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Abstract

Nuclei segmentation is an important step for quantitative analysis of
fluorescence microscopy images. A large volume generally has many different
regions containing nuclei with varying spatial characteristics. Automatically
identifying nuclei that are challenging to segment can speed up the analysis of
biological tissues.

Here we show a segmentation technique that provides a metric of segmentation
“confidence” for each segmented object in an image volume. This confidence
metric can be used either to generate a “confidence map” for visual distinction of
reliable from unreliable regions, or in the data space to identify questionable
measurements that can be analyzed separately or eliminated from analysis. In an
analysis of nuclei in a 3-dimensional image volume, we show that the confidence
map correlates well with visual evaluations of segmentation quality, and that the
confidence metric correlates well with F1 scores within subregions of the image
volume. In addition, we also describe three visualization methods that can
visualize the segmentation differences between a segmented volume and a reference
volume.

1 Introduction

Segmentation is a critical step in tissue cytometry, the quantitative analysis of the
cellular constitution of biological tissues [1H3]. The reliability of quantitative
measurements ultimately depends upon the accuracy with which individual cells are
detected and distinguished. As biologists have developed the capability to collect images
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from millimeter-scale tissues containing hundreds of thousands of cells, manual methods
of segmentation have become impractical so that researchers increasingly depend upon
automated methods of image segmentation. Accordingly, the development of automated
methods of cell segmentation has become an active field in biological microscopy,
resulting in a steady improvement in performance. However, as segmentation techniques
are used on large image volumes, they encounter a new problem - spatial variability in
tissue structure and image quality that compromises segmentation quality to various
degrees. Consequently, the reliability of tissue cytometry measurements varies spatially
in ways that complicate interpretation.

Various approaches have been developed for nuclei detection and segmentation in
three-dimensional microscopy volumes including methods based on modified 3D
U-Net [4-6] and RCNN-based 2D to 3D methods [7}[8]. Encoder-decoder-based methods
such as U-Net [9/10] and SegNet [11] for nuclei instance segmentation generally use
post-processing such as watershed to separate touching nuclei and cannot provide a
probability score for the segmentation quality of each nucleus, whereas the RCNN-based
methods such as Faster R-CNN [12//13] and Mask R-CNN [14,/15] can generate a
probability score for each detected nucleus indicating how confident the network detects
it as a nucleus. Since a large microscopy volume may have many different regions where
each region contains nuclei with very different morphologies or characteristics, the
confidence score can be an important indicator for identifying the challenging
segmenting nuclei as well as quantifying the quality and variability of the segmentation
results.

A comprehensive framework for segmentation quality evaluation and variability
estimation was proposed in [16] which is based on predefined segmentation priors and
multivariate sensitivity analysis. An approach for automatic cancer scoring and grading
in immunohistochemical breast tissue images has been presented in [17] using nuclear
segmentation, and a color map is generated using an unsupervised classification of
cancer cells. Similarly, a transfer learning-based patch-level classifier was proposed
in [18] for breast cancer classification and the informative regions of the image are
extracted based on the nuclear density and morphology to improve the diagnosis
accuracy. Also, a tool known as VALMET [19] was developed for assessing locality and
magnitude of segmentation variability by measuring the statistics, such as the
volumetric overlap, probabilistic distances, maximum surface distance, and intraclass
correlation coefficient, between segmentations. In addition, a statistical framework was
proposed in [20] to evaluate the local segmentation accuracy and variability of the
segmentation method using the manual segmentation as the ground truth. These
methods mentioned above either use a post-processing method, another classification
method, or by comparing with the ground truth segmentation masks to generate the
confidence score or statistics. A confidence map generated directly from the
segmentation methods containing the confidence score for each nucleus is needed for
visual distinction of reliable from unreliable regions, or in the data space to identify
questionable measurements that can be analyzed separately or eliminated from analysis.

In this paper, we use the Ensemble Mask-RCNN, known as EMR-CNN [§], to detect
and segment individual nuclei in 3D microscopy volumes. EMR-CNN uses a
unsupervised clustering approach to fuse the 2D segmentation results from different
detectors and provide more robust results, and uses a 2D to 3D fusion method to
integrate 2D segmentation results to 3D segmentation volume. We will use EMR-CNN
to generate confidence maps for large microscopy volumes, and our solution can provide
a color-coded nuclei instance segmentation volume along with a confidence map volume
that can be used for biologists to identify abnormal regions and selective quantitative
analysis. We show that the confidence map correlates well with visual evaluations of
segmentation quality on two different datasets. Also, entire microscopy volumes contain
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many regions with varying spatial characteristics. It is challenging to evaluate the
results of different segmentation approaches without having the entire ground truth
volume. Visualizing the segmentation differences between segmentation methods can
provide additional insight to how well segmentation methods perform. Thus, we also
describe three visualization methods that can visualize the segmentation differences
between a segmented volume and a reference volume, which can be used to visualize the
voxel-based and object-based segmentation differences.

