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Abstract

1. Background

The use of machine learning to classify diagnostic cases versus controls defined based on
diagnostic ontologies such as the ICD-10 from neuroimaging features is now commonplace
across a wide range of diagnostic fields. However, transdiagnostic comparisons of such
classifications are lacking. Such transdiagnostic comparisons are important to establish the
specificity of classification models, set benchmarks, and assess the value of diagnostic

ontologies.

2. Results

We investigated case-control classification accuracy in 17 different ICD-10 diagnostic groups from
Chapter V (mental and behavioral disorders) and Chapter VI (diseases of the nervous system)
using data from the UK Biobank. Classification models were trained using either neuroimaging
(structural or functional brain MRI feature sets) or socio-demographic features. Random forest
classification models were adopted using rigorous shuffle splits to estimate stability as well as
accuracy of case-control classifications. Diagnostic classification accuracies were benchmarked
against age classification (oldest versus youngest) from the same feature sets and against
additional classifier types (K-nearest neighbors and linear support vector machine). In contrast to
age classification accuracy, which was high for all feature sets, few ICD-10 diagnostic groups
were classified significantly above chance (namely, demyelinating diseases based on structural
neuroimaging features, and depression based on socio-demographic and functional

neuroimaging features).
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3. Conclusion

These findings highlight challenges with the current disease classification system, leading us to
recommend caution with the use of ICD-10 diagnostic groups as target labels in brain-based

disease prediction studies.
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UK Biobank, machine learning, neuroimaging, mental health disorders, nervous system

diseases

Background

Many studies have trained machine learning classifiers on features derived from non-invasive
structural and/or functional neuroimaging data to differentiate between cases and healthy controls
in a range of diseases (for a review see [1]). In such disease classification studies, the definition
of cases and controls is commonly based on standardized disease ontologies such as the ICD-
10 or the DSM-V and assessed via structured clinical interviews and/or health records. However,
the vast majority of published diagnostic classification efforts are single-disease studies
performed in disease-specific cohorts. As such, a comprehensive analysis across diseases in
population data is lacking. The goal of this study is to leverage epidemiological data to

comprehensively assess the ability to accurately classify 17 ICD-10 diagnostic groups from
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chapters V (mental and behavioral disorders) and VI (diseases of the nervous system) based on

neuroimaging features.

The UK Biobank (UKB) offers the first available neuroimaging dataset that adopts an
epidemiological approach in terms of its prospective recruitment strategy and large sample size
[2]. At the time of writing, neuroimaging data for tens of thousands of participants recruited from
the National Health Service (NHS) database had been acquired and released, with data
acquisition still ongoing towards the goal of N=100,000 [3]. Although the UKB has some healthy
volunteer selection bias resulting from the opt-in choice of participation [4], there are no explicit
health-based inclusion/exclusion criteria apart from standard MRI contraindications for
neuroimaging. As such, participants with a wide range of ICD-10 diagnoses (derived from clinical
records) are included in the UKB cohort [5]. This work uses the UKB dataset to systematically

compare brain-based classification models across 17 different ICD-10 diagnostic groups.

This study provides a unique lens on brain-based classifications across a large set of mental and
neurological ICD-10 diagnostic groups. There are a number of reasons why such transdiagnostic
comparisons of diagnostic classification models are important. First, such comparisons are
needed to assess the specificity of classification models (in addition to their accuracy/sensitivity).
Machine learning tools are increasingly adopted in clinical care settings, yet their disease-
specificity cannot be assessed in single-disease studies. Although some transdiagnostic
comparisons have been performed across related disorders (e.g., bipolar-schizophrenia [6]; mild
cognitive impairment-Alzheimer's disease [7]), broader comparisons are lacking. Second, our
findings provide a comprehensive benchmark for future research on diagnostic classification
models in the UKB and beyond. The UKB cohort will become an increasingly valuable resource
to train disease classification models as it follows participants longitudinally, capturing hospital

and death records. As such, our findings provide an important benchmark for future efforts. Third,
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our findings shed light on the limited validity of the ICD-10 diagnostic ontology, consistent with
other research pointing to the limited reliability of diagnostic coding systems including the ICD-10
[8] and DSM-V [9, 10]. Importantly, the use of suboptimal clinical labels as targets for machine

learning models impedes meaningful biomarker discovery [11, 12].

