

1 **Title: An optogenetic assay for the dauer decision in *Caenorhabditis***
2 ***elegans***

3

4 **Authors:**

5 Ariel Parker¹, James Mullins¹, Abel Corver^{1,2,3}, Anastasia Miller¹, Iman Mosley¹,
6 Andrew Gordus^{1,2}

7 ¹Department of Biology, Johns Hopkins University, Baltimore, MD

8 ²Solomon H. Snyder Department of Neuroscience, Johns Hopkins University,
9 Baltimore, MD

10 ¹Department of Biology, Lund University, Lund, Sweden

11

12

13 **Abstract**

14 The dauer decision in *Caenorhabditis elegans* is a critical developmental decision that ensures
15 survival under harsh environmental conditions. Factors such as temperature, food availability,
16 and pheromone strongly influence the decision to enter and exit dauer. Traditional assays that
17 assess the dauer decision are often confounded by the influence of pheromones from the
18 population, which are often dynamic and highly variable. To mitigate this issue, we developed a
19 simple, single-housing assay for dauer quantification that is compatible with optogenetics. We
20 show that insulin-like peptides (ILPs) from ASJ and other neurons strongly influence the
21 decision to exit dauer, and that ASJ activity can be manipulated with optogenetics to influence
22 the dauer decision in a temporally precise manner.

23

24 **Introduction**

25 Dauer is an optional environmental stress-response stage that replaces the third larval stage
26 (Figure 1A). Compared to conspecifics of similar age, dauer worms are thinner, do not eat,
27 thicken their outer cuticle, seal their mouth and anus, and show several other anatomical
28 differences. These changes increase the worm's chances of survival under harsh environmental
29 conditions: a thickened cuticle prevents desiccation while sealing orifices prevents eating and
30 defecation, both of which are metabolically active activities.

31

32 Changes to neuronal morphology in the chemosensory and mechanosensory organs also occur
33 (Albert & Riddle, 1983). For example, the nerve endings of the ASI neuron (known to be
34 important for dauer entry (C I. Bargmann & Horvitz, 1991)) are shortened and displaced from
35 the bundle of other amphid organ neuronal endings (Albert & Riddle, 1983). Alternatively, some
36 neuron's sensation capabilities are strengthened during dauer. AWC, an important

37 chemosensory neuron, has large cilia in the dauer stage versus non-dauers (Albert & Riddle,
38 1983).

39
40 Temperature, food availability, and population density sensed via pheromones are the three
41 most salient environmental variables that influence dauer entry and exit (Ailion & Thomas, 2000;
42 Butcher *et al.*, 2007). Neurons in chemosensory organs like the amphid organ sense odorants,
43 pheromones, and food signals. ASI is a polymodal neuron that senses ascaroside pheromones
44 (Park *et al.*, 2012) and a shortened range of temperature stimuli (Beverly *et al.*, 2011). ASJ
45 senses bacterial food metabolites to promote dauer exit (Kaul *et al.*, 2014a).

46
47 Neuroendocrine signaling strongly influences the dauer decision. Various insulin-like peptides
48 work either as agonists (like INS-6 and INS-28) or as antagonists (like INS-7 and INS-15) on
49 DAF-2, the sole insulin-like growth factor receptor (IGFR) in the worm, to respectively reduce or
50 promote dauer formation (Zheng *et al.*, 2018). A high ratio of agonists to antagonists is
51 maintained by good environmental conditions, which increases DAF-2 activity in the intestine
52 and neurons (Hung *et al.*, 2014). The TGF- β -related ligand DAF-7 is known to promote reduce
53 dauer formation and support continuous development, most likely due to its role as a signal of
54 satiety; dauer-inducing conditions reduce *daf-7* expression in the ASI chemosensory neurons
55 (Ren *et al.*, 1996).

56
57 Traditional dauer assays use petri dishes to assess animal decisions in bulk (Golden & Riddle,
58 1984; Neal *et al.*, 2013). To provide unfavorable conditions, petri dishes containing synthesized
59 dauer-inducing ascarosides are seeded with limited amounts of bacterial food source. Eggs are
60 laid on these plates and incubated under warm temperatures (25 °C). Subsequently, the
61 number of dauer versus non-dauer worms are counted 72 to 84 hours later. A significant
62 challenge with this approach is that is performed on a population of worms, but the dauer
63 decision is strongly influenced by the pheromone of neighboring animals.

64 There were two challenges with the petri-dish assay: variable life history and variable population
65 density. When food is plentiful, the worms rarely leave the food patch (Milward *et al.*, 2011).
66 However, as food concentration decreases, worms become more exploratory, and are more
67 likely to leave the bacteria lawn. This produces a more variable sensory and metabolic history
68 for each worm on the plate, even though all worms were placed under “the same” conditions.
69 Environmental food variability is encoded neuronally and is known to affect worm behavior and
70 decision-making (Calhoun *et al.*, 2015).

71 Greater exploration also leads to a greater number of worms leaving the agar and dying on the
72 sides of the petri dish, which decreases the amount of ascarosides across the assay plates and
73 increases food availability. Both food and ascarosides influence the dauer decision. Since worm
74 exploration is more variable under dauer-inducing conditions, the number of animals that die on
75 the sides of the plate is also more variable, which in turn produces more variable food and
76 pheromone conditions during the timescale of the experiment. In prior work (Neals et al) this
77 confound has been mitigated by only quantifying data from plates that had 65 – 85 worms.

78 However, this approach requires ignoring a large fraction of the experiments which did not fall
79 within this narrow range of conditions.

80

81 To mitigate this issue, recent advances have been made in controlling the environment of
82 populations of animals in bulk or individually using microfluidics. However, these systems are
83 not trivial to implement, and require constant monitoring to prevent biofilm build-up. Non-
84 microfluidic systems to monitor individual worm development have been developed, but these
85 are not amenable to the low food conditions that are typical for dauer assays.

86 Here, we develop a simple microwell assay that is amenable to optogenetics. We test dauer exit
87 with this assay under a variety of genotypes that perturb insulin-like growth factor (IGF)
88 signaling, and manipulate the dauer exit decision via optogenetic stimulation of the sensory
89 neuron, ASJ. We find 12 hours of ASJ stimulation is sufficient to induce dauer exit, but 6 hours
90 is insufficient.

91

92 **Materials and Methods**

93

94 Worm strains

95 Wild-type and mutant strains used originate from the Bristol strain N2 (S Brenner, 1972). Strains
96 were cultivated, optionally in the presence of all-trans retinal (Sigma-Aldrich), as described
97 previously (JF Liewald *et al*, 2008). Strains used were: **N2** (laboratory strain), **ZM6523** *ins-4;ins-5;ins-6* (*hpDf761*) and **CB1370** *daf-2* (*e1370*), **AGG0119** *Ptrx-1::TeTx::mCherry* (*zucEx0109*),
98 **AGG0127** *Ptrx-1::TeTx::mCherry*; *ins-4;ins-5;ins-6* (*zucEx0117*), **AGG0136** *Ptrx-1::TeTx::mCherry*; *daf-2* (*e1307*) (*zucEx0127*), **AGG0122** *Ptrx-1::ChR(C128S)::GFP*
100 (*zucEx0112*). **ZM6523** and **CB1370** were obtained from the Caenorhabditis Genetics Center.
101

102

103 The dauer exit assay for N2 worms

104 Agar plates (10 cm) were seeded with 900 μ L HB101 *E. coli* and stored at 20 °C for two days.
105 Twelve gravid adult N2 worms were picked on to these plates, and after one week, SDS
106 selection and sucrose flotation were used to isolate dauers (Karp, 2018). Dauer worms were
107 then individually pipetted into wells of the Dauer-WorMotel, pre-filled with 23 μ L 1 mg/mL live *E.*
108 *coli* HB101 in S-Medium supplemented with 5 mg/mL cholesterol. The Dauer-WorMotels were
109 sealed in petri dishes with hydrated AgSap® hydroscopic crystals (which serve as a humidifier
110 for the assay, M² Polymer Technologies) and placed at 16.9 – 17.3 °C. After 5 days (120 hours)
111 dauers, L4s and adults were counted.

112

113 The dauer exit assay for daf-2 worms

114 Agar plates (10 cm) were seeded with 900 μ L HB101 *E. coli* and stored at 20 °C for two days.
115 Twelve gravid adult *daf-2* worms were picked on to these plates and stored at 20 °C for 24

116 hours. The next day, plates were transferred to 25 °C for three additional days to induce dauer
117 formation. Dauer worms were then individually pipetted into wells of the Dauer-WorMotel, pre-
118 filled with 23 µL live *E. coli* HB101 (OD₆₀₀ = 0.27-0.32) in S-Medium supplemented with 5
119 mg/mL cholesterol. The Dauer-WorMotels were sealed in petri dishes with hydrated hydroscopic
120 crystals and placed at 16.9 – 17.3 °C. After 4 days (96 hours) dauers, L4s and adults were
121 counted.

