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Abstract

Genetic studies of malaria parasites increasingly feature estimates of relatedness. How-
ever, various aspects of malaria parasite relatedness estimation are not fully understood. For
example, estimates of relatedness based on whole-genome-sequence (WGS) data often exceed
those based on more sparse data types. We explore systematic bias in relatedness estimation
using theoretical, numerical and empirical approaches. Specifically, we use a non-ancestral
model of pairwise relatedness to derive theoretical results; a simulation model of ancestry to
independently verify and expand our theoretical results; and data on parasites sampled from
Guyana to explore how theoretical and numerical results translate empirically. We show
that allele frequencies encode, locus-by-locus, relatedness averaged over the set of sampled
parasites used to compute them. These sample allele frequencies are typically plugged into
the models used to estimate pairwise relatedness. Consequently, models of pairwise relat-
edness are misspecified and pairwise relatedness values are systematically underestimated.
However, systematic underestimation can be viewed as population-relatedness calibration,
i.e., a way of generating measures of relative relatedness. Systematic underestimation is un-
avoidable when relatedness is estimated assuming independence between genetic markers. It
is mitigated when estimated using WGS data under a hidden Markov model (HMM), which
exploits linkage between proximal markers. Estimates of absolute relatedness generated un-
der a HMM using relatively sparse data should be treated with caution because the extent to
which underestimation is mitigated is unknowable. That said, analyses dependent on abso-

lute values and high relatedness thresholds are relatively robust. In summary, practitioners
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have two options: resolve to use relative relatedness estimated under independence or try
to estimate absolute relatedness under a HMM. We propose various practical tools to help

practitioners evaluate their situation on a case-by-case basis.

Author summary

Malaria genomic epidemiology is increasingly recognised as a tool for public health. Related-
ness, which captures likeness derived from common ancestry, is a useful concept for malaria
parasites. Analyses of malaria parasite relatedness are important for generating results on
spatiotemporal scales relevant to disease control. Since shared ancestry is unobservable, re-
latedness must be estimated under a statistical model. However, not all aspects of malaria
parasite estimation are fully understood, including the effects of different data types. In this
work, we characterise systematic biases in estimates of malaria parasite relatedness. Our
analysis is three-fold: we mathematically interrogate a non-ancestral model of relatedness
to derive theoretical results; simulate parasite ancestries from first principles to yield nu-
merical results; and perform an empirical case study of parasites sampled from Guyana.
We show that bias may be particularly pronounced when using sparse marker data from
inbred parasite populations, which are often found in pre-elimination settings. We chart out
a practical roadmap to enable practitioners to assess epidemiological settings on a case-by-
case basis. Our findings are relevant to applications in malaria genomic epidemiology that
use relatedness directly or indirectly, including molecular surveillance and the genetic-based

classification of treatment failure.

1 Introduction

Relatedness is a genome-wide measure of identity-by-descent (IBD); i.e., identity due to
common ancestry [1, 2]. IBD is a useful concept when studying malaria-causing Plasmodium
parasites because they sexually recombine [3]. Although obligate, recombination is only effec-
tive when genetically distinct parasites recombine. The probability that genetically distinct
parasites recombine is context specific: it depends on parasite diversity, on the prevalence
of infected hosts, and on the within-host diversity and prevalence of polyclonal infections
among infected hosts [4]. As such, relatedness analyses reflect the recent, context-specific
history of malaria parasites, generating epidemiologically relevant insight. For example,
analyses of relatedness have been used to evaluate and inform efforts to reduce transmission
[5, 6, 7], to elucidate population connectivity on granular spatiotemporal scales [8, 9, 10,
11, 12], to characterise the structure of inbred populations [13, 14], to resolve transmisson
heterogeneity [15], and to identify regions of the parasite genome subject to recent selective
pressure [14, 16, 17]. Relatedness has further applications in clinical trials of antimalarial
drugs, i.e., in the classification of Plasmodium falciparum reinfection and recrudescence [18]

and of Plasmodium vivaz reinfection, recrudescence and relapse [19, 20].
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IBD is not observable. As such, relatedness must be estimated under a statistical model.
Various software exist for estimating relatedness between malaria parasites [16, 21, 22, 23,
24]. However, not all aspects of malaria parasite relatedness estimation are fully understood,
especially those pertaining to systematic bias. For example, relatedness estimates based on
dense whole-genome-sequence (WGS) data often exceed those based on sparse data, with
striking zero-inflation of the sparse-data estimates (e.g., see Figure S2Q of [9]). As another
example, consider the allele frequencies that are typically plugged into the models used
to estimate relatedness between parasites. They are computed from a sample of parasites
assuming inter-parasite independence — an assumption that contradicts pairwise relatedness
estimation. They are thus liable to systematically bias relatedness estimates [9, 25, 26,
27, 28, 29]. Weir and Goudet [29] and others have addressed the consequent notion that
relatedness is estimated relative to the average relatedness within the sample from which
allele frequencies are computed. Implications of this construction have been addressed in the
context of forensic typing [30], and case-control studies to characterise genetic determinants
of human disease [31, 32, 33]. However, for practitioners of malaria genomic epidemiology,
practical tools and guidelines that address these biases are, to the best of our knowledge,
unavailable.

Here, we characterise systematic biases in malaria parasite relatedness estimation using
three complementary approaches. First, we analyse theoretically non-ancestral models of
pairwise relatedness, characterising the ramifications of the use of sample allele frequen-
cies, shedding light on the aforementioned zero-inflation, and establishing common ground
with Weir and Goudet [29]. Second, we simulate malaria parasite ancestries over successive
generations of inbreeding, verifying independently our theoretical results, and elucidating
systematic differences in relatedness estimates that are generated under models that assume
inter-marker independence versus marker linkage due to proximity. Our numerical results
help to explain differences between estimates based on sparse and dense data. Finally, using
P. falciparum data from a highly-inbred parasite population in Guyana, we illustrate how
our results based on theory and simulation translate empirically and the practical utility
of various diagnostics. Beyond malaria genomic epidemiology, our results generalise to sys-
tems of largely haploid recombining eukaryotes [34, 35, 36, 37, 38] or highly-inbred diploid
populations for which the haploid model of Leutenegger et al. [39] is applicable.

