended X, detrended Y] = detrend (time series X, time series Y, degree = detrending degree)
power of frequencies = cross-spectral density (detrended X, detrended Y)
weights = power of each frequency / sum(power of frequencies)
 $MDC_3 = \tanh \{ \sum [\tanh^{-1} (dccc) * weights] \}$

OUTPUT: MDC_3

Multiscale Detrended Cross-Correlation Coefficient



150
151
152
153
154
155
156
157
158

Figure 3 || Demonstration of multiscale detrended cross-correlation coefficient (MDC_3) using a 4 seconds-long pair of MEG signals with a sampling rate of 1000 Hz. **A:** The two signals (green and purple) are divided into smaller non-overlapping windows of length s , in this example $s=500$. **B:** Each window is detrended. **C:** The variances (upper panel) and covariance (lower panel) are calculated for every window. **D:** The detrended cross-correlation coefficient (DCCC) is estimated for several scales (window lengths). The black bar is the DCCC when $s=500$. **E:** The cross-spectral density of the two time series is calculated. The red asterisks correspond to the frequencies used for the estimation of DCCC, while the blue disk corresponds to 2Hz (i.e., $s=500$). MDC_3 is calculated by taking the weighted average of DCCC, where the weight of each frequency is defined by the relative proportion of its power to the total cross-spectral power.

Multiscale Detrended Cross-Correlation Coefficient

159 **Simulated Time Series**

160 **ARFIMA Processes**

161 In order to validate the efficacy of MDC_3 we simulated pairs of auto-regressive fractionally

162 integrated moving-average (ARFIMA) processes with known cross-correlation, as in

163 Kristoufek (20). These series are created as follows:

164
$$A = \sum_{n=0}^{100} \alpha_n(d) \varepsilon_{A,t-n}$$

165
$$B = \sum_{n=0}^{100} \alpha_n(d) \varepsilon_{B,t-n}$$

166 ε_A is sampled from a standard normal distribution. In order to inject cross-correlation (see

167 **Appendix** for proof) ρ between the two time series, we set $\varepsilon_B = \rho \varepsilon_A + \varepsilon \sqrt{1 - \rho^2}$, with ε being

168 sampled from a standard normal distribution. $\alpha_n(d) = \frac{\Gamma(n+d)}{\Gamma(n+1)\Gamma(d)}$, where Γ is the gamma

169 function. The parameter d defines the non-stationarity of the simulated signal; $d < 0.5$

170 corresponds to stationary time series, $d \geq 0.5$ corresponds to non-stationary time series.

171 Higher values of d indicate a higher level of non-stationarity.

172 We wanted to study the coupling for both stationary and non-stationary time series. So

173 we employed the same parameters as Kristoufek (20): *i*) $d = [0.1, 1.4]$ with increments of 0.1

174 and *ii*) $\rho = [-0.9, 0.9]$ with increments of 0.1. To demonstrate the benefits of MDC_3 in real-

175 life neuronal time series, our simulations consisted of two types. The *first type* aimed to emulate

176 EEG/MEG signals with three different lengths: 1000, 5000 & 10000 data points. We assumed

177 that their sampling rate was 250 Hz, corresponding to 4, 20 & 40 seconds of recordings. MDC_3

178 was calculated for frequencies between 0.5 and 31 Hz with increments of 0.5. In the *second*

179 *type*, we wanted to study how lower sampling rates, seen in fMRI, will affect our methodology.

180 The created signals consisted of 100, 200 & 500 data points. In this case we assumed that the

181 sampling rate was 1Hz, meaning that the simulated time series corresponded to 100, 200 and

Multiscale Detrended Cross-Correlation Coefficient

182 & 500 seconds. MDC_3 was calculated for frequencies between 0.01 to 0.12 Hz with increments
183 of 0.01. In both types, the maximum frequencies were selected so there were at least 8 data
184 points in every window. We decided to detrend the time series using a second-degree
185 polynomial, since preliminary analysis showed better results compared to linear detrending.
186 We ran 1000 simulations for each model.

187 We wanted to see how closely the two estimators (MDC_3 and r_P) are to the real
188 coupling. For every d , ρ and signal length we calculated the root mean squared error (RMSE)
189 of MDC_3 and r_P . Then, simulations of the same d and signal length were grouped together. As
190 a result, we ended up with 14 pairs (one for each value of d) of 19-points (one for each value
191 of ρ) distributions, for every signal length (see **Figure 4** for a graphical representation of the
192 distributions). We compared every pair of distributions using a paired t-test or Wilcoxon signed
193 rank test, depending on the normality of the underlying distributions (evaluated using Lilliefors
194 test). Finally, Benjamini-Hochberg (BH) correction (23) was used to counteract the effect of
195 multiple comparisons. Throughout the manuscript a comparison was considered statistically
196 significant when BH-adjusted $p < 0.05$.

197 Simulated fMRI

198 While ARFIMA processes can create signals with known coupling, they do not represent
199 realistic neuronal time series. For this reason, we decided to estimate the EC of fMRI signals
200 and contrast it with the directed variant of MDC_3 . One of the most widely used EC estimators
201 is dynamic causal modeling (DCM) (24), which estimates EC based on the constraints set by a
202 SC matrix. Acquisition of both SC matrices (through diffusion tensor imaging) and fMRI is a
203 lengthy and costly procedure. Thankfully, recent developments in the field of brain simulation
204 speed up this process. We simulated the fMRI of 100 “subjects” using The Virtual Brain (TVB)
205 (25,26). Based on the SC matrix of each subject (see next paragraph), we simulated the fMRI

Multiscale Detrended Cross-Correlation Coefficient

206 signal of 68 brain regions – according to the Desikan-Killiany atlas (27) – using the Reduced
207 Wong Wang (28) neural mass model:

208

$$x_k = wJ_N S_k + I_o + J_N G \sum_j C_{kj} S_j$$

209

$$H(x_k) = \frac{ax_k - b}{1 - \exp [-d(ax_k - b)]}$$

210

$$\dot{S}_k = -\frac{S_k}{\tau_s} + (1 - S_k)H(x_k)\gamma$$

211 $H(x_k)$ and S_k correspond to the firing rate and synaptic gating variable of the population at the
212 k^{th} cerebral region, respectively. G is a global scaling factor and C_{kj} is the structural connection
213 strength between the k^{th} and j^{th} regions. The description and default values of the rest of
214 parameters can be found in Table 12 of Sanz-Leon et al. (29).

