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Omics-based association studies typically consider the marginal ef-
fects of a feature, such as CpG DNA methylation, on a trait (e.g,
independent models for each feature). Although some methods
can assess all features together in joint and conditional estimation,
this is currently done on a trait-by-trait basis. Here, we intro-
duce MAJA, a method to learn shared and outcome-specific ef-
fects for multiple traits in multi-omics data. MAJA determines
the unique contribution of individual loci, genes, or molecular path-
ways, to variation in one or more traits, conditional on all other
measured ’omics” data genome-wide. Simulations show MAJA ac-
curately finds shared and distinct associations between omics-data
and multiple traits and estimates omics-specific (co)variances, al-
lowing for sparsity and correlations within the data. Applying
MAJA to 12 outcome traits in Generation Scotland methylation
data (n=18,264), we find novel shared epigenetic pathways among
cholesterol metabolism, osteoarthritis, blood pressure and asthma.
In contrast to marginal testing, we find only 10 CpG probes with sig-
nificant effects above the genome-wide background. This highlights
the need for joint association testing in highly correlated methyla-
tion data from whole blood and for studies of increased sample size
in order to refine epigenomic associations in observational data.

Keywords: multi-omics association, EWAS, methylation, predic-
tion, multi-trait.
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Introduction

-

Epigenetic mechanisms influence gene expression, cell differentiation, tissue development,
and disease susceptibility*#“. Measuring and tracking epigenetic changes through disease
progression can provide insight into disease pathogenesis®, elucidate environmental and
lifestyle factors influencing health, and provide biomarkers for disease diagnosis and risk
stratification®. To date, most studies have focused on determining the epigenetic basis of
traits individually. However, human phenotypes are highly correlated, with shared risk
factors and underlying pathways. Estimating the degree to which epigenetic effects are
shared across human traits has the potential to reveal shared disease etiology, improve
biomarker discovery and maximise outcome prediction.

In genomics, existing methods for the analysis of multiple correlated traits lack flex-
ibility as they: (i) model at most two phenotypes with multiple variance components®;
(i) are targeted only for prediction; (iii) fine-map genomic regions independently so that
estimates are not conditional on other genome-wide effects®; and/or (iv) conduct asso-
ciation testing one variable at a time”. Thus, we lack general methods suitable for a
range of "omics” data that analyze multiple outcomes jointly, allowing for the inclusion of
different data modalities (i.e. methylation, expression, sequence variation, etc.). A pre-
dominant focus has been on the estimation of genome-wide correlations®”, which estimate
the degree of similarity in the effects underlying these traits, but do not provide direct
insights into specific underlying shared processes. Ideally, we wish to identify individual
loci, genes, or molecular pathways that are both shared and unique between traits, and
estimate their effects conditional on all other loci, genes, or pathways genome-wide, de-
termining their unique contribution to phenotype. This joint modelling of effects between
traits would improve our ability to use multi-modal "omics” data for risk prediction and
patient stratification.

Here, we present MAJA, a multivariate multiple linear regression Bayesian joint sparse
model. Our Bayesian approach jointly estimates shared effect sizes for multiple traits, po-
tentially across different omics-data, while correcting for correlations within the data and
allowing for sparsity. It thus simultaneously finds shared and distinct associations between
omics-data and multiple traits, and estimates group-specific (co)variances. It is scalable,
flexible, and suitable for all existing high-dimensional genomics data. We demonstrate
our approach using the Generation Scotland data’™, a cohort of 18,264 individuals with
blood-based methylation measures, where we find both trait-specific and shared probe
effects and improve out-of-sample prediction as compared to single-trait models.
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Multivariate joint regression model: MAJA -

We developed a multivariate Bayesian multiple regression model (MAJA - MultivAriate
Joint bAyesian model) that jointly estimates omics effects and their corrections on multiple s
traits and performs variable selection, all while taking into account correlations within s
the data. Our model is suitable for the case where a number of ¢ phenotypes for n 3
individuals is measured within the matrix Y. The phenotype matrix is modelled to be 4
linearly related to the matrix containing p genomics measures X (e.g. SNPs, epigenetic «
probes, gene expression) as, 0

Y = X3 +e, (1)
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where the matrix B denotes the effect sizes for ¢ traits and e represents the residual 4
error matrix. Each column of the Y and X matrices is standardized. The parameters of
Equation I are estimated using a Gibbs sampler, an iterative Markov Chain Monte Carlo s

method. All details on MAJA can be found in the Materials and Methods section. a6

The effects of each genomic location j on the multiple traits, 3;, are assumed to have

a multivariate spike-and-slab prior distribution to accommodate zero effects sizes a8
ﬁj ~ (1 —W)MVN(O(],V) +7T50, (2)

where 7 is the probe exclusion probability common to all traits, MV N(0,, V) is a mul- 4
tivariate normal distribution with mean 0 and (co)variance V' and d, the Dirac delta s
distribution. Through sampling the effects of each probe conditional on the other probes, =
correlations between the probes are automatically taken into account in our model. 52

Moreover, MAJA is able to handle multiple X matrices. For example: (i) (epi)genetic ss
information split into groups where the (epi)genetic covariances are estimated within each s
group; and/or (ii) multi-modal data, where different data sets are combined, like CpG s
sites and single nucleotide polymorphisms (SNPs). Effect sizes are determined jointly, s
thus the effects each column of X are estimated conditional on all others, taking into s
account correlations across groups and omics layers. 58

