

1 **Arabidopsis WALL-ASSOCIATED KINASES are not required for**
2 **oligogalacturonide-induced signaling and immunity**

3
4 Laura Herold¹, Chenlei Hua², Bruce Kohorn³, Thorsten Nürnberg², Thomas DeFalco^{1,5} &
5 Cyril Zipfel^{1,4}

6
7 ¹Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of
8 Zürich, 8008 Zürich, Switzerland.

9 ²Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.

10 ³Department of Biology, Bowdoin College, Brunswick, Maine, United States of America.

11 ⁴The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH
12 Norwich, United Kingdom.

13 ⁵Present address: Department of Biology, Western University, London, Ontario, Canada.

14

15

16 **Abstract**

17 Carbohydrate-based cell wall signaling impacts plant growth, development, and stress
18 responses; however, how cell wall signals are perceived and transduced remains poorly
19 understood. Several cell wall breakdown products have been described as typical damage-
20 associated molecular patterns (DAMPs) that activate plant immunity, including pectin-derived
21 oligogalacturonides (OGs). Receptor kinases (RKs) of the WALL-ASSOCIATED KINASE
22 (WAK) family have been shown to bind pectin and OGs, and were previously proposed as OG
23 receptors. However, unambiguous genetic evidence for the role of WAKs in OG responses is
24 lacking. Here, we investigated the role of *Arabidopsis* WAKs in OG perception using a novel
25 deletion mutant of the clustered WAK family. Using a combination of immune assays for early
26 and late pattern-triggered immunity (PTI), we show that WAKs are dispensable for OG-induced
27 signaling and immunity, indicating that they are not *bona fide* OG receptors.

28

29

30 **Introduction**

31 Plants are exposed to myriad potential pests and pathogens, against which they have evolved
32 sophisticated defense mechanisms. The plant cell wall acts as the initial physical barrier
33 against invasion, and alterations in this structure intricately interact with the plant immune
34 system (Dora *et al.*, 2022; Wolf, 2022).

35 The plant cell wall is composed of cellulose, hemicellulose, pectin, polyphenolic lignin and a
36 series of structural and enzymatically active proteins (Wolf, 2022; Cosgrove, 2023). Cell wall
37 polysaccharides serve as extracellular sources for the generation of damage-associated

38 molecular patterns (DAMPs) that are thought to be released upon mechanical damage or
39 pathogen infection (Pontiggia *et al.*, 2020). Several such carbohydrate DAMPs have been
40 previously described, including cellulose-derived cellobiose and cellooligosaccharides, mixed linked
41 glucans, and pectin-derived oligogalacturonides (OGs) (Bacete *et al.*, 2018; Oelmüller *et al.*,
42 2023). OGs are generated from demethylesterified pectins and represent the best studied
43 pectin-derived cell wall breakdown products. OGs with a degree of polymerization (DP) 10-15
44 (OG₁₀₋₁₅) have been shown to elicit canonical PTI signaling and confer plant protection against
45 a range of pathogens (Bishop *et al.*, 1981; Hahn *et al.*, 1981; Ridley *et al.*, 2001; De Lorenzo
46 *et al.*, 2011). More recently, shorter OGs such as trimers (GalA₃/OG₃) and tetramers have also
47 been shown to trigger immune responses and defense (Davidsson *et al.*, 2017; Liu *et al.*, 2023;
48 Xiao *et al.*, 2024).

49 In the model plant *Arabidopsis thaliana* (hereafter, Arabidopsis), demethylated pectin was
50 shown to directly bind the extracellular domain (ECD) of several WALL-ASSOCIATED
51 KINASES (WAKs) (Decreux and Messiaen, 2005; Decreux *et al.*, 2006; Kohorn *et al.*, 2009;
52 Liu *et al.*, 2023). WAKs belong to a large family of receptor kinases (RKs) comprising 5 WAKs
53 and at least 21 WAK-like (WAKLs) (Verica and He, 2002) that are characterized by epidermal-
54 growth factor (EGF)-like domains and a galacturonan-binding domain in their ECD (He *et al.*,
55 1996; Verica and He, 2002; Kohorn *et al.*, 2012; Stephens *et al.*, 2022). WAK1 was the first
56 identified RK physically linking the plasma membrane (PM) to the cell wall, as isolation from
57 fractions of proteolytically digested cell walls indicated a strong interaction of WAK1 with the
58 cell wall and native pectin *in vivo* (He *et al.*, 1996; Anderson *et al.*, 2001; Wagner and Kohorn,
59 2001). Further experiments suggested WAKs and their association with cell wall pectin are
60 involved in cell expansion (Kohorn *et al.*, 2006), and, potentially the response to pathogens
61 (He *et al.*, 1998; Kohorn *et al.*, 2012). Later, WAK1 was also shown to bind pectin and OG₉₋₁₅
62 with a high affinity *in vitro* (Decreux and Messiaen, 2005; Decreux *et al.*, 2006; Kohorn *et al.*,
63 2009), with the WAK1-ECD preferentially interacting with de-esterified pectin through a binding
64 site formed by cationic amino acids (Decreux and Messiaen, 2005; Decreux *et al.*, 2006).
65 A chimeric approach using the ECD of WAK1 fused to the intracellular domain of the leucine-
66 rich repeat RK ELONGATION FACTOR-TU RECEPTOR (EFR) served as evidence for a
67 proposed role for WAK1 in OG perception (Brutus *et al.*, 2010). Although OG treatment of
68 WAK1-EFR chimera-expressing plants induced an EFR cytosolic domain-mediated defense
69 response, critical genetic evidence that WAKs are *bona fide* OG receptors is still lacking. Direct
70 genetics of WAKs was previously hindered by the genetic clustering of the WAK family in
71 Arabidopsis, the assumption that *wak1* null mutants were lethal, and expected functional
72 redundancy among the five members of the WAK family (He *et al.*, 1999; Brutus *et al.*, 2010;
73 Kohorn and Kohorn, 2012). Recently, however, a CRISPR deletion mutant for most of the
74 chromosomal cluster carrying the five Arabidopsis WAK genes, *wakΔ*, was generated. This

75 mutant was shown to be less sensitive to the bacterial flagellin-derived epitope flg22, chitin
76 and OGs in terms of reactive oxygen species (ROS) production (Kohorn *et al.*, 2021);
77 suggesting that WAKs may generally regulate immune receptor complexes, rather than
78 function specifically as OG receptors (Wang *et al.*, 2020; Zhang *et al.*, 2020). WAKs were also
79 recently shown to be genetically required for GalA₃-induced expression of the salicylic acid
80 (SA) marker gene *PATHOGENESIS-RELATED 1 (PR1)*(Liu *et al.*, 2023).
81 In this work, we directly investigated the genetic involvement of WAKs in OG-induced signaling
82 in Arabidopsis. We generated a novel deletion of the entire *WAK1-5* region (*wakΔ2*) and tested
83 this mutant for OG-induced responses. Surprisingly, we found that *wakΔ2* retained full
84 responsiveness to OGs, as measured by both early and late outputs of immune signaling. In
85 addition, *wakΔ2* plants were not affected in OG-induced resistance against both bacterial and
86 fungal pathogens. Furthermore, we tested the genetic involvement of WAKs in response to
87 flg22 and could observe that flg22-induced responses are not affected in the *wakΔ2* mutant.
88 Together, our data indicate that WAKs are not genetically required for OG perception and
89 ensuing immune signaling in Arabidopsis.

90
91

92 **Results**

93 **Generation of the *wakΔ2* mutant**

94 The Arabidopsis genome has five *WAK* genes located in cluster on chromosome 1 (FIGURE 1A). Recently, a partial deletion mutant was published, *wakΔ*, which lacks most of the cluster; however, this mutant still potentially expresses a fusion protein of the N-terminal region of WAK4 and the C-terminal region of WAK2 (FIGURE 1A) (Kohorn *et al.*, 2021). While the *wakΔ* mutant showed partially impaired flg22, chitin and OG responsiveness, it suffered from the presence of this potential WAK4-WAK2 fusion protein. Therefore, to explore if WAKs are genetically required for OG-induced responses, we generated a novel mutant using CRISPR/Cas9 that has a 23-kb deletion (*wakΔ2*), in which all *WAK* genes are absent (**Error! Reference source not found.**A-D). Lack of *WAK1-5* expression in *wakΔ2* seedlings was confirmed using RT-qPCR (

104 FIGURE 1D). In agreement with the previously published *WAK* deletion mutants (Kohorn *et al.*, 2021; Liu *et al.*, 2023), *wakΔ2* displayed no obvious growth phenotype when grown on soil (

107 FIGURE 1E).

108

109 **OG-induced immune signaling does not require the WAK family**

110 Given that WAKs are proposed as receptors for OGs (Brutus *et al.*, 2010), we investigated
111 their genetic requirement for OG-induced immune responses using *wakΔ2*. Previous studies
112 have extensively studied the immune responses in Arabidopsis triggered by exogenously
113 applied OG₁₀₋₁₅ including extracellular ROS production, mitogen-activated protein kinase

114 (MAPK) activation, marker gene expression, ethylene production, callose deposition, seedling
115 growth inhibition (SGI), and resistance against pathogens (Denoux *et al.*, 2008; Davidsson *et*
116 *al.*, 2017; Gravino *et al.*, 2017; Bjornson *et al.*, 2021). Full loss-of-function mutants of a *bona*
117 *fide* OG receptor should not be able to induce OG-induced responses, as shown for other
118 ligand-perceiving receptors (Gómez-Gómez and Boller, 2000; Chinchilla *et al.*, 2006; Zipfel *et*
119 *al.*, 2006; Miya *et al.*, 2007; Yamaguchi *et al.*, 2010; Cao *et al.*, 2014; Ranf *et al.*, 2015; Rhodes
120 *et al.*, 2021).