2 Methods

We characterise systematic biases in malaria parasite relatedness estimation using three
complementary and independent approaches: by analysing statistical models of pairwise
relatedness, by analysing simulated data with known parasite ancestries, and by analysing
P. falciparum data from Guyana and Colombia. A summary of notation used throughout
our main text is provided in Table 1. A detailed description of the methods described below

is available in Appendices A and B, while a glossary of terms is provided in Appendix C.
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’ Terms / notation ‘ Working definition

IBS, Locuswise average IBS sharing: the proportion of pairs in a sample

(including self-self comparisons) that are IBS at a given marker ¢

IBD, Locuswise average IBD sharing: the proportion of pairs in a sample

(including self-self comparisons) that are IBD at a given marker ¢

mean (IBD@) Locuswise average IBD sharing averaged over all markers £ =1, ...

r Relatedness parameter governing the marginal probability of IBD

at each marker under non-ancestral models of pairwise relatedness

=

Maximum likelihood estimate of the parameter r; an estimate of

pairwise relatedness

realised relatedness | Fraction of polymorphic markers across the genome that are IBD

for a parasite pair

Table 1: Summary of terms and notation

2.1 Statistical models of pairwise relatedness

We derive theoretical results and estimate pairwise relatedness using models of relatedness
that couple a non-ancestral model of latent IBD and non-IBD (nIBD) states describing a
pair of parasites along a sequence of marker loci and a locuswise observation model.

The latent state model either assumes independence between markers or accounts for
marker linkage under the intuition that IBD segments are fragmented at randomly-distributed
recombination breakpoints over successive generations, with a genome-wide-constant recom-
bination rate [39, 40, 41]. Of key interest is the pairwise relatedness parameter r, which
describes the marginal probability that a given marker locus is IBD for a parasite pair, i.e.,
if we consider a single locus in isolation under the model then, P(IBD) = r.

The locuswise observation model provides an explicit link between latent and observable
states. Observable states are either pairs of alleles or descriptives of identity-by-state (IBS);
i.e., IBS for a pair of identical alleles and non-IBS (nIBS) otherwise. For IBS descriptives,
the observational model takes the form P, (IBS|IBD) = 1 in the absence of genotyping error
(since IBD necessarily implies IBS) while P}, (IBS|nIBD) must be defined appropriately.

Under the coupled model of relatedness, the marginal likelihood of IBS at a given marker

can be written
P(IBS|r) =7 4+ Pops(IBS | nIBD) - (1 — r). (1)

Here, we focus on maximum likelihood estimates 7 as an estimate of relatedness between a
pair of malaria parasites. We do not address the estimation or identification of IBD segments.

It is standard practice to compute allele frequencies from data on a set of sampled par-
asites (either before or after removing replicates of apparent clones) and plug them into

observation models. We refer to these frequencies as sample allele frequencies and to the
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observation models into which they are plugged as standard practice observation models.
Other terms we use include (n)IBD to refer to IBD and nIBD collectively, (n)IBS to refer to
IBS and nIBS collectively, hidden Markov model (HMM) of relatedness to refer to models
of relatedness that allow for linkage between proximal markers, and independence model of
relatedness to refer to models of relatedness that assume marker loci are independent. We
use the word model to refer to models of relatedness, the models within the models of relat-
edness (i.e., (n)IBD models and (n)IBD-to-observation models) and the models within the
(n)IBD models and (n)IBD-to-observation models (e.g., IBD-to-allele model, nIBD-to-IBS
model). We use the term fraction to indicate pairwise averages over loci across the genome,
and proportion to indicate locuswise averages over parasites within a population.

Here, we are primarily concerned with bias stemming from standard practice observation
models. As a theoretical comparator, we adopt a corrected model of (n)IBS descriptives
with conceptual parallels to Weir and Goudet [29]. The corrected model is not available
practically, but illustrates theoretically the partial encoding of population relatedness in the
sums of squares of sample allele frequencies. Further details of the observation models are
provided in the results section. For clarity, genotyping error is not modelled and theoretical

derivations are restricted to the independence model of relatedness.

2.2 Simulation model of parasite ancestries

While our theoretical results are derived under a non-ancestral pairwise framework, we per-
form numerical analyses under an ancestrally-informed simulation of a parasite population.
Although our simulation framework is highly-simplified and does not fully recapitulate epi-
demiological reality, it enables independent verification of our theoretical results and allows
us to examine the consequences of marker linkage.

A detailed description of the simulation model is provided in Appendix B. In brief, it
captures successive generations of inbreeding, with the ancestry of each simulated parasite
formulated as a mosaic of a bygone outbred founder population. Its main assumptions are

as follows.

e Sufficient temporal separation between ‘generation zero’ and a bygone outbred founder
population to break down marker linkage, whereby the ancestry of each individual in
generation zero is sampled uniformly over the set of all possible founder mosaics; this
construction distributes ancient low-level background relatedness broadly across the

generation zero population.

e Discrete, non-overlapping generations of inbreeding from generation zero onwards, mod-
elled using a transitive relationship graph with sibling/clonal/stranger edges as per [20];
relationship graphs are obtained by amalgamating uniformly-sampled subgraphs of a
fixed size [42], biasing the distribution towards small, balanced clusters of siblings and

clones.

e Stochastic drift arising from the random crossing of parental genotypes from generation
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(k—1) to yield filial genotypes in generation k, with an augmented probability of selfing
and sibling-sibling crosses serving as a proxy for monoclonal mosquito infection and

serial cotransmission [43].

e The absence of immigration, mutation, selection and population structure under a

small, fixed parasite population size.

e A genome-wide constant recombination rate, with markers treated as nominal point

polymorphisms.

