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Neural Reconfiguration and Creative Thinking

Abstract

What are the neural dynamics that drive creative thinking? Recent studies have provided much
insight into the neural mechanisms of creative thought. Specifically, the interaction between the
executive control, default mode, and salience brain networks has been shown to be an important
marker of individual differences in creative ability. However, how these different brain systems
might be recruited dynamically during the two key components of the creative process—
generation and evaluation of ideas—remains far from understood. In the current study we applied
state-of-the-art network neuroscience methodologies to examine the neural dynamics related to the
generation and evaluation of creative and non-creative ideas using a novel within-subjects design.
Participants completed two functional magnetic resonance imaging sessions, taking place a week
apart. In the first imaging session, participants generated either creative (alternative uses) or non-
creative (common characteristics) responses to common objects. In the second imaging session,
participants evaluated their own creative and non-creative responses to the same objects. Network
neuroscience methods were applied to examine and directly compare reconfiguration, integration,
and recruitment of brain networks during these four conditions. We found that generating creative
ideas led to significantly higher network reconfiguration than generating non-creative ideas,
whereas evaluating creative and non-creative ideas led to similar levels of network integration.
Furthermore, we found that these differences were attributable to different dynamic patterns of
neural activity across the executive control, default mode, and salience networks. This study is the
first to show within-subject differences in neural dynamics related to generating and evaluating
creative and non-creative ideas.
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Introduction

Creativity involves multiple cognitive processes that allow for the generation of ideas that are both
novel and useful . Recent research on the neural mechanisms of creative thinking has focused
on how large-scale brain network connections may account for individual differences in creativity
36 The generation of creative ideas has been proposed to result from complex interactions between
the executive and default mode networks, engagement of which appears to be mediated by activity

within regions of the salience network during creative thinking 72

. Indeed, increased resting-state
functional brain connectivity between the inferior frontal cortex and key areas within the default
mode network (DMN) has been associated with higher creative performance 7!'3. Moreover,
temporal connectivity between the default and salience (SN) networks has been shown to
characterize performance earlier during a creative generation task, whereas connectivity between
the default and executive (EN) networks characterizes performance later in the task 7.

Consistent with these findings, increased activity of DMN regions and the ventral anterior
cingulate cortex (VACC) has been linked to the generation of original ideas; further, increased
connectivity between the vACC and occipital-temporal areas was observed in participants who
generated more original ideas !*. Studies have also consistently implicated the role of the
hippocampus in creativity, which builds on prior knowledge that can then be recombined and
utilized to create new and original ideas !>, Further, a recent study applied dynamic causal
modeling to fMRI data and showed that prefrontal regions within the EN unidirectionally control
posterior temporal and parietal regions of the DMN during divergent thinking 2°. These results
suggest that dynamic fluctuations of neural activity during creativity tasks within regions
implicated in focused internal attention, cognitive control, and spontaneous thought may account
for much individual variation in creative ability 2!-%.

Despite the examination of such brain network interactions, past studies have tended to
operationalize creativity through tasks that prioritize idea generation. However, the creative
process has long been discussed as comprising alternating generative and evaluative components

2930 with short- and long-term iterations between these phases being thought to occur many times

831 Yet, the dynamics of these two phases—for

during the performance of creativity tasks
example, whether they are serial or parallel—and the neural mechanisms that support such

dynamics remain unclear.
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Only a handful of studies have explored the neural bases of this twofold process of
generating creative ideas while assessing their usefulness during creative ideation. Notably,
Ellamil and colleagues 32 alternated participants’ generative and evaluative processes during a
drawing task under fMRI to show that creative generation preferentially engaged DMN regions,
whereas creative idea evaluation engaged both DMN and EN regions, as well as regions within
the salience network. In line with these findings, reductions in the activity of left temporoparietal
regions during participants’ evaluation of others’ creative ideas predicted higher creativity ratings,
highlighting the importance of this region in evaluating—but also possibly inhibiting—creativity
33

Although this prior work points to interactions between the DMN and EN under a twofold
model of creative cognition, the dynamic recruitment of different brain regions within these
systems during the generation and evaluation of creative ideas, as well as any salience network
mediation in these processes, remains poorly understood. A recent study leveraging temporal
variability in cortical and cerebellar resting-state functional connectivity revealed that the dynamic
reconfiguration of DMN and EN networks was associated with higher verbal creativity in a large
sample of participants 27. Additionally, it has recently been shown that higher-creative participants
show increased global and regional neural reconfiguration within EN and DMN regions during a
creative relative to a non-creative task **. Nevertheless, no prior study has examined the dynamic
reconfiguration of large-scale brain networks during the generation and evaluation of one’s own
creative ideas.

Here, we used network neuroscience approaches to examine the neural dynamics related
to generation and evaluation of creative and non-creative ideas in a novel within-subjects design.
We focused on three network neuroscience measures that capture such neural dynamics: Neural
reconfiguration, recruitment, and integration *-*°. Neural reconfiguration quantifies how brain
regions dynamically reconfigure their functional community across time and has been linked to
neural dynamics in cognitive tasks such as learning, working memory, and linguistic processing
343641 Neural integration reflects how brain regions from a specific neural system are functionally
integrated with brain regions from other neural systems. Neural recruitment captures how brain
regions connected with each other to form a neural system are further connected with other neural

systems. These measures have been linked to variability in performance in various cognitive tasks,
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and allow investigators to examine how neural systems are integrated and/or recruited for specific
cognitive tasks *7.