In total, this work included N=5,861 unique cases and the same number of carefully matched
healthy controls. We trained and tested over 400 diagnostic classification models to gather a
comprehensive overview of results. Despite well-matched samples of moderate to large sample
sizes (N range: 250 - 2,658), mean classification accuracies ranged from chance (0.5) up to 0.69,
and many diagnostic groups could not be classified significantly beyond chance. As such, our
comprehensive results revealed limits of the ICD-10 ontology (as available in the UKB) and

provide an important benchmark for future work in the UKB and beyond.

Data Description

1. Case selection

We used UKB variable ID 41270 to collect ICD-10 information for all participants. We focused on

ICD-10 diagnostic groups in Chapter V (Mental and behavioral disorders) and Chapter VI
(Diseases of the nervous system) because these diagnostic groups are most relevant for brain-
based classification. The number of UKB participants with complete neuroimaging data at each
of the first levels of the ICD-10 hierarchy (e.g., FO0-F09; which we term broad diagnostic groups)
and at each of the second levels of the ICD-10 hierarchy (e.g., FOO separately; which we term

narrow diagnostic groups) were determined. ICD-10 groups with N=125 cases at the narrow
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diagnostic category level were retained. If no individual narrow diagnostic category contained

N=125, but the combined broad diagnostic category did contain N=125, then the broad diagnostic

category was retained. As a result, we retained 17 ICD-10 diagnostic groups (see Table S1). We

also selected a unique case list by removing all subjects who were in more than 1 of the 17

diagnostic groups (Table S2). This unigue case list was used for multiclass classification.

2. Matched healthy controls

For each of the 17 diagnostic groups, we matched cases to controls to achieve 17 fully balanced
case-control groups for classification. The total number of UKB participants with complete
neuroimaging data but with no ICD-10 labels in either Chapter V (Mental and behavioral disorders;
all F classes) or Chapter VI (Diseases of the nervous system; all G classes) was N=31,225, which
composed our pool of healthy controls. Out of this pool, controls were selected for each case to
match sex, age, and resting state head motion as closely as possible (in this order of priority).
Each case (combined N=5861) was matched to a unique control participant across all combined
diagnostic groups. The matching procedure resulted in perfectly matched groups for sex (¥ p=1
for all diagnostic groups) and no significant group differences for age (p>0.3) nor for head motion

(p>0.7).

3. Matched sample size subgroups

The resulting ICD-10 diagnostic groups varied substantially in sample size (ranging from 125 -
1,329 cases). To test whether classification performance was impacted by sample size, we
repeated analyses after subsampling each ICD-10 diagnostic group to match the minimum

sample size (125 cases + 125 controls). Subsampling was performed by matching the cases from
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each ICD-10 diagnostic group to the ICD-10 diagnostic group with the minimum sample size
(G35-G37; Demyelinating diseases of the central nervous systems) for sex, age, and resting state
head motion using the same procedure described in section 2 above. This subsampling procedure
therefore additionally removed potential differences in confounding variables between ICD-10

diagnostic groups.

Analyses

Random forest classification models were trained separately for each diagnostic category across
100 shuffle split repeats with 80% training data and 20% validation data (see Table S3). The
primary neuroimaging features used to drive the classification algorithms included two sets of
structural measures (285 surface-based measures, or 153 volumetric measures; Table S4).
Significance testing was performed by comparing the resulting 100 classification accuracies for
each shuffle split against chance level (0.5) as described in Methods section 6. Follow-up
analyses were performed to test whether the primary classification results could be improved
upon by performing: i) classifications using matched sample sizes, ii) classifications using a
multiclass algorithm, iii) alternative classification models (support vector and k-nearest neighbors
classifiers), and iv) alternative features sets (from functional neuroimaging or sociodemographic
information; see Table S5). Furthermore, diagnostic classification accuracies were benchmarked
based on age classification by differentiating between extreme ends of the age distribution
(youngest versus oldest). Two age classification groups were generated that matched the sample
sizes of the largest and smallest ICD-10 diagnostic groups. A more detailed description of the

analytical approaches can be found in the Methods section.

1. Diagnostic classification using structural neuroimaging features

Only the “Demyelinating diseases” ICD-10 diagnostic group (G35-37) was classified significantly

above chance by both surface-based structural neuroimaging features (Hecc=0.63, p=0.013,
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n=248; Fig. 1 & Table S6) and volumetric features (H«:c=0.68, p=0.0094, n=248; Fig. S1 & Table

S6) after false discovery rate correction over the two structural feature sets (volume and surface).

