

1 **A role for astrocytic miR-129-5p in Frontotemporal Dementia**

2

3 Lalit Kaurani^{1,2*}, Ranjit Pradhan¹, Sophie Schröder¹, Susanne Burkhardt¹, Anna-Lena Schuetz²,
4 Dennis M. Krüger^{1,3}, Tonatiuh Pena^{1,3}, Peter Heutink⁴, Farahnaz Sananbenesi^{2*}, Andre
5 Fischer^{1,5,6*}

6

7 ¹Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative
8 Diseases (DZNE), Göttingen, Germany

9 ²Research Group for Genome Dynamics in Brain Diseases, German Center for
10 Neurodegenerative Diseases, Göttingen, Germany

11 ³Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen,
12 Germany.

13 ⁴German Center for Neurodegenerative Diseases, Tübingen, Germany

14 ⁵Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of
15 Excitable Cells” (MBExC), University of Göttingen, Germany

16 ⁶Department of Psychiatry and Psychotherapy, University Medical Center Göttingen,
17 Göttingen, Germany

18

19 *Corresponding authors; E-mail: lalit.kaurani@dzne.de; fsananb@gwdg.de;
20 andre.fischer@dzne.de

21

22 **Abstract**

23 Frontotemporal dementia is a debilitating neurodegenerative disorder characterized by
24 frontal and temporal lobe degeneration, resulting in behavioral changes, language difficulties,
25 and cognitive decline. In this study, smallRNA sequencing was conducted on postmortem
26 brain tissues obtained from FTD patients with *GRN*, *MAPT*, or *C9ORF72* mutations, focusing
27 on the frontal and temporal lobes. Our analysis identified miR-129-5p as consistently
28 deregulated across all mutation conditions and brain regions. Functional investigations
29 revealed a novel role of miR-129-5p in astrocytes, where its loss led to neuroinflammation
30 and impaired neuronal support functions, including reduced glutamate uptake. Depletion of
31 miR-129-5p in astrocytes resulted in the loss of neuronal spines and altered neuronal network
32 activity. These findings highlight miR-129-5p as a potential therapeutic target in
33 neurodegenerative diseases and also sheds light on the role of astrocytes in Frontotemporal
34 dementia pathogenesis.

35

1 Keywords: microRNA, smallRNA, neurodegeneration, miR-129-5p, frontotemporal
2 dementia, epigenetics

3

4

5

1 **Introduction**

2 Frontotemporal dementia (FTD) is a devastating neurodegenerative disorder characterized by
3 the progressive degeneration of the frontal and temporal lobes of the brain which leads to a
4 wide range of symptoms, including changes in behavior, personality, and language, as well as
5 cognitive decline [1] [2]. FTD affects individuals typically in the prime of their lives, striking
6 those under the age of 65, making it one of the most common causes of early-onset dementia
7 [3]. The clinical and genetic diversity of FTD presents a complex landscape [4]. While some
8 cases occur sporadically, current data suggest that up to 48% of FTD cases have a familial basis
9 [5]. Mutations in genes such as microtubule-associated protein tau (*MAPT*), progranulin
10 (*GRN*), and chromosome 9 open reading frame 72 (*C9ORF72*) represent the most common
11 genetic cause of FTD [5]. These genetic mutations are believed to disrupt critical cellular
12 processes, eventually leading to neuronal cell death. Despite significant progress in
13 understanding the genetic underpinnings of FTD, the development of effective therapies
14 remains challenging [6]. In recent years, microRNAs (miRs) have emerged as important
15 players in the molecular mechanisms underlying neurodegenerative diseases [7]. MiRs are
16 19-22 nucleotide-long RNA molecules that regulate protein homeostasis by binding to target
17 mRNAs, leading either to their degradation or reduced translation [8]. Because one miR can
18 affect a large number of mRNA targets that are often functionally linked, miRs have the ability
19 to fine-tune gene expression and proteostasis and have been implicated in the regulation of
20 multiple key pathways involved in brain function [9] [10] [11] [12]. Dysregulation of miRs has
21 been observed in various neurodegenerative and neuropsychiatric diseases, including
22 Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS),
23 schizophrenia, and depression [13] [14] [15] [16] [17] [18] [19]. Today 2654 human miRs have
24 been annotated [20] and microRNAome profiling in diseases gains increasing interest because
25 changes in the levels of even one miR can indicate the presence of multiple pathologies [21]
26 [22] [23]. Compared to neurodegenerative diseases such as AD, there is only limited data
27 available on the role of miRs in FTD but some miRs have already been implicated in FTD
28 pathogenesis. For example, miR-29b, miR-107, and miR-659 were implicated with *GRN*
29 expression [24] [25] [26]. Additionally, miR-203 was detected as a putative hub microRNA
30 controlling gene-expression networks de-regulated in models for Tau and Granulin pathology
31 [27].

1 In our current study, we aimed to deepen the understanding of the role of miRs in FTD.
2 Through comprehensive smallRNAome sequencing analysis of frontal and temporal cortex
3 tissue samples obtained from FTD patients with mutations in *MAPT*, *GRN*, or *C9ORF72*, we
4 uncovered a consistent down-regulation of miR-129-5p in all investigated brain tissues.
5 Intriguingly, further investigations into the mechanistic implications of miR-129-5p loss,
6 particularly in astrocytes, revealed its potential involvement in the disruption of neuronal
7 plasticity, a hallmark of FTD.
8 Our study contributes to the growing body of knowledge on the intricate molecular landscape
9 of FTD and highlights the critical role of miRs in this devastating disease. The data furthermore
10 suggest that miR-129-5p could be a novel drug target to treat FTD and highlights the role of
11 astrocyte dysfunction in disease progression.

12

13 **Materials and Methods**

14 **Patient recruitment and clinical evaluation**

15 Postmortem human brain tissue samples were acquired in accordance with a Material
16 Transfer Agreement from the Netherlands Brain Bank and RNAseq analysis was approved by
17 the ethical committee of the University Medical Center Göttingen (AZ 2/8/22 and AZ
18 29/9/18). Demographic information pertaining to the human brain specimens can be found
19 in **Supplementary Table 1**.

20

21 **High-throughput sequencing of smallRNAomes**

22 The NEBNext® small RNA library preparation kit was used to generate small RNAome libraries
23 from 150 ng total RNA following the manufacturer's guidelines. cDNA synthesis and PCR
24 amplification were performed, and libraries were pooled. PAGE determined optimal size, and
25 a 150-bp RNAome band was extracted for purification and quantification. Two nanomolar
26 libraries were sequenced on the Illumina HiSeq 2000 platform using a 50-bp single-read setup.
27 Demultiplexing utilized Illumina CASAVA 1.8, adapters were removed with cutadapt-1.8.1,
28 and FastQC assessed sequence data quality.

29

30 **Processing and Quality Control**

31 Reads were aligned to the *Homo sapiens*.GRCh38.p10 genome assembly (hg38) using the
32 miRdeep2 package [28]}, with genome sequences accessed via the UCSC Genomic Browser.

1 Bowtie-build tool (v1.12) mapped reads, and miRdeep2's Perl-based scripts generated raw
2 counts for microRNAs. Reads with fewer than 18 nucleotides were removed and used to
3 quantify known microRNAs using miRDeep2's quantifier.pl script.

4

5 **Differential Expression (DE) Analysis**

6 Raw counts were used for DE analysis. Prior to DE analysis, raw read counts were log2-
7 transformed and normalized for library size. Each sample was assigned a quality z-score, with
8 samples of low quality ($Z > 2.5$ or $Z < -2.5$) considered outliers and excluded from further
9 analysis. Read counts of 5 in at least 50% of the studied samples were used for subsequent
10 DE analysis. The RUVSeq package [29] was employed to account for hidden batch effects and
11 reduce unwanted variation. Data were corrected for age and gender. Differential expression
12 analysis was performed using DESeq2, with microRNAs exhibiting a basemean ≥ 50 , and an
13 adjusted p-value of < 0.05 considered differentially expressed.

14

15 **Gene ontology enrichment and pathway analysis**

16 The Gene Regulatory Network (GRN) for miRNA-target genes was built using validated targets
17 from miRTarBase (v7.0). Target genes with brain expression were selected using GTEx portal
18 (<https://gtexportal.org/home/>). Genes demonstrating a moderate level of expression were
19 prioritized. Gene expression in the GTEx portal is quantified using Transcripts Per Million (TPM),
20 a reliable metric for identifying genes with moderate expression levels. A cutoff of 10 TPM was
21 employed to determine moderate to high level expression in the brain. As such, the final list of
22 target genes selected for pathway analysis was not only potentially targeted by candidate
23 miRNAs, but also demonstrated a meaningful level of expression in the brain according to GTEx
24 portal data. This approach of dual-level filtering ensured that subsequent pathway analysis was
25 based on biologically relevant and expressed genes. Then Cytoscape 3.2.1's ClueGO v2.2.5 plugin
26 was used to determine biological processes and pathways. Significance was calculated using
27 a two-sided hypergeometric test and Benjamini-Hochberg adjustment. KEGG and Reactome
28 databases informed pathway analysis, and GRN was generated for deregulated mRNAs.
29 Processes and pathways with an adjusted p-value of < 0.05 were further evaluated. Later using
30 the systematic approach, the key biological processes were selected primarily based on their
31 Gene Ontology (GO) levels. This GO level is a systematic method used to describe the attributes
32 of genes and gene products, such as cellular components, molecular functions, and biological

1 processes. For instance, a lower GO level signifies a more specific function of genes, while a higher
2 GO level embodies biological processes with more generalized functions. Biological processes
3 were ranked according to their GO levels in a hierarchical manner, with lower GO levels (indicating
4 more specific gene function) being given higher priority. Following this categorization, biological
5 processes with an adjusted p-value of less than 0.05 were selected to ensure statistical
6 significance and to mitigate the possibility of false positives. Certain cancer-related pathways if
7 appeared in top 10 significant processes; however, they were not incorporated into our further
8 analysis. Given our primary focus on Frontotemporal Dementia (FTD), a neurodegenerative
9 disease, we consciously directed our efforts towards the exploration of target genes that are
10 implicated in FTD pathogenesis. As such, only those biological processes and pathways that bore
11 relevance to neurodegenerative diseases, with a particular emphasis on FTD, were retained for
12 in-depth examination.

13 The network shown in Fig S2 was built using Cytoscape (v3.7.2) based on automatically
14 created lists of pairwise interactors. We used inhouse Python scripts to screen interactome
15 databases for annotated interactions using miRNA-129-5p and the list of up- and down-
16 regulated genes as input. Results thus obtained contain interactions between input and all
17 (non-)coding genes as annotated in the databases. Interaction information was collected from
18 six different databases: NPIter, RegNetwork, Rise, STRING, TarBase, and TransmiR. The lists
19 of pairwise interactors were loaded into Cytoscape to build a network which was visually
20 modified according to up- and down-regulated genes. The initial network was truncated to a
21 core network with PathLinker (v1.4.3) using 5000 paths and the input list as source.

22

23

24 **Quantitative PCR**

25 The miScript II RT Kit synthesized cDNA from 200 ng total RNA, which was used for qPCR
26 analysis of both mRNA and microRNA. MicroRNA-specific forward and universal reverse
27 primers were used, with U6 small nuclear RNA as a control. Gene-specific primers quantified
28 mRNA, normalized against GAPDH. The $2^{-\Delta\Delta Ct}$ technique calculated fold changes, and a Light
29 Cycler® 480 Real-Time PCR System performed qPCR. Primers sequences are provided in the
30 **supplemental table 12**.

31

32 **Preparation of microRNA lipid nanoparticles**

1 miR-129-5p expression was inhibited using miR-129-5p inhibitor sequences (anti-miR-129),
2 an antisense oligos (ASO), and negative control sequences (scramble control) from Qiagen.
3 The Neuro9™ siRNA SparkTM Kit produced lipid nanoparticle (LNP) formulations for
4 microRNA inhibitors or ASOs (5 nmol) using a proprietary lipid blend. NanoAssemblr™
5 Spark™ technology encapsulated miRNA inhibitors or ASOs in a microfluidic device with
6 controlled mixing conditions (Precision Nanosystems). Following the manufacturer's
7 instructions, 5 nmol lyophilized microRNA inhibitors or ASOs were reconstituted, diluted, and
8 encapsulated using the NanoAssembler Spark system.

9

10 **Primary neuronal culture**

11 Primary neuronal cultures were prepared from E17 CD1 mice (Janvier Labs, France). Mice
12 were sacrificed, and embryos' brains, meninges, and cortices and hippocampi were dissected
13 and rinsed with PBS. Following trypsin and DNase incubation, single-cell suspensions were
14 obtained. Cells were plated on poly-D-lysine-coated 24-well plates with Neurobasal media
15 and B-27 supplement. Primary hippocampal neurons were used in experiments at DIV10-12.

16

17 **Dendritic spine labeling**

18 Primary hippocampal neurons and neuron-astrocyte co-cultures were fixed with 2% PFA and
19 dendritic spines were labeled using Dil dye (Life Technologies-Molecular Probes). After a 10-
20 minute incubation and thorough rinsing, cells were incubated overnight, cleaned, and
21 mounted with mowiol. High-magnification images were captured using a multicolor confocal
22 STED microscope with a 60x oil objective. Spine density and total spine length were measured
23 with ImageJ.

24

25 **Multi-electrode assay**

26 E17 embryos were used for neuronal culture in neurobasal media (Gibco, USA). After
27 centrifugation, cells were suspended, combined with laminin (Merck, Germany), and plated
28 in MEA plates with 16 electrodes per well, pre-coated with PDL. Media was changed every
29 third day, and at DIV10, basal spontaneous activity was measured. Cells were treated with
30 LNPs containing miR-129-5p inhibitors (anti-miR-129) or scramble sequence as controls.
31 Spontaneous neural activity was monitored from DIV12 using the Maestro Apex Platform
32 (Axion Biosystems, USA). Data was recorded for 29 hours, retrieved, and analyzed with AxIS

1 Navigator (Axion Biosystems, USA). Values were plotted and analyzed using Prism 8.3.1
2 (GraphPad Software LLC, United States). The calculation of the Neural Activity Score (NAS)
3 was performed to quantify the overall neural activity from the array of neural metrics
4 acquired. This calculation was conducted using a Principal Component Analysis (PCA)
5 approach implemented with the 'pca' function from the 'pcaMethods' package in R. This
6 method enables the reduction of the complex high-dimensional data into fewer dimensions,
7 thereby encapsulating the majority of the data's variance in a more manageable form. Our
8 PCA model was built on the z-score normalized neural metrics. This model enabled us to
9 derive a set of orthogonal (i.e., uncorrelated) principal components that maximally explain
10 the variance within the neural metrics. The NAS was then calculated as the first principal
11 component of this PCA model, capturing the largest possible variance from the neural metrics.
12 The NAS thus represents a composite measure of neural activity based on the largest common
13 pattern of variation within the measured neural metrics.