215 The simulated SC matrices were based the real SC matrix retrieved from
216 <https://zenodo.org/record/4263723#.Y7-8Q-zMLMI> (found in
217 “QL_20120814_Connectivity.zip”). The real SC matrix was divided into 4 quadrants. The values
218 within each quadrant were randomly shuffled. Additionally, 30% of the connections of each
219 quadrant were changed. Their new value was randomly selected from a normal distribution of
220 mean and standard deviation based on the SC values of each quadrant. This shuffling and
221 random allocation of values was also done in the accompanying tract lengths matrix created
222 after loading “QL_20120814_Connectivity.zip” on TVB. These steps ensured that the
223 simulated brains were different enough from the template, but they were still biologically
224 plausible. We then proceeded with simulating 21 minutes of fMRI time series using the
225 Reduced Wong Wang model. The selection of appropriate parameters in brain simulations is
226 crucial. A common practice is to perform a grid search with different combinations of
227 parameters and compare it to properties of empirical brain activity. We varied G , w and J , while

Multiscale Detrended Cross-Correlation Coefficient

228 using the default values of the rest of the parameters. G was in the [0.1,29.9] range with
229 increments of 0.1. J was in the [0,1] range with increments of 0.1. Finally, J was in the [0.2609,
230 0.4609] range with increments of 0.05. We estimated the FC matrix of each simulated fMRI
231 dataset using r_p . We also estimated the FC of the empirical fMRI signal (also retrieved from
232 <https://zenodo.org/record/4263723#.Y7-8Q-zMLMI>) using r_p . We then compared the
233 similarities of empirical and simulated FC using Spearman's correlation. The most realistic
234 simulation (Spearman's correlation 0.34) was produced when G=0.2, w=0.1 and J=0.42 while
235 the rest of the parameters were kept in their default values.

236 After obtaining the simulated fMRI signals, we could proceed with the comparison
237 between MDC_3 and r_p . While FC is simple to understand and estimate, it is merely a statistical
238 relationship between signals. On the other hand, DCM's constraints allow for a depiction of
239 brain connectivity based on a more detailed network model of the brain. Hence, the EC – as
240 captured by DCM –was chosen as the ground truth of our comparison. In DCM a realistic SC
241 connectivity matrix is used as a template. Applying a forward model to the underlying SC can
242 simulate fMRI signals. A parameter of this forward model is an EC matrix, which can be fine-
243 tuned in order to produce realistic fMRI time series. Investigation of whole-brain networks
244 with traditional DCM is a time-consuming process, which can be accelerated with regression
245 dynamic causal modeling (rDCM) (30–32) [available at the Translational Algorithms for
246 Psychiatry-Advancing Science (TAPAS) toolbox (33)]. rDCM offers a simplified version of
247 DCM without severe loss in accuracy [for further details please see Frässle et al.]. In order to
248 study the effect of signal length we analyzed the first 5, 10, 15 and 20 minutes of the simulated
249 fMRI. This resulted in 12 matrices (4 signal lengths x 3 metrics) (**Table 2**) for every simulated
250 brain. Since the EC matrix is not constrained between -1 and 1 as MDC_3 and r_p , we calculated
251 the Z-scores of every EC, MDC_3 and r_p matrix, which we then used for the comparisons. Using
252 EC as our ground truth, we calculated the RMSE of MDC_3 and r_p for each simulation. This

Multiscale Detrended Cross-Correlation Coefficient

253 resulted in 8 (2 FC estimators x 4 signal lengths)100-point (100 simulated brains) distributions.
254 We compared every pair of distributions using a paired t-test or Wilcoxon signed rank test,
255 depending on the normality of the underlying distributions (evaluated using Lilliefors test). The
256 4 p values were adjusted using BH correction. MDC_3 was calculated for the frequencies
257 between 0.011 to 0.17 Hz with increments of 0.01. 0.17 Hz was selected as the highest cutoff
258 so each window during the estimation of MDC_3 had 8 datapoints. Second-degree polynomials
259 were fitted for the detrending in MDC_3 .

260 **Table 2 // Demonstration of the connectivity matrices used in the analysis of simulated fMRI**
261 **signals.** Multiscale detrended cross-correlation (MDC_3), Pearson's correlation (r_P) and
262 regression dynamic causal modeling (rDCM) were used to obtain connectivity matrices of the
263 simulated fMRI signals. In every subject, the matrices were obtained for the first 5, 10, 15 and
264 20 minutes (Min) of the signal.

5 Min MDC_3	10 Min MDC_3	15 Min MDC_3	20 Min MDC_3
5 Min rDCM	10 Min rDCM	15 Min rDCM	20 Min rDCM
5 Min r_P	10 Min r_P	15 Min r_P	20 Min r_P

265
266 **Empirical Time Series**
267 **MEG Dataset**
268 The MEG dataset consisted of eyes closed resting-state recordings of 20 elderly healthy
269 participants (12 females, aged 71.5 ± 4.03 years), acquired using a 306-channel (102
270 magnetometers and 204 planar gradiometers) Vectorview MEG system (Elekta AB,
271 Stockholm, Sweden) placed inside a magnetically shielded room (VacuumSchmelze GmbH,
272 Hanau, Germany) located at the Laboratory of Cognitive and Computational Neuroscience
273 (Madrid, Spain). MEG data were acquired with a sampling rate of 1000 Hz and an online [0.1
274 - 330] Hz anti-alias band-pass filter. All participants provided informed consent. To allow
275 subject-specific source reconstruction, individual T1-weighted MRI scans were also available
276 for each participant. MRI images were recorded at the Hospital Universitario Clínico San
277 Carlos (Madrid, Spain) using a 1.5 T General Electric MRI scanner with a high-resolution

Multiscale Detrended Cross-Correlation Coefficient

278 antenna and a homogenization PURE filter (fast spoiled gradient echo sequence, with
279 parameters: repetition time/echo time/inversion time = 11.2/4.2/450 ms; flip angle = 12°; slice
280 thickness = 1 mm; 256×256 matrix; and field of view = 256 mm).