We demonstrate that MAJA accurately infers (co)variances in one or multiple groups s
using simulations as described in the Materials and Methods and shown in Figures and o
We also show that the estimated effects can be used to predict into a test data set, e
to achieve out-of-sample prediction accuracy that conforms to theoretical expectations e
and improves over single-trait models, as can be seen in Figures and Finally, s
we demonstrate the ability of MAJA to localise effects accurately to the single-variable o4
level, conditional on all other variables, by calculating the true positive (TPR) and false s

discovery (FDR) rate across all simulation scenarios, displayed in Figure 66
Multi-trait epigenetics in (Generation Scotland o

We apply MAJA to 18,264 individuals in Generation Scotland for whom DNA methylation s
measures from whole blood were available at 831,349 CpG sites for twelve outcome traits, oo
split into six cognitive, two metabolic and four disease traits. For disease outcomes that o
were commonly self-reported at the time of blood sampling, the phenotypic variance =
attributable to the methylation probes ranged between 24% for both depression and 7
asthma, to 69% for hypertension. For clinically measured variables, we find that the 7
phenotypic variance attributable to the methylation probes was 81% for body mass index 7
(BMI) and 73% for ratio of high density lipoprotein over total cholesterol. In addition, we 7
extend our analysis to a series of cognitive evaluations and educational attainment metrics, 7
finding that between 32% and 73% of the phenotypic variation can be attributed to the
CpG probes The estimated variances, covariances between the traits and correlations
are shown in Figures [I] and 2] The values along with the 95% credible intervals are 7
listed in Supplementary Tables [SI} [S4 Heatmaps of the correlations can be found in e
Supplementary Figure @ 81

We find a strong negative correlation of epigenetic effects between BMI and ratio of &
high density lipoprotein over total cholesterol and that CpG probe effects were positively s
correlated for BMI and all other traits. CpG effects for both ratio of high density lipopro- s


https://doi.org/10.1101/2024.04.15.589547
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.15.589547; this version posted April 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Table 1: Associated probes with inclusion probability > 95%. Traits listed are those
where the effect size of the probe does not include 0 within their standard deviations
(SD). Traits tested with 1SD are in brackets, 2SD without brackets.

Probe Gene Traits Group
cgl7075888 PDK4, AC002451.3 (BMI), CHL
cg00574958 CPT1A BMI, CHL, (BP)
cg05325763 CPT1A BMI, (CHL)
cg06307915 CETP (CHL) meta-
cg11024682 SREBF1 BMI, (CHL) bolic/
cgl7739917 RARA (CHL) disease
€g27243685 ABCGI1 BMI, CHL, (BP)
cg06500161 ABCGI1 BMI, CHL, BP

~cg07741821 | RP5-1007F24.1, KIAA0087 | (EY), EQ, (DS), (LM), (VT), (VO) 7cioéniitiiv; ’

cgl7739917 RARA EY, EQ, DS, LM, (VT), (VO)

tein over total cholesterol and self-reported hypertension are positively correlated with e
those for self-reported osteoarthritis. Interestingly, CpG effects for self-reported asthma s
are negatively correlated with those for hypertension, implying asthma-associated epige- &
netic probes have an inverse association for hypertension. 88

We find weak correlations of epigenetic effects among digit symbol and vocabulary s
cognitive tests, but generally strong correlations among all other tests. Cognitive tests o
share underlying methylation probe effects with both years of education and educational
attainment. Note here that the highest educational attainment is scored as a "1” (see Ma- o
terials and Methods) and thus the negative correlation reflects methylation effects acting o3
in the same direction for longer years in education and higher educational attainment. o

There are no strong residual correlations, as can be seen from Figures[S7/and [S8, which o
implies that methylation probe variation captures the vast majority of the signal of trait o
correlations. Residual covariances that are non-zero are often in contrast to the methy- o
lation covariance, implying relationships among risk factors not captured by methylation o
patterns in whole blood differ to those reflected in the covariance of methylation probes o

effects. 100
We find nine unique probes whose effects, conditional on those of all other probes, have 10

an posterior inclusion probability (PIP) above 95%. MAJA is designed such that a probe 10
or locus affects all the traits or none of them, but the estimated effect size is allowed 10
to differ for each trait, e.g. it can be zero for some traits. Thus, to detect significant 10
associations we use the posterior distribution of effect sizes to determine which of the 10
estimated effects do not include 0 within either one or two standard deviations. Using 1o
both the inclusion probability and the strength of the effect size provides a robust test 1o
statistic for fine-mapping CpG effects, as shown in Figure [S5 A list of the probes, their 1o
related genes and their associated traits is given in Table [1] 100

