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Omics-based association studies typically consider the marginal ef-
fects of a feature, such as CpG DNA methylation, on a trait (e.g,
independent models for each feature). Although some methods
can assess all features together in joint and conditional estimation,
this is currently done on a trait-by-trait basis. Here, we intro-
duce MAJA, a method to learn shared and outcome-specific ef-
fects for multiple traits in multi-omics data. MAJA determines
the unique contribution of individual loci, genes, or molecular path-
ways, to variation in one or more traits, conditional on all other
measured ”omics” data genome-wide. Simulations show MAJA ac-
curately finds shared and distinct associations between omics-data
and multiple traits and estimates omics-specific (co)variances, al-
lowing for sparsity and correlations within the data. Applying
MAJA to 12 outcome traits in Generation Scotland methylation
data (n=18,264), we find novel shared epigenetic pathways among
cholesterol metabolism, osteoarthritis, blood pressure and asthma.
In contrast to marginal testing, we find only 10 CpG probes with sig-
nificant effects above the genome-wide background. This highlights
the need for joint association testing in highly correlated methyla-
tion data from whole blood and for studies of increased sample size
in order to refine epigenomic associations in observational data.
Keywords: multi-omics association, EWAS, methylation, predic-
tion, multi-trait.

1

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.15.589547doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.15.589547
http://creativecommons.org/licenses/by-nd/4.0/


Introduction 1

Epigenetic mechanisms influence gene expression, cell differentiation, tissue development, 2

and disease susceptibility1,2,3. Measuring and tracking epigenetic changes through disease 3

progression can provide insight into disease pathogenesis4, elucidate environmental and 4

lifestyle factors influencing health, and provide biomarkers for disease diagnosis and risk 5

stratification5. To date, most studies have focused on determining the epigenetic basis of 6

traits individually. However, human phenotypes are highly correlated, with shared risk 7

factors and underlying pathways. Estimating the degree to which epigenetic effects are 8

shared across human traits has the potential to reveal shared disease etiology, improve 9

biomarker discovery and maximise outcome prediction. 10

In genomics, existing methods for the analysis of multiple correlated traits lack flex- 11

ibility as they: (i) model at most two phenotypes with multiple variance components6; 12

(ii) are targeted only for prediction7; (iii) fine-map genomic regions independently so that 13

estimates are not conditional on other genome-wide effects8; and/or (iv) conduct asso- 14

ciation testing one variable at a time9. Thus, we lack general methods suitable for a 15

range of ”omics” data that analyze multiple outcomes jointly, allowing for the inclusion of 16

different data modalities (i.e. methylation, expression, sequence variation, etc.). A pre- 17

dominant focus has been on the estimation of genome-wide correlations10, which estimate 18

the degree of similarity in the effects underlying these traits, but do not provide direct 19

insights into specific underlying shared processes. Ideally, we wish to identify individual 20

loci, genes, or molecular pathways that are both shared and unique between traits, and 21

estimate their effects conditional on all other loci, genes, or pathways genome-wide, de- 22

termining their unique contribution to phenotype. This joint modelling of effects between 23

traits would improve our ability to use multi-modal ”omics” data for risk prediction and 24

patient stratification. 25

Here, we present MAJA, a multivariate multiple linear regression Bayesian joint sparse 26

model. Our Bayesian approach jointly estimates shared effect sizes for multiple traits, po- 27

tentially across different omics-data, while correcting for correlations within the data and 28

allowing for sparsity. It thus simultaneously finds shared and distinct associations between 29

omics-data and multiple traits, and estimates group-specific (co)variances. It is scalable, 30

flexible, and suitable for all existing high-dimensional genomics data. We demonstrate 31

our approach using the Generation Scotland data11, a cohort of 18,264 individuals with 32

blood-based methylation measures, where we find both trait-specific and shared probe 33

effects and improve out-of-sample prediction as compared to single-trait models. 34

Multivariate joint regression model: MAJA 35

We developed a multivariate Bayesian multiple regression model (MAJA - MultivAriate 36

Joint bAyesian model) that jointly estimates omics effects and their corrections on multiple 37

traits and performs variable selection, all while taking into account correlations within 38

the data. Our model is suitable for the case where a number of q phenotypes for n 39

individuals is measured within the matrix Y . The phenotype matrix is modelled to be 40

linearly related to the matrix containing p genomics measures X (e.g. SNPs, epigenetic 41

probes, gene expression) as, 42

Y = Xβ + ϵ, (1)
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where the matrix β denotes the effect sizes for q traits and ϵ represents the residual 43

error matrix. Each column of the Y and X matrices is standardized. The parameters of 44

Equation 1 are estimated using a Gibbs sampler, an iterative Markov Chain Monte Carlo 45

method. All details on MAJA can be found in the Materials and Methods section. 46
The effects of each genomic location j on the multiple traits, βj , are assumed to have 47

a multivariate spike-and-slab prior distribution to accommodate zero effects sizes 48

βj ∼ (1 − π)MV N(0q,V ) + πδ0, (2)

where π is the probe exclusion probability common to all traits, MV N(0q,V ) is a mul- 49

tivariate normal distribution with mean 0 and (co)variance V and δ0 the Dirac delta 50

distribution. Through sampling the effects of each probe conditional on the other probes, 51

correlations between the probes are automatically taken into account in our model. 52

Moreover, MAJA is able to handle multiple X matrices. For example: (i) (epi)genetic 53

information split into groups where the (epi)genetic covariances are estimated within each 54

group; and/or (ii) multi-modal data, where different data sets are combined, like CpG 55

sites and single nucleotide polymorphisms (SNPs). Effect sizes are determined jointly, 56

thus the effects each column of X are estimated conditional on all others, taking into 57

account correlations across groups and omics layers. 58

We demonstrate that MAJA accurately infers (co)variances in one or multiple groups 59

using simulations as described in the Materials and Methods and shown in Figures S1 and 60