122

123 LED and control board setup

124 We built a custom LED circuit board to control the lights need to excite the cation
125 channelrhodopsin in the ASJ neuron. Blue and amber LED intensities were controlled by pulse-
126 width modulation (PWM) at 1 MHz frequency, which is much faster than neuronal response
127 properties. PWM timing was controlled by a Teensy 3.2. Light intensities at different PWM
128 settings were calibrated using a Compact Power and Energy Meter Console with Digital 4" LCD
129 (PM100D, Thor Labs) and Standard Photodiode Power Sensor (S121C, Thor Labs).

130

131 Optogenetic dauer exit assay

132 Agar plates (10 cm) were seeded with 900 µL 500 µM trans-retinal in HB101 *E. coli* and stored
133 in the dark at 20 °C for two days. Twelve gravid adult worms were picked on to these plates and
134 stored at 20 °C in the dark for 24 hours. The next day, plates were transferred to 25 °C in the
135 dark for three additional days to induce dauer formation. Dauer worms were then individually
136 pipetted into wells of the Dauer-WorMotel, pre-filled with 23 µL live *E. coli* HB101 (OD₆₀₀ = 0.27-
137 0.32) in S-Medium supplemented with 5 mg/mL cholesterol. The Dauer-WorMotels were sealed
138 in petri dishes with hydrated hydroscopic crystals and placed at 16.9 – 17.3 °C on the
139 optogenetics rigs. LEDs were programmed for individual experiments. After 4 days (96 hours),
140 dauers, L4s and adults were counted.

141

142 **Results**

143

144 1. *The Dauer-WorMotel: a dauer assay with controlled conditions*

145 We developed a standardized assay to study the dauer exit decision by combining elements of
146 previous dauer entry assays with a different means of housing the worms during the
147 experiment. Traditionally, assays to assess dauer decisions were performed on petri dishes,
148 with many eggs/worms initially placed on the plates to be counted later. For the dauer exit
149 assay for this work, we wanted to isolate the worms, to standardize food conditions, make
150 counting easier and to prevent ascaroside signaling between worms.

151

152 We modified the WorMotel for this goal. The original WorMotel was developed by the Fang-Yen
153 laboratory for longevity assays (Churigin *et al.*, 2017). In their set-up, worms are individually
154 housed in wells with agar bedding and ad libitum bacterial food (Figure 1C). This assay has

155 several advantages. First, individually housed worms are easier to count. Second, this set-up
156 controls population density – an individually housed worm does not sense pheromone from
157 other worms to influence its own decision. Third, the transparency of PDMS is amenable to
158 optogenetic stimulation.

159

160 While the original WorMotel design worked well for longevity assays, it did not work well for
161 dauer assays. For the longevity assays, worms were provided with a high density of food. When
162 they left the patch and encountered the copper sulfate moat (an aversive cue), the worms would
163 return to the food patch. However, under the low-food conditions used for dauer assays, the
164 worms were less risk-averse, and nearly all of them ended up in the copper moats within a few
165 hours (data not shown).

166

167 To make the WorMotel more amenable for dauer assays, we optimized a variety of features
168 from the original design (Figure 2C). In the original design, copper moats prevented the
169 escaping of worms from the agar bedding; in our design, we removed the copper moats and
170 housed the worms in liquid media medium - a combination of the bacterial food source and S-
171 Medium (Stiernagle, 2006) (Figure 1C-D). The original WorMotel had conical-shaped wells; we
172 amended the wells to be more cylindrical to improve optics so worms could be reliably
173 phenotyped in the wells (Figure 1C-D). With these changes, we refer to the set-up as the
174 Dauer-WorMotel. A feature of the original WorMotel that we did keep was the use of
175 polydimethylsiloxane (PDMS). PDMS is a clear, inert silicone-based polymer used in
176 microfluidics and other biological applications (Raj M & Chakraborty, 2020). It is transparent and
177 compatible with the illumination necessary for optogenetics. We built an array of custom-
178 designed LED boards and holders to house the Dauer-WorMotel, and programmed a Teensy
179 3.2 to dynamically control illumination. We used this assay in subsequent experiments to quantify
180 dauer exit.

181

182 Dauer animals were produced by starving worms, and using SDS selection to purify dauer
183 animals from the population. We then housed these worms in the Dauer-WorMotel under
184 different conditions. In Table 1, we Dauer-WorMotels were loaded with different food amounts
185 and placed at different temperatures to quantify the effects of these variables on dauer exit.
186 Higher temperature consistently inhibited dauer exit, regardless of food concentration (Table 1).
187 Lower temperatures combined with high food availability reliably increased dauer exit. Based on
188 these results, the final conditions for Dauer-WorMotel experiments with N2 worms were – 1
189 mg/mL live HB101 at 20 °C which produced an average dauer exit probability of 0.58 (Figure
190 1F).

191

Temperature (Celsius)	Food Amount (mg/mL Live HB101)	Fraction Adult (Dauer Exit)	Standard Deviation	Number of Dauer-WorMotels
25	0.6	0.28	0.04	4
25	0.7	0.29	0.17	4

25	0.8	0.24	0.04	4
25	1.0	0.12	0.04	4
25	1.5	0.20	0.04	4
22	0.5	0.29	0.15	17
22	1.0	0.39	0.08	11
20	1.0	0.56	0.16	12

192

193 **Table 1.** High temperature and low food (live HB101) decrease dauer exit. These data are from dauer
194 exit assays in the Dauer-WorMotel with N2 animals. After starvation and SDS selection, dauer worms
195 were individually housed in the listed food (live HB101 with 5 mg/mL cholesterol) and temperature for
196 five days and then phenotyped. Each Dauer-WorMotel contains up to 48 dauer worms to start.

197

198 *Dauer exit relies on IGF signaling from ASJ and neurons post-synaptic to ASJ.*

199

200 ASJ-triggered dauer exit is largely mediated by the release of insulin-like peptide INS-6, which
201 binds DAF-2, which in turn promotes dauer exit (Hung *et al.*, 2014). To confirm the role of INS-6
202 in dauer exit for our single-worm assay, we tested the *ins-4;ins-5;ins-6* triple mutant (ZM6523
203 [*hpDf761*]) in our Dauer-WorMotel and observed less dauer exit than N2, as expected (Figure
204 2A).

205 To block chemical neurotransmission from ASJ, tetanus toxin (TeTx) was expressed in the ASJ
206 neuron under the *trx-1* promoter which is specific to ASJ. TeTx is a protease that cleaves
207 synaptobrevin, a membrane protein important for synaptic vesicle release of neurotransmitters.
208 We observed less dauer exit in the *Ptrx-1::TeTx::mCherry* line than in N2 (Figure 2B).
209 Interestingly, no difference in dauer formation was observed previously between wildtype and
210 *unc-13* mutants (synaptobrevin in *C. elegans*) (Shen *et al.*, 2007). However, disrupting
211 neurotransmission in the whole body may potentially mask antagonistic contributions of multiple
212 neurons to the dauer-exit decision. When synaptic vesicle disruption was limited to only ASJ,
213 less dauer-exit was observed, indicating synaptic transmission from ASJ promotes dauer exit.

214 While INS-6 is important for promoting dauer exit, multiple insulin-like peptides (ILPs) are
215 expressed throughout the body of the worm in neuronal and non-neuronal tissues (Cornils,
216 2011; Zheng *et al.*, 2018). DAF-2 is the sole IGFR in *C. elegans*, therefore it is the target of all
217 ILPs. To test whether synaptic signaling from ASJ contributes to the dauer decision in addition
218 to ILP signaling, we quantified dauer exit in a *daf-2* (e1370), *Ptrx-1::TeTx::mCherry* background.
219 We did not observe a difference in dauer exit between *daf-2* and *daf-2, trx-1::TeTx::mCherry*
220 (Figure 2C). This indicates that while synaptic signaling from ASJ is important for dauer exit
221 (Figure 2B), non-ILP signaling does not contribute significantly to the decision.