When we analyse simulated data, the ground truth against which we characterise sys-
tematic bias in pairwise relatedness estimates is the fraction of polymorphic marker loci IBD
for a given parasite pair; otherwise known as realised relatedness [2]. There is a conceptual
distinction between realised relatedness and the relatedness parameter r of the non-ancestral
pairwise model: given a finite number of markers, a fixed value of r gives rise to a distribution
of realised relatedness [2, 41]. However, since we model recombination from first principles
under our simulation model, our simulation framework does not yield a direct analogue for

the non-ancestral relatedness parameter r.

2.3 Case study of P. falciparum data from Guyana and Colombia

To show our theoretical and numerical results are practically relevant, we present a case
study from a highly inbred parasite population. Specifically, we consider a set of high-quality
isolates from clinical infections that are deemed monoclonal, collected in passively sampled
symptomatic patients in Guyana between 2016-2020 [44] and Colombia between 1993-2017
[14], for which WGS data are available. Variants were called in accordance with best practices
stipulated by GATK and the MalariaGEN Pf3k consortium [14, 44]. We restrict our attention
to biallelic SNPs that are in core nuclear regions of the genome [45], and are polymorphic
among the sampled infections, masking any variant calls that are heteroallelic or have read
support below 5 (based on the DP tag). We remove variant sites with missingness > 30%
across sampled infections and sampled infections with missingness > 30% across SNPs to
yield a WGS SNP dataset comprising n = 306 sampled infections (n = 278 from Guyana,
n = 28 from Colombia) and n = 30694 polymorphic sites. Results in the main text are
restricted to the sample from Guyana, comprising n = 278 sampled infections and n = 16115
polymorphic biallelic SNPs. Sparse datasets are generated by down-sampling variant sites

uniformly at random without replacement.

2.4 Data analyses

All data analyses are done in R [46]. Relatedness estimates based on allelic states are gener-
ated using the R package paneljudge [24], which implements the HMM of relatedness with
allelic observations and its independent counterpart, and employs a maximum likelihood

estimation scheme. The model of independent (n)IBD states with (n)IBS observations has
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been custom coded in R. We do not estimate relatedness using a HMM with (n)IBS obser-
vations. All code and a minimum analysis dataset for the empirical case study is available

on GitHub: https://github.com/somyamehra/PlasmodiumRelatednessBias

3 Results

A detailed description of the results below can be found in Appendix A, which includes an

overview of the support (theoretical, numerical, and/or empirical) per result (Table A.1).

3.1 Theoretical results

3.1.1 Standard (n)IBD-to-observation models are twice misspecified

In standard practice, (n)IBD-to-observation models are informed by sample allele frequen-
cies [9, 10, 16, 22, 41]. Taylor et al. [41] allude to potential misspecification arising from
this construction: while relatedness estimation seeks to estimate dependence between indi-
viduals, the sample allele frequencies, and thus any observation models into which they are
plugged, are constructed under the implicit assumption of independence between individuals.
Weir and Goudet [29] have articulated the notion that relatedness is consequently estimated
relative to the average relatedness within the sample.

Here, we argue that standard (n)IBD-to-observation models are twice misspecified:

1. The standard IBD-to-allele model, whereby the probability of an IBD pair exhibiting
allele ¢ is given by the sample frequency of allele ¢, is implicitly predicated on the
independence of allelic and IBD states which may not hold in reality (Equation (A.10)),

particularly in the presence of selection.

2. The standard nIBD-to-IBS model, under which the probability of an IBS pair given
a nIBD pair is equal to the proportion of IBS pairs in the set of sampled parasites
(calculated by taking the sums of squares of sample allele frequencies), is inflated by
the encoding of average locuswise relatedness (Equation (A.12)). Weir and Goudet [29]

similarly exploit IBS descriptives rather than allelic states for conceptual clarity.

Removing clonal replicates will not circumvent IBD-to-allele misspecification although
it seems reasonable to expect it might mitigate it; otherwise, consequences of the IBD-to-
allele misspecification are case-specific and beyond the scope of our current study. For the
remainder of this study we focus on nIBD-to-IBS misspecification because it is more pervasive
and has systematic consequences.

An illustration of nIBD-to-IBS misspecification is shown in Box 1, echoing the work of
Weir and Goudet [29]. We can summarise this form of misspecification mathematically as
follows. Denote by IBS and IBD the proportion of pairs of sampled parasites (including self-

self comparisons) that are IBS and IBD respectively at a given locus (Table 1, but with locus
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identifiers dropped for notational convenience). Under the standard nIBD-to-IBS model, we

set

Pgtandara (IBS | nIBD) = IBS. (2)

A proportion of IBS sharing, however, is attributable to IBD. To adjust for locuswise

relateness in the set of sampled parasites, we would need to average IBS sharing over nIBD
pairs only, that is,

IBS — IBD

IPcorrece IBS IBD - —
ted(IBS |nlBD) = =75

(3)

The correction (Equation (3)) cannot be implemented in practice because (n)IBD states
are unobservable. However, it provides a theoretical basis for understanding the misspeci-
fication of the standard nIBD-to-IBS model. To see how relatedness structure, in the form
of locuswise average relatedness IBD, is implicitly embedded in the standard nIBD-to-IBS

model, we rearrange Equation (3) to yield

Pgtandara(IBS | nIBD) = IBD + (1 — IBD) - Peorrected (IBS | nIBD),
> Peorrected (IBS | HIBD), (4)

where the strict inequality is just a technicality. Since we have included self-self comparisons
(i.e., comparisons with replacement) for consistency with standard nIBD-to-allele models
[16, 21], IBD = 1/n > 0 for an outbred sample of size n. The finite sample adjustment
of [47], which considers pairwise comparisons without replacement, yields IBD = 0 for an
outbred sample. However, under either construction, the form of the theoretical correction
to the nIBD-to-IBS model is identical.

