

1 **The DNA event horizon in the Guaymas Basin subsurface biosphere: technical advances**
2 **and re-defined limits in bulk extractions of nucleic acids from deep marine sediments**

3
4
5

6 Gustavo A. Ramírez¹, Paraskevi Mara², David Beaudoin², Diana Bojanova³, John E. Hinkle⁴,
7 Brewster Kingham⁵, Virginia P. Edgcomb², Yuki Morono⁶, Andreas Teske^{4*}

8

9 ¹ Dept. of Biological Sciences, California State University Los Angeles, Los Angeles, CA, USA

10 ² Dept. of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

11 ³ Dept. of Earth Sciences, University of Southern California, Los Angeles, CA, USA

12 ⁴ Dept. of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill,
13 Chapel Hill, NC, USA

14 ⁵ DNA sequencing & Genotypic Center, University of Delaware, Newark, DE, USA

15 ⁶ Kochi Institute for Core Sample Research, Institute for Extra-cutting-edge Science and
16 Technology Avantgarde Research (X-STAR), Japan Agency for Marine-Earth Science and
17 Technology (JAMSTEC), Monobe, Nankoku, Kochi, Japan

18 *Corresponding author

19

20 **Abstract**

21 We compiled DNA and RNA isolation protocols for sediment bulk extraction and their yields from
22 Guaymas Basin subsurface sediments, and evaluated their sensitivity for metagenomic and
23 amplicon analyses of subsurface microbial communities. Guaymas Basin sediments present a
24 challenge for DNA and RNA recovery due to high concentrations of hydrocarbons, steep thermal
25 gradients and rapidly declining cell numbers downcore. Metagenomic library construction and
26 sequencing was possible from as little as 0.2 to 0.5 ng DNA/cm³ sediment; PCR amplification of
27 16S rRNA genes required in most cases approx. 1-2 ng DNA/cm³ sediment. At in-situ
28 temperatures of 50 to 60°C, decreasing DNA recovery leads to increasingly uncertain “hit or miss”
29 outcomes and to failures for metagenomic and amplicon analyses. DNA concentration profiles
30 show that, even before these hot temperatures are reached, relatively moderate temperatures have
31 a major effect on microbial abundance and DNA yield. Comparison with cell count profiles shows
32 that hydrothermal influence is reducing downcore cell densities by multiple orders of magnitude
33 faster compared to non-hydrothermal sediments; this effect is also visible at relatively moderate
34 temperatures. To an even greater degree than DNA, RNA recovery is highly sensitive to downcore
35 increasing temperatures and decreasing cell numbers, and worked best for microbial communities
36 in cool, relatively shallow subsurface sediments.

37

38

39 **Introduction**

40

41 Cultivation-independent sequencing studies of microbial communities in the deep subsurface
42 require extraction of nucleic acids in sufficient quantity and quality for subsequent high-
43 throughput sequencing. Here we examine the outcome of DNA and RNA extractions for deep
44 subsurface sediments from Guaymas Basin, a sedimented, hydrothermally active spreading center
45 with steep thermal gradients and high heat flow in the axial troughs and flanking regions (Neumann
46 et al., 2023). We focus on Guaymas Basin sediments because among deep-sea sediments they are
47 some of the most challenging sediments to extract nucleic acids from due to their high content of
48 organic material, including hydrocarbons that can interfere with the activities of enzymes and other
49 reagents in extraction protocols. The observations we make about downcore DNA and RNA
50 recovery will not only be useful for the community of scientists interested in the Guaymas Basin,
51 but also for the broader community of scientists who study the sedimented subsurface biosphere.

52

53 Eight different sites with contrasting thermal and geochemical regimes were drilled during IODP
54 expedition 385 (Teske et al., 2021a). The positions of these drilling sites generally followed a
55 northwest-to-southeast transect across the northern Guaymas Basin flanking regions and the axial
56 trough. Two neighboring sites (U1545 and U1546) on the northwestern end of Guaymas Basin
57 (Teske et al., 2021b; Teske et al., 2021c) essentially differ by the presence of a massive, thermally
58 equilibrated sill between 350 to 430 mbsf at Site U1546 (Lizarralde et al., 2023). Two drilling sites
59 (U1547, U1548) target the hydrothermally active Ringvent area, approximately 28 km northwest
60 of the spreading center (Teske et al., 2019), where a shallow, recently emplaced hot sill creates
61 steep thermal gradients and drives hydrothermal circulation (Teske et al., 2021d). Drilling Site
62 U1549 (Teske et al., 2021e) explores the periphery of an off-axis methane cold seep, Octopus
63 Mound, located ~9.5 km northwest of the northern axial graben (Teske et al., 2021f). Of all these
64 sites, the two Ringvent sites have the steepest thermal gradients (between 506 and 958°C per km)
65 and the highest heatflow values (between 516 and 929 mW per m²) (Neumann et al., 2023). This
66 distinct thermal regime is caused by a recently emplaced, shallow volcanic sill that is driving local
67 hydrothermal circulation (Teske et al., 2019). Initial shipboard cell counts performed on the RV
68 JOIDES Resolution indicate rapidly decreasing cell numbers with depth in all sites, starting above
69 10⁹ cells per cm³ in surficial sediments, but decreasing towards 10⁶ cells per cm³, and lower (Teske

70 et al., 2021a). The downcore decrease in cell numbers is steeper at Ringvent compared to the other
71 sites; values near 10^6 cells per cm^3 are reached around 60 meters below sea floor (mbsf) at
72 Ringvent, whereas comparable cell densities at the northwestern sites U1545 and U1546 are
73 reached only around 150 mbsf (Teske et al., 2021a). In first approximation, this steep downcore
74 decline in cell densities appears to be linked to the strong thermal gradients in the Guaymas Basin
75 sedimentary subsurface. Rapidly decreasing downcore cell densities create special challenges for
76 DNA extraction due to declining biomass with depth.

77 Here we evaluate DNA and RNA extraction methods that proved workable for these deep
78 subsurface sediments. We report recovery of DNA (Tables 1,2) and RNA (Table 3) obtained by
79 these protocols, and we discuss downcore trends in microbial cell density in Guaymas Basin
80 sediment cores (post-cruise on-shore counts, Table 2) within the context of extraction yields. We
81 provide qualified depth estimates when, based on current technical limitations, the recovery of
82 DNA and RNA becomes insufficient to support microbial community analyses by PCR, and by
83 metagenomic and metatranscriptomic sequencing. For DNA, we term these limits the “DNA event
84 horizon” and suggest strategies to gradually extend them. For the Guaymas sample set, DNA
85 recovery extends deeper into subsurface sediments than RNA recovery, which required additional
86 washing steps to remove inhibitors. Due to the different extraction procedures for DNA vs. RNA
87 and apparent sensitivity limits, the ranges of DNA and RNA recovery in the deep subsurface are
88 not the same; therefore, we cannot identify a combined “DNA/RNA event horizon” at this time.
89 Yet, this RNA extraction procedure should provide a basis for further development.

90

91 **Materials and Methods**

92

93 **DNA extraction.** DNA was extracted from selected core samples using FastDNA™ SPIN Kit for
94 Soil (MP Biomedicals). For each sample listed in Table 1, three parallel (triplicate) DNA
95 extractions were performed. The three extracts were pooled together and concentrated as discussed
96 below. The samples listed in Table 2 were extracted once (single extraction). Otherwise, sediments
97 were processed following the manufacturer’s protocol with homogenization modifications as
98 described previously (Ramírez et al., 2018). We note that some DNA extraction sets (Table 1,
99 Figure 1) started with volumetrically defined wet sediment samples of 0.5 cm^3 each, whereas
100 others started with weighed wet sediment samples of 0.5 g each (Table 2, Figure 2). These

101 concentrations can be converted into each other to an approximate degree by using a factor of 1.7
102 g/cm³, the average wet bulk density of an extensive set of IODP sediments (Tenzer and Gladkikh
103 2014). The extraction procedure tolerates a sediment input of 0.5 cm³, which weighs more than
104 0.5 g. Procedures should be kept internally consistent for each sample set, and the extraction vials
105 have to be balanced during the centrifugation steps.

106 Briefly, each sediment sample was homogenized twice (vs. the manufacturers' suggestion
107 of a single homogenization step) in Lysing Matrix E tubes for 40 seconds at speed 5.5 m/s, using
108 the MP biomedicals bench top homogenizer equipped with 2 ml tube adaptors. Between the two
109 homogenization rounds the samples were placed on ice for 2 minutes. After the second
110 homogenization the samples were centrifuged at 14,000 x g for 5 minutes following the
111 manufacturer's suggestion. In the next step, which was a second modification from the standard
112 protocol (applied only to DNA extractions of Table 1), the supernatant and the top layer of the
113 pellet was transferred to a clean 2 ml tube where proteins were precipitated by the addition of the
114 protein precipitation solution (PPS) provided in the extraction kit. The rest of the extraction
115 protocol followed the manufacturer's recommendations. When parallel extractions were
116 performed, the extracts were pooled and concentrated using EMD 3kDa Amicon Ultra-0.5 ml
117 Centrifugal Filters (Millipore Sigma). The DNA concentration was fluorometrically measured
118 using the High Sensitivity (HS) double strand (ds) DNA Qubit assays (Qubit™ dsDNA HS and
119 BR Assay Kits). A kit control extraction (extraction with no sediment added; blank or "witness"
120 extraction) was included to account for any potential kit and handling contaminants. For
121 extractions from deeper sediments where triplicate sample pooling did not result in quantifiable
122 amounts of DNA, we performed 10 parallel extractions which were subsequently pooled and
123 concentrated using the Amicon filters as described above.

124

125 **Protocol A** is used for high biomass samples with expected cell densities $\geq 10^6$ cells per cm³.
126 Three parallel extractions are done per sample, including the blank or "witness" extractions.

127

128

1. Add up to 0.5 cm³ sediment or 0.5 g sediment to a Lysing Matrix E tube.
2. Add 978 μ l Sodium Phosphate Buffer to sample in Lysing Matrix E tube.
3. Add 122 μ l of MT buffer.
4. Homogenize in the FastPrep homogenizer or equivalent beat-beating homogenizer for 40 seconds twice, at speed setting of 5.5 m/s with 2-minute rest periods on ice.
5. Centrifuge at 14,000 x g for 5 mins to pellet debris.

134 6. Transfer supernatant to a clean 2 ml tube. *[Note: At this step, a modification of the*
135 *manufacturer's protocol is recommended. Carefully aspirate a few (50-100 µl max) of the*
136 *top part of the pellet as well. Avoiding the pellet leads to significantly lower DNA yields,*
137 *meaning that the positive charges on pelleted particles sequester DNA. After bead-beating,*
138 *DNA is extracellular and fully exposes its negatively charged phosphodiester backbone.*
139 *This trapped DNA is subsequently released into Sodium Phosphate Buffer.]*

140 7. Add 250 µl PPS (protein precipitating solution) and mix by shaking by hand 10 times.

141 8. Centrifuge at 14,000 x g for 15 minutes to precipitate the pellet. *[Note: Due to the*
142 *intentional pellet carry over from step 6, 15 minutes are allowed for protein precipitation].*
143 Transfer the supernatant into a clean 15 ml Falcon tube.

144 9. Resuspend the Binding Matrix suspension and add 1 ml to the supernatant in the 15 ml
145 Falcon tube.

146 10. Place on rotator or invert by hand for 2 minutes to allow binding of DNA. Place tube
147 in rack for 3 minutes to allow settling of the Binding Matrix.

148 11. Remove and discard 500 µl of supernatant being careful to avoid settled Binding
149 Matrix.

150 12. Resuspend Binding Matrix in the remaining amount of supernatant. Transfer
151 approximately 600 µl of the mixture to a SPIN Filter and centrifuge at 14,000 x g for 1
152 minute. Empty the catch tube, add 600 µl of the mixture and centrifuge again at 14,000 x
153 g for 1 minute. Repeat process until all mixture passes through the SPIN filter.

154 13. Add 500 µl prepared SEWS-M (Nucleic Acid Wash Solution provided by the kit) and
155 gently resuspend the Binding Matrix pellet using the force of the liquid from the pipet tip.
156 Ensure that absolute ethanol has been added to the concentrated SEWS-M stock solution
157 as suggested by the manufacturer.

158 14. Centrifuge at 14,000 x g for 1 minute. Empty the catch tube.

159 15. Centrifuge again at 14,000 x g for 2 minutes to "dry" the Binding Matrix from residual
160 wash solution. Discard the catch tube and replace with a new, clean catch tube.