222 If dauer exit is primarily dependent on synaptic release of ILPs from ASJ, then blocking synaptic
223 release in ASJ should produce similar probabilities of dauer exit as the *ins-4;ins-5;ins-6* triple

224 mutant, ZM6523. While both ZM6523 and *Ptrx-1::TeTx::mCherry* decrease dauer exit (Figure
225 2A,B), blocking synaptic release in ZM6523 almost completely eliminated dauer exit (Figure
226 2D). In addition to ILPs, ASJ also releases the neurotransmitter acetylcholine, is post-synaptic
227 to several neurons, and shares electrical synapses with the interneuron AIA (Cook *et al.*, 2019).
228 Since blocking synaptic release from ASJ in the *ins-4;ins-5;ins-6*, but not the *daf-2* (e1370)
229 background, decreases dauer exit, it is likely that ILP release from neurons post-synaptic to ASJ
230 also influence the dauer decision.

231

232 *Dauer exit relies on 12 hours of ASJ stimulation.*

233

234 ASJ normally responds to food odorants(citation). Odorants bind G-protein coupled receptors,
235 which cause a signaling cascade that ends in the neuron's depolarization (Cornelia I.
236 Bargmann, 2006). However, the dynamic delivery of food to unrestrained dauers is challenging.
237 As an alternative to food, we turned to optogenetics. One challenge with using
238 channelrhodopsin over a long timescale is the prolonged exposure of animals to high intensities
239 of light for long periods. However, a variant of channelrhodopsin (C128S) is sensitive to blue-
240 light and does not require constant illumination to remain open (Berndt *et al.*, 2009). Instead,
241 blue light triggers the opening of the channel, which remains open for several minutes until
242 closed by exposure to amber light. C128S has been used in *C. elegans* in the past to
243 manipulate motor neurons and dauer exit over the hour timescale with low intensities of light
244 (470 nm; <0.01 mW/mm²) (Schultheis *et al.*, 2011). Our LED arrays produced light intensities in
245 this range (Figure 3A). To quantify how the temporal dynamics of ASJ influence dauer exit, we
246 depolarized ASJ with C128S at different intensities and time periods to measure how ASJ
247 depolarization amplitude and duration influence dauer exit.

248 To define the temporal window of ASJ activity that is sufficient to trigger dauer exit, we
249 stimulated *Ptrx-1::C128S:SL2::GFP* for different time intervals immediately after placing the
250 dauers in the Dauer-WorMotel (Figure 3B). *Ptrx-1::C128S:SL2::GFP* worms were exposed to
251 the following light conditions: a loop of 1 second 470 nm: 8 μ W/mm², followed by 5 seconds of
252 darkness, followed by 2 seconds of 590 nm: 30 μ W/mm². This resulted in C128S depolarization
253 for 6 seconds for every 8 second duty cycle. Since worms do not produce their own trans-retinal
254 (the light absorbing co-factor for channelrhodopsin), worms were cultured with or without
255 (control) trans-retinal in their food prior to developing into dauer animals. We found that photo-
256 stimulation of ASJ for 6 hours or less was insufficient to increase dauer exit, but 12 hours or
257 more was sufficient (Figure 3B).

258 In principle, increased depolarization of ASJ should suggest higher mean environmental quality.
259 *Ptrx-1::C128S:SL2::GFP* animals were stimulated with the prior illumination protocol at low (470
260 nm: 0.4 μ W/mm²), medium (470 nm: 8 μ W/mm²), and high (470 nm: 16 μ W/mm²) light
261 intensities for 12 hours. We found statistically significant increased dauer exit at the medium
262 and high illumination levels, as compared to the no-retinal controls (Figure 3C). We did not
263 observe a difference at the low illumination level.

264

265 **Discussion**

266

267 Here we present an experimental assay for dauer exit in *C. elegans* that is simple, scalable, and
268 compatible with optogenetics. The illumination setup can easily fit within an incubator, and the
269 manufacture of the devices simply requires casting PDMS. Animals can easily be phenotyped
270 by observation under a dissecting microscope. The assay produces results under genetic
271 perturbation that are consistent with the role of ILP signaling in dauer exit. Interestingly, blocking
272 synaptic transmission in the absence of INS-6 further decreases dauer exit, indicating that other
273 ILP-releasing neurons post-synaptic to ASJ contribute to the dauer exit decision. FLP-2
274 neuropeptides released by the interneuron AIA inhibit dauer entry, while INS-1 released by
275 other interneurons also drive dauer entry (Chai *et al*, 2021). While these results did not address
276 dauer exit, it indicates that the activity of interneurons that are post-synaptic to dauer-influencing
277 sensory neurons also contribute to the dauer decision through neuropeptide signaling.

278

279 **References**

280

281 Ailion, M., Inoue, T., Weaver, C. I., Holdcraft, R. W., & Thomas, J. H. (1999). Neurosecretory
282 control of aging in *Caenorhabditis elegans*. *Proceedings of the National Academy of Sciences of
283 the United States of America*, 96(13), 7394–7397. <https://doi.org/10.1073/pnas.96.13.7394>

284 Ailion, M., & Thomas, J. H. (2000). Dauer Formation Induced by High Temperatures in
285 *Caenorhabditis elegans*. *Genetics*, 156, 1047–1067.

286 Albert, P. S., & Riddle, D. L. (1983). Developmental alterations in sensory neuroanatomy of the
287 *Caenorhabditis elegans* dauer larva. *Journal of Comparative Neurology*, 219(4), 461–481.
288 <https://doi.org/10.1002/CNE.902190407>

289 Albrecht, D. R., & Bargmann, C. I. (2011). High-content behavioral analysis of *Caenorhabditis
290 elegans* in precise spatiotemporal chemical environments. *Nature Methods* 2011 8:7, 8(7), 599–
291 605. <https://doi.org/10.1038/nmeth.1630>

292 Avery, L., Bargmann, C. I., & Horvitz, H. R. (1993). The *Caenorhabditis elegans* unc-31 gene
293 affects multiple nervous system- controlled functions. *Genetics*, 134(2), 455–464.

294 Avery, Leon. (2014). A model of the effect of uncertainty on the *C elegans* L2/L2d decision.
295 *PLoS ONE*, 9(7). <https://doi.org/10.1371/journal.pone.0100580>

296 Bargmann, C I., & Horvitz, H. (1991). Control of larval development by chemosensory neurons
297 in *Caenorhabditis elegans*. *Science*, 251(4998), 1243–1246.

298 Bargmann, Cornelia I. (2006). Chemosensation in *C. elegans*. *WormBook*: The Online Review
299 of *C. Elegans Biology*, 1–29. <https://doi.org/10.1895/WORMBOOK.1.123.1>

300 Barlow, H. (2001). Redundancy reduction revisited. *Network: Computation in Neural Systems*,
301 12(3), 241–253. <https://doi.org/10.1088/0954-898X/12/3/301>

302 Barlow, H. B. (1961). Possible Principles Underlying the Transformations of Sensory Messages.
303 In W. Rosenblith (Ed.), *Sensory Communication* (pp. 217–234). MIT Press.

304 Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P., & Deisseroth, K. (2009). Bi-stable neural
305 state switches. *Nature Neuroscience*, 12(2), 229–234. <https://doi.org/10.1038/nn.2247>

306 Beverly, M., Anbil, S., & Sengupta, P. (2011). Degeneracy and Neuromodulation among
307 Thermosensory Neurons Contribute to Robust Thermosensory Behaviors in *Caenorhabditis*
308 *elegans*. *Journal of Neuroscience*, 31(32), 11718–11727.
309 <https://doi.org/10.1523/JNEUROSCI.1098-11.2011>

310 Brenner S. The genetics of *Caenorhabditis elegans*. *Genetics*. 1974;77:71–94.

311 Bubrig, LT, Sutton, JM, and Fierst, J. (2020). *Caenorhabditis elegans* dauer vary recovery in
312 response to bacteria from natural habitat. *Ecology and Evolution*, 10, 9886–9895.
313 <https://doi.org/10.1002/ece3.6646>

314 Butcher, R. A., Fujita, M., Schroeder, F. C., & Clardy, J. (2007). Small-molecule pheromones
315 that control dauer development in *Caenorhabditis elegans*. *Nature Chemical Biology*, 3(7), 420–
316 422. <https://doi.org/10.1038/nchembio.2007.3>

317 Calhoun, A. J., Tong, A., Pokala, N., Fitzpatrick, J. A. J., Sharpee, T. O., & Chalasani, S. H.
318 (2015). Neural mechanisms for evaluating environmental variability in *caenorhabditis elegans*.
319 *Neuron*, 86(2), 428–441. <https://doi.org/10.1016/j.neuron.2015.03.026>

320 Cassada, R. C., & Russell, R. L. (1975). The dauer larva, a post-embryonic developmental
321 variant of the nematode *Caenorhabditis elegans*. *Developmental Biology*, 46(2), 326–342.
322 [https://doi.org/10.1016/0012-1606\(75\)90109-8](https://doi.org/10.1016/0012-1606(75)90109-8)