281 The MEG recordings were preprocessed offline using a tempo-spatial filtering
282 algorithm (Taulu and Hari 2009) (Maxfilter Software v2.2, correlation limit of 0.9 and
283 correlation window of 10 s) to eliminate magnetic noises and compensate for head movements
284 during the recording. The continuous MEG data were imported into MATLAB (R2017b,
285 Mathworks, Inc.) using the Fieldtrip Toolbox (34) (<https://www.fieldtriptoolbox.org/>). An
286 independent component-based algorithm was used to remove the effects of ocular and cardiac
287 signals from the data, together with external noises. Source reconstruction was performed using
288 minimum norm estimates (35) with the software Brainstorm (36)
289 (<https://neuroimage.usc.edu/brainstorm>). In order to model the orientation of macrocolumns
290 of pyramidal neurons the dipole orientations were considered to be normal to the cortical
291 surface of the participant [see (37)]. Neural time series were finally collapsed to the regions of
292 interest (ROI) of the Desikan-Killiany atlas (27). The data were band-pass filtered between 0.5
293 and 45 Hz using FIR filtering.

294 For every participant we analyzed multiple (ranging from 45 to 61) 4 seconds segments.
295 We estimated the FC of each segment using MDC_3 and r_P . Then, we calculated the node
296 strength of the brain regions by summing up the strength of every incoming and outgoing
297 connection for every cortical area. Finally, we averaged the node strengths for all segments, so
298 every participant had one set of node strength values. Again, we employed a series of paired t-
299 tests or Wilcoxon signed rank tests – depending on the normality of the distributions (Lilliefors
300 test) – to compare the node strengths of the MDC_3 and r_P created networks. The p -values of
301 each comparison group were adjusted using BH correction. MDC_3 was calculated for the

Multiscale Detrended Cross-Correlation Coefficient

302 frequencies between 0.5 and 45 Hz. Second-degree polynomials were fitted for the detrending
303 in MDC_3 .

304 **fMRI Dataset**

305 Finally, we analyzed 767 healthy, young adults (426 females) from the Human Connectome
306 Project (HCP) (38). The fMRI time series were already preprocessed according to the HCP
307 standards (39). Details about the participants can be found in the attached CSV file in the
308 **Supplementary Information (fMRI Subjects Information)**.

309 For the FC estimation we used only the first eyes open resting-state period of 14.4
310 minutes. The dataset had a left-to-right and right-to-left echo-planar imaging (EPI) encoding.
311 We calculated the FC using MDC_3 and r_P for both EPI. We then averaged the FC matrices of
312 the two EPI using Fisher's z transform, as suggested by Smith et al. (38). This resulted in one
313 MDC_3 and one r_P FC matrix per subject. We compared the strength of each connection through
314 a series of Wilcoxon signed rank tests that were later corrected using BH. MDC_3 was calculated
315 for the frequencies between 0.011 to 0.17 Hz with increments of 0.01. 0.17 Hz was selected as
316 the highest cutoff, so each window had 8 datapoints. Second degree polynomials were fitted
317 for the detrending in MDC_3 .