Although these measures have not been extensively used in the creativity literature (except
for Ref. 3%), they hold potential for understanding the complex processes implicated in creative
thinking because they are not simply averaging functional connectivity across the brain. Rather,
they are more sensitive to synchronous activity fluctuations across networks of regions, which may
provide a better glimpse of the timing parameters and neural fluctuations of regional involvement
during the creative process. Importantly, they uniquely allow us to test recent network
neuroscience theories about the complexity of creative thinking, by going beyond correlating static

functional connectivity patterns of activation with behavioral measures ¢7-!

. Together, these three
measures provide a quantitative approach toward examining the DMN, EN, and SN’s complex
dynamical contributions to creative thinking.

Participants completed two functional magnetic resonance imaging sessions, taking place
a week apart. In the first imaging session, participants generated either creative (alternative uses;
AU) or non-creative (common characteristics; CC) responses to pictures of common objects. In
the second imaging session, they evaluated their own creative and non-creative responses to the
same objects. In addition—to account for possible differential processing in evaluating one’s own
versus others’ ideas—participants evaluated a sample of creative and non-creative responses
generated to different objects by an independent sample of participants.

Following pre-processing of fMRI data and network construction 4042

, we composed a
dynamical functional brain network that represents neural reconfiguration, recruitment, and
integration during the generation and evaluation of creative and non-creative ideas. We used
dynamic community detection techniques % to extract groups of brain regions that were
functionally connected to one another. We then characterized how these networks reconfigured,
and how they were recruited and integrated over task conditions 3>37. Finally, to evaluate the
validity of our findings, we compared these network dynamics to similar measures computed from
participants’ resting-state fMRI data.

If creativity relies on the dynamic interactions among DMN and EN regions presumed to
underly self-generated and goal-directed thought, we predicted that neural reconfiguration would

be more pronounced during the generation—but not the evaluation—of creative ideas relative to

the generation of common characteristics for objects. Prior work has suggested that areas with high
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reconfiguration become more significant for a behavior, because they participate in more neural
processes across the brain %6, Higher reconfiguration would reflect the tendency of DMN and EN
regions to temporarily change their community assignments and become transiently unstable to
support maximum flexibility in creative idea generation . If creative thinking involves dynamic
changes in the connectivity patterns among the DMN, EN, and SN during the creative process, we
predicted higher integration of different neural systems across the creative process ’: higher
integration of DMN regions with the SN in the generation stage, and higher DMN and EN
integration in the evaluation stage of creative idea generation. Finally, if creative thinking involves
recruiting cognitive systems at different stages of the creative process, such as cognitive control
for idea evaluation and inhibition **, we predicted higher recruitment specific to the EN during
evaluation, and not generation, of creative ideas. Based on past research 374°, we anticipated that
recruitment and integration measures would be more pronounced during the evaluation relative to
the generation of creative ideas due to the prioritization of comparisons between one’s responses

and the task goals in the context of one’s past experience.

Results

Our analysis process was as follows (Fig. 1). First, we recorded BOLD signals while participants
generated and evaluated creative alternative uses (AU) and non-creative common characteristics
(CC) ideas to common objects (Fig. 1A). Then using wavelet coherence analysis, we computed
functional connectivity adjacency matrices for each AU and CC trial (Fig. 1B). We then pooled
all condition-specific trials (Generation/Evaluation x AU/CC) and coupled them as a condition-
specific multilayer network. Next, we applied a multilayer community detection approach to
assign each brain region in each layer in each multilayer network to a community (Fig. 1C).
Finally, we computed for each brain region its reconfiguration (the extent to which it changes its
community assignment across layers; Fig. 1D), integration (the extent to which it integrates with
brain regions from other neural systems; Fig. 1E), and recruitment (the extent to which it is
recruited along with the whole neural system it belongs to in synchrony with other whole neural

systems; Fig. 1F). We then averaged these three measures at the whole- and system-brain levels.
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Fig. 1. Illustration of our fMRI analysis pipeline. (A) BOLD signals were recorded while
participants generated and evaluated creative (AU) and non-creative (CC) uses for common
objects. (B) Using wavelet coherence analysis, functional connectivity adjacency matrices were
computed for each AU and CC trial. (C) Trial level adjacency matrices were coupled together as
a condition-specific multilayer (Generation/Evaluation x AU/CC) network. A multilayer network
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community detection approach was applied to assign each brain region in each layer in each
multilayer network to a community. (D) The neural reconfiguration score of each brain region was
computed. Each column represents a trial specific layer in the multilayer network, each square
represents different brain regions, and colors represent different community assignments.
Reconfiguration was computed as change in community assignment across layers. (E) Neural
integration measures how brain regions from a specific neural system are functionally integrated
with brain regions from other neural systems. (F) Neural recruitment captures how brain regions
connected with each other to form a neural system are further connected with other neural systems.
The illustration presents six brain regions (A1-3 and B1-3) related to two different neural systems
(S1 and S2). The color bar represents the level of functional interaction between these brain regions
across the two systems, according to neural integration and recruitment measures.