323 Chai, C. M., Torkashvand, M., Seyedolmohadesin, M., Park, H., Venkatachalam, V., &
324 Sternberg, P. W. (2022). Interneuron control of *C. elegans* developmental decision-making.
325 *Current Biology*, 32(10), 2316-2324.e4. <https://doi.org/10.1016/J.CUB.2022.03.077>

326 Churgin, M. A., Jung, S. K., Yu, C. C., Chen, X., Raizen, D. M., & Fang-Yen, C. (2017).
327 Longitudinal imaging of *caenorhabditis elegans* in a microfabricated device reveals variation in
328 behavioral decline during aging. *eLife*, 6, 1–20. <https://doi.org/10.7554/eLife.26652>

329 Connors, B. L., Rende, R., & Colton, T. J. (2016). Beyond self-report: Emerging methods for
330 capturing individual differences in decision-making process. In *Frontiers in Psychology* (Vol. 7,
331 Issue MAR). Frontiers Research Foundation. <https://doi.org/10.3389/fpsyg.2016.00312>

332 Cook, S. J., Jarrell, T. A., Brittin, C. A., Wang, Y., Bloniarz, A., Yakovlev, M. A., Nguyen, K. Q.,
333 Tang, L. T., Bayer, E. A., Duerr, J. S., Bülow, H., Hobert, O., Hall, D. H., Emmons, S. W., Cook,
334 S. J., & Jarrell, T. A. (2019). Whole-animal connectomes of both *Caenorhabditis elegans* sexes.
335 *Nature*, 571. <https://doi.org/10.1038/s41586-019-1352-7>

336 Cornils, A. et al. (2011). Specific insulin-like peptides encode sensory information to regulate
337 distinct developmental processes. *Development*, 138, 1183–1193.
338 <https://doi.org/10.1242/dev.060905>

339 D'Acremont, M., & Bossaerts, P. (2008). Neurobiological studies of risk assessment: A
340 comparison of expected utility and mean–variance approaches. *Cognitive, Affective, &*
341 *Behavioral Neuroscience*, 8(4), 363–374. <https://doi.org/10.3758/CABN.8.4.363>

342 Dobosiewicz, M., & Bargmann, C. (2019). Reliability of an interneuron response depends on an
343 integrated sensory state. *ELife*, 1–27. <https://doi.org/10.1101/726083>

344 Dutilh, G., & Rieskamp, J. (2016). Comparing perceptual and preferential decision making.
345 *Psychonomic Bulletin and Review*, 23(3), 723–737. <https://doi.org/10.3758/s13423-015-0941-1>

346 Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. *Nature
347 Reviews Neuroscience*, 9(4), 292–303. <https://doi.org/10.1038/nrn2258>

348 Fenk, L. A., & De Bono, M. (2017). Memory of recent oxygen experience switches pheromone
349 valence in *Caenorhabditis elegans*. *Proceedings of the National Academy of Sciences of the
350 United States of America*, 114(16), 4195–4200. <https://doi.org/10.1073/PNAS.1618934114>

351 Flavell, S. W., Raizen, D. M., & You, Y. J. (2020). Behavioral states. In *Genetics* (Vol. 216,
352 Issue 2, pp. 315–332). Genetics Society of America.
353 <https://doi.org/10.1534/genetics.120.303539>

354 Frézal, L., & Félix, M. A. (2015). *C. elegans* outside the Petri dish. *ELife*, 2015(4).
355 <https://doi.org/10.7554/ELIFE.05849.001>

356 Geffen, M. N., Broome, B. M., Laurent, G., & Meister, M. (2009). Neural Encoding of Rapidly
357 Fluctuating Odors. *Neuron*, 61(4), 570–586. <https://doi.org/10.1016/j.neuron.2009.01.021>

358 Gepner, R., Wolk, J., Wadekar, D. S., Dvali, S., & Gershoff, M. (2018). Variance adaptation in
359 navigational decision making. *ELife*, 7. <https://doi.org/10.7554/eLife.37945>

360 Gold, J. I., & Shadlen, M. N. (2007). The Neural Basis of Decision Making. *Annual Review of
361 Neuroscience*, 30(1), 535–574. <https://doi.org/10.1146/annurev.neuro.29.051605.113038>

362 Golden, J. W., & Riddle, D. L. (1984). The *Caenorhabditis elegans* dauer larva: Developmental
363 effects of pheromone, food, and temperature. *Developmental Biology*, 102(2), 368–378.
364 [https://doi.org/10.1016/0012-1606\(84\)90201-X](https://doi.org/10.1016/0012-1606(84)90201-X)

365 Gorur-Shandilya, S., Demir, M., Long, J., Clark, D. A., & Emonet, T. (2017). Olfactory receptor
366 neurons use gain control and complementary kinetics to encode intermittent odorant stimuli.
367 *ELife*, 6, 1–30. <https://doi.org/10.7554/eLife.27670>

368 Hart, A. C., Sims, S., & Kaplan, J. M. (1995). *Synaptic code for sensory modalities revealed by
369 C. elegans GLR-1 glutamate receptor*.

370 Heekeren, H. R., Marrett, S., Bandettini, P. A., & Ungerleider, L. G. (2004). A general
371 mechanism for perceptual decision-making in the human brain. *Nature*, 431(7010), 859–862.
372 <https://doi.org/10.1038/nature02966>

373 Hibshman, J. D., Webster, A. K., & Baugh, L. R. (2021). Liquid-culture protocols for
374 synchronous starvation, growth, dauer formation, and dietary restriction of *Caenorhabditis
375 elegans*. *STAR Protocols*, 2(1), 100276. <https://doi.org/10.1016/j.xpro.2020.100276>

376 Hu, Y., Wang, C., Yang, L., Pan, G., Liu, H., Yu, G., & Ye, B. (2020). A Neural Basis for
377 Categorizing Sensory Stimuli to Enhance Decision Accuracy. *Current Biology*.
378 <https://doi.org/10.1016/j.cub.2020.09.045>

379 Hung, W. L., Wang, Y., Chitturi, J., & Zhen, M. (2014). A *Caenorhabditis elegans* developmental
380 decision requires insulin signaling-mediated neuron-intestine communication. *Development*
381 (*Cambridge*), 141(8), 1767–1779. <https://doi.org/10.1242/dev.103846>

382 Iwanir, S., Ruach, R., Itskovits, E., Pritz, C. O., Bokman, E., & Zaslaver, A. (2019). Irrational
383 behavior in *C. elegans* arises from asymmetric modulatory effects within single sensory
384 neurons. *Nature Communications*, 10(1), 1–13. <https://doi.org/10.1038/s41467-019-11163-3>

385 Karp, X. (2018). Working with dauer larvae. In *WormBook* (Vol. 176, Issue 1, pp. 139–148).
386 <https://doi.org/10.1016/j.physbeh.2017.03.040>

387 Kato, S., Xu, Y., Cho, C. E., Abbott, L. F., & Bargmann, C. I. (2014). Temporal Responses of
388 *C.elegans* Chemosensory Neurons Are Preserved in Behavioral Dynamics. *Neuron*, 81(3), 616–
389 628. <https://doi.org/10.1016/j.neuron.2013.11.020>

390 Kaul, T. K., Rodrigues, R. R., Ogunbe, P. V., Kapahi, I. V., & Gill, P. S. (2014a). Bacterial Fatty
391 Acids Enhance Recovery from the Dauer Larva in *Caenorhabditis elegans*. *PLoS ONE*, 9(1),
392 86979. <https://doi.org/10.1371/journal.pone.0086979>

393 Kaul, T. K., Rodrigues, R. R., Ogunbe, P. V., Kapahi, I. V., & Gill, P. S. (2014b). Bacterial Fatty
394 Acids Enhance Recovery from the Dauer Larva in *Caenorhabditis elegans*. *PLoS ONE*, 9(1),
395 86979. <https://doi.org/10.1371/journal.pone.0086979>

396 Kim, S., & Paik, Y. K. (2008). Developmental and reproductive consequences of prolonged non-
397 aging dauer in *Caenorhabditis elegans*. *Biochemical and Biophysical Research
398 Communications*, 368(3), 588–592. <https://doi.org/10.1016/j.bbrc.2008.01.131>

399 Laws, T. R., Atkins, H. S., Atkins, T. P., & Titball, R. W. (2006). The pathogen *Pseudomonas*
400 *aeruginosa* negatively affects the attraction response of the nematode *Caenorhabditis elegans*
401 to bacteria. *Microbial Pathogenesis*, 40(6), 293–297.
402 <https://doi.org/10.1016/J.MICPATH.2006.03.001>

403 Lee, J. S. (2019). *The Genomics of Stress-Induced Life Cycle Decisions in Nematodes -
404 CaltechTHESIS*. Caltech.

405 Leopold, A. V., Shcherbakova, D. M., & Verkhusha, V. V. (2019). Fluorescent Biosensors for
406 Neurotransmission and Neuromodulation: Engineering and Applications. *Frontiers in Cellular
407 Neuroscience*, 13, 474. <https://doi.org/10.3389/FNCEL.2019.00474/BIBTEX>

408 Lev, I., Bril, R., Liu, Y., Ceré, L. I., & Rechavi, O. (2019). Inter-generational consequences for
409 growing *Caenorhabditis elegans* in liquid. *Philosophical Transactions of the Royal Society B*,
410 374(1770). <https://doi.org/10.1098/RSTB.2018.0125>

411 Levi, A. J., & Huk, A. C. (2020). Interpreting temporal dynamics during sensory decision-making.
412 *Current Opinion in Physiology*, 16, 27. <https://doi.org/10.1016/J.COPHYS.2020.04.006>

413 Liewald JF, Brauner M, Stephens GJ, Bouhours M, Schultheis C, et al. Optogenetic analysis of
414 synaptic function. *Nat Methods*. 2008;5:895–902.