In summary, the probability of IBS sharing for nIBD pairs is systematically overestimated
under the standard nIBD-to-IBS model, with a particularly pronounced effect in inbred
populations with large IBD.

Box 1: Illustrating misspecification of the standard nIBD-to-IBS model

‘ ‘ ‘ Observation model for nIBD pairs ‘ ‘ Probability of IBS
Corrected nIBD-to-IBS observation model IBS as a sum of IBD and IBC
IBS sharing averaged over nIBD pairs only identity by descent
1% of 31.4% of pair 9.5% of pairs common ancestral origin
parsisd 1B ananBD i8S (tnerstrs nED) =L
—— P(BS) = 'P(IBD)! + ,P(IBS | nIBD) - [1 - P(IBD)]
Bl ee) « @0 ] (@ @) | S B
identity by chance (IBC)
| Peonectea(IBS | NIBD) | | independent lineages
node = individual BS
33.9% of IBD pairs are 1S 62.1% of lBD pairs are niBS. ness
colour = allele at locus
(observable)
edge = IBD at locus P(IBS | nIBD) systematically overestimated = P(IBD) systematically underestimated
(unobservable) J Standard nIBD-to-IBS observation model —> Standard model of pairwise relatedness

IBS sharing averaged over all pairs (i.e. IBD and nlBD pairs) observation model: inks observable IBS o latent (n)IBD states
e e e aion inflated by locuswise average 1BD
sharing c.f. theoretical correction

| e
o0 [ fee ] {o,0} | —L—
P(IBS) = P(IBD) + | Pyanaarg(BS | NIBD)' - [1 = P(IBD)]
[ PumcadBSniBD) | e
overestimate contribution of
S05% ot par 85 49 5% ot pareBS 'BC = 185 N nIBD
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Standard nIBD-to-IBS model
At a given locus, b = 17 blue nodes and g = 21 green nodes are observed. The proportion of pairs
that are IBS, which we denote IBS, can be written as the sum of squares of the blue b/(b + g) and
green g/(b+ g) allele frequencies:

IBS = (b2 + ¢2)/(b + g)® = 0.505.

Under the standard nIBD-to-IBS model the probability of an IBS pair given an nIBD pair is equal

to the overall proportion of pairs that are IBS:

Pytandara (IBS | nIBD) = IBS = 0.505.

Corrected nIBD-to-IBS model
There are three green clusters in the IBD partition, of size ¢; = 9, c2 = 9 and ¢3 = 3. Out of a total

of (b+ g)? = 1444 possible pairwise comparisons, this means that

(2 + 2+ c2)/(b+ g)? = 0.118 of pairs are IBD and share green alleles
Likewise, since there are three blue clusters of size s1 = 8, so =5, s3 =4
(s3 + 53+ 52)/(b+ g)? = 0.073 of pairs are IBD and share blue alleles
The proportion of pairs which are IBD is then
IBD = 0.118 + 0.073 = 0.191,
while the proportion of pairs that are IBS and nIBD is
IBS — IBD = 0.505 — 0.191 = 0.314.

To construct a model of IBS specifically for nIBD pairs, we would ideally focus on IBS sharing in
the proportion of (1 — IBD) = 0.809 pairs that are nIBD, that is,

IBS — IBD
Peorrected (IBS | nIBD) = T - 0.389.

Misspecification of the standard nIBD-to-IBS model
In failing to adjust for IBD sharing under the standard nIBD-to-IBS model, we have overestimated
the probability of IBS sharing for nIBD pairs:

Ptandard (IBS | nIBD) = 0.505 > 0.389 = Pcorrected (IBS | nIBD).

3.1.2 Misspecification: relative and zero-valued relatedness estimates

Here, we examine systematic bias in maximum likelihood estimates Fstandard generated under
the standard nIBD-to-IBS model (Equation (2)), relative to hypothetical estimates Feorrected
generated under the corrected nIBD-to-IBS model (Equation (3)). For conceptual clarity, we
enforce the assumption of marker independence (consequences of marker linkage are explored
in our numerical analyses, Section 3.2).

We can intuit that misspecification of the standard nIBD-to-IBS model will lead to sys-

tematic underestimation of pairwise relatedness, that is, standard < Teorrected (Box 1). Two
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additional consequences for which we have theoretical support are as follows.

1. The standard pairwise relatedness parameter rgandara can be re-interpted as a rela-
tive measure of deviation from population-averaged locuswise relatedness (Appendix
A.2.2.1). The marginal likelihood of IBS sharing at a given marker ¢ under the stan-
dard model with relatedness parameter rsgandara is equivalent to the likelihood under the
corrected model with relatedness parameter rcorrected = Tstandard + IBD¢[1 — Tstandard],

where IBD, is the proportion of sampled parasites that are IBD at locus £, that is,

IPstandard (IBSZ | Tstandard) = ]Pcorrected (IBSE

Tcorrected = (rstandard + IBDZ[l - rstandard])) .

In practice, the average locuswise relatedness IBD, will vary across loci £. In a hypo-
thetical population with identical average locuswise relatedness over all loci, IBD, =

IBDconstant, We obtain the functional relationship

Tcorrected — IBDconstant (5)

Tstandard = —_—
1- IBDconstant

This interpretation of relative relatedness echoes the work of Weir and Goudet [29].

2. Relatedness estimates can be stratified by average sample relatedness: zero below,
positive otherwise (Appendix A.2.2.2). To understand why this is the case, using
Equations (1) and (4), we observe that

Ptandard (IBS¢ | standara = 0) = IBDy + (1 - IBDZ) P corrected (IBSg [ nIBDy)
= ]Pcorrected (IBSZ | Tcorrected = IBDZ) (6)

That is, plugging rstandarda = 0 into the standard model likelihood of IBS at a given
marker £ is equivalent to plugging in the average locuswise relatedness rcorrected = IBD,
into the corrected model likelihood. In other words, population-averaged locuswise re-
latedness is implicitly encoded in the standard model even in the case rstandara = 0, and
parasite pairs with less IBS sharing than predicted under population-averaged related-
ness (given explicitly by the threshold (A.25)) are assigned zero estimates standard = 0.

