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Abstract

Genetic studies of malaria parasites increasingly feature estimates of relatedness. How-

ever, various aspects of malaria parasite relatedness estimation are not fully understood. For

example, estimates of relatedness based on whole-genome-sequence (WGS) data often exceed

those based on more sparse data types. We explore systematic bias in relatedness estimation

using theoretical, numerical and empirical approaches. Specifically, we use a non-ancestral

model of pairwise relatedness to derive theoretical results; a simulation model of ancestry to

independently verify and expand our theoretical results; and data on parasites sampled from

Guyana to explore how theoretical and numerical results translate empirically. We show

that allele frequencies encode, locus-by-locus, relatedness averaged over the set of sampled

parasites used to compute them. These sample allele frequencies are typically plugged into

the models used to estimate pairwise relatedness. Consequently, models of pairwise relat-

edness are misspecified and pairwise relatedness values are systematically underestimated.

However, systematic underestimation can be viewed as population-relatedness calibration,

i.e., a way of generating measures of relative relatedness. Systematic underestimation is un-

avoidable when relatedness is estimated assuming independence between genetic markers. It

is mitigated when estimated using WGS data under a hidden Markov model (HMM), which

exploits linkage between proximal markers. Estimates of absolute relatedness generated un-

der a HMM using relatively sparse data should be treated with caution because the extent to

which underestimation is mitigated is unknowable. That said, analyses dependent on abso-

lute values and high relatedness thresholds are relatively robust. In summary, practitioners

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2024. ; https://doi.org/10.1101/2024.04.16.588675doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.16.588675
http://creativecommons.org/licenses/by/4.0/


have two options: resolve to use relative relatedness estimated under independence or try

to estimate absolute relatedness under a HMM. We propose various practical tools to help

practitioners evaluate their situation on a case-by-case basis.

Author summary

Malaria genomic epidemiology is increasingly recognised as a tool for public health. Related-

ness, which captures likeness derived from common ancestry, is a useful concept for malaria

parasites. Analyses of malaria parasite relatedness are important for generating results on

spatiotemporal scales relevant to disease control. Since shared ancestry is unobservable, re-

latedness must be estimated under a statistical model. However, not all aspects of malaria

parasite estimation are fully understood, including the effects of different data types. In this

work, we characterise systematic biases in estimates of malaria parasite relatedness. Our

analysis is three-fold: we mathematically interrogate a non-ancestral model of relatedness

to derive theoretical results; simulate parasite ancestries from first principles to yield nu-

merical results; and perform an empirical case study of parasites sampled from Guyana.

We show that bias may be particularly pronounced when using sparse marker data from

inbred parasite populations, which are often found in pre-elimination settings. We chart out

a practical roadmap to enable practitioners to assess epidemiological settings on a case-by-

case basis. Our findings are relevant to applications in malaria genomic epidemiology that

use relatedness directly or indirectly, including molecular surveillance and the genetic-based

classification of treatment failure.

1 Introduction

Relatedness is a genome-wide measure of identity-by-descent (IBD); i.e., identity due to

common ancestry [1, 2]. IBD is a useful concept when studying malaria-causing Plasmodium

parasites because they sexually recombine [3]. Although obligate, recombination is only effec-

tive when genetically distinct parasites recombine. The probability that genetically distinct

parasites recombine is context specific: it depends on parasite diversity, on the prevalence

of infected hosts, and on the within-host diversity and prevalence of polyclonal infections

among infected hosts [4]. As such, relatedness analyses reflect the recent, context-specific

history of malaria parasites, generating epidemiologically relevant insight. For example,

analyses of relatedness have been used to evaluate and inform efforts to reduce transmission

[5, 6, 7], to elucidate population connectivity on granular spatiotemporal scales [8, 9, 10,

11, 12], to characterise the structure of inbred populations [13, 14], to resolve transmisson

heterogeneity [15], and to identify regions of the parasite genome subject to recent selective

pressure [14, 16, 17]. Relatedness has further applications in clinical trials of antimalarial

drugs, i.e., in the classification of Plasmodium falciparum reinfection and recrudescence [18]

and of Plasmodium vivax reinfection, recrudescence and relapse [19, 20].
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IBD is not observable. As such, relatedness must be estimated under a statistical model.

Various software exist for estimating relatedness between malaria parasites [16, 21, 22, 23,

24]. However, not all aspects of malaria parasite relatedness estimation are fully understood,

especially those pertaining to systematic bias. For example, relatedness estimates based on

dense whole-genome-sequence (WGS) data often exceed those based on sparse data, with

striking zero-inflation of the sparse-data estimates (e.g., see Figure S2Q of [9]). As another

example, consider the allele frequencies that are typically plugged into the models used

to estimate relatedness between parasites. They are computed from a sample of parasites

assuming inter-parasite independence — an assumption that contradicts pairwise relatedness

estimation. They are thus liable to systematically bias relatedness estimates [9, 25, 26,

27, 28, 29]. Weir and Goudet [29] and others have addressed the consequent notion that

relatedness is estimated relative to the average relatedness within the sample from which

allele frequencies are computed. Implications of this construction have been addressed in the

context of forensic typing [30], and case-control studies to characterise genetic determinants

of human disease [31, 32, 33]. However, for practitioners of malaria genomic epidemiology,

practical tools and guidelines that address these biases are, to the best of our knowledge,

unavailable.

Here, we characterise systematic biases in malaria parasite relatedness estimation using

three complementary approaches. First, we analyse theoretically non-ancestral models of

pairwise relatedness, characterising the ramifications of the use of sample allele frequen-

cies, shedding light on the aforementioned zero-inflation, and establishing common ground

with Weir and Goudet [29]. Second, we simulate malaria parasite ancestries over successive

generations of inbreeding, verifying independently our theoretical results, and elucidating

systematic differences in relatedness estimates that are generated under models that assume

inter-marker independence versus marker linkage due to proximity. Our numerical results

help to explain differences between estimates based on sparse and dense data. Finally, using

P. falciparum data from a highly-inbred parasite population in Guyana, we illustrate how

our results based on theory and simulation translate empirically and the practical utility

of various diagnostics. Beyond malaria genomic epidemiology, our results generalise to sys-

tems of largely haploid recombining eukaryotes [34, 35, 36, 37, 38] or highly-inbred diploid

populations for which the haploid model of Leutenegger et al. [39] is applicable.