121 To investigate if early immune signaling induced by OGs is dependent on WAKs, we measured
122 extracellular ROS production in leaves of 3- to 4-week-old *Arabidopsis* plants. Surprisingly and
123 in contrast to previous results (Kohorn *et al.*, 2021), OG₁₀₋₁₅-induced ROS production was
124 unaltered in *wakΔ2* in comparison to Col-0 grown in our conditions under short day (

125 FIGURE 2A,B). In addition to ROS, OGs induce rapid and transient MAPK phosphorylation
126 (Gravino *et al.*, 2017). To determine if OG-induced MAPK activation is affected in the *wakΔ2*,
127 MAPK phosphorylation was determined in *Arabidopsis* seedlings 5 and 15 min after elicitor
128 treatment by western blot analysis using a commercial phosphorylation site-specific antibody.
129 As with ROS production, OG₁₀₋₁₅-triggered MAPK phosphorylation was unaltered in *wakΔ2*
130 mutants (

131 FIGURE 2C). In addition to OG₁₀₋₁₅, OG₃ (GalA₃) was previously shown to trigger MAPK
132 phosphorylation and WAKs have been shown to be required for OG₃-induced *PR1* expression
133 (Davidsson *et al.*, 2017; Liu *et al.*, 2023). We therefore additionally investigated if OG₃-induced
134 MAPK phosphorylation is dependent on WAKs. OG₃-induced MAPK phosphorylation is
135 comparatively weak but was still induced in *wakΔ2* mutant plants (

136 FIGURE 2D). OGs were also previously shown to induce synthesis of ethylene in
137 *Arabidopsis* seedlings (Ferrari *et al.*, 2008; Brutus *et al.*, 2010; Gravino *et al.*, 2015). In line
138 with other early induced PTI pathways, OG₁₀₋₁₅-induced ethylene production was not
139 compromised in *wakΔ2* mutants (

140 FIGURE 2E). Together, these results indicate that WAK1-5 are not required for OG-induced
141 early immune outputs and thus the signaling initiation of OG-induced responses.

142 Aside from rapid signaling, PTI additionally involves longer-term responses such as callose
143 deposition (Beffa *et al.*, 1996; Luna *et al.*, 2011; Wang *et al.*, 2021). To investigate the
144 requirement of WAKs at later stages of OG-induced responses, OG₁₀₋₁₅-induced callose
145 deposition was measured in leaf discs of Col-0 and *wakΔ2* twenty-four hours after infiltration
146 of either water or 100 µg/mL OG₁₀₋₁₅. OG₁₀₋₁₅-induced callose deposition in both Col-0 and
147 *wakΔ2* (

148 FIGURE 3 3A,B). As is true of many elicitors, both OG₃ and long OGs can inhibit plant growth
149 (Davidsson *et al.*, 2017). *Arabidopsis* seedlings grown in the presence of OG₁₀₋₁₅ showed a
150 significant growth inhibition in comparison to mock-treated seedlings; however, no difference
151 could be observed between Col-0 and *wakΔ2* (

152 FIGURE 3 3C). Another long-term measurement of plant immune signaling is the production
153 of SA and ensuing signaling, which can be inferred through the accumulation of the PR1
154 marker protein by immunoblotting (Tsuda *et al.*, 2009; Zhang and Li, 2019; Bender *et al.*,

155 2021). OG₁₀₋₁₅ and flg22 induced robust PR1 accumulation twenty-four hours after elicitor
156 infiltration into leaves of Col-0 plants. Both flg22 and OG₁₀₋₁₅ -induced PR1 accumulation was
157 not affected in *wakΔ2* (

158 FIGURE 3 3D). OG₃ induced very weak PR1 accumulation; however, no difference in PR1
159 accumulation could be detected between Col-0 and *wakΔ2* (

160 FIGURE 3 3D).

161 Collectively, these results indicate that WAKs are not required for OG-induced immune
162 signaling.

163

164 **WAKs are not required for OG-induced immunity**

165 OGs have been shown to induce protection against the necrotrophic fungus *Botrytis cinerea*,
166 the necrotrophic bacterium *Pectobacterium carotovorum* and the hemibiotrophic bacterium
167 *Pseudomonas syringae* (Davidsson *et al.*, 2017; Gravino *et al.*, 2017; Howlader *et al.*, 2020).
168 To investigate if WAKs are required for OG-induced immunity, we drop-inoculated *Arabidopsis*
169 Col-0 and *wakΔ2* leaves with *B. cinerea* conidia 24 h after infiltration with water or 100 µg/mL
170 OG₁₀₋₁₅. Disease lesions on leaves were measured 48 h post inoculation. Plants pre-treated
171 with water showed significantly larger lesions sizes in both Col-0 and *wakΔ2* than plants that
172 were pretreated with OG₁₀₋₁₅ (

173 FIGURE 4 4A,B). OG-induced protection against *B. cinerea* was not affected in *wakΔ2* plants
174 in comparison to wild-type plants. OG induced protection against *P. syringae* was similarly
175 unaltered in *wakΔ2* in comparison to Col-0 (

176 FIGURE 4 4C). Overall, these results indicate that WAKs are not required for OG-induced
177 immunity against these necrotrophic or hemi-biotrophic pathogens.

178

179 **WAKs do not play a significant role in immune signaling triggered by other elicitors**

180 Aside from their role as potential OG receptors, WAKs were recently reported to function in
181 immune signaling induced by bacterial flagellin in tomato and fungal chitin in cotton (Wang *et*
182 *al.*, 2020; Zhang *et al.*, 2020). While in tomato only some flagellin-induced responses involved
183 WAKs, e.g. callose deposition and anti-bacterial immunity, GhWAK7A was broadly required for
184 full responsiveness to fungal chitin but not to OGs in cotton (Wang *et al.*, 2020; Zhang *et al.*,
185 2020). In line with those observations, the *Arabidopsis* *wakΔ* mutant showed a reduction in
186 ROS production induced by flg22, chitin and OGs (Kohorn *et al.*, 2021). Intrigued by these
187 findings, we also tested whether flg22-induced responses are affected by the full deletion of
188 WAKs in *Arabidopsis*. In contrast to previous results, flg22-induced ROS production in leaves
189 of 3- to 4-week-old *Arabidopsis* plants were not affected in *wakΔ2* in comparison to Col-0 under
190 our conditions (

191 FIGURE 5A,B). As expected, flg22-induced ROS production was dependent on the receptor
192 FLAGELLIN-SENSING 2 (FLS2) and its co-receptor BRASSINOSTEROID-INSENSITIVE 1
193 (BRI1)-ASSOCIATED KINASE 1 (BAK1). In line with this, flg22-induced MAPK activation,

194 ethylene production and induced resistance against *P. syringae* were not reduced in *wakΔ2*
195 in comparison to Col-0 (

196 FIGURE 5C-E). These results indicate that the deletion of WAKs does not affect flg22-induced
197 responses under our growth conditions.

198 The *wakΔ2* mutant had no obvious growth phenotype when grown on soil (FIGURE 1E). The
199 only *wak*-related growth phenotype previously observed was reduced root length when
200 seedlings were grown on MS medium lacking sucrose, most pronounced on 1/6 MS (Kohorn
201 *et al.*, 2006, 2021). Therefore, to investigate if elicitor-induced root-growth inhibition is affected
202 in the *wakΔ2* mutant, both Col-0 and *wakΔ2* plants were grown in the presence of 10 nM
203 Atpep1, 100 nM flg22 or without elicitor for 5 days. Elicitor-induced root-growth inhibition was
204 similar in Col-0 and *wakΔ2* in the same extent to Col-0 for both flg22 and Atpep1 (

205 FIGURE 5F).

206

207

208 Discussion

209 PTI is achieved by the recognition of diverse elicitor molecules as ligands for plasma
210 membrane-resident pattern recognition receptors (PRRs) (DeFalco & Zipfel, 2021). Cell walls
211 are the first layer of defense against invading pathogens, many of which have evolved arsenals
212 of enzymatic and mechanical means to degrade or penetrate the cell wall (Bacete *et al.*, 2018;
213 Dora *et al.*, 2022). Thus, the integrity of the cell wall needs to be carefully monitored by sensor
214 proteins. Several RKs have been proposed as PRRs that perceive cell wall breakdown
215 products, including WAKs based on their ability to interact with pectin and its breakdown
216 products (He *et al.*, 1996; Decreux and Messiaen, 2005; Decreux *et al.*, 2006; Kohorn *et al.*,
217 2009; Brutus *et al.*, 2010). Yet, genetic evidence that WAKs function as *bona fide* OG
218 receptor(s) was missing. Here, we have used the *wakΔ2* mutant, which lacks all five members
219 of the WAK family, to demonstrate that none of the WAKs are required for responses to either
220 short or long chain demethylated OGs in Arabidopsis.

221 Previously, the galacturonan-binding domain of WAKs was shown to bind both pectins and
222 demethylesterified OG₉₋₁₅ (Decreux and Messiaen, 2005; Decreux *et al.*, 2006). Additionally,
223 chimeric WAK-EFR receptors were able to induce EFR-like responses upon OG-treatment
224 (Brutus *et al.*, 2010). While our results indicate that WAKs are not genetically required for OG-
225 induced responses, they do not contradict the ability of WAK ECDs to bind pectins or pectin
226 breakdown products. Interestingly, the ECD of the malectin-like RK FERONIA was also
227 recently reported to bind to pectin and pectin breakdown products (Feng *et al.* 2018; Tang *et*
228 *al.* 2022; Lin *et al.* 2022), suggesting that this biochemical property might be true for several
229 cell wall-anchored RKs without necessarily functioning as the true receptors for these
230 carbohydrates.