161 16. Air dry the SPIN Filter for 5 minutes at room temperature.

162 17. Gently resuspend the Binding Matrix (collected inside the SPIN filter) in 50 µl of DES
163 (DNase/Pyrogen-free water). *[Note: not 30 µl of DES, in manufacturer's protocol].*

164 18. Centrifuge at 14,000 x g for 1 min to elute DNA from the Binding Matrix into the clean
165 catch tube. Discard the SPIN filter. This will result in ~50 µl of DNA in the catch tube.
166 *[NOTE: Use the smallest possible volume (1 µl) for Qubit fluorometric quantification to*
167 *save DNA].* Store all extracts, or single pooled extracts at -80°C.

168
169 **Protocol B** is used for low biomass samples with expected cell densities are < 10⁶ cells per cm³.
170 10 parallel extractions were performed per sample and include a batch of blank or "witness"
171 extractions.

172 Steps 1 to 18 are the same as in Protocol A, performed 10 times in parallel.

173 19. Potential stopping point or break: Store all extracts, or single pooled extracts at -80°C
174 now if necessary.

175 20. Assuming that yields are not sufficient (which is nearly always the case if cell
176 concentrations are expected < 10⁶ cells per cm³ in the sample) transfer the full combined
177 volume of all 10 individual extractions (~500 µl) to an Amicon Ultra 0.5 30K filter for
178 concentrating the DNA, following the manufacturer's instructions.

179
180 **Protocol C** improves the DNA yield by adding a Lysozyme and Proteinase K step before
181 performing DNA with FastDNA™ SPIN kit for soil (MP Biomedical). Protocol C was tested with
182 a shallow subsurface sediment from 0.8 mbsf (site U1546B), and a method control. One 0.5-gram
183 sediment sample was pretreated with Lysozyme and Proteinase K, and the other sample was not.
184 The sample with the lysozyme and the proteinase K pretreatment before performing extraction
185 Protocol A, gave higher DNA yield when compared to the non-pretreated sediment (0.8 ng µl⁻¹ vs.
186 0.2 ng µl⁻¹ fluorometrically quantified using Qubit™ dsDNA HS). The method control did not
187 yield DNA. The applied heating steps (37°C and 55°C for 45 and 20 minutes, respectively)
188 improved the DNA extraction efficiency but also seemed to remove inhibitory compounds that
189 interfere with DNA extraction (e.g., humic acids, hydrocarbons). The protocol could be scaled up
190 and tested further in triplicate or tenfold extractions as described in Protocol B.

- 191 1. Prepare 50 mM lysozyme solution by diluting 2 mg of lysozyme in 40 µl of Sodium
192 Phosphate Buffer provided by the FastDNA™ SPIN kit for soil (MP Biomedical).
- 193 2. Prepare 10 mM proteinase K solution by diluting 1 mg of Proteinase K in 100 µl of
194 Sodium Phosphate Buffer provided by the FastDNA™ SPIN kit for soil (MP
195 Biomedical).
- 196 3. Add up to 500 mg of sediment sample to a Lysing Matrix E tube.
- 197 4. Add 800 µl Sodium Phosphate Buffer to sample in Lysing Matrix E tube and the 40 µl
198 of the lysozyme solution.
- 199 5. Incubate at 37°C rotating for 45 minutes. Incubation time can increase up to 1 hr.
- 200 6. After lysozyme treatment add 100 µl proteinase K solution and 100 µl of 20% SDS
201 (w/v) to the sample in the Lysing Matrix E tube. The addition of 20% SDS can be
202 replaced by 120 µl MT buffer provided by the kit. [Note: SDS concentration in MT
203 buffer is undisclosed, but SDS is known to stimulate the activity of proteinase K even at
204 low concentrations between 0.5-2% w/v (Hilz et al., 1975).] Replacement of 20% SDS
205 with 120 µl MT was also tested and worked.
- 206 7. Incubate at 55°C rotating for 20 minutes. Incubation time can increase up to 40 minutes.
- 207 8. Place the Lysing Matrix E tube with the sample in the FastPrep homogenizer for 40
208 seconds at speed setting of 6 m/s.
- 209 9. Continue with the DNA extraction protocol A starting from step 5 until step 18.

210 10. Assuming that DNA yields are not sufficient, then continue with steps 19 to 20
211 described in Protocol B.

212

213 **Other methods.** We also tested DNA isolation with the Qiagen DNAeasy Powersoil Pro kit, but
214 obtained an order of magnitude lower DNA yields compared to the FastDNA kit. Three samples
215 (U1545C_4H_3, U1545C_8H_3, and U1547B_3H_3) yielded 2.876, 0.684 and 4.648 ng DNA/g
216 sediment with the Qiagen kit, and 164.25, 8.66 and 104.4 ng/g sediment with the FastDNA kit,
217 respectively. Likewise, DNA extractions using higher sediment volumes (up to 10 grams) with
218 Qiagen DNeasy PowerMax Soil led also to low DNA yields (similar ranges as those reported for
219 Qiagen DNAeasy Powersoil Pro kit tests). Because higher volumes of sediment also increase the
220 concentrations of inhibitory compounds found in Guaymas subsurface sediments, our teams
221 concluded that small-scale (0.5 cm³ or 0.5 g) sediment extractions offer a more favorable balance
222 of DNA yield and inhibitor accumulation. These results confirmed the decision of all parties to use
223 the modified FastDNA procedure as outlined above in protocols A or B.

224

225 **RNA extraction.** To demonstrate microbial activity and associated gene expression, RNA
226 extraction, sequencing and metatranscriptomic analyses are essential. Prior protocols for deep
227 subsurface total RNA extraction from our labs involved bead-beating, organic extraction and
228 ethanol precipitation (Sørensen and Teske 2006; Biddle et al. 2006) or used soil RNA extraction
229 kits that excel also for samples that have high humic content, including sediments (Edgcomb et al.
230 2011, Orsi et al., 2013a,b). However, for over a year of effort, Guaymas Basin subsurface
231 sediments maintained at -80°C defeated all attempts at RNA extraction using various methods,
232 including also the original RNA isolation protocols published by Chomczynski and Sacchi (1987).
233 Aside from the different RNA isolation protocols, we also performed different sediment
234 pretreatments that have been shown to increase cell extraction efficiency from deep subsurface
235 sediments (Kallmeyer et al., 2008). Yet, even with those pretreatments (e.g., acidification of
236 sediments for 10 minutes with 0.43 M sodium acetate to dissolve carbonates), RNA could not be
237 isolated. The steps that eventually led to successful RNA extraction involved initially washing
238 sediment samples twice with absolute ethanol (200 proof; purity \geq 99.5%; Thermo Scientific
239 Chemicals), followed by one wash with DEPC-treated water (Fisher BioReagents) before
240 extracting RNA. This procedure appears to remove sufficient hydrocarbons and other inhibitory
241 elements present in Guaymas sediments. Similar washing procedures have been tested for other

242 hydrocarbon-rich sediments (Lappé and Kallmeyer 2011). Without ethanol and DEPC water
243 washes, all attempts resulted in low or zero RNA yield. At the time of writing this manuscript, all
244 metatranscriptomic analyses of Guaymas Basin subsurface sediments (Mara et al., 2023a, Mara et
245 al., 2023b) depended on including these washing procedures. We also note that washing steps
246 might be applied to future DNA extraction protocols, to remove inhibitors that accumulate when
247 extraction volumes are scaled up.

248 In brief, 10-15 grams of frozen Guaymas Basin sediments were transferred into UV-
249 sterilized 50 ml Falcon tubes (RNAase/DNase free) using clean, autoclaved and ethanol-washed
250 metallic spatulas. Each tube received an equal volume of absolute ethanol and was shaken
251 manually for 2 minutes followed by 30 seconds of vortexing at full speed to create a slurry.
252 Samples were transferred into an Eppendorf centrifuge (5810R) and were centrifuged at room
253 temperature for 2 minutes at 2000 rpm. The supernatant was decanted, and the ethanol wash was
254 repeated. After decanting the supernatant of the second ethanol wash, an equal volume of DEPC
255 water was added into each sample. Samples were manually shaken and vortexed as before to create
256 slurry and were transferred into the Eppendorf centrifuge (5810R) where they were centrifuged at
257 room temperature for 2 minutes at 2000 rpm. The supernatant was decanted, and each sediment
258 sample was immediately divided into three bead-containing 15 mL Falcon tubes, provided by the
259 PowerSoil Total RNA Isolation Kit (Qiagen). RNA was extracted as suggested by the
260 manufacturer with the modification that the RNA extracted from the three aliquots was pooled into
261 one RNA collection column and eluted at 30 μ l final volume. All RNA extractions were performed
262 in a UV-sterilized clean hood (two UV cycles of 15 min each) that was installed with HEPA filters.
263 Surfaces inside the hood and pipettes were sterilized with RNase AWAY (Thermo Scientific)
264 before every RNA extraction and in between extraction steps. Trace DNA contaminants were
265 removed from RNA extracts using TURBO DNase (Thermo Fisher Scientific) and the
266 manufacturer's protocol. Carryover DNA removal from the RNA extracts was confirmed with
267 PCR reactions using primers for the small ribosomal subunit of 16S rRNA gene [BACT1369F:
268 5'CGGTGAATACGTTCYCGG3' and PROK1541R: 5'AAGGAGGTGATCCRGCCGCA 3';
269 Suzuki et al., 2000)]. Each 25 μ l PCR reaction was prepared using GoTaq G2 Flexi DNA
270 Polymerase (Promega) and contained 0.5 U μ l⁻¹ GoTaq G2 Flexi DNA Polymerase, 1X Colorless
271 GoTaq Flexi Buffer, 2.5 mM MgCl₂, (Promega) 0.4 mM dNTP Mix (Promega), 4 μ M of each
272 primer (final concentrations), and DEPC water. Further, to confirm absence of DNA contamination

273 due to handling and PCR reagents, all PCR experiments included negative controls (blanks) where
274 no DNA was added. PCR amplifications were performed in an Eppendorf Mastercycler Pro S
275 Vapoprotect (Model 6321) thermocycler with following conditions: 94°C for 5 min, followed by
276 35 cycles of 94°C (30 s), 55°C (30 s), and 72°C (45 s). The PCR reaction products were run in 2%
277 agarose gels (Low-EEO/Multi-Purpose/Molecular Biology Grade Fisher BioReagents) to confirm
278 absence of DNA products. RNA quantification (ng μl^{-1}) was performed using Qubit RNA High
279 Sensitivity (HS), Broad Range (BR), and Extended Range (XR) Assay Kits, (Invitrogen). Because
280 of the essential sediment washing steps with ethanol and DEPC-treated water, and the small
281 volume of final RNA extractions (30 μL), the RNA integrity (RIN) of the extracted RNA was not
282 estimated. The washes with absolute ethanol can enhance the already high susceptibility of RNA
283 to degradation at room temperature, and therefore we selected to preserve the small volume of our
284 RNA extracts for other mandatory steps involved in cDNA library preparation. These steps
285 included quantifying the total RNA concentration before the cDNA library preparation,
286 performing PCR reactions to confirm the absence of carryover DNA in the RNA extracts, and
287 maintaining the necessary initial RNA volume (up to 10 μl) which is required as template for the
288 synthesis of the single/first cDNA strand.

289 Amplified cDNAs from the DNA-free RNA extracts were prepared using the Ovation
290 RNA-Seq System V2 (Tecan) following the manufacturer's suggestions. All steps from RNA
291 extraction through cDNA preparation were completed on the same day to avoid freeze/thaw cycles
292 that might damage the integrity of RNA strands. cDNAs were submitted to the Georgia Genomics
293 and Bioinformatics Core facility for library preparation and sequencing using NextSeq 500 PE 150
294 High Output (Illumina). Sequencing of the cDNA library prepared from the control sample
295 (laboratory reagent control) was unsuccessful as it failed to generate any sequences that met the
296 minimum length criterion of 300-400 base pairs.

297 While this RNA extraction and transcription protocol ran into downcore detection limits
298 (Table 3), we note that every living subsurface cell with intact genomic DNA requires at least a
299 minimum level of gene expression in order to survive and function, and thus we regard RNA
300 extraction and detection limits foremost as methodological issues, not as evidence of fundamental
301 constraints on life.

