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Abstract 

1. Background 

The use of machine learning to classify diagnostic cases versus controls defined based on 

diagnostic ontologies such as the ICD-10 from neuroimaging features is now commonplace 

across a wide range of diagnostic fields. However, transdiagnostic comparisons of such 

classifications are lacking. Such transdiagnostic comparisons are important to establish the 

specificity of classification models, set benchmarks, and assess the value of diagnostic 

ontologies. 

2. Results 

We investigated case-control classification accuracy in 17 different ICD-10 diagnostic groups from 

Chapter V (mental and behavioral disorders) and Chapter VI (diseases of the nervous system) 

using data from the UK Biobank. Classification models were trained using either neuroimaging 

(structural or functional brain MRI feature sets) or socio-demographic features. Random forest 

classification models were adopted using rigorous shuffle splits to estimate stability as well as 

accuracy of case-control classifications. Diagnostic classification accuracies were benchmarked 

against age classification (oldest versus youngest) from the same feature sets and against 

additional classifier types (K-nearest neighbors and linear support vector machine). In contrast to 

age classification accuracy, which was high for all feature sets, few ICD-10 diagnostic groups 

were classified significantly above chance (namely, demyelinating diseases based on structural 

neuroimaging features, and depression based on socio-demographic and functional 

neuroimaging features). 
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3. Conclusion 

These findings highlight challenges with the current disease classification system, leading us to 

recommend caution with the use of ICD-10 diagnostic groups as target labels in brain-based 

disease prediction studies. 

Keywords 

UK Biobank, machine learning, neuroimaging, mental health disorders, nervous system 

diseases 

 

 

 

Background 

Many studies have trained machine learning classifiers on features derived from non-invasive 

structural and/or functional neuroimaging data to differentiate between cases and healthy controls 

in a range of diseases (for a review see [1]). In such disease classification studies, the definition 

of cases and controls is commonly based on standardized disease ontologies such as the ICD-

10 or the DSM-V and assessed via structured clinical interviews and/or health records. However, 

the vast majority of published diagnostic classification efforts are single-disease studies 

performed in disease-specific cohorts. As such, a comprehensive analysis across diseases in 

population data is lacking. The goal of this study is to leverage epidemiological data to 

comprehensively assess the ability to accurately classify 17 ICD-10 diagnostic groups from 
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chapters V (mental and behavioral disorders) and VI (diseases of the nervous system) based on 

neuroimaging features.  

 

The UK Biobank (UKB) offers the first available neuroimaging dataset that adopts an 

epidemiological approach in terms of its prospective recruitment strategy and large sample size 

[2]. At the time of writing, neuroimaging data for tens of thousands of participants recruited from 

the National Health Service (NHS) database had been acquired and released, with data 

acquisition still ongoing towards the goal of N=100,000 [3]. Although the UKB has some healthy 

volunteer selection bias resulting from the opt-in choice of participation [4], there are no explicit 

health-based inclusion/exclusion criteria apart from standard MRI contraindications for 

neuroimaging. As such, participants with a wide range of ICD-10 diagnoses (derived from clinical 

records) are included in the UKB cohort [5]. This work uses the UKB dataset to systematically 

compare brain-based classification models across 17 different ICD-10 diagnostic groups. 

 

This study provides a unique lens on brain-based classifications across a large set of mental and 

neurological ICD-10 diagnostic groups. There are a number of reasons why such transdiagnostic 

comparisons of diagnostic classification models are important. First, such comparisons are 

needed to assess the specificity of classification models (in addition to their accuracy/sensitivity). 