S2. We also show that the estimated effects can be used to predict into a test data set, 61

to achieve out-of-sample prediction accuracy that conforms to theoretical expectations 62

and improves over single-trait models, as can be seen in Figures S3 and S4. Finally, 63

we demonstrate the ability of MAJA to localise effects accurately to the single-variable 64

level, conditional on all other variables, by calculating the true positive (TPR) and false 65

discovery (FDR) rate across all simulation scenarios, displayed in Figure S5. 66

Multi-trait epigenetics in Generation Scotland 67

We apply MAJA to 18,264 individuals in Generation Scotland for whom DNA methylation 68

measures from whole blood were available at 831,349 CpG sites for twelve outcome traits, 69

split into six cognitive, two metabolic and four disease traits. For disease outcomes that 70

were commonly self-reported at the time of blood sampling, the phenotypic variance 71

attributable to the methylation probes ranged between 24% for both depression and 72

asthma, to 69% for hypertension. For clinically measured variables, we find that the 73

phenotypic variance attributable to the methylation probes was 81% for body mass index 74

(BMI) and 73% for ratio of high density lipoprotein over total cholesterol. In addition, we 75

extend our analysis to a series of cognitive evaluations and educational attainment metrics, 76

finding that between 32% and 73% of the phenotypic variation can be attributed to the 77

CpG probes. The estimated variances, covariances between the traits and correlations 78

are shown in Figures 1 and 2. The values along with the 95% credible intervals are 79

listed in Supplementary Tables S1- S4. Heatmaps of the correlations can be found in 80

Supplementary Figure S6. 81

We find a strong negative correlation of epigenetic effects between BMI and ratio of 82

high density lipoprotein over total cholesterol and that CpG probe effects were positively 83

correlated for BMI and all other traits. CpG effects for both ratio of high density lipopro- 84
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Table 1: Associated probes with inclusion probability ≥ 95%. Traits listed are those
where the effect size of the probe does not include 0 within their standard deviations
(SD). Traits tested with 1SD are in brackets, 2SD without brackets.

Probe Gene Traits Group
cg17075888 PDK4, AC002451.3 (BMI), CHL

meta-

cg00574958 CPT1A BMI, CHL, (BP)

bolic/

cg05325763 CPT1A BMI, (CHL)

disease

cg06307915 CETP (CHL)
cg11024682 SREBF1 BMI, (CHL)
cg17739917 RARA (CHL)
cg27243685 ABCG1 BMI, CHL, (BP)
cg06500161 ABCG1 BMI, CHL, BP
cg07741821 RP5-1007F24.1, KIAA0087 (EY), EQ, (DS), (LM), (VT), (VO) cognitive
cg17739917 RARA EY, EQ, DS, LM, (VT), (VO)

tein over total cholesterol and self-reported hypertension are positively correlated with 85

those for self-reported osteoarthritis. Interestingly, CpG effects for self-reported asthma 86

are negatively correlated with those for hypertension, implying asthma-associated epige- 87

netic probes have an inverse association for hypertension. 88

We find weak correlations of epigenetic effects among digit symbol and vocabulary 89

cognitive tests, but generally strong correlations among all other tests. Cognitive tests 90

share underlying methylation probe effects with both years of education and educational 91

attainment. Note here that the highest educational attainment is scored as a ”1” (see Ma- 92

terials and Methods) and thus the negative correlation reflects methylation effects acting 93

in the same direction for longer years in education and higher educational attainment. 94

There are no strong residual correlations, as can be seen from Figures S7 and S8, which 95

implies that methylation probe variation captures the vast majority of the signal of trait 96

correlations. Residual covariances that are non-zero are often in contrast to the methy- 97

lation covariance, implying relationships among risk factors not captured by methylation 98

patterns in whole blood differ to those reflected in the covariance of methylation probes 99

effects. 100
We find nine unique probes whose effects, conditional on those of all other probes, have 101

an posterior inclusion probability (PIP) above 95%. MAJA is designed such that a probe 102

or locus affects all the traits or none of them, but the estimated effect size is allowed 103

to differ for each trait, e.g. it can be zero for some traits. Thus, to detect significant 104

associations we use the posterior distribution of effect sizes to determine which of the 105

estimated effects do not include 0 within either one or two standard deviations. Using 106

both the inclusion probability and the strength of the effect size provides a robust test 107

statistic for fine-mapping CpG effects, as shown in Figure S5. A list of the probes, their 108

related genes and their associated traits is given in Table 1. 109

None of the probes with PIP ≥ 0.95 within the metabolic and disease traits group 110

are associated with depression, osteoarthritis or asthma. Of the seven we discover, almost 111

all are shared between BMI, ratio of high density lipoprotein over total cholesterol, and 112

hypertension. These probes are located near ABCG1 which controls lipoprotein lipase 113
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Figure 1: Estimated epigenetic variances (top), covariances (middle) and correlations
(bottom) for body mass index (BMI), ratio of high density lipoprotein over total choles-
terol (CHL), high blood pressure (BP), depression (DEP), osteoarthritis (OA) and asthma
(AT) in the Generation Scotland methylation data using 18,624 individuals and 831,349
probes. The error bars in the upper plot represent the 95% credible interval. The corre-
lations are calculated as covariances scaled by the corresponding variances. The uncer-
tainties are calculated using the posterior means ± 95% credible interval.
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Figure 2: Estimated epigenetic variances (top), covariances (middle) and correlations
(bottom) for years in education (EY), highest qualification in education (EQ), digit sym-
bol (DS), logical memory (LM), verbal fluency (VT) and vocabulary (VO) tests in the
Generation Scotland methylation data using 18,624 individuals and 831,349 probes. The
error bars in the upper plot represent the 95% credible interval. The correlations are
calculated as covariances scaled by the corresponding variances. The uncertainties are
calculated using the posterior means ± 95% credible interval.
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(LPL) activity and promotes lipid accumulation in human macrophages in the presence of 114

