

Pervasive gene flow despite strong and varied reproductive barriers in swordtails

Stepfanie M. Aguillon^{a,b,c,1}, Sophia K. Haase Cox^a, Quinn K. Langdon^{a,b,d}, Theresa R. Gunn^{a,b}, John J. Baczenas^a, Shreya M. Banerjee^{a,e}, Alexandra E. Donny^a, Benjamin M. Moran^{a,b}, Carla Gutiérrez-Rodríguez^f, Oscar Ríos-Cárdenas^f, Molly R. Morris^g, Daniel L. Powell^{a,b,*}, Molly Schumer^{a,b,h,1*}

^a Department of Biology, Stanford University, Stanford, CA, USA

^b Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, México

^c Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA

^d Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA

^e Center for Population Biology, University of California, Davis, Davis, CA, USA

^f Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Veracruz, México

^g Department of Biological Sciences, Ohio University, Athens, Ohio, USA

^h Freeman Hrabowski Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA

* Joint senior authors on this work

¹ Corresponding authors: aguillon@ucla.edu (SMA), schumer@stanford.edu (MS)

Author contributions: SMA, DLP, and MS conceived the study. SMA, SHC, QKL, TRG, JJB, SMB, AED, BMM, CG-R, OR-C, MRM, DLP, and MS performed data collection and/or analyses. SMA and MS wrote the manuscript with input from other authors. All authors approved the final version of the manuscript.

Competing interest statement: The authors declare no conflict of interest.

Classification: Biological Sciences, Evolution

32

Keywords: hybridization, assortative mating, reproductive isolation, genetic
34 incompatibilities

36 **Data deposition:** Code and data to replicate all analyses and figures are available on
GitHub at <https://github.com/stepfanie-aguillon/swordtail-reproductive-barriers> and the
38 Dryad Digital Repository (accession pending). All newly collected DNA sequence data
generated for this project are available through the NCBI Sequence Read Archive
40 (accession pending).

42 **This PDF file includes:**

Main Text
44 Figures 1 to 5

Abstract

46 One of the mechanisms that can lead to the formation of new species occurs through
the evolution of reproductive barriers. However, recent research has demonstrated that
48 hybridization has been pervasive across the tree of life even in the presence of strong
barriers. Swordtail fishes (genus *Xiphophorus*) are an emerging model system for
50 studying the interface between these barriers and hybridization. We document
overlapping mechanisms that act as barriers between closely related species, *X.*
52 *birchmanni* and *X. cortezi*, by combining genomic sequencing from natural hybrid
populations, artificial crosses, behavioral assays, sperm performance, and
54 developmental studies. We show that strong assortative mating plays a key role in
maintaining subpopulations with distinct ancestry in natural hybrid populations. Lab
56 experiments demonstrate that artificial F₁ crosses experience dysfunction: crosses with
X. birchmanni females were largely inviable and crosses with *X. cortezi* females had a
58 heavily skewed sex ratio. Using F₂ hybrids we identify several genomic regions that
strongly impact hybrid viability. Strikingly, two of these regions underlie genetic
60 incompatibilities in hybrids between *X. birchmanni* and its sister species *X. malinche*.
Our results demonstrate that ancient hybridization has played a role in the origin of this
62 shared genetic incompatibility. Moreover, ancestry mismatch at these incompatible
regions has remarkably similar consequences for phenotypes and hybrid survival in *X.*
64 *cortezi* × *X. birchmanni* hybrids as in *X. malinche* × *X. birchmanni* hybrids. Our findings
identify varied reproductive barriers that shape genetic exchange between naturally
66 hybridizing species and highlight the complex evolutionary outcomes of hybridization.

68 Significance Statement

70 Biologists are fascinated by how the diverse species we see on Earth have arisen and
been maintained. One driver of this process is the evolution of reproductive barriers
72 between species. Despite the commonality of these barriers, many species still
exchange genes through a process called hybridization. Here, we show that related
74 species can have a striking array of reproductive barriers—from genetic interactions that
harm hybrids to mate preferences that reduce hybridization in the first place. However,
we also find that genetic exchange between these species is very common, and may

76 itself play an important role in the evolution of reproductive barriers. Together, our work
77 highlights the complex web of interactions that impact the origin and persistence of
78 distinct species.

80 **Introduction**

82 There are “endless forms” of life on Earth, yet all these diverse lineages originally trace
84 back to a common ancestor. Understanding the mechanisms through which
86 reproductive isolation between populations arises and leads to new species remains a
88 foundational goal in evolutionary biology (1). These isolating mechanisms are diverse,
90 ranging from changes in mating preferences or reproductive timing (i.e., “pre-zygotic
92 barriers”) to genetic changes that impact the viability or fertility of hybrids (i.e., “post-
zygotic barriers”). Despite the well-documented presence of these varied isolating
mechanisms, we now know that genetic exchange between species through
hybridization has been a pervasive evolutionary force across the tree of life (2–4).
Reconciling the prevalence of hybridization with the persistence of strong reproductive
barriers between many extant species remains a persistent puzzle in evolutionary
biology.

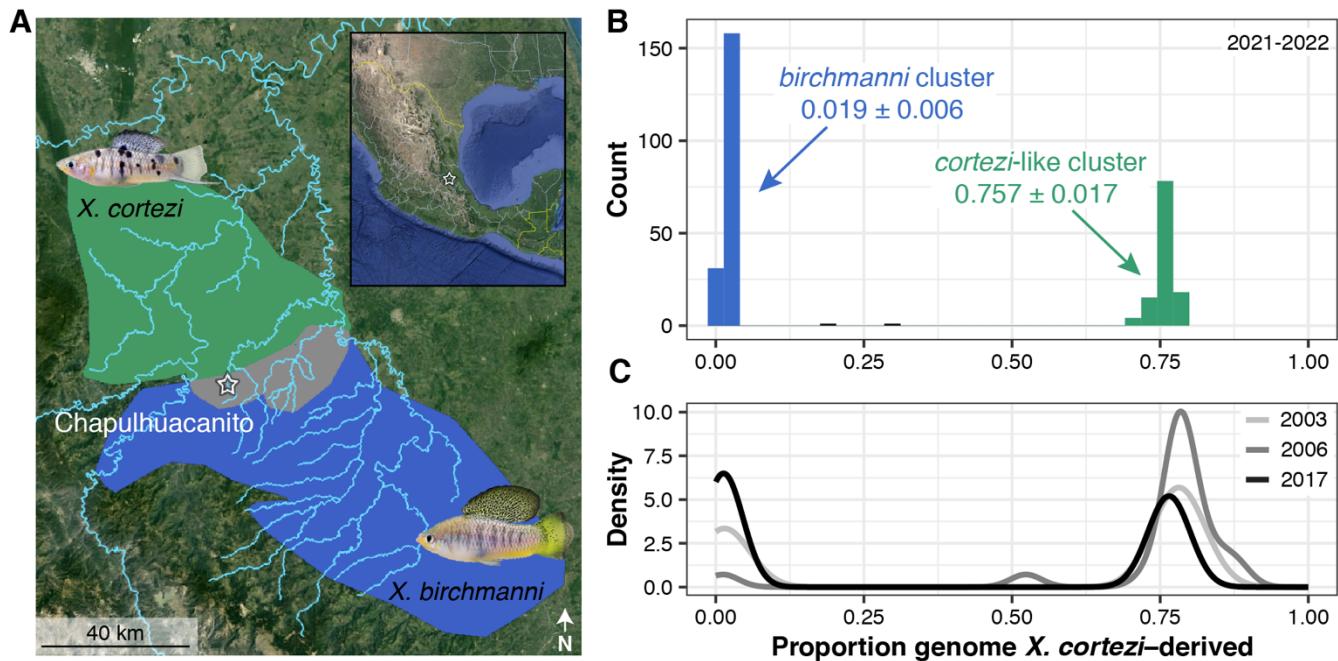
Decades of research in evolutionary biology has led to a rich understanding of
the mechanisms through which barriers to gene flow evolve (e.g., 1, 5, 6). Given
sufficient divergence between incipient species, genomic variants will arise that
differentiate lineages, and a subset of these variants may interact poorly when
combined in hybrid genomes (7–9). These so-called “genetic incompatibilities” function
as post-zygotic barriers between hybridizing species and often result in inviability,
reduced fertility, or reduced fitness in hybrid offspring (6). Pre-zygotic behavioral
barriers where individuals prefer to mate with conspecifics over heterospecifics have
also been extensively documented (5), as have behavioral preferences for different
environmental factors, which can lead to similar dynamics (10). Initially, different
isolating mechanisms may work independently to limit genetic exchange between
incipient species, but over time they may evolve to “reinforce” each other to form more
complete barriers to genetic exchange (11–13). For instance, if hybridization exposes
genetic incompatibilities between two incipient species, this can favor the evolution of

behavioral preferences that reduce the frequency of interspecific mating events
108 occurring in the first place. While each individual mechanism of reproductive isolation
may incompletely limit gene flow, in concert multiple mechanisms are predicted to more
110 completely reduce genetic exchange between diverging lineages (13–16).

The increasing availability of genomic data has exposed the ways in which this
112 classic view of the evolution of reproductive isolation is discordant with patterns
observed in many species. For example, in groups such *Drosophila* (17, 18) and
114 *Heliconius* (19–21), both historical and contemporary genetic exchange is common
between lineages, despite the presence of multiple, strong isolating barriers in
116 contemporary species. This raises fundamental questions about how isolating barriers
interact—and potentially evolve—in the face of repeated and ongoing gene flow
118 between species over evolutionary time (3, 22). While the effects of hybridization on the
movement of alleles underlying adaptive traits have long been recognized (3, 23), the
120 broader consequences for reproductive isolation as a result of this frequent genetic
exchange has been less thoroughly investigated (24, 25). Historically, the field has
122 assumed that prevalent hybridization will erase behavioral preferences, environmental
adaptations, or genetic incompatibilities that distinguish hybridizing lineages (1, 26).
124 However, the increased appreciation of the complexity of hybridization on a
phylogenetic scale—with genomic data indicating that many species have been
126 simultaneously exchanging genes (27–30)—complicates this expectation. Instead,
introgression of genes that impact reproductive isolation between two species could
128 have secondary consequences on reproductive isolation when hybridization occurs with
additional species where these barriers did not originally evolve. Such dynamics would
130 have important implications for our understanding of how reproductive barriers evolve
and persist in nature.

