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Abstract 
What are the neural dynamics that drive creative thinking? Recent studies have provided much 
insight into the neural mechanisms of creative thought. Specifically, the interaction between the 
executive control, default mode, and salience brain networks has been shown to be an important 
marker of individual differences in creative ability. However, how these different brain systems 
might be recruited dynamically during the two key components of the creative process—
generation and evaluation of ideas—remains far from understood. In the current study we applied 
state-of-the-art network neuroscience methodologies to examine the neural dynamics related to the 
generation and evaluation of creative and non-creative ideas using a novel within-subjects design. 
Participants completed two functional magnetic resonance imaging sessions, taking place a week 
apart. In the first imaging session, participants generated either creative (alternative uses) or non-
creative (common characteristics) responses to common objects. In the second imaging session, 
participants evaluated their own creative and non-creative responses to the same objects. Network 
neuroscience methods were applied to examine and directly compare reconfiguration, integration, 
and recruitment of brain networks during these four conditions. We found that generating creative 
ideas led to significantly higher network reconfiguration than generating non-creative ideas, 
whereas evaluating creative and non-creative ideas led to similar levels of network integration. 
Furthermore, we found that these differences were attributable to different dynamic patterns of 
neural activity across the executive control, default mode, and salience networks. This study is the 
first to show within-subject differences in neural dynamics related to generating and evaluating 
creative and non-creative ideas. 
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Introduction 

Creativity involves multiple cognitive processes that allow for the generation of ideas that are both 

novel and useful 1-4. Recent research on the neural mechanisms of creative thinking has focused 

on how large-scale brain network connections may account for individual differences in creativity 
5,6. The generation of creative ideas has been proposed to result from complex interactions between 

the executive and default mode networks, engagement of which appears to be mediated by activity 

within regions of the salience network during creative thinking 7-12. Indeed, increased resting-state 

functional brain connectivity between the inferior frontal cortex and key areas within the default 

mode network (DMN) has been associated with higher creative performance 7,13. Moreover, 

temporal connectivity between the default and salience (SN) networks has been shown to 

characterize performance earlier during a creative generation task, whereas connectivity between 

the default and executive (EN) networks characterizes performance later in the task 7.  

Consistent with these findings, increased activity of DMN regions and the ventral anterior 

cingulate cortex (vACC) has been linked to the generation of original ideas; further, increased 

connectivity between the vACC and occipital-temporal areas was observed in participants who 

generated more original ideas 14. Studies have also consistently implicated the role of the 

hippocampus in creativity, which builds on prior knowledge that can then be recombined and 

utilized to create new and original ideas 15-19. Further, a recent study applied dynamic causal 

modeling to fMRI data and showed that prefrontal regions within the EN unidirectionally control 

posterior temporal and parietal regions of the DMN during divergent thinking 20. These results 

suggest that dynamic fluctuations of neural activity during creativity tasks within regions 

implicated in focused internal attention, cognitive control, and spontaneous thought may account 

for much individual variation in creative ability 21-28.  

 Despite the examination of such brain network interactions, past studies have tended to 

operationalize creativity through tasks that prioritize idea generation. However, the creative 

process has long been discussed as comprising alternating generative and evaluative components 
29,30, with short- and long-term iterations between these phases being thought to occur many times 

during the performance of creativity tasks 8,31. Yet, the dynamics of these two phases—for 

example, whether they are serial or parallel—and the neural mechanisms that support such 

dynamics remain unclear. 
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Only a handful of studies have explored the neural bases of this twofold process of 

generating creative ideas while assessing their usefulness during creative ideation. Notably, 

Ellamil and colleagues 32 alternated participants’ generative and evaluative processes during a 

drawing task under fMRI to show that creative generation preferentially engaged DMN regions, 

whereas creative idea evaluation engaged both DMN and EN regions, as well as regions within 

the salience network. In line with these findings, reductions in the activity of left temporoparietal 

regions during participants’ evaluation of others’ creative ideas predicted higher creativity ratings, 

highlighting the importance of this region in evaluating—but also possibly inhibiting—creativity 
33.  

 Although this prior work points to interactions between the DMN and EN under a twofold 

model of creative cognition, the dynamic recruitment of different brain regions within these 

systems during the generation and evaluation of creative ideas, as well as any salience network 

mediation in these processes, remains poorly understood. A recent study leveraging temporal 

variability in cortical and cerebellar resting-state functional connectivity revealed that the dynamic 

reconfiguration of DMN and EN networks was associated with higher verbal creativity in a large 

sample of participants 27. Additionally, it has recently been shown that higher-creative participants 

show increased global and regional neural reconfiguration within EN and DMN regions during a 

creative relative to a non-creative task 34. Nevertheless, no prior study has examined the dynamic 

reconfiguration of large-scale brain networks during the generation and evaluation of one’s own 

creative ideas.  

Here, we used network neuroscience approaches to examine the neural dynamics related 

to generation and evaluation of creative and non-creative ideas in a novel within-subjects design. 

We focused on three network neuroscience measures that capture such neural dynamics: Neural 

reconfiguration, recruitment, and integration 35-40. Neural reconfiguration quantifies how brain 

regions dynamically reconfigure their functional community across time and has been linked to 

neural dynamics in cognitive tasks such as learning, working memory, and linguistic processing 
34-36,41. Neural integration reflects how brain regions from a specific neural system are functionally 

integrated with brain regions from other neural systems. Neural recruitment captures how brain 

regions connected with each other to form a neural system are further connected with other neural 

systems. These measures have been linked to variability in performance in various cognitive tasks, 
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and allow investigators to examine how neural systems are integrated and/or recruited for specific 

cognitive tasks 37. 