Similar observations have been made previously by Weir and Goudet [29].

Accounting for variability in IBD, across loci ¢, we predict estimates #standara against the
theoretical comparator Teorrected t0 €xhibit a fuzzy elbow-like characteristic, with a change
point in the vicinity of the mean locuswise average IBD sharing, mean(IBD,) (Figure 1A).
If the distribution of 7corrected 18 positively skewed, we expect pronounced zero inflation in

estimates of Tstandara Under the standard nIBD-to-IBS model.

3.2 Numerical results

3.2.1 Theoretical validation

Relatedness estimates generated under the independence model of relatedness using simu-

lated data support theoretical results as follows. In line with standard nIBD-to-IBS model
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misspecification, systematic bias in estimates of rytandara increases as mean(IBDy) increases
(Appendix A.3.1). In line with the proposed nIBD-to-IBS model correction, fcorrected are
largely unbiased (Appendix A.3.2, Figure 2A vs 2C). The realisation of bias-mitigation under
(n)IBD independence supports the notion that systematic bias of standara can be attributed
to the partial encoding of sample relatedness in standard observation models. In line with
expected zero-valued estimates, Fgtandara = 0 for simulated pairs that exhibit a smaller
fraction of IBS markers than that which is expected for rgiandara = 0 under the standard
nIBD-to-observation model (Appendix A.3.4). In line with Figure 1A, plots of 7standard
against realised relatedness yield an elbow-like characteristic, branching approximately at
mean (IBDy) (Figure 1B).

3.2.2 Exploiting marker linkage can mitigate bias

While systematic underestimation given (n)IBD independence persists irrespective of marker
density (Figure 2A), it is mitigated as a function of marker density when data are analysed
under the HMM (Figure 2B). We attribute this trend to the exploitation of increasingly
detailed linkage information under the HMM, reducing the reliance of rgtandard €stimation
on the standard observation model, which is misspecified. We thus propose a dense data
diagnostic that leverages increased precision under the HMM (Appendix A.3.5): for dense
data, comparison of Fstandard €stimates under (n)IBD independence vs the HMM is expected
to yield an elbow-like characteristic (analogous to Figure 1B), which can be used to ascertain
both the severity of underestimation and the approximate degree of relatedness mean (IBDy)
averaged over the set of sampled parasites. Zero inflation renders mean(#) under (n)IBD
independence a poor approximation of mean (ﬁg).

For sparse data that do not encode linkage information, analyses of simulated data under
the independence model of relatedness confirm that bias-mitigation would be possible if
model-adjustment were available, and that model-adjustment would be sufficient (Figure

20).

3.2.3 Relative vs absolute relatedness

Across successive generations of inbreeding, realised relatedness between siblings (gray shad-
ing, Figure 3) is systematically enriched above 0.5. For dense data, we can interpret 7standard
under the HMM (navy blue, Figure 3) as a measure of absolute relatedness which recapitu-
lates this enrichment. In contrast, fstandara for siblings under (n)IBD independence (orange,
Figure 3) is consistently centred around 0.5, supporting reinterpretation as a measure of
relative relatedness. This points towards two choices for practitioners: the analysis of abso-
lute relatedness under a HMM, which requires sufficiently dense genotypic data; or the use
of relative relatedness under (n)IBD independence, which warrants careful interpretation in
cross-population comparisons (the degree of bias may vary across transmission settings, but

relative relatedness may have utility, for instance, as an approximate relationship proxy).
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Figure 1: Characterisation of systematic bias in pairwise relatedness under (n)IBD independence. We
characterise bias against three comparators: (A) Teorrected €Stimates computed theoretically; (B) realised
relatedness computed using simulated data; and (C) 7gtandara estimates computed using the HMM and
WGS data on P. falciparum from Guyana. In each case, we recover an elbow-like characteristic with

change point near the mean locuswise proportion of IBD pairs mean (IBDg).
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Figure 2: Summary of pairwise relatedness for simulated data after 10 generations of inbreeding. Sys-
tematic bias is shown as a function of marker density, with the fraction of (polymorphic) marker loci IBD
taken as the ground truth, for (A): fstandara under (n)IBD independence and the standard nIBD-to-allele
model; (B) 7standara computed using the HMM and the standard nIBD-to-allele model; (C): 7corrected U~
der (n)IBD independence and the corrected nIBD-to-IBS model. (D): Histogram of realised relatedness

(fraction of polymorphic sites that are IBD for simulated parasites).
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Figure 3: Summary of pairwise relatedness for simulated siblings across successive generations of in-
breeding. We compare realised relatedness (i.e., the fraction of (polymorphic) sites that are IBD for a
given parasite pair) against Fstandard predicated on the standard nIBD-to-allele model with (n)IBD inde-

pendence (relative relatedness estimates) versus the HMM (absolute relatedness estimates).
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3.3 Empirical results

3.3.1 Case study: inbred parasite population from Guyana

To illustrate the practical implications of our findings, we analyse WGS data from n = 278
high-quality P. falciparum isolates (deemed to be monoclonal) sampled from Guyana in
2016-2020.

Based on our numerical results (specifically, Figure 2B), estimates of relatedness gen-
erated under the HMM using WGS data are expected to exhibit relatively little bias and
therefore serve as a pragmatic gold-standard. To gauge the severity of systematic under-
estimation due to standard observation model misspecification, we draw on the dense data
diagnostic proposed in Section 3.2.2: a comparative plot of dense-data Tstandarq €stimates
generated under (n)IBD independence model and HMM (Figure 1C). The position of the
change point suggests that the mean locuswise proportion of IBD pairs is in the vicinity of
mean(ﬁg) ~ 30%. Across parasite pairs, the average estimate 7gandarqa under the HMM
using WGS data is 30.4%.