None of the probes with PIP > 0.95 within the metabolic and disease traits group 1o
are associated with depression, osteoarthritis or asthma. Of the seven we discover, almost 1
all are shared between BMI, ratio of high density lipoprotein over total cholesterol, and 1
hypertension. These probes are located near ABCG1 which controls lipoprotein lipase 13
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Figure 1: Estimated epigenetic variances (top), covariances (middle) and correlations
(bottom) for body mass index (BMI), ratio of high density lipoprotein over total choles-
terol (CHL), high blood pressure (BP), depression (DEP), osteoarthritis (OA) and asthma
(AT) in the Generation Scotland methylation data using 18,624 individuals and 831,349
probes. The error bars in the upper plot represent the 95% credible interval. The corre-
lations are calculated as covariances scaled by the corresponding variances. The uncer-
tainties are calculated using the posterior means + 95% credible interval.
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Figure 2: Estimated epigenetic variances (top), covariances (middle) and correlations
(bottom) for years in education (EY), highest qualification in education (EQ), digit sym-
bol (DS), logical memory (LM), verbal fluency (VT) and vocabulary (VO) tests in the
Generation Scotland methylation data using 18,624 individuals and 831,349 probes. The
error bars in the upper plot represent the 95% credible interval. The correlations are
calculated as covariances scaled by the corresponding variances. The uncertainties are
calculated using the posterior means + 95% credible interval.
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(LPL) activity and promotes lipid accumulation in human macrophages in the presence of 14
triglyceride-rich lipoproteins; CPT1A which is the gatekeeper enzyme for mitochondrial s
fatty acid oxidation; and PDK/, a regulator of pyruvate dehydrogenase (PDH), which in- 1
fluences acetyl-CoA from beta-oxidation into the citric acid (TCA) cycle, thereby leading 17
to enhanced fatty acid (FA) oxidation and slowing of glycolysis or glycolytic intermediates s
to alternative metabolic pathways. We then additionally find three genes linked to ratio 1o
of high density lipoprotein over total cholesterol: CETP which is a hydrophobic plasma 12
glycoprotein that mediates the transfer and exchange of cholesteryl ester and triglyc- 1z
eride between plasma lipoproteins, playing an important role in high density lipoprotein 12
metabolism; SREBF1 which regulates the uptake and synthesis of cholesterol; and RARA 123
a key regulator of lipid /glucose metabolism. All of these associations have been reported 124
in the epigenome wide association study (EWAS) catalogue for these, or related, traits; 12
however, here we are able to explicitly determine for which traits their effects are shared 12
and for which they act in a trait-dependent manner and to show that the association 12
holds conditional on all other methylation loci. 128

Interestingly, the methylation effects of probe cgl17739917 near RARA which is asso- 12
ciated with ratio of HDL over total cholesterol is also linked to all cognitive tests. Also 130
cg07741821 near genes RP5-1007F24.1, KIAA0087 is associated with variation in all cog- 1z
nitive traits. These two associations have not been reported before and taken together, our 13
results show that key pathways are identified by our model whose effects are determined 133
conditional on the data structure and all other probe effects. 134

Finally, we wished to demonstrate that our approach facilitates improved out-of- 135
sample prediction as compared to single-trait approaches. Taking the CpG effects es- 13
timated in Generation Scotland, we predict traits that were measured in the Lothian 13
Birth Cohort (LBC) 1936"%. We find that multi-trait predictors generally outperform 13
the comparable single-trait predictors calculated using the BayesR model®, as shown in 13
Table 2] Of particular note is the predictor of general cognitive function, which explained 14
up to 8.6% of the variance. This is more than double the performance of a previous 1
predictor, derived from a subset of the Generation Scotland dataset™?. 142

Discussion 13

We presented MAJA, a Bayesian method that jointly estimates the effect sizes of (epi)- 14
genomic variants, as well as correlations of the effects for multiple traits, while correcting 1ss
for correlations among variables and allowing for sparsity. We extend previous studies 14
both in terms of methodology and in the phenotypes studied. The variance estimates 14
obtained for BMI agree with previous estimates?, as does our finding of a strong nega- s
tive correlation of epigenetic effects between BMI and ratio of high density lipoprotein 14
over total cholesterol®. We highlight novel CpG covariances among hypertension and os- 150
teoarthritis, ratio of high density lipoprotein over total cholesterol and osteoarthritis, BMI 15
and hypertension, and BMI and asthma, and our results imply that methylation patterns s
of cholesterol metabolism related genes in whole blood are associated with osteoarthritis 1s3
pathogenesis and that there is potentially a complex, yet to be fully explored, relationship 1ss
between hypertension and asthma. 155

In this work, we focused on developing a statistical model and associated software, and 156
to give a demonstration of how multi-trait Bayesian models can improve the discovery sz
of shared loci and external trait predictions. There are several limitations to our study, 1ss
mainly the sample size of Generation Scotland, which whilst representing one of the 1so
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Table 2: Out-of-sample prediction accuracy of episcores (incremental test R?) created from
MAJA as compared to estimates made using the single-trait BayesR model. Episcores
were created for a given trait ("Episcore”), using CpG probe estimates from either single
trait ("Univariate”), or multitrait ("Multivariate”) models. The episcores were then used
to predict a series of outcome traits ("Traits”) in the Lothian Birth Cohort (LBC) 1936
study (n=861). The R? values give the incremental test R? of including the episcore in
a linear model to predict each outcome, adjusting for age and sex. WTAR refers to the
Wechsler Test of Adult Reading; NART to the National Adult Reading Test; BMI to body
mass index; CHL to ratio of high density lipoprotein over total cholesterol in whole blood.
All scores refers to the variance explained by including all predictors together within the

model.
R2
Trait Episcore BayesR MAJA
Univariate | Multivariate

BMI BMI 14.94 16.86

BMI (log) BMI 14.84 16.8

CHL CHL 7.02 5.06

Digit symbol Digit symbol 3.17 3.35
Logical memory Logical memory 0.47 1.06
Verbal fluency Verbal fluency 0.88 0.74
Years in education Years in education 4.10 5.32
WTAR Vocabulary 3.72 4.03