415 Ludewig, A., & Schroeder, F. (2012). Ascaroside signaling in *C. elegans*. *WormBook*.
416 <https://doi.org/10.1895/wormbook.1.155.1>

417 Maruyama, I. N. (2017). Receptor guanylyl cyclases in sensory processing. *Frontiers in*
418 *Endocrinology*, 7(JAN), 1–11. <https://doi.org/10.3389/fendo.2016.00173>

419 Matty, M. A., Lau, H. E., Haley, J. A., Singh, A., Chakraborty, A., Kono, K., Reddy, K. C.,
420 Hansen, M., & Chalasani, S. H. (2022). Intestine-to-neuronal signaling alters risk-taking
421 behaviors in food-deprived *Caenorhabditis elegans*. *PLoS Genetics*, 18(5), e1010178.
422 <https://doi.org/10.1371/JOURNAL.PGEN.1010178>

423 Milward, K., Busch, K. E., Murphy, R. J., De Bono, M., & Olofsson, B. (2011). Neuronal and
424 molecular substrates for optimal foraging in *Caenorhabditis elegans*. *Proceedings of the*
425 *National Academy of Sciences of the United States of America*, 108(51), 20672–20677.
426 https://doi.org/10.1073/PNAS.1106134109/SUPPL_FILE/PNAS.201106134SI.PDF

427 Mylenko, M., Boland, S., Penkov, S., Sampaio, J. L., Lombardot, B., Vorkel, D., Verbavatz, J.-
428 M., & Kurzchalia, T. V. (2016). *NAD + Is a Food Component That Promotes Exit from Dauer*
429 *Diapause in Caenorhabditis elegans*. <https://doi.org/10.1371/journal.pone.0167208>

430 Nadim, F., & Bucher, D. (2014). Neuromodulation of neurons and synapses. *Current Opinion in*
431 *Neurobiology*, 29, 48–56. <https://doi.org/10.1016/J.CONB.2014.05.003>

432 Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann,
433 P., & Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane
434 channel. *Proceedings of the National Academy of Sciences of the United States of America*,
435 100(SUPPL. 2), 13940–13945.
436 https://doi.org/10.1073/PNAS.1936192100/SUPPL_FILE/6192FIG5B.PDF

437 Nagel, K. I., & Doupe, A. J. (2006). Temporal Processing and Adaptation in the Songbird
438 Auditory Forebrain. *Neuron*, 51(6), 845–859. <https://doi.org/10.1016/j.neuron.2006.08.030>

439 Neal, S. J., Kim, K., & Sengupta, P. (2013). Quantitative Assessment of Pheromone-Induced
440 Dauer Formation in *Caenorhabditis elegans* Regulation of BMP signal transduction View project
441 Chapter 20 Quantitative Assessment of Pheromone-Induced Dauer Formation in
442 *Caenorhabditis elegans*. *Methods in Molecular Biology*, 1068. [62703-619-1_20](https://doi.org/10.1007/978-1-
443 62703-6-1_20)

444 Nielsen, M. S., Axelsen, L. N., Sorgen, P. L., Verma, V., Delmar, M., & Holstein-Rathlou, N. H.
445 (2012). Gap junctions. *Comprehensive Physiology*, 2(3), 1981–2035.
446 <https://doi.org/10.1002/CPHY.C110051>

447 O'Neill, M., & Schultz, W. (2015). Economic risk coding by single neurons in the orbitofrontal
448 cortex. *Journal of Physiology Paris*, 109(1–3), 70–77.
449 <https://doi.org/10.1016/j.jphysparis.2014.06.002>

450 Ouellet, J., Li, S., & Roy, R. (2008). Notch signalling is required for both dauer maintenance and
451 recovery in *C. elegans*. *Development*, 135(15), 2583–2592. <https://doi.org/10.1242/dev.012435>

452 Pannunzi, M., & Nowotny, T. (2019). Odor Stimuli: Not Just Chemical Identity. *Frontiers in*
453 *Physiology*, 10. <https://doi.org/10.3389/fphys.2019.01428>

454 Park, D., O'Doherty, I., Somvanshi, R. K., Bethke, A., Schroeder, F. C., Kumar, U., & Riddle, D.
455 L. (2012). Interaction of structure-specific and promiscuous G-protein-coupled receptors
456 mediates small-molecule signaling in *Caenorhabditis elegans*. *Proceedings of the National*

457 *Academy of Sciences of the United States of America*, 109(25), 9917–9922.
458 https://doi.org/10.1073/PNAS.1202216109/SUPPL_FILE/PNAS.201202216SI.PDF

459 Platt, M. L., & Huettel, S. A. (2008). Risky business: The neuroeconomics of decision making
460 under uncertainty. *Nature Neuroscience*, 11(4), 398–403. <https://doi.org/10.1038/nn2062>

461 Pradhan, S., Quilez, S., Homer, K., & Hendricks, M. (2019). Environmental Programming of
462 Adult Foraging Behavior in *C. elegans*. *Current Biology*, 29(17), 2867-2879.e4.
463 <https://doi.org/10.1016/J.CUB.2019.07.045>

464 Raj M, K., & Chakraborty, S. (2020). PDMS microfluidics: A mini review. *Journal of Applied
465 Polymer Science*, 137(27), 48958. <https://doi.org/10.1002/APP.48958>

466 Ren, P., Lim, C. S., Johnsen, R., Albert, P. S., Pilgrim, D., & Riddle, D. L. (1996). Control of *C.*
467 *elegans* Larval Development by Neuronal Expression of a TGF- β Homolog. *Science*, 274(5291),
468 1389–1391. <https://doi.org/10.1126/SCIENCE.274.5291.1389>

469 Ritter, A. D., Shen, Y., Bass, J. F., Jeyaraj, S., Deplancke, B., Mukhopadhyay, A., Xu, J.,
470 Driscoll, M., Tissenbaum, H. A., & Walhout, A. J. M. (2013). Complex expression dynamics and
471 robustness in *C. elegans* insulin networks. *Genome Research*, 23(6), 954.
472 <https://doi.org/10.1101/GR.150466.112>

473 Sasaki, T., Stott, B., & Pratt, S. C. (2019). Rational time investment during collective decision
474 making in *Temnothorax* ants. *Biology Letters*, 15(10). <https://doi.org/10.1098/rsbl.2019.0542>

475 Schackwitz, W. S., Inoue, T., & Thomas, J. H. (1996). Chemosensory neurons function in
476 parallel to mediate a pheromone response in *C. elegans*. *Neuron*, 17(4), 719–728.
477 [https://doi.org/10.1016/S0896-6273\(00\)80203-2](https://doi.org/10.1016/S0896-6273(00)80203-2)

478 Schmid, B. (2016). Decision-Making: Are Plants More Rational than Animals? In *Current Biology*
479 (Vol. 26, Issue 14, pp. R675–R678). Cell Press. <https://doi.org/10.1016/j.cub.2016.05.073>

480 Schultheis, C., Liewald, J. F., Bamberg, E., Nagel, G., & Gottschalk, A. (2011). Optogenetic
481 long-term manipulation of behavior and animal development. *PLoS ONE*, 6(4).
482 <https://doi.org/10.1371/journal.pone.0018766>

483 Schultz, W. (2007). Multiple Dopamine Functions at Different Time Courses. *Annual Review of
484 Neuroscience*, 30(1), 259–288. <https://doi.org/10.1146/annurev.neuro.28.061604.135722>