triglyceride-rich lipoproteins; CPT1A which is the gatekeeper enzyme for mitochondrial 115

fatty acid oxidation; and PDK4, a regulator of pyruvate dehydrogenase (PDH), which in- 116

fluences acetyl-CoA from beta-oxidation into the citric acid (TCA) cycle, thereby leading 117

to enhanced fatty acid (FA) oxidation and slowing of glycolysis or glycolytic intermediates 118

to alternative metabolic pathways. We then additionally find three genes linked to ratio 119

of high density lipoprotein over total cholesterol: CETP which is a hydrophobic plasma 120

glycoprotein that mediates the transfer and exchange of cholesteryl ester and triglyc- 121

eride between plasma lipoproteins, playing an important role in high density lipoprotein 122

metabolism; SREBF1 which regulates the uptake and synthesis of cholesterol; and RARA 123

a key regulator of lipid/glucose metabolism. All of these associations have been reported 124

in the epigenome wide association study (EWAS) catalogue for these, or related, traits; 125

however, here we are able to explicitly determine for which traits their effects are shared 126

and for which they act in a trait-dependent manner and to show that the association 127

holds conditional on all other methylation loci. 128

Interestingly, the methylation effects of probe cg17739917 near RARA which is asso- 129

ciated with ratio of HDL over total cholesterol is also linked to all cognitive tests. Also 130

cg07741821 near genes RP5-1007F24.1, KIAA0087 is associated with variation in all cog- 131

nitive traits. These two associations have not been reported before and taken together, our 132

results show that key pathways are identified by our model whose effects are determined 133

conditional on the data structure and all other probe effects. 134

Finally, we wished to demonstrate that our approach facilitates improved out-of- 135

sample prediction as compared to single-trait approaches. Taking the CpG effects es- 136

timated in Generation Scotland, we predict traits that were measured in the Lothian 137

Birth Cohort (LBC) 193612. We find that multi-trait predictors generally outperform 138

the comparable single-trait predictors calculated using the BayesR model5, as shown in 139

Table 2. Of particular note is the predictor of general cognitive function, which explained 140

up to 8.6% of the variance. This is more than double the performance of a previous 141

predictor, derived from a subset of the Generation Scotland dataset13. 142

Discussion 143

We presented MAJA, a Bayesian method that jointly estimates the effect sizes of (epi)- 144

genomic variants, as well as correlations of the effects for multiple traits, while correcting 145

for correlations among variables and allowing for sparsity. We extend previous studies 146

both in terms of methodology and in the phenotypes studied. The variance estimates 147

obtained for BMI agree with previous estimates5, as does our finding of a strong nega- 148

tive correlation of epigenetic effects between BMI and ratio of high density lipoprotein 149

over total cholesterol4. We highlight novel CpG covariances among hypertension and os- 150

teoarthritis, ratio of high density lipoprotein over total cholesterol and osteoarthritis, BMI 151

and hypertension, and BMI and asthma, and our results imply that methylation patterns 152

of cholesterol metabolism related genes in whole blood are associated with osteoarthritis 153

pathogenesis and that there is potentially a complex, yet to be fully explored, relationship 154

between hypertension and asthma. 155

In this work, we focused on developing a statistical model and associated software, and 156

to give a demonstration of how multi-trait Bayesian models can improve the discovery 157

of shared loci and external trait predictions. There are several limitations to our study, 158

mainly the sample size of Generation Scotland, which whilst representing one of the 159
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Table 2: Out-of-sample prediction accuracy of episcores (incremental test R2) created from
MAJA as compared to estimates made using the single-trait BayesR model. Episcores
were created for a given trait (”Episcore”), using CpG probe estimates from either single
trait (”Univariate”), or multitrait (”Multivariate”) models. The episcores were then used
to predict a series of outcome traits (”Traits”) in the Lothian Birth Cohort (LBC) 1936
study (n=861). The R2 values give the incremental test R2 of including the episcore in
a linear model to predict each outcome, adjusting for age and sex. WTAR refers to the
Wechsler Test of Adult Reading; NART to the National Adult Reading Test; BMI to body
mass index; CHL to ratio of high density lipoprotein over total cholesterol in whole blood.
All scores refers to the variance explained by including all predictors together within the
model.