Behavioral performance analysis. We first analyzed participants’ performance in the
Generation-Evaluation task. In line with standard approaches used in creativity research #°, we
measured participants fluency and obtained creativity scores of their responses to the AU and CC
conditions. Fluency was measured as the number of responses that participants generated in 15
seconds to the objects presented to them in the Generation task (see Methods). Creativity of
participants’ responses was measured as the quantitative semantic distance between an open-ended
response and its prompt object, computed via computational modelling on textual corpora
(SemDis; #6). The higher this score for an open-ended response is, the more original it is (see
Methods). For each participant, their fluency and creativity scores were averaged across all objects
separately for the AU and CC conditions. A paired-samples #-test on participants’ fluency scores
revealed significantly higher fluency in generating CC responses (M = 3.61, SD = .79) than
generating AU responses (M = 2.31, SD = .64), #(41) = 8.96, p < .001, d = .94. A paired-samples
t-test on participants’ creativity scores revealed significantly lower creativity in the CC responses
(M =.92, SD = .03) relative to the AU responses (M = .94, SD =.03), #(41) =-2.81, p = .008, d =
43. Thus, although participants were generating less AU responses during the AU than the CC

task, their AU responses, as expected, were more creative (Fig. 2).


https://doi.org/10.1101/2024.04.15.589621
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.15.589621; this version posted April 17, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Neural Reconfiguration and Creative Thinking

4.00 0.95
3.50 | . ‘ 0.95
0.94
3.00 |
0.94
2.50
> 1 g0.93 I
$2.00 | € 0.93
= [}
(%3]
“1s0 | 0.92
0.92
1.00
0.91
0.50 | 091
0.00 0.90
AU CcC AU CC
Condition Condition

Fig. 2. Behavioral analysis of participants’ responses in the AU and CC task: Left panel—fluency

(number of responses); right panel—creativity (SemDis scores).

Whole brain neural analysis. Next, we examined any possible differences in the whole-brain

neural reconfiguration, integration, and recruitment measures across the four conditions (Fig. 3).
Reconfiguration: A Response Type (AU, CC) x Task (Generation, Evaluation) mixed

model ANOVA was used to examine the effects of condition and time on whole-brain

reconfiguration. This analysis revealed a significant main effect of Response Type, F(1, 41) =

4.29,p <.045, ,> =.095. Post-hoc independent-samples #-test analyses showed that this effect was

driven by AU responses being associated with higher reconfiguration (M = .623, SD = .03) than
CC responses (M = .616, SD =.03), #(41)=2.07, p =.045, d = .32.
In addition, this analysis revealed a marginally significant interaction between Response

Type and Task, F(1, 41) = 4.024, p = .051, ,» = .089. Post-hoc paired-samples #-test analyses

showed that this effect was driven by a significant difference in the reconfiguration measure across
the two conditions. A significantly higher reconfiguration measure was obtained for generating
AU (M =.625, SD = .04) compared to CC (M = .611, SD = .05) responses, #(41) =2.04, p = .047,
d = .045. No significant differences were found in the reconfiguration measure between evaluating
AU (M =.621, SD =.037) and CC (M = .621, SD = .037) responses, #(41)=1.19,p = .24 d = .18.

Integration: A similar mixed ANOVA design was used to examine the effects of condition
and time on whole-brain integration. This analysis revealed a significant main effect of Task, F(1,

41) = 20.16, p < .001, ,» = .33. Post-hoc paired-samples #-test analyses revealed that this effect

was driven by a significant difference in whole-brain integration during the evaluation task

compared to the generation task. This effect was found in both the AU (Generation: M = .34, SD
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= .02, Evaluation: M = .35, SD = .02, {[41] =4.53, p <.001, d = .70), and the CC (Generation: M
.34, SD = .02, Evaluation: M = .36, SD = .02, {[41] = 3.95, p <.001, d = .61) conditions.

Recruitment: No significant main effects of Response Type, F(1,41)=1.61,p= 21, ,» =
.04, Type, F(1,41)=2.39, p= .13, ,» = .06, or interaction, F(1,41)=1.44, p= .24, ,» = .03, were
observed.

Finally, we tested whether the functional connectivity patterns reported above were
specific to the generation tasks we employed in this study, as opposed to a more general response
generation effect independent of task requirements. Accordingly, we permuted, for each measure
separately, the relation of condition label and neural scores for all participants. This process was
reiterated 100 times, and a participant's permuted condition score was computed by averaging
across these 100 iterations. We then conducted similar statistical analyses as reported above on the
permuted conditions scores. No effects remain significant based on these permutation processes

(all p’s >.5), indicating that our significant results are specific to the task conditions.

Comparison to resting-state baseline. To examine the extent of specific task condition
(generating vs. evaluating of creative and non-creative ideas) on whole brain neural dynamics, we
computed similar dynamic network measures (reconfiguration, integration, recruitment) on resting
state (RS) fMRI data collected from the same participants (see Methods and Ref. 3°). In this RS
scan, participants were not presented with any external stimuli and conducted task-free mind
wandering. We compared the whole-brain dynamic network measures of the whole-brain RS data
with each of its corresponding measures for each of the task-based conditions using a paired-
samples z-test (Fig. 3).

Whole-brain reconfiguration was lower for RS (mean = .543, SD = .085) than for the
whole-brain reconfiguration of the four conditions: AU-Gen (mean = .625, SD = .039), #(41) = -
5.64, p <.001, d = .87; AU-Eval (mean = .621, SD = .037), #(41) = -6.20, p < .001, d = .96; CC-
Gen (mean = .611, SD =.046), t#(41) =-4.32, p < .001, d = .67; and CC-Eval (mean = .621, SD =
.037), t(41) =-6.18, p < .001, d = .95.

Whole brain integration was lower for RS (mean = .324, SD = .032) than for the whole-
brain integration of the four conditions: AU-Gen (mean =.338, SD =.022), #(41) =-2.58, p =.007,
d = .40; AU-Eval (mean = .358, SD = .021), #41) = -6.26, p < .001, d = .97; CC-Gen (mean =

10
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341, SD =.021), #(41) =-3.07, p = .002, d = .47; and CC-Eval (mean = .358, SD = .021), #(41) =
-6.30, p <.001,d = .97.