14

15 **Primary astrocyte culture**

16 P0 to P2 mice pups of CD1 background were sacrificed by decapitation and their cortex
17 dissected, careful to remove all meninges from each hemisphere. 2 brains were pooled per
18 15-mL falcon containing ice-cold PBS. Tissue was dissociated in a pre-warmed solution of
19 0.05% trypsin-EDTA (in PBS) at 37°C for 20-minutes. Trypsinization was stopped by adding a
20 processing medium (10 mM HEPES in HBSS) and cells were washed twice to wash off
21 remaining trypsin-EDTA. Dissociated tissues were homogenized in the processing media,
22 filtered through a 100µm cell strainer, and transferred into a coated T75 flask. The day of
23 plating the cells was considered as day 0 (DIV0). On the next day, media was completely
24 exchanged for a new processing medium and three days later half the medium was changed.
25 At DIV 7, astrocytes were placed on a shaker at 110rpm, at 37°C, for 6-hours. After, cells were
26 washed with preheated PBS, followed by an incubation of 5-minutes with 0.25% trypsin-EDTA.
27 Trypsinization was once again stopped by adding processing medium and cells were loosened
28 by forceful pipetting. Cell suspension was then centrifuged at 3,200 g for 4-minutes at 20°C.
29 Cell pellet was resuspended in 1mL MM+ media (Neurobasal Plus Medium, 2% B27, 1% P/S,
30 1% GlutaMAX) containing 5ng/mL HBEGF (Sigma-Aldrich, REF. 4643). Cells were counted in a
31 Neubauer counting chamber and seeded at a density of 60,000 cells/well in 12-well plates

1 that had been previously coated with 0.05 mg/L poly-D-Lysine. Half the cell medium was
2 exchanged for fresh MM+/HBEGF media once a week.

3

4 **Glutamate uptake assay**

5 Primary astrocytes were grown in 96 well plates and treated for 48 hours. On DIV14, the
6 medium was removed and the cells were washed with HBSS for 10 min at 37°C. The HBSS was
7 removed and the cells were incubated with 100 µM glutamate in HBSS for 1 hour at 37°C.
8 Then, the supernatant was collected and the amount of glutamate in the supernatant was
9 determined using the Glutamate Glo Assay (Promega).

10

11 **Co-culture system**

12 A confluent layer of neurons was established in multi-wells as previously described.
13 Astrocytes were cultured in a T75 flask and transfected with either anti-miRNA-129-5p or
14 scramble control at DIV 10. At neuronal DIV 12 and astrocytic DIV 12, LNP-treated astrocytes
15 were split and seeded onto neurons at a density of 20% (60,000 astrocytes/well) of neuronal
16 density. Co-cultures were maintained for an additional 48h, then used for RNA sequencing.

17

18 **RNA sequencing**

19 Total RNA was employed for library preparation using the TruSeq RNA Library Prep Kit v2
20 (Illumina, USA), following the manufacturer's instructions. A starting material of 500 ng RNA
21 was used. Library quality was assessed using a Bioanalyzer (Agilent Technologies), while
22 library concentration was determined with the Qubit™ dsDNA HS Assay Kit (Thermo Fisher
23 Scientific, USA). Multiplexed libraries were directly loaded onto a HiSeq2000 (Illumina) with a
24 50 bp single-read configuration. Demultiplexing was performed using Illumina CASAVA 1.8,
25 and sequencing adapters were removed utilizing cutadapt-1.8.1.

26

27 **Publicly available datasets**

28 This study uses various publicly available datasets to investigate the cell type-specific
29 expression of candidate microRNAs and differentially expressed genes. Gene expression
30 specific to neurons, astrocytes, and microglia was investigated using published single-cell data
31 [30]. miR-129-5p and miR-212-5p expression in human neurons and astrocytes was
32 investigated using published cell type specific data [31].

1

2 **Statistical analysis**

3 Statistical analysis was conducted using GraphPad Prism version 8.0. Data are presented as
4 mean \pm standard deviation or as boxplots, with each 'n' representing a biological sample.
5 Analyses were performed employing a two-tailed unpaired t-test. Cell-type-specific gene
6 overlap analysis was conducted using the GeneOverlap package in RStudio (v1.4.1106).
7 Enriched gene ontology and pathway analyses were executed using Fisher's exact test and
8 Benjamini-Hochberg correction for multiple comparisons.

9

10 **Results**

11 **Altered microRNA expression in postmortem tissue samples of FTD patients**

12 We conducted small RNA sequencing on postmortem brain tissue obtained from two distinct
13 brain regions – the frontal and temporal lobes – of patients with mutations in the MAPT (n =
14 13), GRN (n = 6), or C9ORF72 (n = 8) genes causing FTD. Additionally, brain tissue from non-
15 demented controls (n = 16) was included in the analysis (**Fig 1A; Supplemental Table 1**). For
16 three individuals, we lacked frontal lobe samples, resulting in a total of 77 small RNA
17 sequencing datasets. Using differential expression analysis (with adjusted p-value < 0.1,
18 basemean \geq 50, log2FC = +/- 0.2), we identified significant changes in miRNA expression
19 between control and FTD cases in both analyzed brain regions (**Fig 1B, C; Supplemental Table**
20 **2**). Notably, a greater number of miRNAs showed alterations in the frontal lobe (n = 276)
21 compared to the temporal lobe (n = 130; **Fig 1D**). Further analysis revealed that the number
22 of deregulated microRNAs was similar among *C9ORF72*, *GRN*, and *MAPT* carriers in the frontal
23 lobe, whereas only a few microRNAs exhibited significant alterations when comparing
24 *C9ORF72* or *GRN* carriers to controls in the temporal lobe (**Fig 1E**). Since disease-associated
25 changes in microRNA levels are believed to reflect a response to altered proteostasis and
26 mRNA levels, these findings could suggest that the observed variations across brain regions
27 and patient groups may be attributed to different patterns in the occurrence of pathology as
28 it has been observed in FTD cases [32].

29 Since all three FTD mutations eventually lead to similar traits in patients, our main goal was
30 to identify commonly disrupted miRNAs in both the frontal and temporal lobes across all
31 patient groups. Initially, we compared miRNAs with significant alterations in the frontal lobe

1 of patients carrying the *C9ORF72*, *GRN*, or *MAPT* mutation, resulting in the discovery of 30
2 commonly disrupted microRNAs (**Fig. 2A, supplemental table 3**). Similarly, we found 5
3 deregulated miRNAs in all conditions in the temporal lobe (**Fig. 2B, supplemental table 3**).

4 We utilized the miRTarBase database to identify mRNA targets of the commonly disrupted
5 miRNAs in both lobes. Subsequently, we narrowed down the target mRNAs to those
6 expressed in the human brain using the GTEx portal, which led to the identification of 275
7 potential target mRNAs (**supplemental table 4**).

8 Analysis of Gene Ontology (GO) terms associated with these mRNAs revealed several
9 pathways related to neuronal cell death, such as "programmed cell death," "apoptotic
10 processes," "negative regulation of cell death," and "neuron death" (**Fig. 2C**). Additionally,
11 significant processes were linked to inflammatory responses (e.g., "immune system
12 development," "negative regulation of immune system process," "regulation of cytokine
13 production," "interleukin-6-mediated signaling pathway"), synaptic plasticity, and memory
14 function (e.g., "neurogenesis," "learning or memory," "regulation of long-term neuronal
15 synaptic plasticity"). Furthermore, processes associated with glial cells, particularly
16 astrocytes, were identified (e.g., "regulation of gliogenesis," "glial cell development,"
17 "astrocyte differentiation"), along with processes related to chromatin regulation (e.g.,
18 "covalent chromatin modification," "histone phosphorylation," "regulation of histone
19 methylation"). These findings suggest that the deregulated miRs are closely associated with
20 neurodegenerative processes observed in FTD patients and relevant model systems [33]. The
21 complete list of GO terms and their corresponding genes can be found in supplemental table
22 5 (**supplemental table 5**).

23
24 We applied the same approach to gain a deeper understanding of the potential role of the
25 five commonly deregulated miRs in the temporal lobe of FTD patients. We identified 88 miR
26 targets that are enriched in the brain (**supplemental table 4**). Similar to the findings in the
27 frontal lobe data, GO term analysis of these targets revealed processes associated with
28 neuroinflammation, such as "positive regulation of interleukin-6 production," "positive
29 regulation of NIK/NF-kappaB signaling," "regulation of interleukin-12 production," and
30 "neuroinflammatory response." Additionally, processes related to glial cells, including

1 astrocytes ("astrocyte differentiation", "glial cell development"), and chromatin regulation
2 ("histone phosphorylation", "histone kinase activity") were identified (**Fig. 2C, also see**
3 **supplemental table 5**).

4 Interestingly, five identical GO terms were detected in both the frontal and temporal lobe
5 datasets, namely "regulation of interleukin-12 production," "glial cell development,"
6 "astrocyte differentiation", "cellular response to amyloid-beta," and "histone
7 phosphorylation." The analysis of the temporal lobe data did not yield significant GO terms
8 related to neuronal cell death, even when considering all 144 significant GO terms identified
9 (**supplemental table 5**). This may reflect a difference in the onset of neuronal cell death
10 between the frontal and temporal lobes of FTD patients, consistent with previous literature
11 [32]. In this scenario, the changes observed in the temporal lobe may reflect an early stage of
12 pathology. It is interesting to note that the most significant GO terms were linked to astrocyte
13 function and neuroinflammation (**see Fig. 2C**).

14
15 In addition to the miRs commonly regulated in the frontal and temporal lobes across patient
16 groups, we also analyzed the miRs specific to each condition using the same approach as
17 described above (**supplemental table 6**). While the data revealed that distinct GO terms were
18 enriched for the specific conditions, it is worth highlighting that "miRNA processing" was
19 amongst the top 10 GO terms affected in the frontal lobe of patients with MAPT mutations,
20 (**Fig. S1, supplemental table 7**).

21
22 Two microRNAs, miR-129-5p and miR-212-5p, exhibited consistent deregulation across all
23 patient samples, regardless of the specific mutation or brain region (**Fig. 3A**). We validated
24 the decreased expression of these microRNAs via qPCR (**Fig. 3 B,C**). Extensive research has
25 focused on miR-212-5p in the adult brain. Reductions in its levels have been associated with
26 memory impairment in mice [34] [35] [36], and miR-212-5p is known to be decreased in
27 several neurodegenerative diseases such as Alzheimer's disease (AD), Huntington's disease,
28 and Parkinson's disease (PD) [37] [38] [39] [40] [41] [42] [43] [44] [45]. Additional studies suggest
29 that targeting miR-212-5p expression is neuroprotective in models of PD, AD, and traumatic
30 brain injury [46] [47] [48]. MiR-212-5p forms a cluster with miR-132 [36], which has also been
31 linked to neurodegenerative diseases. MiR-132 has been found to be decreased in the brains
32 of AD and PD patients [49] [16] as well as in FTD patients [50]. In our dataset, miR-132-3p was

1 commonly down-regulated in the temporal region of C9ORF, GRN, and MAPT mutant carriers,
2 while in the frontal region, miR-132-3p was only decreased in patients with C9ORF mutations
3 (**supplemental table 2**).

4 In summary, these data indicate that decreased levels of the miR132/212 cluster are common
5 across several neurodegenerative diseases and are associated with impaired cognitive
6 function.

7

8 In comparison to miR-212-5p, there is limited knowledge regarding the role of miR-129-5p in
9 neurodegenerative diseases. A recent study observed decreased miR-129-5p levels in
10 postmortem brains samples of AD patients from the ROS/MAP cohort and a negative
11 correlation to cognitive function [51], thereby confirming previous findings [17] [52]. Another
12 study reported decreased levels of miR-129-5p in postmortem brains from PD patients [16].
13 To the best of our knowledge, altered miR-129-5p levels have not been reported in FTD. At
14 the functional level miR-129-5p has been linked to epileptic plasticity and homeostatic
15 synaptic downscaling in excitatory neurons [53].

16

17 In summary, existing literature strongly supports the down-regulation of miR-212-5p and miR-
18 129-5p in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's
19 disease (PD). Our study adds to this body of evidence by demonstrating a common down-
20 regulation of miR-212-5p and miR-129-5p in two different brain regions of FTD patients
21 carrying either the *C9ORF72*, *GRN*, or *MAPT* mutations. These findings suggest that both
22 microRNAs control key cellular pathways central to various neurodegenerative diseases.
23 Therefore, conducting functional analysis on these microRNAs becomes an important
24 research topic. Such analysis could provide valuable insights to guide the development of
25 novel therapeutic strategies for treating these diseases.

26

27 While miR-212-5p's role in the adult brain is well-studied, there is comparatively limited
28 understanding of the function of miR-129-5p in this context. Therefore, we have chosen to
29 investigate this specific microRNA further within the scope of our current study

30

1 **Knockdown of miR-129-5p affect neuronal plasticity and induces a gene-expression**
2 **signature linked to neuroinflammatory processes**

3 We utilized existing microRNA expression datasets [54] to analyze miR-129-5p levels in
4 neurons, microglia, and astrocytes. The data revealed high expression of miR-129-5p in
5 neurons and astrocytes compared to microglia (refer to **Fig. 4A**). These findings are consistent
6 with the Gene Ontology (GO) terms associated with altered miRNA expression in our datasets,
7 where pathways such as "astrocyte differentiation" were among the top-ranking, alongside
8 pathways linked to "neuron death" (see **Fig. 2**). To gain further insight into the role of miR-
9 129-5p, we transfected mouse primary neuronal mixed cultures (PNM cultures), which
10 contain mainly neurons and astrocytes, with antisense miR-129-5p locked nucleic acid (anti-
11 miR-129). As a control, we used a scrambled sequence (sc-control). The anti-miR-129
12 construct significantly reduced the detection of miR-129-5p levels in PNM cultures when
13 assayed 48 hours after transfection (**Fig. 4B**). Next, we analyzed the impact of anti-miR-129
14 administration on synaptic morphology in PNM cultures. The number of dendritic spines was
15 significantly decreased in PNM cultures treated with anti-miR-129 compared to the sc-control
16 group (**Fig. 4C**). To investigate if the altered morphology affects neuronal network plasticity,
17 we performed a multielectrode array (MEA) assay on PNM cultures. Basal activity was
18 measured at DIV 10, followed by treatment with anti-miR-129-5p or sc-control
19 oligonucleotides for 48 hours before transferring the plates to the MEA device for further
20 recording. Anti-miR-129-5p treated PNM cultures exhibited significantly reduced neuronal
21 activity compared to the sc-control group, including parameters such as the weighted mean
22 firing rate and the number of network bursts (**Fig. 4D**). To elucidate the molecular processes
23 controlled by miR-129-5p further, we performed RNA sequencing of PNM cultures upon miR-
24 129-5p knockdown. PNM cultures treated with sc-control oligonucleotides were used for
25 comparison. Analysis of gene expression revealed 333 deregulated genes (adjusted p-value
26 <0.05, log2foldchange = ±0.4, basemean >= 50), comprising 155 upregulated and 188
27 downregulated genes (refer to **Fig. 4E, Supplementary table 8**). Differential expression of
28 selected genes was confirmed via qPCR (**Fig. 4F**). GO term analysis of upregulated genes
29 indicated overrepresentation of key biological processes linked to inflammation, such as
30 'response to interferon-gamma', 'glial cell proliferation', including 'astrocyte development',
31 or 'positive regulation of phagocytosis' (**Fig. 4G**). GO term analysis of downregulated genes

1 revealed several significant pathways linked to 'DNA replication', 'regulation of
2 oligodendrocyte differentiation', 'neuron fate commitment', 'regulation of Notch signaling
3 pathway', 'transmembrane transporter activity', or 'astrocyte differentiation' (**Fig. 4G**;
4 **Supplementary Table 9**). Since PNM cultures consist mainly of neurons and astrocytes, we
5 analyzed the differentially expressed genes for their cell-type expression pattern and noticed
6 that the deregulated genes were mainly associated with astrocytes (**Fig. 4H**).