NART Vocabulary 4.62 4.68

General cognitive function Logical memory 3.2 5.9
General cognitive function Vocabulary 5.2 5.5
General cognitive function Verbal total 2.2 4.8
General cognitive function Digit symbol 5.2 6.7
General cognitive function Education years 6.3 7.6
General cognitive function All scores 8.6

largest single cohorts with methylation data available, still has very limited power to 10
detect associations at > 95% confidence and to produce high out-of-sample accuracy, e
relative to the estimated total variance attributable to all CpGs on the array. Our model e
will likely return fewer associations than standard one-probe-at-a-time significance testing. 163
However, single probe analyses do not control for correlations across probes and effects are 16
not estimated conditional on all other probes effects. Thus, single-probe testing likely gives 165
estimates that are inflated by correlations and by general data structure and confounding. 1es
In contrast, effect sizes and significance are determined jointly within MAJA which we 16
expect (and show in simulation) to provide an accurate determination and localisation of 1es
specific probe effects. 160

Note that, within our model, a probe will be included for all traits when it has an effect 170
on at least one of the traits. However, the estimates for each trait are freely sampled from 1n
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a multivariate normal with zero mean and thus there is no reason to expect a directional 17
bias in the effect size estimates for traits for which the probe is not associated. However, 17
estimation error may increase if many small effects are sampled for traits with strong 17
covariance (BMI-ratio of high density lipoprotein over total cholesterol, for example) and s
this is likely the reason for the loss of out-of-sample accuracy, which we see for the multi- 17
trait predictor of ratio of high density lipoprotein over total cholesterol in the LBC1936. 17
This is a modelling choice to facilitate improved association testing and can be overcome 1
by simply setting the effects of these probes to zero if the posterior estimate includes zero 17

within the standard deviation. ) ) 180
Additionally, we highlight that CpG measures in whole blood do not necessarily rep- s

resent the correct tissue for understanding mechanistic pathways among outcomes. A full 1s
characterisation of methylation across multiple tissues is needed to fully capture these re- 18
lationships. With increasing cross-tissue data, we expect that the ability of MAJA to fit 1s
multiple groups could be useful, where multiple cross-tissue methylation measures could 1ss
be fit within the model to determine patterns of shared effects across tissues. Further s
limitations are that while MAJA is able to handle larger biobank scale data sets through s
the use of message-passing interface (MPI) coding, at present it remains computationally s
expensive and is set up in such a way that all data needs to fit into RAM. Having demon- 1o
strated the effectiveness of this framework, our future work will now focus on alternative 10
algorithms for joint inference from this model within a genomics setting. 101

In summary, our approach provides a method to learn shared and trait-specific epige- 10
netic pathways and to improve prediction of outcomes from omics data. Our approach can 103
be used in future to understand the multi-stage transition from a “pre-disease” to “dis- 10
ease” state, with the overall goal of improving primary prevention, patient stratification, 1o

and subsequent clinical management. 196
Materials and methods o7
Statistical model 108

Consider n individuals with q observed phenotypes and p recorded (epi)genetic markers. 10
The relationship between the phenotype matrix, Y, of dimensions (n x ) and the design 20
matrix, X, of dimensions (n x p) is modelled as 201

Y = X3 +e¢, (3)

where the (p x q) matrix 3 represents the effect sizes while € is the residual error matrix 20
with dimensions (n x q). The design matrix can be split into various groups according 203
to biological annotations. The design and phenotype matrix are standardized for each 20

column. o ) ) ) 205
We assume that Y is distributed like a matrix normal with mean X3, among-row 2

variance I, (where I, is the unitary matrix with dimension (n x n)) and among-column 207
variance ¥ with dimension (q x q): 208

Y ~ MN(XB,1,, %) (4)
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The matrix normal distribution is related to the multivariate normal as 200
vec(Y) ~ MV N(vee(X3), X ®1,) (5)

where vec(Y') represents the vectorization of Y and ® the Kronecker product. The 20
prior distribution for the residual error matrix € is also assumed to be a matrix normal on

MN(O(an),]In, E) 212

The effects of each marker j on the multiple traits, 3;, is modelled as a multivariate s

normal with mean 0 and variance Vj of dimensions (q x q): 214
Bj ~ MVN(0y, Vy), (6)

where g refers to the group the marker is attributed to. The group variance Vj is specific 2
to each group. To be able to model sparsity in the effects, the Dirac delta dy is included 2

in the prior distribution of 3; with the prior group-specific exclusion probability m,: 217
Bj ~ (1 —mg) MV N(0q, Vy) + myd0, (7)
where 7, is modelled by the Dirichlet distribution. 218
Covariances V, as well as 3 (jointly denoted as cov) are modelled as outlined in 2w
Section 2 of Ref.™* using a modified Cholesky decomposition: 220
cov=L'D(L™")T, (8)
where 221
d 0 - 0
0 dy --- 0
| S i (9)
0 - - d,
1 0 0
l 1 - 0
L=|" . | (10)
g lp - 1

This parameterisation of the variance matrices is advantageous compared to the inverse 22
Wishart distribution (which is the conjugate of the multivariate normal distribution) 22
as the elements in L are unrestricted. They are modelled with a multivariate normal 22
distribution with prior mean 0 and variance sy, = 0.0001. The prior distribution of 2o
the diagonal elements of D, which have to be positive, are set to an inverse Gamma 2
distribution G~!(a/2, ab/2), where a and b are the prior shape and scale parameter of the 2
inverse Gamma distribution (here a =2 and b = 0.1). 220