2 Methods

We characterise systematic biases in malaria parasite relatedness estimation using three

complementary and independent approaches: by analysing statistical models of pairwise

relatedness, by analysing simulated data with known parasite ancestries, and by analysing

P. falciparum data from Guyana and Colombia. A summary of notation used throughout

our main text is provided in Table 1. A detailed description of the methods described below

is available in Appendices A and B, while a glossary of terms is provided in Appendix C.
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Terms / notation Working definition

IBSℓ Locuswise average IBS sharing: the proportion of pairs in a sample

(including self-self comparisons) that are IBS at a given marker ℓ

IBDℓ Locuswise average IBD sharing: the proportion of pairs in a sample

(including self-self comparisons) that are IBD at a given marker ℓ

mean
(
IBDℓ

)
Locuswise average IBD sharing averaged over all markers ℓ = 1, . . .

r Relatedness parameter governing the marginal probability of IBD

at each marker under non-ancestral models of pairwise relatedness

r̂ Maximum likelihood estimate of the parameter r; an estimate of

pairwise relatedness

realised relatedness Fraction of polymorphic markers across the genome that are IBD

for a parasite pair

Table 1: Summary of terms and notation

2.1 Statistical models of pairwise relatedness

We derive theoretical results and estimate pairwise relatedness using models of relatedness

that couple a non-ancestral model of latent IBD and non-IBD (nIBD) states describing a

pair of parasites along a sequence of marker loci and a locuswise observation model.

The latent state model either assumes independence between markers or accounts for

marker linkage under the intuition that IBD segments are fragmented at randomly-distributed

recombination breakpoints over successive generations, with a genome-wide-constant recom-

bination rate [39, 40, 41]. Of key interest is the pairwise relatedness parameter r, which

describes the marginal probability that a given marker locus is IBD for a parasite pair, i.e.,

if we consider a single locus in isolation under the model then, P(IBD) = r.

The locuswise observation model provides an explicit link between latent and observable

states. Observable states are either pairs of alleles or descriptives of identity-by-state (IBS);

i.e., IBS for a pair of identical alleles and non-IBS (nIBS) otherwise. For IBS descriptives,

the observational model takes the form Pobs(IBS|IBD) = 1 in the absence of genotyping error

(since IBD necessarily implies IBS) while Pobs(IBS|nIBD) must be defined appropriately.

Under the coupled model of relatedness, the marginal likelihood of IBS at a given marker

can be written

P(IBS | r) = r +Pobs(IBS |nIBD) · (1− r). (1)

Here, we focus on maximum likelihood estimates r̂ as an estimate of relatedness between a

pair of malaria parasites. We do not address the estimation or identification of IBD segments.

It is standard practice to compute allele frequencies from data on a set of sampled par-

asites (either before or after removing replicates of apparent clones) and plug them into

observation models. We refer to these frequencies as sample allele frequencies and to the
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observation models into which they are plugged as standard practice observation models.

Other terms we use include (n)IBD to refer to IBD and nIBD collectively, (n)IBS to refer to

IBS and nIBS collectively, hidden Markov model (HMM) of relatedness to refer to models

of relatedness that allow for linkage between proximal markers, and independence model of

relatedness to refer to models of relatedness that assume marker loci are independent. We

use the word model to refer to models of relatedness, the models within the models of relat-

edness (i.e., (n)IBD models and (n)IBD-to-observation models) and the models within the

(n)IBD models and (n)IBD-to-observation models (e.g., IBD-to-allele model, nIBD-to-IBS

model). We use the term fraction to indicate pairwise averages over loci across the genome,

and proportion to indicate locuswise averages over parasites within a population.

Here, we are primarily concerned with bias stemming from standard practice observation

models. As a theoretical comparator, we adopt a corrected model of (n)IBS descriptives

with conceptual parallels to Weir and Goudet [29]. The corrected model is not available

practically, but illustrates theoretically the partial encoding of population relatedness in the

sums of squares of sample allele frequencies. Further details of the observation models are

provided in the results section. For clarity, genotyping error is not modelled and theoretical

derivations are restricted to the independence model of relatedness.

2.2 Simulation model of parasite ancestries

While our theoretical results are derived under a non-ancestral pairwise framework, we per-

form numerical analyses under an ancestrally-informed simulation of a parasite population.

Although our simulation framework is highly-simplified and does not fully recapitulate epi-

demiological reality, it enables independent verification of our theoretical results and allows

us to examine the consequences of marker linkage.

A detailed description of the simulation model is provided in Appendix B. In brief, it

captures successive generations of inbreeding, with the ancestry of each simulated parasite

formulated as a mosaic of a bygone outbred founder population. Its main assumptions are

as follows.

• Sufficient temporal separation between ‘generation zero’ and a bygone outbred founder

population to break down marker linkage, whereby the ancestry of each individual in

generation zero is sampled uniformly over the set of all possible founder mosaics; this

construction distributes ancient low-level background relatedness broadly across the

generation zero population.

• Discrete, non-overlapping generations of inbreeding from generation zero onwards, mod-

elled using a transitive relationship graph with sibling/clonal/stranger edges as per [20];

relationship graphs are obtained by amalgamating uniformly-sampled subgraphs of a

fixed size [42], biasing the distribution towards small, balanced clusters of siblings and

clones.

• Stochastic drift arising from the random crossing of parental genotypes from generation
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(k−1) to yield filial genotypes in generation k, with an augmented probability of selfing

and sibling-sibling crosses serving as a proxy for monoclonal mosquito infection and

serial cotransmission [43].