Structural neuroimaging data features failed to classify the remaining 16 diagnostic groups

significantly more accurately than chance (p = 0.25; Fig. 1).

2. Diagnostic classification corrected for sample size

To mitigate the impact of varying sample sizes, we repeated the diagnostic classification after
subsampling each ICD-10 diagnostic group to match the minimum sample size of 125 cases and
125 matched controls. With a uniform size of 125 for diagnostic classification, the main results
shown in Fig. 1 were replicated. Namely, only the “Demyelinating diseases” ICD-10 diagnostic
group (G35-37) was classified significantly above chance by surface-based structural
neuroimaging features(t«c=0.64,p=0.01, n=125; Fig 2a). Full numeric results for surface-based

and volumetric features sets are available in Table S7.

3. Multiclass classification of ICD-10 diagnostic groups

To test whether our diagnostic classifications may improve by combining all diagnoses into one
model, we trained a multiclass classifier. Participants with multiple diagnostic labels were
removed to ensure disjoint groups and sample sizes were matched across ICD-10 diagnostic
groups to avoid the impact of unbalanced groups (see Methods for more details; Table S2).
Multiclass classification results are summarized in the confusion matrix in Fig. 2B. With a uniform
sample size of N=59 per ICD-10 diagnostic group for multiclass classification, 92% (977 off

diagonal individuals out of N=1,062) of the subjects were misclassified across all the diagnostic
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groups. Aligning with the results from diagnostic classification, the ICD-10 diagnostic group with
the highest number of correct classifications was "Demyelinating diseases". Notably, although the
individual group sizes are small due to the removal of participants with multiple diagnostic labels,
the total sample size for the multiclass classification algorithm remained relatively large

(N=1,062). Comparable results using the volumetric feature set can be found in Fig. S2.

4. Comparison against alternative classification models

We also classified ICD-10 diagnostic groups from structural features using support vector
classification and k-nearest neighbors classification to check the robustness of our findings in
other classification paradigms. The results were similar across classification models and the two
additional models did not significantly predict any additional diagnostic groups beyond the random

forest classification results (Fig. 3; Table S8).

5. Comparison against alternative feature sets

We furthermore tested whether adopting alternative feature sets may improve the classification
accuracy of ICD-10 diagnostic groups. Specifically, we tested 17 different feature sets derived
from resting state functional MRI (see Supplementary Materials section 3) and one
sociodemographic features set (based on [13], see Supplementary Materials section 4). Within
each diagnostic group, multiple comparisons correction using false discovery rate control was
performed across the total number of feature sets tested (i.e., across 20 feature sets, including
the 2 primary structural MRI feature sets, 17 functional MRI feature sets, and 1 sociodemographic
feature set). Because the multiple comparisons correction was more stringent than when using
only structural features, demyelinating diseases (G35-37) were not significantly classified after

correcting across all feature types. Instead, we found that the depression group (F32) was
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classified significantly above chance after correction across multiple feature groups (Fig. 4).
Depression classification accuracy was highest when using the sociodemographic feature set
(Mace=0.58, p=3.5e-3, n=2692), but was also classified significantly above chance by several
resting state feature sets after multiple comparisons correction (see Table S9). Within the 16
diagnostic groups that were not classified significantly above chance, we found little variation in
classification accuracy across feature sets. This suggests that classification accuracy was
generally low and largely insensitive to feature choice, given the statistical power available in this

study.

6. Comparison against age classification

To establish a plausible upper bound on classification accuracy of our random forest classification
model and neuroimaging feature sets, we classified age (oldest vs. youngest; see Methods
section 10). Specifically, we classified age (oldest vs. youngest) in both a large group, size-
matched to the depression group (N=2,676; our largest ICD-10 diagnostic group; F32) and a small
group, size-matched to the demyelinating diseases group (N=250; our smallest ICD-10 diagnostic
group; G35-37). Structural neuroimaging features (derived from surface data) best classified age
in both the small (#¢:=0.90, p=1.3e-15, n=246) and large (#e-=0.94, p=1.4e-66, n=2676) groups.
All considered features classified age significantly above chance in the large age group (p < 1.6e-
3; Fig. 4). Nearly all features were able to significantly classify age above chance in the small
group as well (p < 1.8e-3), with the exception of partial connectivity matrices derived from the
Schaefer parcellation (p=0.35) and independent component analyses of ranks 150 (p=0.085) and
300 (p=0.34). See Tables S9 for a detailed summary of results. These results confirm that the
classification model and neuroimaging feature sets adopted in this work can achieve higher

classification accuracies than those observed across all ICD-10 diagnostic groups.