Trait Episcore
R2

BayesR MAJA
Univariate Multivariate

BMI BMI 14.94 16.86
BMI (log) BMI 14.84 16.8

CHL CHL 7.02 5.06
Digit symbol Digit symbol 3.17 3.35

Logical memory Logical memory 0.47 1.06
Verbal fluency Verbal fluency 0.88 0.74

Years in education Years in education 4.10 5.32
WTAR Vocabulary 3.72 4.03
NART Vocabulary 4.62 4.68

General cognitive function Logical memory 3.2 5.9
General cognitive function Vocabulary 5.2 5.5
General cognitive function Verbal total 2.2 4.8
General cognitive function Digit symbol 5.2 6.7
General cognitive function Education years 6.3 7.6
General cognitive function All scores 8.6

largest single cohorts with methylation data available, still has very limited power to 160

detect associations at ≥ 95% confidence and to produce high out-of-sample accuracy, 161

relative to the estimated total variance attributable to all CpGs on the array. Our model 162

will likely return fewer associations than standard one-probe-at-a-time significance testing. 163

However, single probe analyses do not control for correlations across probes and effects are 164

not estimated conditional on all other probes effects. Thus, single-probe testing likely gives 165

estimates that are inflated by correlations and by general data structure and confounding. 166

In contrast, effect sizes and significance are determined jointly within MAJA which we 167

expect (and show in simulation) to provide an accurate determination and localisation of 168

specific probe effects. 169

Note that, within our model, a probe will be included for all traits when it has an effect 170

on at least one of the traits. However, the estimates for each trait are freely sampled from 171
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a multivariate normal with zero mean and thus there is no reason to expect a directional 172

bias in the effect size estimates for traits for which the probe is not associated. However, 173

estimation error may increase if many small effects are sampled for traits with strong 174

covariance (BMI-ratio of high density lipoprotein over total cholesterol, for example) and 175

this is likely the reason for the loss of out-of-sample accuracy, which we see for the multi- 176

trait predictor of ratio of high density lipoprotein over total cholesterol in the LBC1936. 177

This is a modelling choice to facilitate improved association testing and can be overcome 178

by simply setting the effects of these probes to zero if the posterior estimate includes zero 179

within the standard deviation. 180
Additionally, we highlight that CpG measures in whole blood do not necessarily rep- 181

resent the correct tissue for understanding mechanistic pathways among outcomes. A full 182

characterisation of methylation across multiple tissues is needed to fully capture these re- 183

lationships. With increasing cross-tissue data, we expect that the ability of MAJA to fit 184

multiple groups could be useful, where multiple cross-tissue methylation measures could 185

be fit within the model to determine patterns of shared effects across tissues. Further 186

limitations are that while MAJA is able to handle larger biobank scale data sets through 187

the use of message-passing interface (MPI) coding, at present it remains computationally 188

expensive and is set up in such a way that all data needs to fit into RAM. Having demon- 189

strated the effectiveness of this framework, our future work will now focus on alternative 190

algorithms for joint inference from this model within a genomics setting. 191

In summary, our approach provides a method to learn shared and trait-specific epige- 192

netic pathways and to improve prediction of outcomes from omics data. Our approach can 193

be used in future to understand the multi-stage transition from a “pre-disease” to “dis- 194

ease” state, with the overall goal of improving primary prevention, patient stratification, 195

and subsequent clinical management. 196

Materials and methods 197

Statistical model 198

Consider n individuals with q observed phenotypes and p recorded (epi)genetic markers. 199

The relationship between the phenotype matrix, Y , of dimensions (n x q) and the design 200

matrix, X, of dimensions (n x p) is modelled as 201

Y = Xβ + ϵ, (3)

where the (p x q) matrix β represents the effect sizes while ϵ is the residual error matrix 202

with dimensions (n x q). The design matrix can be split into various groups according 203

to biological annotations. The design and phenotype matrix are standardized for each 204

column. 205
We assume that Y is distributed like a matrix normal with mean Xβ, among-row 206

variance In (where In is the unitary matrix with dimension (n x n)) and among-column 207

variance Σ with dimension (q x q): 208

Y ∼ MN(Xβ, In,Σ) (4)
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The matrix normal distribution is related to the multivariate normal as 209

vec(Y ) ∼ MV N(vec(Xβ),Σ ⊗ In) (5)

where vec(Y ) represents the vectorization of Y and ⊗ the Kronecker product. The 210

prior distribution for the residual error matrix ϵ is also assumed to be a matrix normal 211

MN(0(nxq), In,Σ). 212

The effects of each marker j on the multiple traits, βj , is modelled as a multivariate 213

normal with mean 0 and variance Vg of dimensions (q x q): 214

βj ∼ MV N(0q,Vg), (6)

where g refers to the group the marker is attributed to. The group variance Vg is specific 215

to each group. To be able to model sparsity in the effects, the Dirac delta δ0 is included 216

in the prior distribution of βj with the prior group-specific exclusion probability πg: 217

βj ∼ (1 − πg)MV N(0q,Vg) + πgδ0, (7)

where πg is modelled by the Dirichlet distribution. 218

Covariances Vg as well as Σ (jointly denoted as cov) are modelled as outlined in 219

Section 2 of Ref.14, using a modified Cholesky decomposition: 220

cov = L−1D(L−1)T , (8)
where 221

D =


d1 0 · · · 0
0 d2 · · · 0
... ... . . . ...
0 · · · · · · dq

 , (9)

222

L =


1 0 · · · 0
l21 1 · · · 0
... ... . . . ...

lq1 lq2 · · · 1

 . (10)

This parameterisation of the variance matrices is advantageous compared to the inverse 223

Wishart distribution (which is the conjugate of the multivariate normal distribution) 224

as the elements in L are unrestricted. They are modelled with a multivariate normal 225

distribution with prior mean 0 and variance s0 = 0.0001. The prior distribution of 226

the diagonal elements of D, which have to be positive, are set to an inverse Gamma 227

distribution G−1(a/2, ab/2), where a and b are the prior shape and scale parameter of the 228

inverse Gamma distribution (here a = 2 and b = 0.1). 229
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Gibbs sampler 230

To estimate the unknown parameters in Equation 3, a Gibbs sampler which is a Markov 231