Although these measures have not been extensively used in the creativity literature (except 

for Ref. 34), they hold potential for understanding the complex processes implicated in creative 

thinking because they are not simply averaging functional connectivity across the brain. Rather, 

they are more sensitive to synchronous activity fluctuations across networks of regions, which may 

provide a better glimpse of the timing parameters and neural fluctuations of regional involvement 

during the creative process. Importantly, they uniquely allow us to test recent network 

neuroscience theories about the complexity of creative thinking, by going beyond correlating static 

functional connectivity patterns of activation with behavioral measures 6,7,21.  Together, these three 

measures provide a quantitative approach toward examining the DMN, EN, and SN’s complex 

dynamical contributions to creative thinking.  

Participants completed two functional magnetic resonance imaging sessions, taking place 

a week apart. In the first imaging session, participants generated either creative (alternative uses; 

AU) or non-creative (common characteristics; CC) responses to pictures of common objects. In 

the second imaging session, they evaluated their own creative and non-creative responses to the 

same objects. In addition—to account for possible differential processing in evaluating one’s own 

versus others’ ideas—participants evaluated a sample of creative and non-creative responses 

generated to different objects by an independent sample of participants. 

Following pre-processing of fMRI data and network construction 40,42, we composed a 

dynamical functional brain network that represents neural reconfiguration, recruitment, and 

integration during the generation and evaluation of creative and non-creative ideas. We used 

dynamic community detection techniques 43 to extract groups of brain regions that were 

functionally connected to one another. We then characterized how these networks reconfigured, 

and how they were recruited and integrated over task conditions 35-37. Finally, to evaluate the 

validity of our findings, we compared these network dynamics to similar measures computed from 

participants’ resting-state fMRI data.  

If creativity relies on the dynamic interactions among DMN and EN regions presumed to 

underly self-generated and goal-directed thought, we predicted that neural reconfiguration would 

be more pronounced during the generation—but not the evaluation—of creative ideas relative to 

the generation of common characteristics for objects. Prior work has suggested that areas with high 
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reconfiguration become more significant for a behavior, because they participate in more neural 

processes across the brain 36.  Higher reconfiguration would reflect the tendency of DMN and EN 

regions to temporarily change their community assignments and become transiently unstable to 

support maximum flexibility in creative idea generation 36. If creative thinking involves dynamic 

changes in the connectivity patterns among the DMN, EN, and SN during the creative process, we 

predicted higher integration of different neural systems across the creative process 7: higher 

integration of DMN regions with the SN in the generation stage, and higher DMN and EN 

integration in the evaluation stage of creative idea generation. Finally, if creative thinking involves 

recruiting cognitive systems at different stages of the creative process, such as cognitive control 

for idea evaluation and inhibition 9,44, we predicted higher recruitment specific to the EN during 

evaluation, and not generation, of creative ideas. Based on past research 37,40, we anticipated that 

recruitment and integration measures would be more pronounced during the evaluation relative to 

the generation of creative ideas due to the prioritization of comparisons between one’s responses 

and the task goals in the context of one’s past experience. 

 

Results 

Our analysis process was as follows (Fig. 1). First, we recorded BOLD signals while participants 

generated and evaluated creative alternative uses (AU) and non-creative common characteristics 

(CC) ideas to common objects (Fig. 1A). Then using wavelet coherence analysis, we computed 

functional connectivity adjacency matrices for each AU and CC trial (Fig. 1B). We then pooled 

all condition-specific trials (Generation/Evaluation × AU/CC) and coupled them as a condition-

specific multilayer network. Next, we applied a multilayer community detection approach to 

assign each brain region in each layer in each multilayer network to a community (Fig. 1C). 

Finally, we computed for each brain region its reconfiguration (the extent to which it changes its 

community assignment across layers; Fig. 1D), integration (the extent to which it integrates with 

brain regions from other neural systems; Fig. 1E), and recruitment (the extent to which it is 

recruited along with the whole neural system it belongs to in synchrony with other whole neural 

systems; Fig. 1F). We then averaged these three measures at the whole- and system-brain levels.  
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Fig. 1. Illustration of our fMRI analysis pipeline. (A) BOLD signals were recorded while 
participants generated and evaluated creative (AU) and non-creative (CC) uses for common 
objects. (B) Using wavelet coherence analysis, functional connectivity adjacency matrices were 
computed for each AU and CC trial. (C) Trial level adjacency matrices were coupled together as 
a condition-specific multilayer (Generation/Evaluation × AU/CC) network. A multilayer network 
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community detection approach was applied to assign each brain region in each layer in each 
multilayer network to a community. (D) The neural reconfiguration score of each brain region was 
computed. Each column represents a trial specific layer in the multilayer network, each square 
represents different brain regions, and colors represent different community assignments. 
Reconfiguration was computed as change in community assignment across layers. (E) Neural 
integration measures how brain regions from a specific neural system are functionally integrated 
with brain regions from other neural systems. (F) Neural recruitment captures how brain regions 
connected with each other to form a neural system are further connected with other neural systems. 
The illustration presents six brain regions (A1-3 and B1-3) related to two different neural systems 
(S1 and S2). The color bar represents the level of functional interaction between these brain regions 
across the two systems, according to neural integration and recruitment measures. 
 
Behavioral performance analysis. We first analyzed participants’ performance in the 

Generation-Evaluation task. In line with standard approaches used in creativity research 45, we 

measured participants fluency and obtained creativity scores of their responses to the AU and CC 

conditions. Fluency was measured as the number of responses that participants generated in 15 

seconds to the objects presented to them in the Generation task (see Methods). Creativity of 

participants’ responses was measured as the quantitative semantic distance between an open-ended 

response and its prompt object, computed via computational modelling on textual corpora 

(SemDis; 46). The higher this score for an open-ended response is, the more original it is (see 

Methods). For each participant, their fluency and creativity scores were averaged across all objects 

separately for the AU and CC conditions. A paired-samples t-test on participants’ fluency scores 

revealed significantly higher fluency in generating CC responses (M = 3.61, SD = .79) than 

generating AU responses (M = 2.31, SD = .64), t(41) = 8.96, p < .001, d = .94. A paired-samples 

t-test on participants’ creativity scores revealed significantly lower creativity in the CC responses 

(M = .92, SD = .03) relative to the AU responses (M = .94, SD = .03), t(41) = -2.81, p = .008, d = 

.43. Thus, although participants were generating less AU responses during the AU than the CC 

task, their AU responses, as expected, were more creative (Fig. 2). 
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Fig. 2. Behavioral analysis of participants’ responses in the AU and CC task: Left panel—fluency 
(number of responses); right panel—creativity (SemDis scores). 
 