• The absence of immigration, mutation, selection and population structure under a

small, fixed parasite population size.

• A genome-wide constant recombination rate, with markers treated as nominal point

polymorphisms.

When we analyse simulated data, the ground truth against which we characterise sys-

tematic bias in pairwise relatedness estimates is the fraction of polymorphic marker loci IBD

for a given parasite pair; otherwise known as realised relatedness [2]. There is a conceptual

distinction between realised relatedness and the relatedness parameter r of the non-ancestral

pairwise model: given a finite number of markers, a fixed value of r gives rise to a distribution

of realised relatedness [2, 41]. However, since we model recombination from first principles

under our simulation model, our simulation framework does not yield a direct analogue for

the non-ancestral relatedness parameter r.

2.3 Case study of P. falciparum data from Guyana and Colombia

To show our theoretical and numerical results are practically relevant, we present a case

study from a highly inbred parasite population. Specifically, we consider a set of high-quality

isolates from clinical infections that are deemed monoclonal, collected in passively sampled

symptomatic patients in Guyana between 2016–2020 [44] and Colombia between 1993–2017

[14], for which WGS data are available. Variants were called in accordance with best practices

stipulated by GATK and the MalariaGEN Pf3k consortium [14, 44]. We restrict our attention

to biallelic SNPs that are in core nuclear regions of the genome [45], and are polymorphic

among the sampled infections, masking any variant calls that are heteroallelic or have read

support below 5 (based on the DP tag). We remove variant sites with missingness > 30%

across sampled infections and sampled infections with missingness > 30% across SNPs to

yield a WGS SNP dataset comprising n = 306 sampled infections (n = 278 from Guyana,

n = 28 from Colombia) and n = 30694 polymorphic sites. Results in the main text are

restricted to the sample from Guyana, comprising n = 278 sampled infections and n = 16115

polymorphic biallelic SNPs. Sparse datasets are generated by down-sampling variant sites

uniformly at random without replacement.

2.4 Data analyses

All data analyses are done in R [46]. Relatedness estimates based on allelic states are gener-

ated using the R package paneljudge [24], which implements the HMM of relatedness with

allelic observations and its independent counterpart, and employs a maximum likelihood

estimation scheme. The model of independent (n)IBD states with (n)IBS observations has
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been custom coded in R. We do not estimate relatedness using a HMM with (n)IBS obser-

vations. All code and a minimum analysis dataset for the empirical case study is available

on GitHub: https://github.com/somyamehra/PlasmodiumRelatednessBias

3 Results

A detailed description of the results below can be found in Appendix A, which includes an

overview of the support (theoretical, numerical, and/or empirical) per result (Table A.1).

3.1 Theoretical results

3.1.1 Standard (n)IBD-to-observation models are twice misspecified

In standard practice, (n)IBD-to-observation models are informed by sample allele frequen-

cies [9, 10, 16, 22, 41]. Taylor et al. [41] allude to potential misspecification arising from

this construction: while relatedness estimation seeks to estimate dependence between indi-

viduals, the sample allele frequencies, and thus any observation models into which they are

plugged, are constructed under the implicit assumption of independence between individuals.

Weir and Goudet [29] have articulated the notion that relatedness is consequently estimated

relative to the average relatedness within the sample.

Here, we argue that standard (n)IBD-to-observation models are twice misspecified:

1. The standard IBD-to-allele model, whereby the probability of an IBD pair exhibiting

allele q is given by the sample frequency of allele q, is implicitly predicated on the

independence of allelic and IBD states which may not hold in reality (Equation (A.10)),

particularly in the presence of selection.

2. The standard nIBD-to-IBS model, under which the probability of an IBS pair given

a nIBD pair is equal to the proportion of IBS pairs in the set of sampled parasites

(calculated by taking the sums of squares of sample allele frequencies), is inflated by

the encoding of average locuswise relatedness (Equation (A.12)). Weir and Goudet [29]

similarly exploit IBS descriptives rather than allelic states for conceptual clarity.

Removing clonal replicates will not circumvent IBD-to-allele misspecification although

it seems reasonable to expect it might mitigate it; otherwise, consequences of the IBD-to-

allele misspecification are case-specific and beyond the scope of our current study. For the

remainder of this study we focus on nIBD-to-IBS misspecification because it is more pervasive

and has systematic consequences.

An illustration of nIBD-to-IBS misspecification is shown in Box 1, echoing the work of

Weir and Goudet [29]. We can summarise this form of misspecification mathematically as

follows. Denote by IBS and IBD the proportion of pairs of sampled parasites (including self-

self comparisons) that are IBS and IBD respectively at a given locus (Table 1, but with locus
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identifiers dropped for notational convenience). Under the standard nIBD-to-IBS model, we

set

Pstandard(IBS |nIBD) = IBS. (2)

A proportion of IBS sharing, however, is attributable to IBD. To adjust for locuswise

relateness in the set of sampled parasites, we would need to average IBS sharing over nIBD

pairs only, that is,

Pcorrected(IBS |nIBD) =
IBS− IBD

1− IBD
. (3)

The correction (Equation (3)) cannot be implemented in practice because (n)IBD states

are unobservable. However, it provides a theoretical basis for understanding the misspeci-

fication of the standard nIBD-to-IBS model. To see how relatedness structure, in the form

of locuswise average relatedness IBD, is implicitly embedded in the standard nIBD-to-IBS

model, we rearrange Equation (3) to yield

Pstandard(IBS |nIBD) = IBD +
(
1− IBD

)
·Pcorrected(IBS |nIBD),

> Pcorrected(IBS |nIBD), (4)

where the strict inequality is just a technicality. Since we have included self-self comparisons

(i.e., comparisons with replacement) for consistency with standard nIBD-to-allele models

[16, 21], IBD = 1/n > 0 for an outbred sample of size n. The finite sample adjustment

of [47], which considers pairwise comparisons without replacement, yields IBD = 0 for an

outbred sample. However, under either construction, the form of the theoretical correction

to the nIBD-to-IBS model is identical.