132 We leverage naturally hybridizing species of swordtails (*Xiphophorus*),
freshwater fish native to eastern México and Central America, to explore their complex
134 reproductive barriers as well as how hybridization interacts with these barriers in nature.
Past work in this species group has explored the role of a variety of isolating
136 mechanisms in this genus independently: including, genetic incompatibilities (31–33),
genomic architecture (30, 34), mate preferences (35–37), and ecological differences

138 (38). Here, we combine whole genome sequencing from a natural hybrid population and
139 artificial crosses with behavioral assays in the closely related species, *X. birchmanni*
140 and *X. cortezi* (39), to disentangle the isolating mechanisms that impact them in nature.
141 First, we combine extensive genomic sampling of a newly identified hybrid population
142 with mate choice assays and paired mother/embryo sequencing to explore the role of
143 assortative mating in the wild. Using artificial crosses in the lab, we characterize the
144 viability of hybrid offspring and compare sperm morphology and motility between
145 parental species and lab-generated hybrids. Finally, we leverage genome-wide data
146 from second generation lab-generated hybrids to characterize genetic incompatibilities
147 and their phenotypic consequences. Despite ongoing gene flow between *X. cortezi* and
148 *X. birchmanni*, we find evidence for multiple interacting isolating mechanisms (both pre-
149 and post-zygotic) that work in concert to form strong but incomplete reproductive
150 barriers between these species. Moreover, we explicitly test the role of loci that have
151 introgressed into *X. cortezi* from a third species on reproductive isolation between *X.*
152 *cortezi* and *X. birchmanni*. Results of these experiments provide the first direct evidence
153 that introgression can contribute to the landscape of genetic incompatibilities between
154 species. This finding has profound implications for our understanding of how isolating
155 barriers evolve in the face of gene flow.


156

Results

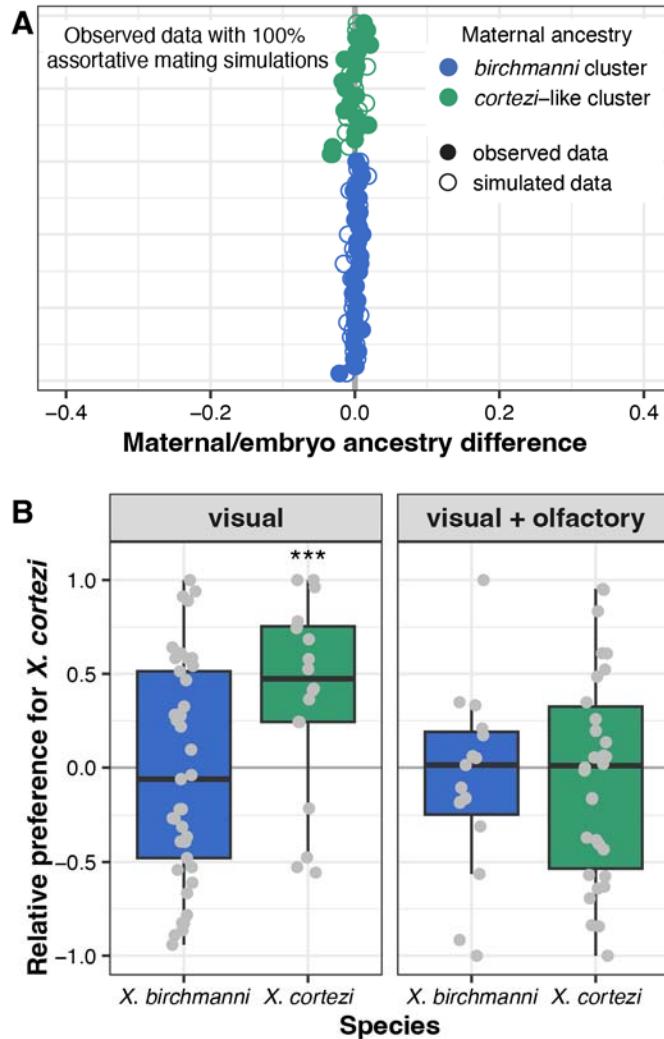
157 **Genomic ancestry in a new hybrid population.** We applied whole-genome
158 sequencing and local ancestry inference (39, 40) to characterize the genomic ancestry
159 of 306 adults that we sampled in 2021-2022 from Chapulhuacanito, a recently identified
160 hybrid population between *X. birchmanni* and *X. cortezi* (Fig. 1A). Using posterior
161 probabilities of ancestry at ~1 million ancestry informative sites distributed across the
162 genome, we calculated the proportion of the genome derived from the two parental
163 species for each individual. We found a strong bimodal distribution of ancestry
164 proportions among individuals sampled from the population (Fig. 1B; Hartigan's dip
165 statistic for unimodality, $D = 0.166$, $P < 2.2 \times 10^{-16}$). Adults typically fell into one of two
166 ancestry clusters: ~62% of sampled individuals belonged to a nearly pure *birchmanni*
167 cluster deriving only $1.9 \pm 0.6\%$ (mean \pm SD) of their genome from *X. cortezi*, whereas
168

~38% belonged to an admixed *cortezi*-like cluster deriving $75.7 \pm 1.7\%$ of their genome
170 from *X. cortezi* (Fig. 1B). This bimodal distribution of ancestry is strikingly similar to that
172 found in an independently formed hybrid population between *X. birchmanni* and *X.
cortezi* in the Río Santa Cruz (39), highlighting repeatable evolutionary outcomes in
174 these replicated instances of natural hybridization. In both populations, individuals within
the *birchmanni* and *cortezi*-like clusters have each fixed for the *X. birchmanni* and *X.
cortezi* mitochondrial haplotypes, respectively.

176 To better understand whether the strong population structure we observe at
Chapulhuacanito has been stable over time, we took advantage of data from a
178 companion study (41) that included genomic data from historical samples in 2003 ($N = 11$),
2006 ($N = 21$), and 2017 ($N = 41$). We found a similar bimodal distribution of
180 ancestry in these historical collections (Fig. 1C, S1; Hartigan's dip statistic for
unimodality across the three years, $D = 0.180$, $P < 2.2 \times 10^{-16}$; see Table S1 for analyses
182 separated by year), demonstrating that ancestry structure in this population has been
stable for at least 19 years or ~40 generations. In fact, even the ancestry proportions
184 within the two clusters of individuals have remained remarkably consistent over time,
and mirror contemporary distributions: ranging from 1.2% to $1.5\% \pm 0.4\%$ (mean \pm SD)
186 in the *birchmanni* cluster, and $76.5\% \pm 1.5\%$ to $79.6\% \pm 3.5\%$ in the admixed *cortezi*-
like cluster (Table S2). Across these historical samples, all individuals within the
188 *birchmanni* and *cortezi*-like clusters are fixed for their respective mitochondrial
haplotypes, as is the case for the contemporary samples.

190

Fig. 1. Distribution of genome-wide ancestry in a newly described hybridizing population of
192 *Xiphophorus cortezi* and *X. birchmanni*. (A) The Chapulhuacanito population is located along a
tributary of the Río San Pedro where the *X. cortezi* (green) and *X. birchmanni* (blue) ranges overlap.
194 (B) This population displays strong bimodality in genome-wide ancestry (Hartigan's dip statistic for
unimodality, $D = 0.166$, $P < 2.2 \times 10^{-16}$) with individuals primarily falling into two ancestry clusters:
196 ~62% of individuals are nearly pure *birchmanni* throughout the genome (0.019 ± 0.006 , blue
“*birchmanni* cluster”), while ~38% are admixed between the two species (0.757 ± 0.017 , green
198 “*cortezi-like* cluster”). (C) The strong bimodality present in contemporary samples has been present
in this population for at least the past 19 years (~40 generations; $D = 0.180$, $P < 2.2 \times 10^{-16}$ for
200 historical samples).


202 **Intermediate individuals are the result of recent cross-cluster mating events.**

204 Despite the strong bimodal population structure present in both the historical and
contemporary samples, we identified one individual in 2006 and two individuals in 2021-
206 2022 with genome-wide ancestry proportions that fell between the two clusters (Fig. 1B-
C, S1). Of these individuals, two have the *X. cortezi* mitochondrial haplotype and one
208 has the *X. birchmanni* mitochondrial haplotype (sampled in 2022). Because these
individuals have ancestry proportions suggestive of recent generation cross-cluster
mating events, we performed simulations of mating events between the two clusters to
210 see if we could recapitulate their observed ancestry proportions, focusing on the two

contemporary samples (SI Appendix 1). Genotype patterns in ancestry tracts (Fig. S2) and the results of our simulations (Fig. S3) confirm that both individuals are clearly the product of recent generation mating events between the two ancestry clusters.

214

Strong assortative mating in wild populations. The bimodal ancestry distributions in Chapulhuacanito and presence of only a few, recent-generation cross-cluster individuals hints that assortative mating may exist between the *birchmanni* and admixed *cortezi*-like clusters (see SI Appendix 2 for discussion of alternative explanations). To directly test for evidence of assortative mating, we leveraged the unique biology of these live-bearing fish: we performed whole genome sequencing on pregnant females we collected from the wild ($N = 49$) and at least two of their randomly selected developing embryos ($N = 101$). To infer the genome-wide ancestry (and ancestry cluster) of the male that the female chose to mate with, we compared the difference between the genome-wide ancestry of the mother and her embryos. Matings within the same cluster are predicted to result in small differences in ancestry between the female and her embryos, while cross-cluster matings result in larger differences in ancestry (from simulations, on average $36.7\% \pm 0.72\%$ in this population; Fig. S4). Across all mother/embryo pairs, we found no evidence for cross-cluster mating (Fig. 2A, S5), allowing us to definitively reject a model of random mating in this population. In fact, by parameterizing simulations with the observed ancestry data (SI Appendix 3), we found that complete assortative mating by ancestry provides the best fit to our data (Fig. 2A, S6). Because we identified a few instances of cross-cluster matings in our larger dataset at Chapulhuacanito (see previous section), we know assortative mating by ancestry is not always complete. However, these results are consistent with power limitations expected from our mother/embryo sampling effort (Fig. S7). Overall, our mother/embryo results provide compelling evidence for extremely strong assortative mating by ancestry in the Chapulhuacanito hybrid population.