In addition to systematic bias stemming from model misspecification, uncertainty due to
marker sparsity may become significant for sparse data [10]. We expect the point at which
uncertainty /variance masks the elbow-like characteristic to be dependent on the average
relatedness within the set of sampled parasites. A sparse-dense data diagnostic, compris-
ing comparative plots of estimates generated under (n)IBD independence using sparse data
vs estimates generated under the HMM using dense data, can be used to elucidate this
trade-off because under (n)IBD independence, increasing marker density does not mitigate
systematic bias but does reduce uncertainty in pairwise relatedness estimates. For 278 P.
falciparum isolates from Guyana, Figure 4A suggests bias due to elevated population related-
ness dominates uncertainty due to marker sparsity: even at low marker densities, systematic
underestimation is apparent.

A possible strategy for offsetting systematic bias is to exploit linkage information under
the HMM regardless of marker density. Analysing sparse data under the HMM, however,
yields an intermediary regime, whereby systematic underestimation driven by nIBD-to-IBS
misspecification is only partially mitigated (Figure 4B). Unlike estimates under the indepen-
dence model — which can be re-interpreted as relative measures of relatedness, intrinsically
calibrated for locuswise average relatedness within a set of sampled parasites (Section 3.1.2)
— sparse data HMM estimates do not have a clear interpretation.

The error structure in sparse data HMM estimates is heteroskedastic: underestimation is
most pronounced for parasite pairs with low relatedness. At the other end of the spectrum,
genomic epidemiology applications typically focus on highly related parasite pairs, often
using a threshold-based approach [9, 14, 16, 48, 49, 50]. Since relatedness is systematically
underestimated using sparse data, false positives (pairs with low levels of relatedness that
appear highly related) are relatively rare. The sensitivity of sparse data (analysed under

the HMM) in identifying parasite pairs above a relatedness threshold 7ihreshold is shown
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Figure 4: Consequences of marker sparsity on pairwise relatedness estimates for inbred parasites sampled
from Guyana. Since IBD is unobservable, we treat relatedness estimates generated under the HMM for the
complete dense WGS SNP dataset as a truth value. Thinned data have been generated by downsampling

uniformly at random without replacement biallelic SNPs that are polymorphic among the 278 samples.
(A) Relatedness estimates generated under (n)IBD independence with thinned data vs the HMM with
dense data.

(B) Relatedness estimates generated under the HMM with thinned data vs dense data.

(C) Sensitivity of thinned data for classifying related parasite pairs, when analysed under the HMM of
relatedness. For each IBD threshold ripreshold, We record a true positive (TP) if estimates generated
under the HMM for both thinned and dense data lie above rihreshold; and a false negative (FN) if
only the HMM estimate for dense data lies above Ttnreshold- Lhe sensitivity is given by the ratio
TP/(TP+FN).

All estimates are generated using the standard (n)IBD-to-allele model.
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in Figure 4C. When relatedness thresholds are sufficiently high, sparse marker data in the
intermediary regime suffice; sensitive classification for low relatedness thresholds, however,
requires higher resolution data [50]. We are reluctant to posit marker density thresholds
necessary to sensitively identify highly-related parasite pairs in generality, because the degree
of linkage structure within a set of sampled parasites depends on the distribution of shared
IBD segment lengths — which, in turn, is driven by demographic processes that we neither
fully understand, nor control. The downsampling of WGS data on a case-by-case basis,

however, may provide setting-specific insights.

3.3.2 Population structure

Since our theoretical and numerical results assume a single parasite population, we addi-
tionally perform a joint analysis of the n = 278 isolates from Guyana and n = 28 isolates
from Colombia. Principal coordinates analysis (PCoA) of pairwise fractions of IBS markers
yields two distinct clusters, stratified by country (Figure A.12). Two diagnostics — namely,
a multimodal distribution of pairwise fractions of IBS markers, and systematic differences
between relatedness estimates under the standard nIBD-to-IBS vs (n)IBD-to-allele model —
corroborate the presence of population structure (Appendix A.4.1).

In this setting, the dense data diagnostic is characterised by multiple elbows, correspond-
ing to different within- and across-population comparisons (Figure A.15). Given sample al-
lele frequencies constitute a weighted average across subpopulations, the interpretation of the
corresponding branch points is unclear; an observation model predicated on subpopulation-
stratified allele frequencies [21], may yield more interpretable results. Further discussion is

provided in Appendix A.4.

4 Discussion

4.1 Summary and interpretation of results

We have characterised systematic biases in pairwise relatedness estimates, providing the-
oretical, numerical and/or empirical support for our results (Table A.1) via a three-fold
approach (interrogation of non-ancestral models of pairwise relatedness; simulation under
an ancestrally-informed model of population relatedness; and a case study of P. falciparum
WGS data).

Our results are motivated by but not limited to analyses of malaria parasites. They extend
to any system concerned with pairwise relatedness of predominately haploid recombining
eukaryotes (e.g., Cryptosporidium hominis [37] and Cryptosporidium parvum [36], leading
causes of human and zoonotic cryptosporidiosis respectively; Coccidioides species which
give rise to human coccidioidomycosis [34]; Cryphonectria parasitica, the pathogenic agent

responsible for Chestnut blight [35] and Marchantia polymorpha, a model species of liverwort

16


https://doi.org/10.1101/2024.04.16.588675
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.16.588675; this version posted April 20, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

[38]) or highly-inbred populations of diploid organisms for which pairwise relatedness can be
interrogated using a haploid model [39].