In summary, the probability of IBS sharing for nIBD pairs is systematically overestimated

under the standard nIBD-to-IBS model, with a particularly pronounced effect in inbred

populations with large IBD.

Box 1: Illustrating misspecification of the standard nIBD-to-IBS model

IBD partition at a given locus

Standard nIBD-to-IBS observation model

20% of pairs share 
a blue allele

30.5% of pairs share 
a green allele

ℙstandard(IBS | nIBD)

50.5% of pairs IBS

49.5% of pairs have 
different alleles

49.5% of pairs nIBS

{   ,   } {   ,   } {   ,   }

IBS sharing averaged over all pairs (i.e. IBD and nIBD pairs)

node = individual

colour = allele at locus 
(observable)

edge = IBD at locus 
(unobservable)

49.5% of pairs 
nIBS (therefore nIBD)

(       )

19.1% of 
pairs IBD

31.4% of pairs 
IBS and nIBD

(       ) (       )or

ℙcorrected(IBS | nIBD) 

38.9% of nIBD pairs are IBS 62.1% of nIBD pairs are nIBS

Corrected nIBD-to-IBS observation model
IBS sharing averaged over nIBD pairs only

ℙ(IBS | nIBD) systematically overestimated 

Observation model for nIBD pairs Probability of IBS
IBS as a sum of IBD and IBC

In the absence of genotyping error, IBD ⇒ IBS
ℙ(IBD) is a genomewide measure of relatedness

ℙ(IBS) =   ℙ(IBD)   + ℙ(IBS | nIBD) · [1 – ℙ(IBD)]

identity by chance (IBC) 
independent lineages

identity by descent
common ancestral origin

ℙ(IBS) = ℙ(IBD) +  ℙstandard(IBS | nIBD)  · [1 – ℙ(IBD)] 

inflated by locuswise average IBD 
sharing c.f. theoretical correction

overestimate contribution of 
IBC = IBS ∩ nIBD

Standard model of pairwise relatedness

observation model: links observable IBS to latent (n)IBD states

ℙ(IBD) systematically underestimated⇒
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Standard nIBD-to-IBS model

At a given locus, b = 17 blue nodes and g = 21 green nodes are observed. The proportion of pairs

that are IBS, which we denote IBS, can be written as the sum of squares of the blue b/(b+ g) and

green g/(b+ g) allele frequencies:

IBS = (b2 + g2)/(b+ g)2 = 0.505.

Under the standard nIBD-to-IBS model the probability of an IBS pair given an nIBD pair is equal

to the overall proportion of pairs that are IBS:

Pstandard(IBS | nIBD) = IBS = 0.505.

Corrected nIBD-to-IBS model

There are three green clusters in the IBD partition, of size c1 = 9, c2 = 9 and c3 = 3. Out of a total

of (b+ g)2 = 1444 possible pairwise comparisons, this means that

(c21 + c22 + c23)/(b+ g)2 = 0.118 of pairs are IBD and share green alleles

Likewise, since there are three blue clusters of size s1 = 8, s2 = 5, s3 = 4

(s21 + s22 + s23)/(b+ g)2 = 0.073 of pairs are IBD and share blue alleles

The proportion of pairs which are IBD is then

IBD = 0.118 + 0.073 = 0.191,

while the proportion of pairs that are IBS and nIBD is

IBS− IBD = 0.505− 0.191 = 0.314.

To construct a model of IBS specifically for nIBD pairs, we would ideally focus on IBS sharing in

the proportion of (1− IBD) = 0.809 pairs that are nIBD, that is,

Pcorrected(IBS |nIBD) =
IBS− IBD

1− IBD
= 0.389.

Misspecification of the standard nIBD-to-IBS model

In failing to adjust for IBD sharing under the standard nIBD-to-IBS model, we have overestimated

the probability of IBS sharing for nIBD pairs:

Pstandard(IBS |nIBD) = 0.505 > 0.389 = Pcorrected(IBS | nIBD).

3.1.2 Misspecification: relative and zero-valued relatedness estimates

Here, we examine systematic bias in maximum likelihood estimates r̂standard generated under

the standard nIBD-to-IBS model (Equation (2)), relative to hypothetical estimates r̂corrected

generated under the corrected nIBD-to-IBS model (Equation (3)). For conceptual clarity, we

enforce the assumption of marker independence (consequences of marker linkage are explored

in our numerical analyses, Section 3.2).

We can intuit that misspecification of the standard nIBD-to-IBS model will lead to sys-

tematic underestimation of pairwise relatedness, that is, r̂standard < r̂corrected (Box 1). Two
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additional consequences for which we have theoretical support are as follows.

1. The standard pairwise relatedness parameter rstandard can be re-interpted as a rela-

tive measure of deviation from population-averaged locuswise relatedness (Appendix

A.2.2.1). The marginal likelihood of IBS sharing at a given marker ℓ under the stan-

dard model with relatedness parameter rstandard is equivalent to the likelihood under the

corrected model with relatedness parameter rcorrected = rstandard + IBDℓ[1− rstandard],

where IBDℓ is the proportion of sampled parasites that are IBD at locus ℓ, that is,

Pstandard(IBSℓ | rstandard) = Pcorrected

(
IBSℓ

∣∣∣ rcorrected =
(
rstandard + IBDℓ[1− rstandard]

))
.

In practice, the average locuswise relatedness IBDℓ will vary across loci ℓ. In a hypo-

thetical population with identical average locuswise relatedness over all loci, IBDℓ =

IBDconstant, we obtain the functional relationship

rstandard =
rcorrected − IBDconstant

1− IBDconstant

. (5)

This interpretation of relative relatedness echoes the work of Weir and Goudet [29].