238

Fig. 2. Assortative mating by ancestry in the wild is exceptionally strong but is not explained by in-lab female preference trials. (A) Paired mother/embryo sequencing provides evidence for strong assortative mating in Chapulhuacanito. The difference in observed genome-wide ancestry between females and their embryos (closed circles) are tightly aligned with the zero-line, indicating that females from both ancestry clusters mated exclusively with males from their own cluster. Simulations of complete assortative mating by ancestry (open circles) most closely match our observations. See Fig. S4 for a simulation of random mating. Points are ordered along the y-axis by increasing maternal X. cortezi-derived genomic ancestry. The zero-line indicates a difference between maternal and embryo ancestry of zero. (B) Female mate preferences in allopatric individuals of the two hybridizing species are complex. *X. birchmanni* females (blue boxplots) lack preferences for either con- or hetero-specific males in both visual (Wilcoxon signed-rank test, $P = 0.4288$) and visual with olfactory ($P = 0.5932$) trials. By contrast, *X. cortezi* females (green boxplots) showed strong preferences for conspecific males in visual trials ($***P = 0.0058$), but lacked preferences in trials

252 where olfactory cues were included ($P = 0.6289$). Relative preference for *X. cortezi* is calculated as
253 the difference between time spent with the *X. cortezi* cue and time spent with the *X. birchmanni* cue,
254 divided by the total time spent with either. Positive values indicate preference for *X. cortezi* males,
255 while negative values indicate preference for *X. birchmanni* males.

256

Female behavioral trials do not explain assortative mating. To investigate
257 behavioral mechanisms that might be linked to assortative mating in these species, we
258 collected *X. birchmanni* and *X. cortezi* individuals from allopatric populations to test the
259 presence and strength of conspecific mating preferences. Female preferences for
260 conspecific male visual and olfactory cues are common across *Xiphophorus* (e.g., 42,
261 43, 37), and are thought to be important in maintaining isolation between species (44).
262 However, mating preferences have not been studied in the context of hybridization
263 between *X. birchmanni* and *X. cortezi*. Male *X. birchmanni* and *X. cortezi* have a variety
264 of morphological differences (Fig. 1A), including greater body depth and expanded
265 dorsal fin in *X. birchmanni* and the presence of a “sword” extension of the caudal fin in
266 *X. cortezi*. Despite clear genetic evidence of assortative mating by ancestry, we found
267 complex results from behavioral trials (Fig. 2B). Surprisingly, *X. birchmanni* females did
268 not demonstrate preferences for conspecific males in either visual (Wilcoxon signed-
269 rank test, $P = 0.4288$) or visual with olfactory ($P = 0.5932$) trials. By contrast, *X. cortezi*
270 females strongly preferred conspecific males in visual trials ($P = 0.0058$), but not when
271 olfactory cues were included ($P = 0.6289$). Based on data from other species in the
272 genus, we hypothesized that these species may differ in released pheromones and
273 associated preferences (45, 46). However, we did not recover mating preferences using
274 isolated male pheromones in females from allopatric populations or from either ancestry
275 cluster in Chapulhuacanito (Fig. S8-S9, SI Appendix 4). Taken together, our behavioral
276 experiments do not clearly explain the assortative mating observed in Chapulhuacanito.
277 Instead, they hint at barriers to gene flow between these two species involving more
278 than just pre-zygotic mechanisms. However, we caution against over-interpretation of
279 behavioral results given high individual variability and low power in these trials (SI
280 Appendix 5).

282

Artificial crosses between parental species show dysfunction in both directions.

284 To begin to characterize post-zygotic mechanisms that may function as barriers to gene
285 flow between these two species, we produced artificial F_1 hybrids between *X. cortezi* and *X. birchmanni* in laboratory mesocosms. We seeded two large mesocosms with
286 wild-caught individuals from allopatric populations—one with female *X. cortezi* and male
287 *X. birchmanni*, and one with female *X. birchmanni* and male *X. cortezi*. Strikingly, we
288 found dysfunction in both directions of the cross, though of differing types (Table S3).
289 The cross with *X. cortezi* females and *X. birchmanni* males produced F_1 offspring in our
290 mesocosms, but with a heavily skewed sex bias. In a collection of 32 F_1 individuals from
291 multiple broods, only 5 males were produced (15.6%; exact binomial test: $P = 0.0001$).
292 We see no evidence for sex-ratio distortion in either of the parental species (data from
293 the Xiphophorus Stock Center, *X. cortezi*: 49.4% male, $N = 472$, $P = 0.78$; *X.*
294 *birchmanni*: 46.5% male, $N = 770$, $P = 0.11$) or in a sample of 58 mature F_2 s produced
295 from the F_1 intercross (58.6% male, $P = 0.16$).
296

297 The alternate cross direction with *X. birchmanni* females and *X. cortezi* males
298 was largely unsuccessful: we produced only a single F_1 offspring in our mesocosms
299 over several years. To better understand the causes of this asymmetry, we performed
300 artificial insemination in 18 female *X. birchmanni* with sperm from *X. cortezi* (a
301 procedure we routinely conduct successfully in *Xiphophorus*, 38). No offspring were
302 born from these females, consistent with the results for this cross direction in the
303 mesocosms. We also performed dissections on females at a range of timepoints after
304 artificial insemination and examined embryonic phenotypes. We found that in several
305 cases, fertilization had occurred (Fig. S10), though we never observed embryonic
306 development beyond this early embryonic shield stage. We note that in these cases,
307 embryos appeared to have normal morphology, with no signs of degradation or
308 reabsorption. Together, these results are suggestive of nearly complete embryonic
309 inviability early in development in this cross direction.
310

311 **Sperm morphology and motility differs between parental species and their lab-
312 generated hybrids.** Some barriers to gene flow function after mating occurs but before
313 zygotes are formed (47). One such mechanism, conspecific sperm precedence (48),

314 results in a higher frequency of fertilization with conspecific sperm. Moreover, in hybrids,
316 abnormal sperm morphology and motility are relatively common. To begin to
318 characterize this potential barrier to reproduction in *Xiphophorus*, we assessed sperm
320 morphology and motility in four individuals each of *X. birchmanni*, *X. cortezi*, and their F₁
322 and F₂ hybrids (SI Appendix 6). We found evidence of both species-level differences in
324 sperm morphology between males, as well as recombinant phenotypes in hybrids
326 (Table S4). *X. birchmanni* sperm had significantly longer heads than all other groups
328 (Fig. S11A, $F_{3,12} = 25.4$, $P = 1.75 \times 10^{-5}$) and wider heads than either F₁ or F₂ hybrids
330 (Fig. S11B, $F_{3,12} = 4.377$, $P = 0.026$), though the proportion of head length to head width
332 did not differ between groups (Fig. S11C). Additionally, *X. cortezi* sperm had
334 significantly longer midpieces than all other groups (Fig. S11D, $F_{3,12} = 77.78$, $P = 3.93 \times 10^{-8}$). Overall, hybrid sperm more closely resembled *X. cortezi* in head length and
336 width, but *X. birchmanni* in midpiece length. In addition to morphological differences, we
338 also identified differences in sperm motility between groups (Fig. S12). We found that *X. birchmanni*
had significantly greater curvilinear velocity (VCL, $F_{3,12} = 4.951$, $P = 0.0183$) and average path velocity (VAP, Fig. S12A, $F_{3,12} = 6.971$, $P = 0.00571$) than
either F₁ or F₂ hybrids, but *X. cortezi* sperm had greater straightness of swim path than
X. birchmanni (STR, Fig. S12B, $F_{3,12} = 3.57$, $P = 0.0471$). Additionally, *X. birchmanni*
had significantly greater straight-line velocity than F₁ hybrids (VSL, $F_{3,12} = 4.058$, $P = 0.0332$) and significantly greater progressive motility than all other groups (PM, Fig.
S12C, $F_{3,12} = 17.31$, $P = 0.000118$). Taken together, these results underscore
differences in sperm morphology and motility as a function of genotype. Moreover,
given the large differences detected between the two species, these results may hint at
the possibility that post-mating pre-zygotic mechanisms could impact fertilization
success in *Xiphophorus*.

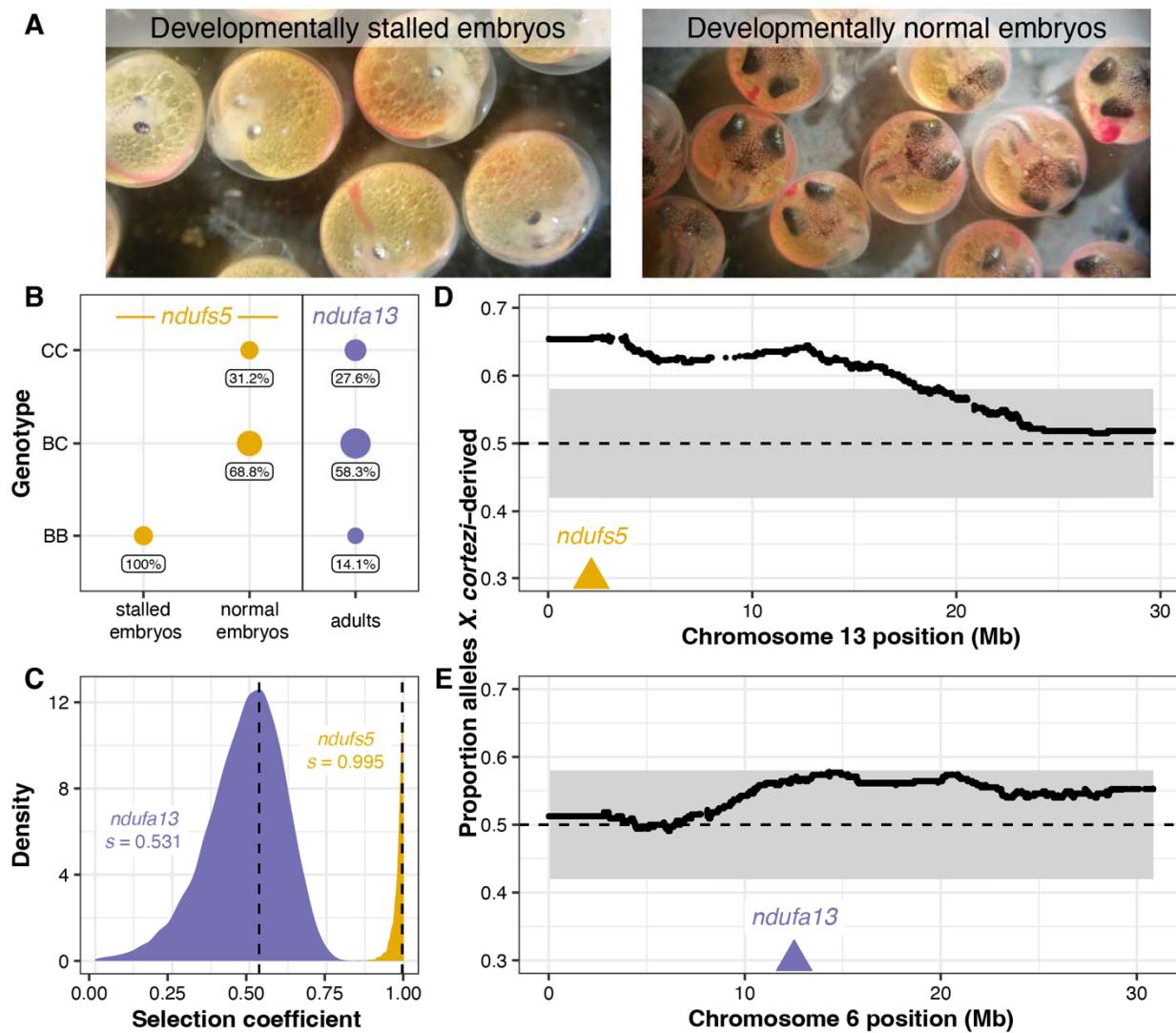
340 **An introgressed genetic incompatibility strongly influences development in F₂
342 hybrids.** Recent work in our group identified two genes involved in a lethal genetic
344 incompatibility between the nuclear genome of *X. birchmanni* (at genes *ndufs5* and
ndufa13) and the mitochondrial genome of its sister species, *X. malinche* (33). *ndufs5*
and *ndufa13* physically colocalize in mitochondrial protein Complex I and physically