Chain Monte Carlo (MCMC) method, is set up. The Gibbs sampler runs the following 232

steps for a chosen number of iterations: 233

1. Sample intercept from a normal distribution. 234

2. Randomly pick a marker j and sample βj from its conditional posterior distribution 235

βj ∼ (1 − τj)MV N(µ∗
j ,Ω

∗
j) + τjδ0 (11)

with posterior covariance 236

Ω∗
j = ((n − 1)Σ−1 + V −1

g )−1, (12)

posterior mean 237

µ∗
j = vec((XT

j ϵ + (n − 1)βprev
j )Ω∗

jΣ
−1), (13)

with βprev
j referring to the effects of marker j in the previous iteration, and posterior 238

exclusion probability 239

τj = r

r + |Vg|−1/2 |Ω∗
j |1/2e

1
2µ

∗T
j

Ω∗−1
j

µ∗
j

, (14)

where r = πg

(1−πg) . 240

3. Repeat step (2) until all markers are sampled. 241

4. Sample exclusion probabilities πg for each group from Dirichlet(pg − Zg, Zg), where 242

pg is the total number of markers and Zg is the number of non-zero markers in each 243
group. 244

5. Calculate Vg = L−1
g Dg(L−1

g )T for each group by: 245

(a) Sampling the diagonal elements of Dg from 246

di ∼ Γ−1(a

2 + Zg,
ab

2 + wii), (15)

where wii is element (i,i) of w = ZgLgβ
T
g βgL

T
g . When sampling with more 247

than one group, Zg and w are group-specific. 248

(b) Sampling the elements of the lower triangular matrix Lg from a multivariate 249

normal distribution with mean 250

mi = −si

di

(Zgβgβ
T
g )[1 : i, i] (16)
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and variance 251

si = 1
di

(Zgβgβ
T
g )[1 : i, 1 : i] + s0Ii (17)

for each row i of Lg where [1 : i, 1 : i] denotes the submatrix of (Zgβgβ
T
g ) 252

between rows 1 to i and columns 1 to i and s0 is the initial variance of the 253

multivariate normal. 254

6. Calculate the covariance Σ in the same way as Vg. 255

The effects of the markers are sampled conditional on all the other markers, thus 256

automatically taking into account correlations betweeen markers or linkage disequilibrium 257

(LD). The means and variances of β, Vg and Σ averaged across iterations (excluding the 258

results from the burn-in period) are stored. 259

The Gibbs sampler is run for in total 5000 iterations, whereof 1000 are discarded as 260

burn-in. The burn-in period of 1000 is chosen to be well away from the point where the 261

sampler first reaches convergence to make sure that the values for posterior means are 262

only taken when the estimates are stable. Multiple chains are run after the burn-in period 263

for the estimation of the posterior means. 264

The code requires as input a phenotype matrix without any missing values and a 265

standardized design matrix which has to fit into RAM. For further details on the imple- 266

mentation of the sampler using a Bulk synchronous parallel Gibbs sampling scheme with 267

message passing interface15, see links in Code availability. 268

Generation Scotland methylation data 269

Generation Scotland is a large population-based, family-structured cohort of over 24,000 270

individuals aged 18–99 years11. The study baseline took place between 2006 and 2011 271

and included detailed cognitive, physical, and health questionnaires, along with sample 272

donation for genetic and biomarker data. 273

The Generation Scotland methylation (GSM) data includes cytosine-phosphate-guanine 274

dinucleotides (CpG sites) for 18,413 individuals. DNA methylation data were processed 275

and quality-controlled in four batches, following broadly similar procedures. Probe and 276

sample quality was assessed using the meffil package in R16. Probes were excluded based 277

on low detection P-value (≥ 0.5% of samples with detection P ≥ 0.05 [batch 1]; ≥ 1% 278

of samples with detection P ≥ 0.01 [batches 2-4]) and low bead count (< 3 in > 5% 279

of samples). Samples were removed based on 1) a high proportion of probes with high 280

detection-P-values (≥ 1% of CpGs with detection P-value ≥ 0.05 [batch 1]; ≥ 0.5% of 281

CpGs with detection p-value ≥ 0.01 [batches 2-4]), 2) where recorded sex did not match 282

predicted sex based on information from sex chromosomes, and 3) outlier values based on 283

log median intensites of methylated vs unmethylated signals. The four quality-controlled 284

batches were normalised as a single dataset using the dasen method in wateRmelon17. 285

The final set of 831,349 methylation probes were then adjusted for age, sex, smoking and 286

batch and standardized to mean zero and variance one. 287

We jointly analyze the following phenotypes: body-mass-index (BMI kg/m2); ratio 288

of high density lipoprotein over total cholesterol (CHL, both measured in mmol/L); self- 289

reported high blood pressure (BP, 2472 cases); self-reported depression (DEP, 1807 cases); 290

self-reported osteoarthitis (OA, 1355); self-reported asthma (AT, 2097 cases); logical mem- 291

ory (verbal declarative memory), calculated from the Wechsler Logical Memory test by 292
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taking the sum of immediate and delayed recall of one oral story11; digit symbol, ascer- 293

tained from the Wechsler Digit Symbol Substitution test in which participants recoded 294

digits to symbols over a 120 second period11; verbal fluency phenotype, measuring exec- 295

utive functioning, was derived from the phonemic verbal fluency test, using the letters C, 296

F and L, each for 1 min11; vocabulary, measured using the Mill Hill Vocabulary Scale, 297

junior and senior synonyms combined11; year spent in education; and finally highest ed- 298

ucational qualification achieved. Years spent in education was self-reported as the total 299

years attended school/study full-time, with coding 0: 0, 1: 1-4,2: 5-9, 3: 10-11, 4: 12-13, 300