Whole brain neural analysis. Next, we examined any possible differences in the whole-brain 

neural reconfiguration, integration, and recruitment measures across the four conditions (Fig. 3). 

Reconfiguration: A Response Type (AU, CC) × Task (Generation, Evaluation) mixed 

model ANOVA was used to examine the effects of condition and time on whole-brain 

reconfiguration. This analysis revealed a significant main effect of Response Type, F(1, 41) = 

4.29, p < .045,  = .095. Post-hoc independent-samples t-test analyses showed that this effect was 

driven by AU responses being associated with higher reconfiguration (M = .623, SD = .03) than 

CC responses (M = .616, SD = .03), t(41) = 2.07, p = .045, d = .32. 

In addition, this analysis revealed a marginally significant interaction between Response 

Type and Task, F(1, 41) = 4.024, p = .051,  = .089. Post-hoc paired-samples t-test analyses 

showed that this effect was driven by a significant difference in the reconfiguration measure across 

the two conditions. A significantly higher reconfiguration measure was obtained for generating 

AU (M = .625, SD = .04) compared to CC (M = .611, SD = .05) responses, t(41) = 2.04, p = .047, 

d = .045. No significant differences were found in the reconfiguration measure between evaluating 

AU (M = .621, SD = .037) and CC (M = .621, SD = .037) responses, t(41) = 1.19, p = .24 d = .18. 

Integration: A similar mixed ANOVA design was used to examine the effects of condition 

and time on whole-brain integration. This analysis revealed a significant main effect of Task, F(1, 

41) = 20.16, p < .001,  = .33. Post-hoc paired-samples t-test analyses revealed that this effect 

was driven by a significant difference in whole-brain integration during the evaluation task 

compared to the generation task. This effect was found  in both the AU (Generation: M = .34, SD 

2h

2h

2h
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= .02, Evaluation: M = .35, SD = .02, t[41] = 4.53, p < .001, d = .70), and the CC (Generation: M 

= .34, SD = .02, Evaluation: M = .36, SD = .02, t[41] = 3.95, p < .001, d = .61) conditions. 

Recruitment: No significant main effects of Response Type, F(1, 41) = 1.61, p = .21,  = 

.04, Type, F(1, 41) = 2.39, p = .13,  = .06, or interaction, F(1, 41) = 1.44, p = .24,  = .03, were 

observed.  

Finally, we tested whether the functional connectivity patterns reported above were 

specific to the generation tasks we employed in this study, as opposed to a more general response 

generation effect independent of task requirements. Accordingly, we permuted, for each measure 

separately, the relation of condition label and neural scores for all participants. This process was 

reiterated 100 times, and a participant's permuted condition score was computed by averaging 

across these 100 iterations. We then conducted similar statistical analyses as reported above on the 

permuted conditions scores. No effects remain significant based on these permutation processes 

(all p’s > .5), indicating that our significant results are specific to the task conditions.  

 

Comparison to resting-state baseline. To examine the extent of specific task condition 

(generating vs. evaluating of creative and non-creative ideas) on whole brain neural dynamics, we 

computed similar dynamic network measures (reconfiguration, integration, recruitment) on resting 

state (RS) fMRI data collected from the same participants (see Methods and Ref. 36). In this RS 

scan, participants were not presented with any external stimuli and conducted task-free mind 

wandering. We compared the whole-brain dynamic network measures of the whole-brain RS data 

with each of its corresponding measures for each of the task-based conditions using a paired-

samples t-test (Fig. 3). 

Whole-brain reconfiguration was lower for RS (mean = .543, SD = .085) than for the 

whole-brain reconfiguration of the four conditions: AU-Gen (mean = .625, SD = .039), t(41) = -

5.64, p < .001, d = .87; AU-Eval (mean = .621, SD = .037), t(41) = -6.20, p < .001, d = .96; CC-

Gen (mean = .611, SD = .046), t(41) = -4.32, p < .001, d = .67; and CC-Eval (mean = .621, SD = 

.037), t(41) = -6.18, p < .001, d = .95.  

Whole brain integration was lower for RS (mean = .324, SD = .032) than for the whole-

brain integration of the four conditions: AU-Gen (mean = .338, SD = .022), t(41) = -2.58, p = .007, 

d = .40; AU-Eval (mean = .358, SD = .021), t(41) = -6.26, p < .001, d = .97; CC-Gen (mean = 

2h

2h 2h

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2024. ; https://doi.org/10.1101/2024.04.15.589621doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.15.589621
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neural Reconfiguration and Creative Thinking 

 11 

.341, SD = .021), t(41) = -3.07, p = .002, d = .47; and CC-Eval (mean = .358, SD = .021), t(41) = 

-6.30, p < .001, d = .97.  

Finally, whole brain recruitment was significantly lower for RS (mean = .534, SD = .049) 

than for the whole-brain recruitment of the two generation conditions, and numerically, non-

significantly lower compared to the two evaluation conditions: AU-Gen (mean = .549, SD = .031), 

t(41) = -1.93, p - .031, d = .30; AU-Eval (mean = .544, SD = .033), t(41) = -1.05, p = .15, d = .16; 

CC-Gen (mean = .544, SD = .032), t(41) = -2.20, p = .017, d = .35; and CC-Eval (mean = .544, 

SD = .032), t(41) = -1.06, p = .15, d = .16. 