7

8 **Reduction of miR-129-5p levels in astrocytes impair neuronal plasticity**

9

10 The gene expression analysis described above suggests that reduced levels of miR-129-5p may
11 particularly impact astrocyte function. Given the limited understanding of the role of
12 astrocytes in FTD pathogenesis [55] we have decided to investigate the role of miR-129-5p in
13 astrocytes in more detail.

14 First, we administered anti-miR-129 oligonucleotides to primary astrocyte cultures and
15 performed RNA sequencing. Astrocytes treated with sc-control served for comparison. RNA
16 was collected 48 hours after transfection and knock down of miR-129-5p was confirmed via
17 qPCR (**Fig. 5A**). Differential expression analysis revealed 704 deregulated genes, with 279
18 upregulated and 425 downregulated genes (basemean ≥ 50 , log2FC $+/ - 0.4$, adjusted p value
19 < 0.05) (**Fig. 5B, Supplementary Table 10**). GO term analysis of the upregulated genes
20 revealed processes related to neuroinflammation such as interleukin responses, while the
21 downregulated genes were associated with processes indicative of deregulated synaptic
22 support function, such as "Synaptic signaling", "synapse organization" or "axon development"
23 (**Fig. 5C, Supplemental Table 11**). We confirmed the up-regulation of key cytokines Tnfa, Il-
24 1b and Il6 via qPCR (**Fig. 5D**). The fact that transcripts representative for GO terms linked to
25 synaptic function are downregulated in astrocytes may appear surprising at first. However, a
26 closer look at the affected transcripts indicate that many also have described functions in
27 astrocytes. One example are voltage-gated calcium channels that contribute to calcium
28 signaling in astrocytes. For example, we confirmed via qPCR the down-regulation of *Calcium*
29 *voltage-gated channel subunits (Cacna) 1c* and *Cacna1d* that encode the alpha 1 ion-
30 conducting pore of the Cav1.2 and Cav1.3 channels, respectively. We also confirmed the
31 reduced expression of *Cacna2d1* and *Cacna2d3* that encode the corresponding $\alpha_2\delta$ subunits.

1 Since these 4 genes encode subunits of the same calcium channel, expression of these 4
2 genes is summarized as one eigen-value (eigen-expression) (**Fig. 5E**). Of note the Cav1.2 and
3 Cav1.3 channels are known to play a role in astrocytic calcium signaling, have been linked to
4 reactive astrocyte states (PMID: 27247164) and show decreased expression upon prolonged
5 A β treatment (PMID: 24435206). Similarly, the *Slc1a1*, *Slc1a2* and *Slc1a3* genes that encode
6 glutamate transporter were all downregulated in anti-miR-129 treated astrocytes. These
7 glutamate transporters are known to be expressed in astrocytes and play a key role in synaptic
8 glutamate homeostasis. We confirmed via qPCR the decreased expression of these
9 glutamate transporters. The expression of *Slc1a1*, *Slc1a2* and *Slc1a3* upon miR-129-5p knock
10 down in primary astrocytes is depicted as eigenexpression (**Figure 5E**). In line with this
11 observation, astrocytes treated with anti-miR-129 exhibited reduced glutamate uptake when
12 compared to the scramble control group. (**Fig. 5F**). These data support the hypothesis that
13 miR-129-5p controls astrocytic processes that are known to play a role in neurodegenerative
14 diseases including FTD.

15 It is important to note that changes in the levels of a single miRNA can significantly impact the
16 cellular transcriptome. These changes occur through direct binding of the miRNA to target
17 transcripts and subsequent secondary effects.

18 To gain further insight into how reduced levels of miR-129-5p may affect the transcriptional
19 network in astrocytes, we compared the list of genes differentially expressed in astrocytes
20 upon anti-miR-129-5p treatment with the list of experimentally confirmed miR-129-5p
21 targets. This analysis identified 50 confirmed miR-129-5p targets (**Fig S2**).

22 Using this data, we constructed a miR-129-5p transcriptional interaction network.
23 Remarkably, 80 % of the differentially expressed genes could be explained by this network.
24 This included genes for which down-regulation was confirmed via qPCR such as the glutamate
25 transporter genes *Slc1a1*, *Slc1a2*, and *Slc1a3*, as well as the *Cacna1c*, *Cacna1d*, *Cacna2d1*, and
26 *Cacna2d3* genes encoding calcium channels as well as up-regulated genes linked to
27 neuroinflammation (**Fig S2**).

28

29 **Astrocytic miR-129-5p controls neuronal synaptic plasticity**

1 In summary, our data suggest that reduced levels of miR-129-5p in astrocytes increase
2 inflammatory processes and compromise neuronal support function. Although anti-miR-129
3 treatment in PNM cultures impaired the number of dendritic spines and reduced neuronal
4 network plasticity, it is likely that this effect is a combination of reduced miR-129-5p function
5 in both neurons and astrocytes. To directly investigate the impact of reduced expression of
6 miR-129-5p in astrocytes on neuronal plasticity, we conducted a co-culturing experiment.
7 Primary astrocytes were treated with either a sc-control or anti-miR-129 oligonucleotides for
8 48 hours before being transferred to PNM cultures (**Figure 6A**). In this experimental setup,
9 any observed effect on neuronal plasticity is solely due to the loss of miR-129-5p in astrocytes.
10 After 48 hours, cells were fixed, and the neuronal spine density was analyzed. Neurons grown
11 in the presence of astrocytes in which miR-129-5p was knocked down exhibited a significantly
12 decreased number of dendritic spines compared to PNM cultures that received sc-control
13 treated astrocytes (**Figure 6B**). The same experimental approach was employed to study
14 neuronal network plasticity via MEA assays. PNM cultures were grown on MEA plates, and
15 basal activity was assessed at DIV 10. Subsequently, the cultures were treated with astrocytes
16 that had received anti-miR-129-5p or sc-control oligonucleotides. Neuronal activity, including
17 parameters such as the weighted mean firing rate and the number of network bursts, was
18 significantly impaired in PNM cultures that had received anti-miR-129-treated astrocytes
19 (**Figure 6C**). While these data do not exclude the possibility that loss of neuronal miR-129-5p
20 function affects synaptic plasticity, they suggest that reduced levels of miR-129-5p in
21 astrocytes are sufficient to cause aberrant neuronal plasticity.

22 **Discussion**

23 In this study, we analyzed the microRNA profile in postmortem brain tissues, specifically the
24 frontal and temporal lobes, obtained from patients with FTD who carried mutations in the
25 *MAPT*, *GRN*, or *C9ORF72* genes. These genes are the most commonly associated with
26 autosomal dominant inheritance of FTD. When compared to tissue from control subjects, we
27 observed differential expression of microRNAs in all conditions. The number of deregulated
28 microRNAs was similar in the frontal and temporal lobes of patients with *MAPT* mutations, as
29 well as in the frontal lobe of patients with FTD due to *C9ORF72* and *GRN* mutations. Relatively
30 fewer microRNAs were deregulated in the temporal lobe of patients with FTD due to *C9ORF72*
31 (6 microRNAs) and *GRN* (16 microRNAs) mutations. While we cannot exclude the possibility

1 that this discrepancy is due to technical issues, it is noteworthy that previous studies have
2 described differences in the progression of neuropathological alterations among carriers of
3 *GRN*, *C9ORF72*, and *MAPT* mutations [32].

4 While data on microRNA profiling in postmortem brain tissue for FTD remains limited,
5 our study identified several microRNAs previously linked to FTD through investigations of
6 either cerebrospinal fluid (CSF) or postmortem brain tissue. For instance, miR-124-3p was
7 found to be decreased in the frontal lobe of *C9ORF72* and *MAPT* carriers in our study, which
8 is consistent with its association with synaptic dysfunction mediated by *CHMP2B* mutations,
9 another risk gene for FTD (Gascon, 2014). Similarly, miR-204-5p was down-regulated in the
10 frontal lobe of *C9ORF72* carriers and in the temporal lobe of patients with *MAPT* mutations.
11 These findings align with a previous study where decreased miR-204-5p levels were observed
12 in CSF exosomes from presymptomatic *C9ORF72*, *MAPT*, and *GRN* carriers, suggesting that
13 miR-204-5p could serve as a biomarker for early detection of FTD pathology [56]. Another
14 study utilizing small RNA sequencing analyzed cortical tissue from 8 controls and 5 FTD
15 patients, identifying miR-132-3p as down-regulated [50]. These results are consistent with
16 another study showing decreased levels of miR-132 and miR-212 in FTD-TDP patients with or
17 without *GRN* mutations [49]. MiR-132-3p, which forms a cluster with miR-212-5p, was also
18 decreased in all analyzed tissues in our study except the frontal lobe in patients with *MAPT*
19 mutations. Additionally, studies investigating CSF reported reduced levels of miR-328-3p in
20 CSF exosomes from FTD patients [57]. We found significantly lower expression of miR-328-3p
21 in the frontal lobe of all patients, while levels in the temporal lobe remained unaffected.
22 Furthermore, we observed reduced miR-181c-5p levels in the frontal lobe of *MAPT* and
23 *C9ORF72* patients, consistent with a study on CSF exosomes reporting decreased miR-181c-
24 5p expression in FTD patients [58].

25 Some microRNAs previously reported to be deregulated in FTD could not be confirmed
26 in our study. For instance, miR-203, which was identified via the combined analysis of several
27 mouse models for FTD and found to be up-regulated in the cortex of FTD patients with Tau
28 pathology [27], did not show deregulation in the postmortem brain tissues analyzed in our
29 study. Similarly, a study reported altered expression of miR-183, miR-96, and miR-182 in mice
30 upon exposure to learning or environmental enrichment, and subsequently detected
31 decreased levels of these microRNAs in the frontal cortex of FTD patients compared to
32 controls [59], while we did not detect changes for these miRs. The discrepancy with our data

1 remains unclear at present, but it is noteworthy that the post-mortem delay was much
2 shorter in our dataset, and moreover we only focused on FTD patients with a genetic
3 diagnosis, excluding sporadic cases.

4

5 We identified two microRNAs consistently deregulated in both analyzed brain regions
6 across different mutation carriers, miR-212-5p and miR-129-5p, both decreased in FTD
7 patients. As discussed earlier, miR-212-5p forms a cluster with miR-132-3p, both previously
8 found to be decreased in the brains of FTD patients [49] [50]. Deletion of the miR-132/212
9 cluster impairs synaptic plasticity and memory consolidation in mice [34] [35] [36], suggesting
10 that the decrease of miR-212-5p likely contributes to FTD pathology. Moreover, miR-212-5p
11 was found decreased in several other neurodegenerative diseases such as AD, Huntington's
12 disease, and PD [37] [38] [39] [40] [41] [42] [43] [44] [45], indicating a key role in
13 neurodegenerative diseases. Additional studies suggest that targeting miR-212-5p expression
14 is neuroprotective in models of PD, AD, and traumatic brain injury [46] [47] [48].

15 In summary, these findings support the robustness of our study and confirm the
16 deregulation of miR-212-5p in FTD patients, suggesting that therapeutic strategies targeting
17 miR-212-5p could be a promising approach in treating neurodegenerative diseases. In
18 addition to miR-212-5p, we consistently observed the down-regulation of miR-129-5p in the
19 frontal and temporal lobes of patients carrying *GNR*, *C9ORF72*, or *MAPT* mutations. While the
20 role of miR-212-5p has been relatively well-studied, information regarding miR-129-5p is
21 limited. To our knowledge, our study is the first to report decreased miR-129-5p levels in FTD.
22 However, reduced miR-129-5p expression was recently observed in postmortem brain
23 samples of AD patients from the ROS/MAP cohort. Additionally, miR-129-5p expression was
24 negatively correlated with cognitive function [51]. Another study reported decreased miR-
25 129-5p levels in the superior temporal gyrus and entorhinal cortex when comparing controls
26 to AD patients or PD patients [16]. These findings suggest that, similar to miR-212-5p,
27 deregulation of miR-129-5p may play a general role in neurodegenerative processes rather
28 than being specific to FTD. In this context it is noteworthy that especially in younger patients
29 FTD is often misdiagnosed as psychiatric diseases such as schizophrenia, bipolar diseases or
30 major depression [60]. As such, it is interesting that so far there is no report on the de-
31 regulation of miR-129-5p in schizophrenia. Even in a large recent study in which 573 blood

1 samples and 30 postmortem brains of schizophrenia patients and controls were analyzed by
2 smallRNAseq, no de-regulation of miR-129 was observed [61]. However, it should be
3 mentioned that recent study reported that miR-129-5p is decreased in exosomes isolated
4 from the postmortem brain of males but not females that suffered from depression [62]

5

6 Functional data on miR-129-5p is rare. Decreased levels of miR-129-5p have been
7 observed in various cancers and low miR-129-5p levels have been associated with a reduced
8 efficacy of chemotherapy because miR-129-5p was found to control various genes linked to
9 cell proliferation [63] [64]. However, little is known about the role of miR-129-5p in the brain.
10 Therefore, we had decided to study miR-129-5p in greater detail and observed that
11 downregulation of miR-129-5p in PMN cultures led to the up-regulation of genes linked to
12 neuroinflammation while transcripts linked to synaptic function were decreased.
13 Interestingly, the deregulated genes were mainly linked to astrocytes which are known to
14 contribute to neuroinflammation and moreover orchestrate important synaptic and neuronal
15 support functions [65]. Although most of the research in FTD has been focused on neuronal
16 dysfunction and neuronal cell death, the role of astrocytes in the pathogenesis of FTD and
17 other neurodegenerative diseases is increasingly being recognized [66] [67] [68] [55]. In line
18 with these observations, decreased levels of miR-129-5p have been associated with the
19 induction of inflammatory processes in various other diseases such as kidney injury or
20 rheumatoid arthritis [69] [70]. Moreover, one previous study linked miR-129-5p to
21 neuroinflammation and demonstrated that increasing the levels of miR-129-5p in a mouse
22 model for ischemia ameliorated the expression of proinflammatory cytokines and restored
23 motor function [71]. While neuroinflammation is mediated by multiple types of glial cells,
24 primarily microglia, we specifically reduced miR-129-5p levels in astrocytes and in astrocytes
25 later co-cultured with primary cortical neurons. Through this approach, we demonstrated the
26 specific role of miR-129-5p in orchestrating astrocyte-mediated inflammation. Thus, reducing
27 miR-129-5p levels did not only increased the expression of pro-inflammatory cytokines but
28 also decreased the expression of transcripts linked to key neuronal support function such as
29 glutamate-uptake, which was reduced upon miR-129-5p knock down. In line with such
30 observations, decreasing miR-129-5p levels in astrocytes led to a reduced number of dendritic
31 spines and reduced neuronal network activity. These findings are in agreement with previous
32 studies showing that aberrant function of astrocytes can have detrimental effects on neuronal

1 plasticity [72]. These data clearly show that lower miR-129-5p levels in astrocytes are
2 sufficient to cause neuronal phenotypes observed in FTD. At the same time it is important to
3 mention that these findings do not rule out a role for miR-129-5p in neurons or other cells of
4 the human brain. For example neuronal miR-129-5p has been linked to epileptic plasticity and
5 homeostatic synaptic downscaling in excitatory neurons [73].