Machine learning tools are increasingly adopted in clinical care settings, yet their disease-

specificity cannot be assessed in single-disease studies. Although some transdiagnostic 

comparisons have been performed across related disorders (e.g., bipolar-schizophrenia [6]; mild 

cognitive impairment-Alzheimer’s disease [7]), broader comparisons are lacking. Second, our 

findings provide a comprehensive benchmark for future research on diagnostic classification 

models in the UKB and beyond. The UKB cohort will become an increasingly valuable resource 

to train disease classification models as it follows participants longitudinally, capturing hospital 

and death records. As such, our findings provide an important benchmark for future efforts. Third, 
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our findings shed light on the limited validity of the ICD-10 diagnostic ontology, consistent with 

other research pointing to the limited reliability of diagnostic coding systems including the ICD-10 

[8] and DSM-V [9, 10]. Importantly, the use of suboptimal clinical labels as targets for machine 

learning models impedes meaningful biomarker discovery [11, 12]. 

 

In total, this work included N=5,861 unique cases and the same number of carefully matched 

healthy controls. We trained and tested over 400 diagnostic classification models to gather a 

comprehensive overview of results. Despite well-matched samples of moderate to large sample 

sizes (N range: 250 - 2,658), mean classification accuracies ranged from chance (0.5) up to 0.69, 

and many diagnostic groups could not be classified significantly beyond chance. As such, our 

comprehensive results revealed limits of the ICD-10 ontology (as available in the UKB) and 

provide an important benchmark for future work in the UKB and beyond.  

Data Description 

1. Case selection 

We used UKB variable ID 41270 to collect ICD-10 information for all participants. We focused on 

ICD-10 diagnostic groups in Chapter V (Mental and behavioral disorders) and Chapter VI 

(Diseases of the nervous system) because these diagnostic groups are most relevant for brain-

based classification. The number of UKB participants with complete neuroimaging data at each 

of the first levels of the ICD-10 hierarchy (e.g., F00-F09; which we term broad diagnostic groups) 

and at each of the second levels of the ICD-10 hierarchy (e.g., F00 separately; which we term 

narrow diagnostic groups) were determined. ICD-10 groups with N≥125 cases at the narrow 
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diagnostic category level were retained. If no individual narrow diagnostic category contained 

N≥125, but the combined broad diagnostic category did contain N≥125, then the broad diagnostic 

category was retained. As a result, we retained 17 ICD-10 diagnostic groups (see Table S1). We 

also selected a unique case list by removing all subjects who were in more than 1 of the 17 

diagnostic groups (Table S2). This unique case list was used for multiclass classification. 

2. Matched healthy controls 

For each of the 17 diagnostic groups, we matched cases to controls to achieve 17 fully balanced 

case-control groups for classification. The total number of UKB participants with complete 

neuroimaging data but with no ICD-10 labels in either Chapter V (Mental and behavioral disorders; 

all F classes) or Chapter VI (Diseases of the nervous system; all G classes) was N=31,225, which 

composed our pool of healthy controls. Out of this pool, controls were selected for each case to 

match sex, age, and resting state head motion as closely as possible (in this order of priority). 

Each case (combined N=5861) was matched to a unique control participant across all combined 

diagnostic groups. The matching procedure resulted in perfectly matched groups for sex (𝞆2 p=1 

for all diagnostic groups) and no significant group differences for age (p>0.3) nor for head motion 

(p>0.7). 

3. Matched sample size subgroups 

The resulting ICD-10 diagnostic groups varied substantially in sample size (ranging from 125 - 

1,329 cases). To test whether classification performance was impacted by sample size, we 

repeated analyses after subsampling each ICD-10 diagnostic group to match the minimum 

sample size (125 cases + 125 controls). Subsampling was performed by matching the cases from 
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each ICD-10 diagnostic group to the ICD-10 diagnostic group with the minimum sample size 

(G35-G37; Demyelinating diseases of the central nervous systems) for sex, age, and resting state 

head motion using the same procedure described in section 2 above. This subsampling procedure 

therefore additionally removed potential differences in confounding variables between ICD-10 

diagnostic groups.  

Analyses  

Random forest classification models were trained separately for each diagnostic category across 

100 shuffle split repeats with 80% training data and 20% validation data (see Table S3). The 

primary neuroimaging features used to drive the classification algorithms included two sets of 

structural measures (285 surface-based measures, or 153 volumetric measures; Table S4). 