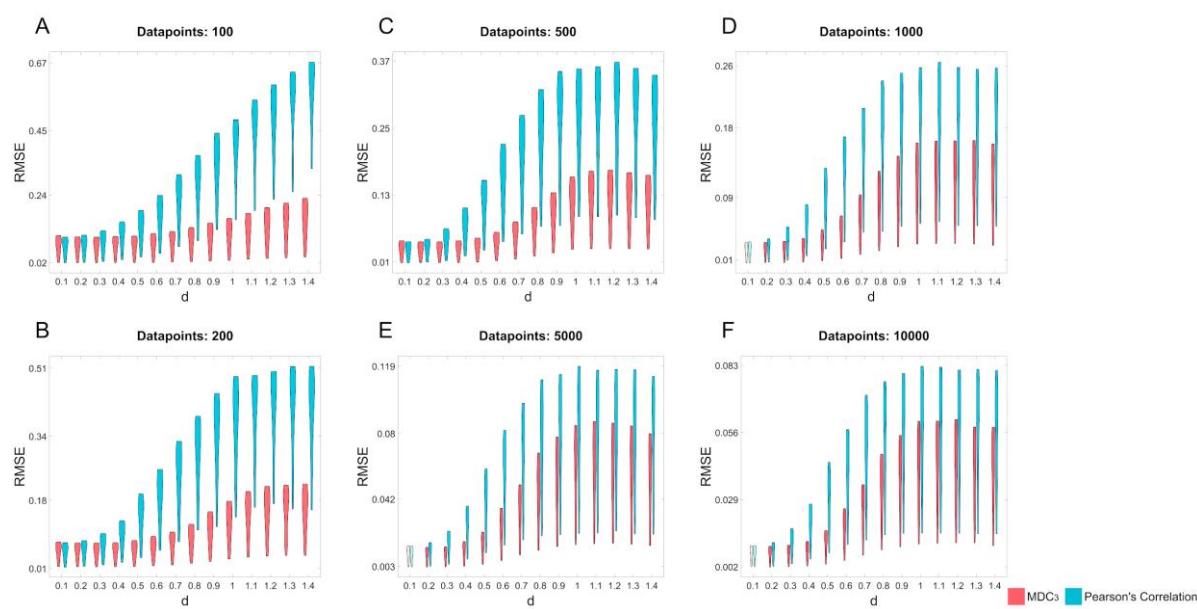
318
319
320
321
322
323
324

Multiscale Detrended Cross-Correlation Coefficient

325 Results

326 Simulated Time Series

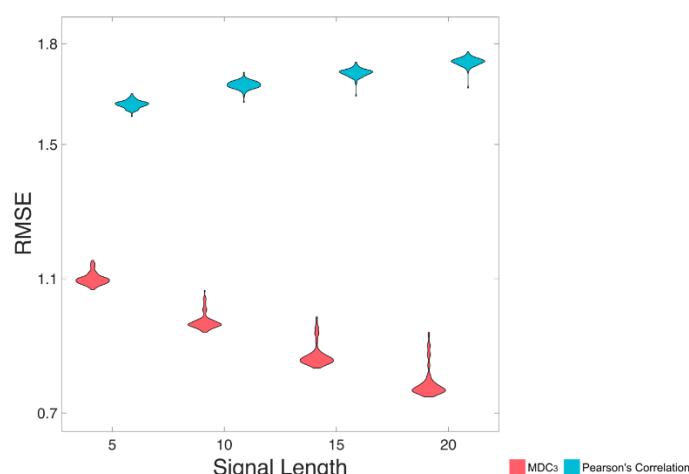
327 As shown in **Figure 4** MDC_3 is a more accurate estimator of coupling in the simulated
328 ARFIMA signals in almost every case. Only some small difference can be observed for
329 stationary signals ($d < 0.5$); but as we transition to non-stationary time series ($d \geq 0.5$), the
330 RMSE of r_P is significantly higher.



331
332 **Figure 4** || Root mean squared error (RMSE) of MDC_3 and Pearson's correlation for different levels of non-stationarity (d)
333 and signal length (panels A-F). We simulated auto-regressive fractionally integrated moving-average (ARFIMA) processes
334 with varying d , signal length and coupling strength (p). p was used to estimate the RMSE of MDC_3 and Pearson's correlation.
335 Pairs of distributions whose difference was statistically significant (Benjamini-Hochberg adjusted $p < 0.05$) are fully colored.

336 The same results can be seen in realistic fMRI simulations. As **Figure 5** shows, the
337 RMSE was significantly smaller when MDC_3 was used as an FC estimator in all signal lengths.
338 We also see that as the signal length increases, the RMSE of r_P increases while the RMSE of
339 MDC_3 decreases.

Multiscale Detrended Cross-Correlation Coefficient



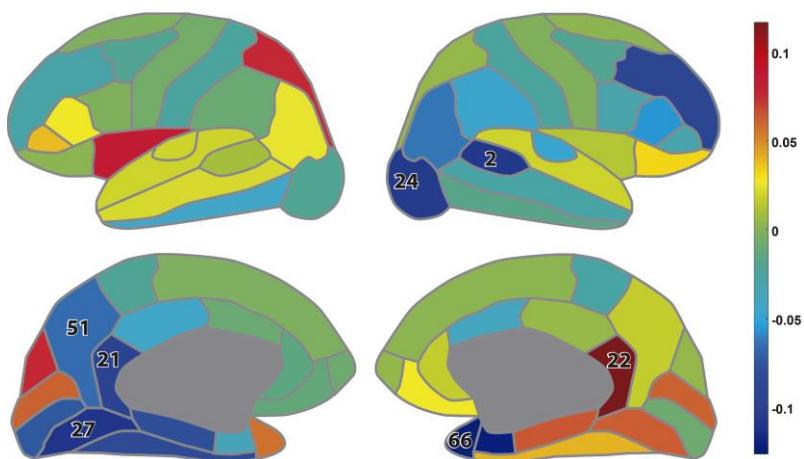
340

341 **Figure 5** || Root mean squared error (RMSE) of multiscale detrended cross-correlation coefficient (MDC₃) and Pearson's
342 correlation, for four different signal lengths (5 minutes, 10 minutes, 15 minutes and 20 minutes). We simulated realistic fMRI
343 signals using The Virtual Brain. The effective connectivity of the simulated brains – calculated using regression dynamic
344 causal modeling (rDCM) – was used to estimate the RMSE of MDC₃ and Pearson's correlation.

345 Neurophysiological Time Series

346 **Figure 6** shows the difference of the node strengths between the MDC₃ and r_p networks as
347 estimated using MEG tracings. Significant differences can be seen in 7 channels (10%), where
348 the r_p network had mainly higher node strengths seen by the blue color.

349



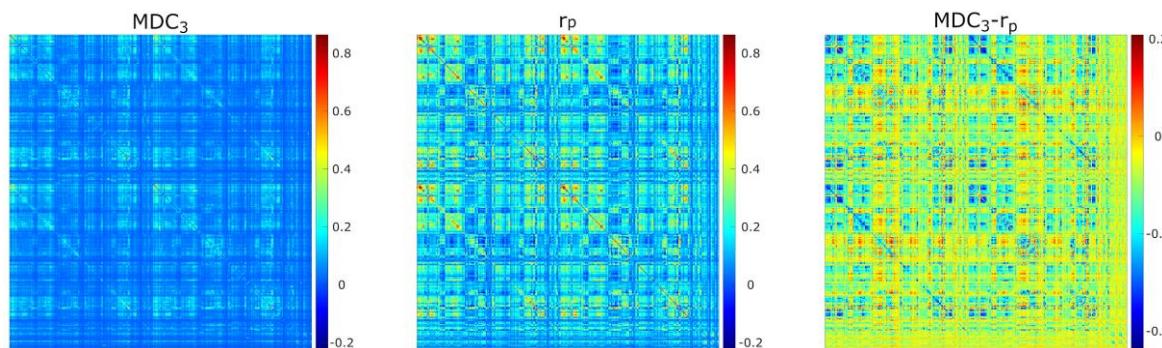
351

352 **Figure 6** || Difference between the node strengths calculated during eyes closed resting-state magnetoencephalography:
353 lateral view (up); medial view (down). The colors represent the difference (MDC₃- r_p) in the node strengths while the numbers
354 indicate the brain regions whose node strength was significantly different between the two estimators (BH-adjusted
355 $p < 0.05$). The numbers correspond to the regions of interest as defined in the Desikan-Killiany atlas (27), list
356 provided in the **Supplementary Information (Additional Analysis)**.