2 Proposed Method

Image slices y EMR-CNN N Confidence Map Generation
> e ! Inference peymiz b . 15e8(0) see [5¢8(2) 5803)

Divide-and-Conquer Reconstruction

e

|

Mask R-CNN
Detector #2

Mask R-CNN i f {
Detector #3 | (U K]
e A
|

Mask R-CNN
Detector #4

Confidence

Partition to 128x128x128

Map
Generation

Figure 1. Overview of confidence map generation in large microscopy volume analysis
using Ensemble Mask-RCNN (EMRCNN)

In this paper, we will use the Ensemble Mask R-CNN (EMR-CNN) with slice fusion
strategy proposed in [§] to generate nuclei instance segmentation masks and the
corresponding confidence map for large microscopy volume analysis. We extend
EMR-CNN such that it can generate a confidence score for each segmented nucleus in a
large size microscopy volume.

2.1 Dataset

The experiment is conducted on two fluorescence microscopy volumes known as
Rat_liver_1, denoted as fixzed rat liver, and Cleared_mouse_intestine_1, denoted as
fized mouse intestine which was obtained from [21]. The fized rat liver is a

512 x 512 x 32 (X x Y x Z) volume collected from rat liver. The spatial voxel resolution
is 1 x 1 x 1 micron® (X x Y x Z). For this volume, paraformaldehyde-fixed rat liver
tissue was labelled with phalloidin, anti-Mrp2 immunofluorescence, and Hoechst 33342,
cleared and mounted in Scale mounting medium [22] and imaged by confocal microscopy
using an Olympus 25X, NA1.05 water immersion objective. fixed mouse intestine is
a 512 x 930 x 157 volume collected from cleared mouse intestine tissue and the spatial
voxel resolution is 1 x 1 x 1 micron®. Images of paraformaldehyde-fixed mouse intestine
were labeled with DAPI and 1maged using confocal microscopy with a Leica SP8
confocal /multiphoton microscope using a 20X NA 0.75 multi-immersion objective.
Tissues were cleared using a modified version of procedures described in [23].

2.2 Notation

We denote I as a 3D image volume of size X X Y X Z voxels where X, Y, and Z
represent the width, height, and depth of the 3D image volume. We use superscripts to
denote the type of a volume. For example, we will use I°"'& and I to denote the
original and synthetic microscopy volumes. Similarly, we also use 1% and IP™P to
represent the instance segmentation volume and corresponding probability map where
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each nuclei is associated with a probability score in range of (0, 1). Then we use I°°™ to
represent the confidence map. In addition, we use I to denote the j-th slice along the
Z-direction of volume I where j € {1,..., Z}. Also, let I be all image slices of I°'8
along the z-direction, and let I} orig be a voxel of I°"® with coordinate (z,y, 2).

To better describe and 1nterpret EMR-CNN, we use F to denote an EMR-CNN
model and m; denotes the i-th detector in E, where i € {1,..., M} and M is the number
of detectors in E. Det™"* = {Det]"""*, ..., Det""* } denotes the detection results and
n = Nj'i"” denotes the total number of detected objects in Ig;ig from detector m;.
Each detection Det);"™ = {Seg/;""*, Ctr)""* Prl}""*} consists of a 2D segmentation
mask Segm“zj obJect centroid Coordlnates Ctrm“Z] and a probability score Prm“zj
Then we further denote all detections of the detectorb in E on image slice Ig;lg as
Det™?% = {Seg™*7, Ctr"™* Pr™*}.