231 OG₁₀₋₁₅ were suggested to be produced during pathogen infection and to subsequently induce
232 immune signaling (Ferrari *et al.*, 2013; Xiao *et al.*, 2024). Although demethylesterified OG₁₀₋₁₅
233 are active as elicitors, recent evidence challenges their production *in planta* as most Ogs
234 produced during infection with *B. cinerea* or *Fusarium oxysporum* were acetyl- and
235 methylesterified (Voxeur *et al.*, 2019; Gámez-Arjona *et al.*, 2022). While pectic fractions of
236 various sizes and modifications show elicitor activity, the complexity of those *in planta*-
237 produced Ogs as well as the profile of crude extracts produced in the lab complicates the
238 attribution of individual OG species to the elicitor activity (Liu *et al.*, 2023). Regardless of the
239 exact nature of *in planta* OG species, WAKs have been previously proposed as the receptors
240 for demethylesterified OG₁₀₋₁₅ based on *in vitro* binding studies and chimeric approaches, and
241 we are here unable to confirm any corresponding genetic requirement for WAKs in OG₁₀₋₁₅-
242 induced signaling. Interestingly, electrostatic analysis of the WAK1 ECD predicted by AlphaFold
243 revealed a negatively charged galacturonan-binding domain at apoplastic pH, contradicting
244 the suggested binding of polyanionic de-esterified pectins (Lee and Santiago, 2023).
245 While our data demonstrate that members of the WAK family are not required for OG-induced
246 responses, it is possible that quantitative phenotype(s) are masked by persistent functional
247 redundancy. WAKs are characterized by a galacturonan-binding domain and many WAKs
248 contain one or more copies of EGF-like domains in their ECD (Verica and He, 2002; Stephens
249 *et al.*, 2022). In addition to 5 WAKs, there are at least 21 WAK-likes (WAKLs) in Arabidopsis.
250 To date, clear evidence is missing that WAKLs are also able to bind cell wall fragments
251 (Kohorn, 2016), with the exception of WAKL22/RESISTANCE TO FUSARIUM OXYSPORUM
252 1 (RFO1) and WAKL14 (Huerta *et al.*, 2023; Ma *et al.*, 2024). However, based on their
253 phylogenetic relationship, WAKLs are obvious candidates to test for further genetic
254 redundancy.
255 Aside from a role in OG perception, WAKs were recently suggested to be involved in the
256 regulation of other RK complexes during immunity, indicating that they might serve as
257 accessory RKs of PRR complexes. In tomato and cotton, WAKs interact with and positively
258 regulate PRR complexes and are required for full responsiveness to the corresponding elicitors
259 (Wang *et al.*, 2020; Zhang *et al.*, 2020). In Arabidopsis, the *wakΔ* mutant was less sensitive to
260 multiple elicitors in terms of ROS production (Kohorn *et al.*, 2021). In contrast with these
261 previous results, no quantitative reduction in OG- or flg22-induced ROS production could be
262 observed in the *wakΔ2* mutant. Although this difference is striking, it might further underline
263 the role of WAKs as accessory RKs under certain growth conditions rather than OG-perceiving
264 receptors. While WAKs appear to interact with multiple elicitor-perceiving RKs, the exact
265 mechanisms by which WAKs regulate immunity seem to differ between plant species or
266 different WAKs.

267 WAKs are found across land plants, with the WAK/WAKL family expanded in monocots (de
268 Oliveira *et al.*, 2014; Kanyuka and Rudd, 2019; Stephens *et al.*, 2022; Zhang *et al.*, 2023a;
269 Ngou *et al.*, 2024). Several *WAKs* or *WAKLs* have been identified as resistance genes and are
270 required for basal resistance to pathogens in a variety of different crop plants (Diener and
271 Ausubel, 2005; Zuo *et al.*, 2015; Hurni *et al.*, 2015; Hu *et al.*, 2017; Saintenac *et al.*, 2018; Bot
272 *et al.*, 2019; Larkan *et al.*, 2020; Li *et al.*, 2020; Stephens *et al.*, 2022; Zhang *et al.*, 2023b; Dai
273 *et al.*, 2024; Zhong *et al.*, 2024). While diverse roles and mechanisms for WAKs in plant
274 immunity have been proposed, a clear possibility is that WAKs perceive pathogen-derived
275 molecules. Indeed, *Arabidopsis* WAK3 was recently shown to be required for immune
276 responses induced by bacterial harpins (Held *et al.*, 2024) indicating that WAKs might indeed
277 perceive microbial molecules. Additionally, three WAKs have also been demonstrated to exhibit
278 a gene-for-gene interaction with specific pathogenic effectors in crops (Stephens *et al.*, 2022).
279 The WAK proteins Stb6 and Rlm9 provide resistance against *Zymoseptoria tritici* isolates
280 expressing AvrSbt6 in wheat and *Leptosphaeria maculans* expressing AvrLm5-9 in oilseed
281 rape, respectively (Brading *et al.*, 2002; Larkan *et al.*, 2016; Larkan *et al.*, 2020). While no
282 direct interaction could be detected between these fungal effectors and corresponding WAK
283 resistance proteins (Saintenac *et al.*, 2018; Larkan *et al.*, 2020), intriguingly, a direct interaction
284 has been observed between the maize WAK protein Snn1 and the *Phaeosphaeria nodorum*
285 effector protein SnTox1. Unlike most other WAKs studied thus far, Snn1 serves as susceptibility
286 factor for *P. nodorum* leading to disease in Snn1-expressing plants (Liu *et al.*, 2012; Stephens
287 *et al.*, 2022; Shi *et al.*, 2023). Maize qRgls1/WAKL^Y was also recently shown to confer
288 quantitative disease resistance against gray leaf spot caused by the fungi *Cercospora zeae-*
289 *maydis* and *C. zeina* (Zhong *et al.*, 2024). Notably, an aqueous extract of *C. zeina* hyphae and
290 spores was sufficient to induce WAKL^Y-dependent ROS production suggesting that WAKL^Y
291 perceives a fungal ligand.
292 Altogether, there is emerging evidence that WAKs may perceive diverse molecules of microbial
293 origin and orchestrate both broad-spectrum and race-specific resistance (Kanyuka and Rudd,
294 2019), which is consistent with our evidence that they do not function as *bona fide* OG
295 receptor(s) in *Arabidopsis*. However, the mechanisms by which WAKs contribute to immunity
296 and their true ligand(s) remain to be definitively characterized.

297

298

299 **Material and methods**

300

301 **Plant growth**

302 *Arabidopsis* seeds were surface-sterilized using ethanol, plated on 0.5 MS medium (1 %
303 sucrose, pH 5.8, 0.9 % phytoagar), stratified for 48 hours in the dark at 4 °C, and grown at 22

304 °C under a 16-hour photoperiod (120 $\mu\text{mol} * \text{s}^{-1} \text{m}^{-2}$ illumination). For assays in adult plants,
305 including ROS production, pathogen infection and callose deposition, seedlings were
306 transferred to soil after 7-10 days growth on plates. Plants were grown in short-day cycles (10
307 h light/14 h dark, 60 % humidity, 20 °C) for an additional 2-3 weeks. For assays with seedlings,
308 including MAPK activation, RNA extraction, seedling growth inhibition and root growth
309 inhibition, these were transferred 5 days after exposure to light to liquid MS and grown there
310 for 10 days. Mutants were generated in the *A. thaliana* Columbia (Col-0) ecotype and primers
311 for genotyping are found in SUPPLEMENTAL TABLE 1.

312

313 **CRISPR-Cas9 mutagenesis**

314 The *WAK4* and *WAK2* oligonucleotides used as templates for SgRNA-targeted sites
315 (GCTGT TTCGTTATTGTTAAATGG) 432 bp 5' to the *WAK4* ATG start codon, and
316 (GGGGAGATTGAACAC TTGCTCGG) 77 bp 5' to the *WAK2* stop codon were each cloned
317 into pSkAtu26 (Feng et al., 2013). These two expression Sg cassettes were then cloned into
318 pCambia1302 that also had a pOLE1-RFP cassette inserted into the ASN718 site by PCR
319 cloning (Shimada et al., 2010).

320 The T1, RFP⁺ (expressing linked CAS9 and sgRNAs) were screened for a deletion by PCR
321 using primers flanking the deletion, and then T2 RFP⁻ plants were screened again by PCR to
322 isolate a plant with a deletion but not expressing CAS9 or the sgRNAs. These isolates were
323 self-crossed to generate a homozygous deletion.

324

325 **RNA extraction and real-time (RT) quantitative PCR analysis**

326 Total RNA was extracted from 2-week-old liquid-grown seedlings. Total RNA was extracted
327 using TRI reagent (Sigma-Aldrich). To remove genomic DNA, samples were treated with
328 TURBO DNA-free Kit (Thermo Fisher Scientific). cDNA synthesis was performed using 1 μg of
329 DNA-free RNA sample with RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher
330 Scientific) according to the manufacturer's protocol. RT-qPCR analysis was performed using
331 diluted cDNA as template for PowerUp SYBR Green (Applied biosystems) with the primers
332 provided in SUPPLEMENTAL TABLE 1.

333

334 **MAPK activation**

335 MAPK activation was performed as previously described (Mühlenbeck et al., 2023). Five-day-
336 old seedlings were transferred into 24-well plates containing 1 mL of liquid 0.5 MS (1 %
337 sucrose). Two seedlings per well were grown there for another 10-12 days. Seedlings were
338 treated with 100 $\mu\text{g/mL}$ OG₁₀₋₁₅ (Elicityl, GAT114), 100 $\mu\text{g/mL}$ OG₃ (GalA3, Megazyme) or 1
339 μM flg22, and harvested at each time point as indicated in figure captions. Total proteins were
340 extracted using extraction buffer (50 mM Tris pH 7.5 (HCl), 150 mM NaCl, 10 % (v/v) glycerol,

341 2 mM EDTA, 1 mM homemade PPI (equivalent to Sigma-Aldrich Protease-inhibitor cocktail
342 P9599), 1 mM NaF, 1 mM sodium-orthovanadate, 2 mM sodium-molybdate, 4 mM sodium-
343 tartrate, 1 % (v/v) IGEPAL CA630, 5 mM DTT). Proteins were analyzed by SDS-PAGE and
344 immunoblotting using p44/42 MAPK antibody (Cell Signaling Technology).

345

346 **Seedling growth inhibition**

347 Seedling growth inhibition assays was performed as previously described (Abarca *et al.*, 2021).
348 Briefly, 5-day-old *Arabidopsis* seedlings were transferred to 48-well plate with one seedling per
349 well. Each well contained either 500 μ L 0.5 liquid MS with or without 200 μ g/mL OG₁₀₋₁₅ (Elicityl,
350 GAT114). After 10 days of growth in the presence of the respective elicitor, individual seedling
351 weight as assessed using an analytical balance.

352

353 **Root growth Inhibition**

354 Five-day-old seedlings were transferred from solid MS plates to 12-well plate with 6 seedling
355 per well. Each well contained 4 mL of liquid MS supplemented with mock (sterile ddH₂O), 10
356 nM Atpep1 or 100 nM flg22. After 5 days of treatment, seedlings were transferred to MS plates
357 and imaged. Root lengths were quantified with ImageJ.

358

359 **Ethylene production**

360 Four- to six-week-old *Arabidopsis* leaves were cut into 3-mm slices and floated on water
361 overnight. For each sample, three leaf slices were transferred to a 6-mL glass tube containing
362 200 μ L MES buffer (pH 5.7), followed by adding either water control or the elicitor to a final
363 concentration of 1 μ M. Vials were closed with a rubber septum and ethylene production in the
364 free air space was measured by gas chromatography (Shimadzu, GC-14A) after 3 hours of
365 incubation.