10
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Discussion

The goal of this study was to systematically compare brain-based classification models across 17
different ICD-10 diagnostic groups. Our findings revealed that most ICD-10 diagnostic groups
were not classified significantly above chance from neuroimaging or sociodemographic data in
the UK Biobank. We found that only a single diagnostic group (“Demyelinating diseases”, G35-
37) could be accurately classified from structural neuroimaging features alone. After adding
additional feature sets, the largest group (“Depression”, F32) was classified significantly above
chance by both sociodemographic features and several functional neuroimaging features, but not
by structural neuroimaging features. Size-matched classification groups and a multiclass
formulation of the problem both yielded similar insights. Classifications with random forest,
support vector, and k-nearest neighbor classifiers all gave comparable results. Ultimately, no set
of either neuroimaging or sociodemographic features was able to classify more than one ICD-10
diagnostic group significantly above chance. By contrast, nearly all neuroimaging features were
able to classify age with high accuracy in samples that were size-matched to both our smallest

and largest diagnostic groups.

Paradoxically, the two diagnostic groups that were significantly classified by one or more feature
sets represented the largest group (depression; N=2,658) and the smallest group (demyelinating
diseases, N=250) included in this work. These results are consistent with the notion that the
statistical power to detect an effect depends on three factors: i) the magnitude of the effect of
interest in the population, ii) the sample size used to detect the effect, and iii) the statistical
significance criterion used in the test. The demyelinating diseases diagnostic group revealed
outsized sensitivity, suggesting a relatively larger magnitude of effect of interest in this diagnostic
population. The impact of the statistical significance criterion, and particularly the multiple

comparisons burden, can be observed in the finding that the demyelinating disease group was
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significantly classified from our primary structural neuroimaging feature sets (controlling across 2
results), but this result no longer reached significance after correction across the expanded
number of feature sets (controlling across 20 results; Table S9). These results highlight the
importance of balancing hypothesis-driven choices with data-driven exploration. Notably, our
statistical significance criterion was relatively strict by using the standard deviation - rather than
standard error of the mean - as the variance criterion for division. Although a larger number of
results would reach significance under a more lenient significance criterion, this does not take
away from the central interpretation that classification accuracy was close to chance for the

majority of ICD-10 diagnostic groups.

For the depression group, our findings revealed that classification accuracy based on functional
neuroimaging features sets outperformed classification accuracy based on structural
neuroimaging feature sets (Table S9). These findings are consistent with the conceptualization of
depression as driven by circuit dysconnectivity [15, 16]. Although structural brain correlates of
depression have also routinely been reported in the literature [17, 18], our findings are partially
consistent with a recent meta analysis that did not find significant convergence of structural or
functional brain correlates of depression [19]. Importantly, the individual studies included in this
meta analysis were relatively underpowered (N<100), further emphasizing the need for more well-
powered research [14]. It is possible that our findings may be linked to the larger feature space
for functional features (>10,000 features compared to <300 structural features), although our
rigorous shuffle split validation framework protects against overfitting. Overall, our findings may
suggest that functional neuroimaging features are more sensitive to depression than structural

neuroimaging features, although future research is needed to confirm this finding.

Our classification results showed little variation in performance over different classifiers,

classification features, and target diagnostic groups. Sociodemographic features were also