6 It is therefore likely that deregulation of miR-129-5p in other cell types than astrocytes
7 could contribute to FTD. Indeed, one limitation of our study is the fact that we analyzed bulk
8 postmortem tissue. Since in the human brain, miR-129-5p levels are highest in neurons and
9 astrocytes it is possible that the decreased expression in FTD could be attributed to neurons
10 as well as astrocytes but potentially also other brain cells. It would therefore be important to
11 study the brains from FTD patients via single cell smallRNA-seq or via semi quantitative
12 immunohistochemical analysis in the future. Another shortcoming of our study is that the
13 analysis has so far been limited to patients with either *C9ORF72*, *GRN* or *MAPT* mutations.
14 Although these 3 mutations account for the majority of genetic FTD cases, it would be
15 important to assay miR-129-5p levels in brain tissue for sporadic patients or patients with
16 other known mutations. In this context it would also be interesting to analyze miR-129-5p
17 expression patients suffering from ALS.

18

19 Another crucial consideration is that miRs are not only being explored as drug targets
20 for various diseases, including brain disorders), but they are also being investigated as
21 potential biomarkers for central nervous system (CNS) pathology when measured in
22 cerebrospinal fluid (CSF) or blood [74] [75] [14]. Several studies have examined microRNAs in
23 blood with the aim of identifying circulating biomarkers for FTD. While some studies focused
24 on analyzing candidate miRs, others utilized OMICS approaches. However, to our knowledge,
25 there have been no reports on the levels of miR-129-5p in the blood of FTD patients, despite
26 evidence demonstrating its detectability in blood plasma, serum, or blood-derived exosomes
27 [64]. Nonetheless, other miRs found to be dysregulated in our brain tissue analysis have been
28 identified as potential blood-based biomarkers for FTD. For instance, decreased plasma levels
29 of miR-127-3p and miR-502-3p were observed in FTD patients [76] [77]. Consistent with these
30 findings, we also observed decreased miR-127-3p levels in the frontal lobe of patients with
31 *C9ORF72* and *GRN* mutations, as well as in the temporal lobe of patients with *MAPT*
32 mutations. Similarly, miR-502-3p levels were decreased in the temporal lobe of *MAPT* carriers

1 in our analysis. In a recent study, 65 miRs previously associated with FTD/ALS were
2 investigated, and differential expression was confirmed in plasma samples from C9ORF72 or
3 GRN carriers for 50 of these miRs (Kmetzsch, 2022). Twenty of these miRs were also detected
4 in our study of postmortem brain tissue. Furthermore, nine miRs were found to be
5 dysregulated in plasma when comparing controls to sporadic patients or those with GRN,
6 C9ORF72, or MAPT mutations [78]. Among these miRs, miR-155-5p, miR-222-3p, miR-140-3p,
7 miR-106b-3p, miR-16-5p, miR-223-3p, miR-27a, and miR-124-3p were also dysregulated in at
8 least one of the analyzed brain tissues in our study. Finally, Magen et al. employed machine
9 learning to identify a signature of 13 miRs measured in plasma to predict FTD. Of these miRs,
10 nine were also dysregulated in at least one of the analyzed brain tissues from FTD patients,
11 including miR-423, miR-125b-5p, miR-185-5p, let7d-5p, miR-107, miR-361-5p, miR-379-5p,
12 and miR-378-5p [79].

13 These findings provide additional support for the robustness of our dataset, which
14 could contribute to the establishment of miRNA signatures suitable for diagnosing FTD.
15 Building upon these results, it would be valuable to investigate miR-129-5p levels using qPCR
16 in blood samples obtained from both pre-symptomatic and symptomatic FTD patients
17 carrying C9ORF72, GRN, and MAPT mutations.

18

19 Conclusion

20 In summary, our findings confirm the involvement of miR-212-5p in FTD pathogenesis and
21 suggest that targeting miR-129-5p could represent a novel therapeutic strategy for treating
22 not only FTD but also other neurodegenerative diseases. While further research is needed to
23 experimentally validate this hypothesis in model systems, our proposition is supported by a
24 study investigating the effects of physical exercise in AD. Physical exercise has been shown to
25 enhance cognitive function in both model organisms and humans, correlating with alterations
26 in miRNA expression profiles [80]. Notably, physical exercise has been found to elevate miR-
27 129-5p levels in the blood samples of AD patients and AD mouse models [81] [82] [83].

28 In conclusion our study provides a comprehensive analysis of the microRNAome in the
29 brains of FTD patients, shedding light on potential therapeutic avenues. Additionally, we
30 report, for the first time, a role for miR-129-5p in astrocytes and provide evidence suggesting
31 that miR-129-5p-mediated dysregulation of astrocytic function may play a crucial role in the
32 development of neuropathology in FTD.

1

2 **Declarations**

3 Ethics approval and consent to participate: RNAseq analysis of postmortem brain tissue was
4 approved by the ethical committee of the University Medical Center Göttingen (AZ 2/8/22
5 and AZ 29/9/18).

6 Consent for publication: All author grant consent for the publication of our manuscript

7 Availability of data and material: RNAseq data from is available via GEO database. GEO
8 accession GSE262895. smallRNA-sequencing data from the human tissue samples will be
9 made available via the European Genome-phenome Archive(EGA).

10 Competing interests: The authors declare no conflict of interest.

11 Funding: This work was supported by the following grants to AF: The DFG (*Deutsche
12 Forschungsgemeinschaft*) project 514201724 (FI-981-18), priority program 1738, SFB1286 and
13 GRK2824, the BMBF via the ERA-NET Neuron project EPINEURODEVO (01EW2205), the EU Joint
14 Programme- Neurodegenerative Diseases (JPND) – EPI-3E, Germany's Excellence Strategy - EXC
15 2067/1 390729940. FS was supported by the GoBIO project miRassay. AF and PH were
16 supported by the RiMOD project (01ED1407) as part of the EU Joint Programme –
17 Neurodegenerative Disease Research (JPND).

18 Authors' contributions: LK performed experiments, analyzed and interpreted RNA-seq data,
19 designed all experiments, and drafted the paper. RP performed MEA assay and performed
20 some qPCR analysis. SS performed glutamate uptake assay and provided support in astrocyte
21 culture. SB and ALS provided technical support and performed RNAseq. ALS performed RNA
22 isolation. DMK and TP provided bioinformatics support. PH provided FTD samples. FS and AF
23 arranged funding, designed and supervised the study, drafted, and revised the final version
24 of the manuscript.

25 Acknowledgements: n/a

26

27

28

29

30 **Figure legends**

31

1 **Fig. 1. Differential microRNA expression the frontal and temporal lobe of FTD patients.** **A.** Schematic
2 representation of the study design. **B.** Volcano plot showing microRNA expression in the frontal lobe
3 of control vs FTD patients with *C9ORF72*, *GRN* or *MAPT* mutations. The plot illustrates the relationship
4 between log2 fold change (log2FC) and statistical significance (-log10 of the adjusted *p*-value, padj). **C.**
5 Volcano plot showing microRNA expression in the temporal lobe of control vs FTD patients with
6 *C9ORF72*, *GRN* or *MAPT* mutations. The plot illustrates the relationship between log2 fold change
7 (log2FC) and statistical significance (-log10 of the adjusted *p*-value, padj). **D.** Bar plot illustrating the
8 total number of differentially expressed microRNAs in the frontal and temporal lobes, obtained by
9 summing the data from all three mutations. **E.** Bar plot depicting the number of differentially
10 expressed microRNAs in the frontal and temporal lobes for each individual FTD mutation.

11

12 **Figure 2. GO terms for the target genes of microRNAs commonly deregulated in the frontal and**
13 **temporal lobe of FTD patients.** **A.** Venn diagram showing that 30 microRNAs (see also supplemental
14 table 3) are commonly deregulated in the frontal lobe of all analyzed samples. **B.** Venn diagram
15 showing that 5 microRNAs (see supplemental table 3) are commonly deregulated in the temporal lobe
16 of all analyzed samples. **C.** Representative GO terms based on the commonly deregulated miRNAs in
17 the frontal lobe (upper panel) and the temporal lobe (lower panel).

18

19 **Figure 3. Deregulation of miR-212-5p and miR-129-5p in FTD.** **A.** Venn diagram showing that miR-
20 212-5p and miR129-5p are commonly deregulated in FTD patients. **B.** The qPCR results depict the
21 expression of miR-129-5p in the frontal lobe (Left panel) and temporal lobe (Right panel) of both
22 control and FTD patients (n=5/group). **C.** The qPCR results depict the expression of miR-212-5p in the
23 frontal lobe (Left panel) and temporal lobe (Right panel) of both control and FTD patients (n=5/group).
24 The horizontal line in the box plot represents the median, the box spans 25 and 75% quantile, and the
25 whiskers represent the smallest and largest values in the 1.5x interquartile range. (**P* < 0.05;
26 ***P* < 0.01, ****P* < 0.001; *t*-test unpaired; 2-tailed)

27

28 **Figure 4: Knock down of miR-129-5p in PNM cultures impairs neuronal function and leads to**
29 **deregulated gene-expression.** **A.** Heat map showing the expression of miR-129-5p in different neural
30 cell types. **B.** Bar plot showing qPCR analysis of miR-129-5p levels in PNM cultures upon anti-miR-129
31 administration. When compared to the control group miR-129-5p expression is significantly reduced.
32 Data was normalized to U6 expression. *****P* < 0.0001, two-tailed, unpaired *t*-test (n=6 per group).
33 **C.** Left panel: Representative confocal images of neuronal dendrites from sc-control and anti-miR-129
34 treated PNM cultures. Right panel shows the quantification of dendritic spines (number of total spines

1 per length of a chosen dendritic segment). Anti-miR-129 treated neurons displayed a significantly
2 reduced number of dendritic spines (number of dendritic segments analyzed: scramble control = 31,
3 miR-129-5p inhibitor = 32. ** $P < 0.01$, Unpaired t-test, two-tailed). **D.** Bar plots showing the results of
4 multielectrode array (MEA) experiments in anti-miR-129-5p-treated PNM cultures compared to the
5 sc-control group. Comparison of the weighted mean firing rate (left panel), the number of network
6 bursts (middle panel) and the neuronal activity score (right panel) were impaired in anti-miR-129-5p-
7 treated PNM cultures when compared to the sc-control group. A total of 29 recordings per group
8 were conducted, with n=6 samples per group (unpaired, two-tailed t-test was performed, * $P < 0.05$,
9 ** $P < 0.01$, *** $P < 0.001$). **E.** Heatmap displaying gene expression changes in PNM cultures upon anti-
10 miR-129 treatment (log₂foldchange ± 0.4 , and adjusted p-value < 0.05). **F.** Bar plots showing qPCR
11 results for selected up- or downregulated genes detected via RNA seq (n=6/group, two-tailed,
12 unpaired t-test; * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$). **G.** A dot plot is presented, illustrating the GO
13 term analysis of the differentially expressed genes shown in (E). To aid visualization, similar GO terms
14 were clustered using GO semantic similarity, and the parental GO term was highlighted. **H.** Heat map
15 showing the cell type enrichment of genes identified in (E) using published datasets to detect neuronal
16 and astrocytic genes. P -values are based on hypergeometric testing to detect overlap between
17 deregulated genes with published datasets from neuron, microglia and astrocytes (Fisher's exact test,
18 adjusted p-value with Benjamini-Hochberg (BH) correction). The color key reflects the odds ratios
19 derived from the cell type enrichment analysis. Darker shades correspond to higher odds ratios,
20 indicating a stronger enrichment of deregulated genes for a specific cell type, while lighter shades
21 represent lower odds ratios, suggesting less enrichment. The visual gradation from light to dark
22 therefore encapsulates the varying degrees of gene enrichment across different cell types. Error
23 bars = mean \pm SD.

24

25 **Fig. 5. miR-129-5p controls astrocytic gene-expression, cytokine levels and glutamate uptake. A.**
26 qPCR analysis of miR-129-5p expression in primary astrocyte (DIV12) culture 48 h after anti-miR-129
27 or sc-control treatment(** $P < 0.001$ for anti-miR-129 treated cell compared to the sc-control
28 condition, two-tailed, unpaired t-test; n=6 per group. **B.** Heatmap displaying gene expression analysis
29 (basemean ≥ 50 , log₂foldchange ± 0.4 , and adjusted p-value < 0.05) in primary astrocytes treated with
30 anti-miR-129 or sc-control. **C.** A dot plot is utilized to illustrate the GO term analysis of the genes shown
31 in (B). **D.** Bar plots showing qPCR analysis for inflammatory cytokines *TNF- α* , *IL1b* and *IL6*. (n=6, unpaired
32 t-test; two-tailed, ** $P < 0.0001$ for anti-miR-129 treated cells vs sc-control group). **E.** The plots display
33 eigen-expression calculated based on qPCR results, comparing the expression of *Cacna1c*, *Cacna1d*,
34 *Cacna2d1*, and *Cacna2d3* (calcium channels, left panel), and *Slc1a1*, *Slc1a2*, and *Slc1a3* (glutamate

1 transporters, right panel) in anti-miR-129 treated astrocytes versus sc-control treated astrocytes (n=6,
2 unpaired t-test; two-tailed, *** $P < 0.001$). **F.** Bar plot showing the results of a glutamate uptake assay
3 in astrocytes (n = 4, unpaired t-test; two-tailed, ** $P < 0.01$, from anti-miR-129 treated cells vs sc-
4 control group). Error bars indicate mean \pm SD.