Overall, we find that participants’ RS fMRI is more stable (lower reconfiguration, 

integration, and recruitment), relative to the task-based conditions—indicating increased cross-

system synchronization at rest (Fig. 3). 
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Fig. 3. Whole-brain analysis of reconfiguration, integration, and recruitment across the four task-
based conditions (Generation/Evaluation × AU/CC). In addition, these condition specific neural 
measures are compared to a baseline computed from participants’ resting-state fMRI data. 
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Examining the task-specificity of the neural integration effect for evaluation. Next, we 

examined whether the neural integration effect for evaluation during creative thinking was task-

specific, and not a broad-spectrum effect of generally evaluating whether one’s response is 

appropriate for any task. We did so by computing participants’ whole-brain neural measures of 

reconfiguration, integration, and recruitment during their evaluation of creative and non-creative 

responses generated by other participants in a previous study 47. Specifically, besides evaluating 

their own generated ideas, all participants evaluated the responses generated by external 

participants to the same 8 AU and 8 CC objects (see Methods and Materials).  

These analyses did not reveal any significant differences in the neural measures of 

evaluation of other people’s ideas: Whole-brain reconfiguration for AU (mean = .36, SD = .04) 

was not significantly different than for CC (mean = .36, SD = .05), t(40) = -.64, p = .52, d = .1; 

whole-brain integration for AU (mean = .31, SD = .04) was not significantly different than for CC 

(mean = .31, SD = .04), t(40) = -.13, p = .90, d = .02; and whole-brain flexibility for AU (mean = 

.47, SD = .05) was not significantly different than for CC (mean = .46, SD = .05), t(40) = -.25, p 

= .81, d = .04. 

 
System level neural analysis. Finally, we conducted a similar analysis of neural reconfiguration, 

integration, and recruitment at the neural system level, focusing on the EN, DMN, and SN. To do 

so, we used the Yeo et al. method, which partitions the brain into 17 sub-systems 48,49. Based on 

our a priori predictions, we focused on three EN sub-networks: ConA (bilateral frontal and parietal 

regions), ConB (bilateral rostral and caudal frontal, inferior parietal and temporal regions), and 

ConC (bilateral precuneus); three DMN sub-networks: DefA (bilateral orbital superior frontal 

regions, IPL), DefB (bilateral superior frontal, mid-temporal regions), and DefC (bilateral 

hippocampus); and two SN sub-networks: SalA (bilateral superior frontal regions, insula), and 

SalB (bilateral rostral medial-frontal regions, left insula; see Fig. 4). For each of these subsystems, 

we averaged the three neural dynamic measures across all brain regions that comprise these 

systems. Finally, similar to the whole-brain analysis, we conducted a Response Type (AU, CC) × 

Task (Generation, Evaluation) mixed model ANOVA on the three measures of neural dynamics. 

Reconfiguration: A main effect of Response Type was found for the following systems 

(Fig. 4): DefA, F(1, 41) = 4.278, p = .045,  = .094, DefC, F(1, 41) = 7.596, p = .009,  = .156, 

and SalA, F(1, 41) = 5.712, p = .021,  = .123. In all these subsystems, reconfiguration was 

2h 2h

2h
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significantly higher for AU than for CC: DefA: t(41) = 2.068, p = .04, d = .32; DefC: t(41) = 2.756, 

p = .009, d = .43, and SalA: t(41) = 2.394, p = .021, d = .37. 

In addition, a significant interaction effect between Response Type and Task was found for 

the same systems (Fig. 4): DefA,  F(1, 41) = 4.082, p = .05,  = .091, DefC, F(1, 41) = 8.179  p 

= .007,  = .16, and SalA, F(1, 41) = 5.404, p = .025,  = .110. Post-hoc t-tests revealed that this 

interaction effect was related to higher reconfiguration in generating AU compared to generating 

CC: DefA: t(41) = 2.045, p = .047, d = .32; DefC: t(41) = 2.81, p = .01, d = .43; and SalA: t(41) = 

2.36, p = .023, d = .36. 

Integration: A main effect of Task was found in the following systems (Fig. 4): ConA, F(1, 

41) = 5.76, p = .021,  = .123, ConB, F(1, 41) = 8.03, p = .007,  = .164, ConC, F(1, 41) = 

10.761, p = .002,  = .208, DefA, F(1, 41) = 10.285, p = .002,  = .208, DefB, F(1, 41) = 13.743, 

p < .001,  = .251, DefC, , F(1, 41) = 1.968, p = .053,  = .088, SalA, F(1, 41) = 13.748, p < 

.001,  = .251, and SalB, F(1, 41) = 21.148, p < .001,  = .340. Across all these systems, the 

Evaluation task was associated with significantly more integration compared to the Generation 

task: ConA: t(41) = -2.4, p = .021, d = .37; ConB: t(41) = -2.83, p = .007, d = .44; ConC: t(41) = -

3.28, p = .002, d = .51; DefA: t(41) = -3.28, p = .002, d = .51; DefB: t(41) = -3.71, p < .001, d = 

.57; DefC: t(41) = -1.99, p = .05, d = .31; SalA: t(41) = -3.71, p < .001, d = .57; and SalB: t(41) = 

-4.60, p < .001, d = .71. In addition, a main effect of Response Type was found for ConC, F(1, 41) 

= 12.943, p < .001,  = .240. Post-hoc t-test analysis revealed that this effect was due to higher 

integration for AU than CC, t[41] = 3.60, p < .001, d = .56. 