485 Shao, J., Zhang, X., Cheng, H., Yue, X., Zou, W., & Kang, L. (2019). Serotonergic neuron ADF
486 modulates avoidance behaviors by inhibiting sensory neurons in *C. elegans*. *Pflugers Archiv
487 European Journal of Physiology*, 471(2), 357–363. <https://doi.org/10.1007/s00424-018-2202-4>

488 Shen, L. L., Wang, Y., & Wang, D. Y. (2007). Involvement of genes required for synaptic
489 function in aging control in *C. elegans*. *Neuroscience Bulletin*, 23(1), 21–29.
490 <https://doi.org/10.1007/s12264-007-0003-4>

491 Speese, S., Petrie, M., Schuske, K., Ailion, M., Ann, K., Iwasaki, K., Jorgensen, E. M., & Martin,
492 T. F. J. (2007). UNC-31 (CAPS) Is Required for Dense-Core Vesicle But Not Synaptic Vesicle
493 Exocytosis in *Caenorhabditis elegans*. *Journal of Neuroscience*, 27(23), 6150–6162.
494 <https://doi.org/10.1523/JNEUROSCI.1466-07.2007>

495 Stiernagle, T. (2006). Maintenance of *C. elegans*. *WormBook*: The Online Review of *C.*
496 *Elegans Biology*, 1–11. <https://doi.org/10.1895/WORMBOOK.1.101.1>

497 Su, C. Y., Martelli, C., Emonet, T., & Carlson, J. R. (2011). Temporal coding of odor mixtures in
498 an olfactory receptor neuron. *Proceedings of the National Academy of Sciences of the United*
499 *States of America*, 108(12), 5075–5080. <https://doi.org/10.1073/PNAS.1100369108>

500 Südhof, T. C. (2013). Neurotransmitter release: the last millisecond in the life of a synaptic
501 vesicle. *Neuron*, 80(3), 675–690. <https://doi.org/10.1016/J.NEURON.2013.10.022>

502 Symmonds, M., Wright, N. D., Bach, D. R., & Dolan, R. J. (2011). Deconstructing risk:
503 Separable encoding of variance and skewness in the brain. *NeuroImage*, 58(4), 1139–1149.
504 <https://doi.org/10.1016/j.neuroimage.2011.06.087>

505 Tanimoto, Y., Yamazoe-Umemoto, A., Fujita, K., Kawazoe, Y., Miyanishi, Y., Yamazaki, S. J.,
506 Fei, X., Busch, K. E., Gengyo-Ando, K., Nakai, J., Iino, Y., Iwasaki, Y., Hashimoto, K., & Kimura,
507 K. D. (2017). Calcium dynamics regulating the timing of decision-making in *C. elegans*. *eLife*, 6,
508 1–30. <https://doi.org/10.7554/eLife.21629>

509 Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward value by dopamine
510 neurons. *Science*, 307(5715), 1642–1645. <https://doi.org/10.1126/science.1105370>

511 Van Den Berg, R., Zylberberg, A., Kiani, R., Shadlen, M. N., Wolpert Correspondence, D. M., &
512 Wolpert, D. M. (2016). Confidence Is the Bridge between Multi-stage Decisions. *Current*
513 *Biology*, 26, 3157–3168. <https://doi.org/10.1016/j.cub.2016.10.021>

514 Vickers, N. J., Christensen, T. A., Baker, T. C., & Hildebrand, J. G. (2001). Odour-plume
515 dynamics influence file brain's olfactory code. *Nature*, 410(6827), 466–470.
516 <https://doi.org/10.1038/35068559>

517 Wang, J., & Kim, S. K. (2003). Global analysis of dauer gene expression in *Caenorhabditis*
518 *elegans*. In *Development* (Vol. 130, Issue 8, pp. 1621–1634). The Company of Biologists Ltd.
519 <https://doi.org/10.1242/dev.00363>

520 Wark, B., Fairhall, A., & Rieke, F. (2009). Timescales of Inference in Visual Adaptation. *Neuron*,
521 61(5), 750–761. <https://doi.org/10.1016/j.neuron.2009.01.019>

522 Webster, A. K., Jordan, J. M., Hibshman, J. D., Chitrakar, R., & Baugh, L. R. (2018).
523 Transgenerational Effects of Extended Dauer Diapause on Starvation Survival and Gene
524 Expression Plasticity in *Caenorhabditis elegans*. *Genetics*, 210(1), 263–274.
525 <https://doi.org/10.1534/GENETICS.118.301250>

526 White, J. G., Southgate, E., Thomson, J. N. and B. (1986). The structure of the nervous system
527 of the nematode *Caenorhabditis elegans*. *Philosophical Transactions of the Royal Society of*
528 *London. B, Biological Sciences*, 314(1165), 1–340. <https://doi.org/10.1098/RSTB.1986.0056>

529 Zheng, S., Chiu, H., Boudreau, J., Papanicolaou, T., Bendena, W., & Chin-Sang, I. (2018). A
530 functional study of all 40 *Caenorhabditis elegans* insulin-like peptides. *Journal of Biological*
531 *Chemistry*, 293(43), 16912–16922. <https://doi.org/10.1074/jbc.RA118.004542>

532 Zylberberg, A., Fetsch, C. R., & Shadlen, M. N. (2016). The influence of evidence volatility on
533 choice, reaction time and confidence in a perceptual decision. *eLife*.
534 <https://doi.org/10.7554/eLife.17688.001>

535

536 **FIGURES**

537 **Figure 1: Dauer Assays and the Dauer-WorMotel**

538 **A. C. elegans** life cycle. Worms proceed through four larval stages until reproductive adulthood.
539 After L1, worms choose to enter L2d (a pre-dauer stage) and subsequently choose to enter
540 dauer. Once under dauer arrest, worms monitor the external environment for improving
541 conditions as a sign to proceed with development into L4.

542 **B. Plate-based dauer assay.** Fraction dauer worms versus the number of worms on the plate,
543 from dauer entry experiments on petri dishes. Five adult worms laid eggs on dauer assay plates
544 for 4 hours were removed, and the plates were stored at 25 °C for 8 days (Neal et al., 2013).
545 After 8 days, the number of dauers and non-dauer worms were counted. Each dot represents
546 the fraction of dauer worms on a single petri dish. Data were collected on the same day.

547 **C. The WorMotel and the Dauer-WorMotel.** The WorMotel (left) was designed to individually
548 house worms for longevity assays. The Dauer-WorMotel (right) relies on liquid bacterial
549 suspension that replaces the agar-food bedding of the original design. The original WorMotel
550 has conical wells, while the Dauer-WorMotel has flat-bottomed wells that improve visibility.

551

552 **D. Humidified Chamber:** To prevent desiccation of the small (23 μ L) volumes, the worm
553 chamber is stored in a 10 cm petri dish surrounded by AgSap® hydroscopic crystals that serve
554 as a humidifier.

555 **E. Optogenetics set-up for dauer exit assay.** A single Teensy 3.2 controls the lights for up to 6
556 Dauer-WorMotels.

557 **F. Dauer exit assay.** Dauer worms are harvested after starvation and SDS selection, and
558 individually housed in separate wells of the Dauer-WorMotel in 23 μ L of 1 mg/mL live HB101
559 (with 5 mg/mL cholesterol) at 20 °C. N2 worms exit dauer under the experimental conditions of
560 this paradigm. Dauers versus L4/adults were counted after the five days. Each dot represents
561 one Dauer-WorMotel, which contains up to 48 dauer worms (L4/adult average = 0.58, standard
562 deviation = 0.16, n = 1617 individual worms). The different colors represent 3 different
563 experimental days (12 Dauer-WorMotels per day).

564

565 **Figure 2: ILP influence of dauer exit in the Dauer-WorMotel**

566

567 **A. ASJ ILPs drive dauer exit.** Dauer exit was quantified in the N2 and *ins-4;ins-5;ins-6* triple
568 mutant, ZM6523. (χ^2 (1, N = 1567) = 758.0, p <0.001).

569 **B.** Synaptic release from ASJ is influences dauer exit. Dauer exit was quantified in the N2 and
570 *Ptrx-1::TeTx::mCherry* background (χ^2 (1, N = 1134) = 333.0, p <0.001).

571 **C.** The influence of synaptic activity of ASJ on dauer exit relies on DAF-2 activity. Dauer exit
572 was quantified in *daf-2* (e1370) and *daf-2;Ptrx-1::TeTx::mCherry* (χ^2 (1, N = 1454) =
573 635.0, p = 0.39).