Misspecification of standard (n)IBD-to-observation models, which are predicated on sam-
ple allele frequencies, constitutes our conceptual starting point [25, 29, 41]. Theoretically, we
demonstrate via the nIBD-to-IBS model that the implicit embedding of population-averaged
locuswise relatedness in standard observation models is pervasive and can lead to the system-
atic underestimation of pairwise relatedness. Our theoretical results bear strong conceptual
similarity to the work of Weir and Goudet [29]. Both theoretical and numerical analyses sup-
port the re-interpretation of pairwise relatedness under the independence model as a relative
measure: non-zero estimates are calibrated intrinsically for relatedness averaged over the set
of sampled parasites, while zero estimates are non-informative and flag parasite pairs with
below-average relatedness, echoing the work of Weir and Goudet [29]. By introducing linkage
structure within the simulation model, we show numerically that the exploitation of linkage
structure using a HMM can mitigate bias when genotypic data are sufficiently dense. We thus
propose a dense data diagnostic (i.e., a plot of pairwise relatedness estimates generated using
dense data under independence versus a HMM) to elucidate average sample relatedness and
the potential severity of systematic bias. We illustrate the use of the dense-data dignostic
using P. falciparum data. Also using P. falciparum data, we characterise the consequences
of marker sparsity by downsampling markers. We find that the analysis of sparse data under
an HMM may yield an intermediary regime that is difficult to interpret because systematic
underestimation is only partially mitigated, but that threshold-based analyses are relatively
robust.

The functional consequences of our findings are heavily context-dependent: the severity
of systematic bias depends on average sample relatedness, which is contingent on the his-
tory of effective recombination in the parasite population; while mitigation of bias under the
HMM is a function of linkage structure, which is largely governed by recent ancestry and
the length of shared IBD segments. Rather than issuing a set of concrete rules, we chart out
a roadmap — starting with representative WGS data from a parasite population of interest
— for practitioners to evaluate specific settings on a case-by-case basis. Firstly, to assess
whether the setting of interest is one where elevated population relatedness warrants caution
around the estimation and interpretation of pairwise relatedness, we propose the use of the
dense data diagnostic. If systematic bias is found to be pronounced, we suggest a heuristic:
downsampling loci. A sparse-dense data diagnostic, comparing estimates for downsampled
data under the independence model against gold-standard WGS estimates under a HMM),
can elucidate the relative importance of systematic bias at low marker densities where es-
timates are inherently more uncertain due to limited marker informativity. Comparison of
downsampled vs WGS estimates under a HMM can guide the use of a HMM (which partially
mitigates bias) or the independence model (which yields interpretable bias) at a particular
marker density in the setting of interest. Examination of the heteroskedastic error structure

can also facilitate the identification of thresholds above which highly-related parasite pairs
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can be identified sensitively. Analytic choices will plausibly vary across transmission settings
and use cases.

Using data simulated under the (non-ancestral) standard HMM model of relatedness,
relatively accurate relatedness estimates were generated using moderate marker counts [41].
That was a well specified setting: data were simulated under the standard HMM model.
In this study we consider misspecification of the standard HMM model. In a highly-inbred
setting, bias-mitigation due to misspecification of the standard HMM model requires dense
data. For sparse data in isolation, relatedness estimates can either be characterised using high
relatedness thresholds or generated under (n)IBD independence and interpreted relatively.

Selection can likewise modulate IBD segment length distributions which, in turn, can have
a bearing on estimates of genome-wide IBD [51]. For example, Guo et al. [51] have shown
that positive selection can also bias relatedness estimation. However, they find selection-bias
is minor when background relatedness is high. Taken together, our study and that of Guo
et al. [51] suggest selection bias dominants when transmission is high; bias due to observation

model misspecification dominates when transmission is low.

4.2 Limitations

IBS descriptives The theoretical re-interpretation of pairwise relatedness under indepen-
dence as a relative measure is predicated on IBS descriptives, as in Weir and Goudet [29].
In practice, pairwise relatedness is estimated using allelic states rather than IBS descrip-
tives [10, 16, 21, 22, 24, 41]. Misspecification of the IBD-to-allele model — arising from the
non-independence of IBD and allelic states — is sensitive to the unobservable relatedness
structure at each locus. It is not necessarily rectified by removing replicates of clonal para-
sites, and may be particularly pronounced in the presence of selection [51]. As such, there
may be systematic differences between pairwise relatedness estimates based on IBS descrip-
tives versus allelic states. A rigorous examination of the latter would potentially require
joint estimation of relatedness across a set of sampled parasites, which is beyond the scope
of the current manuscript.

Reliance on dense genotypic data The proposed diagnostics for gauging average
sample relatedness and the severity of systematic bias in pairwise relatedness estimates rely
on dense data from a representative population of interest. To mitigate systematic bias,
we suggest leveraging linkage structure which necessarily mandates dense data for inbred
parasite populations. In practical terms, dense data translates to WGS data. These data
may not be readily available, or may be prohibitively expensive to generate [52, 53]. Sparse
marker data, which are often of greater practical utility [52, 53], cannot be evaluated or
corrected for systematic bias in isolation under our framework. For sparse data in isolation,
we offer the re-interpretation of pairwise relatedness estimated under (n)IBD independence
and, for relatedness estimated under the HMM, advocate caution to be exercised at low

relatedness thresholds.
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Demographic processes Clearly, demographic processes have a large effect on real
data but are neither explored theoretically nor numerically, to avoid overburdening the
manuscript. The effects of selection and immigration on the underlying relatedness struc-
ture of a set of sampled parasites are not considered. Our ancestral simulation model is very
simple and does not recapitulate epidemiological reality. Transmission dynamics — which
govern the propensity for selfing versus inbreeding versus outbreeding — are not explicitly
modelled. We do not account for fluctuations in parasite population sizes, for instance, due
to bottlenecks or control interventions, which may be particularly relevant to the context in
which genomic epidemiology studies are performed.