Finally, whole brain recruitment was significantly lower for RS (mean = .534, SD = .049)
than for the whole-brain recruitment of the two generation conditions, and numerically, non-
significantly lower compared to the two evaluation conditions: AU-Gen (mean = .549, SD =.031),
#(41)=-1.93, p-.031,d =.30; AU-Eval (mean = .544, SD = .033), #(41) =-1.05, p=.15,d = .16;
CC-Gen (mean = .544, SD = .032), #(41) = -2.20, p = .017, d = .35; and CC-Eval (mean = .544,
SD =.032), #(41) =-1.06, p = .15, d = .16.

Overall, we find that participants’ RS fMRI is more stable (lower reconfiguration,
integration, and recruitment), relative to the task-based conditions—indicating increased cross-

system synchronization at rest (Fig. 3).

11
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Fig. 3. Whole-brain analysis of reconfiguration, integration, and recruitment across the four task-
based conditions (Generation/Evaluation X AU/CC). In addition, these condition specific neural
measures are compared to a baseline computed from participants’ resting-state fMRI data.
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Examining the task-specificity of the neural integration effect for evaluation. Next, we
examined whether the neural integration effect for evaluation during creative thinking was task-
specific, and not a broad-spectrum effect of generally evaluating whether one’s response is
appropriate for any task. We did so by computing participants’ whole-brain neural measures of
reconfiguration, integration, and recruitment during their evaluation of creative and non-creative
responses generated by other participants in a previous study #7. Specifically, besides evaluating
their own generated ideas, all participants evaluated the responses generated by external
participants to the same 8 AU and 8 CC objects (see Methods and Materials).

These analyses did not reveal any significant differences in the neural measures of
evaluation of other people’s ideas: Whole-brain reconfiguration for AU (mean = .36, SD = .04)
was not significantly different than for CC (mean = .36, SD = .05), #40) =-.64, p = .52,d = .1;
whole-brain integration for AU (mean = .31, SD = .04) was not significantly different than for CC
(mean = .31, SD =.04), #(40) =-.13, p = .90, d = .02; and whole-brain flexibility for AU (mean =
47, SD = .05) was not significantly different than for CC (mean = .46, SD = .05), #(40) =-.25,p
=.81,d=.04.

System level neural analysis. Finally, we conducted a similar analysis of neural reconfiguration,
integration, and recruitment at the neural system level, focusing on the EN, DMN, and SN. To do
so, we used the Yeo ef al. method, which partitions the brain into 17 sub-systems “®4°. Based on
our a priori predictions, we focused on three EN sub-networks: ConA (bilateral frontal and parietal
regions), ConB (bilateral rostral and caudal frontal, inferior parietal and temporal regions), and
ConC (bilateral precuneus); three DMN sub-networks: DefA (bilateral orbital superior frontal
regions, IPL), DefB (bilateral superior frontal, mid-temporal regions), and DefC (bilateral
hippocampus); and two SN sub-networks: SalA (bilateral superior frontal regions, insula), and
SalB (bilateral rostral medial-frontal regions, left insula; see Fig. 4). For each of these subsystems,
we averaged the three neural dynamic measures across all brain regions that comprise these
systems. Finally, similar to the whole-brain analysis, we conducted a Response Type (AU, CC) x
Task (Generation, Evaluation) mixed model ANOVA on the three measures of neural dynamics.
Reconfiguration: A main effect of Response Type was found for the following systems
(Fig. 4): DefA, F(1,41)=4.278, p = .045, ,,» =.094, DefC, F(1, 41) = 7.596, p = .009, ,> = .156,
and SalA, F(1, 41) = 5.712, p = .021, ,» = .123. In all these subsystems, reconfiguration was
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significantly higher for AU than for CC: DefA: #(41) =2.068, p = .04, d = .32; DefC: #(41) = 2.756,
p=.009,d= .43, and SalA: #(41)=2.394, p = .021, d = .37.

In addition, a significant interaction effect between Response Type and Task was found for
the same systems (Fig. 4): DefA, F(1, 41) =4.082, p = .05, ,» = .091, DefC, F(1, 41)=8.179 p
=.007, ,,» = .16, and SalA, F(1, 41) = 5.404, p = .025, ,» = .110. Post-hoc #-tests revealed that this
interaction effect was related to higher reconfiguration in generating AU compared to generating
CC: DefA: #(41)=2.045,p=.047,d = .32; DefC: #(41)=2.81, p = .01, d = .43; and SalA: 1((41) =
2.36,p=.023,d = 36.

Integration: A main effect of Task was found in the following systems (Fig. 4): ConA, F(1,
41) =5.76, p = .021, ,» = .123, ConB, F(1, 41) = 8.03, p = .007, ,» = .164, ConC, F(1, 41) =
10.761, p =.002, ,» =.208, DefA, F(1,41) =10.285, p = .002, ,> = .208, DefB, F(1, 41) = 13.743,
p <.001, ,» = .251, DefC, , F(1, 41) = 1.968, p = .053, ,> = .088, SalA, F(1, 41) = 13.748, p <
.001, ,» = .251, and SalB, F(1, 41) = 21.148, p <.001, ,» = .340. Across all these systems, the
Evaluation task was associated with significantly more integration compared to the Generation
task: ConA: #(41)=-2.4,p=.021,d=.37; ConB: #(41) =-2.83, p =.007, d = .44; ConC: #(41) = -
3.28, p=.002, d = .51; DefA: #(41) = -3.28, p =.002, d = .51; DefB: #(41) =-3.71, p <.001, d =
57; DefC: t(41) =-1.99, p = .05, d = .31; SalA: #(41) =-3.71, p < .001, d = .57; and SalB: #(41) =
-4.60, p <.001, d=.71. In addition, a main effect of Response Type was found for ConC, F(1, 41)
=12.943, p <.001, ,» = .240. Post-hoc r-test analysis revealed that this effect was due to higher
integration for AU than CC, #[41] = 3.60, p <.001, d = .56.