Recruitment: A main effect of Task was found in the following systems (Fig. 4): ConA, 

F(1, 41) = 26.67, p = .001,  = .394, ConB, F(1, 41) = 16.223, p = .001,  = .284, ConC, F(1, 

41) = 13.695, p = .001,  = .250, DefB, F(1, 41) = 8.118, p = .007,  = .165, and SalB, F(1, 41) 

= 5.046, p = .03,  = .110. For the ConA, ConB, and DefB systems, this effect was related to 

higher recruitment for Evaluation: ConA: t(41) = -5.17, p < .001, d = .80, ConB, t(41) = -4.03, p 

< .001, d = .62, and DefB, t(41) = -2.85, p = .01, d = .44. For the ConC and SalB systems, this 

effect was related to higher recruitment for Generation: ConC, t(41) = 3.70, p < .001, d = .57, and 

SalB, t(41) = 2.25, p = .03, d = .35. 
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Fig. 4. System-level brain analysis of neural reconfiguration (left), integration (center), and 
recruitment (right) across the four task-based conditions (Generation/Evaluation × AU/CC) for the 
seven neural systems analyzed. Neural systems are defined via the Yeo et al. partition of the brain 
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into 17 sub-systems 48,49. We focused our analysis on three subnetworks of the EN: ConA (bilateral 
frontal and parietal regions), ConB (bilateral rostral and caudal frontal, inferior parietal and 
temporal regions), and ConC (bilateral precuneus); three subnetworks of the DMN: DefA (bilateral 
orbital superior frontal regions, IPL), DefB (bilateral superior frontal, mid-temporal regions), and 
DefC (bilateral hippocampus); and two subnetworks of the SN: SalA (bilateral superiorfrontal 
regions, insula), and SalB (bilateral rostral medial-frontal regions, left insula). Each neural system 
is illustrated via BrainNet Viewer 50. 
 
Discussion 

Much recent work on the neuroscience of creativity has identified contributions of large-scale brain 

networks and their interactions to creative idea generation 6,28,51. A smaller number of studies has 

revealed similar contributions during one’s evaluation of the creativity of others’ ideas 32,33. 

However, the precise neural dynamics that support the generation and evaluation of creative ideas 

within the same person remain poorly understood (cf. 32,52). Although past research 6,7,21,51 has 

employed functional connectivity measures, these studies have generally relied on the average co-

activation of regions across the brain, which is sub-optimal for precisely capturing critical, time-

sensitive information on the dynamic contributions of particular brain regions during a creative 

task. Our study addresses this knowledge gap by means of a novel, within-subjects paradigm that 

allowed us to use network neuroscience methods to examine how large-scale networks interact 

during creative cognition. 

Overall, our results showed that reconfiguration within default mode and salience network 

regions characterizes idea generation, but not evaluation, whereas large-scale system integration 

is a signature feature of idea evaluation, but not generation. These results are compatible with the 

prediction that the brain enters a state of transient instability during creative idea generation, 

possibly in support of the pursuit of novelty of the responses—a result further aligned with the 

behavioral differences in novelty between the two tasks (AU vs. CC). In contrast, the process of 

integration may reflect higher, general, collaboration across brain systems in the service of 

assessing both the novelty and the appropriateness of a response in context.  

 Our findings are an important contribution to the literature on the neural bases of creative 

cognition: our network neuroscience measures were able to capture not simply the co-engagement 

of different regions across the brain, but—importantly—the changes in connectivity both within 

and between systems during the different portions of the creative task and across time. Past work 
7,21 has shown that, during creative idea generation, increased connectivity between EN and DMN, 

on average, is associated with performance. However, our approach demonstrates that this 
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relationship is significantly more complex. Our tools show that what is critical is how the pattern 

of connections across these large-scale systems changes across time in support of creative behavior 

(see also Ref. 52). Specifically, our results reveal that for creative generation the interaction 

between response type and task for the reconfiguration measure was significant for the default 

mode and salience networks only, but not the executive network. This finding is inconsistent with 

past interpretations of the involvement of EN in creative cognition 7, and suggests that for creative 

generation the flexible engagement of systems related to memory retrieval is potentially more 

important than the engagement of systems involved in cognitive control (cf., Refs. 9,15,44,47,53,54). 

Among the potential limitations of this work is the choice of the control, CC task, which 

elicited higher variability in responses and was more complex than other control tasks used in 

creativity neuroimaging research (e.g., Ref. 21). Participants generated either features or functions 

as common characteristics on this task, which led to potentially different assessment processes 

during the evaluation task. Yet, the integration measure revealed that the neural systems involved 

in evaluation processes are not exclusive to creative cognition, as they were also similarly engaged 

for the evaluation of responses in the CC task. Given this limitation, the specificity of the 

integration effect during the evaluation stage of creativity we report here needs to be interpreted 

with caution and would benefit from further study. However, previous work has shown how people 

overweigh novelty when evaluating creative responses over non-creative responses 55,56. Thus, 

although we cannot test this possibility directly, it is likely that participants in our study were 

focusing on novelty when evaluating the AU responses and on appropriateness when evaluating 

the CC trials. Finally, participants’ evaluation of ideas generated by other people—whether 

creative or non-creative—did not lead to the same integration effects found when they were 

evaluating their own ideas. This difference indicates that our neural integration effect for 

evaluation during creative thinking may be task-specific, and not a broad-spectrum effect of 

evaluating task performance more generally. 

Another limitation is the block—and not event-related—design of our study. Collapsing 

condition specific trials together potentially adds a temporal confound to our findings and 

minimizes our ability to directly examine the neural dynamics of the creative process. Follow-up 

studies should replicate and extend our findings via an event-related design to better study the 

buildup of neural dynamics during the creative process, like previous studies examining neural 

reconfiguration in other cognitive tasks 35,41. 
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Overall, our results support the conclusion that creativity entails dynamic, parallel, and 

complex processes, involving multiple cognitive systems and their underlying neural mechanisms. 