contact two mitochondrially encoded proteins (*nd2* and *nd6*, 33). Interestingly, the
346 results of our previous study hinted at the possibility that all components of this genetic
incompatibility are also present in *X. cortezi* due to the historical introgression of the *X.*
348 *malinche* mitochondria, *ndufs5*, and *ndufa13* into *X. cortezi* (Fig. 3A, 33). We confirmed
this pattern with a phylogenetic analysis using a large and geographically diverse
350 sample of *X. birchmanni*, *X. malinche*, and *X. cortezi* (SI Appendix 7). We found clear
evidence that *X. cortezi* mitochondrial diversity is clustered within the *X. malinche*
352 mitochondrial clade (Fig. S13). Moreover, we used this diverse sampling paired with
simulations to confirm that sequence divergence between *X. malinche* and *X. cortezi*
354 mitochondrial haplotypes was markedly lower than expected in a scenario of divergence
without gene flow (Fig. 3B, SI Appendix 7, 33). Notably, mitochondrial divergence
356 between *X. malinche* and *X. cortezi* is similar to observed mitochondrial divergence
across different *X. malinche* populations (Fig. 3B). By contrast, both species have
358 roughly expected levels of mitochondrial sequence divergence to another closely
related species, *X. montezumae* (Fig. 3C). However, both *X. malinche* and *X. cortezi*
360 have much greater than expected mitochondrial sequence divergence from *X.*
birchmanni (Fig. S14), potentially pointing to additional complexity in mitochondrial
362 genome evolution in this species group (SI Appendix 7).

Using our population samples of *X. cortezi*, *X. malinche*, and *X. birchmanni*, we
364 determined that *X. malinche* and *X. cortezi* have identical amino acid sequences at
ndufs5 and *ndufa13*. As a result, the two species differ from *X. birchmanni* at the same
366 nonsynonymous substitutions in these proteins: 4 in *ndufs5* and 3 in *ndufa13* (Fig. 3D,
see also 33). Moreover, *X. malinche* and *X. cortezi* have nearly identical amino acid
368 sequences at the mitochondrially encoded proteins that interact with *ndufs5* and
ndufa13, *nd6* and *nd2*, and both differ dramatically from *X. birchmanni* at these proteins
370 (Fig. 3D, S15A). The only substitutions present between *X. malinche* and *X. cortezi* in
the *nd6* and *nd2* proteins fall outside of their interface with *ndufs5* and *ndufa13* (Fig.
372 S15B). Intriguingly, data from a companion study further underscored the potential
presence of this incompatibility, as we found the regions around *ndufs5* and *ndufa13*
374 are genomic “deserts” of *X. birchmanni* ancestry across multiple, independent hybrid
populations between *X. birchmanni* and *X. cortezi* (including Chapulhuacanito, 41).

376

378 **Fig. 3.** Genetic relationships and mitochondrial divergence between *X. birchmanni* (blue), *X. cortezi* (green), and *X. malinche* (red). (A) Nuclear (33, 49) and mitochondrial phylogenies show discordant
 380 topologies that reflect ancient hybridization between *X. malinche* and *X. cortezi*, resulting from
 382 introgression of the mitochondria from *X. malinche* into *X. cortezi*. See Fig. S13 for an expanded
 384 mitochondrial phylogeny. (B, C) Simulations confirm that *X. malinche* and *X. cortezi* have much
 386 lower mitochondrial sequence divergence than expected in a scenario lacking gene flow. (B) The
 388 density plot shows expected mitochondrial haplotype divergence across 100 replicate simulations
 390 modeling divergence between *X. malinche* and *X. cortezi*. The green line shows average pairwise
 392 mitochondrial haplotype divergence between different *X. cortezi* populations, the red line shows
 394 average pairwise mitochondrial haplotype divergence between different *X. malinche* populations,
 396 and the dashed line shows average pairwise mitochondrial haplotype divergence between *X. cortezi*
 398 and *X. malinche* samples. (C) By contrast, *X. malinche* does not have lower than expected
 mitochondrial sequence divergence in comparisons to another closely related species, *X. montezumae*. The density plot shows expected mitochondrial haplotype divergence across 100
 replicate simulations modeling divergence between *X. malinche* and *X. montezumae*. The black line
 shows observed mitochondrial haplotype divergence between *X. malinche* and *X. montezumae*. (D)
 Amino acid differences between *X. malinche*, *X. cortezi*, and *X. birchmanni* at *ndufs5*, *ndufa13*, and
 mitochondrial encoded proteins *nd6* and *nd2*. Protein modeling results indicate that these proteins
 are in close physical contact in mitochondrial protein Complex I, with several instances of physical
 contact between substitutions in *X. birchmanni* and *X. malinche*/*X. cortezi* at the interface of *ndufs5*,
ndufa13, and *nd6* (Fig. S15, 33). Asterisks indicate substitutions at predicted points of protein-


400 protein contact between *ndufs5*, *ndufa13*, and *nd6*, and colors follow the Clustal2 amino acid color scheme.

402 Together, these data indicate that we should expect *X. cortezi* \times *X. birchmanni* hybrids to suffer from the same mitonuclear incompatibility identified in *X. malinche* \times *X. birchmanni* hybrids. To directly test for the presence of this genetic incompatibility, we used F₁s from the successful cross direction to produce F₂ offspring (the design of the cross means all F₂s possess the *X. cortezi* mitochondria). We first characterized developing F₂ embryos from four pregnant F₁ females (*N* = 127) and consistently found two types of F₂ embryos (Fig. 4A): 26.2% of the embryos had stalled at an early stage of development (around stage 7 out of 11, 50), while the remaining embryos continued to develop beyond this stage. Note that fertilization within a brood is nearly simultaneous in *Xiphophorus* and that appreciable developmental lag is never observed in pure species (33). The stalled embryos had a smaller body size with smaller head/eyes relative to body length and appeared to have reduced vasculature in the yolk in comparison to the remaining embryos (Fig. 4A, S16). Using whole genome sequencing and local ancestry inference, we genotyped embryos and determined whether they were homozygous *X. birchmanni*, homozygous *X. cortezi*, or heterozygous at ancestry informative markers within *ndufs5* and *ndufa13*. We found striking patterns for *ndufs5* (Fig. 4B), with all developmentally stalled embryos possessing the homozygous *X. birchmanni* genotype (Chi-squared test: $\chi^2 = 99$, $P = 3.18 \times 10^{-22}$), while all remaining embryos were either heterozygous or homozygous *X. cortezi* ($\chi^2 = 31.258$, $P = 1.63 \times 10^{-7}$). Strikingly, this is exactly the phenotype observed in *X. birchmanni* \times *X. malinche* hybrids that possess the *ndufs5* incompatibility (33). We note that past work has shown this local ancestry inference approach has excellent performance in lab and natural hybrids (see Methods, 39, 41)

426 Past results indicate that in *X. malinche* \times *X. birchmanni* hybrids, ancestry mismatch at *ndufa13* does not impact embryonic development but instead causes lethality post-birth (33). Consistent with this, *X. birchmanni* ancestry at *ndufa13* in *X. cortezi* \times *X. birchmanni* F₂ embryos did not deviate from the expectations given the cross design, regardless of whether the embryos were developmentally stalled ($\chi^2 =$

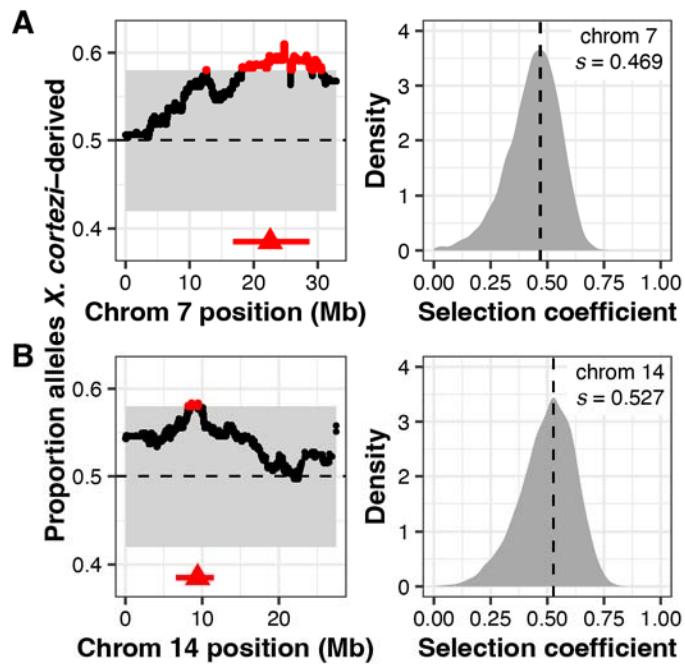
430 3.021, $P = 0.2207$) or developmentally normal ($\chi^2 = 0.273$, $P = 0.8725$; Fig. S17).
431 However, as in *X. malinche* \times *X. birchmanni* hybrids (33) we found disproportionate
432 early-life lethality as we tracked F_2 s through post-embryonic development, such that we
433 found a lack of adult F_2 s that possessed the homozygous *X. birchmanni* genotype of
434 *ndufa13* (Fig. 4B).