10
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Gibbs sampler 230

To estimate the unknown parameters in Equation [3, a Gibbs sampler which is a Markov oun
Chain Monte Carlo (MCMC) method, is set up. The Gibbs sampler runs the following 2.
steps for a chosen number of iterations: 233

1. Sample intercept from a normal distribution. 234

2. Randomly pick a marker j and sample 3; from its conditional posterior distribution 235

Bj ~ (1 — 1) MV N (pj, §23) + 7500 (11)
with posterior covariance 236
. _ —1 —1y-1
Q=((n-D)E"+V,)", (12)
posterior mean 237
p; =vec((X e+ (n—1)B7")QE1), (13)
with 85" referring to the effects of marker j in the previous iteration, and posterior 2
exclusion probability 230
r
T, = —— 14
TV e (14)
where r = (129). 240
3. Repeat step (2) until all markers are sampled. 241

4. Sample exclusion probabilities 7, for each group from Dirichlet(p, — Z,, Z,;), where 2
Dy is the total number of markers and Z, is the number of non-zero markers in each 24

group. 244
5. Calculate Vy = L' Dy(L,")" for each group by: 205
(a) Sampling the diagonal elements of D, from 246
_q,a ab
di ~ F (* + Zg, —_— —|— wii), (15)
2 2
where w;; is element (i,i) of w = ZngﬁgTﬁng;. When sampling with more 2
than one group, Z, and w are group-specific. 248
(b) Sampling the elements of the lower triangular matrix L, from a multivariate 24
normal distribution with mean 250
Si .
mi =~ (2,8, 1] (16)
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and variance 251

5 = ;(Zgﬁgﬂg)[l i1 0] + soll (17)

for each row i of L, where [1 : 7,1 : i] denotes the submatrix of (Zgﬁg,BQT) 252

between rows 1 to i and columns 1 to i and sg is the initial variance of the 2s3
multivariate normal. 254

6. Calculate the covariance ¥ in the same way as Vj. 255

The effects of the markers are sampled conditional on all the other markers, thus 2s6
automatically taking into account correlations betweeen markers or linkage disequilibrium 25
(LD). The means and variances of 8, V; and X averaged across iterations (excluding the s
results from the burn-in period) are stored. 250

The Gibbs sampler is run for in total 5000 iterations, whereof 1000 are discarded as 260
burn-in. The burn-in period of 1000 is chosen to be well away from the point where the 26
sampler first reaches convergence to make sure that the values for posterior means are 2
only taken when the estimates are stable. Multiple chains are run after the burn-in period 263
for the estimation of the posterior means. 264

The code requires as input a phenotype matrix without any missing values and a 265
standardized design matrix which has to fit into RAM. For further details on the imple- 266
mentation of the sampler using a Bulk synchronous parallel Gibbs sampling scheme with 267
message passing interface’, see links in Code availability. 268

Generation Scotland methylation data 269

Generation Scotland is a large population-based, family-structured cohort of over 24,000 270
individuals aged 1899 years™. The study baseline took place between 2006 and 2011 2n
and included detailed cognitive, physical, and health questionnaires, along with sample 2n
donation for genetic and biomarker data. 273

The Generation Scotland methylation (GSM) data includes cytosine-phosphate-guanine »
dinucleotides (CpG sites) for 18,413 individuals. DNA methylation data were processed 2
and quality-controlled in four batches, following broadly similar procedures. Probe and 2
sample quality was assessed using the meffil package in R*®. Probes were excluded based 27
on low detection P-value (> 0.5% of samples with detection P > 0.05 [batch 1]; > 1% s
of samples with detection P > 0.01 [batches 2-4]) and low bead count (< 3 in > 5% 2w
of samples). Samples were removed based on 1) a high proportion of probes with high 2s
detection-P-values (> 1% of CpGs with detection P-value > 0.05 [batch 1]; > 0.5% of 2a
CpGs with detection p-value > 0.01 [batches 2-4]), 2) where recorded sex did not match 2
predicted sex based on information from sex chromosomes, and 3) outlier values based on 2
log median intensites of methylated vs unmethylated signals. The four quality-controlled 2ss
batches were normalised as a single dataset using the dasen method in wateRmelon”. s
The final set of 831,349 methylation probes were then adjusted for age, sex, smoking and 2

batch and standardized to mean zero and variance one. 287
We jointly analyze the following phenotypes: body-mass-index (BMI kg/m?); ratio s

of high density lipoprotein over total cholesterol (CHL, both measured in mmol/L); self- 2s
reported high blood pressure (BP, 2472 cases); self-reported depression (DEP, 1807 cases); 20
self-reported osteoarthitis (OA, 1355); self-reported asthma (AT, 2097 cases); logical mem- 201
ory (verbal declarative memory), calculated from the Wechsler Logical Memory test by 20