Our study advances our understanding of this underlying complexity, by means of a unique within-

subjects design and by applying dynamic network neuroscience methods. Such a design allows us 

to examine the neural bases of the prevalent generation-evaluation model of creative thinking 57, 

and the dynamics of how different functional neural systems interact to realize one of the most 

complex behaviors that humans evince 6,7,21.  

 

Methods 

Participants. Participants (N = 50) were recruited from the University of Pennsylvania. Five 

participants were excluded because they did not return for the second scan session. Two 

participants terminated the study due to nausea during the first scan session or due to becoming 

ineligible for MRI scanning after the first scan session. One participant was excluded due to poor 

performance on the task. As such, the final sample included 42 participants (26 females, mean age 

= 22.5 years [SD = 3.3], mean education = 16.4 years [SD = 2.51]). All participants were right-

handed with normal or corrected-to-normal vision, and reported no history of neurological 

disorder, cognitive disability, or use of medication with potential to affect the central nervous 

system. Participants were monetarily compensated for their participation in the study. The study 

was approved by the University of Pennsylvania’s Institutional Review Board. 

 
Generation-evaluation task. The task consisted of two phases, a week apart, each conducted 

inside the scanner while participants underwent fMRI. In the Generation phase, participants were 

presented with 64 pictures of common objects 58. For half of these objects (n = 32), participants 

were asked to generate creative responses, namely, alternative uses for the objects (AU task); for 

the other half of the objects (n = 32), participants were asked to generate non-creative responses, 

namely common characteristics of the objects (CC task). A trial in the Generation phase began 

with a short fixation cross (500 ms) followed by a brief presentation of the object with an 

instruction above it to complete either the AU or CC task (2500 ms). For each trial, participants 

were subsequently required to generate verbally as many responses as they could for each object 

(15000 ms) before the next trial began (Fig. 1A). Participant’s responses during the generation 

task were audio-recorded, as well as manually typed concurrently by a research assistant. 
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A week later, participants came back to the scanner to complete the Evaluation phase. In 

the Evaluation phase, participants were presented with the same objects they saw during the 

Generation phase. Object task assignment (to the creative or non-creative task) also remained 

identical to the Generation phase. During the Evaluation phase, for each participant separately, 

each object was paired with three of the responses that specific participant gave for each of the 

objects: their first response, their final response, and an intermediate response. These three types 

of responses were chosen as to control for potential serial order confounds across participants 59. 

A trial in the Evaluation phase began with a short fixation cross (500 ms), followed by a short 

presentation of the object with the instruction above it, as presented in the Generation phase (2500 

ms). Next, participants were presented with their three responses for that object (12000 ms). 

Participants were asked to evaluate these responses, and then verbally declare which of these three 

responses was the most novel and appropriate (3000 ms) before the next trial began (Fig. 1A). To 

control for any potential confounds arising from generating more verbal responses during the 

Generation phase compared to the Evaluation phase, for 50% of the trials, participants were 

required to ‘think aloud’ as they evaluated their responses following established procedures 60,61. 

After participants evaluated all 64 objects to which they generated responses (AU and CC) 

in the generation phase, they underwent a final, general evaluation task. In this general evaluation 

task, participants were presented with an additional 16 objects, 8 with AU responses and 8 with 

CC responses. Participants saw the exact same responses for these 16 objects, taken from Ref. 47. 

This evaluation task allowed us to directly compare the neural dynamics related to evaluating ones’ 

own ideas compared to generally evaluating ideas that were generated by someone else. All 

presentation order and parameters of this final general evaluation task was identical to the main 

evaluation task as described above (including ‘thinking aloud’ for 50% of these additional objects). 

 
fMRI design: In accordance with Chai et al., 36, trials were organized in a block design and were 

semi-randomly assigned into pairs of trials within a block (e.g., two AU trials followed by two CC 

trials). Participants completed 4 runs in both scan, each consisting of 4 experimental blocks and 4 

fixation blocks, lasting 352 seconds. Experimental blocks lasted for 288 seconds (with 16 trials 

per block); fixation blocks lasting 16 seconds were interleaved between the experimental blocks. 

In both Generation and Evaluation phases, trials began immediately after the previous one ended. 

Condition order was counterbalanced across runs. 
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SemDis scoring of participants’ creativity. To quantify participants creativity, we leveraged 

computational models of semantic distance. Semantic distance is a proxy of the novelty dimension 

of creative thinking—the extent to which an idea is conceptually distant from common ideas—by 

computing the similarity between concepts in large text-based corpora of natural language (e.g., 

textbooks). Recently, semantic distance in creativity research was validated by showing reliable 

and strongly positive correlations with subjective novelty ratings 46. This approach is based on an 

online website (SemDis; semdis.wlu.psu.edu) that computes semantic distance between cue words 

and participants’ open-ended responses. It utilizes five semantic models that have shown the 

highest correspondence with subjective originality ratings 46, thereby yielding semantic distance 

scores that are more generalizable for creativity measurement 62. For each participant, we 

computed the average semantic distance for all five models across all AU and CC trials, denoting 

how far (on average) their responses were in an averaged semantic model, from the original 

objects. 