After using ensemble 2D fusion described in Section we denote Det® as the
fused 2D detection results on the image slice I?;ig7 where Det® = {Seg®, Ctr*, Pr }.
Then we denote Det” as a set consisting of all 2D detections on I9'8. Finally, we denote
Det = {Seg, Ctr, Pr} as the final 3D detection results after using the 2D to 3D slice
fusion described in Section 2.3

2.3 Ensemble Mask R-CNN (EMR-CNN)

Ensemble 2D Fusion. Each detector m; of the EMR-CNN model inference on an
image [ g;ig simultaneously and generates the detection results Det**. EMR-CNN
first identifies the same object detected by different detectors using an object matching
method. The object matching method is based on an agglomerative hierarchical
clustering (AHC) to cluster the detected object centroids from all detectors Ctr"*.
The ideal number of clusters NS is given by maximizing the Silhouette Coefficient
(SC). Then a weighted 2D mask fusion shown in Equation [1]is used to fuse the 2D
detection results from M detectors to generate fused detection results

Det® = {Seg®, Ctr*/, Pr*} including the fused segmentation masks, fused nuclei
centroids and fused probability scores for image slice Ijrig.

m Z7S m ZJ
Seg,lzﬂj _ Z'LGC’(H ? > 0.5

i, P g
PI‘fJ Z P m,z; (1)

w| 1€C

where (', is the w-th cluster within which the 2D detection results from different
detectors belong to the same object and need to be fused.

2D to 3D Slice Fusion. EMR-CNN uses a 2D to 3D slice fusion method to
merge 2D segmentation results on adjacent slices to a 3D segmentation volume. In this
paper, we extend the 2D to 3D slice fusion method such that it can also generate fused
probability score for each corresponding object. For 2D to 3D fusion, we use the 3D
agglomerative hierarchical clustering (AHC) described in [8] to cluster the 2D detection
centroids in the 3D volume and group the segmentations that belongs to the same 3D
nuclei. The probability score of the final fused 3D nucleus is the mean of the probability
score of 2D results belonging to the same cluster.

Pr= G P 2)

€C

where C,. is the r-th cluster within which the 2D detection results belong to the same
object and need to be fused, and Pr; is the probability score for the i-th 2D detected
object in cluster C,.
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Divide-and-Conquer Inference. EMR-CNN uses a divide-and-conquer inference
strategy such that it can run on volumes of any given size. In this paper, we extend
EMR-CNN’s divide-and-conquer inference module such that it can also generate a
confidence map for each nucleus in the corresponding microscopy volume. During
inference, the entire volume is zero padded and split evenly into multiple 128 x 128 x 128
subvolumes, and each subvolume overlaps with adjacent subvolumes for a 16-pixel
length border overlap. Due to the split, one nucleus may be split into two objects and
detected twice in the adjacent subvolume. Since we know where we split the volume
horizontally and vertically, we fuse these two objects back into one object based on their
touching area. Specifically, if two objects lying on the boundary of the subvolume have
an overlap region more than 10 pixels, we fuse them as one object. In addition, we will
use the mean probability score of the two objects as the final probability score of the
fused object. Figure [2] shows the split nuclei being fused into one nucleus.

e f, @7

gusplit nuclei Fused nuclei ___

o9

Figure 2. Overview of divide-and-conquer inference strategy. The split nuclei on the
boundary of the subvolumes are fused into one nucleus based on their overlapping region.
The fused probability score is the average of the probability scores of the split nuclei

2.4 Confidence Map Generation

After using divide-and-conquer inference on a large microscopy volume, a color-coded
instance segmentation volume I°°¢, and a probability map IP*P where each object is
associated with a probability score in range of (0, 1) indicating how confident it is
detected as a nucleus, will be generated. The probability map contains important
information for microscopy image analysis. In our microscopy image analysis
application, we would like to know which regions of tissue are relatively easy to segment
and which regions are more difficult, and we only need to know which confidence
interval a nucleus belongs to. Thus, we use Equation [3| to assign 5 different confidence
level for the confidence score in IP™P and stretch the intensity to the range of (0, 255)
and generate a confidence interval map.

0 i IZ =0
LI € (0,0.7)
ot 225 ) 2 I €07,08) 3)
o 5] 3 ifI%°), €[0.8,09)
4 i 17 €[0.9,0.95)
5 if I €(0.95,1.0)
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3 Confidence Map Results
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Figure 3. (a)

fized rat liver. (b) The color-coded nuclei instance segmentation results overlaid on
the original microscopy volume. (c¢) Corresponding confidence interval volumes. (d)
Confidence maps with pseudo colors. Brighter colors (white) indicate higher confidence
and darker colors (red) represent lower confidence. (e) The 137-th slice (I2"¢) of the
original microscopy volume of dataset fized mouse intestine. (f) The color-coded
nuclei instance segmentation results overlay on the original microscopy image I gf;% (g)
Corresponding confidence interval maps of 178, (h) Confidence maps with pseudo colors

. Z137"
and overlaid on I8

For the confidence map generation, we use two pretrained EMR-CNN models, each
including M = 4 detectors in an ensemble and are from [8]. Each EMR-CNN model
was trained on the image slices of 50 synthetic corresponding microscopy volumes I5".
The details of synthetic microscopy image generation and training parameters are the
same as in [8]. The experimental results for confidence map generation are shown in
Figure |3| The second column (b) and (f) shows the nuclei instance segmentation results
for volume fixed rat liver and fixed mouse intestine, where different colors
represent different nuclei instances.