357 For the last real-life dataset, we analyzed fMRI recordings from HCP. As **Figure 7**
358 shows, the two networks had different connectivity strengths. In some instances, r_p found

Multiscale Detrended Cross-Correlation Coefficient

359 higher coupling than MDC_3 and in some other cases lower. These observations were validated
360 statistically, since 97% (69599 out of 71631) of the comparisons were significantly different.



361
362 **Figure 7** || Averaged functional connectivity matrices using multiscale detrended-cross correlation coefficient (MDC_3),
363 Pearson's correlation (r_p), and the difference between them (MDC_3-r_p) using eyes open resting-state functional magnetic
364 resonance imaging.

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Multiscale Detrended Cross-Correlation Coefficient

385 **Discussion**

386 In this study we introduced the statistical metric MDC_3 – a weighted average of DCCC – for
387 estimating coupling in a system. Our simulations with signals of known coupling showed that
388 MDC_3 is a more accurate estimator of the model's coupling parameters than r_P . The exemplary
389 FC analysis of MEG and fMRI data also showed that the use of MDC_3 could lead to significant
390 differences in the connectivity matrices compared to r_P .

391 We simulated 1000 pairs of time series of different coupling strengths, signal lengths
392 and degrees of non-stationarity. For each pair we calculated MDC_3 and r_P . As explained in the
393 **Introduction**, and shown in **Figure 1**, the variance and covariance of stationary signals remain
394 constant, meaning that MDC_3 and r_P will be similar. This is not the case for non-stationary
395 series whose variance and covariance heavily depend on time. Our simulations confirm that,
396 since the RMSE of MDC_3 was significantly smaller in every case, except for fairly stationary
397 signals (**Figure 4**). The discrepancy between the two estimators increased greatly with higher
398 levels of non-stationarity. Similar findings have been reported for DCCC in Kristoufek (20).
399 We also simulated a series of fMRI signals using TVB. We could not simulate realistic
400 neuronal time series with known coupling, so we decided to use the EC matrices of the
401 simulations as ground truth. The results showed that MDC_3 is closer to the EC compared to r_P
402 (**Figure 5**). We also observed that as the length of the signals increased the accuracy of MDC_3
403 increased, contrary to r_P . Smith et al. (40) decided to validate FC estimators using the
404 underlying SC as ground truth. While we considered this approach, we decided to use EC
405 instead. The choice was based on the two following reasons. Firstly, SC cannot entirely predict
406 FC (41). Secondly, the lack of negative values in SC would not allow for accurate study of
407 negatively correlated brain regions. For the sake of completeness, we also compared MDC_3
408 and r_P of the simulated fMRI signals using SC as ground truth. This time, r_P was found to be a
409 better estimator, albeit with a narrow margin (see **Additional Analysis in Supplementary**

Multiscale Detrended Cross-Correlation Coefficient

410 **Information**). An interesting byproduct of this analysis was that r_P was similar to SC, while
411 EC and MDC_3 were similar to the tract length matrices used for the construction of the
412 simulations. While this finding is interesting, it is beyond the scope of this study and should be
413 revised in future studies. The matrices of each simulation can be found in the **Supplementary**
414 **Information (TVBMatrices)**. Finally, we repeated our MDC_3 and r_P comparisons this time
415 using the simulations from Smith et al. (40). In the majority of cases MDC_3 was more accurate,
416 especially when EC was used as ground truth. The complete results of the additional analysis
417 can be found in the **Supplementary Information (Additional Analysis)**.

418 Of course, statistical significance in simulations without real-life benefits would not
419 warrant the use of MDC_3 . To demonstrate its advantages, we used MEG and fMRI datasets.
420 As shown in **Figure 6**, using MDC_3 and r_P as FC estimators resulted in significantly different
421 brain networks. In some cases, the node strengths of the r_P networks were higher, while in
422 others they were lower. After analyzing the FC matrices of the fMRI dataset, we saw that
423 almost all connections were significantly different between the two matrices (**Figure 7**). Once
424 again, some connections were stronger and some weaker when r_P was used. A homogenous
425 overestimation or underestimation would not have been a serious drawback since FC studies
426 usually rely on relative comparisons and not on the exact values themselves. But it seems that
427 in some regions r_P would give lower values and in others higher, presenting a rather false
428 picture of the brain network. At a first glance, someone might be dismissive of this, since it is
429 well known that different estimators can lead to different FC matrices (11–13). This would
430 have been the case if we had not seen the higher reliability of MDC_3 both from a mathematical
431 standpoint (**Methods**) and in simulations (**Results**). We then suggest that MDC_3 should be
432 preferred over r_P . Even if MDC_3 is computationally more expensive, today's computational
433 capabilities make the time difference negligible.

Multiscale Detrended Cross-Correlation Coefficient

434 Finally, it should be noted that MDC_3 is still a linear FC estimator. Non-linear
435 estimators like PLV, MI, PLI, and SL still capture dynamics that MDC_3 cannot. In spite of that,
436 we believe that MDC_3 is a valuable addition to the FC field due to its ability to capture the sign
437 of correlation (i.e., correlation vs anticorrelation); something that the aforementioned non-
438 linear estimators cannot do. A common practice in FC studies is the exclusion of
439 anticorrelations (4). Since the human brain operates with several negative feedback loops, we
440 believe that it is necessary to study anticorrelation in order to obtain more accurate brain
441 architectures, as suggested by previous studies (42,43). We decided to explore this further in
442 the **Supplementary Information (Additional Analysis)** using the MEG dataset. Briefly, we
443 compared the FC matrices as estimated with MDC_3 and PLV using two different source
444 reconstruction pipelines, i.e., with constrained and unconstrained dipoles. The first method
445 makes it possible to obtain a more realistic phase (and sign) of the reconstructed time series.
446 This benefit can be overshadowed by the inability of most FC estimators to capture the sign of
447 coupling, including PLV. As a result, such metrics could mistakenly identify correlation for
448 anticorrelation and vice versa. As expected, MDC_3 detected more differences between the
449 reconstructions with constrained and unconstrained dipoles than PLV.