302

303 **Results**

304

305 **Downcore trends in DNA yield.** To obtain DNA for metagenomic analyses, protocols A and B
306 were applied to DNA extractions from Site U1545B, U1545C, U1546D, and U1547B sediment
307 samples, starting with 0.5 cm³ wet sediment samples. DNA yields are tabulated in Table 1 and
308 plotted in Figure 1. The yield of DNA extractions decreases exponentially with sediment depth
309 and temperature. In near-surface sediments, DNA yields are high, around 1000 to 1500 ng DNA,
310 or 1 to 1.5 µg DNA per cm³ wet sediment. DNA yields decrease towards the limit of reliable
311 detection and quantification by Qubit (below 0.1 ng per cm³) within 75 mbsf for site U1547B at
312 Ringvent, and within ca. 200 mbsf at Site U1545B in the Northwestern Guaymas Basin. The steep
313 thermal gradient at Ringvent means that a depth of 75 mbsf corresponds to in-situ temperatures
314 near 50°C to 55°C whereas the cooler sediments in northwestern Guaymas Basin reach these
315 temperatures only near 200 mbsf (Table 1 and Figure 1). The temperature-related differences in
316 DNA recovery impact the depth horizons for successful metagenomic sequencing, which generally
317 requires nanogram amounts of DNA. For example, generating Illumina libraries from low-biomass
318 samples requires a previously reported minimum of 3.65 ng DNA (Jiang et al. 2015).

319 Independently, Protocols A and B were applied to extract DNA for another sequencing
320 project from all sites; here extractions started with 0.5 g wet weight samples (Table 2, Figure 2).
321 The DNA concentrations show a similar decline over several orders of magnitude as observed for
322 the previous set of extractions. In the northwestern sites U1545 and U1546, DNA concentrations
323 decline over almost three orders of magnitude, from the µg to the ng range per g sediment, within
324 the upper 170 to 190 mbsf (40-45°C). DNA yields decline over three orders of magnitude at the
325 Ringvent sites U1547 and U1548, with this sharp decline occurring within the upper 70 to 80 mbsf
326 (50-60°C); some uncertainty for the deeper samples is not resolved since DNA concentrations dip
327 below the 0.1 ng limit of Qubit detection (Table 2). In the cold seep-affiliated site U1549 and the
328 axial site U1550, DNA concentrations decline by three orders of magnitude within approx. 140
329 mbsf (25-30°C). The shorter DNA gradients of Southeastern site U1551 and Northern seep site
330 U1552 drop by more than one or two orders of magnitude over depths of 35 and 45 meters,
331 respectively, and remain entirely within cool temperatures not exceeding 16°C (Table 2).

332 **Determination of the “DNA event horizon”.** Empirically, the current limit for
333 contaminant-free DNA that is consistently suitable for metagenomic analysis of Guaymas Basin
334 sediments is around 0.2 to 0.5 ng extracted DNA/cm³ wet sediment (Table 1). Lower DNA

335 concentrations near 0.1 ng/cm³ may still yield metagenomes, but contaminants hypothesized to
336 emerge from the reagent's "kitome" (Salter et al. 2014) increasingly appear once DNA
337 concentrations decrease to 0.1 ng extracted DNA/cm³. Assuming a cellular DNA content of
338 approximately 1 to 2 femtogram (10⁻¹⁵g) DNA per cell (Bakken and Olsen, 1989; Button et al.,
339 2001), 0.2 to 0.5 ng (10⁻⁹ g) DNA is the equivalent of 0.2 to 0.5 x 10⁶ cells. Therefore, given the
340 complexity of our sample set, DNA of sufficient quantity and quality for metagenomic library
341 construction and sequencing can be extracted from sediments with cell densities of ca. 0.2 to 0.5
342 x 10⁶ cells/cm³, more than 3 orders of magnitude below near-surface cell densities of 10⁹ cells/cm³
343 sediment. From the perspective of obtaining sufficient DNA for metagenomes, this is the current
344 "DNA Event horizon" for this complex environment given our methodological approaches.
345 Although this metagenomic DNA limit lags much behind the greater sensitivity of cell counts, it
346 has improved considerably compared to earlier attempts to obtain subsurface metagenomes from
347 non-amplified DNA extracts, which succeeded only for shallow subsurface sediments (Biddle et
348 al. 2008, 2011). We also note that the successful preparation of metagenomic libraries from small
349 amounts of DNA is crucial, requiring in some cases extra efforts at library preparation, and in this
350 regard not all sequencing facilities may be equally capable. The participants of this study had their
351 metagenomic libraries prepared at the DNA Sequencing and Genotyping Center of the University
352 of Delaware.

353 The "DNA event horizon" is slightly different for targeted PCR (Polymerase Chain
354 Reaction) amplification of specific genes, and depends not only on drilling site and depth but also
355 on the amplification target (Table 2). PCR allows for the amplification of targeted gene sequences
356 within dilute DNA extracts, increasing the sensitivity of detection. DNA extracts from all drilling
357 sites were used for PCR amplification of bacterial & archaeal 16S rRNA gene segments with
358 primer combinations of 515F-Y (Parada et al. 2015) and 926R (Quince et al. 2011), and partial
359 archaeal 16S rRNA genes using primer combination 25F and 806R (Mara et al., 2023), and for
360 *mcrA* genes (Hinkle et al., 2023) using primer combinations mcrIRD and mcrANME1 (Lever and
361 Teske 2015). In contrast to the metagenomic extractions in Table 1, these DNA extractions for
362 PCR were performed in single samples rather than in triplicate, and the sample size (0.5 g) was
363 based on wet weight, not volume. Ten replicate extractions (Protocol B) were performed for a
364 second PCR attempt if the initial PCR did not work (Table 2).

365 In our PCR survey, DNA concentrations near 1-2 ng DNA/g wet sediment were generally
366 required for positive PCR outcomes (Table 2), whereas DNA samples at lower concentrations –
367 which includes the previously defined metagenome sequencing limit (< 0.2 to 0.5 ng DNA/cm³,
368 or below 0.34 to 0.85 ng DNA/g wet weight sediment, assuming a conversion factor of 1.7) – did
369 not produce PCR amplicons of 16S rRNA genes or other genes. The only exceptions were low-
370 DNA extracts from deep, hot Ringvent samples (U1547B) that yielded archaeal PCR products
371 (Table 2). This surprising result – slightly higher DNA concentration requirements for PCR than
372 for metagenomic sequencing – may reflect the fact that metagenomic library preparation does not
373 select for specific genes, which necessarily account only for a very small proportion of the DNA
374 pool. In contrast, PCR assays for 16S rRNA genes and functional genes pick out specific genes by
375 design, like the proverbial needle in the haystack. Interestingly, PCR amplification of an 800 bp
376 archaeal 16S rRNA gene segment was more consistently successful than amplification of shorter
377 (300 bp) 16S rRNA gene segments using general prokaryotic (bacterial + archaeal) primers.
378 Archaeal 800 bp amplicons were consistently recovered until depths of ca. 75 mbsf at Ringvent
379 sites U1547B and U1548B, and 170 mbsf at the Northwestern sites U1545B and U1546B (Table
380 2). PCR amplification of mcrA genes with the ANME1-targeted primers gave positive results
381 generally near and within methane-sulfate interfaces (Hinkle et al., 2023). Amplification of mcrA
382 gene for methanogens worked only for few samples, consistent with the apparent rarity of
383 methanogens in the Guaymas Basin subsurface (Bojanova et al., 2023). The robustness of Archaeal
384 16S rRNA gene-directed PCR assays over a wide spectrum of DNA concentrations and depths
385 may result from several factors: the absence of Archaea from common laboratory and kit
386 contaminants (Salter et al. 2014), the highly conserved Archaea-specific primer sites that contrast
387 with the more ambiguous primer regions used for general prokaryotic (bacterial and archaeal) 16S
388 rRNA gene surveys, and the downcore increasing relative proportion of archaea in the microbiome
389 of hydrothermal sediments (Ramírez et al. 2021, Lagostina et al. 2021).

390 **Guaymas Basin and the Cragg line.** In cold marine sediments from passive continental
391 margins, such as the Peru Margin, microbial cell numbers decline very gradually, and successful
392 DNA and RNA recovery and subsequent sequencing surveys extend to considerable depth (Inagaki
393 et al., 2006; Biddle et al., 2006; Pachiadaki et al. 2016). To track cell abundance over three orders
394 of magnitude, from 10⁹ cells per cm³ at the surface towards 10⁶ cells per cm³ at depth, required
395 drilling and sampling down to 1000 meters sediment depth (Parkes et al., 2014). The gradual

396 downcore decline in cell density for organic-rich, cold sediments follows a log-log regression line
397 defined as $\text{Log cells} = 8.05 - 0.68 \text{ Log depth}$ ($R^2 = 0.70$ and $n = 2037$; see Figure 2 in Parkes et al.
398 2014). We refer to this relationship as the Cragg line, in memory of cell count pioneer Barry Cragg.

399 Interestingly, published cell counts from hydrothermal sediments (Cragg et al. 2000,
400 Expedition 311 Scientists, 2011; Heuer et al. 2017) are significantly lower than their counterparts
401 from cold sediments, and fall – regardless of considerable scatter – below the 95% confidence
402 intervals of the Cragg line (Parkes et al., 2014). Similar trends appear in Guaymas Basin. Plotting
403 Expedition 385 cell counts (with DNA stain SYBR Green I) shows that cells densities from all
404 drilling sites and holes decrease by 3 orders of magnitude, from 10^9 cells/cm^3 sediment near the
405 surface towards 10^6 cells/cm^3 sediment between ca. 50 and 100 m depth, and intersect with the
406 Cragg line at ca. 50 m depth (Figure 3). This downcore decreasing trend is accelerated at the two
407 hot Ringvent sites U1547 and U1548, and delayed at the cool sites 1549 and 1550 (Figure 3).
408 Similarly, DNA yields in the Guaymas subsurface decline by three orders of magnitude by 50 to
409 100 m depth (Figure 1, Figure 2). In non-hydrothermal sediments such a decline occurs over well
410 before 1000 m depth (Parkes et al. 2000). We see declining DNA yields already in sediments with
411 warm in-situ temperatures of ca. 35–40°C (at ca. 40–50 m depth at Ringvent and 130–150 m depth
412 at U1545), far below the temperature range for hyperthermophilic vent archaea (80°C and up),
413 indicating that the survival of most subsurface microorganisms is already noticeably reduced at
414 those depths. The metagenomic analysis showed the dominance of mesophilic microbiota in cool
415 and temperate sediments, indicating that the downcore decreases of cell abundance and DNA
416 yields are mainly caused by environmental selection against these microbes.

417 We note that the depth range horizon for successful metagenomic library construction,
418 sequencing, and recovery of Metagenome-Assembled Genomes (MAGs) is very different from
419 cell count limits. The Expedition 385 summary chapter includes shipboard cell counts that reach
420 10^5 to 10^6 cells/cm^3 (Teske et al., 2021a). In general, samples with these concentrations yield
421 sufficient DNA for metagenomic sequencing and MAG analysis. Post-cruise counts using
422 automated image acquisition and high-throughput counts in the lab will be much more sensitive,
423 and will allow more precise quantification of subsurface cell density in Guaymas Basin down to
424 10^2 to $10^3 \text{ cells per cm}^3$ (Morono et al., 2022). Obviously, these sparser deep subsurface microbial
425 communities also contain intracellular DNA that should in principle be amenable to sequencing;
426 yet bridging the sensitivity gap between metagenomics (limited by DNA yield) and cell counts

427 (limited by high-throughput microscopic image processing) remains a challenge. So far, extremely
428 deep and hot samples where cell counts and activity measurements suggest persistent microbial
429 life remain inaccessible by sequencing (Heuer et al., 2020; Beulig et al., 2022).

430 **Comparison to shallow hydrothermal sediments.** Near-surface densities of between 10^9
431 and 10^{10} cells/cm³ are found in hydrothermal sediments of Guaymas Basin. DNA concentrations
432 in surficial hydrothermal sediments range from 6 $\mu\text{g}/\text{cm}^3$ (Hinkle et al., 2024) to 10 $\mu\text{g}/\text{cm}^3$
433 (Engelen et al., 2021). Based on the average DNA content of 1 to 2 femtograms (10^{-15}g) DNA per
434 cell, these DNA concentrations translate into cell densities of 3 to 10×10^9 cells/cm³; these
435 numbers match the range of epifluorescence cell count maxima in surficial sediments of Guaymas
436 Basin that range from 1 to 4×10^9 cells/cm³ (Meyer et al., 2013). Given high cell numbers and
437 DNA concentrations, metagenomic sequencing of microbial communities in surficial sediments is
438 not limited by DNA availability, and yields highly diverse bacteria and archaeal communities with
439 novel lineages (Dombrowski et al., 2017, 2018; Seitz et al., 2019; Eme et al., 2023).