<

4
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taking the sum of immediate and delayed recall of one oral story*; digit symbol, ascer- 2o
tained from the Wechsler Digit Symbol Substitution test in which participants recoded 20
digits to symbols over a 120 second period*!; verbal fluency phenotype, measuring exec- 20
utive functioning, was derived from the phonemic verbal fluency test, using the letters C, 206
F and L, each for 1 min*Y; vocabulary, measured using the Mill Hill Vocabulary Scale, 207
junior and senior synonyms combined™; year spent in education; and finally highest ed- 2
ucational qualification achieved. Years spent in education was self-reported as the total 20
years attended school/study full-time, with coding 0: 0, 1: 1-4,2: 5-9, 3: 10-11, 4: 12-13, 300
5: 14-15, 6: 16-17, 7: 18-19, 8: 20-21, 9: 22-23, 10: more than 24 years. For highest sn
educational qualification participants were asked what the highest educational qualifica- 30
tion they have obtained, with data then coded as: 1 - College or University degree, 2 - 303
Other professional or technical qualification, 3 - NVQ or HND or HNC or equivalent, 4 304
- Higher Grade, A levels, AS levels or equivalent, 5 - Standard Grade, O levels, GCSEs 30
or equivalent, 6 - CSEs or equivalent, 7 - School leavers certificate, 8 - Other, 9 - No 30
Qualification. All phenotypic data are standardized to mean zero and variance one. 307

Simulation study 208

To demonstrate that our model is capable of accurately inferring phenotypic variations o
and correlations between multiple traits, we simulated epigenetic effects for two traits for suw
the methylation data of chromosome 1 (p = 80, 545 probes), using three different scenarios su

for the epigenetic (co)variance matrix, 312
v ( % 5162>
SBa B3
1. Scenario 1 represents a covariance matrix where there is no correlation between the s
two traits: 314
0.3 0.0
Vi= :
0.0 0.5
2. The second scenario introduces negative correlation between the two traits: 315

v 0.3 —0.5-v/03-05
27 \-05-v03-05 0.5 '

3. Scenario 3 assumes positive correlations between the two traits: 316

Vi _ 0.3 4+05-v/03-05
37 \4+05-v/03-05 0.5 ‘

These matrices were scaled by the number of causal markers py = 1000 to sample 317
the epigenetic effects from a multivariate normal distribution. When multiplying the s
simulated effects with their respective standardized columns of the X matrix, we obtained 31
an epigenetic value, g, for each individual and trait. In each scenario, a vector of residuals 32
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was sampled from a normal distribution with variance (I, — var(g)) with the covariance sx
elements set to 0, and added to g to obtain a matrix of phenotypes, Y. We repeated 3
the data generation ten times for each of the three scenarios, where the causal effects 32
were selected randomly. The datasets were then split into training data (n=17,264) and s
data (n=1000) for replication. The training data were anlaysed with MAJA, running s
the model for 2000 iterations. The posterior mean estimates of the effect sizes and their sz
(co)variances were calculated using the last 1000 iterations. The posterior means of the s
effects covariances reproduce the true values very well for all three scenarios, as can be 32

seen in Figure [S1] 20
The estimated effect sizes, 3, were then used to create predictors, Yy,eq; = X;3, for s
each individual 7 in the test data to obtain the coefficient of determination 331
R2 —1_ Zz (Y; B Y;W_ed,i)Q (18)
> (Yi=Y)?

where Y is the mean of generated phenotypes. Figure shows that the estimated R? s
agrees well with the expected R? when the traits are correlated. The expected value s
is calculated according to Equation 34 in Ref.” assuming M,.;; = 30,000 independent sa
markers, a number estimated from the training data. The expected R? is dependent on s
the assumed number of independent markers which is likely different for the case where 33
the two traits are uncorrelated, which explains the large difference for estimated and s
expected R? for V;. 338

We determined the true positive (TPR) and false discovery (FDR) rates of MAJA 33
across simulation scenarios. True positives were identified as probes for which a causal 30
effects was simulated, where the posterior inclusion probability was > 0.95 and for which 3a
the posterior mean effect estimate was > £2 SD from zero. TPR was calculated as s«
the number of true positives divided by the number of simulated causal variants. False 34
positives were identified as probes that were not simulated to be causal variants, where sz
the posterior inclusion probability was > 0.95 and for which the posterior mean effect 34

estimate was > £2 SD from zero. FDR was calculated as the number of false discoveries 34
divided by the total number of discoveries. Figure |S5| shows the TPR and FDR for the s«

two_simulated traits across scenarios. _ 348
Finally, to demonstrate that MAJA is also able to handle multiple groups and accu- 3

rately estimate the covariances of each group, epigenetic effects and phenotypic informa- s
tion for two traits for the methylation data of chromosome 1 (p = 80,545 probes) and 3
chromosome 2 (p = 60,707 probes) were generated. The effect sizes in the two chro- s
mosomes were generated according to three scenarios, where the second number in the s
subscript refers to the group (in this case chromosome): 354

0.3 0.0 0.5 0.0
Via = (0.0 0.5) V12 = (0.0 0.3)

0.3 —0.5-v0.3-0.5
—0.5-v0.3-0.5 0.5 ’

1.