450 DCCC and its extension MDC_3 are closely related to the scale-free analysis of signals.
451 The numerator and denominator of **Equation 1** are integral parts of the detrended fluctuation
452 analysis (44) and detrended cross-correlation analysis (45) analysis, respectively. DCCC has
453 been incorporated in surrogate testing of fractal (scale-free) coupling already (12,19,46–48).
454 The main difference between the two methods is the single output of MDC_3 , as opposed to
455 scale-specific correlations of DCCC. It is then clear that MDC_3 cannot be used in surrogate
456 testing of fractal FC, since scale-specific estimators are necessary for such analysis. DCCC has
457 also been employed in multifractal FC (49); where different exponents capture different sizes
458 of fluctuations. Theoretically, a multifractal MDC_3 could be created as well. This is beyond the

Multiscale Detrended Cross-Correlation Coefficient

459 scope of the current study because we focused on improving the interpretability of DCCC. The
460 calculation of MDC_3 using different scaling exponents would add another layer of complexity
461 to the interpretation of the outputs. Recently, a real-time algorithm for the estimation of DCCC
462 was presented (50,51), which can be extended for MDC_3 as well. This means that MDC_3 can
463 be used in brain-computer interfaces or clinical monitoring of patients, where constant tracking
464 of network dynamics is needed.

465 Conclusion

466 We presented a new estimator of coupling between time series termed multiscale detrended
467 cross-correlation coefficient. Using simulated data, we showed a higher accuracy over r_p . The
468 differences between the two estimators were made apparent in MEG and fMRI datasets of
469 healthy populations. Here we explored the benefits of MDC_3 only in neuronal time series. We
470 believe that our new method has the potential to be used in several other disciplines where
471 linear coupling of non-stationary signals is investigated. Of course, appropriate validation
472 pipelines specific to each field are recommended before any prior use.

473 Appendix

474 Auto-Regressive Fractionally Integrated Moving-Average Processes

475 Assume two distributions ε_A and ε_B . ε_A is a standard normal distribution, meaning $E[\varepsilon_A] = 0$
476 and $\text{var}(\varepsilon_A) = 1$. $\varepsilon_B = \rho\varepsilon_A + \varepsilon\sqrt{1 - \rho^2}$, where ε is also standard normal [i.e. $E[\varepsilon] = 0$ and
477 $\text{var}(\varepsilon)=1$]. The variance of ε_B can be calculated as follows:

$$478 \text{var}(\varepsilon_B) = \text{var}(\rho\varepsilon_A + \varepsilon\sqrt{1 - \rho^2}) = \text{var}(\rho\varepsilon_A) + \text{var}(\varepsilon\sqrt{1 - \rho^2}) = \rho^2\text{var}(\varepsilon_A) + (1 - \\ 479 \rho^2)\text{var}(\varepsilon) = \rho^2 + 1 - \rho^2 = 1$$

480 Then the real coupling between the two distributions can be calculated as:

Multiscale Detrended Cross-Correlation Coefficient

481 $\rho(\varepsilon_A, \varepsilon_B) = \frac{cov(\varepsilon_A, \varepsilon_B)}{\sqrt{var(\varepsilon_A)var(\varepsilon_B)}} = cov(\varepsilon_A, \varepsilon_B) = E[\varepsilon_A \varepsilon_B] - E[\varepsilon_A]E[\varepsilon_B] = E[\varepsilon_A \varepsilon_B] = E[\rho \varepsilon_A^2 +$

482 $\varepsilon_A \varepsilon \sqrt{1 - \rho^2}] = E[\rho \varepsilon_A^2] + E[\varepsilon_A \varepsilon \sqrt{1 - \rho^2}] = \rho E[\varepsilon_A^2] + \sqrt{1 - \rho^2} E[\varepsilon_A \varepsilon] = \rho E[\varepsilon_A^2] +$

483 $\sqrt{1 - \rho^2} E[\varepsilon_A] E[\varepsilon] = \rho E[\varepsilon_A^2] = \rho(var(\varepsilon_A) + E[\varepsilon_A]^2) = \rho$

484 The two ARFIMA series ($A = \sum_{n=0}^{100} \alpha_n(d) \varepsilon_{A,t-n}$, $B = \sum_{n=0}^{100} \alpha_n(d) \varepsilon_{B,t-n}$) are the
485 cumulative sums of ε_A and ε_B multiplied by a step-specific weight $[(\alpha_n(d))]$. The only source
486 of stochasticity of A and B are ε_A and ε_B , meaning that the true coupling between A and B is ρ .

487 **Directed MDC₃**

488 The difference of the directed variant of MDC₃ is that for every detrended signal \hat{X}_t and \hat{Y}_t the
489 cross-covariance(\hat{X}_t, \hat{Y}_t) is estimated, instead of the covariance(\hat{X}_t, \hat{Y}_t). The maximal covariance
490 – in absolute terms – for negative lags is used for the DCCC estimation when \hat{X}_t is leading.
491 Similarly, the maximal covariance – in absolute terms – for positive lags is used for the DCCC
492 estimation when \hat{X}_t is following.