366

367 **ROS production**

368 Leaf-discs of 3- to 4-week-old plants were taken (4 mm Ø) and placed with the abaxial side
369 down into a well of a white polystyrene 96-well plate containing 100 μ L ddH₂O and recovered
370 overnight. The next day, the water was replaced by a solution containing 20 μ g/mL horseradish
371 peroxidase (HRP, sigma), luminol (17 μ g/mL) and elicitor (100 nM for flg22, 100 μ g/mL OG₁₀₋
372 ₁₅ (Elicityl, GAT114), as stated). Luminescence was immediately measured for 60 minutes
373 using a charge-coupled device camera (Photek Ltd, East Sussex UK).

374

375 **Callose deposition**

376 Callose deposition assays were performed as described previously (Mason *et al.*, 2020).
377 Briefly, four leaves of 4- to 5-week-old plants were syringe-infiltrated with either mock (ddH₂O),

378 1 μ M flg22 or 100 μ g/mL OG₁₀₋₁₅ (Elicityl, GAT114). Twenty-four hours after infiltration, leaf
379 discs were taken and collected in 24-well plates filled with 1 mL 100 % EtOH until completely
380 destained. Leaf discs were equilibrated in 1 mL 67 mM K₂HPO₄ (pH 12) for 60 min. Afterwards,
381 the tissue was stained using aniline blue (Acros Organics) staining solution (0.01 % (w/v) aniline
382 blue in 67 mM K₂HPO₄ (pH 12) for 60 min and washed in 67 mM K₂HPO₄ (pH=12) for 60
383 minutes. Stained tissue was mounted in mounting solution (80 % glycerol, 67 mM K₂HPO₄, pH
384 12) on microscope slides. Callose deposits were imaged using a Leica DM6000B and
385 quantified in ImageJ.

386

387 **PR1 protein abundance**

388 PR1 accumulation was assayed as previously described (Bender *et al.*, 2021). Briefly, three
389 leaves of 3-week-old plants were infiltrated with mock (sterile ddH₂O), 1 μ M flg22, 100 μ g/mL
390 OG₁₀₋₁₅ (Elicityl, GAT114) or 100 μ g/mL OG₃ (GalA3, Megazyme). Twenty-four hours after
391 infiltration, leaves were harvested in 1.5-mL tubes and snap-frozen in liquid nitrogen and
392 pulverized. Extraction buffer (50 mM Tris pH7.5 (HCl), 150 mM NaCl, 10 % (v/v) glycerol, 2
393 mM EDTA, 1x plant protease inhibitor cocktail) was added and protein concentration was
394 adjusted by Bradford assay. Normalized protein extracts were analyzed by SDS-PAGE (15 %)
395 and immunoblotting using PR1-antibodies (Agrisera).

396

397 **Induced resistance against *Pseudomonas syringae***

398 Two leaves of 4- to 5-week-old plants were infiltrated with 1 μ M flg22 or 100 μ g/mL OG₁₀₋₁₅
399 (Elicityl, GAT114) or mock (sterile ddH₂O). Freshly restreaked *P. syringae* pv tomato DC3000
400 was grown in liquid Kings B overnight and refreshed in a subculture the next morning for
401 additional 1-2 hours. Bacteria were infiltrated into pretreated leaves with an OD₆₀₀ of 0.0002.
402 Plants were covered for two days, after which 1 leaf disc was harvested per treated leaf (8 mm
403 Ø) and pooled per plant. Leaf discs were ground in 10 mM MgCl₂, thoroughly mixed and diluted
404 in a 1:10 series until 1:10⁻⁶. Samples were plated on LB plates. After two days of growth at 28
405 °C, colony forming units were counted. Statistics were performed on log₁₀ (CFU/cm²).

406

407 **Induced resistance against *Botrytis cinerea***

408 Four leaves of 4- to 5-week-old plants were infiltrated with 1 μ M flg22 or 100 μ g/mL OG₁₀₋₁₅
409 (Elicityl, GAT114) or mock (sterile ddH₂O) in the morning. The next day, spores of *B. cinerea*
410 BMM were collected in sterile ddH₂O and the spores were counted using a counting chamber.
411 At least 1 hour prior infection, infection solutions were prepared with a final concentration 5x10⁵
412 spores/mL in 0.5 Potato Dextrose Broth and incubated at RT. Five microliters of the *Botrytis*
413 infection solution were dropped on the adaxial site next to the middle vein. Plant solid trays
414 were filled with water, covered with a lid, and sealed with parafilm to produce high humidity.

415 After 2 days after infection at dimmed light, leaves were detached, images were taken, and
416 lesion size was measured using Image J.

417

418

419

420 **Author Contributions**

421 L.H. and C.H. performed the experiments and analyzed the data. B.K. generated the genetic
422 material. T.N., T.A.D and C.Z designed and supervised the project. L.H. wrote the first draft of
423 the manuscript. All authors contributed to the final version of the manuscript.

424

425

426 **Acknowledgments**

427 We thank all the members of the Zipfel group for fruitful discussions during the project. We
428 thank also Jiashu Chu, John Haidoulis and Jana Ordon for feedback on the manuscript. L.H.
429 was funded by a Zurich-Basel Plant Science Center-Syngenta Fellowship. B.D.K. was
430 supported by National Science Foundation grant IOS 1556057. T.N. was supported by DFG-
431 TRR356 (B5). T.A.D. was supported by a Discovery Grant from the Natural Sciences and
432 Engineering Council of Canada (NSERC RGPIN-2023-04222). C.Z. was supported by the
433 University of Zürich and the Swiss National Science Foundation grants no. 31003A_182625
434 and 310030_212382.