2. Relatedness estimates can be stratified by average sample relatedness: zero below,

positive otherwise (Appendix A.2.2.2). To understand why this is the case, using

Equations (1) and (4), we observe that

Pstandard(IBSℓ | rstandard = 0) = IBDℓ +
(
1− IBDℓ

)
Pcorrected(IBSℓ |nIBDℓ)

= Pcorrected(IBSℓ | rcorrected = IBDℓ). (6)

That is, plugging rstandard = 0 into the standard model likelihood of IBS at a given

marker ℓ is equivalent to plugging in the average locuswise relatedness rcorrected = IBDℓ

into the corrected model likelihood. In other words, population-averaged locuswise re-

latedness is implicitly encoded in the standard model even in the case rstandard = 0, and

parasite pairs with less IBS sharing than predicted under population-averaged related-

ness (given explicitly by the threshold (A.25)) are assigned zero estimates r̂standard = 0.

Similar observations have been made previously by Weir and Goudet [29].

Accounting for variability in IBDℓ across loci ℓ, we predict estimates r̂standard against the

theoretical comparator r̂corrected to exhibit a fuzzy elbow-like characteristic, with a change

point in the vicinity of the mean locuswise average IBD sharing, mean
(
IBDℓ

)
(Figure 1A).

If the distribution of r̂corrected is positively skewed, we expect pronounced zero inflation in

estimates of rstandard under the standard nIBD-to-IBS model.

3.2 Numerical results

3.2.1 Theoretical validation

Relatedness estimates generated under the independence model of relatedness using simu-

lated data support theoretical results as follows. In line with standard nIBD-to-IBS model
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misspecification, systematic bias in estimates of rstandard increases as mean
(
IBDℓ

)
increases

(Appendix A.3.1). In line with the proposed nIBD-to-IBS model correction, r̂corrected are

largely unbiased (Appendix A.3.2, Figure 2A vs 2C). The realisation of bias-mitigation under

(n)IBD independence supports the notion that systematic bias of r̂standard can be attributed

to the partial encoding of sample relatedness in standard observation models. In line with

expected zero-valued estimates, r̂standard = 0 for simulated pairs that exhibit a smaller

fraction of IBS markers than that which is expected for rstandard = 0 under the standard

nIBD-to-observation model (Appendix A.3.4). In line with Figure 1A, plots of r̂standard

against realised relatedness yield an elbow-like characteristic, branching approximately at

mean
(
IBDℓ

)
(Figure 1B).

3.2.2 Exploiting marker linkage can mitigate bias

While systematic underestimation given (n)IBD independence persists irrespective of marker

density (Figure 2A), it is mitigated as a function of marker density when data are analysed

under the HMM (Figure 2B). We attribute this trend to the exploitation of increasingly

detailed linkage information under the HMM, reducing the reliance of rstandard estimation

on the standard observation model, which is misspecified. We thus propose a dense data

diagnostic that leverages increased precision under the HMM (Appendix A.3.5): for dense

data, comparison of r̂standard estimates under (n)IBD independence vs the HMM is expected

to yield an elbow-like characteristic (analogous to Figure 1B), which can be used to ascertain

both the severity of underestimation and the approximate degree of relatedness mean
(
IBDℓ

)
averaged over the set of sampled parasites. Zero inflation renders mean(r̂) under (n)IBD

independence a poor approximation of mean
(
IBDℓ

)
.

For sparse data that do not encode linkage information, analyses of simulated data under

the independence model of relatedness confirm that bias-mitigation would be possible if

model-adjustment were available, and that model-adjustment would be sufficient (Figure

2C).

3.2.3 Relative vs absolute relatedness

Across successive generations of inbreeding, realised relatedness between siblings (gray shad-

ing, Figure 3) is systematically enriched above 0.5. For dense data, we can interpret r̂standard

under the HMM (navy blue, Figure 3) as a measure of absolute relatedness which recapitu-

lates this enrichment. In contrast, r̂standard for siblings under (n)IBD independence (orange,

Figure 3) is consistently centred around 0.5, supporting reinterpretation as a measure of

relative relatedness. This points towards two choices for practitioners: the analysis of abso-

lute relatedness under a HMM, which requires sufficiently dense genotypic data; or the use

of relative relatedness under (n)IBD independence, which warrants careful interpretation in

cross-population comparisons (the degree of bias may vary across transmission settings, but

relative relatedness may have utility, for instance, as an approximate relationship proxy).
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Figure 1: Characterisation of systematic bias in pairwise relatedness under (n)IBD independence. We

characterise bias against three comparators: (A) r̂corrected estimates computed theoretically; (B) realised

relatedness computed using simulated data; and (C) r̂standard estimates computed using the HMM and

WGS data on P. falciparum from Guyana. In each case, we recover an elbow-like characteristic with

change point near the mean locuswise proportion of IBD pairs mean
(
IBDℓ

)
.

Figure 2: Summary of pairwise relatedness for simulated data after 10 generations of inbreeding. Sys-

tematic bias is shown as a function of marker density, with the fraction of (polymorphic) marker loci IBD

taken as the ground truth, for (A): r̂standard under (n)IBD independence and the standard nIBD-to-allele

model; (B) r̂standard computed using the HMM and the standard nIBD-to-allele model; (C): r̂corrected un-

der (n)IBD independence and the corrected nIBD-to-IBS model. (D): Histogram of realised relatedness

(fraction of polymorphic sites that are IBD for simulated parasites).

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2024. ; https://doi.org/10.1101/2024.04.16.588675doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.16.588675
http://creativecommons.org/licenses/by/4.0/


Figure 3: Summary of pairwise relatedness for simulated siblings across successive generations of in-

breeding. We compare realised relatedness (i.e., the fraction of (polymorphic) sites that are IBD for a

given parasite pair) against r̂standard predicated on the standard nIBD-to-allele model with (n)IBD inde-

pendence (relative relatedness estimates) versus the HMM (absolute relatedness estimates).
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3.3 Empirical results

3.3.1 Case study: inbred parasite population from Guyana

To illustrate the practical implications of our findings, we analyse WGS data from n = 278

high-quality P. falciparum isolates (deemed to be monoclonal) sampled from Guyana in

2016–2020.