Recruitment: A main effect of Task was found in the following systems (Fig. 4): ConA,
F(1,41) =26.67, p = .001, ,» = .394, ConB, F(1, 41) = 16.223, p = .001, ,> = .284, ConC, F(1,
41)=13.695, p = .001, ,> =.250, DefB, F(1, 41) =8.118, p = .007, ,> = .165, and SalB, F(1, 41)
= 5.046, p = .03, ,» = .110. For the ConA, ConB, and DefB systems, this effect was related to
higher recruitment for Evaluation: ConA: #41) =-5.17, p <.001, d = .80, ConB, #(41) =-4.03, p
<.001, d = .62, and DefB, #(41) = -2.85, p = .01, d = .44. For the ConC and SalB systems, this
effect was related to higher recruitment for Generation: ConC, #41) = 3.70, p <.001, d = .57, and
SalB, #(41) =2.25, p= .03, d = .35.
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Fig. 4. System-level brain analysis of neural reconfiguration (left), integration (center), and
recruitment (right) across the four task-based conditions (Generation/Evaluation x AU/CC) for the
seven neural systems analyzed. Neural systems are defined via the Yeo et al. partition of the brain
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into 17 sub-systems 434°, We focused our analysis on three subnetworks of the EN: ConA (bilateral
frontal and parietal regions), ConB (bilateral rostral and caudal frontal, inferior parietal and
temporal regions), and ConC (bilateral precuneus); three subnetworks of the DMN: DefA (bilateral
orbital superior frontal regions, IPL), DefB (bilateral superior frontal, mid-temporal regions), and
DefC (bilateral hippocampus); and two subnetworks of the SN: SalA (bilateral superiorfrontal
regions, insula), and SalB (bilateral rostral medial-frontal regions, left insula). Each neural system
is illustrated via BrainNet Viewer °.

Discussion

Much recent work on the neuroscience of creativity has identified contributions of large-scale brain
networks and their interactions to creative idea generation %?!, A smaller number of studies has
revealed similar contributions during one’s evaluation of the creativity of others’ ideas 3%3%.
However, the precise neural dynamics that support the generation and evaluation of creative ideas
within the same person remain poorly understood (cf. 32°2). Although past research 721! has
employed functional connectivity measures, these studies have generally relied on the average co-
activation of regions across the brain, which is sub-optimal for precisely capturing critical, time-
sensitive information on the dynamic contributions of particular brain regions during a creative
task. Our study addresses this knowledge gap by means of a novel, within-subjects paradigm that
allowed us to use network neuroscience methods to examine how large-scale networks interact
during creative cognition.

Overall, our results showed that reconfiguration within default mode and salience network
regions characterizes idea generation, but not evaluation, whereas large-scale system integration
is a signature feature of idea evaluation, but not generation. These results are compatible with the
prediction that the brain enters a state of transient instability during creative idea generation,
possibly in support of the pursuit of novelty of the responses—a result further aligned with the
behavioral differences in novelty between the two tasks (AU vs. CC). In contrast, the process of
integration may reflect higher, general, collaboration across brain systems in the service of
assessing both the novelty and the appropriateness of a response in context.

Our findings are an important contribution to the literature on the neural bases of creative
cognition: our network neuroscience measures were able to capture not simply the co-engagement
of different regions across the brain, but—importantly—the changes in connectivity both within
and between systems during the different portions of the creative task and across time. Past work

721 has shown that, during creative idea generation, increased connectivity between EN and DMN,

on average, is associated with performance. However, our approach demonstrates that this
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relationship is significantly more complex. Our tools show that what is critical is how the pattern
of connections across these large-scale systems changes across time in support of creative behavior
(see also Ref. 2). Specifically, our results reveal that for creative generation the interaction
between response type and task for the reconfiguration measure was significant for the default
mode and salience networks only, but not the executive network. This finding is inconsistent with
past interpretations of the involvement of EN in creative cognition 7, and suggests that for creative
generation the flexible engagement of systems related to memory retrieval is potentially more
important than the engagement of systems involved in cognitive control (cf., Refs, %-15:44:47.53.34),

Among the potential limitations of this work is the choice of the control, CC task, which
elicited higher variability in responses and was more complex than other control tasks used in
creativity neuroimaging research (e.g., Ref. ). Participants generated either features or functions
as common characteristics on this task, which led to potentially different assessment processes
during the evaluation task. Yet, the integration measure revealed that the neural systems involved
in evaluation processes are not exclusive to creative cognition, as they were also similarly engaged
for the evaluation of responses in the CC task. Given this limitation, the specificity of the
integration effect during the evaluation stage of creativity we report here needs to be interpreted
with caution and would benefit from further study. However, previous work has shown how people
overweigh novelty when evaluating creative responses over non-creative responses >>>°, Thus,
although we cannot test this possibility directly, it is likely that participants in our study were
focusing on novelty when evaluating the AU responses and on appropriateness when evaluating
the CC trials. Finally, participants’ evaluation of ideas generated by other people—whether
creative or non-creative—did not lead to the same integration effects found when they were
evaluating their own ideas. This difference indicates that our neural integration effect for
evaluation during creative thinking may be task-specific, and not a broad-spectrum effect of
evaluating task performance more generally.