Here we use 5 confidence intervals to represent the confidence score, and this can be
adjusted to have more or fewer intervals depending on how we want to analyze the
microscopy volumes. The confidence maps I°°™ for the fized rat liver volume and the
fized mouse intestine volume are shown in Figure [3| (¢) and (g). The brighter nuclei
(white) represent higher confidence score and indicate that the nuclei are easier to
segment, and the darker nuclei (gray) indicate more challenging regions.

To show I°°™ we use pseudo color to visualize nuclei confidence scores such that
higher confidence scores are shown in brighter colors (white) whereas lower confidence
scores are shown in darker colors (red). The confidence maps visualized by pseudo color
for the fixed rat liver volume and the fized mouse intestine volume are shown in
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Figure [3] (d) and (h).

Figure [3| (d) shows that most of the non-ellipsodial nuclei are highlighted with lower
confidence score. This is because the EMR-CNN was trained mainly on ellipsoidal
nuclei and can segment ellipsoidal nuclei better than non-ellipsoidal nuclei. Similarly,
for Figure [3| (f) the nuclei with lower confidence scores are mainly come from a specific
region in the bottom row, where the image lacks resolution and contrast.

4 Visualizing Differences

Figure 4. (a) Difference volume between VIEA and NISNet3D using visualization
method A (b) Difference volume between DeepSynth and NISNet3D using visualization
method A, (c) Difference volume between VIEA and NISNet3D using visualization
method B, (d) Difference volume between DeepSynth and NISNet3D using visualization
method B, (e) Difference volume between VITEA and NISNet3D using wisualization
method C, (f) Difference volume between DeepSynth and NISNet3D using visualization
method C

In order to see how the segmentation methods perform on various regions, we
propose three methods for visualizing the differences between a “test segmented volume”
and a “reference segmented volume”. To demonstrate the segmentation differences, we
use a volume segmented using NISNet3D [4] as the reference segmented volume. We
visualize the segmentation differences between VTEA [24] and NISNet3D, and we also
visualize the differences between DeepSynth [6] and NISNet3D on an entire volume.
These methods are chosen to demonstrate the segmentation differences the three
visualization methods can show. Note that if the ground truth are available for the
entire volume, we can easily use these visualization methods to visualize the
segmentation errors. Otherwise we can choose a more reliable method such as
NISNet3D as the reference volume to visualize the voxel-based and object-based
segmentation differences.

We then describe how to generate an Ouverlay Volume and three types of Difference
Volumes using the three methods which we will call Visualization Method A, B, and C.
Note that Visualization Method A does not need a “reference segmented volume”
whereas Visualization Method B and C need a “reference segmented volume”.

Next we describe how to generate an Ouverlay Volume. Using the notation described
in Section we denote 1°8 as the original microscopy volume and m as the maximum
intensity of 1°8. We will use I°& for overlaying the segmentation errors from the “test
segmented volume” to construct the visualization. For a “reference segmented volume”,
we denote I™®K as the binary segmentation masks of I°™8, and denote I°°% as the
color-coded segmentation of I°"¢ with RGB channels I ®, I5®, Iz ®. Similarly, for a
“test segmented volume”, we denote CP! as the binary segmentation masks of I°"¢, and
denote C' as the color-coded segmentation of I°™8 with RGB channels Cg, Cg, Cg.
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We then denote the Overlay Volume as L with RGB channels Ly, Lg, Lg. As
shown in Equation [d] the Overlay Volume for a “test segmented volume” is generated
by adding the original microscopy volume to each of the RGB channels of the
color-coded segmented volume.

Ly = I°M8 + Cr, Lg = I°M8 + Og, Ly = I°"8 1 Cp (4)

We then define the notation we used for generating the three types of Difference
Volumes. To represent the segmented nuclei in a “test segmented volume”, let
3D = [53D 53D s3D1 be the set of all 3D segmented nuclei in C, where s3P is a
volume with same size of C' but only contains the ith segmented 3D nucleus, and let
2D = {s2D 52D . s2P} be the set of all 2D objects in C' from each XY focal planes,
where 52D is a volume with same size of C' but only contains the ith segmented 2D
nucleus.