493

494

495

496

497

498

499

500

Multiscale Detrended Cross-Correlation Coefficient

501 **References**

- 502 1. Berger H. Über das Elektrenkephalogramm des Menschen (On the human elec-
503 troencephalogram). *Arch F Psychiatr U Nervenkrankh.* 1929;87(1875):527–70.
- 504 2. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor
505 cortex of resting human brain using echo-planar mri. *Magn Reson Med.* 1995
506 Oct;34(4):537–41.
- 507 3. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Functional Connectivity: The Principal-
508 Component Analysis of Large (PET) Data Sets. *J Cereb Blood Flow Metab.* 1993 Jan
509 29;13(1):5–14.
- 510 4. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and
511 interpretations. *NeuroImage.* 2010;52(3):1059–69.
- 512 5. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain
513 signals. *Hum Brain Mapp.* 1999;8(4):194–208.
- 514 6. Stam CJ, Nolte G, Daffertshofer A. Phase lag index: Assessment of functional connectivity
515 from multi channel EEG and MEG with diminished bias from common sources. *Hum Brain
516 Mapp.* 2007 Nov;28(11):1178–93.
- 517 7. Stam CJ, Van Dijk BW. Synchronization likelihood: An unbiased measure of generalized
518 synchronization in multivariate data sets. *Phys Nonlinear Phenom.* 2002;163(3–4):236–51.
- 519 8. van den Heuvel MP, Fornito A. Brain Networks in Schizophrenia. *Neuropsychol Rev.* 2014
520 Mar 6;24(1):32–48.
- 521 9. Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: Detecting and
522 evaluating dependencies between variables. *Bioinformatics.* 2002 Oct 1;18(Suppl
523 2):S231–40.
- 524 10. Lindquist M. Neuroimaging results altered by varying analysis pipelines. *Nature.* 2020 Jun
525 20;582(7810):36–7.
- 526 11. Mukli P, Nagy Z, Racz FS, Portoro I, Hartmann A, Stylianou O, et al. Two-Tiered
527 Response of Cardiorespiratory-Cerebrovascular Network to Orthostatic Challenge. *Front
528 Physiol [Internet].* 2021 Mar 2;12. Available from:
529 <https://www.frontiersin.org/articles/10.3389/fphys.2021.622569/full>
- 530 12. Stylianou O, Racz FS, Eke A, Mukli P. Scale-Free Coupled Dynamics in Brain Networks
531 Captured by Bivariate Focus-Based Multifractal Analysis. *Front Physiol.* 2021 Feb
532 3;11(February):1–14.
- 533 13. Jalili M. Functional Brain Networks: Does the Choice of Dependency Estimator and
534 Binarization Method Matter? *Sci Rep.* 2016 Sep 15;6(1):29780.
- 535 14. Fornito A, Zalesky A, Bullmore ET, editors. Chapter 1 - An Introduction to Brain
536 Networks. In: *Fundamentals of Brain Network Analysis [Internet].* San Diego: Academic
537 Press; 2016 [cited 2023 May 15]. p. 1–35. Available from:
538 <https://www.sciencedirect.com/science/article/pii/B9780124079083000017>

Multiscale Detrended Cross-Correlation Coefficient

539 15. Priestley MB. Non-linear and non-stationary time series analysis [Internet]. London:
540 Academic Press. 1988 [cited 2023 Jun 21]. Available from:
541 <https://ui.adsabs.harvard.edu/abs/1988nlns.book.....P>

542 16. Semmlow J. Chapter 10 - Stochastic, Nonstationary, and Nonlinear Systems and Signals.
543 In: Semmlow J, editor. Circuits, Signals and Systems for Bioengineers (Third Edition)
544 [Internet]. Academic Press; 2018 [cited 2023 Jun 21]. p. 449–89. (Biomedical
545 Engineering). Available from:
546 <https://www.sciencedirect.com/science/article/pii/B9780128093955000102>

547 17. Zebende GF. DCCA cross-correlation coefficient: Quantifying level of cross-correlation.
548 Phys Stat Mech Its Appl. 2011 Feb;390(4):614–8.

549 18. Horvatic D, Stanley HE, Podobnik B. Detrended cross-correlation analysis for non-
550 stationary time series with periodic trends. EPL Europhys Lett. 2011 Apr 1;94(1):18007.

551 19. Podobnik B, Jiang ZQ, Zhou WX, Stanley HE. Statistical tests for power-law cross-
552 correlated processes. Phys Rev E. 2011 Dec 22;84(6):066118.

553 20. Kristoufek L. Measuring correlations between non-stationary series with DCCA
554 coefficient. Phys Stat Mech Its Appl. 2014 May;402:291–8.

555 21. Alexander RA. A note on averaging correlations. Bull Psychon Soc. 1990 Oct 5;28(4):335–
556 6.

557 22. Corey DM, Dunlap WP, Burke MJ. Averaging correlations: Expected values and bias in
558 combined pearson rs and fisher's z transformations. J Gen Psychol. 1998;125(3):245–61.

559 23. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful
560 Approach to Multiple Testing. J R Stat Soc Ser B Methodol. 1995 Jan;57(1):289–300.

561 24. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003
562 Aug;19(4):1273–302.

563 25. Sanz Leon P, Knock S, Woodman M, Domide L, Mersmann J, McIntosh A, et al. The
564 Virtual Brain: a simulator of primate brain network dynamics. Front Neuroinformatics
565 [Internet]. 2013 [cited 2023 Jun 21];7. Available from:
566 <https://www.frontiersin.org/articles/10.3389/fninf.2013.00010>

567 26. Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, et al. Brain
568 simulation as a cloud service: The Virtual Brain on EBRAINS. NeuroImage. 2022 May
569 1;251:118973.

570 27. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An
571 automated labeling system for subdividing the human cerebral cortex on MRI scans into
572 gyral based regions of interest. NeuroImage. 2006 Jul;31(3):968–80.

573 28. Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, Corbetta M. Resting-State
574 Functional Connectivity Emerges from Structurally and Dynamically Shaped Slow Linear
575 Fluctuations. J Neurosci. 2013 Jul 3;33(27):11239–52.

Multiscale Detrended Cross-Correlation Coefficient

576 29. Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. Mathematical framework for large-scale
577 brain network modeling in The Virtual Brain. *NeuroImage*. 2015 May;111:385–430.

578 30. Frässle S, Lomakina EI, Razi A, Friston KJ, Buhmann JM, Stephan KE. Regression DCM
579 for fMRI. *NeuroImage*. 2017 Jul 15;155:406–21.

580 31. Frässle S, Lomakina EI, Kasper L, Manjaly ZM, Leff A, Pruessmann KP, et al. A
581 generative model of whole-brain effective connectivity. *NeuroImage*. 2018 Oct 1;179:505–
582 29.

583 32. Frässle S, Harrison SJ, Heinze J, Clementz BA, Tamminga CA, Sweeney JA, et al. Regression dynamic causal modeling for resting-state fMRI. *Hum Brain Mapp*. 2021 May
584 1;42(7):2159–80.

586 33. Frässle S, Aponte EA, Bollmann S, Brodersen KH, Do CT, Harrison OK, et al. TAPAS:
587 An Open-Source Software Package for Translational Neuromodeling and Computational
588 Psychiatry. *Front Psychiatry*. 2021 Jun 2;12.