Based on our numerical results (specifically, Figure 2B), estimates of relatedness gen-

erated under the HMM using WGS data are expected to exhibit relatively little bias and

therefore serve as a pragmatic gold-standard. To gauge the severity of systematic under-

estimation due to standard observation model misspecification, we draw on the dense data

diagnostic proposed in Section 3.2.2: a comparative plot of dense-data r̂standard estimates

generated under (n)IBD independence model and HMM (Figure 1C). The position of the

change point suggests that the mean locuswise proportion of IBD pairs is in the vicinity of

mean
(
IBDℓ

)
≈ 30%. Across parasite pairs, the average estimate r̂standard under the HMM

using WGS data is 30.4%.

In addition to systematic bias stemming from model misspecification, uncertainty due to

marker sparsity may become significant for sparse data [10]. We expect the point at which

uncertainty/variance masks the elbow-like characteristic to be dependent on the average

relatedness within the set of sampled parasites. A sparse-dense data diagnostic, compris-

ing comparative plots of estimates generated under (n)IBD independence using sparse data

vs estimates generated under the HMM using dense data, can be used to elucidate this

trade-off because under (n)IBD independence, increasing marker density does not mitigate

systematic bias but does reduce uncertainty in pairwise relatedness estimates. For 278 P.

falciparum isolates from Guyana, Figure 4A suggests bias due to elevated population related-

ness dominates uncertainty due to marker sparsity: even at low marker densities, systematic

underestimation is apparent.

A possible strategy for offsetting systematic bias is to exploit linkage information under

the HMM regardless of marker density. Analysing sparse data under the HMM, however,

yields an intermediary regime, whereby systematic underestimation driven by nIBD-to-IBS

misspecification is only partially mitigated (Figure 4B). Unlike estimates under the indepen-

dence model — which can be re-interpreted as relative measures of relatedness, intrinsically

calibrated for locuswise average relatedness within a set of sampled parasites (Section 3.1.2)

— sparse data HMM estimates do not have a clear interpretation.

The error structure in sparse data HMM estimates is heteroskedastic: underestimation is

most pronounced for parasite pairs with low relatedness. At the other end of the spectrum,

genomic epidemiology applications typically focus on highly related parasite pairs, often

using a threshold-based approach [9, 14, 16, 48, 49, 50]. Since relatedness is systematically

underestimated using sparse data, false positives (pairs with low levels of relatedness that

appear highly related) are relatively rare. The sensitivity of sparse data (analysed under

the HMM) in identifying parasite pairs above a relatedness threshold rthreshold is shown
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Figure 4: Consequences of marker sparsity on pairwise relatedness estimates for inbred parasites sampled

from Guyana. Since IBD is unobservable, we treat relatedness estimates generated under the HMM for the

complete dense WGS SNP dataset as a truth value. Thinned data have been generated by downsampling

uniformly at random without replacement biallelic SNPs that are polymorphic among the 278 samples.

(A) Relatedness estimates generated under (n)IBD independence with thinned data vs the HMM with

dense data.

(B) Relatedness estimates generated under the HMM with thinned data vs dense data.

(C) Sensitivity of thinned data for classifying related parasite pairs, when analysed under the HMM of

relatedness. For each IBD threshold rthreshold, we record a true positive (TP) if estimates generated

under the HMM for both thinned and dense data lie above rthreshold; and a false negative (FN) if

only the HMM estimate for dense data lies above rthreshold. The sensitivity is given by the ratio

TP/(TP+FN).

All estimates are generated using the standard (n)IBD-to-allele model.
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in Figure 4C. When relatedness thresholds are sufficiently high, sparse marker data in the

intermediary regime suffice; sensitive classification for low relatedness thresholds, however,

requires higher resolution data [50]. We are reluctant to posit marker density thresholds

necessary to sensitively identify highly-related parasite pairs in generality, because the degree

of linkage structure within a set of sampled parasites depends on the distribution of shared

IBD segment lengths — which, in turn, is driven by demographic processes that we neither

fully understand, nor control. The downsampling of WGS data on a case-by-case basis,

however, may provide setting-specific insights.

3.3.2 Population structure

Since our theoretical and numerical results assume a single parasite population, we addi-

tionally perform a joint analysis of the n = 278 isolates from Guyana and n = 28 isolates

from Colombia. Principal coordinates analysis (PCoA) of pairwise fractions of IBS markers

yields two distinct clusters, stratified by country (Figure A.12). Two diagnostics — namely,

a multimodal distribution of pairwise fractions of IBS markers, and systematic differences

between relatedness estimates under the standard nIBD-to-IBS vs (n)IBD-to-allele model —

corroborate the presence of population structure (Appendix A.4.1).

In this setting, the dense data diagnostic is characterised by multiple elbows, correspond-

ing to different within- and across-population comparisons (Figure A.15). Given sample al-

lele frequencies constitute a weighted average across subpopulations, the interpretation of the

corresponding branch points is unclear; an observation model predicated on subpopulation-

stratified allele frequencies [21], may yield more interpretable results. Further discussion is

provided in Appendix A.4.

4 Discussion

4.1 Summary and interpretation of results

We have characterised systematic biases in pairwise relatedness estimates, providing the-

oretical, numerical and/or empirical support for our results (Table A.1) via a three-fold

approach (interrogation of non-ancestral models of pairwise relatedness; simulation under

an ancestrally-informed model of population relatedness; and a case study of P. falciparum

WGS data).

Our results are motivated by but not limited to analyses of malaria parasites. They extend

to any system concerned with pairwise relatedness of predominately haploid recombining

eukaryotes (e.g., Cryptosporidium hominis [37] and Cryptosporidium parvum [36], leading

causes of human and zoonotic cryptosporidiosis respectively; Coccidioides species which

give rise to human coccidioidomycosis [34]; Cryphonectria parasitica, the pathogenic agent

responsible for Chestnut blight [35] and Marchantia polymorpha, a model species of liverwort
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[38]) or highly-inbred populations of diploid organisms for which pairwise relatedness can be

interrogated using a haploid model [39].