 
MRI data acquisition and preprocessing. Magnetic resonance images were obtained using a 3.0 

T Siemens Trio MRI scanner (Siemens Medical Systems, Erlangen, Germany) equipped with a 

32-channel head coil. T1-weighted structural images of the whole brain were acquired on both 

Generation and Evaluation scans using a three-dimensional magnetization-prepared rapid 

acquisition gradient echo pulse sequence, repetition time (TR) = 1850 ms; echo time (TE) = 3.91 

ms; voxel size = 0.9 mm ´ 0.9mm ´ 1 mm; flip angle = 8°; FoV = 240 mm. A field map was also 

acquired at each of the scan sessions, TR = 580 ms; TE 1 = 4.12 ms; TE2 = 6.52 ms; flip angle = 

45°; voxel size = 3.0 mm ´ 3.0 mm ´ 3.0 mm; FoV = 240 mm, to correct geometric distortion 

caused by magnetic field inhomogeneity. In all resting-state and task-based scans, T2*-weighted 

images sensitive to blood oxygenation level-dependent contrasts were acquired using a slice 

accelerated multiband echo planar pulse sequence 63,64, TR = 500 ms; TE = 25 ms; flip angle = 

45°; voxel size = 3.0 mm ´ 3.0 mm ´ 3.0 mm; FoV = 192 mm 65. The resting-state scan lasted 8 

minutes with the exact same parameters. Both task-based scans were composed of 4 runs, each 

including 16 trials divided into 4 experimental blocks and 4 fixation blocks. 

 Preprocessing was performed via FSL 66 and FreeSurfer 67 through a suite of Matlab scripts, 

according to Ref. 40. Cortical reconstruction and volumetric segmentation of the anatomical data 

were performed with the FreeSurfer image analysis suite 68. Functional data were de-spiked by 
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replacing voxel values greater than 7 RMSE from a 1-degree polynomial fit to the time course of 

each voxel with the average value of the adjacent TRs. Motion correction parameters were 

computed by registering each volume of each run to the middle volume using a robust registration 

algorithm (mri_robust_register; 69) and voxel shift maps for EPI distortion correction that were 

calculated using PRELUDE 70 and FUGUE 71. The resulting transformations were combined and 

simultaneously applied to the functional images. Boundary-based registration between structural 

and functional images was performed with bbregister 72. Nuisance time series signals were 

regressed from the preprocessed data. These nuisance regressors included: a) 24 motion 

regressors 73; b) the five first principal components of non-neural sources of noise, obtained with 

FreeSurfer segmentation tools and removed, following the anatomical CompCor method 74; and c) 

an estimate of a local source of noise, estimated by averaging signals derived from the white matter 

located within a 15 mm radius of each voxel, following the ANATICOR method 75. The data were 

then high-pass filtered with a cutoff frequency of 0.009 Hz 76.  

 
Functional connectivity network construction. Functional brain networks are constructed using 

a gray matter parcellation based on the Lausanne atlas 77,78. This brain atlas parcellates the brain 

into 234 regions covering the cortex and subcortical regions. In line with previous studies 40,41,79,80, 

functional connectivity between these brain regions was computed based on continuous wavelet 

coherence, which identified areas in time frequency space where two time series co-varied in the 

frequency band 0.06–0.12 Hz 81. This frequency band has previously been used to measure 

functional associations between low-frequency components of the fMRI signal and task-related 

functional connectivity 41,42,65,79. Wavelet coherence functional connectivity matrices were 

computed using the continuous cross wavelet transform developed by Grinsted, Moore, and 

Jevrejeva 81. We apply a continuous—and not discrete—wavelet transform (CWT) to provide 

additional sensitivity to time-varying dynamics across our four conditions. The CWT produces a 

connectivity value between each pair of brain regions for each TR, sampled across the frequency 

band 0.06–0.12 Hz 81. These connectivity values were averaged across the frequency range to 

generate an averaged time-varying connectivity value between each region pair. This procedure 

resulted in 234´234 weighted adjacency matrices for each TR, with coherence values bounded 

between 0 and 1 for each functional connection or network edge. 
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Multilayer network construction. We constructed a dynamical functional brain network that 

represented neural dynamics during generation and evaluation of creative and non-creative ideas. 

For each participant and each run, for each task separately (Generation, Evaluation), we averaged 

all TR-based CWT adjacency matrices of a trial, to generate averaged AU- and CC-trial level CWT 

functional connectivity matrices. Next, we pooled together all AU- and CC-trial CWT functional 

connectivity matrices by concatenating all relevant trials one after the other, thus, only partially 

preserving the temporal sequence of the BOLD signal. Finally, we coupled these Response Type 

(AU, CC) ́  Task (Generation, Evaluation) specific functional connectivity matrices in a multilayer 

network 35,43,79. In these AU/CC ´ Generation/Evaluation multilayered networks, each layer 

represents a different trial, and each brain region is connected to itself in adjacent layers by an 

identity link. Although layer/trial durations are short (18 seconds for both Generation and 

Evaluation trial), conducting such a multilayer network analysis in short time windows has been 

shown to highlight individual differences 39. 

 
Dynamic community detection. We used dynamic community detection techniques 43,82 to 

extract groups of brain regions that are functionally connected with one another, and to 

characterize how they reconfigure, integrate, and are recruited over conditions 35,79. This was 

achieved by applying a data-driven community detection algorithm on the functional connectivity 

adjacency matrices 83,84. Intuitively, community detection techniques aim to categorize network 

nodes into communities or clusters. To do so, we maximize a quality function called the multilayer 

modularity Q, with the associated maximum of Q called the maximum modularity. The modularity 

quality function describes the partitioning of a network's nodes into communities via a comparison 

to a statistical null model 85. High values of Q indicate that the nodes of the network can be 

partitioned sensibly into modules with similar BOLD activity. A generalization of the modularity 

quality function for multilayer networks can be written as: 

𝑄 =
1
2𝜇&'(𝐴!"# − 𝛾#𝑃!"#-𝛿#$ + 𝛿!"𝜔"#$1(𝛿!# ∗ 𝛿"$-	,

!"#$

 

where l is the number of layers in the network, 𝜇 is the total edge weights in the network, 𝐴!"# is 

an adjacency matrix of a specific layer, 𝑃!"# is the corresponding null model of the layer 86, 𝛾# is a 

structural resolution parameter that defines the weights of intralayer connections, 𝛿!# denotes the 

community assignment of node i in layer l, 𝛿"$ denotes the community assignment of node j in 
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layer r, and 𝜔"#$ 	denotes the connection strength between nodes across two layers (l and r). 