435 Among F_2 s that survived to adulthood ($N = 163$), we found segregation distortion
436 beyond our simulated 95% significance threshold (Fig. S18, SI Appendix 8) on
437 chromosome 13 near *ndufs5* (Fig. 4D) and approaching this significance threshold on
438 chromosome 6 near *ndufa13* (Fig. 4E). We found a striking lack of adult F_2 s with
439 homozygous *X. birchmanni* genotypes at these genes, such that both *ndufs5* ($\chi^2 =$
440 55.025, $P = 1.13 \times 10^{-12}$) and *ndufa13* ($\chi^2 = 10.411$, $P = 0.0055$; Fig. 4B) strongly differ
441 from expected genotype frequencies in adults. Using approximate Bayesian
442 computation (ABC) simulations and observed ancestry data from surviving F_2 s, we
443 inferred the strength of selection against *X. birchmanni* ancestry consistent with
444 observed patterns at *ndufs5* and *ndufa13*. We found that selection against *X.*
445 *birchmanni* ancestry at *ndufs5* in F_2 s harboring the *X. cortezi* mitochondria to be largely
446 recessive and nearly complete (Fig. 4C, maximum a posteriori or MAP estimate of $s =$
447 0.995, 95% credible interval $s = 0.933$ –1.000; Fig. S19A, MAP estimate $h = 0.027$, 95%
448 credible interval $h = 0.004$ –0.267). Strikingly, this estimated selection coefficient mirrors
449 that inferred for *X. birchmanni* \times *X. malinche* hybrids for the same genetic interaction
450 (MAP estimate $s = 0.996$, 95% credible interval $s = 0.986$ –0.999, 33). Although weaker
451 than selection on *ndufs5*, the strength of selection against *X. birchmanni* ancestry at
452 *ndufa13* is also quite strong in F_2 s (Fig. 4C, MAP estimate $s = 0.531$, 95% credible
453 interval $s = 0.201$ –0.694; Fig. S19B, MAP estimate $h = 0.049$, 95% credible interval $h =$
454 0.008–0.606). Notably, this estimate of s is substantially weaker than inferred for the
455 same genetic interaction in *X. malinche* \times *X. birchmanni* hybrids, even accounting for
456 differences in power across the two experiments (SI Appendix 9).

458

Fig. 4. Characterization of a genetic incompatibility involving the *X. cortezi* mitochondrial genome identified using lab-generated F₂ hybrids (all possessing the mitochondrial haplotype introgressed from *X. malinche*). (A) F₂ embryos dissected from pregnant females exhibit two phenotypes: (left) development that stalls at an early stage or (right) normal development. All pictured embryos are siblings from the same brood taken on the same day. (B) All embryos that have developmentally stalled possess the homozygous *X. birchmanni* genotype at *ndufs5* (Chi-squared test: $\chi^2 = 99$, $P = 3.18 \times 10^{-22}$), while the normally developing embryos only possess the other two genotypes ($\chi^2 = 31.258$, $P = 1.63 \times 10^{-7}$). Moreover, few F₂ adults possess the homozygous *X. birchmanni* genotypes for *ndufa13*, strongly differing from expected genotype frequencies under mendelian inheritance ($\chi^2 = 10.411$, $P = 0.0055$). Point sizes indicate the number of samples and values underneath each point indicate the percent of samples within a development group that possessed a particular genotype. Genotypes: CC = homozygous *X. cortezi*, BC = heterozygous, BB = homozygous *X.*

birchmanni. Expected genotype frequencies in this cross are 25% CC, 50% BC, and 25% BB. (C)


472 Results of ABC simulations to estimate the strength of selection on *ndufs5* (yellow) and *ndufa13* (purple). Density plots show the posterior distribution from accepted ABC simulations and the
474 dashed line and text indicate the maximum a posteriori (MAP) estimate of the selection coefficient
(s). Incompatible interactions at both genes are inferred to be largely recessive (*ndufs5* MAP
476 estimate $h = 0.027$, Fig. S19A; *ndufa13* MAP estimate $h = 0.049$, Fig. S19B). (D, E) Average
478 ancestry of F_2 adults reveals segregation distortion that surpasses our 95% simulated genome-wide
significance threshold (gray envelope) on chromosome 13 near *ndufs5* (D) and approaches our
480 significance threshold on chromosome 6 near *ndufa13* (E). The locations of *ndufs5* and *ndufa13* are
indicated with triangles. The dashed line at 0.5 represents the expected *X. cortezi* ancestry in this
cross. See Fig. S18 for a representative chromosome that lacks segregation distortion in F_2 hybrids.

482

Additional evidence for post-zygotic selection from artificial crosses. We

484 evaluated evidence for other selection genome-wide in hybrids using local ancestry
results from our F_2 crosses. With a total of 163 F_2 s, we expected to have only moderate
486 power to detect loci under strong selection in hybrids (Fig. S20, SI Appendix 8).
However, in addition to the strong incompatibility involving *ndufs5* and *ndufa13*, we
488 identified 2 more regions on chromosomes 7 and 14 that significantly deviated from the
50-50 allele frequencies expected in an F_2 cross (Fig. 5, Table S5-S6, SI Appendix 10).
490 Since all F_2 individuals were lab-raised, this suggests the presence of additional
incompatibilities between the *X. cortezi* and *X. birchmanni* genomes that impact viability
492 or F_1 fertility in the lab environment. We estimate the strength of selection against *X.*
birchmanni ancestry to be 0.469 (95% credible interval $s = 0.177$ –0.626) and 0.527
494 (95% credible interval $s = 0.229$ –0.703) on the regions on chromosome 7 and 14,
respectively (Fig. 5). In contrast to the regions harboring *ndufs5* and *ndufa13*, fitness
496 effects of *X. birchmanni* ancestry are inferred to be partially dominant in both cases (Fig.
S19C-D; chromosome 7: MAP estimate $h = 0.941$, 95% credible interval $h = 0.398$ –
498 0.994; chromosome 14: MAP estimate $h = 0.518$, 95% credible interval $h = 0.055$ –
0.892). Notably, each of these genomic regions span areas of both strongly elevated
500 and strongly reduced *X. cortezi* ancestry in two independently formed hybrid
populations (Fig. S21, 41).

502

504 **Fig. 5.** Identification of two additional genomic regions under selection in *X. cortezi* \times *X. birchmanni*
506 hybrids. (left plots) Regions on chromosome 7 (A) and chromosome 14 (B) have average ancestry of
508 *F*₂ adults that surpass (red points) our 95% simulated significance threshold (gray envelope). The
510 genomic positions used for ABC simulations are shown with red triangles and the regions in strong LD with
512 these positions in our *F*₂ population are indicated by a red line. See Fig. S18 for a representative
514 chromosome that lacks segregation distortion. (right plots) Results of ABC simulations to infer the
516 strength of selection on the indicated regions on chromosome 7 (A) and chromosome 14 (B).
518 Density plots show the posterior distribution from accepted ABC simulations and the dashed line and
520 text indicate the MAP estimate for the selection coefficient (s). Both the region on chromosome 7 (A)
522 and chromosome 14 (B) are inferred to be partially dominant (chromosome 7 MAP estimate $h = 0.941$, Fig. S19C; chromosome 14 MAP estimate $h = 0.518$, Fig. S19D).

Discussion

518 Decades of study have investigated how a multitude of isolating mechanisms can limit
520 gene flow between species (1). However, despite evidence that such isolating
522 mechanisms are common, even in recently diverged lineages (51, 52), genomic
sequencing has provided extensive evidence that hybridization is also widespread
across the tree of life (3, 4). Indeed, hybridization and introgression have left lasting
traces in the genomes of many extant species (4). How do we reconcile the frequency

524 of hybridization over evolutionary time with the evidence that reproductive barriers
525 between diverging lineages are ubiquitous? Here, we find evidence for multiple barriers
526 to gene flow impacting mating and viability in closely related swordtail species, yet also
527 find that much of the genome is porous to genetic exchange in natural hybrid
528 populations (see also 41). Moreover, we describe the first direct evidence of a
529 previously unknown avenue through which hybridization itself could lead to reproductive
530 isolation—we demonstrate that genes that cause a genetic incompatibility spread
531 between species through ancient hybridization. This finding adds a new dimension to
532 our understanding of the interplay between hybridization and the evolution of
533 reproductive barriers.

534 Combining whole genome-sequencing with developmental and behavioral
535 assays, we investigated reproductive barriers between *X. birchmanni* and *X. cortezi* to
536 disentangle the role of pre- and post-zygotic mechanisms in limiting gene flow between
537 them. We identified a strongly bimodal distribution in genomic ancestry in a newly
538 identified hybrid population, Chapulhuacanito (Fig. 1). Despite extensive sampling, we
539 identify few individuals with genomic ancestry intermediate between the two observed
540 clusters and these seem to represent recent-generation mating events. This is strikingly
541 similar to the pattern we previously observed in an independently formed hybrid
542 population between *X. birchmanni* and *X. cortezi* in the Río Santa Cruz (39), highlighting
543 surprising repeatability in hybrid population evolution in this system. Interestingly, this
544 bimodality has been present since at least 2003 in Chapulhuacanito (Fig. 1C). The
545 consistency over time and the similarity across replicated hybrid populations suggests
546 that the outcomes of hybridization between these species at the genome-wide scale are
547 in part predictable.

548 What mechanisms drive this bimodal population structure? Assortative mating, a
549 pre-zygotic mechanism, may strongly influence reproductive isolation in *X. birchmanni*
550 and *X. cortezi* hybrid populations and maintain the observed population structure.
551 Notably, assortative mating has previously been implicated in the bimodal ancestry
552 distribution of a hybrid population between *X. birchmanni* and its sister species *X.*
553 *malinche* (44). By assessing genomic ancestry of wild-caught females and their
554 embryos, we found that assortative mating is indeed strong in Chapulhuacanito (Fig.

2A). We found no incidences of females mating with males from the alternative ancestry
556 cluster and simulations suggested that assortative mating with same-ancestry
individuals approaches 100% (though our broad population sampling highlight that
558 cross-cluster mating occurs at low frequencies over time). Work in the independent
hybrid population between these two species in the Río Santa Cruz has shown similarly
560 strong assortative mating in the wild (39). The presence of strong assortative mating
across these multiple independent hybrid populations suggests female *X. birchmanni*
562 and *X. cortezi* may express behavioral preferences for conspecific males.