435

436

437

438

439

440

441

442

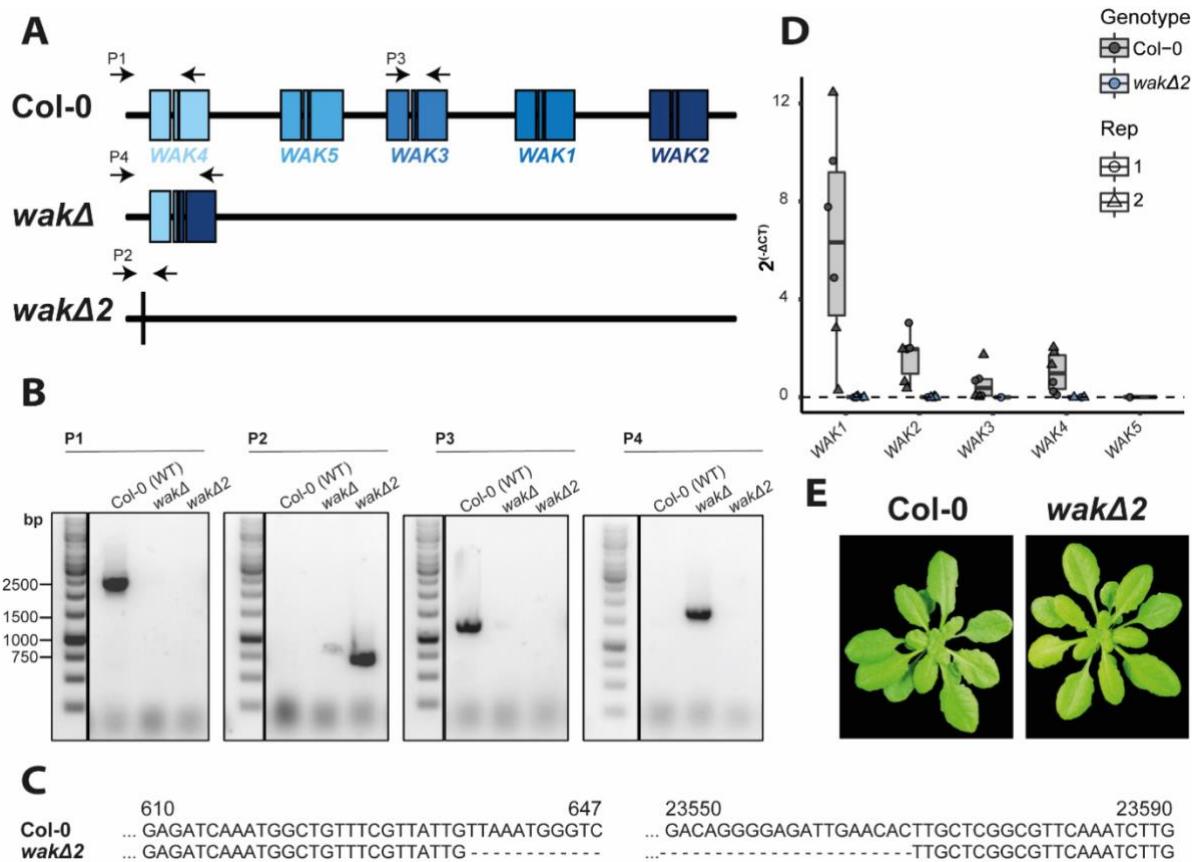
443

444

445

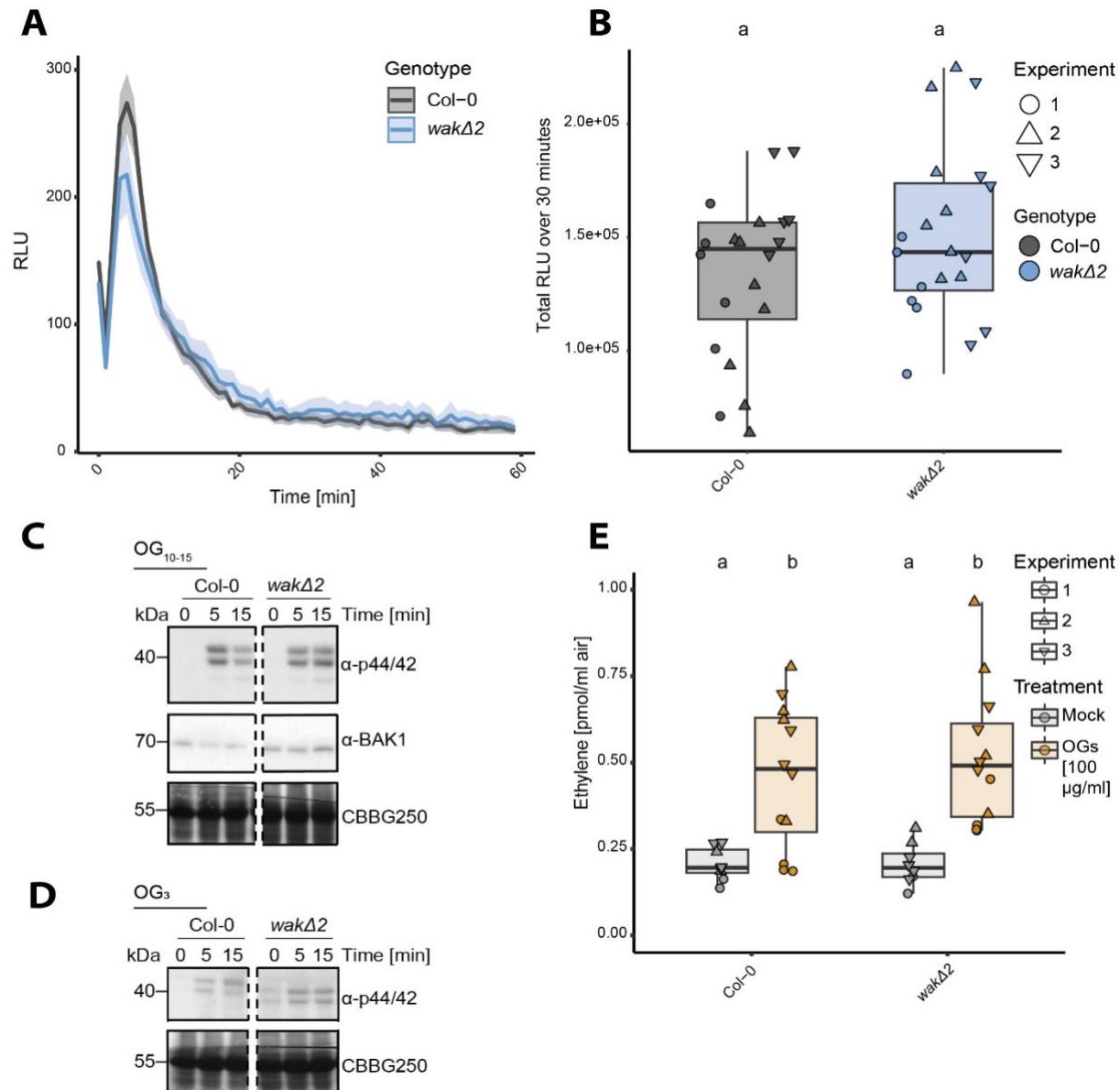
446

447


448

449

450

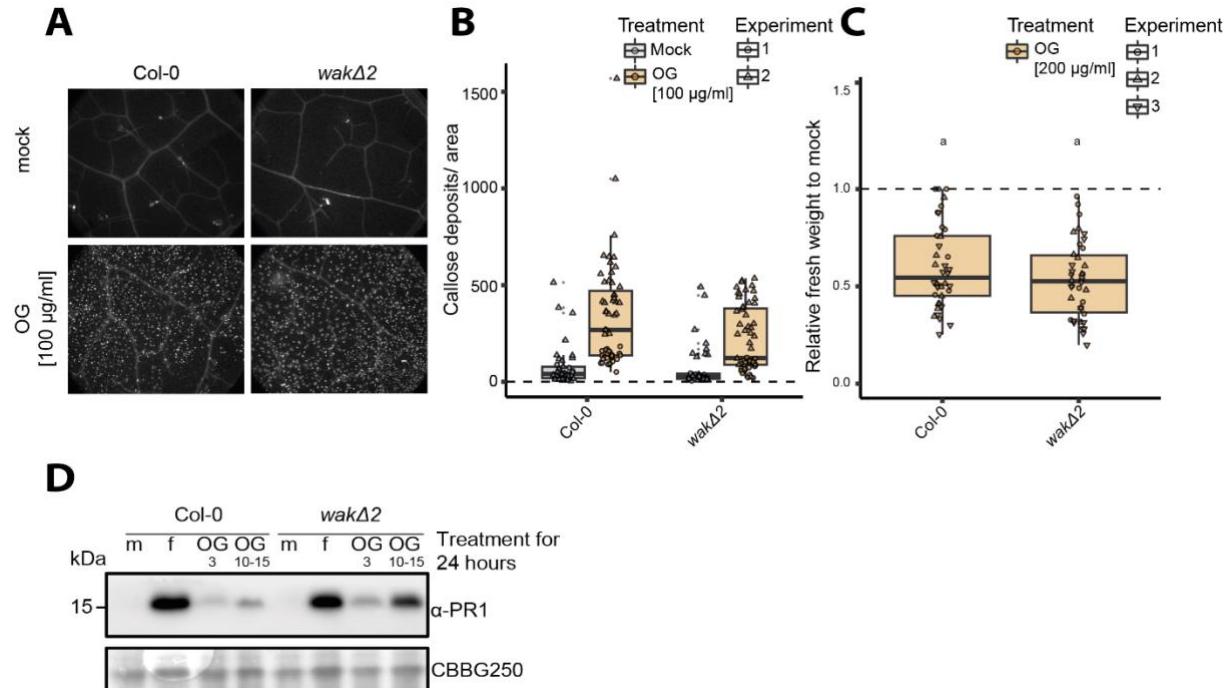

451

452
453
454 **Figures and legends**
455
456

457
458
459 **FIGURE 1 – wakΔ2 is a full WAK deletion mutant.**
460
461
462
463
464
465
466
467
468
469
470
471
472

A) Schematic representation of the genomic arrangement of *WAK1-5* in *Arabidopsis*. Middle cartoon shows the genomic deletion in *wakΔ* and the consequent fusion of *WAK4* and *WAK2*. The lower cartoon shows the genomic region of the *WAK* cluster in *wakΔ2*. Black arrows indicate primer pairs (P) used in B. **B**) Genotyping gel of Col-0, *wakΔ* and *wakΔ2*. Ethidium bromide-stained PCR products for parts indicated in A on agarose gel. P1-P4 refer to the primer pairs shown in A. **C**) Sequencing results from the *wakΔ2* aligned against the 5'UTR of *WAK4* and part of the third exon of *WAK2* of Col-0. **D**) Transcript levels of *WAK1-5* in Col-0 and *wakΔ2* determined by RT-qPCR. RNA was extracted from 14-day-old *Arabidopsis* seedlings grown in liquid culture. Transcripts were normalized to the house-keeping gene *UBOX*. Three biological replicates per experiment (Rep) were used. **E**) Representative images of four-week-old *Arabidopsis* plants grown on soil. These experiments were performed two times.

473
474

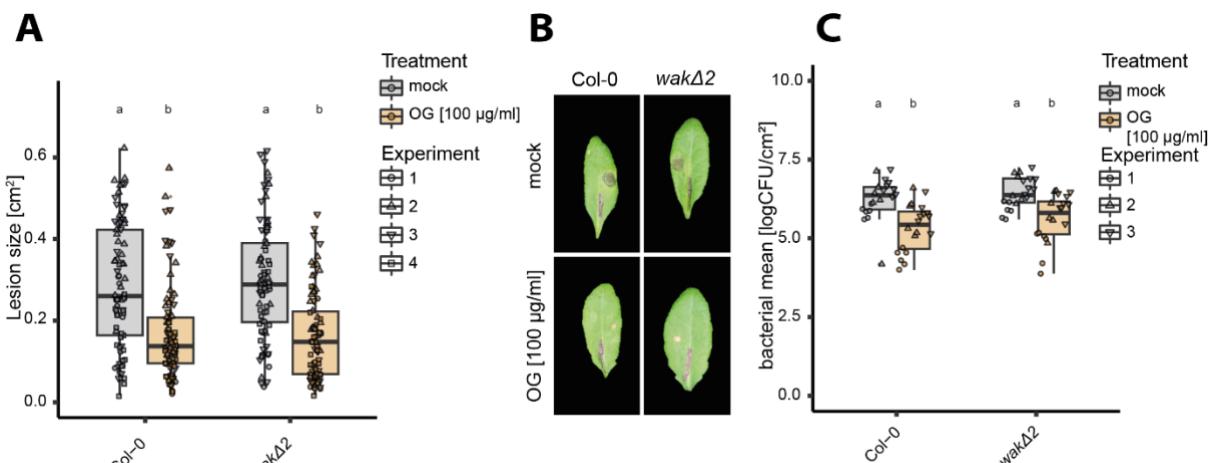

475 **FIGURE 2 – WAKs are not required for OG-induced early immune responses.**

476 **A-B)** ROS production in response to OG $_{10-15}$ in leaf discs of 3- to 4-week-old *Arabidopsis* plants
477 (n = 12 leaf discs of 6 plants). 100 μ g/mL – 1 mg/mL of OG $_{10-15}$ were used as concentration
478 dependent of the experiment. Mean \pm standard errors are plotted. RLU=relative luminescent
479 units. **A)** Representative graph of the kinetics of one replicate. 1 mg/mL OG $_{10-15}$ was used as
480 concentration. **B)** Values are means of total photon counts over 30 min. Data from three
481 independent experiments (Rep) are shown. Shapes indicate different replicates. Outliers are
482 included in statistical analysis. Statistical test: Kruskal-Wallis test ($p < 2.62 \times 10^{-8}$), Dunn's post-
483 hoc test with Benjamin-Hochberg correction ($p \leq 0.05$). Groups with like letter designations
484 are not statistically different. **C-D)** MAPK activation assay with 2-week-old seedlings in
485 response to 100 μ g/mL OG $_{10-15}$ (C) or 100 μ g/mL OG $_3$ (D). Samples were collected 0, 5 and 15
486 min after elicitation as indicated. Blot was probed with α -p44/42 and α -BAK1 was used as
487 loading control. CBB=commassie brilliant blue was used as loading control as well. **E)** Ethylene

488 accumulation after treatment with 100 μ g/mL OG₁₀₋₁₅ or water as control in Arabidopsis
489 seedlings. Box plots represent means \pm SE of three replicates. Equal letters at the top of the
490 panel indicate $p > 0.05$, two-way ANOVA and a post hoc Tukey test. These experiments were
491 performed three times.