Importantly, changing the range of 𝛾 (number of communities) and 𝜔 (connection strength across 

layers) can affect the number and temporal dynamics of the detected communities 40. However, in 

order to not bias results toward a specific number of communities or a specific scale of temporal 

dynamics in community structure, we set 𝛾 and 𝜔 equal to one 38,65.  

We optimized multilayer modularity using a generalization of a Louvain-like locally 

greedy algorithm 87,88 to yield a partition of regions into communities for each layer of each of the 

four multilayered networks. According to recent methodological recommendations 82, the Louvain 

algorithm was realized with the ‘moverandw’ as its randomization method. This randomization 

method leads to more reliable results of the Louvain community detection algorithm 82. Since the 

community detection algorithm is non-deterministic 89, we optimized the multilayer modularity 

quality function 100 times for each participant for each of the multilayered network 35. Finally, to 

resolve the variability across the 100 iterations of the community assignment partitions, we 

conduct a consensus analysis to identify the community assignment partition that summarizes the 

commonalities across the entire distribution of partitions for each one of the 32 layers separately 
90,91. The results of this process are data-driven consensus-based identified communities for each 

of the 32 layers. Participants’ resting-state data was similarly analyzed by dividing the resting-

state time series into 32 equal parts of 15 seconds. 

 

Neural dynamic measures. Across both task-based scans and resting-state scan, we computed for 

each participant and each condition three neural dynamic measures: Flexibility reconfiguration, 

integration, and recruitment. The flexibility reconfiguration of a node is defined as the probability 

that a node changes its community assignment across layers  of the multilayer network 79. Since 

the slices in the multilayer networks convey different trials (AU or CC), we treat these networks 

as categorical, where any such community assignment change can occur across any pair of possible 

layers in the multilayer network. High values of flexibility indicate greater network 

reconfiguration.  

The integration and recruitment of a node are calculated from a module allegiance matrix, 

which defines the percentage of layers in the multilayer network that node i and node j co-occur 

in the same community 37. To do so, each brain region was assigned to a resting-state based neural 

system, as defined by the Yeo et al. partition of the brain into 17 sub-systems 48,49 (see below). 
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The integration of a node is defined as the average probability that brain region a from brain 

system b will be assigned to the same community with other brain regions from other brain 

systems. High values of integration indicate greater cross-system interaction. The recruitment of 

a node is defined as the average probability that brain region c from brain system d is assigned to 

the same community with other brain regions from that brain system. High values of recruitment 

indicate greater brain system cohesiveness. Consistent with previous studies 41,79,92, we defined the 

reconfiguration, integration, and recruitment of the network over the entire brain as the mean score 

over all nodes in the network (N = 234). We then averaged these three neural dynamic measures 

across all participants, runs, and optimizations, to obtain representative measures for the entire 

group for each of the conditions (Generation/Evaluation ´ AU/CC).  

 

Resting state multilayer analysis. The resting-state multilayer network construction was 

conducted similarly to the task-based multilayer networks. The entire RS time-series was 

segmented into 32 equal time length parts, each of 18 seconds. Such RS time windows match the 

time length of each of the task-based layers in the task-based multilayer networks. To better equate 

the RS multilayer analysis to the task-based multilayer analysis (where trials were concatenated 

together), and to minimize the confound of time, we shuffled the order of the RS layers before 

conducting the multilayer analysis. A similar CWT approach was applied to arrive at a matched 

RS multilayer network for every participant. We reiterated the shuffling procedure of the RS layers 

and subsequent RS multilayer analysis 100 times. Whole-brain RS reconfiguration, integration, 

and recruitment measures were computed for each iteration. Finally, we computed the mean score 

for each measure over the 100 iterations. 

 

Brain network system level analysis. Given our predictions regarding the roles of DMN, EN, 

and SN in creativity 6,21, we also computed these three measures for specific brain networks. This 

goal is achieved via the Yeo et al. partition of the brain into 17 sub-systems 48,49. Thus, we focus 

our analysis, according to this partition, on the three subnetworks of the EN: ConA (bilateral 

frontal and parietal regions), ConB (bilateral rostral and caudal frontal, inferior parietal and 

temporal regions), and ConC (bilateral precuneus); three subnetworks of the DMN: DefA (bilateral 

orbital superior frontal regions, IPL), DefB (bilateral superior frontal, mid-temporal regions), and 
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DefC (bilateral hippocampus); and two subnetworks of the SN: SalA (bilateral superiorfrontal 

regions, insula), and SalB (bilateral rostral medial-frontal regions, left insula). 

 
Procedure. The study consisted of two imaging sessions, a week apart. Prior to the first session, 

participants were screened for their ability to undergo fMRI scans, signed a consent form and were 

presented with the instructions for the Generation task that they were to complete during the first 

imaging session. During the first imaging session, each participant was presented again with the 

instructions of the Generation task and then placed in the MRI scanner. Padding around the head 

was used to minimize movement. Next, a high-resolution anatomical scan (2 minutes) and a 

resting-state (8 minutes) scan were collected. Following these scans, the participants completed 

the Generation task (23.46 minutes; as described above). The task began with a short practice, 

using objects that were not presented during the main task. Participants gave responses via an MRI 

compatible microphone (Optoacoustics, Inc. ®) and their responses were recorded and typed by 

the experimenter. After the scanning session, participants were taken out of the scanner and 

debriefed. During the second imaging session, the participant was presented with the instructions 

for the Evaluation task. Next the participant was placed in the MRI scanner with padding around 

the head to minimize movement. The scanning session began with a high-resolution anatomical 

scan followed by the Evaluation task (23.46 minutes; as described above). Finally, participants 

underwent a diffusion spectrography imaging scan (19 minutes, not analyzed in the current study). 

After the scanning session, participants were taken out of the scanner and debriefed. 
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