Vaa =

k]
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355

Voo _ 0.5 —0.5-v/03-0.5
227\ _05-/03-05 0.3

3.
Ve _ 0.3 4+0.5-v/03-0.5
817\ 105.-/03-05 0.5 :
356
Ve _ 0.5 10.5-/0.3-0.5
327 405-4/03-05 0.3

Each group was generated to have 500 causal markers. In each of the groups, the s
posterior means of the effects covariances reproduce the true values very well for all three s
scenarios, as displayed in Figure [S2] Figure shows that the estimated and expected 350
R? when the effects are estimated for two different groups with different covariances. The 360
R? values agree well when the traits are correlated. 361

Prediction into the Lothian Birth Cohort 362

The Lothian Birth Cohort of 1936 (LBC1936) represents a longitudinal study of aging®. ses
The 1091 cohort members were all born in 1936 and have been assessed for a wide variety e
of health and lifestyle outcomes. DNA has been collected at each clinical visit. In the ses
present study, we considered DNA methylation data (Illumina 450k array) from whole se
blood, taken at mean age 70, for analysis. Details of the collection and processing of the e
data have been reported previously®. In brief, after quality control to remove poorly ses
performing methylation sites, samples, and individuals with mismatching genotypes or seo
predicted sex, a sample of 861 individuals was available for prediction analysis. The 3w
methylation and phenotypic data were processed in the same manner as GS. Additional sn
phenotypes in LBC1936 were the Wechsler Test of Adult Reading; the National Adult s~
Reading Test; and a general measure of cognitive function. 373

In LBC1936, BMI is calculated as weight in kilograms divided by height in meters. su
Weight and height were assessed at the wave 1 (baseline) clinic appointment. HDL choles- s
terol (mmol/L) and total cholesterol (mmol/L) are blood-based measurements from sam- s
ples given in clinic at the baseline appointment. The cholesterol ratio is calculated as s
HDL cholesterol divided by total cholesterol. Scores for thirteen cognitive tests were s
available across five waves of data collection. Testing was performed triennially from age s
70 to 82. Visuospatial ability was measured using the Block Design, Matrix Reasoning s
(WAIS-IIIUK) and Spatial Span (WMS-IIIUK) tests. Verbal ability was measured us- s
ing the National Adult Reading Test, Wechsler Adult Reading Test and Verbal Fluency ss
Test (using letters C, F and L). Memory was assessed via the Verbal Paired Associates, ss
Logical Memory — a combination of immediate and delayed memory (WMS-IITUK) and  3s
Digit Span Backwards (WAIS-ITTUK) tests. Processing speed was evaluated via the Digit s
Symbol Substitution Test, Symbol Search (WAIS-IITUK), Choice Reaction Time and In- s
spection Time tests. 387

A latent measure of general cognitive function was obtained by using confirmatory ss
factor analysis in a structural equation modelling (SEM) framework using the R pack- s
age Lavaan (version 0.6-12)"%. A first-order hierarchical cognitive model was specified. 30
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Specifically, levels and change in general cognitive functioning were modelled with latent 3o
growth curve model (LGCM) using a Factor of Curves specification®). Intercepts and s0
slopes of each cognitive test were used to indicate a latent intercept and slopes of general 30
cognitive function and change. The growth curve slopes were weighted by mean lag time 304
between each wave and baseline. Marker method was used to scale according to the first o
variable, and all models used full information maximum likelihood to include all data so
available. Negative residual variances were fixed to zero. Residual covariance between o
tests in the same cognitive domain were specified?. 308

Episcores were projected into LBC1936 wave 1 methylation data (n = 861). Linear o0
regression was used to model each episcore (as a predictor) in relation to the outcome 40
variables. Incremental R? estimates are reported as the differences between models ad- 4o
justing for age and sex compared to those that additionally include the episcore. For o
the variance explained in general cognitive function level, linear regression models were 403
performed within Lavaan, with the G intercept from the latent growth curve models used o
as the outcome (see Ref.*¥). Model fit and test loadings can be found in Supplementary s

Table . 406
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Table S1: Estimated posterior (co)variances, V, and 95% confidence intervals (CI) for
body mass index (BMI), ratio of high density lipoprotein over total cholesterol (CHL),
high blood pressure (BP), depression (DEP), osteoarthritis (OA) and asthma (AT).

variance 1% 95% CI
BMI 0.8182 0.0270
CHL 0.7239 0.0339
BP 0.6877 0.0526
DEP 0.2426 0.0361
OA 0.5750 0.0777
AT 0.2367 0.0345

BMI-CHL | —0.2939 | 0.0262
BMI-BP 0.1408 0.0274
CHL-BP | —0.0306 | 0.0303

BMI-DEP | 0.0692 0.0232

CHL-DEP | 0.0102 0.0321
BP-DEP 0.0328 0.0392
BMI-OA 0.0721 0.0278
CHL-OA 0.0827 0.0397
BP-OA 0.2794 0.0488
DEP-OA 0.0017 0.0260
BMI-AT 0.0392 0.0245
CHL-AT | —0.0096 | 0.0242

BP-AT —0.0679 | 0.0336
DEP-AT 0.0146 0.0106
OA-AT 0.0103 0.0384
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Table S2: Estimated posterior (co)variances, V, and 95% confidence intervals (CI) for
years in education (EY), highest qualification in education (EQ), digit symbol (DS),
logical memory (LM), verbal fluency (VT) and vocabulary (VO) tests.

variance 1% 95% CI
EY 0.5791 0.0760
EQ 0.7778 0.0750

DS 0.6446 0.0475
LM 0.3232 0.0514
VT 0.4247 0.0647
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Table S3: Correlations, p, calculated from the posterior (co)variances for body mass index
(BMI), ratio of high density lipoprotein over total cholesterol (CHL), high blood pressure
(BP), depression (DEP), osteoarthritis (OA) and asthma (AT), for the cases where the
covariances were different from 0. The upper and lower uncertainties are calculated using
the posterior means 4= 95% credible interval.