Another limitation is the block—and not event-related—design of our study. Collapsing
condition specific trials together potentially adds a temporal confound to our findings and
minimizes our ability to directly examine the neural dynamics of the creative process. Follow-up
studies should replicate and extend our findings via an event-related design to better study the
buildup of neural dynamics during the creative process, like previous studies examining neural

reconfiguration in other cognitive tasks 34!,
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Overall, our results support the conclusion that creativity entails dynamic, parallel, and
complex processes, involving multiple cognitive systems and their underlying neural mechanisms.
Our study advances our understanding of this underlying complexity, by means of a unique within-
subjects design and by applying dynamic network neuroscience methods. Such a design allows us
to examine the neural bases of the prevalent generation-evaluation model of creative thinking *7,
and the dynamics of how different functional neural systems interact to realize one of the most

complex behaviors that humans evince %721,

Methods

Participants. Participants (N = 50) were recruited from the University of Pennsylvania. Five
participants were excluded because they did not return for the second scan session. Two
participants terminated the study due to nausea during the first scan session or due to becoming
ineligible for MRI scanning after the first scan session. One participant was excluded due to poor
performance on the task. As such, the final sample included 42 participants (26 females, mean age
= 22.5 years [SD = 3.3], mean education = 16.4 years [SD = 2.51]). All participants were right-
handed with normal or corrected-to-normal vision, and reported no history of neurological
disorder, cognitive disability, or use of medication with potential to affect the central nervous
system. Participants were monetarily compensated for their participation in the study. The study

was approved by the University of Pennsylvania’s Institutional Review Board.

Generation-evaluation task. The task consisted of two phases, a week apart, each conducted
inside the scanner while participants underwent fMRI. In the Generation phase, participants were
presented with 64 pictures of common objects . For half of these objects (n = 32), participants
were asked to generate creative responses, namely, alternative uses for the objects (AU task); for
the other half of the objects (n = 32), participants were asked to generate non-creative responses,
namely common characteristics of the objects (CC task). A trial in the Generation phase began
with a short fixation cross (500 ms) followed by a brief presentation of the object with an
instruction above it to complete either the AU or CC task (2500 ms). For each trial, participants
were subsequently required to generate verbally as many responses as they could for each object
(15000 ms) before the next trial began (Fig. 1A). Participant’s responses during the generation

task were audio-recorded, as well as manually typed concurrently by a research assistant.
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A week later, participants came back to the scanner to complete the Evaluation phase. In
the Evaluation phase, participants were presented with the same objects they saw during the
Generation phase. Object task assignment (to the creative or non-creative task) also remained
identical to the Generation phase. During the Evaluation phase, for each participant separately,
each object was paired with three of the responses that specific participant gave for each of the
objects: their first response, their final response, and an intermediate response. These three types
of responses were chosen as to control for potential serial order confounds across participants *°.
A trial in the Evaluation phase began with a short fixation cross (500 ms), followed by a short
presentation of the object with the instruction above it, as presented in the Generation phase (2500
ms). Next, participants were presented with their three responses for that object (12000 ms).
Participants were asked to evaluate these responses, and then verbally declare which of these three
responses was the most novel and appropriate (3000 ms) before the next trial began (Fig. 1A). To
control for any potential confounds arising from generating more verbal responses during the
Generation phase compared to the Evaluation phase, for 50% of the trials, participants were
required to ‘think aloud’ as they evaluated their responses following established procedures %!,

After participants evaluated all 64 objects to which they generated responses (AU and CC)
in the generation phase, they underwent a final, general evaluation task. In this general evaluation
task, participants were presented with an additional 16 objects, 8 with AU responses and 8 with
CC responses. Participants saw the exact same responses for these 16 objects, taken from Ref. 47,
This evaluation task allowed us to directly compare the neural dynamics related to evaluating ones’
own ideas compared to generally evaluating ideas that were generated by someone else. All
presentation order and parameters of this final general evaluation task was identical to the main

evaluation task as described above (including ‘thinking aloud’ for 50% of these additional objects).

fMRI design: In accordance with Chai et al., 3°, trials were organized in a block design and were
semi-randomly assigned into pairs of trials within a block (e.g., two AU trials followed by two CC
trials). Participants completed 4 runs in both scan, each consisting of 4 experimental blocks and 4
fixation blocks, lasting 352 seconds. Experimental blocks lasted for 288 seconds (with 16 trials
per block); fixation blocks lasting 16 seconds were interleaved between the experimental blocks.
In both Generation and Evaluation phases, trials began immediately after the previous one ended.

Condition order was counterbalanced across runs.
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SemDis scoring of participants’ creativity. To quantify participants creativity, we leveraged
computational models of semantic distance. Semantic distance is a proxy of the novelty dimension
of creative thinking—the extent to which an idea is conceptually distant from common ideas—by
computing the similarity between concepts in large text-based corpora of natural language (e.g.,
textbooks). Recently, semantic distance in creativity research was validated by showing reliable
and strongly positive correlations with subjective novelty ratings 6. This approach is based on an
online website (SemDis; semdis.wlu.psu.edu) that computes semantic distance between cue words
and participants’ open-ended responses. It utilizes five semantic models that have shown the
highest correspondence with subjective originality ratings ¢, thereby yielding semantic distance
scores that are more generalizable for creativity measurement 2. For each participant, we
computed the average semantic distance for all five models across all AU and CC trials, denoting
how far (on average) their responses were in an averaged semantic model, from the original

objects.