440 Consistent with the deep Guaymas Basin subsurface, downcore DNA yields in near-
441 surface hydrothermal sediments of Guaymas Basin decrease by several orders of magnitude, but
442 on scales of centimeters instead of tens or hundreds of meters. Mutually independent studies show
443 that these downcore decreases in DNA yield are persistent, regardless of different DNA extraction
444 protocols and quantification units. DNA yields declined over one order of magnitude from 10 μg
445 DNA/g to below 1 μg DNA/g sediment within the top 3 centimeters of a hot hydrothermal
446 sediment core, using the Qiagen power soil extraction kit and protocol (Engelen et al., 2021). DNA
447 yields declined more than two orders of magnitude from 6 $\mu\text{g}/\text{cm}^3$ to below 60 ng/cm³ within the
448 top 20 centimeters of hydrothermal sediment cores (Table 4 and Figure 4), using a manual
449 extraction protocol that combines freeze-thawing, proteinase K digest, and chloroform-isoamyl
450 alcohol extraction (modified from Zhou et al., 1996). We note that these surficial hydrothermal
451 sediments are very liquid, which minimizes the difference between volume-based and weight-
452 based DNA yield.

453 This strong compression of high DNA yields and microbial populations towards the
454 sediment-water interface is commonly ascribed to increasingly extreme temperatures and
455 biogeochemical conditions in hydrothermally active shallow sediments. These results show some
456 qualitative similarities to the Expedition 385 results, insofar as hydrothermal stress factors appear
457 to compress DNA yield and microbial cell numbers towards the upper subsurface sediments of

458 Guaymas Basin, and depress DNA yield and microbial cell numbers in the subsurface. While the
459 impacts of temperature stress and energy limitation apply to both shallow and deep sediments, the
460 conditions and hydrothermal settings are certainly different. The fluidized surficial hydrothermal
461 sediments that are permeated by pulsating, extremely hot ($> 80^{\circ}\text{C}$) and highly reducing fluids
462 (McKay et al., 2016; Teske et al., 2016; Su et al., 2023) are distinct from consolidated deeper
463 subsurface sediments characterized by stable thermal and geochemical gradients. Interestingly, the
464 microbial communities of dynamic near-surface hydrothermal sediments and of hydrothermally
465 influenced subsurface sediments are different; the former are dominated by hydrothermal vent and
466 hot spring taxa, whereas the latter share many microbial groups with the global marine sedimentary
467 biosphere (Lagostina et al., 2021). We speculate that microbial communities in hot,
468 hydrothermally active surficial sediments (where numerous carbon sources, nutrients and redox
469 pairs coexist) are less limited by energy and substrate availability than by extreme temperature
470 stress; in contrast, relatively moderate temperatures that are measured in IODP-drilled subsurface
471 sediments have a disproportionately greater impact on the energy-limited microbial deep biosphere.
472 These differences in selection factors may ultimately result in distinct microbial communities.

473 ***Strategies to reach beyond the DNA event horizon.*** Obtaining sufficient DNA from
474 sediments with lower cell numbers requires further methodological improvements, for example by
475 perhaps separating cells from sediments before cell rupture and DNA extraction to prevent DNA
476 sticking to hydrocarbon-coated sediment particles (Lappé and Kallmeyer, 2011). Refined methods
477 for cell separation from sediments and subsequent concentration have been reviewed and discussed
478 in detail in the context of cell counting (Morono 2023), and will ultimately lead to increased
479 sequencing sensitivity as well.

480 Bulk sediment DNA isolation procedures can be scaled up using multiple parallel
481 extractions followed by pooling of the extracted DNA, for example by changing from protocol A
482 (1 or 3 parallel extractions per sample) to protocol B (10 parallel extractions per sample). As a
483 caveat, in the course of pooling and concentrating multiple samples, laboratory or reagent
484 contaminants that are present at low levels would also be concentrated and collected. This
485 unintended side effect may have resulted in Actinobacterial and certain Gammaproteobacterial
486 contaminants that appear increasingly in metagenomic sequencing and MAG annotation for low-
487 DNA samples (Mara et al. 2023b). To reduce the need for multiple parallel extractions of small
488 volumes, sediment washing steps similar to those used for RNA isolation could be applied to DNA

489 extraction procedures, to scale up extraction volumes without accumulating inhibitor substances
490 or process-derived contaminants in the final extracts.

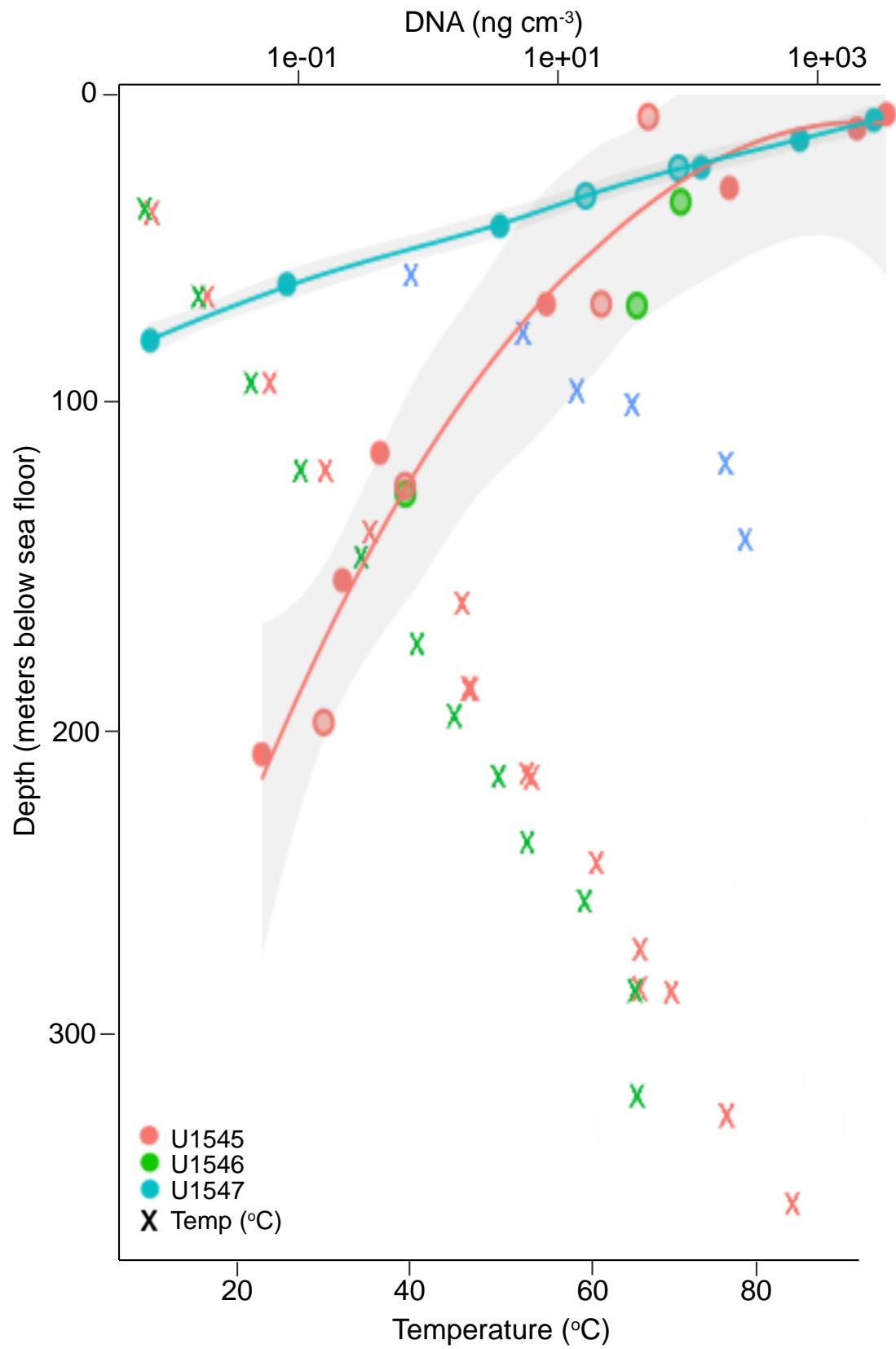
491 With the advent of advanced DNA sequencing technologies, and the laboratory methods
492 to support them, sequencing projects targeting recalcitrant and extreme samples now have a
493 significantly higher rate of success (i.e., Tighe et al. 2017). Reactive and corrosive compounds can
494 co-elute with nucleic acids during typical purification methods, these compounds often negatively
495 impact downstream procedures. Further, organisms that survive in these environments have
496 evolved cellular mechanisms to protect their genomes for gene expression and reproduction.
497 Interestingly, these evolved cellular mechanisms that protect DNA from environmental damage
498 can make the DNA more difficult to extract and to analyze, often inhibiting downstream enzymatic
499 reactions or requiring harsh extraction techniques that results in highly fragmented DNA. New
500 methods and products have been developed that can more effectively remove ‘protective’
501 compounds and reactive/corrosive compounds. Industry vendors that have stepped into this space
502 with products include Zymo Research (zymoresearch.com), Qiagen (Qiagen.com), Omega Bio-
503 Tek (omegabiotek.com), among others. Home brew methods that have been developed are as
504 simple as performing serial dilutions to reduce inhibitory compounds, or more complex as with
505 newly formulated reagents and solutions. The ability to overcome these challenges has led to a
506 surge in high quality data from previously inaccessible sample materials (Bojanova et al., 2023,
507 Mara et al., 2023).

508 Computational methods may also expand the limits of useful metagenomic surveys beyond
509 the currently proposed DNA event horizon despite potential contaminant loads. Taxonomy-based
510 identification of contaminants in a metagenomic sequencing datasets may help eliminate unwanted
511 biological information at the short-read, contig assembly, and/or open reading frame (protein
512 prediction) stage. Generating large numbers of contigs that are taxonomically assigned to known
513 contaminants can improve metagenomic assembly quality, by culling the assembly input.
514 Alternatively, independent taxonomic assignments for all proteins predicted in metagenomic
515 contigs can serve as another contaminant culling step with the potential to increase the number of
516 MAGs or the percentage of complete/near complete MAGs from a given dataset
517 (<https://github.com/Arkadiy-Garber/Taxonsluice>). To extract information from KEGG modules
518 for incomplete bacterial MAGs, MetaPathPredict (Geller-McGrath et al., 2022) can generate
519 predictions for the presence or absence of KEGG modules within gene annotations of bacterial

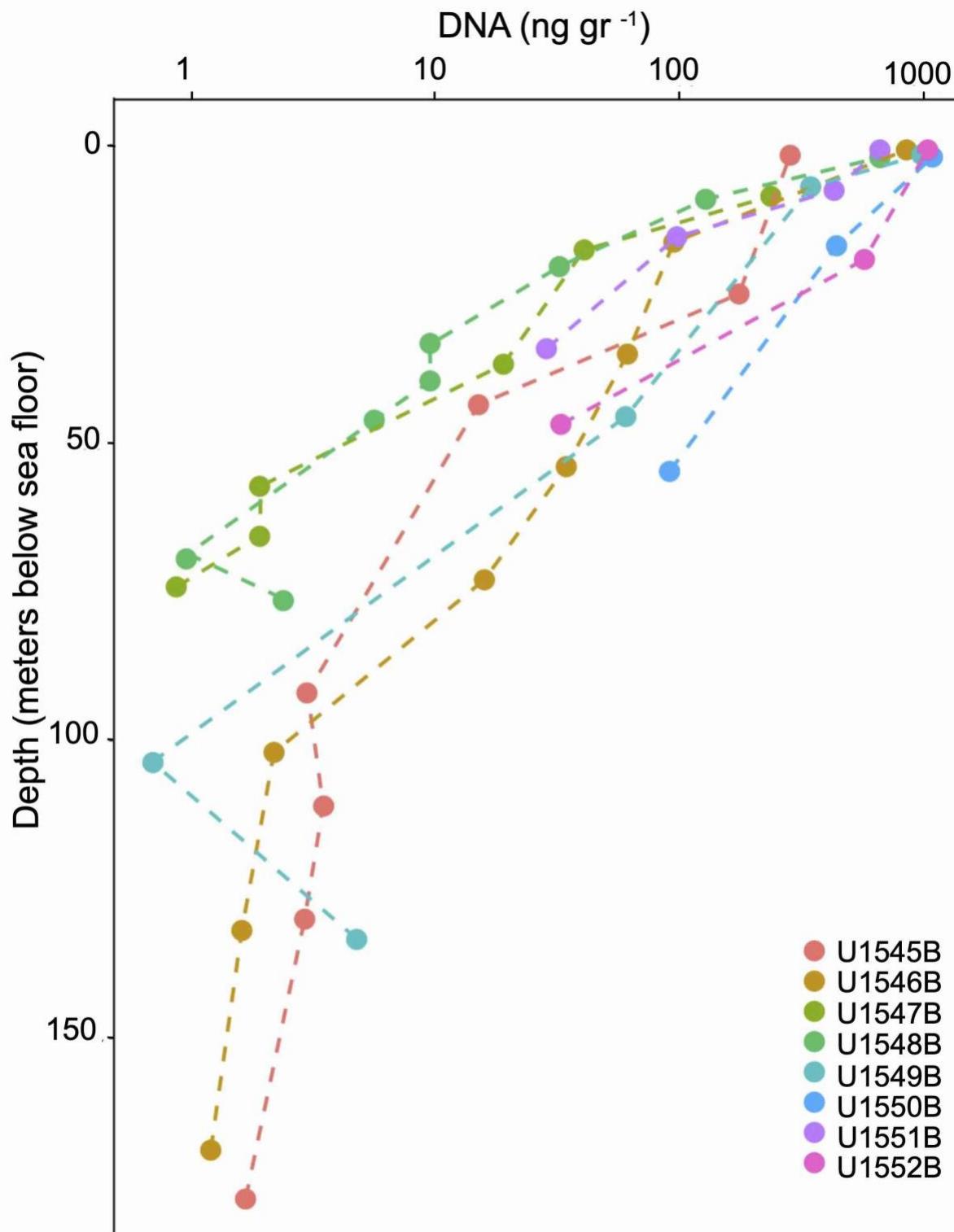
520 MAGs; we are currently testing this approach for the Guaymas Deep Biosphere (Mara et al.
521 2023b).