492

493


494

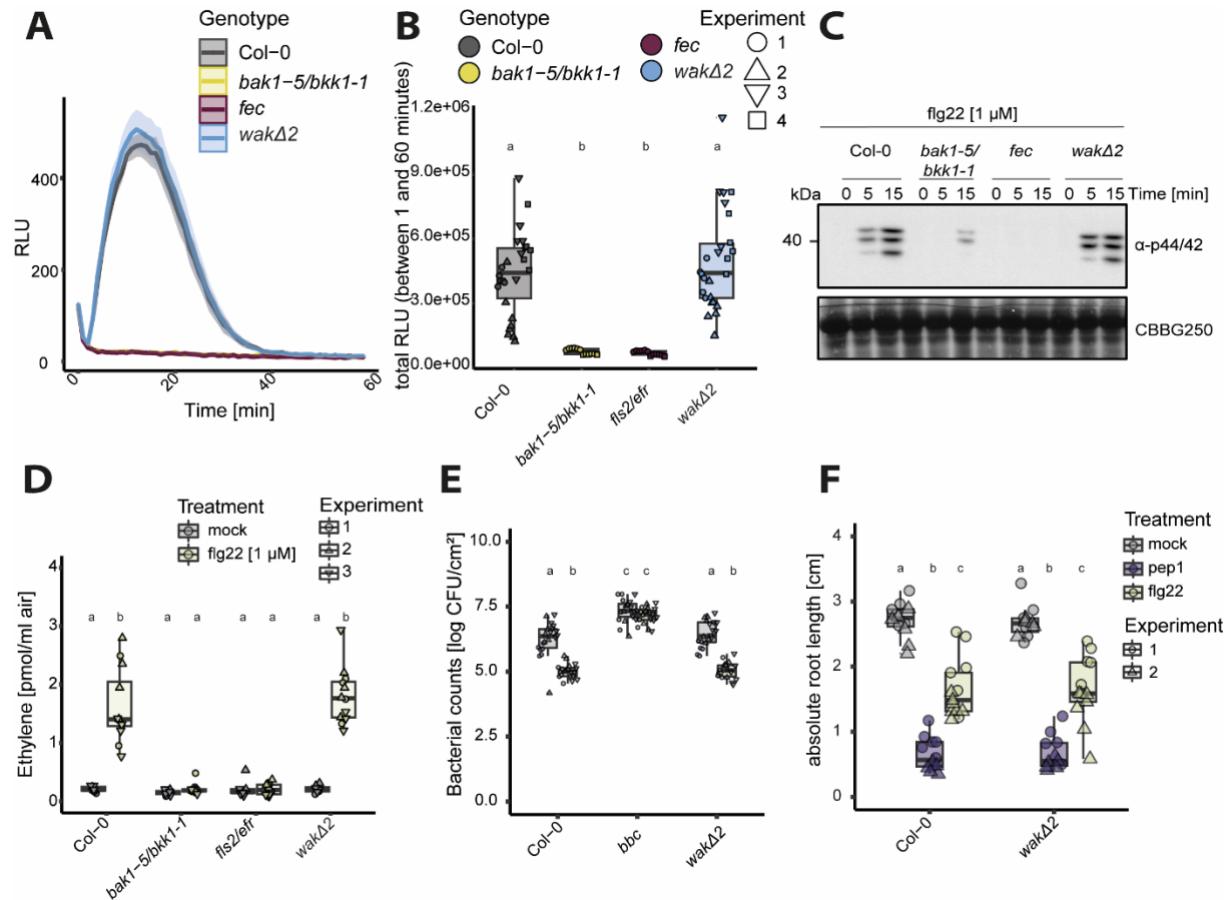
495

496 **FIGURE 3 WAKs are not required for OG-induced late immune responses.**

497 **A -B)** Callose deposition visualized by aniline blue staining in response to 100 μ g/mL OG₁₀₋₁₅
498 or water 24 hours after infiltration into leaves of 3- to 4-week-old Arabidopsis plants. n=16-32
499 leaf discs from 4 different plants were taken per independent experiment. The experiment was
500 performed two times with similar results. **A)** Representative images of OG-induced callose
501 deposition in the presented genotypes stained with aniline blue. **B)** Callose deposits induced
502 by OGs and water infiltration. **C)** Relative weight of seedlings grown in liquid media for 10 days
503 in the presence of 200 μ g/mL OG₁₀₋₁₅ or in the absence of neither (mock). Means \pm SE are
504 shown with individual values for each plant and experiment (n = 12-14 seedlings per
505 experiment). Outliers are included in statistical analysis. Equal letters at the top of the panel
506 indicate $p > 0.05$, one-way ANOVA and a post hoc Tukey test. Groups with like letter
507 designations are not statistically different. The experiment was repeated three times with
508 similar results. **D)** PR1 accumulation assessed by immunoblotting with PR1 antibodies. Leaves
509 from 3-week-old Arabidopsis plants were infiltrated with water (m = mock), 1 μ M flg22 (f) or
510 100 μ g/mL OG₁₀₋₁₅ or 50 μ g/mL OG₃ and harvested after 24 hours. The experiment was
511 repeated three times with similar results.

512

513


514

515 **FIGURE 4 OG-induced immunity is not affected in wakΔ2.**

516 **A -B)** OG-induced resistance against *B. cinerea*. 4- to 5-week-old Col-0 or *wakΔ2* plants were
517 infiltrated with water or 100 µg/mL OG₁₀₋₁₅ 24 hours prior drop-inoculation with *B. cinerea* strain
518 BMM spores (5 µL; 5x10⁵ spores/mL). Lesion areas were measured 48 hours post inoculation.
519 The experiment was performed four times. **A)** Quantification of lesion sizes. Results show
520 mean ± SE (n = 18-24 per experiment). Equal letters at the top of the panel indicate p > 0.05,
521 two-way ANOVA and a post hoc Tukey test. Groups with like letter designations are not
522 statistically different. **B)** Representative images of OG-induced immunity in the different
523 genotypes. Images were taken 48 hours post inoculation. **C)** OG-induced resistance against
524 *P. syringae* pv tomato DC3000. Plants were pretreated with water or 100 µg/mL OG₁₀₋₁₅ for 24
525 hours before infiltration with *P. syringae*. 48 hours after *P. syringae* infiltration, bacteria were
526 extracted and plated. Results show means ± SE and individual data points from the three
527 pooled experiments (n = 6 per experiment). Equal letters at the top of the panel indicate p >
528 0.05, two-way ANOVA and a post hoc Tukey test. Groups with like letter designations are not
529 statistically different. The experiment was performed three times.

530

531

532

533 **FIGURE 5 – flg22-induced immunity is not affected by the loss of WAK1-5.**

534 **A-B)** ROS production in leaf discs of 3- to 4-week-old plants using 100 nM flg22 in Col-0, *bak1-5/bkk1-1*, *fls2/efr/cerk1* (*fec*) and *wakΔ2*. The experiment was repeated at least three times (A-B). Mean \pm standard errors are plotted. RLU=relative luminescent units. A) Kinetics of three representative independent replicates over 40-60 minutes. B) Values are means of total photon counts over 60 minutes as stated in the graph. Individual data points show ROS production in individual plants ($n = 6-8$ plants with each two leaf discs). Outliers are included in statistical analysis. Kruskal-Wallis Test flg22 (p -value = $9.364 \cdot 10^{-15}$), Dunn's post-hoc test with Benjamin-Hochberg correction ($p \leq 0.05$). Groups with like letter designations are not statistically different. **C)** MAPK activation assay with 2-week-old seedlings in response to 1 μ M flg22. Samples were collected 0, 5 and 15 min after elicitation as indicated. Blot was probed with α -p44/42. CBB = commassie brilliant blue was used as loading control as well. **D)** Ethylene accumulation after treatment with 1 μ M flg22 or water as control in *Arabidopsis* seedlings. Box plots represent means \pm SE of three replicates. Equal letters at the top of the panel indicate $p > 0.05$, two-way ANOVA and a post hoc Tukey. **E)** OG-induced resistance against *P. syringae* pv. tomato DC3000. Plants were pretreated with water or 1 μ M flg22 for 24 hours before infiltration with *P. syringae*. 48 hours after *P. syringae* infiltration, bacteria were extracted and plated. Results show means \pm SE and individual data points from the three pooled experiments ($n = 6$ per experiment). Equal letters at the top of the panel indicate $p > 0.05$, two-way ANOVA

552 and a post hoc Tukey test. Groups with like letter designations are not statistically different. F)
553 Primary root length of Col-0 and *wakΔ2* seedlings. Plants were grown on ½ MS +1 % sucrose
554 plates for 5 days and then transferred to liquid ½ MS +1 % sucrose without elicitor (mock), 10
555 nM pep1 or 100 nM flg22. Root-growth was determined after 4 days in liquid culture. 6 plants
556 were measured per experiment. Values correspond to length of each root in cm. Equal letters
557 at the top of the panel indicate $p > 0.05$, two-way ANOVA and a post hoc Tukey test. All
558 experiments were performed three times with similar results, only primary root length was only
559 measured twice.

560

561

562 **Supplemental table**

563 *SUPPLEMENTAL TABLE 1 – Primers used in this study.*

Target	Primer forward	Primer reverse
P1 – pair (<i>WAK4</i>)	ACTATCTTTGAGCGGGCTCC	TTGGTATCAGCCTTGAAGCAC
P2 – pair (big deletion)	ACTATCTTTGAGCGGGCTCC	ACTATCTTTGAGCGGGCTCC
P3 - pair (<i>WAK3</i>)	CCAAGACGCCGATTATGATTAC	AGAAGATGAAGTTCCAGGGAGGG
P4 - pair	CAAGCATGATAACCGAGAACG	GATATGATGAAGAGCCCTGCG
<i>WAK1-</i> qPCR	ACCTTCAGCTGGTTGCCAAGAC	TGGTGGTATCTAACGCGTAACCAG
<i>WAK2-</i> qPCR	TGCCCATCTGGTTACCGCAAAG	AGAAGCCGATGGTGGTTCCAAG
<i>WAK3-</i> qPCR	ACCGTTCAGAGGGTTGCAAAGAC	ACTTACAATCGAAGCCTCCATCCC
<i>WAK4-</i> qPCR	CTTGCCTCAGCCACGAAAGAG	TCTCGTTCATCACTTGGCCATC
<i>WAK5-</i> qPCR	TCGGACGGTTGCCAAGACATC	GGGCACTGACAATGGAAGCTTCC

564

565

566

567

568

569

570 **References**

571 **Abarca A, Franck CM, Zipfel C.** 2021. Family-wide evaluation of RAPID ALKALINIZATION
572 FACTOR peptides. *Plant Physiology* **187**, 996–1010.