Misspecification of standard (n)IBD-to-observation models, which are predicated on sam-

ple allele frequencies, constitutes our conceptual starting point [25, 29, 41]. Theoretically, we

demonstrate via the nIBD-to-IBS model that the implicit embedding of population-averaged

locuswise relatedness in standard observation models is pervasive and can lead to the system-

atic underestimation of pairwise relatedness. Our theoretical results bear strong conceptual

similarity to the work of Weir and Goudet [29]. Both theoretical and numerical analyses sup-

port the re-interpretation of pairwise relatedness under the independence model as a relative

measure: non-zero estimates are calibrated intrinsically for relatedness averaged over the set

of sampled parasites, while zero estimates are non-informative and flag parasite pairs with

below-average relatedness, echoing the work of Weir and Goudet [29]. By introducing linkage

structure within the simulation model, we show numerically that the exploitation of linkage

structure using a HMM can mitigate bias when genotypic data are sufficiently dense. We thus

propose a dense data diagnostic (i.e., a plot of pairwise relatedness estimates generated using

dense data under independence versus a HMM) to elucidate average sample relatedness and

the potential severity of systematic bias. We illustrate the use of the dense-data dignostic

using P. falciparum data. Also using P. falciparum data, we characterise the consequences

of marker sparsity by downsampling markers. We find that the analysis of sparse data under

an HMM may yield an intermediary regime that is difficult to interpret because systematic

underestimation is only partially mitigated, but that threshold-based analyses are relatively

robust.

The functional consequences of our findings are heavily context-dependent: the severity

of systematic bias depends on average sample relatedness, which is contingent on the his-

tory of effective recombination in the parasite population; while mitigation of bias under the

HMM is a function of linkage structure, which is largely governed by recent ancestry and

the length of shared IBD segments. Rather than issuing a set of concrete rules, we chart out

a roadmap — starting with representative WGS data from a parasite population of interest

— for practitioners to evaluate specific settings on a case-by-case basis. Firstly, to assess

whether the setting of interest is one where elevated population relatedness warrants caution

around the estimation and interpretation of pairwise relatedness, we propose the use of the

dense data diagnostic. If systematic bias is found to be pronounced, we suggest a heuristic:

downsampling loci. A sparse-dense data diagnostic, comparing estimates for downsampled

data under the independence model against gold-standard WGS estimates under a HMM,

can elucidate the relative importance of systematic bias at low marker densities where es-

timates are inherently more uncertain due to limited marker informativity. Comparison of

downsampled vs WGS estimates under a HMM can guide the use of a HMM (which partially

mitigates bias) or the independence model (which yields interpretable bias) at a particular

marker density in the setting of interest. Examination of the heteroskedastic error structure

can also facilitate the identification of thresholds above which highly-related parasite pairs
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can be identified sensitively. Analytic choices will plausibly vary across transmission settings

and use cases.

Using data simulated under the (non-ancestral) standard HMM model of relatedness,

relatively accurate relatedness estimates were generated using moderate marker counts [41].

That was a well specified setting: data were simulated under the standard HMM model.

In this study we consider misspecification of the standard HMM model. In a highly-inbred

setting, bias-mitigation due to misspecification of the standard HMM model requires dense

data. For sparse data in isolation, relatedness estimates can either be characterised using high

relatedness thresholds or generated under (n)IBD independence and interpreted relatively.

Selection can likewise modulate IBD segment length distributions which, in turn, can have

a bearing on estimates of genome-wide IBD [51]. For example, Guo et al. [51] have shown

that positive selection can also bias relatedness estimation. However, they find selection-bias

is minor when background relatedness is high. Taken together, our study and that of Guo

et al. [51] suggest selection bias dominants when transmission is high; bias due to observation

model misspecification dominates when transmission is low.

4.2 Limitations

IBS descriptives The theoretical re-interpretation of pairwise relatedness under indepen-

dence as a relative measure is predicated on IBS descriptives, as in Weir and Goudet [29].

In practice, pairwise relatedness is estimated using allelic states rather than IBS descrip-

tives [10, 16, 21, 22, 24, 41]. Misspecification of the IBD-to-allele model — arising from the

non-independence of IBD and allelic states — is sensitive to the unobservable relatedness

structure at each locus. It is not necessarily rectified by removing replicates of clonal para-

sites, and may be particularly pronounced in the presence of selection [51]. As such, there

may be systematic differences between pairwise relatedness estimates based on IBS descrip-

tives versus allelic states. A rigorous examination of the latter would potentially require

joint estimation of relatedness across a set of sampled parasites, which is beyond the scope

of the current manuscript.

Reliance on dense genotypic data The proposed diagnostics for gauging average

sample relatedness and the severity of systematic bias in pairwise relatedness estimates rely

on dense data from a representative population of interest. To mitigate systematic bias,

we suggest leveraging linkage structure which necessarily mandates dense data for inbred

parasite populations. In practical terms, dense data translates to WGS data. These data

may not be readily available, or may be prohibitively expensive to generate [52, 53]. Sparse

marker data, which are often of greater practical utility [52, 53], cannot be evaluated or

corrected for systematic bias in isolation under our framework. For sparse data in isolation,

we offer the re-interpretation of pairwise relatedness estimated under (n)IBD independence

and, for relatedness estimated under the HMM, advocate caution to be exercised at low

relatedness thresholds.
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Demographic processes Clearly, demographic processes have a large effect on real

data but are neither explored theoretically nor numerically, to avoid overburdening the

manuscript. The effects of selection and immigration on the underlying relatedness struc-

ture of a set of sampled parasites are not considered. Our ancestral simulation model is very

simple and does not recapitulate epidemiological reality. Transmission dynamics — which

govern the propensity for selfing versus inbreeding versus outbreeding — are not explicitly

modelled. We do not account for fluctuations in parasite population sizes, for instance, due

to bottlenecks or control interventions, which may be particularly relevant to the context in

which genomic epidemiology studies are performed.