Using in-lab behavioral assays, we tested the presence and strength of female
564 preferences in explaining these assortative mating patterns. Across our trials, we found
a complex suite of results (Fig. 2B, S8). While *X. cortezi* females showed preferences
566 for conspecific males in some contexts, *X. birchmanni* females did not show behavioral
evidence of assortative mating in any of our assays. However, we did find strong
568 differences in behavior that indicate a relationship between genome-wide *X. cortezi*
ancestry and increased boldness (Fig. S9). It is possible that this increased boldness in
570 the lab translates into different habitat use in the wild, although we note that results from
our collections suggest substantial overlap in habitat use between the two ancestry
572 clusters at Chapulhuacanito (SI Appendix 2). The results of our behavioral assays
underscore complex interactions between behavior, assortative mating dynamics, and
574 other reproductive barriers in this system (see discussion in SI Appendix 5). Moreover,
we note that major differences in sperm morphology and motility in hybrids and between
576 species (Fig. S11, S12) may also contribute to barriers between species (i.e., due to
performance differences).

578 While we detect conspecific behavioral preferences in *X. cortezi* females, we find
no evidence for such preferences in *X. birchmanni* females. We were initially surprised
580 by this result since individuals in the *X. birchmanni* cluster had near zero levels of
introgression from *X. cortezi* in both independently formed hybrid populations between
582 the two species, Chapulhuacanito (Fig. 1) and the Río Santa Cruz (39). This suggested
the potential presence of a strong post-mating barrier when this cross involves *X.*
584 *birchmanni* females. Indeed, in crosses between *X. cortezi* and *X. birchmanni* in lab
mesocosms, we found nearly complete developmental inviability in the F₁ cross with *X.*

586 *birchmanni* mothers, while the cross with *X. cortezi* mothers is often viable and fertile
588 (Table S3). Importantly, this pattern of developmental inviability provides a natural
explanation for the repeatable absence of introgression into the *X. birchmanni* cluster
across natural hybrid populations.

590 Crosses between *X. cortezi* mothers and *X. birchmanni* fathers frequently
592 resulted in viable and fertile offspring, consistent with higher levels of admixed ancestry
594 in *cortezi*-like cluster hybrids in natural populations (~15-25% genome-wide depending
596 on the population). However, we found that this cross direction also showed signs of
598 strong post-zygotic reproductive barriers. F_1 offspring had a strikingly skewed sex ratio
600 with ~6 females for every 1 male produced. Moreover, we detected strong evidence for
602 segregation distortion consistent with hybrid inviability across the genomes of F_2 hybrids
(see below; Fig. 4, 5) and unusual sperm morphology in F_1 and F_2 hybrids compared to
the parental species (Fig. S11). Surprisingly, even in the presence of strong assortative
mating and these diverse postzygotic barriers, much of the genome of *X. cortezi*
600 appears to be permeable to introgression from *X. birchmanni* (Fig. 1, 41). This result
highlights how the presence of diverse reproductive barriers is not irreconcilable with
602 the general finding that many species have derived substantial proportions of their
genome from hybridization with their evolutionary relatives.

604 Our results also add new complexity to the field's understanding of the ways in
which historical gene flow itself interfaces with present-day reproductive isolation.
606 Ancient hybridization between *X. cortezi* and another related species, *X. malinche* (Fig.
3), has led to introgression of the *X. malinche* mitochondria, and two interacting genes,
608 *ndufs5* and *ndufa13*, into the *X. cortezi* lineage. Together with mitochondrially encoded
610 proteins, *ndufs5* and *ndufa13* form a large protein complex in the essential
mitochondrial electron transport chain. These proteins are involved in a lethal
612 mitonuclear incompatibility between *X. malinche* and *X. birchmanni* (33), driven by
614 combining the *X. malinche* mitochondria with the *X. birchmanni* versions of *ndufs5* and
ndufa13. We show here that the same loci cause incompatibility between *X. cortezi* and
X. birchmanni in hybrids and that the phenotypic consequences of incompatible
616 genotypes in *X. cortezi* \times *X. birchmanni* hybrids (Fig. 4A) are strikingly similar to those
observed in *X. malinche* \times *X. birchmanni* hybrids (33). F_2 embryos that possess the

incompatible combination of the *X. cortezi* mitochondria and the homozygous *X. birchmanni* genotype of *ndufs5* never complete embryonic development and suffer 100% mortality before birth (Fig. 4B). By contrast, F_2 individuals that possess the *X. cortezi* mitochondria and the homozygous *X. birchmanni* genotype of *ndufa13* suffer mortality soon after birth and rarely make it to adulthood (Fig. 4B; though curiously, selection on *ndufa13* appears to be significantly weaker in this cross compared to *X. malinche* \times *X. birchmanni* hybrids, SI Appendix 9). Moreover, these incompatibilities strongly impact ancestry patterns in natural hybrid populations. In a companion study, we found that *cortezi*-like cluster individuals in the two independent hybrid populations we have studied—Chapultepec and the Río Santa Cruz—have genomic “deserts” where *X. birchmanni* ancestry is extraordinarily depleted from these regions of the genome (41). While the full consequences of this ancient introgression event are still unclear, our results illustrate how past gene flow can impact present day patterns of reproductive isolation, especially in species groups where hybridization occurs between multiple lineages (see SI Appendix 11 for further discussion).

In this study, we find that multiple, overlapping pre- and post-zygotic barriers to gene flow result in strong but incomplete reproductive isolation between the swordtail species *X. cortezi* and *X. birchmanni*. We describe how assortative mating, hybrid inviability, genetic incompatibilities, and ancient introgression all contribute to the overall level of reproductive isolation between these species, and document how this leads to repeatability in evolution at the population level in *X. cortezi* \times *X. birchmanni* hybrid populations. Additionally, our results support the surprising finding that ancient introgression moved genes that are now involved in strong genetic incompatibilities across species boundaries. Our results open a compelling new avenue of both empirical and theoretical research exploring previously unappreciated roles that hybridization may play in the evolution of reproductive isolation.

644 Materials and Methods

Sample collection. Natural hybrids were collected from the Chapulhuacanito population ($21^{\circ}12'10.58''N$ $98^{\circ}40'28.27''W$) using baited minnow traps ($N = 306$). Each fish was anesthetized in 100 mg/mL MS-222 and river water before being

648 photographed. A small fin clip was taken from the upper caudal fin of each individual
649 and preserved in 95% ethanol for DNA extraction. Fish were allowed to recover in river
650 water before being released at the collection site. A subset of pregnant females from
651 Chapulhuacanito ($N = 49$) were euthanized in an overdose of MS-222 and preserved in
652 95% ethanol for paired mother/embryo sequencing (see details below).

653 We also took advantage of historical samples from 2003 ($N = 11$), 2006 ($N = 21$),
654 and 2017 ($N = 41$) at Chapulhuacanito collected through a companion study (41). These
655 samples were preserved in either DMSO or 95% ethanol at the time of collection.

656
DNA extraction and low-coverage library preparation. DNA was extracted from fin
657 clips and embryos using the Agencourt DNAdvance magnetic bead-based purification
658 system (Beckman Coulter, Brea, CA) in a 96-well plate format. We followed the
659 recommended protocol for extraction from tissue except that we used half-reactions.
660 Following extraction, DNA was quantified with a BioTek Synergy H1 microplate reader
661 (Agilent Technologies, Santa Clara, CA) and diluted to a concentration of 2.5 ng/ul. We
662 prepared libraries for low-coverage whole genome sequencing using a tagmentation
663 based protocol and the Illumina Tagment DNA TDE1 Enzyme and Buffer Kit (Illumina,
664 San Diego, CA). Briefly, samples were enzymatically sheared and initial adapters were
665 added by incubation with the tagmentation enzyme and buffer at 55°C for 5 minutes.
666 Individual i5 and i7 indices were added via a PCR reaction using the OneTaq HS Quick-
667 Load 2X Master Mix (New England Biolabs, Ipswich, MA). Following PCR, samples
668 were pooled and purified using 18% SPRI magnetic beads, quantified with a Qubit
669 Fluorometer (Thermofisher Scientific, Wilmington, DE) and visualized on a Tapestation
670 4200 (Agilent Technologies, Santa Clara, CA). Pooled libraries were sequenced on
671 either an Illumina HiSeq 4000 or Illumina NovaSeq X Plus at Admera Health Services
672 (South Plainfield, NJ).

673
Global and local ancestry inference. We used a newly developed local ancestry
674 inference pipeline to infer ancestry across the genome of sampled individuals (30, 39,
675 41). While we describe this pipeline in extensive detail in our companion study (41), we
676 explain the approach briefly here. The most recent version of this pipeline uses

chromosome scale assemblies for *X. birchmanni* and *X. cortezi* generated with PacBio
680 HiFi data. Using sequencing of several allopatric *X. birchmanni* and *X. cortezi*
populations and artificially produced F_1 hybrids, we identified 1,001,684 ancestry
682 informative sites that are fixed or nearly fixed between species (30, 39, 41). For all
684 sequenced individuals, we map low-coverage (~1X) whole genome sequencing data to
counts at ancestry informative sites. While low coverage data will often fail to capture
686 both alleles at a given site heterozygous for the two ancestry states, because of
admixture linkage disequilibrium in hybrids, ancestry states are correlated over tens of
688 thousands to hundreds of thousands of basepairs. Thus, by applying a hidden Markov
model to these counts, we can accurately infer ancestry along the genome. Past work
690 using both simulations (40) and the results of artificial F_2 crosses (41) have shown that
this approach is extremely accurate for inferring local ancestry in *X. cortezi* \times *X.*
692 *birchmanni* hybrids (e.g., Fig. S22, S23), with estimated error rates of <0.1% per
ancestry informative site.

694 We ran the *ancestryinfer* pipeline on individuals from Chapulhuacanito using
priors for the time since initial admixture set to 50 and the genome-wide admixture
696 proportion set to a uniform prior of 0.5 (SI Appendix 12 and Fig. S24 discuss the impact
of using a uniform admixture prior). The output of this pipeline is posterior probabilities
698 of each ancestry state at every ancestry informative site that distinguishes *X.*
birchmanni and *X. cortezi* throughout the genome. For ease of downstream analysis, we
700 converted these posterior probabilities to “hard-calls” using a threshold of 0.9. At a given
ancestry informative site, if an individual had greater than 0.9 posterior probability for a
702 given ancestry state (e.g., homozygous *X. birchmanni*, heterozygous, or homozygous *X.*
cortezi), we converted the ancestry at the site to that ancestry state. For sites where no
704 ancestry state had greater than 0.9 posterior probability, we converted the site to NA.