Significance testing was performed by comparing the resulting 100 classification accuracies for 

each shuffle split against chance level (0.5) as described in Methods section 6. Follow-up 

analyses were performed to test whether the primary classification results could be improved 

upon by performing: i) classifications using matched sample sizes, ii) classifications using a 

multiclass algorithm, iii) alternative classification models (support vector and k-nearest neighbors 

classifiers), and iv) alternative features sets (from functional neuroimaging or sociodemographic 

information; see Table S5). Furthermore, diagnostic classification accuracies were benchmarked 

based on age classification by differentiating between extreme ends of the age distribution 

(youngest versus oldest). Two age classification groups were generated that matched the sample 

sizes of the largest and smallest ICD-10 diagnostic groups. A more detailed description of the 

analytical approaches can be found in the Methods section.  

1. Diagnostic classification using structural neuroimaging features 

Only the “Demyelinating diseases” ICD-10 diagnostic group (G35-37) was classified significantly 

above chance by both surface-based structural neuroimaging features ( =0.63, p=0.013, 
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n=248; Fig. 1 & Table S6) and volumetric features ( =0.68, p=0.0094, n=248; Fig. S1 & Table 

S6) after false discovery rate correction over the two structural feature sets (volume and surface). 

Structural neuroimaging data features failed to classify the remaining 16 diagnostic groups 

significantly more accurately than chance (p ≳ 0.25; Fig. 1).  

 

2. Diagnostic classification corrected for sample size 

To mitigate the impact of varying sample sizes, we repeated the diagnostic classification after 

subsampling each ICD-10 diagnostic group to match the minimum sample size of 125 cases and 

125 matched controls. With a uniform size of 125 for diagnostic classification, the main results 

shown in Fig. 1 were replicated. Namely, only the “Demyelinating diseases” ICD-10 diagnostic 

group (G35-37) was classified significantly above chance by surface-based structural 

neuroimaging features( =0.64,p=0.01, n=125; Fig 2a). Full numeric results for surface-based 

and volumetric features sets are available in Table S7.  

 

3. Multiclass classification of ICD-10 diagnostic groups 

To test whether our diagnostic classifications may improve by combining all diagnoses into one 

model, we trained a multiclass classifier. Participants with multiple diagnostic labels were 

removed to ensure disjoint groups and sample sizes were matched across ICD-10 diagnostic 

groups to avoid the impact of unbalanced groups (see Methods for more details; Table S2). 

Multiclass classification results are summarized in the confusion matrix in Fig. 2B. With a uniform 

sample size of N=59 per ICD-10 diagnostic group for multiclass classification, 92% (977 off 

diagonal individuals out of N=1,062) of the subjects were misclassified across all the diagnostic 
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groups. Aligning with the results from diagnostic classification, the ICD-10 diagnostic group with 

the highest number of correct classifications was "Demyelinating diseases". Notably, although the 

individual group sizes are small due to the removal of participants with multiple diagnostic labels, 

the total sample size for the multiclass classification algorithm remained relatively large 

(N=1,062). Comparable results using the volumetric feature set can be found in Fig. S2. 

 

4. Comparison against alternative classification models 

We also classified ICD-10 diagnostic groups from structural features using support vector 

classification and k-nearest neighbors classification to check the robustness of our findings in 

other classification paradigms. The results were similar across classification models and the two 

additional models did not significantly predict any additional diagnostic groups beyond the random 

forest classification results (Fig. 3; Table S8). 