Population structure While we propose several diagnostics to screen for population
structure, we did not explore population structure theoretically or numerically [54]. Under
the non-ancestral theoretical framework, locuswise average IBD sharing, IBD,, is a repre-
sentative summary statistic for a set of parasites sampled from the same population. In
the presence of population structure, with variable levels of relatedness within and between
populations, the predicted elbow-like characteristic of Figure 1 may break down; we posit
the emergence of multiple elbows, corresponding to different cross-population comparisons
(see Appendix A.4 for an empirical example). Zero-inflation may not be present for cross-
population comparisons with lower relatedness than the cross-population average. The sim-
ulation model could be used to simulate different populations that unite and mix in order
to interrogate the consequences of population structure. The simulation model of Guo et al.
[61], which accounts for population structure, could be used as a complementary approach
to our simulation model. The framework of Weir and Goudet [29], which jointly charac-
terises relatedness and population structure, could also be drawn on. Theoretically, the
cross-population model of pairwise relatedness provided by hmmIBD could be analysed [21].

Multi-allelic markers We have derived results for multi-allelic markers in the absence
of genotyping error, under the assumption that there are no systematic biological differences
between multi-allelic and biallelic markers. That is to say, both are treated a nominal
point polymorphisms, whose alleles can be modelled as categorical random variables [41].
We do not report our results on multi-allelic markers, because they are not meaningfully
different to biallelic markers under these simplistic assumptions. In reality, the ancestral
processes governing biallelic markers and multi-allelic markers likely differ. Multi-allelic
markers additionally possess an ordinal genotyping error structure that is overlooked in
current methods commonly used to estimate relatedness between malaria parasites [16, 21].
The practical ramifications could be explored using empirical data: qualitatively compare
graphs of relatedness (as in [16]), where relatedness is estimated using multi-allelic markers
(e.g., microhaplotypes) versus biallelic markers (e.g., SNPs) of equal informativeness (i.e.,
markers sets whose composite score of average effective cardinality multiplied by marker
count is the same; see [41]).

Data sparsity under simulation We explore data sparsity using real data only, not

simulated data. The simulation model is not constructed in such a way that lends itself to
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the exploration of the effect of data sparsity. More specifically, under the simulation model,
we intentionally elevate the recombination rate to compensate for computational constraints
(small population size, few generations, single chromosome) and simplifying assumptions (no
immigration, no mutation). By way of comparison, we simulate 24000 equidistant markers
along a single chromosome of length 48 Morgans, while the P. falciparum nuclear genome
comprises 14 choromosome with cumulative length 17 Morgans [45]. 24000 markers is larger
than the ~ 15000 SNPs reported by Miles et al. [45] in genetic crosses of P. falciparum,
but smaller than the number of SNPs and indels combined (~ 28000); the simulated inter-
marker distance of 0.002 Morgans is an order of magnitude larger than 0.0002 Morgans
based on these crosses. Elevating the recombination rate generates simulated data whose
estimates of relatedness resemble data; however, this also leads to more IBD segments among
simulated data which, due to the law of large numbers, offsets the effect of data sparsity. An
exceedingly large recombination rate, however, yields little linkage structure, whereby bias

is only partially mitigated under the standard HMM model, even for dense data.

4.3 Future work

Generating community resources The dense-data elbow-like plot, which can be used to
diagnose the extent of underestimation, requires WGS data, which are often financially pro-
hibitive [52, 53]. As a practical resource for the malaria genomic epidemiological community,
catalogues of dense-data elbow-like plots could be generated for published WGS datasets
[65]. Doing so would first require partitioning of samples into sets for which population
structure is not a complicating factor. This exceeds the scope of this study. It is feasible,
however, using, for example, PCoA and the diagnostics we propose in Appendix A.4.1.

Recurrent infection classification in therapeutic efficacy studies Systematically
elevated population relatedness is liable to impair the genetic resolution of recurrent in-
fections during therapeutic efficacy studies in low transmission settings. How best to deal
with elevated population relatedness in recurrent classification is not yet understood. One
approach involves embedding a relatedness inflation factor into a classification model [20].
However, our results suggest the inclusion of inflation factors in classification models that
use sample allele frequencies may be unnecessary because sample allele frequencies already
partially encode population-averaged locuswise relatedness.

Analyses using confidence intervals A key consideration for sparse genotypic data is
the significance of systematic bias stemming from model misspecification in the presence of
uncertainty attributable to marker sparsity. While we suggest downsampling loci to evaluate
this trade-off heuristically, the incorporation of confidence intervals, as recommended in [41],
may yield a more statistically-principled way to evaluate this trade-off.

Algorithmic correction for population-averaged locuswise relatedness Unbiased
relatedness estimation using sparse marker data requires joint inference of relatedness and

the probability of allele sharing for nIBD parasites [41, 56, 57, 58]. We envision an iterative
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construction — as articulated by Thomas and Hill [56], Smith, Herbinger, and Merry [57],
and Wang [58] in the context of sibship reconstruction — whereby relatedness estimates

would inform the readjustment of nIBD-to-observation model across successive iterations.

5 Conclusion

Based on our results practitioners have two options: resolve to use relative relatedness es-
timated under independence or try to estimate absolute relatedness under a HMM. Be-
cause relative estimates are intrinsically adjusted, caution is required when differences across
transmission settings are sought after. That said, if relatedness estimates are viewed as
relationship-indicators, relative values are arguably preferable across transmission settings.
Caution should be exercised when estimating absolute relatedness because the extent to
which underestimation is mitigated is unknowable, but analyses dependent on absolute val-
ues and high relatedness thresholds are relatively robust. We are reluctant to prescribe
decision thresholds given most use cases are likely to deviate from any contrived examples.
Instead, we provide a framework to help practitioners evaluate their individual situations on

a case-by-case basis.

Data availability statement

Sequencing data for P. falciparum isolates from Guyana [44] fall under BioProject PR-
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bers are provided in supplemental Table S1. A minimum analysis dataset for the present
project, comprising a genotype matrix, is available on the accompanying GitHub repository:

https://github.com/somyamehra/PlasmodiumRelatednessBias
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