589 34. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open Source Software for
590 Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. *Comput Intell
591 Neurosci*. 2011;2011:1–9.

592 35. Hämäläinen MS, Ilmoniemi RJ. Interpreting magnetic fields of the brain: minimum norm
593 estimates. *Med Biol Eng Comput*. 1994 Jan;32(1):35–42.

594 36. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: A User-Friendly
595 Application for MEG/EEG Analysis. *Comput Intell Neurosci*. 2011;2011:1–13.

596 37. Tadel F, Bock E, Niso G, Mosher JC, Cousineau M, Pantazis D, et al. MEG/EEG Group
597 Analysis With Brainstorm. *Front Neurosci* [Internet]. 2019 Feb 8;13. Available from:
598 <https://www.frontiersin.org/article/10.3389/fnins.2019.00076/full>

599 38. Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud G, et al.
600 Resting-state fMRI in the Human Connectome Project. *NeuroImage*. 2013 Oct;80:144–68.

601 39. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. The
602 minimal preprocessing pipelines for the Human Connectome Project. *NeuroImage*. 2013
603 Oct;80:105–24.

604 40. Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, et al.
605 Network modelling methods for FMRI. *NeuroImage*. 2011 Jan 15;54(2):875–91.

606 41. Honey CJ, Honey CJ, Sporns O, Sporns O, Cammoun L, Cammoun L, et al. Predicting
607 human resting-state functional connectivity from structural connectivity. *Proc Natl Acad
608 Sci U S A*. 2009;106(6):2035–40.

609 42. Chen GG, Chen GG, Xie C, Li SJ. Negative Functional Connectivity and Its Dependence
610 on the Shortest Path Length of Positive Network in the Resting-State Human Brain. *Brain
611 Connect*. 2011 Sep;1(3):195–206.

Multiscale Detrended Cross-Correlation Coefficient

612 43. Zhan L, Jenkins LM, Wolfson OE, GadElkarim JJ, Nocito K, Thompson PM, et al. The
613 significance of negative correlations in brain connectivity. *J Comp Neurol*. 2017 Oct
614 15;525(15):3251–65.

615 44. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic
616 organization of DNA nucleotides. *Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip*
617 Top. 1994 Feb;49(2):1685–9.

618 45. Podobnik B, Stanley HE. Detrended Cross-Correlation Analysis: A New Method for
619 Analyzing Two Nonstationary Time Series. *Phys Rev Lett*. 2008 Feb 27;100(8):084102.

620 46. Blythe DAJ, Nikulin VV, Müller KR. Robust Statistical Detection of Power-Law Cross-
621 Correlation. *Sci Rep*. 2016 Jul 2;6(1):27089.

622 47. Stylianou O, Kaposzta Z, Czoch A, Stefanovski L, Yabluchanskiy A, Racz FS, et al. Scale-
623 Free Functional Brain Networks Exhibit Increased Connectivity, Are More Integrated and
624 Less Segregated in Patients with Parkinson’s Disease following Dopaminergic Treatment.
625 *Fractal Fract*. 2022 Dec 13;6(12):737.

626 48. Stylianou O, Racz FS, Kim K, Kaposzta Z, Czoch A, Yabluchanskiy A, et al. Multifractal
627 Functional Connectivity Analysis of Electroencephalogram Reveals Reorganization of
628 Brain Networks in a Visual Pattern Recognition Paradigm. *Front Hum Neurosci* [Internet].
629 2021 Oct 18;15. Available from:
630 <https://www.frontiersin.org/articles/10.3389/fnhum.2021.740225/full>

631 49. Kwapienie J, Oświęcimka P, Drożdż S. Detrended fluctuation analysis made flexible to
632 detect range of cross-correlated fluctuations. *Phys Rev E*. 2015 Nov 30;92(5):052815.

633 50. Kaposzta Z, Czoch A, Stylianou O, Kim K, Mukli P, Eke A, et al. Real-Time Algorithm
634 for Detrended Cross-Correlation Analysis of Long-Range Coupled Processes. *Front*
635 *Physiol* [Internet]. 2022 Mar 11;13. Available from:
636 <https://www.frontiersin.org/articles/10.3389/fphys.2022.817268/full>

637 51. Kaposzta Z, Czoch A, Mukli P, Stylianou O, Liu DH, Eke A, et al. Fingerprints of
638 decreased cognitive performance on fractal connectivity dynamics in healthy aging.
639 *GeroScience* [Internet]. 2023 Dec 20 [cited 2024 Jan 2]; Available from:
640 <https://doi.org/10.1007/s11357-023-01022-x>

641

642 **Author Contributions**

643 O.S. developed MDC3, wrote the MATLAB, R and Python code for MDC3, performed data
644 analysis and interpretation, and wrote the first draft of the manuscript. G.S. performed data
645 analysis and interpretation. M.H. contributed to data interpretation. I.S.M. performed data
646 analysis and interpretation. D.L-S. performed data analysis and interpretation M.S. performed
647 data analysis and interpretation. P.R. provided conceptual guidance, supervision and funding
648 throughout the study. All authors contributed to reviewing the manuscript and approved its
649 final version.

Multiscale Detrended Cross-Correlation Coefficient

650 **Financial Disclosure Statement**

651 P.R. acknowledges support by Digital Europe TEF-Health 101100700, EU H2020 Virtual Brain Cloud
652 826421, Human Brain Project SGA2 785907; Human Brain Project SGA3 945539, ERC Consolidator
653 683049; German Research Foundation SFB 1436 (project ID 425899996); SFB 1315 (project ID
654 327654276); SFB 936 (project ID 178316478; SFB-TRR 295 (project ID 424778381); SPP Computational
655 Connectomics RI 2073/6-1, RI 2073/10-2, RI 2073/9-1; PHRASE Horizon EIC grant 101058240; Berlin
656 Institute of Health & Foundation Charité, Johanna Quandt Excellence Initiative; ERAPerMed Pattern-
657 Cog, the Virtual Research Environment at the Charité Berlin – a node of EBRAINS Health Data Cloud.