 

5. Comparison against alternative feature sets 

We furthermore tested whether adopting alternative feature sets may improve the classification 

accuracy of ICD-10 diagnostic groups. Specifically, we tested 17 different feature sets derived 

from resting state functional MRI (see Supplementary Materials section 3) and one 

sociodemographic features set (based on [13], see Supplementary Materials section 4). Within 

each diagnostic group, multiple comparisons correction using false discovery rate control was 

performed across the total number of feature sets tested (i.e., across 20 feature sets, including 

the 2 primary structural MRI feature sets, 17 functional MRI feature sets, and 1 sociodemographic 

feature set). Because the multiple comparisons correction was more stringent than when using 

only structural features, demyelinating diseases (G35-37) were not significantly classified after 

correcting across all feature types. Instead, we found that the depression group (F32) was 
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classified significantly above chance after correction across multiple feature groups (Fig. 4). 

Depression classification accuracy was highest when using the sociodemographic feature set 

( =0.58, p=3.5e-3, n=2692), but was also classified significantly above chance by several 

resting state feature sets after multiple comparisons correction (see Table S9). Within the 16 

diagnostic groups that were not classified significantly above chance, we found little variation in 

classification accuracy across feature sets. This suggests that classification accuracy was 

generally low and largely insensitive to feature choice, given the statistical power available in this 

study.  

 

6. Comparison against age classification 

To establish a plausible upper bound on classification accuracy of our random forest classification 

model and neuroimaging feature sets, we classified age (oldest vs. youngest; see Methods 

section 10). Specifically, we classified age (oldest vs. youngest) in both a large group, size-

matched to the depression group (N=2,676; our largest ICD-10 diagnostic group; F32) and a small 

group, size-matched to the demyelinating diseases group (N=250; our smallest ICD-10 diagnostic 

group; G35-37). Structural neuroimaging features (derived from surface data) best classified age 

in both the small ( =0.90, p=1.3e-15, n=246) and large ( =0.94, p=1.4e-66, n=2676) groups. 

All considered features classified age significantly above chance in the large age group (p < 1.6e-

3; Fig. 4). Nearly all features were able to significantly classify age above chance in the small 

group as well (p < 1.8e-3), with the exception of partial connectivity matrices derived from the 

Schaefer parcellation (p=0.35) and independent component analyses of ranks 150 (p=0.085) and 

300 (p=0.34). See Tables S9 for a detailed summary of results. These results confirm that the 

classification model and neuroimaging feature sets adopted in this work can achieve higher 

classification accuracies than those observed across all ICD-10 diagnostic groups.  
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Discussion 

The goal of this study was to systematically compare brain-based classification models across 17 

different ICD-10 diagnostic groups. Our findings revealed that most ICD-10 diagnostic groups 

were not classified significantly above chance from neuroimaging or sociodemographic data in 

the UK Biobank. We found that only a single diagnostic group (“Demyelinating diseases”, G35-

37) could be accurately classified from structural neuroimaging features alone. After adding 

additional feature sets, the largest group (“Depression”, F32) was classified significantly above 

chance by both sociodemographic features and several functional neuroimaging features, but not 

by structural neuroimaging features. Size-matched classification groups and a multiclass 

formulation of the problem both yielded similar insights. Classifications with random forest, 

support vector, and k-nearest neighbor classifiers all gave comparable results. Ultimately, no set 

of either neuroimaging or sociodemographic features was able to classify more than one ICD-10 

diagnostic group significantly above chance. By contrast, nearly all neuroimaging features were 

able to classify age with high accuracy in samples that were size-matched to both our smallest 

and largest diagnostic groups. 

 

Paradoxically, the two diagnostic groups that were significantly classified by one or more feature 

sets represented the largest group (depression; N=2,658) and the smallest group (demyelinating 

diseases, N=250) included in this work. These results are consistent with the notion that the 

statistical power to detect an effect depends on three factors: i) the magnitude of the effect of 

interest in the population, ii) the sample size used to detect the effect, and iii) the statistical 

significance criterion used in the test. The demyelinating diseases diagnostic group revealed 

outsized sensitivity, suggesting a relatively larger magnitude of effect of interest in this diagnostic 

population. The impact of the statistical significance criterion, and particularly the multiple 

comparisons burden, can be observed in the finding that the demyelinating disease group was 
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significantly classified from our primary structural neuroimaging feature sets (controlling across 2 

results), but this result no longer reached significance after correction across the expanded 

number of feature sets (controlling across 20 results; Table S9). These results highlight the 

importance of balancing hypothesis-driven choices with data-driven exploration. Notably, our 

statistical significance criterion was relatively strict by using the standard deviation - rather than 

standard error of the mean - as the variance criterion for division. Although a larger number of 

results would reach significance under a more lenient significance criterion, this does not take 

away from the central interpretation that classification accuracy was close to chance for the 

majority of ICD-10 diagnostic groups.  