574 **D.** *ins-4/ins-6* neuromodulation and ASJ chemical neurotransmission work in parallel to
575 influence dauer exit. We observed less dauer exit in the *ins-4/ins-5/ins-6; Ptrx-1::TeTx::mCherry* cross as compared to either single mutant. The chi-square statistics are as
576 follows. Between *ins-4/ins-5/ins-6* and *Ptrx-1::TeTx::mCherry*, χ^2 (1, N = 628) = 232.0, p = 0.35.
577 Between *ins-4/ins-5/ins-6* (ZM6523) and *ins-4/ins-5/ins-6; Ptrx-1::TeTx::mCherry*, χ^2 (1, N =
578 549) = 153.0, p < 0.001. Between *Ptrx-1::TeTx::mCherry* and *ins-4/ins-5/ins-6; Ptrx-1::TeTx::mCherry*, χ^2 (1, N = 389) = 153.0, p < 0.001.
579
580

581

582 **Figure 3: Optogenetic stimulation of ASJ drives dauer exit.**

583

584 **A.** Light intensities for blue (470 nm) and amber (590 nm) light in the optogenetics arena,
585 measured at various power settings.

586 **B.** The temporal window for ASJ activity to promoter dauer exit is 12 to 24 hours. *Ptrx-1::TeTx::mCherry* animals were stimulated at 470 nm: 8 μ W/mm² in the presence or absence of
587 trans-retinal. The chi-square statistics are as follows: 24 hours - χ^2 (1, N = 337) = 174.0, p <
588 0.001 ; 12 hours - χ^2 (1, N = 409) = 198.0, p < 0.001 ; 6 hours - χ^2 (1, N = 437) =
589 213.0, p = 0.69; 3 hours - χ^2 (1, N = 379) = 181.0, p = 0.53 ; 1 hour - χ^2 (1, N = 389) =
590 201.0, p = 0.32.
591

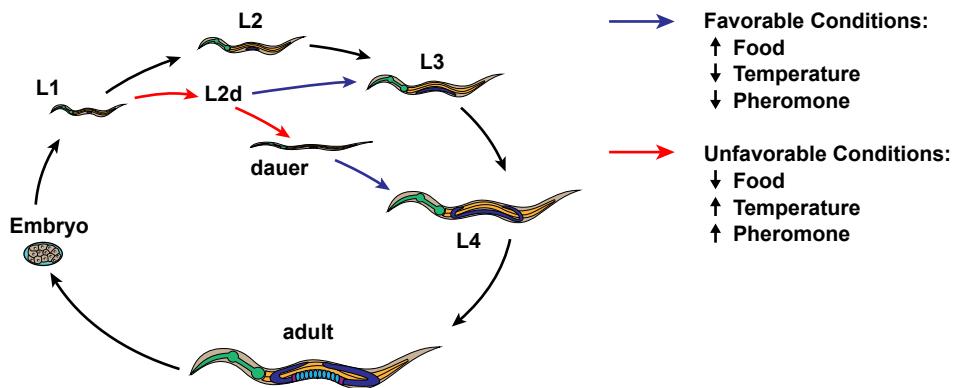
592 **C.** Dauer exit dependence on amplitude of ASJ photostimulation. *Ptrx-1::TeTx::mCherry*
593 animals were stimulated in the presence or absence of trans-retinal for 12 hours under low (470
594 nm: 0.4 μ W/mm²), medium (470 nm: 8 μ W/mm²), and high (470 nm: 16 μ W/mm²) light
595 intensities. The chi-square statistics are the following: Low - χ^2 (1, N = 425) = 201.0, p = 0.15;
596 Medium - χ^2 (1, N = 449) = 209.0, p < 0.001; High - χ^2 (1, N = 390) = 182.0, p < 0.001.
597
598
599

600 **Acknowledgements**

601

602 We thank J. Kim, H. Zhao, E. Niebur, members of the Johns Hopkins University Biology and
603 Neuroscience Departments and Gordus lab members for helpful discussions and comments on
604 the manuscript. A.P. acknowledges funding from the Nathaniel Boggs, Jr. Ph.D. Scholar
605 Fellowship. A.G. acknowledges funding from NIH (R35GM124883).
606

607 **Author contributions**


608

609 A.P., J.M., A.C., A.M., I.M. and A.G. designed research. A.P. and J.M. performed all dauer
610 experiments. A.P. designed the Dauer-WorMotel. A.C. designed the circuit board and chamber
611 holders. A.P., A.C., and A.M. wrote software to control the LED boards. A.P., A.C., A.M. and
612 I.M. assembled the circuit boards and holders. A.P. and A.G. wrote the manuscript.

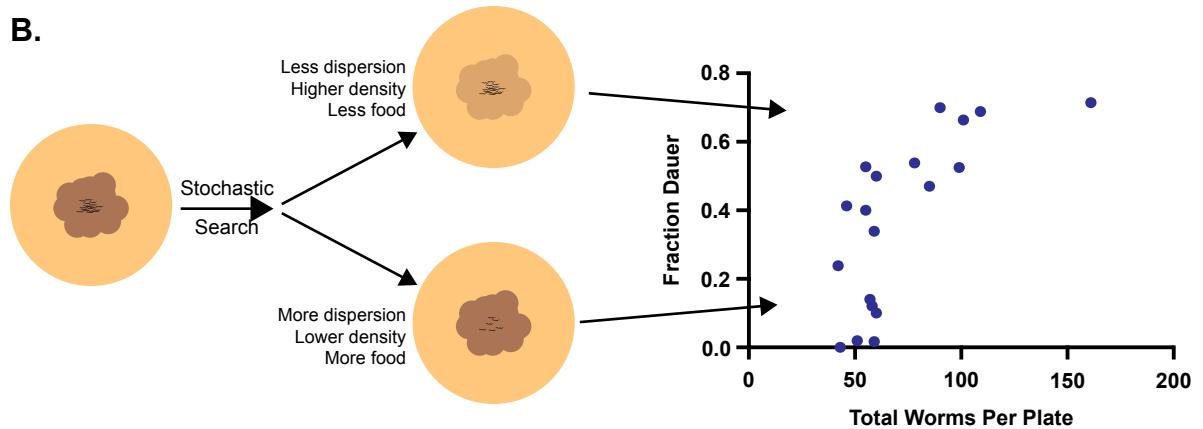
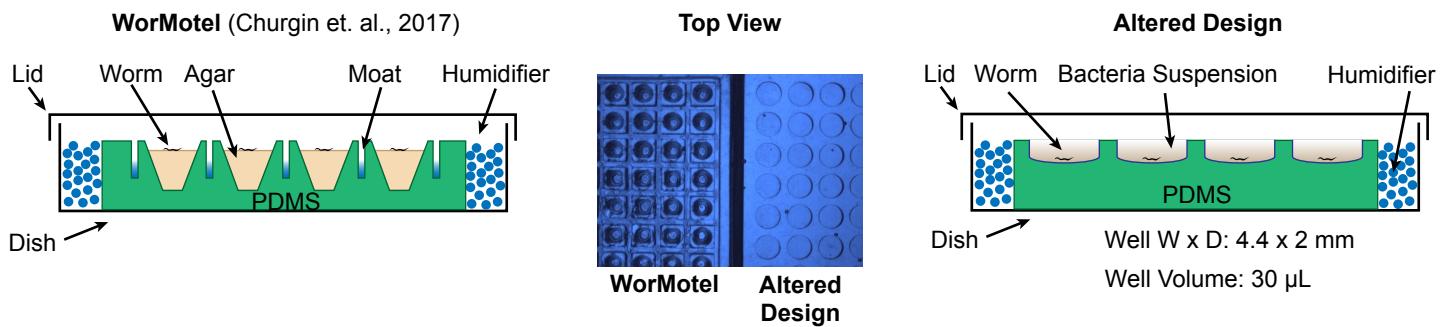
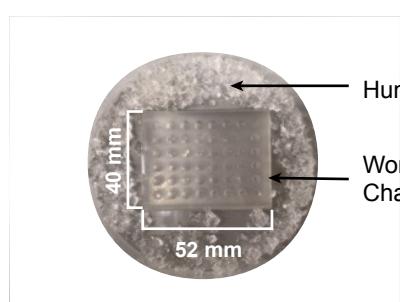
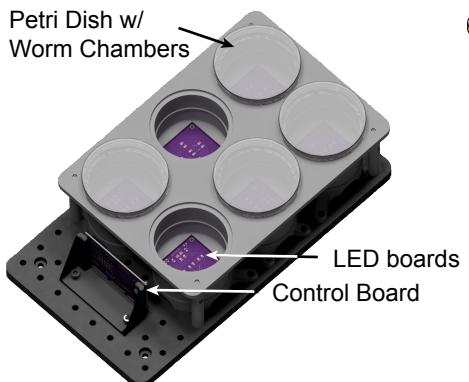
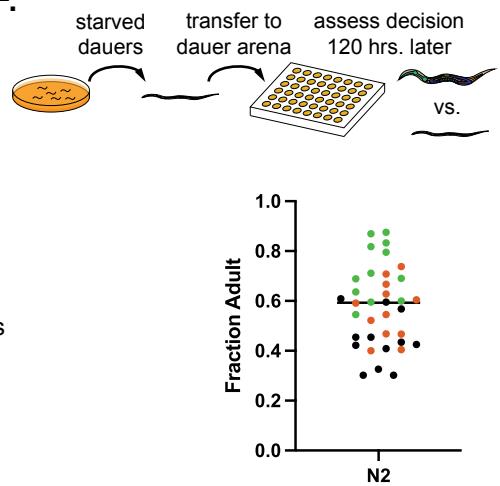