5

6 **Figure 6. Reduced miR-129-5p levels in astrocytes affect neuronal structure and plasticity. A.**
7 Schematic representation of the co-culturing experiment. **B.** In the left panel, representative images
8 of dendrites from PMN cultures are shown, to which astrocytes treated with sc-control or anti-miR-
9 129 had been transferred. The right panel presents a bar graph quantifying dendritic spines. A total of
10 41 dendritic segments were analyzed for PMN cultures treated with sc-control, while 42 segments
11 were analyzed for anti-miR-129-5p treated astrocytes (n=6/group). An unpaired, two-tailed t-test was
12 conducted (*** $P < 0.001$). **C.** PMN cultures were grown on Axion MEA plates, while primary astrocytes
13 were initially cultured in T-75 flasks. At DIV 10, astrocytes were treated with anti-miR-129- or sc-
14 control. At DIV 12 the astrocytes were co-cultured with the PMN cultures on the MEA plates.
15 Spontaneous neuronal activity was recorded every hour for 10 minutes, with the entire recording
16 session spanning 29 hours. The bar plots show the results of MEA experiments. Comparison of the
17 weighted mean firing rate (left panel), the number of network bursts (middle panel) and the neuronal
18 activity score (right panel) were impaired in PNM that were co-cultures with astrocytes treated with
19 anti-miR-129. A total of 29 recordings per group were conducted, with n=6 samples per group. An
20 unpaired, two-tailed t-test was performed (** $P < 0.01$ anti-miR-129 vs sc-control). Error bars indicate
21 mean \pm SD.

22

23 **References**

24

- 25 1. Younes, K. and B.L. Miller, *Frontotemporal Dementia: Neuropathology, Genetics,*
26 *Neuroimaging, and Treatments*. . The Psychiatric clinics of North America, 2020.
27 **43**(2): p. 331-344.
- 28 2. Wagner, M., et al., *linico-genetic findings in 509 frontotemporal dementia patients*.
29 *Molecular psychiatry*, 2021. **26**(10): p. 5824–5832.
- 30 3. Ratnavalli, E., et al., *The prevalence of frontotemporal dementia*. *Neurology*, 2002.
31 **58**(11): p. 1615-1621.
- 32 4. Mackenzie, I.R. and M. Neumann, *Molecular neuropathology of frontotemporal*
33 *dementia: insights into disease mechanisms from postmortem studies*. *Journal of*
34 *neurochemistry*, 2016. **138**: p. 54-78.
- 35 5. Greaves, C.V. and J.D. Rohrer, *An update on genetic frontotemporal dementia*.
36 *Journal of neurology*, 2019. **266**(8): p. 2075-2086.
- 37 6. Magrath Guimet, N., L.M. Zapata-Restrepo, and B.L. Miller, *Advances in Treatment*
38 *of Frontotemporal Dementia*. . The Journal of neuropsychiatry and clinical
39 *neurosciences*, 2022. **34**(4): p. 316-327.

1 7. Juźwik, C.A.S., et al., *microRNA dysregulation in neurodegenerative diseases: A*
2 *systematic review*. *Prog Neurobiol.*, 2019. **182**: p. doi:
3 10.1016/j.pneurobio.2019.101664.

4 8. Gurtan, A.M. and P.A. Sharp, *The Role of miRNAs in Regulating Gene Expression*
5 *Networks*. *J Mol Biol*, 2013. **pii(S0022-2836(13)00154-X.)**: p. Epub ahead of print.

6 9. Bayraktar, R., K. Van Roosbroeck, and G.A. Calin, *Cell-to-cell communication:*
7 *microRNAs as hormones*. *Mol Oncol.*, 2017. **11**(12): p. 1673-1686.

8 10. Jose, A.M., *Movement of regulatory RNA between animal cells*. . *Genesis*, 2015.
9 **53**(7): p. 395-416.

10 11. Mustapic, M., et al., *Plasma Extracellular Vesicles Enriched for Neuronal Origin: A*
11 *Potential Window into Brain Pathologic Processes*. *Front Neurosci.*, 2017. **11**(278):
12 p. doi: 10.3389/fnins.2017.00278.

13 12. Cortez, M.A., et al., *MicroRNAs in body fluids—the mix of hormones and biomarkers*.
14 . *Nature reviews. Clinical oncology*, 2011. **8**(467-477).

15 13. Lopez, J.P., et al., *miR-1202 is a primate-specific and brain-enriched microRNA*
16 *involved in major depression and antidepressant treatment*. . *Nature medicine*, 2014.
17 **20**(7): p. 764-768.

18 14. Islam, M., R. , et al., *A microRNA-signature that correlates with cognition and is a*
19 *target against cognitive decline*. *EMBO Mol Med*, 2021. doi:
20 **10.15252/emmm.202013659**. **Online ahead of print**.

21 15. Magen, I., et al., *Circulating miR-181a-5p is a prognostic biomarker for amyotrophic*
22 *lateral sclerosis*. *bioRxiv*, 2021: p. 833079.

23 16. Dobricic, V., et al., *Common signatures of differential microRNA expression in*
24 *Parkinson's and Alzheimer's disease brains*. . *Brain communications*, 2022. **4**(6): p.
25 fcac274.

26 17. Dobricic, V., et al., *Differential microRNA expression analyses across two brain*
27 *regions in Alzheimer's disease*. *Translational psychiatry*, 2022. **12**: p. 352.

28 18. Kaurani, L., et al., *Baseline levels of miR-223-3p correlate with the effectiveness of*
29 *electroconvulsive therapy in patients with major depression*. *Transl Psychiatry* . ,
30 **2023**. **13**(1): p. 294.

31 19. Methi, A., et al., *A Single-Cell Transcriptomic Analysis of the Mouse Hippocampus*
32 *After Voluntary Exercise*. *Molecular neurobiology*, 2024. **Advance online**
33 **publication**.

34 20. Kozomara, A., M. Birgaoanu, and S. Griffiths-Jones, *miRBase: from microRNA*
35 *sequences to function*. *Nucleic acids research*, 2019. **47**(D1): p. 155-162.

36 21. Zampetaki, A., et al., *Profiling of circulating microRNAs: from single biomarkers to*
37 *re-wired networks*. . *Cardiovascular research*, 2012. **93**(4): p. 555–562. .

38 22. Fischer, A., *Epigenetic memory: the Lamarckian brain*. *EMBO J*, 2014. **33**(9): p. 945-
39 967.

40 23. Condrat, C.E., et al., *miRNAs as Biomarkers in Disease: Latest Findings Regarding*
41 *Their Role in Diagnosis and Prognosis*. . *Cells*, 2020. **9**(2): p. 276.

42 24. Jiao, J., et al., *MicroRNA-29b regulates the expression level of human progranulin, a*
43 *secreted glycoprotein implicated in frontotemporal dementia*. *PLoS One*, 2010. **10**(5):
44 p.:e10551.

45 25. Wang, W.X., et al., *miR-107 regulates granulin/progranulin with implications for*
46 *traumatic brain injury and neurodegenerative disease*. . *The American journal of*
47 *pathology*, 2010. **177**(1): p. 334–345.

48 26. Piscopo, P., et al., *Reduced miR-659-3p Levels Correlate with Progranulin Increase*
49 *in Hypoxic Conditions: Implications for Frontotemporal Dementia*. . *Frontiers in*
50 *molecular neuroscience*, 2016. **9**(31): p. <https://doi.org/10.3389/fnmol.2016.00031>.

1 27. Swarup, V., et al., *Identification of evolutionarily conserved gene networks mediating*
2 *neurodegenerative dementia*. *Nat Med.*, 2018. **25**(1): p. 152-164.

3 28. Friedländer, M.R., et al., *miRDeep2 accurately identifies known and hundreds of*
4 *novel microRNA genes in seven animal clades*. *Nucleic acids research*, 2012. **40**(1): p.
5 37-52.

6 29. Risso, D., et al., *Normalization of RNA-seq data using factor analysis of control genes*
7 *or samples*. *Nature biotechnology*, 2014. **32**(9): p. 896.

8 30. McKenzie, A.T., et al., *Brain Cell Type Specific Gene Expression and Co-expression*
9 *Network Architectures*. *Scientific reports*, 2018. **8**(1): p. 8868.

10 31. Ries, R.J., et al., *m6A enhances the phase separation potential of mRNA*. *Nature*,
11 2019. **571**(7765): p. 424–428.

12 32. Antonioni, A., et al., *Frontotemporal Dementia, Where Do We Stand? A Narrative*
13 *Review*. *International journal of molecular sciences*, 2023. **24**(14): p. 11732.

14 33. Menden, K., et al., *A multi-omics dataset for the analysis of frontotemporal dementia*
15 *genetic subtypes*. *Sci Data.*, 2023. **10**(1): p. 849.

16 34. Remenyi, J., et al., *miR-132/212 knockout mice reveal roles for these miRNAs in*
17 *regulating cortical synaptic transmission and plasticity*. *PLoS One*, 2013. **8**(4): p.
18 e62509.

19 35. Hansen, K.F., et al., *deletion of miR-132/-212 impairs memory and alters the*
20 *hippocampal transcriptome*. *Learn Mem*, 2016. **15**(223): p. 61-71.

21 36. Hernandez-Rapp, J., et al., *Memory formation and retention are affected in adult miR-*
22 *132/212 knockout mice*. *Behav Brain Res.*, 2015. **1**(287): p. 15-26.

23 37. Wong, H.K., et al., *De-repression of FOXO3a death axis by microRNA-132 and -212*
24 *causes neuronal apoptosis in Alzheimer's disease*. *Hum Mol Genet.*, 2013. **22**(15): p.
25 3077-3092.

26 38. Smith, P.Y., et al., *miR-132/212 deficiency impairs tau metabolism and promotes*
27 *pathological aggregation in vivo*. *Human molecular genetics*, 2015. **24**(23): p. 6721–
28 6735.

29 39. Salta, E., et al., *miR-132 loss de-represses ITPKB and aggravates amyloid and TAU*
30 *pathology in Alzheimer's brain*. *EMBO molecular medicine*, 2016. **8**(9): p. 1005-
31 1018.

32 40. Wang, Y., et al., *Downregulation of miR-132/212 impairs S-nitrosylation balance and*
33 *induces tau phosphorylation in Alzheimer's disease*. *Neurobiology of aging*, 2017. **51**:
34 p. 156-166.

35 41. Pichler, S., et al., *The miRNome of Alzheimer's disease: consistent downregulation of*
36 *the miR-132/212 cluster*. *Neurobiology of aging*, 2017. **50**(167): p. e1–167.e10.

37 42. Salta, E. and B. De Strooper, *Noncoding RNAs in neurodegeneration*. *Nat Rev*
38 *Neurosci.*, 2017. **18**(10): p. 627-640.

39 43. Huang, Q., et al., *Presenilin1/γ-secretase protects neurons from glucose deprivation-*
40 *induced death by regulating miR-212 and PEA15*. *FASEB journal*, 2018. **32**(1): p.
41 243-253.

42 44. Cha, D.J., et al., *miR-212 and miR-132 Are Downregulated in Neurally Derived*
43 *Plasma Exosomes of Alzheimer's Patients*. *Frontiers in neuroscience*, 2019. **13**: p.
44 1208.

45 45. Petry, S., et al., *Widespread alterations in microRNA biogenesis in human*
46 *Huntington's disease putamen*. *Acta neuropathologica communications*, 2022. **10**(1):
47 p. 106.

48 46. Sun, S., et al., *MicroRNA-212-5p Prevents Dopaminergic Neuron Death by Inhibiting*
49 *SIRT2 in MPTP-Induced Mouse Model of Parkinson's Disease*. *Frontiers in molecular*
50 *neuroscience*, 2018. **11**: p. 381.

1 47. Xiao, X., et al., *miR-212-5p attenuates ferroptotic neuronal death after traumatic*
2 *brain injury by targeting Ptgs2*. Molecular brain,, 2019. **12**(1): p. 78.

3 48. Nong, W., et al., *miR-212-3p attenuates neuroinflammation of rats with Alzheimer's*
4 *disease via regulating the SP1/BACE1/NLRP3/Caspase-1 signaling pathway*. Bosnian
5 journal of basic medical sciences, 2022. **22**(4): p. 540-552.

6 49. Chen-Plotkin, A.S., et al., *TMEM106B, the risk gene for frontotemporal dementia, is*
7 *regulated by the microRNA-132/212 cluster and affects progranulin pathways*. The
8 Journal of neuroscience, 2012. **32**(33): p. 11213-11227.

9 50. Hébert, S.S., et al., *A study of small RNAs from cerebral neocortex of pathology-*
10 *verified Alzheimer's disease, dementia with lewy bodies, hippocampal sclerosis,*
11 *frontotemporal lobar dementia, and non-demented human controls*. Journal of
12 Alzheimer's disease 2013. **35**(2): p. 335-348.

13 51. Han, S.W., et al., *miR-129-5p as a biomarker for pathology and cognitive decline in*
14 *Alzheimer's disease*. Alzheimer's research & therapy,, 2024. **16**(1): p. 5.

15 52. Patrick, E., et al., *Dissecting the role of non-coding RNAs in the accumulation of*
16 *amyloid and tau neuropathologies in Alzheimer's disease*. . Molecular
17 neurodegeneration, 2017. **12**(1): p. 51.

18 53. Rajman, M. and G. Schratt, *MicroRNAs in neural development: from master*
19 *regulators to fine-tuners*. Development, 2017. **44**(13): p. 2310-2322.

20 54. Patil, A.H., et al., *A curated human cellular microRNAome based on 196 primary cell*
21 *types*. GigaScience, 2022. **11**: p. giac083.

22 55. Valori, C.F., et al., *Astrocytes: Dissecting Their Diverse Roles in Amyotrophic Lateral*
23 *Sclerosis and Frontotemporal Dementia*. . Cells, 2023. **12**(1): p. 1450.

24 56. Schneider, R., et al., *Downregulation of exosomal miR-204-5p and miR-632 as a*
25 *biomarker for FTD: a GENFI study*. . J Neurol Neurosurg Psychiatry, 2018. **89**(8): p.
26 851-858.

27 57. Tan, Y.J., et al., *Altered Cerebrospinal Fluid Exosomal microRNA Levels in Young-*
28 *Onset Alzheimer's Disease and Frontotemporal Dementia*. . Journal of Alzheimer's
29 disease reports, 2021. **5**(1): p. 805-813.