573 **Anderson CM, Wagner TA, Perret M, He ZH, He D, Kohorn BD.** 2001. WAKs: cell wall-
574 associated kinases linking the cytoplasm to the extracellular matrix. *Plant Molecular Biology*
575 **47**, 197–206.

576 **Bacete L, Mélida H, Miedes E, Molina A.** 2018. Plant cell wall-mediated immunity: cell wall
577 changes trigger disease resistance responses. *The Plant Journal* **93**, 614–636.

578 **Beffa RS, Hofer RM, Thomas M, Meins FJ.** 1996. Decreased Susceptibility to Viral Disease
579 of [beta]-1,3-Glucanase-Deficient Plants Generated by Antisense Transformation. *The Plant*
580 **Cell** **8**, 1001–1011.

581 **Bender KW, Couto D, Kadota Y, et al.** 2021. Activation loop phosphorylation of a non-RD
582 receptor kinase initiates plant innate immune signaling. *Proceedings of the National Academy*
583 *of Sciences of the United States of America* **118**, (38):e2108242118.

584 **Bishop PD, Makus DJ, Pearce G, Ryan CA.** 1981. Proteinase inhibitor-inducing factor activity
585 in tomato leaves resides in oligosaccharides enzymically released from cell walls. *Proceedings*
586 *of the National Academy of Sciences of the United States of America* **78**, 3536–3540.

587 **Bjornson M, Pimprikar P, Nürnberg T, Zipfel C.** 2021. The transcriptional landscape of
588 *Arabidopsis thaliana* pattern-triggered immunity. *Nature Plants* **7**, 579–586.

589 **Bot P, Mun B-G, Imran QM, Hussain A, Lee S-U, Loake G, Yun B-W.** 2019. Differential
590 expression of AtWAKL10 in response to nitric oxide suggests a putative role in biotic and
591 abiotic stress responses. *PeerJ* **7**, e7383.

592 **Brading PA, Verstappen ECP, Kema GHJ, Brown JKM.** 2002. A Gene-for-Gene
593 Relationship Between Wheat and *Mycosphaerella graminicola*, the *Septoria Tritici* Blotch
594 Pathogen. *Phytopathology®* **92**, 439–445.

595 **Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G.** 2010. A domain swap approach
596 reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of
597 oligogalacturonides. *Proceedings of the National Academy of Sciences of the United States of*
598 *America* **107**, 9452–9457.

599 **Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G.** 2014.
600 The kinase LYK5 is a major chitin receptor in *Arabidopsis* and forms a chitin-induced complex
601 with related kinase CERK1. *eLife* **3**:e03766.

602 **Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G.** 2006. The *Arabidopsis* receptor
603 kinase FLS2 binds flg22 and determines the specificity of flagellin perception. *The Plant cell*
604 **18**, 465–476.

605 **Cosgrove DJ.** 2023. Structure and growth of plant cell walls. *Nature Reviews Molecular Cell*
606 *Biology*. doi: 10.1038/s41580-023-00691-y.

607 **Dai Z, Pi Q, Liu Y, et al.** 2024. ZmWAK02 encoding an RD-WAK protein confers maize
608 resistance against gray leaf spot. *New Phytologist* **241**, 1780–1793.

609 **Davidsson P, Broberg M, Kariola T, Sipari N, Pirhonen M, Palva ET.** 2017. Short
610 oligogalacturonides induce pathogen resistance-associated gene expression in *Arabidopsis*
611 *thaliana*. *BMC Plant Biology* **17**, 19.

612 **Decreux A, Messiaen J.** 2005. Wall-associated Kinase WAK1 Interacts with Cell Wall Pectins
613 in a Calcium-induced Conformation. *Plant and Cell Physiology* **46**, 268–278.

614 **Decreux A, Thomas A, Spies B, Brasseur R, Cutsem P Van, Messiaen J.** 2006. In vitro
615 characterization of the homogalacturonan-binding domain of the wall-associated kinase WAK1
616 using site-directed mutagenesis. *Phytochemistry* **67**, 1068–1079.

617 **DeFalco TA, Zipfel C.** 2021. Molecular mechanisms of early plant pattern-triggered immune
618 signaling. *Molecular Cell* **81**(17), 3449–3467.

619 **Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S,**
620 **Ausubel FM, Dewdney J.** 2008. Activation of defense response pathways by OGs and Flg22
621 elicitors in *Arabidopsis* seedlings. *Molecular Plant* **1**, 423–445.

622 **Diener AC, Ausubel FM.** 2005. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant
623 *Arabidopsis* disease-resistance gene, is not race specific. *Genetics* **171**, 305–321.

624 **Dora S, Terrett OM, Sánchez-Rodríguez C.** 2022. Plant–microbe interactions in the apoplast:
625 Communication at the plant cell wall. *The Plant Cell* **34**, 1532–1550.

626 **Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, et al.** 2013. Efficient genome editing in
627 plants using a CRISPR/Cas system. *Cell Research* **23**(10):1229–32.

628 **Ferrari S, Galletti R, Pontiggia D, Manfredini C, Lionetti V, Bellincampi D, Cervone F, De**
629 **Lorenzo G.** 2008. Transgenic Expression of a Fungal endo-Polygalacturonase Increases
630 Plant Resistance to Pathogens and Reduces Auxin Sensitivity. *Plant Physiology* **146**, 323–
631 324.

632 **Ferrari S, Savatin D, Sicilia F, Gramegna G, Cervone F, De Lorenzo G.** 2013. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth
633 and development. *Frontiers in Plant Science* **4**:49. doi: 10.3389/fpls.2013.00049.

635 **Gámez-Arjona FM, Vitale S, Voxel A, Dora S, Müller S, Sancho-Andrés G, Montesinos**
636 **JC, Di Pietro A, Sánchez-Rodríguez C.** 2022. Impairment of the cellulose degradation
637 machinery enhances *Fusarium oxysporum* virulence but limits its reproductive fitness. *Science*
638 *Advances* **8**, eabl9734.

639 **Gómez-Gómez L, Boller T.** 2000. FLS2: An LRR Receptor–like Kinase Involved in the
640 Perception of the Bacterial Elicitor Flagellin in *Arabidopsis*. *Molecular Cell* **5**, 1003–1011.

641 **Gravino M, Locci F, Tundo S, Cervone F, Savatin DV, De Lorenzo G.** 2017. Immune
642 responses induced by oligogalacturonides are differentially affected by AvrPto and loss of
643 BAK1/BKK1 and PEPR1/PEPR2. *Molecular Plant Pathology* **18**, 582–595.

644 **Gravino M, Savatin DV, Macone A, De Lorenzo G.** 2015. Ethylene production in *Botrytis*
645 *cinerea*- and oligogalacturonide-induced immunity requires calcium-dependent protein
646 kinases. *The Plant Journal* **84**, 1073–1086.

647 **Hahn MG, Darvill AG, Albersheim P.** 1981. Host-Pathogen Interactions 1: XIX. THE
648 ENDOGENOUS ELICITOR, A FRAGMENT OF A PLANT CELL WALL POLYSACCHARIDE
649 THAT ELICITS PHYTOALEXIN ACCUMULATION IN SOYBEANS. *Plant Physiology* **68**,
650 1161–1169.

651 **He ZH, Cheeseman I, He D, Kohorn BD.** 1999. A cluster of five cell wall-associated receptor
652 kinase genes, Wak1-5, are expressed in specific organs of *Arabidopsis*. *Plant Molecular*
653 *Biology* **39**, 1189–1196.

654 **He ZH, He D, Kohorn BD.** 1998. Requirement for the induced expression of a cell wall
655 associated receptor kinase for survival during the pathogen response. *The Plant Journal*
656 **14**(1):55–63.

657 **He ZH, Fujiki M, Kohorn BD.** 1996. A cell wall-associated, receptor-like protein kinase. *The*
658 *Journal of Biological Chemistry* **271**, 19789–93.

659 **Held JB, Rowles T, Schulz W, McNellis TW.** 2024. *Arabidopsis* Wall-Associated Kinase 3 is
660 required for harpin-activated immune responses. *New Phytologist*, doi: 10.1111/NPH.19594.

661 **Howlader P, Bose SK, Jia X, Zhang C, Wang W, Yin H.** 2020. Oligogalacturonides induce
662 resistance in *Arabidopsis thaliana* by triggering salicylic acid and jasmonic acid pathways
663 against *Pst* DC3000. *International Journal of Biological Macromolecules* **164**, 4054–4064.

664 **Hu K, Cao J, Zhang J, et al.** 2017. Improvement of multiple agronomic traits by a disease
665 resistance gene via cell wall reinforcement. *Nature Plants* **3**, 17009.

666 **Huerta AI, Sancho-Andrés G, Montesinos JC, et al.** 2023. The WAK-like protein RFO1 acts
667 as a sensor of the pectin methylation status in *Arabidopsis* cell walls to modulate root growth
668 and defense. *Molecular Plant* **16**, 865–881.

669 **Hurni S, Scheuermann D, Krattinger SG, et al.** 2015. The maize disease resistance gene
670 *Htn1* against northern corn leaf blight encodes a wall-associated receptor-like kinase.
671 *Proceedings of the National Academy of Sciences of the United States of America* **112**, 8780–
672 8785.

673 **Kanyuka K, Rudd JJ.** 2019. Cell surface immune receptors: the guardians of the plant's
674 extracellular spaces. *Current Opinion in Plant Biology* **50**, 1–8.

675 **Kohorn BD.** 2016. Cell wall-associated kinases and pectin perception. *Journal of*
676 *Experimental Botany* **67**, 489–494.

677 **Kohorn BD, Greed BE, Mouille G, Verger S, Kohorn SL.** 2021. Effects of *Arabidopsis* wall
678 associated kinase mutations on ESMERALDA1 and elicitor induced ROS. *PLOS ONE* **16**,
679 e0251922.