12
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unable to accurately classify ICD-10 diagnostic groups, despite previous work showing higher
classification accuracy of sociodemographic features for other phenotypes [13]. In contrast to the
high accuracy of age classification across all feature types and observed sample sizes, we found
ICD-10 diagnostic groups to have nearly uniformly low classification accuracy. Our investigation
across feature types, classification algorithms, and classification targets therefore suggests that
ICD-10 diagnostic groups may constitute unreliable phenotypes. This conclusion corroborates
past work on low inter-rater reliability in ICD-10 coding, which may be driven by many factors
including patient-provider communication, administrative decision chains, and insurance
incentives [8]. Furthermore, these results are consistent with prior work highlighting challenges
with UK Biobank clinical codes [20]. Specifically, Stroganov et al highlighted mapping issues of
available hospital inpatient and general practitioner information onto the ICD-10 ontology [20].
The limited classification accuracy for most ICD-10 diagnostic groups observed in this study
furthermore confirms previous work suggesting that the identification of biomarkers of
psychopathology is not feasible without increased efforts to address suboptimal phenotypic
reliability [11]. Indeed, a recent study empirically showed the degree to which accuracy of
classification models is attenuated as a function of the reliability of the classification target [12].
Notably, age is a phenotype with high reliability and was therefore chosen as a classification target
to benchmark our analyses. In summary, our findings reveal limits of the ICD-10 diagnostic
ontology that arise from a variety of complex sources, including clinical heterogeneity, lack of

inter-rater reliability, and inequities in the structure of healthcare incentives.

Finally, we would like to discuss some methodological limitations of the current study. First, ICD-
10 diagnostic groups in the UK Biobank were automatically mapped from available hospital
inpatient and general practitioner data sources. These automated mappings are known to be
imprecise [20], suggesting that the reliability of ICD-10 diagnostic information in the UK Biobank

may be lower than in other research and clinical settings. Second, although we tested our
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classifications across a range of feature sets and classifiers, it is possible that higher classification
accuracy can be achieved using alternative feature sets or imaging modalities (e.g., clinically
sensitive modalities such as susceptibility weighted imaging) and/or by using more sensitive
classifier architectures (e.g., leveraging deep learning). Third, we identified target diagnostic
groups at different levels of the ICD-10 diagnostic hierarchy depending on sample size availability.
It is possible that this choice may negatively impact classification accuracy - e.g., by including
varying degrees of heterogeneity - although we note that the two diagnostic groups with significant

classification results covered both levels of the hierarchy.

Potential implications

In summary, demyelinating diseases and depression could be classified above chance. These
findings were likely driven by a larger magnitude of effect for demyelinating diseases and a larger
sample size for depression. Notably, depression was significantly classified based on several
functional neuroimaging feature sets but not based on structural feature sets, suggesting that
functional neuroimaging features may be more sensitive to depression than structural
neuroimaging features. We were unable to reliably classify 15 out of 17 ICD-10 diagnostic cases
from matched controls. Overall, these results reveal limits of the ICD-10 ontology. We recommend
caution with the use of ICD-10 diagnostic codes as target labels in future work exploring brain-

based diagnostic prediction, particularly in epidemiological cohorts like the UK Biobank.
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Methods

1. Neuroimaging data and preprocessing

Out of the available UKB neuroimaging data, this work used the T1-weighted scan (1mm isotropic
voxels, TR=2000ms, Tl = 880ms) and the resting state functional scan (2.4mm isotropic voxels,
TR=735ms, TE=39ms, multiband factor 8). Processed data released through the UKB were used
(up until and including ICA-FIX clean-up for resting state). T1 and resting state data were
transformed into MNI space using the linear and non-linear transforms provided. For detailed

preprocessing information, please see [21].

2. Classification model

The primary analyses were performed using the Random Forest Classifier as implemented in
scikit-learn, informed by prior work [13]. The Random Forest Classifier was selected due to its
flexibility in handling data of varied units, its suitability for non-linear classification tasks, and its
scalability [22]. Notably, the findings presented in this paper generalized across other
classification algorithms (see Methods section 10). Using the pipeline option in scikit-learn, our
estimator included scaling, feature space dimension reduction using principal component analysis
(PCA), and classification. Nested 5-fold cross-validation was used to tune the PCA dimensionality
and the following sets of classifier-specific hyperparameters (Table S3). The depth of the trees
and the number of variables considered for splitting were tuned. The number of trees was fixed
at 250 following prior work [13, 23]. A shuffle-split resampling scheme was used to subdivide the
data into 100 stratified training (80%) and validation (20%) splits. Split validation performance was

used to generate the swarm plots.
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3. Structural neuroimaging feature extraction

Two structural neuroimaging features sets from T1-weighted images were defined based on
available imaging derived phenotypes (IDPs) provided by the UKB pipelines [21] (Table S4). The
surface-based structural feature set included 285 IDPs available in UKB variable IDs 190 and 196
derived from Freesurfer pipelines. Here, category 196 consists of 186 cortical IDPs from
Freesurfer's DKT-based parcellation and category 190 contains 99 subcortical IDPs (ASEG). The
volumetric structural feature set consisted of 153 IDPs from variable IDs 1101 and 1102. Here,
category 1101 contains 139 regional gray matter volumes segmented using FSL FAST, and

category 1102 contains 14 subcortical volumes segmented using FSL FIRST.