30 58. Pounders, J., et al., *MicroRNA expression within neuronal-derived small extracellular*
31 *vesicles in frontotemporal degeneration*. Medicine, 2022. **101**(40): p. e30854.

32 59. Jawaid, A., et al., *Memory Decline and Its Reversal in Aging and Neurodegeneration*
33 *Involve miR-183/96/182 Biogenesis*. Molecular neurobiology, 2019. **55**(5): p. 3451–
34 3462.

35 60. Onyike, C.U. and J. Diehl-Schmid, *The epidemiology of frontotemporal dementia*. .
36 International review of psychiatry (Abingdon, England), 2013. **25**(2): p. 130-137.

37 61. Kaurani, L., et al., *Regulation of Zbp1 by miR-99b-5p in microglia controls the*
38 *development of schizophrenia-like symptoms in mice*. The EMBO journal,, 2024.
39 **Advance online publication**: p. 10.1038/s44318-024-00067-8.

40 62. Ibrahim, P., et al., *Profiling Small RNA from Brain Extracellular Vesicles in*
41 *Individuals with Depression*. . The international journal of
42 *neuropsychopharmacology*,, 2024. **vance online publication**.

43 63. Wu, C., et al., *MiR-129-5p promotes docetaxel resistance in prostate cancer by down-*
44 *regulating CAMK2N1 expression*. Journal of cellular and molecular medicine, 2019.
45 **24**(3): p. 2098-2108.

46 64. Boicean, A., et al., *Has-miR-129-5p's Involvement in Different Disorders, from*
47 *Digestive Cancer to Neurodegenerative Diseases*. . Biomedicines, 2023. **11**(7): p.
48 2058.

1 65. Patani, R., G.E. Hardingham, and S.A. Liddelow, *Functional roles of reactive*
2 *astrocytes in neuroinflammation and neurodegeneration.* . *Nature reviews.*
3 *Neurology*, 2023. **19**(7): p. 395-409.

4 66. De Strooper, B. and E. Karan, *The Cellular Phase of Alzheimer's Disease*. *Cell and*
5 *Tissue Research*, 2016. **164**(4): p. 603-615.

6 67. Arranz, A.M. and B. De Strooper, *The role of astroglia in Alzheimer's disease:*
7 *pathophysiology and clinical implications*. *Lancet Neurol.* , 2019. **18**(4): p. 406-414.

8 68. Shah, D., et al., *Astrocyte calcium dysfunction causes early network hyperactivity in*
9 *Alzheimer's disease*. . *Cell reports*, 2022. **40**(8): p. 111280.

10 69. Huang, X., et al., *miR-129-5p alleviates LPS-induced acute kidney injury via*
11 *targeting HMGB1/TLRs/NF-kappaB pathway*. *International immunopharmacology*,
12 2020. **89**(A): p. 107016.

13 70. Li, X., et al., *CircASH2L facilitates tumor-like biologic behaviours and inflammation*
14 *of fibroblast-like synoviocytes via miR-129-5p/HIPK2 axis in rheumatoid arthritis*. .
15 *Journal of orthopaedic surgery and research*, 2021. **16**(1): p. 302.

16 71. Li, X.Q., et al., *Elevated microRNA-129-5p level ameliorates neuroinflammation and*
17 *blood-spinal cord barrier damage after ischemia-reperfusion by inhibiting HMGB1*
18 *and the TLR3-cytokine pathway*. . *Journal of neuroinflammation*, 2017. **14**(1): p. 205.

19 72. Allen, N.J., & Eroglu, C. (2017). *Cell Biology of Astrocyte-Synapse Interactions*.
20 *Neuron*, 96(3), 697-708., *Cell Biology of Astrocyte-Synapse Interactions*. . *Neuron*,
21 2017. **96**(3): p. 697-708.

22 73. Rajman, M., et al., *A microRNA-129-5p/Rbfox crosstalk coordinates homeostatic*
23 *downscaling of excitatory synapses*. *EMBO J*, 2017. **36**(12): p. 1770-1787.

24 74. Rao, P., E. Benito, and A. Fischer, *MicroRNAs as biomarkers for CNS disease*. *Front*
25 *Mol Neurosci.* , 2013. **26**(6): p. eCollection 2013.

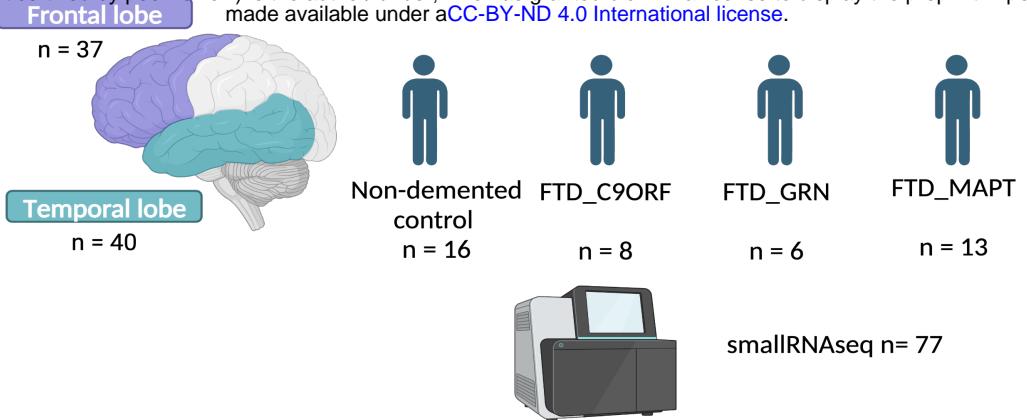
26 75. Rupaimoole, R. and F. Slack, J. , *MicroRNA therapeutics: towards a new era for the*
27 *management of cancer and other diseases*. . *Nat Rev Drug Discov.* , 2017. **16**(3): p.
28 203-222.

29 76. Piscopo, P., et al., *Circulating miR-127-3p as a Potential Biomarker for Differential*
30 *Diagnosis in Frontotemporal Dementia*. . *Journal of Alzheimer's disease*, 2018. **65**(2):
31 p. 455-464.

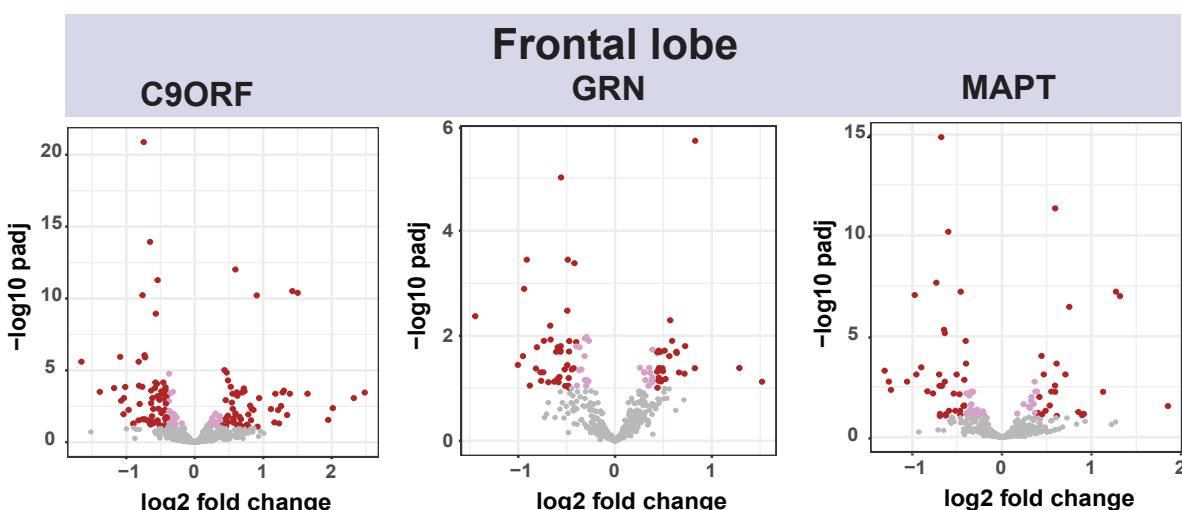
32 77. Grasso, M., et al., *Plasma microRNA profiling distinguishes patients with*
33 *frontotemporal dementia from healthy subjects*. . *Neurobiology of aging*, 2019.
34 **84**(240): p. e1-240.e12.

35 78. Fenoglio, C., et al., *Circulating Non-Coding RNA Levels Are Altered in Autosomal*
36 *Dominant Frontotemporal Dementia*. *International journal of molecular sciences*,
37 2022. **23**(23): p. 14723.

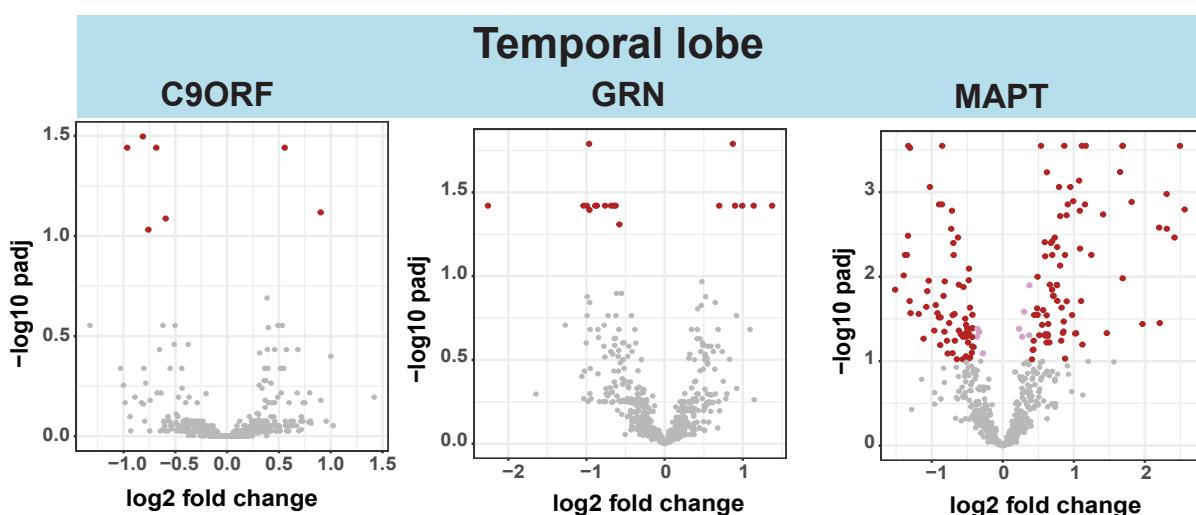
38 79. Magen, I., et al., *microRNA-based predictor for diagnosis of frontotemporal*
39 *dementia*. . *Neuropathol Appl Neurobiol.* , 2023. **49**(4): p. e12916.

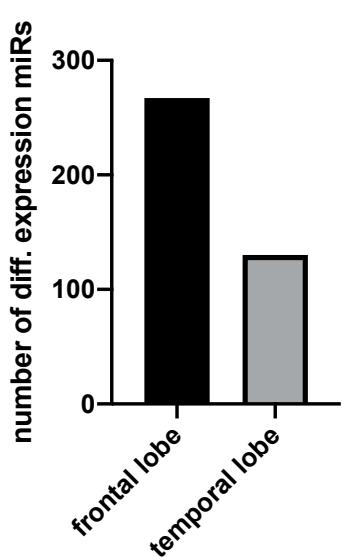

40 80. Goldberg, M., et al., *Exercise as a model to identify microRNAs linked to human*
41 *cognition: A role for microRNA-409 and microRNA-501*. *Translational Psychiatry*,
42 2021. **11**(1): p. 514.

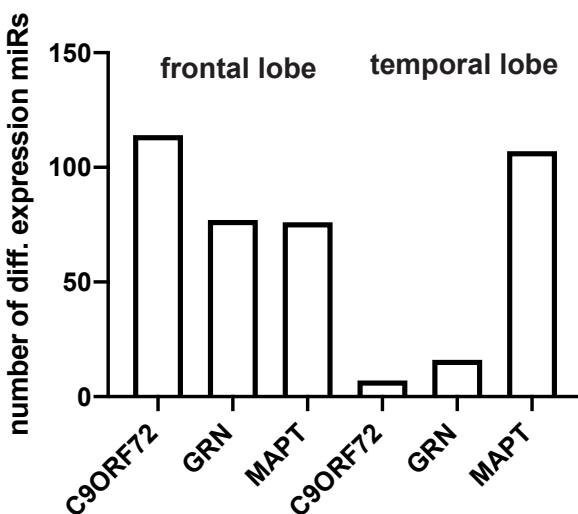
43 81. Li, Z., et al., *Physical Exercise Ameliorates the Cognitive Function and Attenuates the*
44 *Neuroinflammation of Alzheimer's Disease via miR-129-5p*. *Dementia and geriatric*
45 *cognitive disorders*, 2020. **49**(2): p. 163-169.


46 82. Pinto-Hernandez, P., et al., *Modulation of microRNAs through Lifestyle Changes in*
47 *Alzheimer's Disease*. *Nutrients*, 2023. **15**(17): p. 3688.

48 83. Chen, J., et al., *Aerobic exercise suppresses cognitive injury in patients with*
49 *Alzheimer's disease by regulating long non-coding RNA TUG1*. *Neuroscience letters*,
50 2024. **826**: p. 137732.