706 For a given individual, this allowed us to estimate the proportion of the genome
derived from each parental species, as well as determine ancestry at individual sites of
interest along the genome. To examine ancestry at genes that had previously been
708 implicated in mitonuclear hybrid incompatibilities (33), we selected an ancestry
informative site that fell within the gene of interest and was covered in the greatest

710 number of individuals. In cases where multiple sites satisfied these criteria, we randomly selected a site.

712

Artificial crosses. To produce F_1 s, we seeded 2,000-L outdoor mesocosms with wild-caught adults from allopatric populations: *X. cortezi* from Puente de Huichihuayán (21°26'9.95"N 98°56'0.00"W) and *X. birchmanni* from Coacuilco (21°5'51.16"N 98°35'20.10"W). We expected we might find differences in cross success depending on the sex of each species used (53), so we set up crosses in both directions with a 1:3 male to female sex ratio. Because *Xiphophorus* can store sperm and the adults were wild-caught, all offspring were collected and sequenced to identify resulting F_1 s. Male and female F_1 s were subsequently crossed in 567-L outdoor mesocosms to produce F_2 s.

722 F_2 offspring ($N = 163$) were collected soon after birth and raised in small groups in indoor tanks. Once they were large enough (~2-3 months old), individuals were marked with elastomer tags and fin clipped. We extracted DNA from these fin clips, performed library preparation, and local ancestry inference as described above, except that we set the prior for the time since initial admixture to 2. Regions of significant segregation distortion were defined as those that exceeded our expectations for average ancestry based on simulations of F_2 hybrids (SI Appendix 8).

730 Because our sample size is relatively small and our power to detect selection is modest (Fig. S20, SI Appendix 8), we chose to define the interval of interest for 732 segregation distortion analyses based on linkage disequilibrium, rather than simply focusing on markers that surpass the segregation distortion threshold. This addresses 734 the possibility that variance in missing data could impact the intervals we define as segregation distorters. We thinned our ancestry calls to retain one ancestry informative site per 50 kb, and then converted our calls to plink format using a custom script 736 (https://github.com/Schumerlab/Lab_shared_scripts). Next, we used plink to calculate R^2 between the peak segregation distortion marker and other sites on the same 738 chromosome. We then determined the distance over which R^2 fell below 0.8 in either direction of the peak marker and treated this as our segregation distortion interval of 740 interest.

742 **Approximate Bayesian Computation (ABC) approach to infer the strength of**
743 **selection.** Once we had identified regions with significant segregation distortion in F_2
744 hybrids, we wanted to infer the strength of selection on these regions consistent with
745 patterns observed in the empirical data. To do so, we used population genetic models of
746 Hardy-Weinberg equilibrium with selection. For *ndufa13* (chromosome 6) and *ndufs5*
747 (chromosome 13), the known partner genes in the hybrid incompatibility are
748 mitochondrially encoded. Since all F_2 hybrids had an *X. cortezi* mitochondria, we simply
749 modeled selection against the *X. birchmanni* alleles at *ndufa13* and *ndufs5*. For each
750 simulation, we drew a selection coefficient and dominance coefficient from a random
751 uniform distribution ranging from 0-1. We modified the expected genotype frequencies
752 in adult F_2 s from those expected at fertilization based on the simulated values of s , the
753 selection coefficient, and the dominance coefficient (h). We then used these expected
754 frequencies after selection to draw genotypes for 163 individuals (equal to our F_2
755 sample size). As summary statistics, we used the average *X. birchmanni* ancestry at the
756 selected site and the number of individuals heterozygous or homozygous for *X.*
757 *birchmanni* ancestry. We accepted simulations that fell within 5% of the observed data
758 and used these accepted simulations to generate posterior distributions of s and h .

For loci on chromosome 7 and 14, we do not know the mechanisms of selection
760 acting on them (i.e., whether they represent loci involved in nuclear-nuclear or nuclear-
761 mitochondrial incompatibilities, or some other mechanism of selection on hybrids; SI
762 Appendix 10). Inspection of genotypes in both regions indicates that they are depleted
763 in homozygous *X. birchmanni* ancestry, so we chose to estimate s and h in the same
764 way as described above. We note that if *X. birchmanni* ancestry on chromosome 7 or
765 14 is only under selection in combination with another nuclearly encoded locus, this
766 approach will underestimate the strength of selection on such an incompatibility.

768 **Dissections of pregnant females.** We collected pregnant females for two purposes:
769 (1) to conduct paired mother/embryo sequencing to quantify rates of assortative mating
770 in the Chapulhuacanito hybrid population, and (2) to evaluate evidence for links
771 between developmental phenotypes and particular genotypes in the F_2 embryos of F_1

772 hybrid mothers. All females were euthanized with an overdose of MS-222. For the
773 Chapulhuacanito hybrid population, each female ($N = 49$) was dissected and the whole
774 ovary containing developing embryos was removed. Embryos were examined under a
775 dissection scope to determine if they had been fertilized (i.e., evidence of a forming
776 blastodisc or morphological evidence of later developmental stages, 50). Embryos were
777 visually inspected for any developmental delay or asynchrony, which has been linked to
778 hybrid incompatibilities in previous work (33). At least two embryos were randomly
779 selected for DNA extraction ($N = 101$) and sequencing from each female, and a fin clip
780 was taken from the female. For the F_1 females ($N = 4$), we selectively identified
781 individuals with expanded gravid spots, suggestive of these individuals being in the late
782 stages of pregnancy. Embryos were dissected out of the ovary and developmentally
783 staged following the same procedure as for Chapulhuacanito females ($N = 126$
784 embryos), and broods were additionally photographed under a dissection scope. All
785 embryos underwent DNA extraction and samples were prepared for sequencing as
786 described above.

788 **Female mate preference assays.** We tested female *X. birchmanni* (from the Río
789 Garces $20^{\circ}56'24.96''N$ $98^{\circ}16'52.21''W$ and the Río Xiliatl $21^{\circ}6'19.00''N$ $98^{\circ}33'47.70''W$)
790 and *X. cortezi* (from the arroyo La Conchita $21^{\circ}20'6''N$ $98^{\circ}35'35.52''W$) from allopatric
791 populations for their preference for conspecific or heterospecific males in two sets of
792 preference experiments conducted in 2004, 2005, and 2007. Trials were conducted in a
793 208-L tank divided into five equal sections with two outer sections separated from the
794 inner three with partitions—either (1) solid glass for trials with only visual cues or (2)
795 Plexiglass with $\frac{1}{4}$ " diameter holes every 6 in² for trials with visual and olfactory cues.
796 Fish were allowed to acclimate for 10 minutes before trials began: one male from each
797 species was placed in either of the two outer sections of the tank and a female was
798 placed in the center in a clear holding cube. We released females and recorded the time
800 she spent in the inner sections adjacent to each male through a window covered with
801 one-way glass for a 10-minute period. To control for any side bias, we then switched the
802 placement of the two males and repeated the experiment. We repeated these trials with
the same trio of individuals after a 7-day period (for a total of four trials for each female).

804 Males were paired in these trials to minimize size differences as much as possible
805 (mean absolute size difference, visual trials: 1.01 ± 0.23 mm, visual with olfactory trials:
806 0.6 ± 0.1 mm). For trials with only visual cues, we tested 21 *X. birchmanni* and 10 *X.*
807 *cortezi* females. For trials with visual and olfactory cues, we tested 19 *X. birchmanni*
808 and 18 *X. cortezi* females.

809 To account for side bias, we removed females from our analyses if they spent
810 more than 80% of their time on one side of the tank during an experiment. Time spent
811 associating with males is correlated with female mating decisions in *Xiphophorus* (54,
812 55), so we calculated the time spent with *X. birchmanni* and *X. cortezi* males in each
813 pair of trials to calculate the strength of preference (56): the difference between time
814 spent with the *X. cortezi* male and time spent with the *X. birchmanni* male, divided by
815 the total time spent with either male. The strength of preference varies from +1.0 to -1.0
816 with positive values indicating a preference for *X. cortezi* males and negative values
817 indicating a preference for *X. birchmanni* males. We used Wilcoxon signed-rank tests to
818 assess the difference from a null expectation of a strength of preference of 0 (no
preference).

820 Acknowledgments

821 We thank members of the Schumer Lab, Jenn Coughlan, Megan Frayer, Erica Larson,
822 and Greg Owens for insightful comments on earlier versions of this manuscript. This
823 work was supported by a Hanna H. Gray Fellowship, Freeman-Hrabowski Fellowship,
824 Sloan Fellowship, and NIH grant 1R35GM133774 to MS; Stanford Science Fellowship
825 to SMA; NSF IBN grant 9983561 and Ohio University Research Incentive to MRM;
826 Stanford Center for Computational, Evolutionary, and Human Genetics Fellowship and
827 NSF Postdoctoral Research Fellowship in Biology (2010950) to QKL; and Knight-
828 Hennessy Scholars Fellowship and NSF Graduate Research Fellowship (2019273798)
829 to BMM. We thank the Mexican Government for permission to collect fish (Permit No.
830 PPF/DGOPA-002/19). Behavioral experiments were approved by the Animal Care
831 Guidelines of Ohio University (Animal Care and Use approval no. L01-01) and Stanford
832 Laboratory Animal Care (protocol no. 33071).