 

For the depression group, our findings revealed that classification accuracy based on functional 

neuroimaging features sets outperformed classification accuracy based on structural 

neuroimaging feature sets (Table S9). These findings are consistent with the conceptualization of 

depression as driven by circuit dysconnectivity [15, 16]. Although structural brain correlates of 

depression have also routinely been reported in the literature [17, 18], our findings are partially 

consistent with a recent meta analysis that did not find significant convergence of structural or 

functional brain correlates of depression [19]. Importantly, the individual studies included in this 

meta analysis were relatively underpowered (N<100), further emphasizing the need for more well-

powered research [14]. It is possible that our findings may be linked to the larger feature space 

for functional features (>10,000 features compared to <300 structural features), although our 

rigorous shuffle split validation framework protects against overfitting. Overall, our findings may 

suggest that functional neuroimaging features are more sensitive to depression than structural 

neuroimaging features, although future research is needed to confirm this finding.  

 

Our classification results showed little variation in performance over different classifiers, 

classification features, and target diagnostic groups. Sociodemographic features were also 
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unable to accurately classify ICD-10 diagnostic groups, despite previous work showing higher 

classification accuracy of sociodemographic features for other phenotypes [13]. In contrast to the 

high accuracy of age classification across all feature types and observed sample sizes, we found 

ICD-10 diagnostic groups to have nearly uniformly low classification accuracy. Our investigation 

across feature types, classification algorithms, and classification targets therefore suggests that 

ICD-10 diagnostic groups may constitute unreliable phenotypes. This conclusion corroborates 

past work on low inter-rater reliability in ICD-10 coding, which may be driven by many factors 

including patient-provider communication, administrative decision chains, and insurance 

incentives [8]. Furthermore, these results are consistent with prior work highlighting challenges 

with UK Biobank clinical codes [20]. Specifically, Stroganov et al highlighted mapping issues of 

available hospital inpatient and general practitioner information onto the ICD-10 ontology [20]. 

The limited classification accuracy for most ICD-10 diagnostic groups observed in this study 

furthermore confirms previous work suggesting that the identification of biomarkers of 

psychopathology is not feasible without increased efforts to address suboptimal phenotypic 

reliability [11]. Indeed, a recent study empirically showed the degree to which accuracy of 

classification models is attenuated as a function of the reliability of the classification target [12]. 

Notably, age is a phenotype with high reliability and was therefore chosen as a classification target 

to benchmark our analyses. In summary, our findings reveal limits of the ICD-10 diagnostic 

ontology that arise from a variety of complex sources, including clinical heterogeneity, lack of 

inter-rater reliability, and inequities in the structure of healthcare incentives. 

 

Finally, we would like to discuss some methodological limitations of the current study. First, ICD-

10 diagnostic groups in the UK Biobank were automatically mapped from available hospital 

inpatient and general practitioner data sources. These automated mappings are known to be 

imprecise [20], suggesting that the reliability of ICD-10 diagnostic information in the UK Biobank 

may be lower than in other research and clinical settings. Second, although we tested our 
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classifications across a range of feature sets and classifiers, it is possible that higher classification 

accuracy can be achieved using alternative feature sets or imaging modalities (e.g., clinically 

sensitive modalities such as susceptibility weighted imaging) and/or by using more sensitive 

classifier architectures (e.g., leveraging deep learning). Third, we identified target diagnostic 

groups at different levels of the ICD-10 diagnostic hierarchy depending on sample size availability. 