522 Funding. This study was supported by NSF Grant OCE-2046799 to VE, PM, and AT; by NSF
523 grant OCE-1829903 to VE, PM, and AT; by NASA Exobiology grant APP-0244-001 to AT; by
524 NSF grant OCE-0939564 to D.B., and by JSPS KAKENHI Grants JP19H00730 and JP23H00154
525 to YM. Expedition 385 participants were aided by IODP cruise and post-cruise support.

526

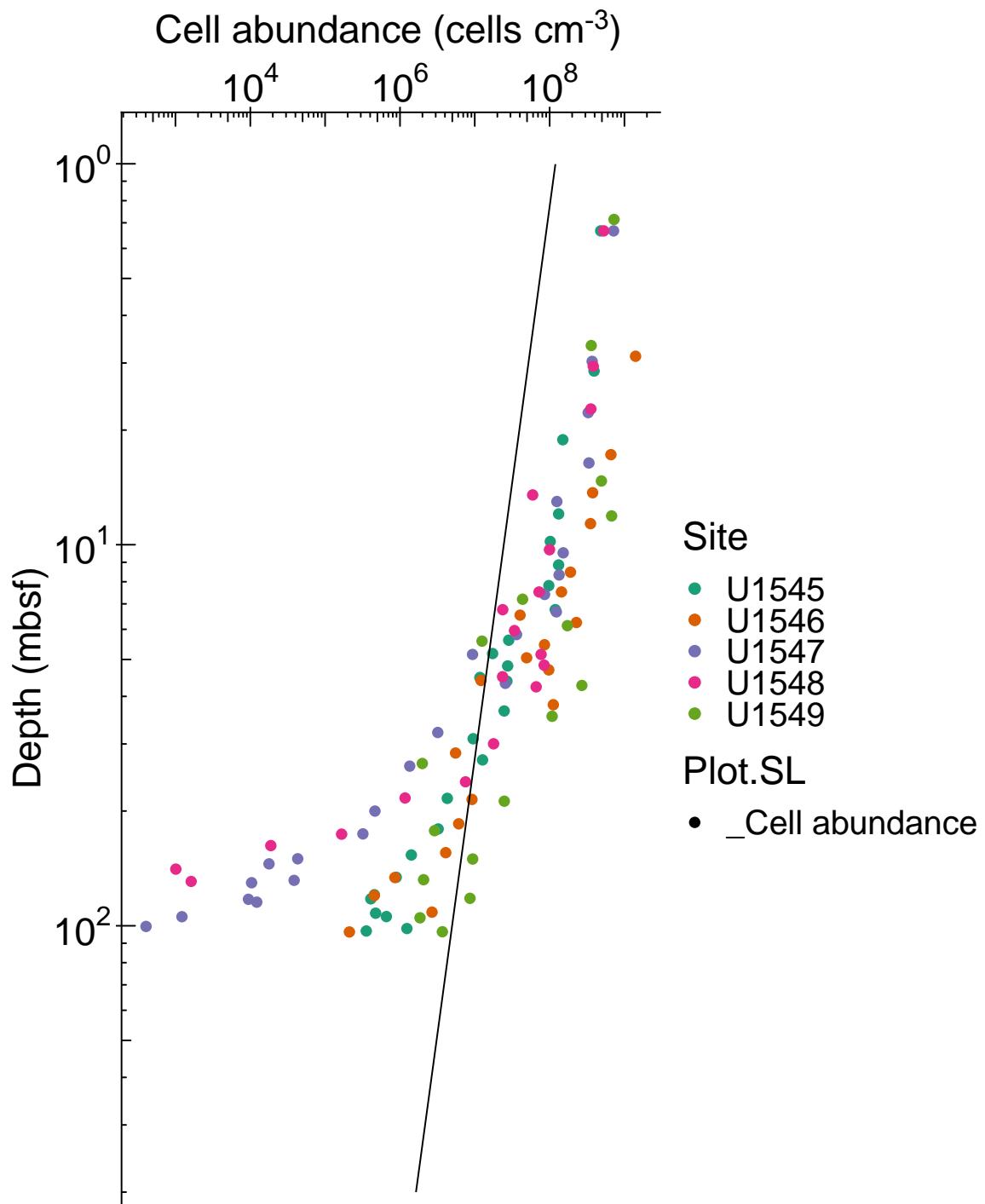

527 **Acknowledgments.** We thank all IODP expedition 385 scientists, technicians, drillers and crew
528 for making sample recovery, and by proxy, this research project possible. We gratefully
529 acknowledge the shipboard curatorial team who kept the sediment samples and metadata organized
530 and well-catalogued. We thank the Amend Lab for hosting G. Ramírez for the first rounds of DNA
531 extractions before the Pandemic shutdown. We thank Eleanor Greene and Hannah Vanderscheuren
532 (Ruff Lab, MBL) for clean-up and quantification of the DNA in Figure 4.

533


534 **Figures**

535

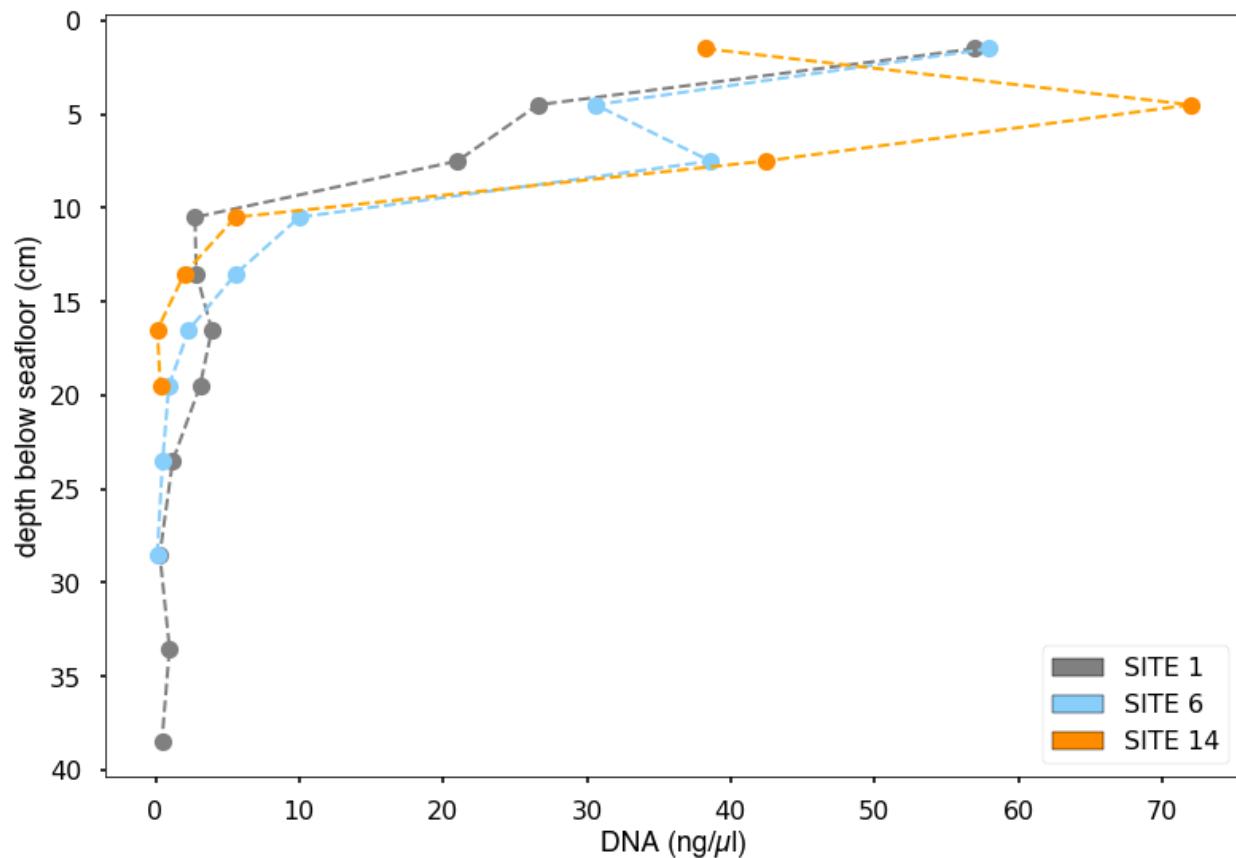
536 **Figure 1.** Downcore DNA concentration profiles for Holes U1545B and U1547B, extracted for
537 metagenomic sequencing of bacteria and archaea. The temperature values represent the in-situ
538 measurements (Teske et al. 2021b, d). The plotted lines for DNA concentrations follow a
539 generalized additive model of exponential functions, flanked by 95% confidence intervals (ggplot2
540 smooth_stat() function) that are shown as grey zones. Extractions give consistent results across
541 different sample sets, as shown by solid circles representing initial DNA extractions by G.
542 Ramirez, and hollow circles representing a second set of DNA extractions by D. Bojanova.



545 **Figure 2.** Downcore DNA concentration profiles for Holes U1545B to U1552B, extracted for PCR
546 amplification of 16S rRNA genes and functional genes (Table 2).

547
548

549 **Figure 3.** Direct cell counts with SYBR Green I as DNA-staining fluorophore in Guaymas
550 sediment samples from all eight drilling sites. The data points correspond to samples used for 16S
551 rRNA gene and functional gene surveys of bacteria and archaea (Table 2). Ringvent cell counts
552 cross the Cragg line at 50 mbsf, the other cell counts between ca. 70-100 mbsf.



553

554

555 **Figure 4.** DNA concentration profiles for surficial hydrothermal sediments (Alvin Dive 4872, Dec
556 24, 2016), extracted manually by a combined freeze-thawing, enzymatic lysis and organic
557 extraction protocol (Zhou et al., 1996) and cleaned up using Amicon purification columns (Table
558 4). Core 1 was collected in from warm sediment without microbial mat cover, core 6 in hot
559 hydrothermal sediment covered with a white *Beggiatoaceae* mat, and core 14 in very hot
560 hydrothermal sediment covered with an orange *Beggiatoaceae* mat. For final DNA concentrations
561 per mg sediment, the extract concentrations are multiplied by factor 100.

562

563
564
565
566
567
568
569
570

571 **Tables**

572

573 **Table 1.** DNA yields from Guaymas subsurface sediments in sites U1545B and U1547B, extracted
574 by G. Ramírez (no asterisk) and D. Bojanova (asterisk). The column “Prokaryotic Metagenomes”
575 indicates samples used for metagenomic analyses (Bojanova et al., 2023, Mara et al., 2023b). The
576 sequencing data obtained from our two controls (a drilling fluid sample and a kit control) were
577 excluded from the metagenome analyses. n/a: not applicable; Nq.: DNA was not quantifiable using
578 double strand high sensitivity DNA assays (Qubit); No library: unsuccessful library prep.