MRI data acquisition and preprocessing. Magnetic resonance images were obtained using a 3.0
T Siemens Trio MRI scanner (Siemens Medical Systems, Erlangen, Germany) equipped with a
32-channel head coil. T1-weighted structural images of the whole brain were acquired on both
Generation and Evaluation scans using a three-dimensional magnetization-prepared rapid
acquisition gradient echo pulse sequence, repetition time (TR) = 1850 ms; echo time (TE) = 3.91
ms; voxel size = 0.9 mm x 0.9mm x 1 mm; flip angle = 8°; FoV = 240 mm. A field map was also
acquired at each of the scan sessions, TR = 580 ms; TE 1 = 4.12 ms; TE2 = 6.52 ms; flip angle =
45°; voxel size = 3.0 mm x 3.0 mm x 3.0 mm; FoV = 240 mm, to correct geometric distortion
caused by magnetic field inhomogeneity. In all resting-state and task-based scans, T2*-weighted
images sensitive to blood oxygenation level-dependent contrasts were acquired using a slice
accelerated multiband echo planar pulse sequence %4, TR = 500 ms; TE = 25 ms; flip angle =
45°; voxel size = 3.0 mm x 3.0 mm x 3.0 mm; FoV = 192 mm %. The resting-state scan lasted 8
minutes with the exact same parameters. Both task-based scans were composed of 4 runs, each
including 16 trials divided into 4 experimental blocks and 4 fixation blocks.

Preprocessing was performed via FSL % and FreeSurfer ¢’ through a suite of Matlab scripts,
according to Ref. 4. Cortical reconstruction and volumetric segmentation of the anatomical data

were performed with the FreeSurfer image analysis suite . Functional data were de-spiked by
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replacing voxel values greater than 7 RMSE from a 1-degree polynomial fit to the time course of
each voxel with the average value of the adjacent TRs. Motion correction parameters were
computed by registering each volume of each run to the middle volume using a robust registration
algorithm (mri_robust_register; ¢°) and voxel shift maps for EPI distortion correction that were
calculated using PRELUDE 7° and FUGUE 7!. The resulting transformations were combined and
simultaneously applied to the functional images. Boundary-based registration between structural
and functional images was performed with bbregister . Nuisance time series signals were
regressed from the preprocessed data. These nuisance regressors included: a) 24 motion
regressors 7°; b) the five first principal components of non-neural sources of noise, obtained with
FreeSurfer segmentation tools and removed, following the anatomical CompCor method #; and ¢)
an estimate of a local source of noise, estimated by averaging signals derived from the white matter
located within a 15 mm radius of each voxel, following the ANATICOR method 7°. The data were
then high-pass filtered with a cutoff frequency of 0.009 Hz 7.

Functional connectivity network construction. Functional brain networks are constructed using
a gray matter parcellation based on the Lausanne atlas 7778, This brain atlas parcellates the brain
into 234 regions covering the cortex and subcortical regions. In line with previous studies 4%:41:79-80,
functional connectivity between these brain regions was computed based on continuous wavelet
coherence, which identified areas in time frequency space where two time series co-varied in the
frequency band 0.06-0.12 Hz 8!. This frequency band has previously been used to measure
functional associations between low-frequency components of the fMRI signal and task-related

functional connectivity #4267

. Wavelet coherence functional connectivity matrices were
computed using the continuous cross wavelet transform developed by Grinsted, Moore, and
Jevrejeva 8. We apply a continuous—and not discrete—wavelet transform (CWT) to provide
additional sensitivity to time-varying dynamics across our four conditions. The CWT produces a
connectivity value between each pair of brain regions for each TR, sampled across the frequency
band 0.06-0.12 Hz ¥!. These connectivity values were averaged across the frequency range to
generate an averaged time-varying connectivity value between each region pair. This procedure

resulted in 234x234 weighted adjacency matrices for each TR, with coherence values bounded

between 0 and 1 for each functional connection or network edge.
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Multilayer network construction. We constructed a dynamical functional brain network that
represented neural dynamics during generation and evaluation of creative and non-creative ideas.
For each participant and each run, for each task separately (Generation, Evaluation), we averaged
all TR-based CWT adjacency matrices of a trial, to generate averaged AU- and CC-trial level CWT
functional connectivity matrices. Next, we pooled together all AU- and CC-trial CWT functional
connectivity matrices by concatenating all relevant trials one after the other, thus, only partially
preserving the temporal sequence of the BOLD signal. Finally, we coupled these Response Type
(AU, CC) x Task (Generation, Evaluation) specific functional connectivity matrices in a multilayer
network 347 In these AU/CC x Generation/Evaluation multilayered networks, each layer
represents a different trial, and each brain region is connected to itself in adjacent layers by an
identity link. Although layer/trial durations are short (18 seconds for both Generation and
Evaluation trial), conducting such a multilayer network analysis in short time windows has been

shown to highlight individual differences *.

Dynamic community detection. We used dynamic community detection techniques #%2 to
extract groups of brain regions that are functionally connected with one another, and to
characterize how they reconfigure, integrate, and are recruited over conditions *>7°, This was
achieved by applying a data-driven community detection algorithm on the functional connectivity
adjacency matrices 3%, Intuitively, community detection techniques aim to categorize network
nodes into communities or clusters. To do so, we maximize a quality function called the multilayer
modularity Q, with the associated maximum of Q called the maximum modularity. The modularity
quality function describes the partitioning of a network's nodes into communities via a comparison
to a statistical null model *. High values of Q indicate that the nodes of the network can be
partitioned sensibly into modules with similar BOLD activity. A generalization of the modularity
quality function for multilayer networks can be written as:

1
Q= ZZ{(AUL —V1Pij1) 81 + 8ijwjiy Y(8i * 85)

ijlr
where / is the number of layers in the network, u is the total edge weights in the network, 4;;; is

an adjacency matrix of a specific layer, P;j; is the corresponding null model of the layer *, y; is a
structural resolution parameter that defines the weights of intralayer connections, §;; denotes the

community assignment of node i in layer /, 6 denotes the community assignment of node j in
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layer 7, and wj;- denotes the connection strength between nodes across two layers (/ and r).