5: 14-15, 6: 16-17, 7: 18-19, 8: 20-21, 9: 22-23, 10: more than 24 years. For highest 301

educational qualification participants were asked what the highest educational qualifica- 302

tion they have obtained, with data then coded as: 1 - College or University degree, 2 - 303

Other professional or technical qualification, 3 - NVQ or HND or HNC or equivalent, 4 304

- Higher Grade, A levels, AS levels or equivalent, 5 - Standard Grade, O levels, GCSEs 305

or equivalent, 6 - CSEs or equivalent, 7 - School leavers certificate, 8 - Other, 9 - No 306

Qualification. All phenotypic data are standardized to mean zero and variance one. 307

Simulation study 308

To demonstrate that our model is capable of accurately inferring phenotypic variations 309

and correlations between multiple traits, we simulated epigenetic effects for two traits for 310

the methylation data of chromosome 1 (p = 80, 545 probes), using three different scenarios 311

for the epigenetic (co)variance matrix, 312

V =
(

β2
1 β1β2

β1β2 β2
2

)
.

1. Scenario 1 represents a covariance matrix where there is no correlation between the 313

two traits: 314

V1 =
(

0.3 0.0
0.0 0.5

)
.

2. The second scenario introduces negative correlation between the two traits: 315

V2 =
(

0.3 −0.5 ·
√

0.3 · 0.5
−0.5 ·

√
0.3 · 0.5 0.5

)
.

3. Scenario 3 assumes positive correlations between the two traits: 316

V3 =
(

0.3 +0.5 ·
√

0.3 · 0.5
+0.5 ·

√
0.3 · 0.5 0.5

)
.

These matrices were scaled by the number of causal markers p0 = 1000 to sample 317

the epigenetic effects from a multivariate normal distribution. When multiplying the 318

simulated effects with their respective standardized columns of the X matrix, we obtained 319

an epigenetic value, g, for each individual and trait. In each scenario, a vector of residuals 320
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was sampled from a normal distribution with variance (Iq − var(g)) with the covariance 321

elements set to 0, and added to g to obtain a matrix of phenotypes, Y. We repeated 322

the data generation ten times for each of the three scenarios, where the causal effects 323

were selected randomly. The datasets were then split into training data (n=17,264) and 324

data (n=1000) for replication. The training data were anlaysed with MAJA, running 325

the model for 2000 iterations. The posterior mean estimates of the effect sizes and their 326

(co)variances were calculated using the last 1000 iterations. The posterior means of the 327

effects covariances reproduce the true values very well for all three scenarios, as can be 328

seen in Figure S1. 329

The estimated effect sizes, β̂, were then used to create predictors, Ypred,i = Xiβ̂, for 330

each individual i in the test data to obtain the coefficient of determination 331

R2 = 1 −
∑

i (Yi − Ypred,i)2∑
i (Yi − Ȳ )2

, (18)

where Ȳ is the mean of generated phenotypes. Figure S3 shows that the estimated R2
332

agrees well with the expected R2 when the traits are correlated. The expected value 333

is calculated according to Equation 34 in Ref.7 assuming Meff = 30, 000 independent 334

markers, a number estimated from the training data. The expected R2 is dependent on 335

the assumed number of independent markers which is likely different for the case where 336

the two traits are uncorrelated, which explains the large difference for estimated and 337

expected R2 for V1. 338

We determined the true positive (TPR) and false discovery (FDR) rates of MAJA 339

across simulation scenarios. True positives were identified as probes for which a causal 340

effects was simulated, where the posterior inclusion probability was ≥ 0.95 and for which 341

the posterior mean effect estimate was ≥ ±2 SD from zero. TPR was calculated as 342

the number of true positives divided by the number of simulated causal variants. False 343

positives were identified as probes that were not simulated to be causal variants, where 344

the posterior inclusion probability was ≥ 0.95 and for which the posterior mean effect 345

estimate was ≥ ±2 SD from zero. FDR was calculated as the number of false discoveries 346

divided by the total number of discoveries. Figure S5 shows the TPR and FDR for the 347

two simulated traits across scenarios. 348
Finally, to demonstrate that MAJA is also able to handle multiple groups and accu- 349

rately estimate the covariances of each group, epigenetic effects and phenotypic informa- 350

tion for two traits for the methylation data of chromosome 1 (p = 80, 545 probes) and 351

chromosome 2 (p = 60, 707 probes) were generated. The effect sizes in the two chro- 352

mosomes were generated according to three scenarios, where the second number in the 353

subscript refers to the group (in this case chromosome): 354

1.
V1,1 =

(
0.3 0.0
0.0 0.5

)
,V1,2 =

(
0.5 0.0
0.0 0.3

)

2.
V2,1 =

(
0.3 −0.5 ·

√
0.3 · 0.5

−0.5 ·
√

0.3 · 0.5 0.5

)
,
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355

V2,2 =
(

0.5 −0.5 ·
√

0.3 · 0.5
−0.5 ·

√
0.3 · 0.5 0.3

)

3.
V3,1 =

(
0.3 +0.5 ·

√
0.3 · 0.5

+0.5 ·
√

0.3 · 0.5 0.5

)
,

356

V3,2 =
(

0.5 +0.5 ·
√

0.3 · 0.5
+0.5 ·

√
0.3 · 0.5 0.3

)

Each group was generated to have 500 causal markers. In each of the groups, the 357

posterior means of the effects covariances reproduce the true values very well for all three 358

scenarios, as displayed in Figure S2. Figure S4 shows that the estimated and expected 359

R2 when the effects are estimated for two different groups with different covariances. The 360