613

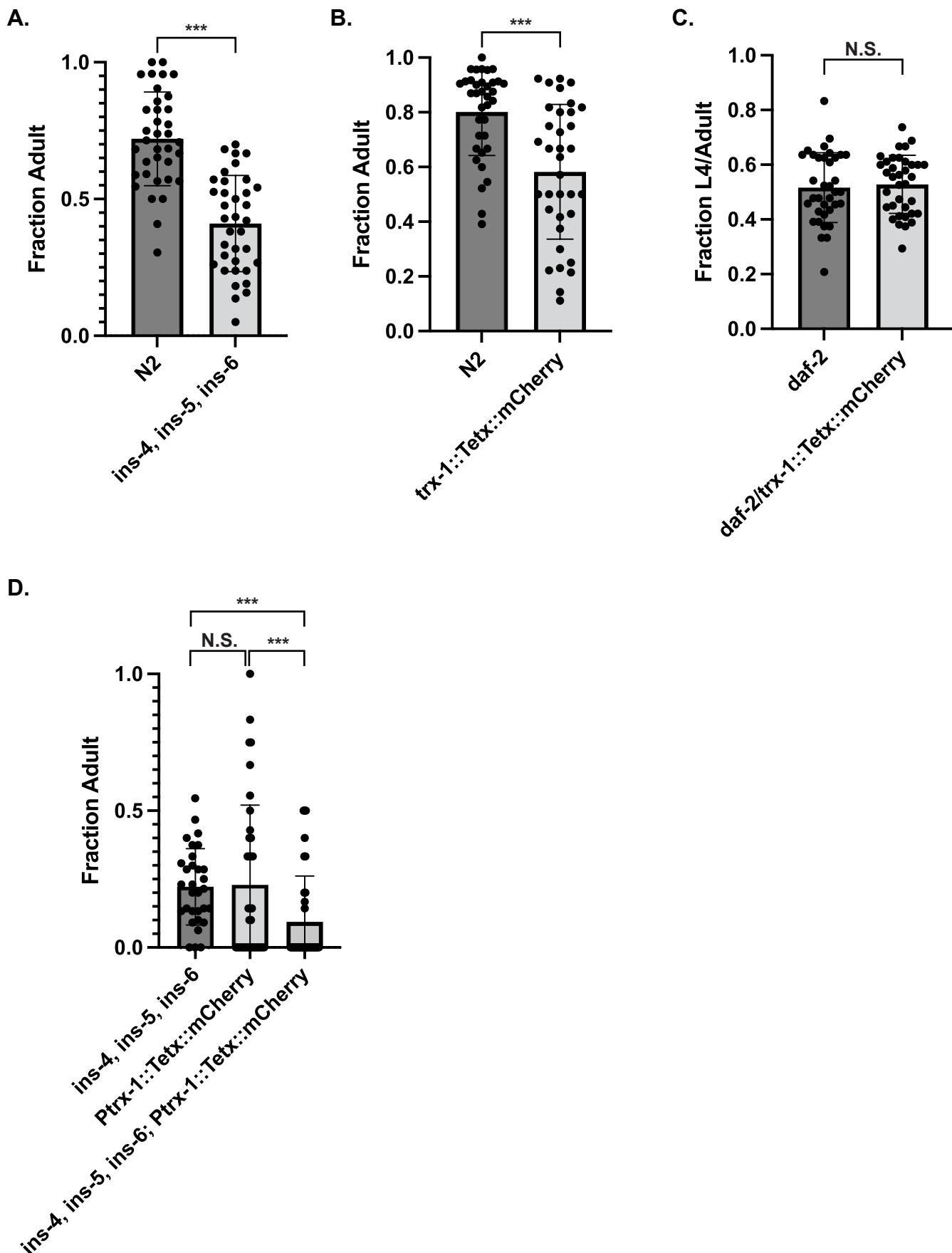
Figure 1


A.


B.


C.


D.


E.

F.

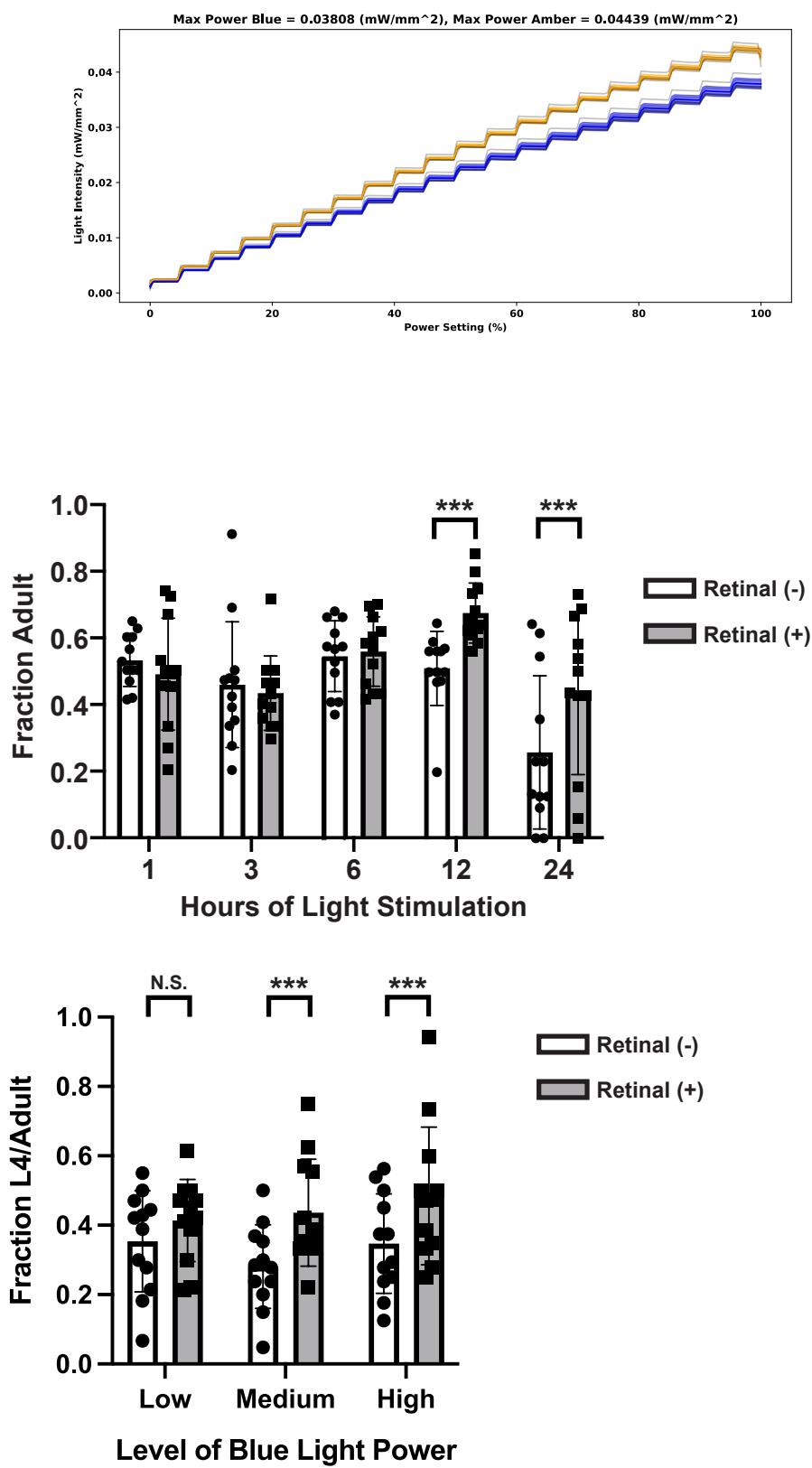


Figure 2

Figure 3

A.