680 **Kohorn BD, Johansen S, Shishido A, Todorova T, Martinez R, Defeo E, Obregon P.** 2009.

681 Pectin activation of MAP kinase and gene expression is WAK2 dependent. *The Plant Journal*
682 **60**, 974–982.

683 **Kohorn BD, Kobayashi M, Johansen S, Riese J, Huang LF, Koch K, Fu S, Dotson A,**
684 **Byers N.** 2006. An *Arabidopsis* cell wall-associated kinase required for invertase activity and
685 cell growth. *The Plant Journal* **46**, 307–316.

686 **Kohorn B, Kohorn S.** 2012. The cell wall-associated kinases, WAKs, as pectin receptors.
687 *Frontiers in Plant Science* **3**:88. doi: 10.3389/fpls.2012.00088.

688 **Kohorn BD, Kohorn SL, Todorova T, Baptiste G, Stansky K, McCullough M.** 2012. A
689 Dominant Allele of *Arabidopsis* Pectin-Binding Wall-Associated Kinase Induces a Stress
690 Response Suppressed by MPK6 but Not MPK3 Mutations. *Molecular Plant* **5**, 841–851.

691 **Larkan NJ, Ma L, Haddadi P, Buchwaldt M, Parkin IAP, Djavaheri M, Borhan MH.** 2020.
692 The *Brassica napus* wall-associated kinase-like (WAKL) gene Rlm9 provides race-specific
693 blackleg resistance. *The Plant Journal* **104**, 892–900.

694 **Larkan NJ, Yu F, Lydiate DJ, Rimmer SR, Borhan MH.** 2016. Single R Gene Introgression
695 Lines for Accurate Dissection of the *Brassica* - *Leptosphaeria* Pathosystem. *Frontiers in Plant*
696 *Science* **7**, 1771.

697 **Lee HK, Santiago J.** 2023. Structural insights of cell wall integrity signaling during
698 development and immunity. *Current Opinion in Plant Biology* **76**, 102455.

699 **Li Q, Hu A, Qi J, Dou W, Qin X, Zou X, Xu L, Chen S, He Y.** 2020. CsWAKL08, a pathogen-
700 induced wall-associated receptor-like kinase in sweet orange, confers resistance to citrus
701 bacterial canker via ROS control and JA signaling. *Horticulture Research* **7**, 42.

702 **Liu C, Yu H, Voegele A, Rao X, Dixon RA.** 2023. FERONIA and wall-associated kinases
703 coordinate defense induced by lignin modification in plant cell walls. *Science Advances* **9**,
704 eadf7714.

705 **Liu Z, Zhang Z, Faris JD, et al.** 2012. The Cysteine Rich Necrotrophic Effector SnTox1
706 Produced by *Stagonospora nodorum* Triggers Susceptibility of Wheat Lines Harboring Snn1.
707 *PLOS Pathogens* **8**, e1002467.

708 **De Lorenzo G, Brutus A, Savatin DV, Sicilia F, Cervone F.** 2011. Engineering plant
709 resistance by constructing chimeric receptors that recognize damage-associated molecular
710 patterns (DAMPs). *FEBS Letters* **585**, 1521–1528.

711 **Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J.** 2011. Callose deposition: a
712 multifaceted plant defense response. *Molecular plant-microbe interactions : MPMI* **24**, 183–
713 193.

714 **Ma Y, Wang Z, Humphries J, Ratcliffe J, Bacic A, Johnson KL, Qu G.** 2024. WALL-
715 ASSOCIATED KINASE Like 14 regulates vascular tissue development in *Arabidopsis* and
716 tomato. *Plant Science* **341**, 112013.

717 **Mason KN, Ekanayake G, Heese A.** 2020. Chapter 10 - Staining and automated image

718 quantification of callose in *Arabidopsis* cotyledons and leaves. In: Anderson CT, Haswell ES,
719 Dixit RBT-M in CB, eds. *Plant Cell Biology*. Academic Press, 181–199.

720 **Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N.** 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor
722 signaling in *Arabidopsis*. *Proceedings of the National Academy of Sciences of the United*
723 *States of America* **104**, 19613–8.

724 **Mühlenbeck H, Tsutsui Y, Lemmon MA, Bender KW, Zipfel C.** 2023. Allosteric activation of
725 the co-receptor BAK1 by the EFR receptor kinase initiates immune signaling. *eLife*, doi:
726 10.7554/elife.92110.1.

727 **Ngou BPM, Wyler M, Schmid MW, Kadota Y, Shirasu K.** 2024. Evolutionary trajectory of
728 pattern recognition receptors in plants. *Nature Communications* 2024 15:1 **15**, 1–22.

729 **Oelmüller R, Tseng Y-H, Gandhi A.** 2023. Signals and Their Perception for Remodelling,
730 Adjustment and Repair of the Plant Cell Wall. *International Journal of Molecular Sciences* **24**.

731 **de Oliveira LFV, Christoff AP, de Lima JC, de Ross BCF, Sachetto-Martins G, Margis-
732 Pinheiro M, Margis R.** 2014. The Wall-associated Kinase gene family in rice genomes. *Plant*
733 *Science* **229**, 181–192.

734 **Pontiggia D, Benedetti M, Costantini S, De Lorenzo G, Cervone F.** 2020. Dampening the
735 DAMPs: How Plants Maintain the Homeostasis of Cell Wall Molecular Patterns and Avoid
736 Hyper-Immunity. *Frontiers in Plant Science* **11**, 613259.

737 **Ranf S, Gisch N, Schäffer M, et al.** 2015. A lectin S-domain receptor kinase mediates
738 lipopolysaccharide sensing in *Arabidopsis thaliana*. *Nature Immunology* **16**, 426–433.

739 **Rhodes J, Yang H, Moussu S, Boutrot F, Santiago J, Zipfel C.** 2021. Perception of a
740 divergent family of phytocytokines by the *Arabidopsis* receptor kinase MIK2. *Nature*
741 *Communications* **12**, 705.

742 **Ridley BL, O'Neill MA, Mohnen D.** 2001. Pectins: structure, biosynthesis, and
743 oligogalacturonide-related signaling. *Phytochemistry* **57**, 929–967.

744 **Saintenac C, Lee W-S, Cambon F, et al.** 2018. Wheat receptor-kinase-like protein Stb6
745 controls gene-for-gene resistance to fungal pathogen *Zymoseptoria tritici*. *Nature Genetics* **50**,
746 368–374.

747 **Shi G, Zhang Z, Friesen TL, et al.** 2023. The hijacking of a receptor kinase–driven pathway
748 by a wheat fungal pathogen leads to disease. *Science Advances* **2**, e1600822.

749 **Shimada TL, Shimada T, Hara-Nishimura I.** 2010 A rapid and non-destructive screenable
750 marker, FAST, for identifying transformed seeds of *Arabidopsis thaliana*. *The Plant Journal*
751 **61**(3):519–28.

752 **Stephens C, Hammond-Kosack KE, Kanyuka K.** 2022. WAKsing plant immunity, waning
753 diseases. *Journal of Experimental Botany* **73**, 22–37.

754 **Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F.** 2009. Network Properties of Robust

755 Immunity in Plants. PLOS Genetics **5**, e1000772.

756 **Verica JA, He Z-H.** 2002. The Cell Wall-Associated Kinase (WAK) and WAK-Like Kinase Gene
757 Family. Plant Physiology **129**, 455–459.

758 **Voxeur A, Habrylo O, Guénin S, et al.** 2019. Oligogalacturonide production upon Arabidopsis
759 thaliana–Botrytis cinerea interaction. Proceedings of the National Academy of Sciences of the
760 United States of America **116**, 19743–19752.

761 **Wagner TA, Kohorn BD.** 2001. Wall-Associated Kinases Are Expressed throughout Plant
762 Development and Are Required for Cell Expansion. The Plant Cell **13**, 303–318.

763 **Wang Y, Li X, Fan B, Zhu C, Chen Z.** 2021. Regulation and Function of Defense-Related
764 Callose Deposition in Plants. International Journal of Molecular Sciences **22**.

765 **Wang P, Zhou L, Jamieson P, et al.** 2020. The Cotton Wall-Associated Kinase GhWAK7A
766 Mediates Responses to Fungal Wilt Pathogens by Complexing with the Chitin Sensory
767 Receptors. The Plant Cell **32**, 3978–4001.

768 **Wolf S.** 2022. Cell Wall Signaling in Plant Development and Defense. Annual Review of Plant
769 Biology **73**, 323–353.

770 **Xiao Y, Sun G, Yu Q, et al.** 2024. A plant mechanism of hijacking pathogen virulence factors
771 to trigger innate immunity. Science (New York, N.Y.) **383**, 732–739.

772 **Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA.** 2010. PEPR2 Is a Second Receptor
773 for the Pep1 and Pep2 Peptides and Contributes to Defense Responses in Arabidopsis. The
774 Plant Cell **22**, 508–522.

775 **Zhang Z, Huo W, Wang X, et al.** 2023a. Origin, evolution, and diversification of the wall-
776 associated kinase gene family in plants. Plant Cell Reports **42**, 1891–1906.

777 **Zhang Y, Li X.** 2019. Salicylic acid: biosynthesis, perception, and contributions to plant
778 immunity. Current Opinion in Plant Biology **50**, 29–36.

779 **Zhang N, Pombo MA, Rosli HG, Martin GB.** 2020. Tomato Wall-Associated Kinase SIWak1
780 Depends on Fls2/Fls3 to Promote Apoplastic Immune Responses to *Pseudomonas syringae*.
781 Plant Physiology **183**, 1869–1882.

782 **Zhang B, Su T, Xin X, et al.** 2023b. Wall-associated kinase BrWAK1 confers resistance to
783 downy mildew in *Brassica rapa*. Plant Biotechnology Journal **21**, 2125–2139.

784 **Zhong T, Zhu M, Zhang Q, et al.** 2024. The ZmWAKL–ZmWIK–ZmBLK1–ZmRBOH4 module
785 provides quantitative resistance to gray leaf spot in maize. Nature Genetics, doi:
786 10.1038/s41588-023-01644-z.

787 **Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G.** 2006. Perception
788 of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated
789 Transformation. Cell **125**, 749–760.

790 **Zuo W, Chao Q, Zhang N, et al.** 2015. A maize wall-associated kinase confers quantitative
791 resistance to head smut. Nature Genetics **47**, 151–157.