R2 values agree well when the traits are correlated. 361

Prediction into the Lothian Birth Cohort 362

The Lothian Birth Cohort of 1936 (LBC1936) represents a longitudinal study of aging12. 363

The 1091 cohort members were all born in 1936 and have been assessed for a wide variety 364

of health and lifestyle outcomes. DNA has been collected at each clinical visit. In the 365

present study, we considered DNA methylation data (Illumina 450k array) from whole 366

blood, taken at mean age 70, for analysis. Details of the collection and processing of the 367

data have been reported previously18. In brief, after quality control to remove poorly 368

performing methylation sites, samples, and individuals with mismatching genotypes or 369

predicted sex, a sample of 861 individuals was available for prediction analysis. The 370

methylation and phenotypic data were processed in the same manner as GS. Additional 371

phenotypes in LBC1936 were the Wechsler Test of Adult Reading; the National Adult 372

Reading Test; and a general measure of cognitive function. 373

In LBC1936, BMI is calculated as weight in kilograms divided by height in meters. 374

Weight and height were assessed at the wave 1 (baseline) clinic appointment. HDL choles- 375

terol (mmol/L) and total cholesterol (mmol/L) are blood-based measurements from sam- 376

ples given in clinic at the baseline appointment. The cholesterol ratio is calculated as 377

HDL cholesterol divided by total cholesterol. Scores for thirteen cognitive tests were 378

available across five waves of data collection. Testing was performed triennially from age 379

70 to 82. Visuospatial ability was measured using the Block Design, Matrix Reasoning 380

(WAIS-IIIUK) and Spatial Span (WMS-IIIUK) tests. Verbal ability was measured us- 381

ing the National Adult Reading Test, Wechsler Adult Reading Test and Verbal Fluency 382

Test (using letters C, F and L). Memory was assessed via the Verbal Paired Associates, 383

Logical Memory – a combination of immediate and delayed memory (WMS-IIIUK) and 384

Digit Span Backwards (WAIS-IIIUK) tests. Processing speed was evaluated via the Digit 385

Symbol Substitution Test, Symbol Search (WAIS-IIIUK), Choice Reaction Time and In- 386

spection Time tests. 387

A latent measure of general cognitive function was obtained by using confirmatory 388

factor analysis in a structural equation modelling (SEM) framework using the R pack- 389

age Lavaan (version 0.6-12)19. A first-order hierarchical cognitive model was specified. 390

15

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.15.589547doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.15.589547
http://creativecommons.org/licenses/by-nd/4.0/


Specifically, levels and change in general cognitive functioning were modelled with latent 391

growth curve model (LGCM) using a Factor of Curves specification20. Intercepts and 392

slopes of each cognitive test were used to indicate a latent intercept and slopes of general 393

cognitive function and change. The growth curve slopes were weighted by mean lag time 394

between each wave and baseline. Marker method was used to scale according to the first 395

variable, and all models used full information maximum likelihood to include all data 396

available. Negative residual variances were fixed to zero. Residual covariance between 397

tests in the same cognitive domain were specified21. 398

Episcores were projected into LBC1936 wave 1 methylation data (n = 861). Linear 399

regression was used to model each episcore (as a predictor) in relation to the outcome 400

variables. Incremental R2 estimates are reported as the differences between models ad- 401

justing for age and sex compared to those that additionally include the episcore. For 402

the variance explained in general cognitive function level, linear regression models were 403

performed within Lavaan, with the G intercept from the latent growth curve models used 404

as the outcome (see Ref.13). Model fit and test loadings can be found in Supplementary 405

Table S5. 406
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Table S1: Estimated posterior (co)variances, V̂ , and 95% confidence intervals (CI) for
body mass index (BMI), ratio of high density lipoprotein over total cholesterol (CHL),
high blood pressure (BP), depression (DEP), osteoarthritis (OA) and asthma (AT).

variance V̂ 95% CI
BMI 0.8182 0.0270
CHL 0.7239 0.0339
BP 0.6877 0.0526

DEP 0.2426 0.0361
OA 0.5750 0.0777
AT 0.2367 0.0345

BMI-CHL −0.2939 0.0262
BMI-BP 0.1408 0.0274
CHL-BP −0.0306 0.0303

BMI-DEP 0.0692 0.0232
CHL-DEP 0.0102 0.0321
BP-DEP 0.0328 0.0392
BMI-OA 0.0721 0.0278
CHL-OA 0.0827 0.0397
BP-OA 0.2794 0.0488

DEP-OA 0.0017 0.0260
BMI-AT 0.0392 0.0245
CHL-AT −0.0096 0.0242
BP-AT −0.0679 0.0336

DEP-AT 0.0146 0.0106
OA-AT 0.0103 0.0384
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Table S2: Estimated posterior (co)variances, V̂ , and 95% confidence intervals (CI) for
years in education (EY), highest qualification in education (EQ), digit symbol (DS),
logical memory (LM), verbal fluency (VT) and vocabulary (VO) tests.

variance V̂ 95% CI
EY 0.5791 0.0760
EQ 0.7778 0.0750
DS 0.6446 0.0475
LM 0.3232 0.0514
VT 0.4247 0.0647
VO 0.7311 0.1026