SampleID	Depth (mbsf)	Interpolated <i>in-situ</i> temperature (°C)	Protocol	ng DNA per cm ³ of wet sediment	Prokaryotic Metagenomes
1545B_1H2	1.7	5.3	A	1365	Bact./Arch.
1545B_2H3	6.8	6.4	A	851.4	Bact./Arch.
1545B_4H3	25.8	10.7	A	109.5	Bact./Arch.
1545B_8H3	63.8	19.2	A	5.8	Bact./Arch.
1545B_13H4	112.5	30.2	B	0.4	Bact./Arch.
1545B_19F3	155.0	39.8	B	0.22	Bact./Arch.
1545B_32F3	211.1	52.4	B	0.06	Bact./Arch.
1545C_4H3*	25.8	10.6	A	29.8	Bact./Arch.
1545C_8H3*	63.8	19.2	A	14	Not analyzed
1545C_14H4*	123.2	32.5	B	0.6	Bact./Arch.
1545C_31F2*	204.6	50.9	B	0.2	Bact./Arch.
1546D_4H3*	26.8	9.6	A	42.99	Bact./Arch.
1546D_8H2*	63	17	A	23.3	Not analyzed
1546D_16H2*	124	30.1	B	0.6	Bact./Arch.
1546D_28H2*	213	48.6	B	0.3	Bact./Arch.
1547B_1H3	3.6	15.0	A	1119	Bact./Arch
1547B_2H3	9.9	17.8	A	339.6	Bact./Arch.
1547B_3H2*	18.3	20.8	A	47.9	Bact./Arch.
1547B_3H3	19.3	23.6	A	69.6	Bact./Arch.
1547B_4H3*	28.4	26.2	A	10.9	Bact./Arch.
1547B_5H3	38.1	34.0	A	2.75	Bact./Arch.
1547B_7H3	57.4	42.3	B	0.09	Bact./Arch.
1547B_9H2*	74.3	51.0	B	0.126	No library
1547B_9H3	76.0	54.9	B	0.1	Bact./Arch.
1546B_1H1					
Drilling fluid	N/A	n/a	A	Nq	control
Blank	N/A	n/a	A	Nq	control

579 **Table 2.** DNA yields from Guaymas subsurface sediments, extracted for PCR assays by D.
580 Beaudoin and P. Mara (Edgcomb Lab, WHOI) and J.E. Hinkle (U1548C samples; Teske Lab,
581 UNC). Sample depths are noted as meters below seafloor (mbsf). An X in the general 16S and

582 Archaeal 16S rRNA gene PCR column indicates that PCR amplification was successful. Nq: DNA
583 was not quantifiable using double strand high sensitivity DNA assays (Qubit); da: PCR
584 amplification was attempted but remained unsuccessful; ---: no PCR was performed.

585 The *mcrA* gene PCR column is coded as follows: X indicates positive only for mcr-ANME1
586 primers; X1 indicates positive only for mcr-IRD primers targeting general methanogens but not
587 ANME1, X2 indicates positive for both mcr-IRD and mcr-ANME1 primers. Cell counts were
588 compiled for these samples and plotted in Figure 3.

589

Sample ID	Depth (mbsf)	Interpolated <i>in-situ</i> temperature (°C)	ng DNA per gr of sediment	Sediment extracted (gr)	bacterial/arch		800 bp		Potential DNA yield, 1 fg DNA/cell (ng ml⁻¹)	
					aecal 16S rRNA gene PCR	archaeal 16S rRNA gene PCR	<i>mcrA</i> gene PCR	Cells per ml		
1545B_1H2	1.7	5.3	300.0	0.5	X	X	da	4.81x10 ⁸	481	
1545B_4H2	25.8	10.7	185.0	0.5	X	X	X	2.47x10 ⁷	24.7	
1545B_6H2	43.6	14.7	15.8	9.5	X	X	da	4.29x10 ⁶	4.29	
1545B_9H2	72.2	21.1	0.833	30	X	---	---			
1545B_11H3	92.4	25.6	3.125	8	X	X	da	4.73x10 ⁵	0.473	
1545B_13H3	111.2	29.9	3.66	5	X	X	da	8.41x10 ⁵	0.841	
1545B_15H3	130.7	34.3	3.06	5	X	X	da	2.13x10 ⁵	0.213	
1545B_20F4	160.1	40.9	2.71	5	X	X	da			
1545B_25F2	177.4	44.8	1.75	5	da	X	da	1.85x10 ⁴	0.0185	
1545B_30F2	200.7	50.1	Nq	5	da	---	---			
1545B_34F3	219.5	54.3	Nq	5	da	---	---			
1545B_44F2	266.7	64.9	1.94	5	da	---	---			
1545B_50F3	289.6	70	0.69	5	da	---	---			
1545B_58F2	315.8	75.9	Nq	5	da	---	---			
1545B_60F2	325.1	78	Nq	5	X	---	---			
1545B_64X2	359.3	85.7	Nq	5	da	---	---			
1545A_62X2	393	93.3	Nq	5	da	---	---			
1545A_72X2	485.5	114.1	Nq	5	da	---	---			
1545A_74X3	500.2	117.4	Nq	5	da	---	---			
1546B_1H2	0.8	2.8	900.0	0.5	X	X	da	1.30x10 ⁹	1300	
1546B_3H2	16.1	6.2	100	0.5	X	X	da	2.28x10 ⁸	228	
1546B_5H2	35.1	10.4	64.5	0.5	X	X	da	5.53x10 ⁶	5.53	
1546B_7H2	54.0	14.6	36.2	0.5	X	X	da	6.10x10 ⁶	6.10	
1546B_9H2	73.1	18.8	16.7	0.5	X	X	da	8.56x10 ⁵	0.856	
1546B_12H2	102.1	25.2	2.29	5	X	X	da	2.11x10 ⁵	0.211	
1546B_15H3	131.9	31.8	1.69	5	da	X	da	7.77x10 ⁴	0.0777	
1546B_20H3	168.8	40.0	1.26	5	da	X	da	8.68x10 ³	0.00868	
1546B_22H3	188	44.2	1.49	5	da	---	---			
1546B_28F2	211.6	49.5	0.5	5	da	---	---			
1546B_35F3	237.9	55.3	2	5	da	---	---			
1546B_39F2	252.5	58.5	2.5	5	da	---	---			
1546B_49F3	273.7	63.2	Nq	5	da	---	---			
1546C_24R3	450.8	103.7	Nq	5	da	---	---			
1546C_28R2	471.3	108.1	Nq	5	da	---	---			
1546C_34R2	500.0	114.5	Nq	5	da	---	---			
1546C_40R2	529.6	121.0	Nq	5	X	---	---			
1547B_1H2	2.2	14.2	300	0.5	X	X	da			
1547B_2H2	8.7	17.5	250	0.5	X	X	X1	1.25x10 ⁸	125	
1547B_3H2	17.7	22.0	42.86	3.5	X	X	da	9.32x10 ⁶	9.32	
1547B_5H2	36.9	31.9	20.0	0.5	X	X	da	1.35x10 ⁶	1.35	
1547B_7H2	55.9	41.6	2.0	5	da	X	da	3.20x10 ⁵	0.32	
1547B_8H2	65.7	46.6	2.0	5	da	X	X	4.30x10 ⁴	0.043	
1547B_9H2	74.3	51.0	0.91	5	da	X	X	3.85x10 ⁴	0.0385	
1547B_12F2	94.6	60.7	Nq	5	da	X	da	1.22x10 ³	0.0012	

1547B_25F2	132.1	80.6	Nq	5	da	X	da	2.77x10 ³	0.0028
1547B_28F2	146.2	87.8	Nq	5	da	---	---		
1547B_29F2	151.0	90.2	Nq	5	da	---	---		
1548B_1H2	2.1	8.2	700	0.5	X	X	X	5.29x10 ⁸	529
1548B_2H3	8.9	13.7	135	0.5	X	X	X	9.96x10 ⁷	99.6
1548B_3H4	20.4	22.9	33.9	0.5	X	X	X2	7.68x10 ⁷	76.8
1548B_4H7	33.5	33.5	10	0.5	X	X	da	1.78x10 ⁷	17.8
1548B_5H5	39.6	38.3	10	0.5	X	X	da	7.52x10 ⁶	7.52
1548B_6H2	46.2	43.6	5.9	0.5	X	X	da	1.17x10 ⁶	1.17
1548B_7H3	56.4	51.8	nq	5	X	---	---		
1548B_8H5	69.5	62.4	1	5	da	X	da	1.01x10 ³	0.001
1548B_9H3	76.5	68.0	2.5	5	X	da	X	1.62x10 ³	0.0016
1548C_1H3	3.4	19.2	256	0.5	---	---	---		
1548C_2H3	10.6	26.1	146	0.5	X	---	---		
1548C_3H6	24.2	39.1	21.2	0.5	X	---	---		
1548C_5H2	37.5	51.9	1.24	5	X	---	---		
1548C_5H4	40.4	54.6	3.8	0.5	---	---	---		
1548C_6H4	50.5	64.3	0.71	5	X	---	---		
1549B_1H2	1.6	3.5	1040	0.5	X	X	da	7.25x10 ⁸	725
1549B_2H2	7.0	4.6	364	0.5	---	X	da	4.92x10 ⁸	492
1549B_3H2	16.5	6.4	161	0.5	X	X	da		
1549B_6H3	45.6	12.1	63.5	0.5	X	X	X	2.48x10 ⁷	24.8
1549B_9H3	74.4	17.6	23.8	5	X	X	da		
1549B_12H3	103.7	23.3	0.73	5	X	X	da	3.69x10 ⁶	3.69
1549B_15H4	133.4	29.1	5	5	X	X	da	7.73x10 ⁵	0.773
1549B_18H4	161.4	34.5	3.25	5	X	---	---		
1550B_1H2	2.0	3.8	1150	0.5	X	X	X	2.85x10 ⁸	285
1550B_3H2	16.9	5.8	465	0.5	X	X	X	5.71x10 ⁷	57.1
1550B_7H2	54.8	10.9	96	0.5	X	X	X2	1.82x10 ⁷	18.2
1550B_11H2	92.3	16.0	4.75	5	da	da	da		
1550B_19X2	142.0	22.7	nq	5	da	da	X	1.04x10 ²	0.0001
1551B_1H1	0.8	4.8	700	0.5	X	X	X	4.18x10 ⁸	418
1551B_2H2	5.8	5.3	454	0.5	---	X	X	2.97x10 ⁸	297
1551B_3H2	15.4	6.3	103	0.5	X	X	X	1.38x10 ⁷	13.8
1551B_5H2	34.2	8.2	30	0.5	X	X	X	3.26x10 ⁶	3.26
1552B_1H2	0.8	3.8	1100	0.5	X	X	X	2.99x10 ⁸	299
1552B_3H3	19.2	8.6	605	0.5	---	X	X	8.57x10 ⁶	8.57
1552B_3H4	20.4	8.9	129	5	X	da	da		
1552B_6H2	46.9	15.8	34.4	0.5	X	X	da	2.49x10 ⁶	2.49

590

591

592

593 **Table 3.** RNA recovery from samples that yielded metatranscriptomes (Mara et al. 2023a). Nq: no
594 quantifiable RNA using Qubit RNA high sensitivity assays (Qubit).

595

Site	SampleID	Depth (mbsf)	Interpolated <i>in-situ</i> temperature (°C)	ng RNA per gr of sediment	Sediment extracted (gr)
U1545B	U1545B-1H2	1.7	5.3	38.2	11
	U1545B-4H3	25.8	10.7	12.5	12
	U1545B-11H3	92.4	25.6	Nq	11
U1546B	U1546B-1H2	0.8	2.8	63.8	11
	U1546B-3H2	16.1	6.2	10.5	12
	U1546B-12H2	102.1	25.2	Nq	13
U1547B	U1547B-1H2	2.2	14.2	22.2	13.5
	U1547B-5H2	36.9	31.9	9	10
	U1547B-9H2	74.3	51	Nq	12
U1548B	U1548B-1H2	2.1	8.2	27.2	13
	U1548B-4H7	33.5	33.5	nq	14
U1549B	U1549B-1H2	1.6	3.5	42.5	13
	U1549B-3H2	16.5	6.4	Nq	10
U1550B	U1550B-1H2	2.0	3.8	42	10
	U1550B-3H2	16.9	5.8	14.1	13
U1551B	U1551B-1H1	0.8	4.8	16.5	13.5
	U1551B-3H2	15.4	6.3	Nq	11
U1552B	U1552B-1H2	0.8	3.8	48.8	12
	U1552B-3H4	20.4	8.9	16.8	12

596

597

598

599 **Table 4.** DNA yields from hydrothermal sediment cores, extracted by J.E. Hinkle and A. Teske.
600 along a gradient from warm sediment without microbial mat cover (core 4872-1) towards the edge
601 of the microbial mat with higher temperatures and white filamentous *Beggiatoaceae* (Core 4872-
602 6), and the hot central mat area with orange *Beggiatoaceae* (core 4872-14) (Alvin Dive 4872, Dec.
603 24, 2016). DNA concentrations were measured by Qubit (Ruff Laboratory, Marine Biological
604 Laboratory). In-situ temperature measurements via the *Alvin* heatflow probe refer to 0, 10, 20, 30,
605 40 and 50 cm sediment depth. n.d.: no data; b.d.: below detection limit.