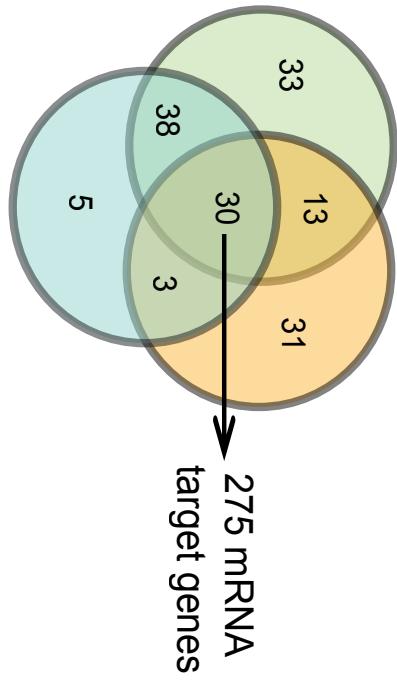

A


B


C

D

E



A

C9ORF72

GRN

Frontal lobe

MAPT

C

Frontal lobe

Programmed cell death
Apoptotic process
Negative regulation of cell death
Neurogenesis
Immune system development
Neuron death

Covalent chromatin modification
Regulation of cytokine production
Regulation of gliogenesis
Histone phosphorylation
Astrocyte differentiation
Glial cell development

Interleukin-6-mediated signaling pathway
Long-term neuronal synaptic plasticity
Regulation of histone methylation

Temporal lobe

Astrocyte differentiation

Positive regulation of interleukin-6 production

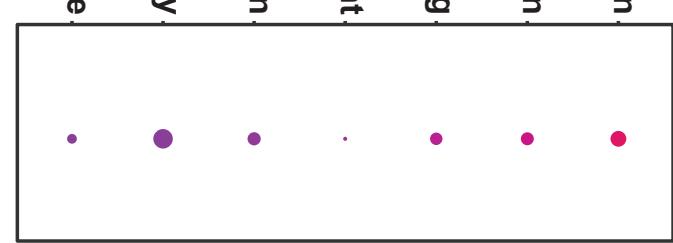
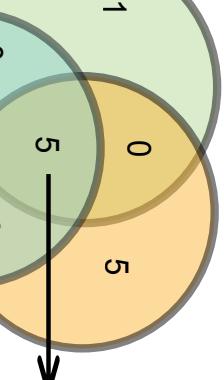
Positive regulation of NIK/NF- κ B signaling