It is possible that this choice may negatively impact classification accuracy - e.g., by including 

varying degrees of heterogeneity - although we note that the two diagnostic groups with significant 

classification results covered both levels of the hierarchy. 

 

Potential implications 

In summary, demyelinating diseases and depression could be classified above chance. These 

findings were likely driven by a larger magnitude of effect for demyelinating diseases and a larger 

sample size for depression. Notably, depression was significantly classified based on several 

functional neuroimaging feature sets but not based on structural feature sets, suggesting that 

functional neuroimaging features may be more sensitive to depression than structural 

neuroimaging features. We were unable to reliably classify 15 out of 17 ICD-10 diagnostic cases 

from matched controls. Overall, these results reveal limits of the ICD-10 ontology. We recommend 

caution with the use of ICD-10 diagnostic codes as target labels in future work exploring brain-

based diagnostic prediction, particularly in epidemiological cohorts like the UK Biobank. 
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Methods 

1. Neuroimaging data and preprocessing 

Out of the available UKB neuroimaging data, this work used the T1-weighted scan (1mm isotropic 

voxels, TR=2000ms, TI = 880ms) and the resting state functional scan (2.4mm isotropic voxels, 

TR=735ms, TE=39ms, multiband factor 8). Processed data released through the UKB were used 

(up until and including ICA-FIX clean-up for resting state). T1 and resting state data were 

transformed into MNI space using the linear and non-linear transforms provided. For detailed 

preprocessing information, please see [21].  

2. Classification model  

The primary analyses were performed using the Random Forest Classifier as implemented in 

scikit-learn, informed by prior work [13]. The Random Forest Classifier was selected due to its 

flexibility in handling data of varied units, its suitability for non-linear classification tasks, and its 

scalability [22]. Notably, the findings presented in this paper generalized across other 

classification algorithms (see Methods section 10). Using the pipeline option in scikit-learn, our 

estimator included scaling, feature space dimension reduction using principal component analysis 

(PCA), and classification. Nested 5-fold cross-validation was used to tune the PCA dimensionality 

and the following sets of classifier-specific hyperparameters (Table S3). The depth of the trees 

and the number of variables considered for splitting were tuned. The number of trees was fixed 

at 250 following prior work [13, 23]. A shuffle-split resampling scheme was used to subdivide the 

data into 100 stratified training (80%) and validation (20%) splits. Split validation performance was 

used to generate the swarm plots. 
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3. Structural neuroimaging feature extraction 

Two structural neuroimaging features sets from T1-weighted images were defined based on 

available imaging derived phenotypes (IDPs) provided by the UKB pipelines [21] (Table S4). The 

surface-based structural feature set included 285 IDPs available in UKB variable IDs 190 and 196 

derived from Freesurfer pipelines. Here, category 196 consists of 186 cortical IDPs from 

Freesurfer’s DKT-based parcellation and category 190 contains 99 subcortical IDPs (ASEG). The 

volumetric structural feature set consisted of 153 IDPs from variable IDs 1101 and 1102. Here, 

category 1101 contains 139 regional gray matter volumes segmented using FSL FAST, and 

category 1102 contains 14 subcortical volumes segmented using FSL FIRST. 

4. Alternative feature sets 

As a result of the limited classification accuracy based on the primary structural neuroimaging 

feature sets, we broadened our scope to determine whether alternative feature sets may 

outperform the primary results. Specifically, we tested 17 different feature sets derived from 

resting state functional MRI data (Table S4), and one feature set comprised of demographic 

information (i.e., non-brain data; Table S5). The 17 different resting state functional MRI feature 

sets reflected combinations across three different brain parcellation (Schaefer parcellation [24], 

data-driven decomposition using independent component analysis [25, 26], or data-driven 

decomposition using probabilistic function modes [27, 28]), and across feature types (partial 

correlation matrix, full correlation matrix, or amplitude [29]), and across dimensionality (ICA only, 

considering data-driven decomposition dimensionalities of 25, 100, 250, and 300). More detail 

regarding the resting state functional MRI feature extraction can be found in section 3 of the 

supplementary materials. The sociodemographic feature set was included based on previous 

work that revealed that this feature set outperformed neuroimaging-derived features in phenotype 

prediction [13]. Further details on the sociodemographic feature set can be found in Table S5 of 

the supplementary materials.  
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5. Statistical Analysis 