834 **References**

1. J. A. Coyne, H. A. Orr, *Speciation* (Sinauer, 2004).
- 836 2. R. G. Harrison, E. L. Larson, Hybridization, introgression, and the nature of species boundaries. *Journal of Heredity* **105**, 795–809 (2014).
- 838 3. S. A. Taylor, E. L. Larson, Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. *Nature Ecology and Evolution* **3**, 170–840 177 (2019).
- 842 4. S. M. Aguillon, T. O. Dodge, G. A. Preising, M. Schumer, Introgression. *Current Biology* **32**, R865–R868 (2022).
- 844 5. R. M. Merrill, *et al.*, Genetics and the evolution of prezygotic isolation. *Cold Spring Harbor Perspectives in Biology* **16**, a041439 (2024).
- 846 6. R. Reifová, *et al.*, Mechanisms of intrinsic postzygotic isolation: from traditional genic and chromosomal views to genomic and epigenetic perspectives. *Cold Spring Harbor Perspectives in Biology* **15**, a041607 (2023).
- 848 7. T. Dobzhansky, Genetic nature of species differences. *The American Naturalist* **71**, 404–420 (1937).
- 850 8. H. J. Muller, Isolating mechanisms, evolution, and temperature. *Biological Symposium* **6**, 71–125 (1942).
- 852 9. H. A. Orr, The population genetics of speciation: the evolution of hybrid incompatibilities. *Genetics* **139**, 1805–1813 (1995).
- 854 10. M. Drès, J. Mallet, Host races in plant-feeding insects and their importance in sympatric speciation. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences* **357**, 471–492 (2002).
- 858 11. D. J. Howard, “Reinforcement: Origin, dynamics, and fate of an evolutionary hypothesis” in *Hybrid Zones and the Evolutionary Process*, R. G. Harrison, Ed. (Oxford University Press, 1993), pp. 46–69.
- 860 12. C. J. Hoskin, M. Higgle, K. R. McDonald, C. Moritz, Reinforcement drives rapid allopatric speciation. *Nature* **437**, 1353–6 (2005).
- 862 13. E. B. Dopman, K. L. Shaw, M. R. Servedio, R. K. Butlin, C. M. Smadja, Coupling of barriers to Gene exchange: Causes and consequences. *Cold Spring Harbor Perspectives in Biology* a041432 (2024).
<https://doi.org/10.1101/cshperspect.a041432>.

866 14. T. C. Mendelson, K. L. Shaw, Genetic and behavioral components of the cryptic
868 species boundary between *Laupala cerasina* and *L. kohalensis* (Orthoptera:
Gryllidae). *Genetica* **116**, 301–310 (2002).

870 15. R. A. Sánchez-Guillén, M. Wellenreuther, A. Cordero Rivera, Strong asymmetry in
the relative strengths of prezygotic and postzygotic barriers between two damselfly
sister species. *Evolution* **66**, 690–707 (2012).

872 16. K. W. Matsubayashi, H. Katakura, Contribution of multiple isolating barriers to
874 reproductive isolation between a pair of phytophagous ladybird beetles. *Evolution*
63, 2563–2580 (2009).

876 17. D. R. Matute, J. A. Coyne, Intrinsic reproductive isolation between two sister
species of *Drosophila*. *Evolution* **64**, 903–920 (2010).

878 18. P. Nanda, B. N. Singh, Behavioural reproductive isolation and speciation in
Drosophila. *Journal of Biosciences* **37**, 359–374 (2012).

880 19. R. E. Naisbit, C. D. Jiggins, J. Mallet, Disruptive sexual selection against hybrids
contributes to speciation between *Heliconius cydno* and *Heliconius melpomene*.
Proceedings of the Royal Society B: Biological Sciences **268**, 1849–1854 (2001).

882 20. M. R. Kronforst, L. G. Young, L. M. Blume, L. E. Gilbert, Multilocus analyses of
admixture and introgression among hybridizing *Heliconius* butterflies. *Evolution* **60**,
884 1254–1268 (2006).

886 21. The Heliconius Genome Consortium, Butterfly genome reveals promiscuous
exchange of mimicry adaptations among species. *Nature* **487**, 94–98 (2012).

888 22. B. M. Moran, *et al.*, The genomic consequences of hybridization. *eLife* **10**, e69016
(2021).

890 23. M. L. Arnold, K. Kunte, Adaptive genetic exchange: a tangled history of admixture
and evolutionary innovation. *Trends in Ecology and Evolution* **32**, 601–611 (2017).

892 24. C. A. Buerkle, L. H. Rieseberg, Low intraspecific variation for genomic isolation
between hybridizing sunflower species. *Evolution* **55**, 684–691 (2001).

894 25. M. Schumer, R. Cui, G. G. Rosenthal, P. Andolfatto, Reproductive isolation of
hybrid populations driven by genetic incompatibilities. *PLOS Genetics* **11**,
e1005041 (2015).

896 26. C. Bank, R. Bürger, J. Hermisson, The limits to parapatric speciation: Dobzhansky–
Muller Incompatibilities in a continent–island model. *Genetics* **191**, 845–863 (2012).

898 27. R. Cui, *et al.*, Phylogenomics reveals extensive reticulate evolution in *Xiphophorus*
fishes. *Evolution* **67**, 2166–79 (2013).

900 28. P. Lavretsky, R. E. Wilson, S. L. Talbot, S. A. Sonsthagen, Phylogenomics reveals
902 ancient and contemporary gene flow contributing to the evolutionary history of sea
ducks (Tribe Mergini). *Molecular Phylogenetics and Evolution* **161**, 107164 (2021).

904 29. A. Suvorov, *et al.*, Widespread introgression across a phylogeny of 155 *Drosophila*
906 genomes. *Current Biology* **32**, 111-123.e5 (2022).

908 30. Q. K. Langdon, *et al.*, Predictability and parallelism in the contemporary evolution of
910 hybrid genomes. *PLOS Genetics* **18**, e1009914 (2022).

912 31. M. Schumer, *et al.*, High-resolution mapping reveals hundreds of genetic
914 incompatibilities in hybridizing fish species. *eLife* **3**, e02535 (2014).

916 32. D. L. Powell, *et al.*, Natural hybridization reveals incompatible alleles that cause
918 melanoma in swordtail fish. *Science* **368**, 731–736 (2020).

920 33. B. M. Moran, *et al.*, A lethal mitonuclear incompatibility in complex I of natural
922 hybrids. *Nature* **626**, 119–127 (2024).

924 34. M. Schumer, *et al.*, Natural selection interacts with recombination to shape the
926 evolution of hybrid genomes. *Science* **360**, 656–660 (2018).

928 35. S. J. Hankison, Avoiding a compromise between sexual selection and species
930 recognition: female swordtail fish assess multiple species-specific cues. *Behavioral
Ecology* **14**, 282–287 (2003).

932 36. Z. W. Culumber, O. M. Ochoa, G. G. Rosenthal, Assortative mating and the
934 maintenance of population structure in a natural hybrid zone. *The American
Naturalist* **184**, 225–32 (2014).

936 37. D. L. Powell, A. D. Rose, G. G. Rosenthal, A widely-used pollutant causes reversal
938 of conspecific mate preference in a freshwater fish. [Preprint] (2022). Available at:
<https://www.biorxiv.org/content/10.1101/2022.09.07.507014v1>.

940 38. C. Payne, *et al.*, Genomic insights into variation in thermotolerance between
942 hybridizing swordtail fishes. *Molecular Ecology* (2022).
<https://doi.org/10.1111/mec.16489>.

944 39. D. L. Powell, *et al.*, Two new hybrid populations expand the swordtail hybridization
946 model system. *Evolution* **75**, 2524–2539 (2021).

948 40. M. Schumer, D. L. Powell, R. Corbett-Detig, Versatile simulations of admixture and
950 accurate local ancestry inference with *mixnmatch* and *ancestryinfer*. *Molecular
Ecology Resources* **20**, 1141–1151 (2020).

952 41. Q. K. Langdon, *et al.*, Genome evolution is surprisingly predictable after initial
954 hybridization. [Preprint] (2023). Available at:
<http://biorxiv.org/lookup/doi/10.1101/2023.12.21.572897>.

936 42. G. G. Rosenthal, C. S. Evans, W. L. Miller, Female preference for dynamic traits in
the green swordtail, *Xiphophorus helleri*. *Animal Behaviour* **51**, 811–820 (1996).

938 43. D. M. Robinson, M. R. Morris, Unraveling the complexities of variation in female
mate preference for vertical bars in the swordtail, *Xiphophorus cortezii*. *Behavioral
Ecology and Sociobiology* **64**, 1537–1545 (2010).

940 44. M. Schumer, *et al.*, Assortative mating and persistent reproductive isolation in
hybrids. *Proceedings of the National Academy of Sciences, USA* **114**, 10936–
942 10941 (2017).

944 45. D. A. McLennan, M. J. Ryan, Responses to conspecific and heterospecific olfactory
cues in the swordtail *Xiphophorus cortezii*. *Animal Behaviour* **54**, 1077–1088
(1997).

946 46. D. A. McLennan, M. J. Ryan, Interspecific recognition and discrimination based
upon olfactory cues in northern swordtails. *Evolution* **53**, 880–888 (1999).

948 47. K. L. Shaw, J. M. Lambert, Dissecting post-mating prezygotic speciation
phenotypes. *BioEssays* **36**, 1050–1053 (2014).

950 48. M. K. Manier, *et al.*, Postcopulatory Sexual Selection Generates Speciation
Phenotypes in *Drosophila*. *Current Biology* **23**, 1853–1862 (2013).

952 49. G. A. Preising, *et al.*, Recurrent evolution of small body size and loss of the sword
ornament in northern swordtail fish. [Preprint] (2022). Available at:
954 <https://www.biorxiv.org/content/10.1101/2022.12.24.521833v1> [Accessed 20
January 2023].

956 50. J. L. Haynes, Standardized classification of Poeciliid development for life-history
studies. *Copeia* **1995**, 147–154 (1995).

958 51. H. A. Orr, J. A. Coyne, The genetics of postzygotic isolation in the *Drosophila virilis*
group. *Genetics* **121**, 527–537 (1989).

960 52. J. M. Coughlan, D. R. Matute, The importance of intrinsic postzygotic barriers
throughout the speciation process. *Philosophical Transactions of the Royal Society
B: Biological Sciences* **375**, 20190533 (2020).

962 53. D. L. Powell, *et al.*, The genetic architecture of variation in the sexually selected
sword ornament and its evolution in hybrid populations. *Current Biology* **31**, 923–
935.e11 (2021).

966 54. O. Ríos-Cárdenas, M. S. Tudor, M. R. Morris, Female preference variation has
968 implications for the maintenance of an alternative mating strategy in a swordtail
fish. *Animal Behaviour* **74**, 633–640 (2007).

55. C. A. Walling, N. J. Royle, J. Lindström, N. B. Metcalfe, Do female association
970 preferences predict the likelihood of reproduction? *Behavioral Ecology and Sociobiology* **64**, 541–548 (2010).

972 56. T. H. Williams, T. C. Mendelson, Behavioral isolation based on visual signals in a sympatric pair of darter species. *Ethology* **116**, 1038–1049 (2010).

974