606

607
608
609

Alvin core	Depth (cm)	Temp. (°C)	ng DNA per cm ³ wet sediment
4872-1	0-3	3	5700
4872-1	3-6	n.d.	2660
4872-1	6-9	n.d.	2100
4872-1	9-12	8	275
4872-1	12-15	n.d.	284
4872-1	15-18	n.d.	392
4872-1	18-21	11.4	310
4872-1	21-26	n.d.	120
4872-1	26-31	14.6	30
4872-1	31-36	n.d.	98
4872-1	36-41	19.1	45
4872-1	41-46	n.d.	b.d.
4872-1	46-51	24.8	b.d.
4872-6	0-3	3	5800
4872-6	3-6	n.d.	3060
4872-6	6-9	n.d.	3860
4872-6	9-12	33.8	1000
4872-6	12-15	n.d.	562
4872-6	15-18	n.d.	232
4872-6	18-21	50.9	93
4872-6	21-26	n.d.	50
4872-6	26-31	65.1	12
4872-6	31-36	n.d.	b.d.
4872-6	40	76.8	n.d.
4872-6	50	90.2	n.d.
4872-14	0-3	3	3820
4872-14	3-6	n.d.	7200
4872-14	6-9	n.d.	4240
4872-14	9-12	83.4	556
4872-14	12-15	n.d.	202
4872-14	15-18	n.d.	13
4872-14	18-21	101.8	34
4872-14	21-26	n.d.	b.d.
4872-14	26-31	105.6	b.d.
4872-14	31-36	n.d.	b.d.
4872-14	36-41	108.1	b.d.
4872-14	50	102.7	b.d.

610 **References**

611 Bakken, L.R., and Olsen, R.A., 1989. DNA content of soil bacterial of different size. *Soil*
612 *Biology and Biochemistry* 21:789-793.

613 Beulig, F., Schubert, F., Adhikari, R.R., Glombitza, C., Heuer, V.B., Hinrichs, K.-U.,
614 Homola, K.L., Inagaki, F., Jørgensen, B.B., Kallmeyer, J., Krause, S.J.E., Morono, Y., Sauvage,
615 J., Spivack, A.J., Treude, T., 2022. Rapid metabolism fosters microbial survival in the deep, hot
616 subseafloor biosphere. *Nat. Commun.* 13:312., doi: 10.1038/s41467-021-27802-7

617 Biddle, J.F., Lipp, J.S., Lever, M.A., Lloyd, K.G., Sørensen, K.B., Anderson, R., Fredricks,
618 H.F., Elvert, M., Kelly, T.J., Schrag, D.P., Sogin, M.L., Brenchley, J.E., Teske, A., House, C.H.,
619 Hinrichs, K.-U., 2006. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off
620 Peru. *Proc. Natl. Acad. Sci. USA* 103:3846-3851.

621 Biddle, J.F., Fitz-Gibbon, S., Schuster, S.C., Brenchley, J.E., House, C.H. 2008.
622 Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct
623 environment. *Proc. Natl. Acad. Sci. USA* 105:10583-10588.

624 Biddle, J.F., White, J.R., Teske, A.P., House, C.H. 2011. Metagenomics of the subsurface
625 Brazos-Trinity Basin (IODP site 1320): comparison with other sediment and pyrosequenced
626 metagenomes. *ISME J.* 5:1038-1047.

627 Bojanova, D.P., De Anda, V.Y., Haghnegahdar, M.A., Teske, A.P., Ash, J.L., Young,
628 E.D., Baker, B.J., LaRowe, D.E., Amend, J.P. 2023. Well-hidden methanogenesis in deep,
629 organic-rich sediments of Guaymas Basin, Gulf of California. *ISME J.* 17:1828-1838.

630 Button, D.K., Robertson, B.R., 2001. Determination of DNA content of aquatic bacteria
631 by flow cytometry. *Appl. Environ. Microbiol.* 67:1636-1645.

632 Chomczynski, P., Sacchi, N., 1987. Single-step method of RNA isolation by acid
633 guanidinium thiocyanate-phenol-chloroform extraction. *Anal. Biochem.* 162(1):156-159.

634 Cragg, B.A., Summit, M., and Parkes, R.J., 2000. Bacterial profiles in a sulfide mound
635 (Site 1035) and an area of active fluid venting (Site 1036) in hot hydrothermal sediments from
636 Middle Valley (northwest Pacific). In Zierenberg, R.A., Fouquet, Y., Miller, D.J., and Normark,
637 W.R. (Eds.), *Proc. ODP, Sci. Results*, 169, 1–18 [Online]. http://www-odp.tamu.edu/publications/169_SR/VOLUME/CHAPTERS/SR16.

639 Dombrowski, N., Seitz, K., Teske, A., Baker, B., 2017. Genomic insights into potential
640 interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediment
641 communities. *Microbiome* 5:106.

642 Dombrowski, N., Teske, A.P., Baker, B.J., 2018. Extensive microbial metabolic diversity
643 and redundancy in Guaymas Basin hydrothermal sediments. *Nature Communications* 9:4999.

644 Edgcomb, V. P., Beaudoin, D., Gast, R., Biddle, J. F., and Teske, A., 2011. Marine
645 Subsurface Eukaryotes: The Fungal Majority. *Environ. Microbiol.* 13:172-183.

646 Eme, L., Tamarit, D., Caceres, E.F., Stairs, C.W., De Anda, V., Schön, M.E., Kiley, Seitz,
647 K.W., Dombrowski, N., Lewis, W.H., Homa, F., Saw, J.H., Lombard, J., Nunoura, T., Li, W.-J.,
648 Hua, Z.-S., Chen, L-X., Banfield, J.F., John, E.S., Reysenbach, A.-L., Stott, M.B., Schramm, A.,

649 Kjeldsen, K.U., Teske, A.P., Baker, B.J., Ettema, T.J.G. 2023. Inference and reconstruction of the
650 heimdallarchaeal ancestry of eukaryotes. *Nature* 618:992-999, doi:10.1038/s41586-023-06186-2
651 Engelen, B., Nguyen, T., Heyerhoff, B., Kalenborn, S., Sydow, K., Tabai, H., Peterson, R.,
652 Wegener, G., Teske, A., 2021. Microbial communities of hydrothermal Guaymas Basin surficial
653 sediment profiled at 2 millimeter-scale resolution. *Frontiers in Microbiology* 12:710881.
654 Expedition 331 Scientists, 2011. Site C0014. In: Takai, K., Mottl, M.J., Nielsen, S.H., and
655 the Expedition 331 Scientists, Proc. IODP, 331: Tokyo (Integrated Ocean Drilling Program
656 Management International, Inc.). doi:10.2204/iodp.proc.331.104.2011
657 Geller-McGrath, D., Konwar, K., Edgcomb, V. P., Pachiadaki, M., Roddy, J., Wheeler, T.,
658 & McDermott, J.E., 2022. MetaPathPredict: A machine learning-based tool for predicting
659 metabolic modules in incomplete bacterial genomes. *BioRxiv* 2022.12.21.521254.
660 doi: <https://doi.org/10.1101/2022.12.21.521254>
661 Heuer, V.B., Inagaki, F., Morono, Y., Kubo, Y., Maeda, L., Bowden, S., Cramm, M.,
662 Henkel, S., Hirose, T., Homola, K., Hoshino, T., Ijiri, A., Imachi, H., Kamiya, N., Kaneko, M.,
663 Lagostina, L., Manners, H., McClelland, H.-L., Metcalfe, K., Okutsu, N., Pan, D., Raudsepp, M.J.,
664 Sauvage, J., Schubotz, F., Spivack, A., Tonai, S., Treude, T., Tsang, M.-Y., Viehweger, B., Wang,
665 D.T., Whitaker, E., Yamamoto, Y., and Yang, K., 2017. Site C0023. In Heuer, V.B., Inagaki, F.,
666 Morono, Y., Kubo, Y., Maeda, L., and the Expedition 370 Scientists, *Temperature Limit of the*
667 *Deep Biosphere off Muroto*. Proceedings of the International Ocean Discovery Program, 370:
668 College Station, TX (International Ocean Discovery Program).
669 <https://doi.org/10.14379/iodp.proc.370.103.2017>
670 Heuer, V.B. et al. 2020. Temperature limits to deep subseafloor life in the Nankai Trough
671 subduction zone. *Science* 370:1230–1234.
672 Hilz, H., Wiegers, U., Adamietz, P., 1975. Stimulation of proteinase K action by denaturing
673 agents: application to the isolation of nucleic acids and the degradation of 'masked' proteins. *Eur.*
674 *J. Biochem.* 56(1):103-108.
675 Hinkle, J.E., Mara, P., Beaudoin, D., Edgcomb, V.P., Teske, A.P. 2023. A PCR-based
676 survey of methane-cycling archaea in methane-soaked subsurface sediments of Guaymas Basin,
677 Gulf of California. *Microorganisms* 11:2956.
678 Hinkle, J.E., Chanton, J.P., Moynihan, M., Ruff, S.E., Teske, A.P., 2024. Complex
679 bacterial diversity of Guaymas Basin hydrothermal sediments revealed by synthetic long-read
680 sequencing g (LoopSeq). *BioRxiv*. <https://doi.org/10.1101/2024.04.12.589229>
681 Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M.A., Lauer, A., Suzuki, M.,
682 Takai, K., Delwiche, M., Colwell, F.S., Nealson, K.H., Horikoshi, K., D'Hondt, S.L., Jørgensen,
683 B.B., 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing
684 deep marine sediments on the Pacific Ocean Margin. *Proc. Natl. Acad. Sci. USA* 103:2815-2820.
685 Jiang, W., Liang, P., Wang, B., Fang, J., Lang, J., Tian, G., Jiang, J., Zhu, T.F., 2015.
686 Optimized DNA extraction and metagenomic sequencing of airborne microbial communities.
687 *Nature Protocols* 10:768-79.

688 Kallmeyer, J., Smith, D.C., Spivack, A.J., D'Hondt, S. 2008. New cell extraction
689 procedure applied to deep subsurface sediments. *Limnology and Oceanography: Methods*
690 6(6):236-245

691 Lagostina, L., Frandsen, S., MacGregor, B., Glombitza, C., Deng, L., Fiskal, A., Li, J.,
692 Doll, M., Geilert, S., Schmidt, M., Scholz, F., Bernasconi, S.M., Jørgensen, B.B., Hensen, C.,
693 Teske, A., Lever, M.A., 2021. Interactions between temperature and energy supply drive microbial
694 communities in hydrothermal sediment. *Communications Biology* 4:1006.

695 Lappé, M. and Kallmeyer, J., 2011. A cell extraction method for oily sediments. *Frontiers*
696 in *Microbiology* 2:233, doi: 10.3389/fmicb.2011.00233

697 Lever, M.A., and Teske, A., 2015. Diversity of Methane-cycling archaea in hydrothermal
698 sediment investigated by general and group-specific PCR primers. *Appl. Environ. Microbiol.*
699 81:1426-1441.

700 Lizarralde, D., Teske, A., Höfig, T.W., González-Fernández, A., and the IODP Expedition
701 385 Scientists. 2023. Carbon release by sill intrusion into young sediments measured through
702 scientific drilling. *Geology* 51:329-333.

703 Mara, P., Zhou, J., Teske, A., Morono, Y., Beuadoin, D., Edgcomb, V.P. 2023a. Microbial
704 gene expression in Guaymas Basin subsurface sediments responds to hydrothermal stress and
705 energy limitation. *ISME J* 17:1907-1919.