4. Alternative feature sets

As a result of the limited classification accuracy based on the primary structural neuroimaging
feature sets, we broadened our scope to determine whether alternative feature sets may
outperform the primary results. Specifically, we tested 17 different feature sets derived from
resting state functional MRI data (Table S4), and one feature set comprised of demographic
information (i.e., non-brain data; Table S5). The 17 different resting state functional MRI feature
sets reflected combinations across three different brain parcellation (Schaefer parcellation [24],
data-driven decomposition using independent component analysis [25, 26], or data-driven
decomposition using probabilistic function modes [27, 28]), and across feature types (partial
correlation matrix, full correlation matrix, or amplitude [29]), and across dimensionality (ICA only,
considering data-driven decomposition dimensionalities of 25, 100, 250, and 300). More detail
regarding the resting state functional MRI feature extraction can be found in section 3 of the
supplementary materials. The sociodemographic feature set was included based on previous
work that revealed that this feature set outperformed neuroimaging-derived features in phenotype
prediction [13]. Further details on the sociodemographic feature set can be found in Table S5 of

the supplementary materials.
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5. Statistical Analysis

We used statistical significance as our measure of successful classification. In this study, we
computed statistical significance from the distribution of split-wise accuracy scores as the
empirical probability of classifying above chance. For a given ICD-10 diagnostic group, a feature
set classified significantly above chance if its fitted Student’s t-distribution lies, within significance

threshold, above the guess line:

PSt(T 2 ?L|n) < ,

_ (samp. mean) — 0.5

samp. std. dev.

Above, n is the number of degrees of freedom (given by the number of shuffle-splits), and we use
a significance threshold of a=0.05. Note that this computation treats the classification accuracy
score of a given shuffle-split as a mean of independent and identically distributed Bernoulli

variables and assumes it is asymptotically normally distributed.

We emphasize, however, that we used the sample standard deviation instead of the sample
standard error, which makes our significance criterion more stringent than a one-sample t-test
against 0.5 (chance). A one-sample t-test (against chance) would be inappropriate in this context,
since it would reflect the likelihood of the population mean accuracy lying above chance, rather
than the likelihood of a particular (sub-)population being well-classified in a study on a single
dataset. Correction for multiple comparisons was performed across feature sets using the false

discovery rate.
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6. Comparison against multiclass diagnostic classification

In addition to the separate diagnosis-specific case-control classifications, we performed a
multiclass classification. For our multiclass classification task, we aimed to categorize samples
into 17 ICD-10 groups and the control group (i.e., total of 18 possible labels; see Table S4).
Internally, the multiclass procedure trains one classifier for each class, treating the samples of
that group as positive and all other samples as negative. The output from the multiclass classifier
is combined across all groups. In this multiclass classification, we utilized the unique and matched
sample size subject list, as detailed in the case sample selection section to avoid the presence of
multiple diagnostic labels per individual case. We employed a Random Forest Classifier with the
number of trees set to 250, the criterion for splitting set to "gini", and the random state set to 42

to ensure reproducibility.

7. Comparison against alternative classification models

In addition to the Random Forest Classifier, two further classifiers were tested for classification,
namely the Support Vector Classifier and K-Nearest Neighbors Classifier as implemented in
scikit-learn. For the Support Vector Classifier, the regularization parameter C and the kernel type
were tuned. For the K-Nearest Neighbors Classifier, the number of neighbors, the weight function,
and the distance metric were tuned. See Table S3 for hyperparameter values included in the
tuning. The classification pipeline described above - including principal component analysis,
nested folds for hyperparameter estimation, and shuffle splits - was identical for Random Forest,

Support Vector, and K-Nearest Neighbors classifiers.

8. Comparison against alternative features sets

In addition to the diagnostic classifications using structural neuroimaging features, we repeated
the classification analyses using functional neuroimaging features and socioeconomic features

instead. A wide range of options exists to calculate features from resting state functional MRI data
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[30, 31]. We compared classifications based on feature sets obtained from data-driven
approaches including independent component analysis [25, 26] and probabilistic functional
modes [27, 28], and atlas-based features [24]. Please see the supplementary methods and Table

S4 for further information.