Glial cell development

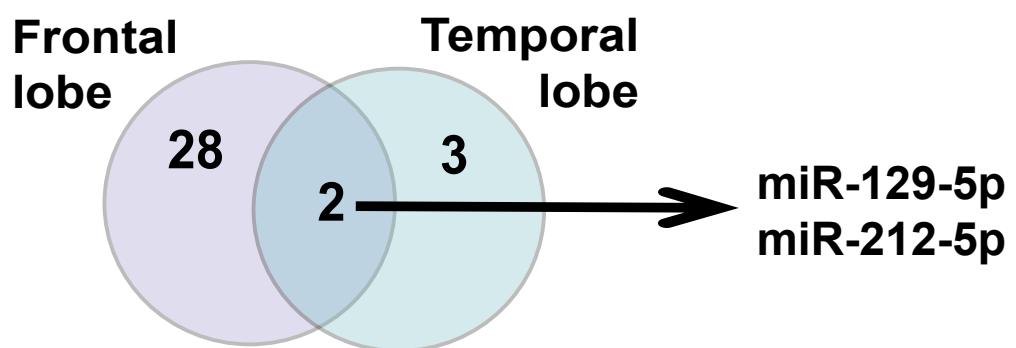
Regulation of interleukin-12 production

Histone kinase activity

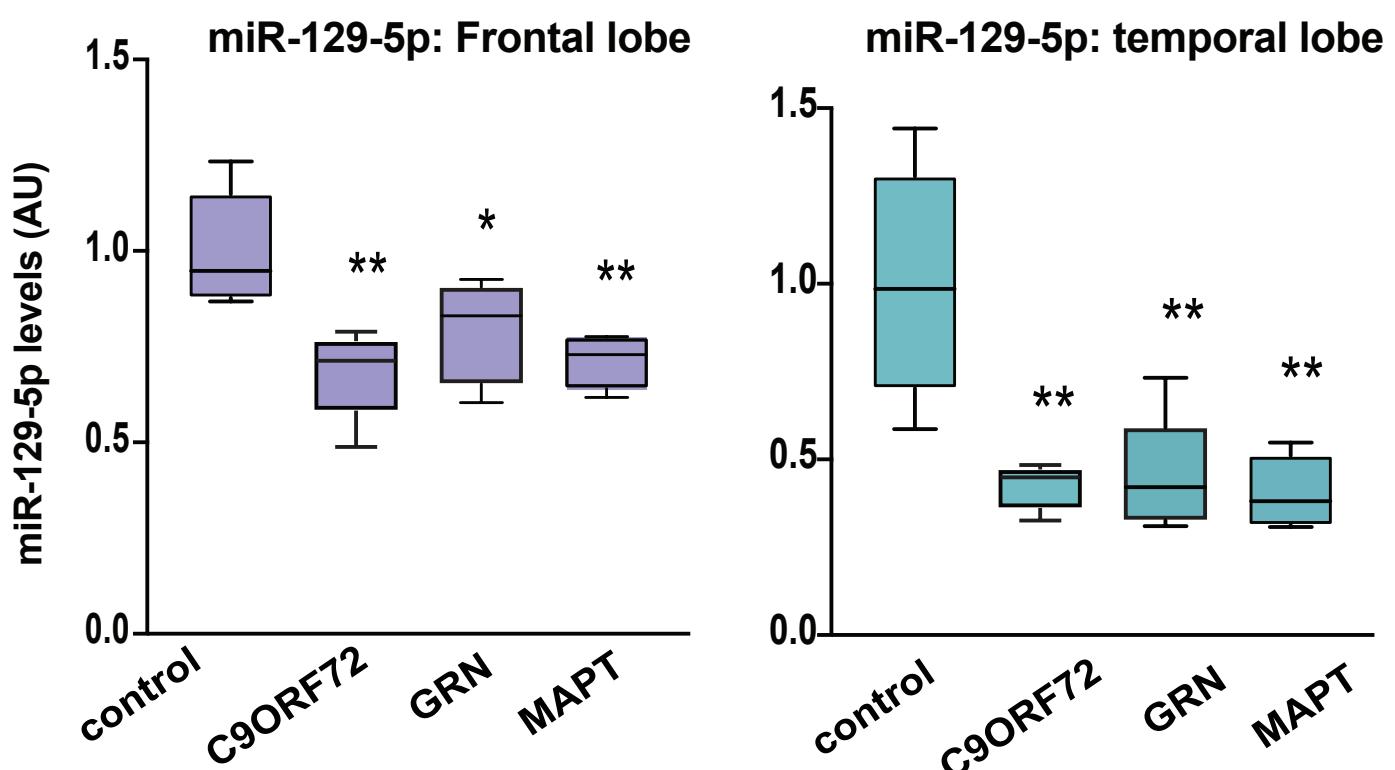
Neuroinflammatory response

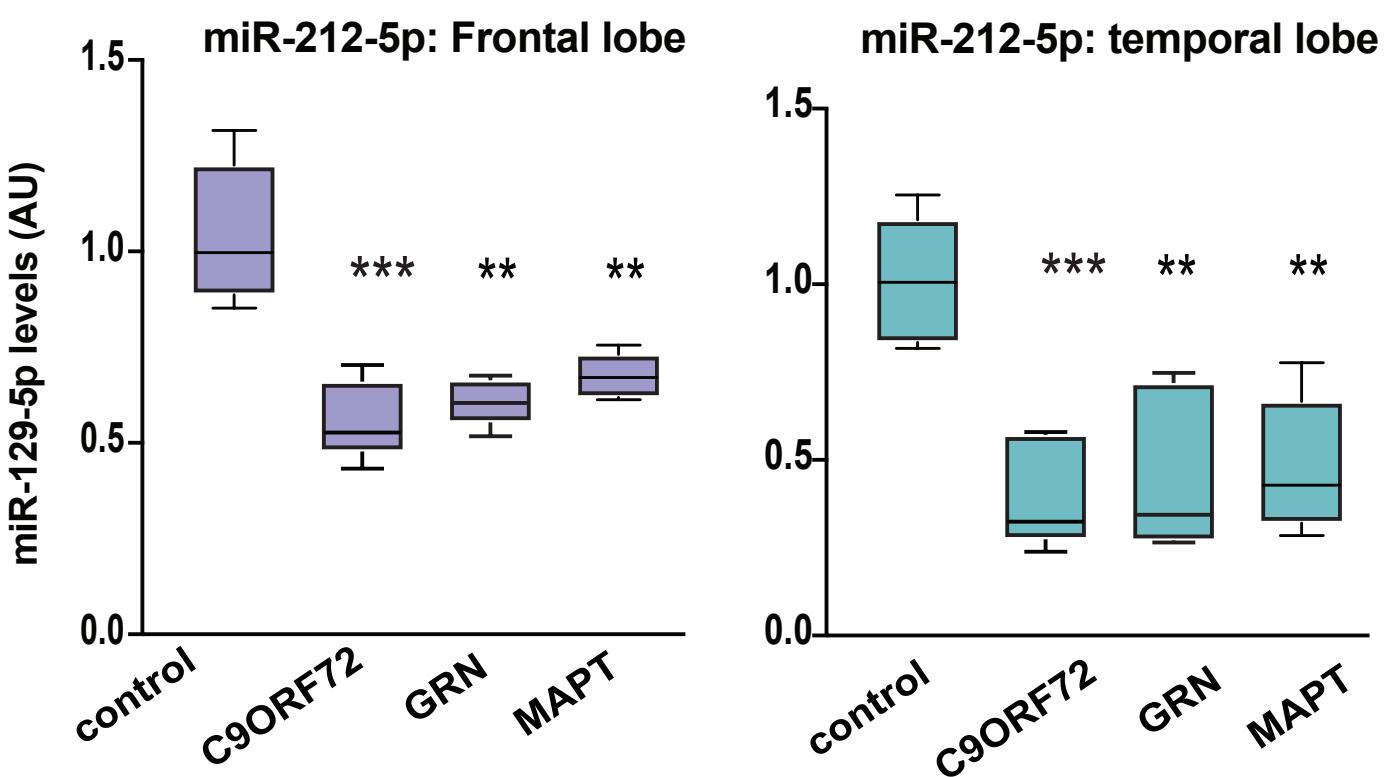


MAPT

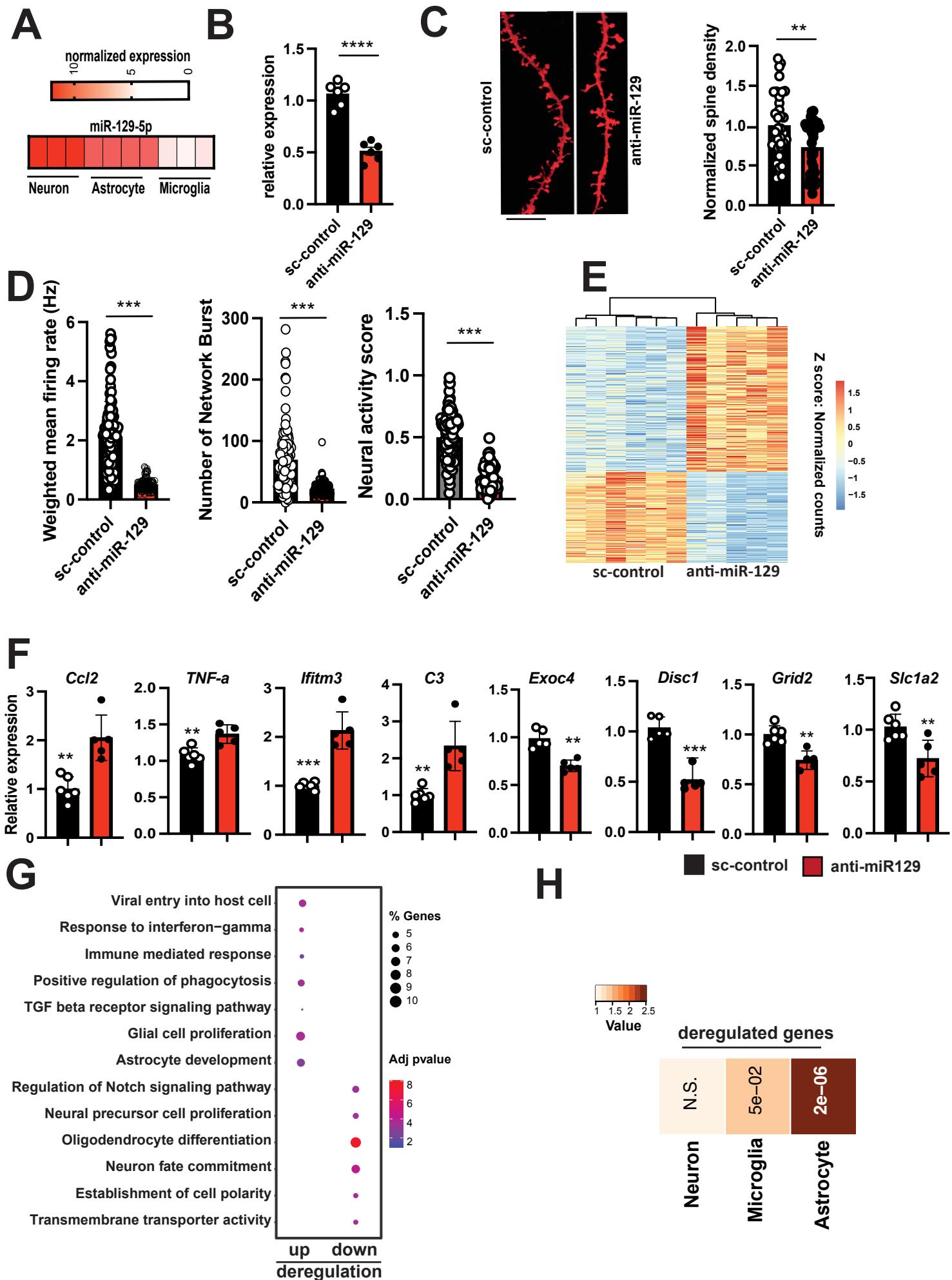
C9ORF72


GRN

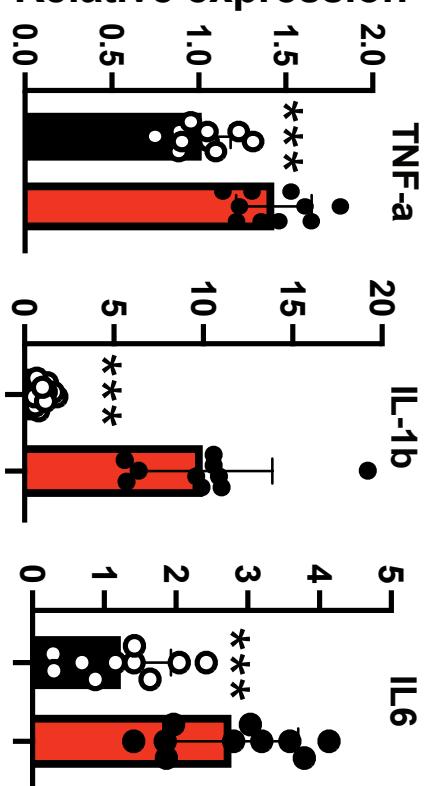
Temporal lobe


88 mRNA target genes

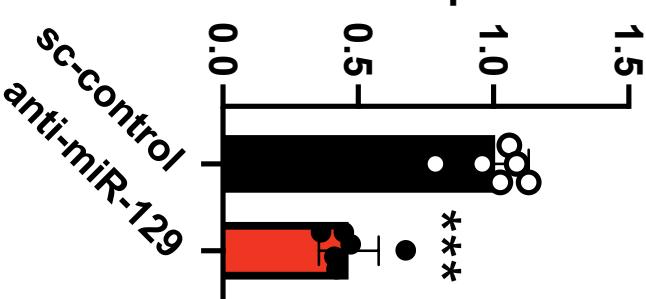

A



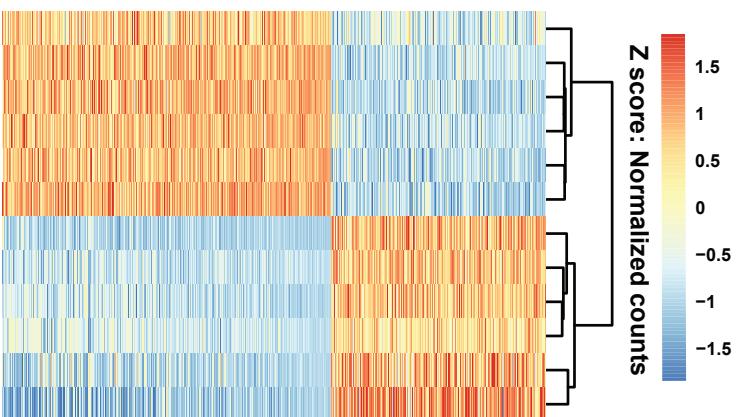
B



C

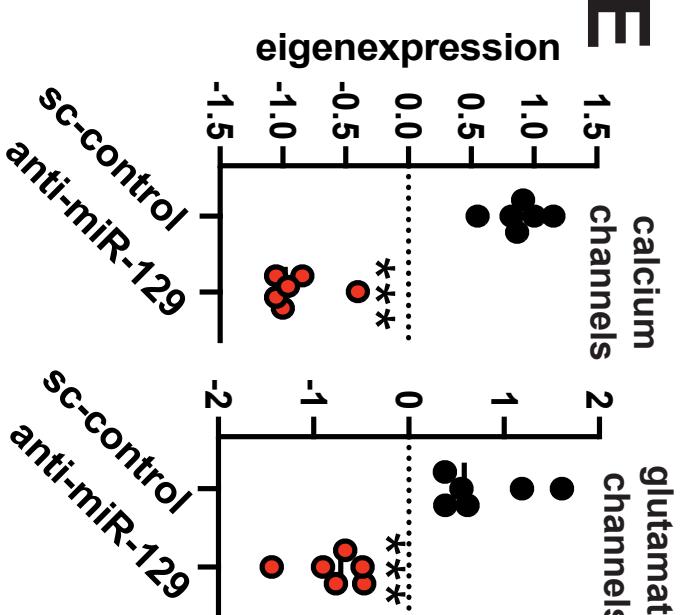


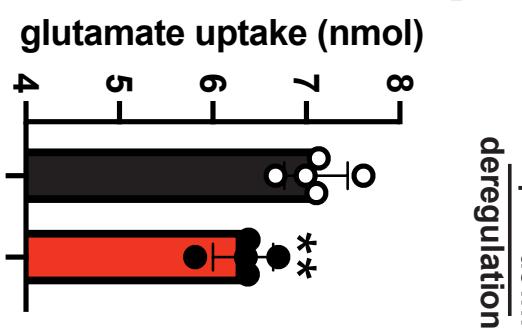
Relative expression



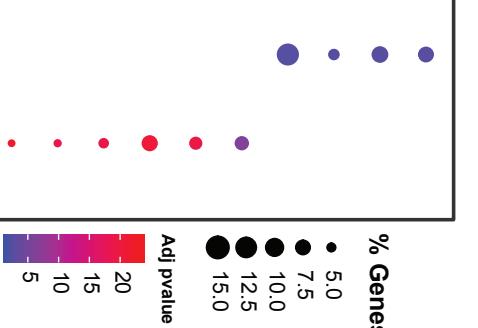
■ sc-control
■ anti-miR-129

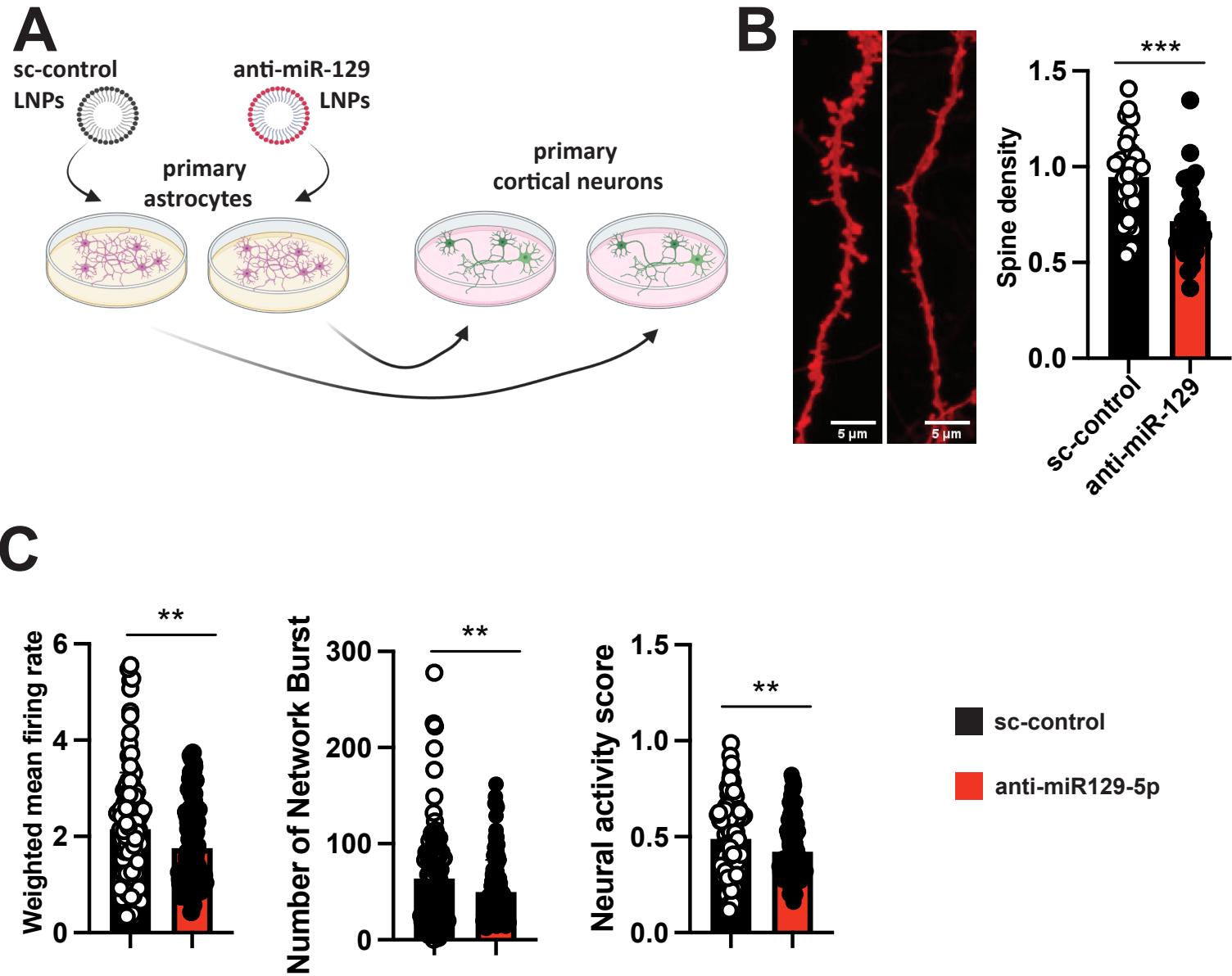
Relative expression

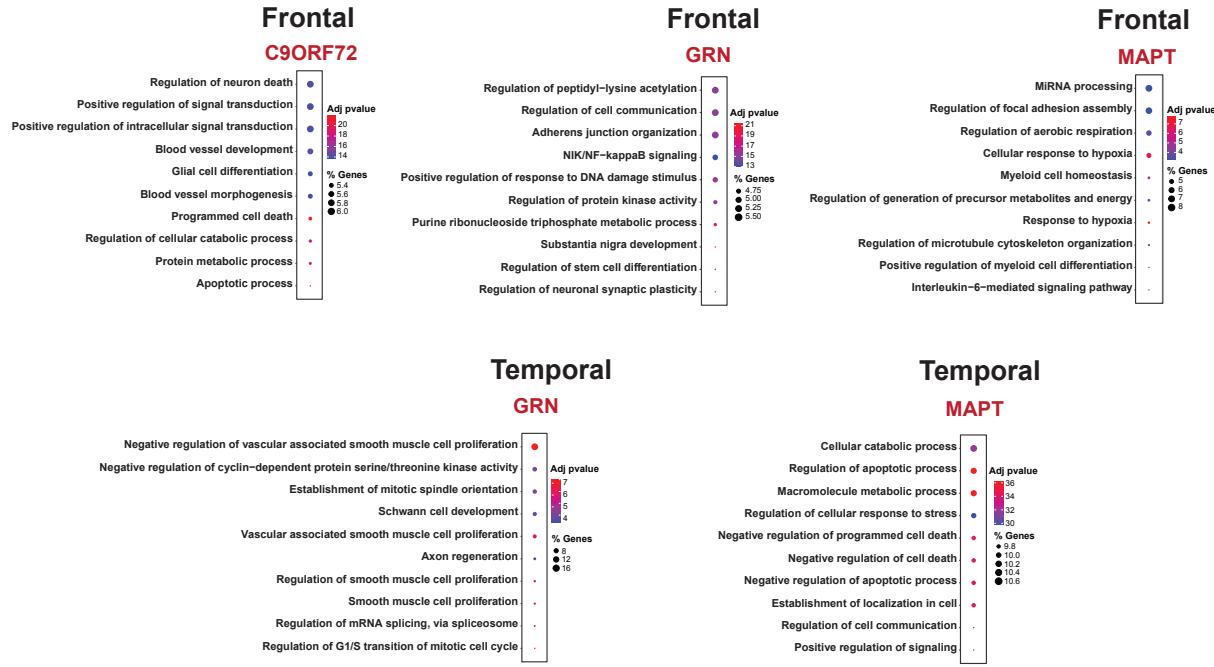

B


C

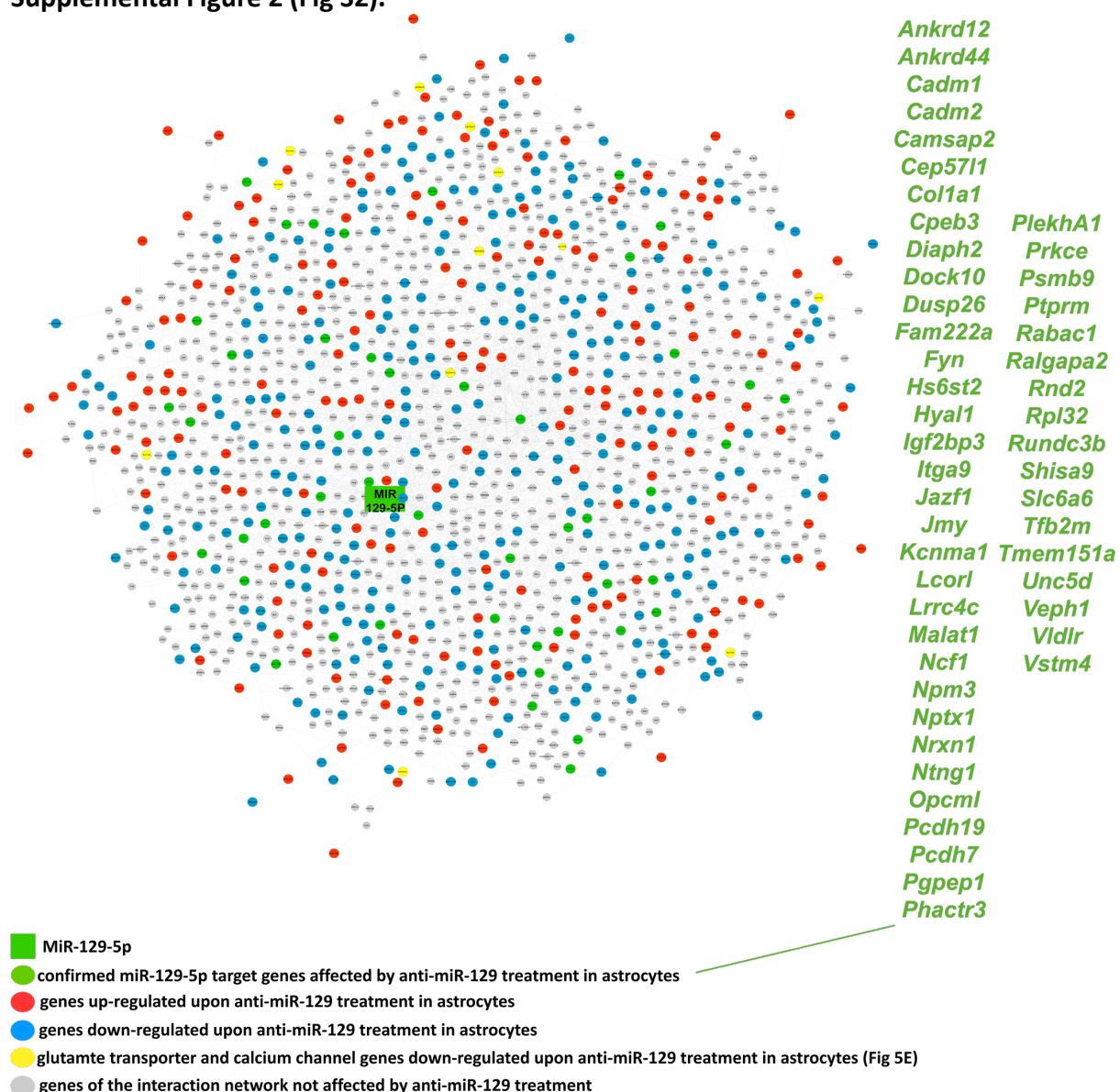
E




F


up
deregulation
down

% Genes



Supplemental Figure 1 (Fig S1).

Fig. S1. Pathways Affected by miRNAs Specifically Deregulated in Response to either C9ORF72, GRN or MAPT mutations and the frontal or temporal lobe. The graphs display the top 10 enriched GO terms (Biological processes) identified based on brain-expressed target transcripts of miRNAs deregulated exclusively in the depicted condition. It's important to note that no GO term analysis was conducted for the temporal lobe in the case of C9ORF72 carriers, as only one miRNA was deregulated in this condition

Supplemental Figure 2 (Fig S2).

Fig. S2. miR-129-5p interaction network. We identified 50 confirmed miR-129-5p target genes (shown in green) among the transcripts deregulated in astrocytes upon miR-129-5p knockdown. Using these data, we built a gene expression interaction network that could explain approximately 80% of the transcripts detected as differentially expressed in the corresponding RNA-seq data. In yellow, we highlight the genes that were downregulated upon miR-129-5p knockdown and encode glutamate transporters and calcium channels, confirmed via qPCR (see Fig. 5E).