EY-EQ -0.5142 0.0927
EY-DS 0.3121 0.0436
EY-LM 0.2133 0.0480
EY-VT 0.1835 0.0542
EY-VO 0.3284 0.0986
EQ-DS -0.3799 0.0475
EQ-LM -0.2549 0.0613
EQ-VT -0.2371 0.0579
EQ-VO -0.4254 0.0882
DS-LM 0.2393 0.0368
DS-VT 0.1760 0.0425
DS-VO 0.1109 0.0527
LM-VT 0.0859 0.0483
LM-VO 0.1542 0.0623
VT-VO 0.3082 0.0579
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Table S3: Correlations, ρ, calculated from the posterior (co)variances for body mass index
(BMI), ratio of high density lipoprotein over total cholesterol (CHL), high blood pressure
(BP), depression (DEP), osteoarthritis (OA) and asthma (AT), for the cases where the
covariances were different from 0. The upper and lower uncertainties are calculated using
the posterior means ± 95% credible interval.

correlation ρ lower uncert. upper uncert.
BMI-CHL −0.3819 0.0513 0.0474
BMI-BP 0.1877 0.0277 0.0249

BMI-DEP 0.1553 0.0416 0.0352
BMI-OA 0.1051 0.0345 0.0294
CHL-OA 0.1282 0.0548 0.0458
BP-OA 0.4443 0.0340 0.0278
BMI-AT 0.0891 0.0522 0.0439
BP-AT −0.1683 0.1149 0.0918

DEP-AT 0.0610 0.0415 0.0309

Table S4: Correlations, ρ, calculated from the posterior (co)variances for years in edu-
cation (EY), highest qualification in education (EQ), digit symbol (DS), logical memory
(LM), verbal fluency (VT) and vocabulary (VO) tests, for the cases where the covari-
ances were different from 0. The upper and lower uncertainties are calculated using the
posterior means ± 95% credible interval.

correlation ρ lower uncert. upper uncert.
EY-EQ -0.7661 0.2544 0.2022
EY-DS 0.5108 0.0209 0.0174
EY-LM 0.4930 0.0460 0.0344
EY-VT 0.3700 0.0661 0.0497
EY-VO 0.5046 0.0960 0.0731
EQ-DS -0.5366 0.1232 0.1038
EQ-LM -0.5083 0.2151 0.1658
EQ-VT -0.4125 0.1739 0.1351
EQ-VO -0.5640 0.2086 0.1642
DS-LM 0.5243 0.0215 0.0179
DS-VT 0.3364 0.0485 0.0391
DS-VO 0.1616 0.0666 0.0539
LM-VO 0.2318 0.1116 0.0815
LM-VT 0.3173 0.0949 0.0702
VO-VT 0.5531 0.0269 0.0200
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Table S5: Loadings of cognitive tests on intercept. Latent measures of general cogni-
tive function were generated using confirmatory factor analysis in a structural equation
modelling (SEM) framework. Levels and change in general cognitive functioning were
modelled with latent growth curve model (LGCM) using a Factor of Curves specification.
The intercepts were used to indicate a latent intercept of general cognitive function and
the test loadings are given. Model fit measures were calculated including confirmatory
factor index (CFI = 0.958), Tucker-Lewis index (TLI = 0.957), root mean squared er-
ror approximation (RMSEA = 0.029) and the standardised root mean squared residual
(SRMR = 0.061).

Test Intercept term
Block design 0.702

Matrix reasoning 0.792
Span total 0.642

NART 0.685
WTAR 0.679

Verbal fluency 0.534
Verbal paired associates 0.543

Logical memory 0.615
Digit backwards 0.722
Symbol search 0.788
Digit symbol 0.668

Inspection time 0.491
Four choice reaction time 0.526
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Figure S1: Simulation study results: Posterior mean estimates of the effects (co)variance
components subtracted by their true value for each simulated dataset for three different
covariance scenarios, denoted as V1 to V3. The error bars represent the 95% credible
intervals.
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Figure S2: Simulation study results: Posterior mean estimates of the effects (co)variance
components subtracted by their true value for each simulated dataset for three different
covariance scenarios, denoted as V1 to V3, and two groups. The error bars represent the
95% credible intervals.
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Figure S3: Mean expected and predicted coefficient of determination, R2, for 10 simula-
tions and three covariance scenarios (V1 to V3) and a test dataset of 1000 individuals.

Figure S4: Mean expected and predicted coefficient of determination, R2, for 10 simu-
lations and three covariance scenarios (V1 to V3) and a test dataset of 1000 individuals,
where the effects were estimated for two different groups.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.15.589547doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.15.589547
http://creativecommons.org/licenses/by-nd/4.0/


Figure S5: True positive rate (TPR) and false discovery rate (FDR) across 10 simulations
(colours) for three different covariance scenarios, denoted as V1 to V3, between two traits.
MAJA controls the FDR well below 2% for all scenarios, with the TPR (power) dependent
upon the relationship among the traits.

Figure S6: Correlations calculated from the posterior (co)variances for (left) body mass
index (BMI), ratio of high density lipoprotein over total cholesterol (CHL), high blood
pressure (BP), depression (DEP), osteoarthritis (OA) and asthma (AT) and (right) years
in education (EY), highest qualification in education (EQ), digit symbol (DS), logical
memory (LM), verbal fluency (VT) and vocabulary (VO) tests.
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Figure S7: Estimated residual variances (top) and covariances (bottom) for body mass
index (BMI), ratio of high density lipoprotein over total cholesterol (CHL), high blood
pressure (BP), depression (DEP), osteoarthritis (OA) and asthma (AT) in the Generation
Scotland methylation data using 18,624 individuals and 831,349 probes. The error bars
represent the 95% credible interval.
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Figure S8: Estimated residual variances (top) and covariances (bottom) for years in edu-
cation (EY), highest qualification in education (EQ), digit symbol (DS), logical memory
(LM), verbal fluency (VT) and vocabulary (VO) tests in the Generation Scotland methy-
lation data using 18,624 individuals and 831,349 probes. The error bars represent the
95% credible interval.
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