For the socio-economic feature set, we based our selection of features on prior work from [13].
Existing UK Biobank variables in 36 variable IDs across categories of age, sex, education, early
life, and lifestyle were selected (see Table S5). Compared to prior work (see Appendix 2, Table
S7 in [13]), all variables in the mood & sentiment category and any variables related to smoking
behaviors were excluded due to overlap with symptoms commonly observed for several ICD-10

diagnostic groups.

9. Comparison against age classification

To benchmark our classification analyses, we repeated the same random forest regression model
to classify older versus younger groups based on the same feature sets. To this end, we combined
all the subjects from 17 ICD-10 diagnostic groups and subjects with complete neuroimaging data
but with no ICD-10 labels in either Chapter V or VI as the cohort. We selected the subjects from
this cohort by pairing those with the largest age differences, while ensuring that older and younger
groups were matched for sex and head motion. The older subjects were considered as our ‘case’
group (aged 67-70), and the younger subjects were considered the ‘control’ group (aged 40-42).
We compiled a balanced group (half “young” and half “old”) of N=2,656 subjects to match the size
of the largest ICD-10 diagnostic group, and subsampled N=252 a balanced sublist to match the
smallest ICD-10 diagnostic group. This allowed us to benchmark classification effect size across
all ICD-10 diagnostic groups against classification effect size of age. To assess the classification
accuracy, we employed the same Random Forest classification models (mentioned in the

classification model section) on both the structural feature sets (surface and volume) and
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functional data extracted through Independent Component Analysis, Probabilistic Functional

Modes, and the Schaefer atlas (see supplements for details).

Availability of source code

Project name: WAPIAW3

Project home page: https://github.com/tyo8/WAPIAW3
Operating system: Platform independent
Programming language: Python, shell

License: MIT

Data availability

UK Biobank data [2, 3] are available following an access application process, for more information

please see: https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access. This research

was performed under UK Biobank application number 47267.
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Figure 1. Diagnostic classification based on surface-based structural neuroimaging features.
Classification accuracy distributions across ICD-10 diagnostic groups for cortical surface features
derived from T1-weighted structural MRI data. Only demyelinating diseases were classified
significantly above chance. Mean classification accuracy across splits is shown as a single red
dot within each distribution. Matching results using the volumetric feature sets are available in

Fig. S1 and all numeric results are available in Table S6.
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Figure 2. (a) Size-corrected diagnostic classification based on surface-based structural
neuroimaging features. Classification accuracy distributions across ICD-10 diagnostic groups
matched in sample size. All classification results matched for sample size are reported in Table
S7. (b) Size-corrected multiclass diagnostic classification. Confusion matrix of the multiclass

classification for all 17 ICD-10 diagnostic groups along with healthy controls.
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Figure 3. Effect of classification models. Classifier performance for all ICD-10 diagnostic groups
on T1l-weighted structural MRI surface data. Results for all classification models are shown in
gray dots and results for the best performing classification model are shown in colored dots.
Because classification accuracy distributions for different classifiers heavily overlap, few gray dots
are visible. Large red diamonds show mean classification accuracy of the best-performing
classifier, while large black diamonds show mean classification accuracy across all classifiers. All

classification results across different models are reported in Table S8.
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Figure 4. Diagnostic and age classification across feature sets. Summary of classification
accuracy distributions across all 17 diagnostic groups for structural, functional, and
sociodemographic classification features. In each classification group’s swarm plot, the accuracy
distribution of the feature set with the highest mean accuracy is shown in color; the rest are shown
in gray. Of the diagnostic groups, only the depression group (N=2,692) was classified significantly
above chance after multiple comparison corrections. Depression was significantly classified by
sociodemographic features and three functional MRI features (full network connectivity matrices
for the Schaefer parcellation, full network connectivity matrices for ICA parcellation at rank 150,
and at rank and 300). Benchmark results for age (youngest versus oldest) classifications in both
a large and small group (size-matched, respectively, to the largest and smallest diagnostic
groups) are shown on the right, and approximate an upper bound on diagnostic classification

accuracy in terms of effect size vs. sample size. All classification results are reported in Table S9.
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