Importantly, changing the range of y (number of communities) and w (connection strength across
layers) can affect the number and temporal dynamics of the detected communities *°. However, in
order to not bias results toward a specific number of communities or a specific scale of temporal
dynamics in community structure, we set y and w equal to one 3%,

We optimized multilayer modularity using a generalization of a Louvain-like locally
greedy algorithm 8748 to yield a partition of regions into communities for each layer of each of the
four multilayered networks. According to recent methodological recommendations 82, the Louvain
algorithm was realized with the ‘moverandw’ as its randomization method. This randomization
method leads to more reliable results of the Louvain community detection algorithm #2. Since the
community detection algorithm is non-deterministic ®°, we optimized the multilayer modularity
quality function 100 times for each participant for each of the multilayered network 3°. Finally, to
resolve the variability across the 100 iterations of the community assignment partitions, we
conduct a consensus analysis to identify the community assignment partition that summarizes the
commonalities across the entire distribution of partitions for each one of the 32 layers separately
9091 The results of this process are data-driven consensus-based identified communities for each
of the 32 layers. Participants’ resting-state data was similarly analyzed by dividing the resting-

state time series into 32 equal parts of 15 seconds.

Neural dynamic measures. Across both task-based scans and resting-state scan, we computed for
each participant and each condition three neural dynamic measures: Flexibility reconfiguration,
integration, and recruitment. The flexibility reconfiguration of a node is defined as the probability
that a node changes its community assignment across layers of the multilayer network 7. Since
the slices in the multilayer networks convey different trials (AU or CC), we treat these networks
as categorical, where any such community assignment change can occur across any pair of possible
layers in the multilayer network. High values of flexibility indicate greater network
reconfiguration.

The integration and recruitment of a node are calculated from a module allegiance matrix,
which defines the percentage of layers in the multilayer network that node i and node j co-occur
in the same community 3’. To do so, each brain region was assigned to a resting-state based neural

system, as defined by the Yeo et al. partition of the brain into 17 sub-systems **4° (see below).
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The integration of a node is defined as the average probability that brain region a from brain
system b will be assigned to the same community with other brain regions from other brain
systems. High values of integration indicate greater cross-system interaction. The recruitment of
a node is defined as the average probability that brain region ¢ from brain system d is assigned to
the same community with other brain regions from that brain system. High values of recruitment
indicate greater brain system cohesiveness. Consistent with previous studies #-7*%2, we defined the
reconfiguration, integration, and recruitment of the network over the entire brain as the mean score
over all nodes in the network (N = 234). We then averaged these three neural dynamic measures
across all participants, runs, and optimizations, to obtain representative measures for the entire

group for each of the conditions (Generation/Evaluation x AU/CC).

Resting state multilayer analysis. The resting-state multilayer network construction was
conducted similarly to the task-based multilayer networks. The entire RS time-series was
segmented into 32 equal time length parts, each of 18 seconds. Such RS time windows match the
time length of each of the task-based layers in the task-based multilayer networks. To better equate
the RS multilayer analysis to the task-based multilayer analysis (where trials were concatenated
together), and to minimize the confound of time, we shuffled the order of the RS layers before
conducting the multilayer analysis. A similar CWT approach was applied to arrive at a matched
RS multilayer network for every participant. We reiterated the shuffling procedure of the RS layers
and subsequent RS multilayer analysis 100 times. Whole-brain RS reconfiguration, integration,
and recruitment measures were computed for each iteration. Finally, we computed the mean score

for each measure over the 100 iterations.

Brain network system level analysis. Given our predictions regarding the roles of DMN, EN,

and SN in creativity %!

, we also computed these three measures for specific brain networks. This
goal is achieved via the Yeo ef al. partition of the brain into 17 sub-systems **#°, Thus, we focus
our analysis, according to this partition, on the three subnetworks of the EN: ConA (bilateral
frontal and parietal regions), ConB (bilateral rostral and caudal frontal, inferior parietal and
temporal regions), and ConC (bilateral precuneus); three subnetworks of the DMN: DefA (bilateral

orbital superior frontal regions, IPL), DefB (bilateral superior frontal, mid-temporal regions), and
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DefC (bilateral hippocampus); and two subnetworks of the SN: SalA (bilateral superiorfrontal

regions, insula), and SalB (bilateral rostral medial-frontal regions, left insula).

Procedure. The study consisted of two imaging sessions, a week apart. Prior to the first session,
participants were screened for their ability to undergo fMRI scans, signed a consent form and were
presented with the instructions for the Generation task that they were to complete during the first
imaging session. During the first imaging session, each participant was presented again with the
instructions of the Generation task and then placed in the MRI scanner. Padding around the head
was used to minimize movement. Next, a high-resolution anatomical scan (2 minutes) and a
resting-state (8 minutes) scan were collected. Following these scans, the participants completed
the Generation task (23.46 minutes; as described above). The task began with a short practice,
using objects that were not presented during the main task. Participants gave responses via an MRI
compatible microphone (Optoacoustics, Inc. ®) and their responses were recorded and typed by
the experimenter. After the scanning session, participants were taken out of the scanner and
debriefed. During the second imaging session, the participant was presented with the instructions
for the Evaluation task. Next the participant was placed in the MRI scanner with padding around
the head to minimize movement. The scanning session began with a high-resolution anatomical
scan followed by the Evaluation task (23.46 minutes; as described above). Finally, participants
underwent a diffusion spectrography imaging scan (19 minutes, not analyzed in the current study).

After the scanning session, participants were taken out of the scanner and debriefed.
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