706 Mara, P., Geller-McGrath, D., Edgcomb, V., Beaudoin, D., Morono, Y., Teske, A. 2023b.
707 Metagenomic Profiles of Archaea and Bacteria within Thermal and Geochemical Gradients of the
708 Guaymas Basin Deep Subsurface. *Nature Communications* 14:7768. doi: 10.1038/s41467-023-
709 43296-x

710 Meyer, S., Wegener, G., Lloyd, K.G., Teske, A., Boetius, A., Ramette, A., 2013. Microbial
711 habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas
712 Basin. *Frontiers in Microbiology* 4:207, doi: 10.3389/fmic.2013.00207

713 Morono, Y., Teske, A., Galerne, C., Bojanova, D., Edgcomb, V., Meyer, N., Schubert, F.,
714 Toffin, L., and the Expedition 385 Scientists. 2022. Microbial cell distribution in the Guaymas
715 subseafloor biosphere, a young marginal rift basin with rich organics and steep temperature
716 gradients. *EGU General Assembly Conference Abstracts*, EGU22-3312.
717 <https://doi.org/10.5194/egusphere-egu22-3312>

718 Morono, Y., 2023. Assessing the energy-limited and sparsely populated deep biosphere:
719 achievements and ongoing challenges of available technologies. *Progress in Earth and Planetary
720 Science*, 10:38, <https://doi.org/10.1186/s40645-023-00551-5>

721 Neumann, F., Negrete-Aranda, R., Harris, R. N., Contreras, J., Galerne, C. Y., Peña-
722 Salinas, M. S., Spelz, R. M., Teske, A., Lizarralde, D., & Höfig, T. W., 2023. Heat flow and
723 thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective
724 heat transport. *Basin Research* 35:1308-1328.

725 Orsi, W., Biddle, J.F., Edgcomb, V. 2013a. Deep Sequencing of Subseafloor Eukaryotic
726 rRNA Reveals Active Fungi across Marine Subsurface Provinces. *PLoS ONE* 8(2): e56335.
727 doi:10.1371/journal.pone.0056335

728 Orsi, W., Edgcomb, V., Christman, G., Biddle, J.F. 2013b. Gene expression in the deep
729 biosphere. *Nature* 499:205–208.

730 Pachiadaki, M.G., Rédu, V., Beaudoin, D.J., Burgaud, G., Edgcomb, V.P., 2016. Fungal
731 and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin
732 inferred from RNA-based analyses and microscopy. *Frontiers in Microbiology* 7:846, doi:
733 10.3389/fmicb.2016.00846.

734 Parada, A.E., Needham, D.M., Fuhrman, J.A., 2016. Every base matters: assessing small
735 subunit rRNA primers for marine microbiomes with mock communities, time series and global
736 field samples. *Environ. Microbiol.* 18:1403–1414.

737 Parkes, R.J., Cragg, B., Roussel, E., Webster, G., Weightman, A., Sass, H., 2014. A review
738 of prokaryotic populations and processes in sub-seafloor sediments, including biosphere:
739 geosphere interactions. *Marine Geology* 352:409–425.

740 Quince, C., Lanzen, A., Davenport, R.J., Turnbaugh, P.J., 2011. Removing noise from
741 pyrosequenced amplicons. *BMC Bioinformatics*. 12, 38.

742 Ramírez, G.A., Graham, D., and D'Hondt, S., 2018. Influence of commercial DNA
743 extraction kit choice on prokaryotic community metrics in marine sediment. *Limnol. Oceanogr.*
744 *Methods* 16:525–536.

745 Ramírez, G.A., Paraskevi, V.M., Sehein, T., Wegener, G., Chambers, C.R., Joye, S.B.,
746 Peterson, R.N., Philippe, A., Burgaud, G., Edgcomb, V.P., Teske, A.P., 2021. Environmental
747 controls on bacterial, archaeal and fungal community structure in hydrothermal sediments of
748 Guaymas Basin, Gulf of California. *PLoS ONE* 16(9), e0256321.

749 Salter, S.J., Cox, M.J., Turek, E.M., Calus, S.T., Cookson, W.O., Moffatt, M.F., Turner,
750 P., Parkhill, J., Loman, N.J., Walker, A.W., 2014. Reagent and laboratory contamination can
751 critically impact sequence-based microbiome analyses. *BMC Biol.* 12:87.

752 Seitz, K.W., Dombrowski, N., Eme, L., Spang, A., Lombard, J., Sieber, J., Teske, A.P.,
753 Ettema, T.J.G., Baker, B.J., 2019. Asgard Archaea are capable of anaerobic hydrocarbon cycling.
754 *Nature Communications* 10:1822.

755 Sørensen, K.B., and A. Teske. 2006. Stratified communities of active archaea in deep
756 marine subsurface sediments. *Appl. Environ. Microbiol.* 72:4596–4603.

757 Su, L., Teske, A.P., MacGregor, B.J., McKay, L.J., Mendlovitz, H., Albert, D., Ma, Z.,
758 Jiangtao Li, J. 2023. Thermal selection of microbial communities and preservation of microbial
759 function in Guaymas Basin hydrothermal sediments. *Appl. Environ. Microbiol.* 89:e00018-23.

760 Tenzer, R., and Gladkikh, V., 2014. Assessment of density variations of marine sediments
761 with ocean and sediment depths. *The Scientific World Journal* 823296, doi: 10.1155/2014/823296

762 Teske, A., Lizarralde, D., Höfig, T. W., Aiello, I. W., Ash, J. L., Bojanova, D. P., Buatier,
763 M. D., Edgcomb, V. P., Galerne, C. Y., & Gontharet, S., Heuer, V.B., Jiang, S., Kars, M.A.C.,
764 Khogenkumar Singh, S., Kim, J.-H., Koornneef, L.M.T., Marsaglia, K.M., Meyer, N.R., Morono,
765 Y., Negrete-Aranda, R., Neumann, F., Pastor, L.C., Peña-Salinas, M.E., Pérez Cruz, L.L., Ran, L.,
766 Riboulleau, A., Sarao, J.A., Schubert, F., Stock, J.M., Toffin, L.M.A.A., Xie, W., Yamanaka, T.,
767 and Zhuang, G., 2021a. Expedition summary. *In* Teske, A., Lizarralde, D., Höfig, T.W., and the

768 Expedition 385 Scientists, *Guaymas Basin Tectonics and Biosphere*. Proceedings of the
769 International Ocean Discovery Program, 385: College Station, TX (International Ocean Discovery
770 Program). <https://doi.org/10.14379/iodp.proc.385.101.2021>

771 Teske, A., Lizarralde, D., Höfig, T. W., Aiello, I. W., Ash, J. L., Bojanova, D. P., Buatier,
772 M. D., Edgcomb, V. P., Galerne, C. Y., & Gontharet, S., Heuer, V.B., Jiang, S., Kars, M.A.C.,
773 Khogenkumar Singh, S., Kim, J.-H., Koornneef, L.M.T., Marsaglia, K.M., Meyer, N.R., Morono,
774 Y., Negrete-Aranda, R., Neumann, F., Pastor, L.C., Peña-Salinas, M.E., Pérez Cruz, L.L., Ran, L.,
775 Ribouleau, A., Sarao, J.A., Schubert, F., Stock, J.M., Toffin, L.M.A.A., Xie, W., Yamanaka, T.,
776 and Zhuang, G., 2021b. Site U1545. In Teske, A., Lizarralde, D., Höfig, T.W., and the Expedition
777 385 Scientists, *Guaymas Basin Tectonics and Biosphere*. Proceedings of the International Ocean
778 Discovery Program, 385: College Station, TX (International Ocean Discovery Program).
779 <https://doi.org/10.14379/iodp.proc.385.101.2021>

780 Teske, A., Lizarralde, D., Höfig, T. W., Aiello, I. W., Ash, J. L., Bojanova, D. P., Buatier,
781 M. D., Edgcomb, V. P., Galerne, C. Y., & Gontharet, S., Heuer, V.B., Jiang, S., Kars, M.A.C.,
782 Khogenkumar Singh, S., Kim, J.-H., Koornneef, L.M.T., Marsaglia, K.M., Meyer, N.R., Morono,
783 Y., Negrete-Aranda, R., Neumann, F., Pastor, L.C., Peña-Salinas, M.E., Pérez Cruz, L.L., Ran, L.,
784 Ribouleau, A., Sarao, J.A., Schubert, F., Stock, J.M., Toffin, L.M.A.A., Xie, W., Yamanaka, T.,
785 and Zhuang, G., 2021c. Site U1546. In Teske, A., Lizarralde, D., Höfig, T.W., and the Expedition
786 385 Scientists, *Guaymas Basin Tectonics and Biosphere*. Proceedings of the International Ocean
787 Discovery Program, 385: College Station, TX (International Ocean Discovery Program).
788 <https://doi.org/10.14379/iodp.proc.385.101.2021>

789 Teske, A., Lizarralde, D., Höfig, T. W., Aiello, I. W., Ash, J. L., Bojanova, D. P., Buatier,
790 M. D., Edgcomb, V. P., Galerne, C. Y., & Gontharet, S., Heuer, V.B., Jiang, S., Kars, M.A.C.,
791 Khogenkumar Singh, S., Kim, J.-H., Koornneef, L.M.T., Marsaglia, K.M., Meyer, N.R., Morono,
792 Y., Negrete-Aranda, R., Neumann, F., Pastor, L.C., Peña-Salinas, M.E., Pérez Cruz, L.L., Ran, L.,
793 Ribouleau, A., Sarao, J.A., Schubert, F., Stock, J.M., Toffin, L.M.A.A., Xie, W., Yamanaka, T.,
794 and Zhuang, G., 2021d. Sites U1547 and U1548. In Teske, A., Lizarralde, D., Höfig, T.W., and
795 the Expedition 385 Scientists, *Guaymas Basin Tectonics and Biosphere*. Proceedings of the
796 International Ocean Discovery Program, 385: College Station, TX (International Ocean Discovery
797 Program). <https://doi.org/10.14379/iodp.proc.385.101.2021>

798 Teske, A., Lizarralde, D., Höfig, T. W., Aiello, I. W., Ash, J. L., Bojanova, D. P., Buatier,
799 M. D., Edgcomb, V. P., Galerne, C. Y., & Gontharet, S., Heuer, V.B., Jiang, S., Kars, M.A.C.,
800 Khogenkumar Singh, S., Kim, J.-H., Koornneef, L.M.T., Marsaglia, K.M., Meyer, N.R., Morono,
801 Y., Negrete-Aranda, R., Neumann, F., Pastor, L.C., Peña-Salinas, M.E., Pérez Cruz, L.L., Ran, L.,
802 Ribouleau, A., Sarao, J.A., Schubert, F., Stock, J.M., Toffin, L.M.A.A., Xie, W., Yamanaka, T.,
803 and Zhuang, G., 2021e. Site U1549. In Teske, A., Lizarralde, D., Höfig, T.W., and the Expedition
804 385 Scientists, *Guaymas Basin Tectonics and Biosphere*. Proceedings of the International Ocean
805 Discovery Program, 385: College Station, TX (International Ocean Discovery Program).
806 <https://doi.org/10.14379/iodp.proc.385.101.2021>

807 Teske, A., Wegener, G., Chanton, J.P., White, D., MacGregor, B.J., Hoer, D., de Beer, D.,
808 Zhuang, G., Saxton, M.A., Joye, S.B., Lizarralde, D., Soule, S.A., Ruff, S.E. 2021f. Microbial
809 communities under distinct thermal and geochemical regimes in axial and off-axis sediments of
810 Guaymas Basin. *Frontiers in Microbiology* 12:633649. Doi:10.3389/fmicb.2021.633649
811 Tighe, S., Afshinnekoo, E., Rock, T.M., McGrath, K., Alexander, N., McIntyre, A.,
812 Ahsanuddin, S., Bezdan, D., Green, S.J., Joye, S., Johnson, S.S., Baldwin, D.A., Bivens, N., Ajami,
813 N., Carmical, J.R., Herriott, I.C., Colwell, R., Donia, M., Foox, J., Greenfield, N., Hunter, T.,
814 Hoffman, J., Hyman, J., Jorgensen, E., Krawczyk, D., Lee, J., Levy, S., Garcia-Reyero, N., Settles,
815 M., Thomas, K., Gómez, F., Schriml, L., Kyrpides, N., Zaikova, E., Penterman, J., Mason, C.E.
816 2017. Genomic Methods and Microbiological Technologies for Profiling Novel and Extreme
817 Environments for the Extreme Microbiome Project (XMP). *J Biomol. Tech.* 28:31-39.
818 Zhou, J., Bruns, M.A., and Tiedje, J.M., 1996. DNA recovery from soils of diverse
819 composition. *Appl. Environ. Microbiol.* 62:316-322.
820