We used statistical significance as our measure of successful classification. In this study, we 

computed statistical significance from the distribution of split-wise accuracy scores as the 

empirical probability of classifying above chance. For a given ICD-10 diagnostic group, a feature 

set classified significantly above chance if its fitted Student’s t-distribution lies, within significance 

threshold, above the guess line:  

 

 

 

Above, n is the number of degrees of freedom (given by the number of shuffle-splits), and we use 

a significance threshold of α=0.05. Note that this computation treats the classification accuracy 

score of a given shuffle-split as a mean of independent and identically distributed Bernoulli 

variables and assumes it is asymptotically normally distributed.  

 

We emphasize, however, that we used the sample standard deviation instead of the sample 

standard error, which makes our significance criterion more stringent than a one-sample t-test 

against 0.5 (chance). A one-sample t-test (against chance) would be inappropriate in this context, 

since it would reflect the likelihood of the population mean accuracy lying above chance, rather 

than the likelihood of a particular (sub-)population being well-classified in a study on a single 

dataset. Correction for multiple comparisons was performed across feature sets using the false 

discovery rate.  
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6. Comparison against multiclass diagnostic classification 

In addition to the separate diagnosis-specific case-control classifications, we performed a 

multiclass classification. For our multiclass classification task, we aimed to categorize samples 

into 17 ICD-10 groups and the control group (i.e., total of 18 possible labels; see Table S4). 

Internally, the multiclass procedure trains one classifier for each class, treating the samples of 

that group as positive and all other samples as negative. The output from the multiclass classifier 

is combined across all groups. In this multiclass classification, we utilized the unique and matched 

sample size subject list, as detailed in the case sample selection section to avoid the presence of 

multiple diagnostic labels per individual case. We employed a Random Forest Classifier with the 

number of trees set to 250, the criterion for splitting set to "gini", and the random state set to 42 

to ensure reproducibility. 

7. Comparison against alternative classification models 

In addition to the Random Forest Classifier, two further classifiers were tested for classification, 

namely the Support Vector Classifier and K-Nearest Neighbors Classifier as implemented in 

scikit-learn. For the Support Vector Classifier, the regularization parameter C and the kernel type 

were tuned. For the K-Nearest Neighbors Classifier, the number of neighbors, the weight function, 

and the distance metric were tuned. See Table S3 for hyperparameter values included in the 

tuning. The classification pipeline described above - including principal component analysis, 

nested folds for hyperparameter estimation, and shuffle splits - was identical for Random Forest, 

Support Vector, and K-Nearest Neighbors classifiers.  

8. Comparison against alternative features sets 

In addition to the diagnostic classifications using structural neuroimaging features, we repeated 

the classification analyses using functional neuroimaging features and socioeconomic features 

instead. A wide range of options exists to calculate features from resting state functional MRI data 
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[30, 31]. We compared classifications based on feature sets obtained from data-driven 

approaches including independent component analysis [25, 26] and probabilistic functional 

modes [27, 28], and atlas-based features [24]. Please see the supplementary methods and Table 

S4 for further information. 

 

For the socio-economic feature set, we based our selection of features on prior work from [13]. 

Existing UK Biobank variables in 36 variable IDs across categories of age, sex, education, early 

life, and lifestyle were selected (see Table S5). Compared to prior work (see Appendix 2, Table 

S7 in [13]), all variables in the mood & sentiment category and any variables related to smoking 

behaviors were excluded due to overlap with symptoms commonly observed for several ICD-10 

diagnostic groups. 