Similarly, to represent the segmented nuclei in a “reference segmented volume”, we
denote I°°¢ as the 3D segmentation volume from NISNet3D, which will be used as the
“reference segmented volume”. Let O3P = {03P 03P, ..., 03P} be the set of all 3D objects
in I°¢¢ and let O?P = {0%P, 03P, ..., O?D} be the set of all 2D objects in I°°®¢ from each
slice. Next, we describe how to generate the three types of Difference Volume using the

Visualization Methods A, B, and C.

4.1 Visualization Method A — Unsegmented Voxels

The Difference Volume generated by Visualization Method A — Unsegmented Voxels
shows voxels in the original microscopy volume that are not segmented by either test or
reference methods. The input to Visualization Method A is the original microscopy
volume and a segmented volume (“test segmented volume” or “reference segmented
volume”). Using VTEA as an example: the VTEA segmented volume is subtracted
from the original microscopy volume. This is shown in Equation

I* = max(I°"¢ — m x C",0) (5)

The Difference Volume I* shows the voxels in the original microscopy image that are
not segmented. We can replace CP' in Equation [5| with 1™ to obtain the Difference
Volume for the “reference segmented volume” and NISNet3D. Figure {f (a) and (b)
shows the Difference Volumes generated by Method A for VTEA and DeepSynth on
fized mouse intestine volume.

4.2 Visualization Method B — Unsplit Nuclei

The Difference Volume generated by Visualization Method B — Unsplit Nuclei shows
the under-segmentation regions where multiple nuclei in the “reference segmented
volume” are detected as a single nucleus in the “test segmented volume”. Here we use
NISNet3D as “reference segmented volume” and use VITEA or DeepSynth as “test
segmented volume”. The input to Visualization Method B is the VTEA (or DeepSynth)
segmented volume and the NISNet3D segmented volume.

Using VTEA as an example: if two or more nuclei in the NISNet3D segmented
volume intersect with the same single nucleus in the VTEA segmented volume, then we
show the single nucleus segmented by VTEA in the Visualization Method B Difference
Volume. This is shown in the Equation [0}

B _ 2D - ¢2D .3 2D 2D 2D 2D 2D _ 2D
I —U{s € 8% Jo,” € 077, 0,” € 077, 0," # 0,

s?P NP #£ 0,520 NolP # 0} (6)
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Then the result volume I® is overlaid on the original microscopy volume using
Equation [4] Figure[d] (c) and (d) shows the Difference Volumes generated by
Visualization Method B for VTEA and DeepSynth on fixzed mouse intestine volume.

4.3 Visualization Method C — Missed Nuclei

The Difference Volumes generated by Visualization Method C — Missed Nuclei shows
nuclei segmented by a “reference segmented volume” but are completely missed by a
“test segmented volume”. The input to Visualization Method C' is the VTEA (or
DeepSynth) segmented volume and the NISNet3D segmented volume. Using VTEA as
an example: if the voxels of a nucleus in NISNet3D segmented volume do not intersect
with any voxel of any segmented nucleus from the VTEA segmented volume, then the
Visualization Method C Difference Volume will show this nucleus from NISNet3D. This
is shown in the Equation

1€ = | J{o®™ € 0%P : ~352° € §7° 2P n 5°P £ 0} (7)

Figure (e) and (f) shows the Difference Volumes generated by Visualization Method C
for VTEA and DeepSynth on the volume of fized mouse intestine.

5 Conclusion

The ability to image large image volumes offers the potential to generate enormous
amounts of unique data. Large image volumes have spatial variability that impacts
segmentation quality in ways that are hard to detect, making quantitative analyses
difficult to interpret. In this paper, we described two approaches for visually identifying
spatial variability in segmentation performance. For the first approach, we extended
EMR-CNN’s divide-and-conquer method such it can generate the corresponding
confidence map for a large microscopy volume. The confidence map can be used to
determine which regions contain nuclei that are more challenging to segment whereas
which regions contain nuclei that are relatively easy to segment. The confidence map
can be used for biologists to filter out the easy segmenting regions and only focus on the
regions containing more challenging nuclei since this indicate more sophisticated nuclei
with special morphology or characteristics such as higher density or non-ellipticity. For
the second approach, we describe three visualization methods that can visualize the
segmentation differences between a segmented volume and a reference volume. These
approaches provide biologists with unique tools to evaluate tissue cytometry results, and
to generate data that is reliable.
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