correlation p lower uncert. | upper uncert.
BMI-CHL | —0.3819 0.0513 0.0474
BMI-BP 0.1877 0.0277 0.0249
BMI-DEP 0.1553 0.0416 0.0352
BMI-OA 0.1051 0.0345 0.0294
CHL-OA 0.1282 0.0548 0.0458
BP-OA 0.4443 0.0340 0.0278
BMI-AT 0.0891 0.0522 0.0439
BP-AT —0.1683 0.1149 0.0918
DEP-AT 0.0610 0.0415 0.0309

Table S4: Correlations, p, calculated from the posterior (co)variances for years in edu-
cation (EY), highest qualification in education (EQ), digit symbol (DS), logical memory
(LM), verbal fluency (VT) and vocabulary (VO) tests, for the cases where the covari-
ances were different from 0. The upper and lower uncertainties are calculated using the
posterior means + 95% credible interval.

correlation P lower uncert. | upper uncert.
EY-EQ -0.7661 0.2544 0.2022
EY-DS 0.5108 0.0209 0.0174
EY-LM 0.4930 0.0460 0.0344
EY-VT 0.3700 0.0661 0.0497
EY-VO 0.5046 0.0960 0.0731
EQ-DS -0.5366 0.1232 0.1038
EQ-LM -0.5083 0.2151 0.1658
EQ-VT -0.4125 0.1739 0.1351
EQ-VO -0.5640 0.2086 0.1642
DS-LM 0.5243 0.0215 0.0179
DS-VT 0.3364 0.0485 0.0391
DS-VO 0.1616 0.0666 0.0539
LM-VO 0.2318 0.1116 0.0815
LM-VT 0.3173 0.0949 0.0702
VO-VT 0.5531 0.0269 0.0200
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Table S5: Loadings of cognitive tests on intercept. Latent measures of general cogni-
tive function were generated using confirmatory factor analysis in a structural equation
modelling (SEM) framework. Levels and change in general cognitive functioning were
modelled with latent growth curve model (LGCM) using a Factor of Curves specification.
The intercepts were used to indicate a latent intercept of general cognitive function and
the test loadings are given. Model fit measures were calculated including confirmatory
factor index (CFI = 0.958), Tucker-Lewis index (TLI = 0.957), root mean squared er-
ror approximation (RMSEA = 0.029) and the standardised root mean squared residual
(SRMR = 0.061).

Test Intercept term
Block design 0.702
Matrix reasoning 0.792
Span total 0.642
NART 0.685
WTAR 0.679
Verbal fluency 0.534
Verbal paired associates 0.543
Logical memory 0.615
Digit backwards 0.722
Symbol search 0.788
Digit symbol 0.668
Inspection time 0.491
Four choice reaction time 0.526
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simulations with chr. 1 of GSM data (n=17,264)
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Figure S1: Simulation study results: Posterior mean estimates of the effects (co)variance
components subtracted by their true value for each simulated dataset for three different
covariance scenarios, denoted as V; to Vi. The error bars represent the 95% credible
intervals.
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Figure S2: Simulation study results: Posterior mean estimates of the effects (co)variance
components subtracted by their true value for each simulated dataset for three different
covariance scenarios, denoted as V; to V3, and two groups. The error bars represent the
95% credible intervals.
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Figure S3: Mean expected and predicted coefficient of determination, R?, for 10 simula-
tions and three covariance scenarios (V; to V3) and a test dataset of 1000 individuals.

n = 1000, Mg = 30000

Vi $ estimated Vs Vs
$ expected

0.8 | i
0.6+
0.4 *

; ; | |
0.2
0.0 T " T . - .

& 7 7 7 a 7

Figure S4: Mean expected and predicted coefficient of determination, R2, for 10 simu-
lations and three covariance scenarios (V; to V3) and a test dataset of 1000 individuals,
where the effects were estimated for two different groups.
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simulations with chr. 1 of GSM data (n=17,264)
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Figure S5: True positive rate (TPR) and false discovery rate (FDR) across 10 simulations
(colours) for three different covariance scenarios, denoted as Vi to V3, between two traits.
MAJA controls the FDR well below 2% for all scenarios, with the TPR (power) dependent

upon the relationship among the traits.
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Figure S6: Correlations calculated from the posterior (co)variances for (left) body mass
index (BMI), ratio of high density lipoprotein over total cholesterol (CHL), high blood
pressure (BP), depression (DEP), osteoarthritis (OA) and asthma (AT) and (right) years
in education (EY), highest qualification in education (EQ), digit symbol (DS), logical
memory (LM), verbal fluency (VT) and vocabulary (VO) tests.
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Figure S7: Estimated residual variances (top) and covariances (bottom) for body mass
index (BMI), ratio of high density lipoprotein over total cholesterol (CHL), high blood
pressure (BP), depression (DEP), osteoarthritis (OA) and asthma (AT) in the Generation
Scotland methylation data using 18,624 individuals and 831,349 probes. The error bars
represent the 95% credible interval.
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Figure S8: Estimated residual variances (top) and covariances (bottom) for years in edu-
cation (EY), highest qualification in education (EQ), digit symbol (DS), logical memory
(LM), verbal fluency (VT) and vocabulary (VO) tests in the Generation Scotland methy-
lation data using 18,624 individuals and 831,349 probes. The error bars represent the
95% credible interval.
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