9. Comparison against age classification 

To benchmark our classification analyses, we repeated the same random forest regression model 

to classify older versus younger groups based on the same feature sets. To this end, we combined 

all the subjects from 17 ICD-10 diagnostic groups and subjects with complete neuroimaging data 

but with no ICD-10 labels in either Chapter V or VI as the cohort. We selected the subjects from 

this cohort by pairing those with the largest age differences, while ensuring that older and younger 

groups were matched for sex and head motion. The older subjects were considered as our ‘case’ 

group (aged 67-70), and the younger subjects were considered the ‘control’ group (aged 40-42). 

We compiled a balanced group (half “young” and half “old”) of N=2,656 subjects to match the size 

of the largest ICD-10 diagnostic group, and subsampled N=252 a balanced sublist to match the 

smallest ICD-10 diagnostic group. This allowed us to benchmark classification effect size across 

all ICD-10 diagnostic groups against classification effect size of age. To assess the classification 

accuracy, we employed the same Random Forest classification models (mentioned in the 

classification model section) on both the structural feature sets (surface and volume) and 
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functional data extracted through Independent Component Analysis, Probabilistic Functional 

Modes, and the Schaefer atlas (see supplements for details). 

Availability of source code 

Project name: WAPIAW3 

Project home page: https://github.com/tyo8/WAPIAW3  

Operating system: Platform independent 

Programming language: Python, shell 

License: MIT 

 

Data availability 

UK Biobank data [2, 3] are available following an access application process, for more information 

please see: https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access. This research 

was performed under UK Biobank application number 47267.  
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Figures 

 

Figure 1. Diagnostic classification based on surface-based structural neuroimaging features. 

Classification accuracy distributions across ICD-10 diagnostic groups for cortical surface features 

derived from T1-weighted structural MRI data. Only demyelinating diseases were classified 

significantly above chance. Mean classification accuracy across splits is shown as a single red 

dot within each distribution. Matching results using the volumetric feature sets are available in 

Fig. S1 and all numeric results are available in Table S6. 
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Figure 2. (a) Size-corrected diagnostic classification based on surface-based structural 

neuroimaging features. Classification accuracy distributions across ICD-10 diagnostic groups 

matched in sample size. All classification results matched for sample size are reported in Table 

S7. (b) Size-corrected multiclass diagnostic classification. Confusion matrix of the multiclass 

classification for all 17 ICD-10 diagnostic groups along with healthy controls. 
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Figure 3. Effect of classification models. Classifier performance for all ICD-10 diagnostic groups 

on T1-weighted structural MRI surface data. Results for all classification models are shown in 

gray dots and results for the best performing classification model are shown in colored dots. 

Because classification accuracy distributions for different classifiers heavily overlap, few gray dots 

are visible. Large red diamonds show mean classification accuracy of the best-performing 

classifier, while large black diamonds show mean classification accuracy across all classifiers. All 

classification results across different models are reported in Table S8. 
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Figure 4. Diagnostic and age classification across feature sets. Summary of classification 

accuracy distributions across all 17 diagnostic groups for structural, functional, and 

sociodemographic classification features. In each classification group’s swarm plot, the accuracy 

distribution of the feature set with the highest mean accuracy is shown in color; the rest are shown 

in gray. Of the diagnostic groups, only the depression group (N=2,692) was classified significantly 

above chance after multiple comparison corrections. Depression was significantly classified by 

sociodemographic features and three functional MRI features (full network connectivity matrices 

for the Schaefer parcellation, full network connectivity matrices for ICA parcellation at rank 150, 

and at rank and 300). Benchmark results for age (youngest versus oldest) classifications in both 

a large and small group (size-matched, respectively, to the largest and smallest diagnostic 

groups) are shown on the right, and approximate an upper bound on diagnostic classification 

accuracy in terms of effect size vs. sample size. All classification results are reported in Table S9. 
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