Population structure While we propose several diagnostics to screen for population

structure, we did not explore population structure theoretically or numerically [54]. Under

the non-ancestral theoretical framework, locuswise average IBD sharing, IBDℓ, is a repre-

sentative summary statistic for a set of parasites sampled from the same population. In

the presence of population structure, with variable levels of relatedness within and between

populations, the predicted elbow-like characteristic of Figure 1 may break down; we posit

the emergence of multiple elbows, corresponding to different cross-population comparisons

(see Appendix A.4 for an empirical example). Zero-inflation may not be present for cross-

population comparisons with lower relatedness than the cross-population average. The sim-

ulation model could be used to simulate different populations that unite and mix in order

to interrogate the consequences of population structure. The simulation model of Guo et al.

[51], which accounts for population structure, could be used as a complementary approach

to our simulation model. The framework of Weir and Goudet [29], which jointly charac-

terises relatedness and population structure, could also be drawn on. Theoretically, the

cross-population model of pairwise relatedness provided by hmmIBD could be analysed [21].

Multi-allelic markers We have derived results for multi-allelic markers in the absence

of genotyping error, under the assumption that there are no systematic biological differences

between multi-allelic and biallelic markers. That is to say, both are treated a nominal

point polymorphisms, whose alleles can be modelled as categorical random variables [41].

We do not report our results on multi-allelic markers, because they are not meaningfully

different to biallelic markers under these simplistic assumptions. In reality, the ancestral

processes governing biallelic markers and multi-allelic markers likely differ. Multi-allelic

markers additionally possess an ordinal genotyping error structure that is overlooked in

current methods commonly used to estimate relatedness between malaria parasites [16, 21].

The practical ramifications could be explored using empirical data: qualitatively compare

graphs of relatedness (as in [16]), where relatedness is estimated using multi-allelic markers

(e.g., microhaplotypes) versus biallelic markers (e.g., SNPs) of equal informativeness (i.e.,

markers sets whose composite score of average effective cardinality multiplied by marker

count is the same; see [41]).

Data sparsity under simulation We explore data sparsity using real data only, not

simulated data. The simulation model is not constructed in such a way that lends itself to
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the exploration of the effect of data sparsity. More specifically, under the simulation model,

we intentionally elevate the recombination rate to compensate for computational constraints

(small population size, few generations, single chromosome) and simplifying assumptions (no

immigration, no mutation). By way of comparison, we simulate 24000 equidistant markers

along a single chromosome of length 48 Morgans, while the P. falciparum nuclear genome

comprises 14 choromosome with cumulative length 17 Morgans [45]. 24000 markers is larger

than the ∼ 15000 SNPs reported by Miles et al. [45] in genetic crosses of P. falciparum,

but smaller than the number of SNPs and indels combined (∼ 28000); the simulated inter-

marker distance of 0.002 Morgans is an order of magnitude larger than 0.0002 Morgans

based on these crosses. Elevating the recombination rate generates simulated data whose

estimates of relatedness resemble data; however, this also leads to more IBD segments among

simulated data which, due to the law of large numbers, offsets the effect of data sparsity. An

exceedingly large recombination rate, however, yields little linkage structure, whereby bias

is only partially mitigated under the standard HMM model, even for dense data.

4.3 Future work

Generating community resources The dense-data elbow-like plot, which can be used to

diagnose the extent of underestimation, requires WGS data, which are often financially pro-

hibitive [52, 53]. As a practical resource for the malaria genomic epidemiological community,

catalogues of dense-data elbow-like plots could be generated for published WGS datasets

[55]. Doing so would first require partitioning of samples into sets for which population

structure is not a complicating factor. This exceeds the scope of this study. It is feasible,

however, using, for example, PCoA and the diagnostics we propose in Appendix A.4.1.

Recurrent infection classification in therapeutic efficacy studies Systematically

elevated population relatedness is liable to impair the genetic resolution of recurrent in-

fections during therapeutic efficacy studies in low transmission settings. How best to deal

with elevated population relatedness in recurrent classification is not yet understood. One

approach involves embedding a relatedness inflation factor into a classification model [20].

However, our results suggest the inclusion of inflation factors in classification models that

use sample allele frequencies may be unnecessary because sample allele frequencies already

partially encode population-averaged locuswise relatedness.

Analyses using confidence intervals A key consideration for sparse genotypic data is

the significance of systematic bias stemming from model misspecification in the presence of

uncertainty attributable to marker sparsity. While we suggest downsampling loci to evaluate

this trade-off heuristically, the incorporation of confidence intervals, as recommended in [41],

may yield a more statistically-principled way to evaluate this trade-off.

Algorithmic correction for population-averaged locuswise relatedness Unbiased

relatedness estimation using sparse marker data requires joint inference of relatedness and

the probability of allele sharing for nIBD parasites [41, 56, 57, 58]. We envision an iterative
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construction — as articulated by Thomas and Hill [56], Smith, Herbinger, and Merry [57],

and Wang [58] in the context of sibship reconstruction — whereby relatedness estimates

would inform the readjustment of nIBD-to-observation model across successive iterations.

5 Conclusion

Based on our results practitioners have two options: resolve to use relative relatedness es-

timated under independence or try to estimate absolute relatedness under a HMM. Be-

cause relative estimates are intrinsically adjusted, caution is required when differences across

transmission settings are sought after. That said, if relatedness estimates are viewed as

relationship-indicators, relative values are arguably preferable across transmission settings.

Caution should be exercised when estimating absolute relatedness because the extent to

which underestimation is mitigated is unknowable, but analyses dependent on absolute val-

ues and high relatedness thresholds are relatively robust. We are reluctant to prescribe

decision thresholds given most use cases are likely to deviate from any contrived examples.

Instead, we provide a framework to help practitioners evaluate their individual situations on

a case-by-case basis.
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bers are provided in supplemental Table S1. A minimum analysis dataset for the present
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https://github.com/somyamehra/PlasmodiumRelatednessBias
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