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22 SUMMARY

23 Bacteria have developed numerous defense systems to counter phage infections. However,
24  the extent to which phages possess countermeasures against these defense systems remains
25  unclear. In this study, we combined a phage gene knockout library with a defense system
26  library to analyze the mechanisms by which phages counteract bacterial defense systems.
27 After attempting gene deletions of 105 open reading frames (ORFs) in the DruSM1 phage
28  (®DruSM1), we successfully generated 73 different ORF knockout phages. By infecting this
29  library with bacteria harboring defense system expression plasmids, we identified
30  inactivators of Druantia type I (Druadl), Brex type I, AVAST type III, Sir2+HerA,
31 DUF4297+HerA, and hhe, as well as an activator of Retron Ec86, in a single phage genome.
32 Synthetic phages incorporating Druadl effectively eradicated Escherichia coli harboring the
33 robust Druantia type I defense system by altering DNA methylation at m6A sites of the phage.
34  This study highlighted the prevalence of various antidefense mechanisms employed by
35  phages to overcome bacterial defense systems.
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42 Introduction

43  Bacteria have developed diverse antiphage immune systems to survive phage infections.
44  Among these, systems such as restriction modification and CRISPR-Cas have been
45  recognized as mechanisms for cleaving DNA of targeted phages'; however, recent research
46  has revealed that bacteria utilize a broader range of defense mechanisms, and more than 100
47  different defense mechanisms have been reported®>. These bacterial defense systems have
48  forced bacteria-infecting phages to evolve various evasion strategies, including anti-Retron*,
49  anti-Thoeris, anti-Gabija>®, anti-AVAST’, anti-CBASS, anti-Pycsar®®, and anti-BREX'%-12,
50  Phages also use tRNA as an antidefense against retron Ec78%. For further understanding of
51  defense systems and enhancing the effectiveness of phage therapy hindered by defense
52  systems, elucidating antidefense mechanisms is crucial. However, the functionality of
53  antidefense mechanisms remains largely unknown, representing an important unsolved issue
54  in the field.

55

56  The limited discovery of defense systems can be attributed to the lack of established
57  strategies or the requirement for technically challenging experiments. The anti-CBASS gene
58 acbl and anti-Pycsar gene apycl were discovered by comparing the cyclic nucleotide-
59  degrading activity following phage infection®. The anti-Thoeris gene tadl was discovered by
60  comparing the genome sequences of similar phages®. In both studies, candidate anti-defense
61  genes were cloned into plasmid vectors and coexpressed with their respective defense
62  systems in host bacteria to determine their neutralizing activity against the bacterial defense
63  system during phage infection. However, phage-derived genes are often toxic to host bacteria,
64  and stable expression of anti-defense genes in plasmids is challenging'?.

65

66  We previously identified antidefense genes by studying naturally occurring phage gene
67  deletion strains*. In this study, we attempted to identify antidefense genes by artificially
68  generating phage gene deletion mutants, in which each open reading frame (ORF) of the
69  phage is deleted one by one!'*!5.

70
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71 Results
72 Construction of a phage gene knockout library
73 The generation of gene knockout libraries is extremely useful for studying the function of
74  genes in organisms!S. However, a systematic phage knockout library has not yet been
75  constructed. First, we focused on ®DruSM1. This phage belongs to the Quenovirinae phage
76 family, with a genome size of 60 kb, which is reasonable for constructing a knockout library
77  using in vitro synthesis methods (Figure 1A)!"-!3, The phage genome was amplified by PCR
78  using primers specifically designed to delete a particular gene, and the resulting fragments
79  were assembled to generate a circular genome. This artificially synthesized genome was
80 electroporated into E. coli HST08, and the phage was rebooted. The number of plaques
81  generated by rebooting the synthesized phage varied greatly depending on the deleted gene
82  (Figure 1A, B). If plaque formation of the gene-deleted phage was less than 10 after rebooting,
83  the deleted gene was considered essential for the phage. The reason for setting the threshold
84  at 10 was that even when the capsid genes, which are already known as essential genes, were
85  deleted, several to around 10 plaques were still formed. Consequently, in ®DruSM1, 32
86  genes were assumed to be essential, whereas 72 genes were assumed to be nonessential genes.
87  The genes determined to be primarily essential are terminase, capsid, tail structure, and
88  nucleotide metabolism (Figures 1C and S1B). This is consistent with a previous study
89  reporting that structural genes and genes involved in DNA replication in phage are essential'®.
90  Overall, we successfully generated ORF knockout mutants of 72 nonessential genes and used
91  them in further experiments.
92
93  Identification of phage-derived genes that alter the activity of bacterial defense systems
94  To investigate the phage genes affecting the sensitivity to bacterial defense systems, the
95  constructed gene-deletion phage library was used to infect E. coli DH10B cells harboring the
96  defense system library (Figure 2A)?°. As synthetic phages can unintentionally acquire genetic
97  mutations during construction, four independent synthetic phage strains were constructed for
98 each ORF-deleted phage. Accordlngly, 19 types of gene-deleted phages for which the
99  infection efficiency was reduced by more than 100-fold in at least three independent
100  experiments were obtained (Table 1). Seven types of gene-deleted phages were identified
101  with a 10- to 100-fold decrease. Four types of gene-deleted phages exhibited a 100-fold or
102 greater increase in efficiency. Genomic loss in the mutant phages with altered efficiency of
103 plaque formation (EOP) was confirmed by PCR (Figure S1A).
104  The phages losing the ability to escape from Druantia-defense were ORF71 and ORF65
105  deletion mutants. The ORF71 deletion mutant showed a significantly decreased EOP
106 compared with that of ORF65 in Druantia type I-bearing strains (p < 0.001) (Figure 2A and
107  Table 1). Nine ORF-deletion mutants were less infectious to bacteria with Brex1 type L. In
108  particular, gene deletion phages in the "moron, auxiliary metabolism gene and host takeover"
109 region on ORFs 41-48 exhibited reduced infectivity not only against Brex type I but also
110 against restriction-like defense systems (Figure 1C and S1B). Both Brexl t;/pe I and
111 restriction-like are long gene defense systems utilizing ATPase and methylase’; thus, an
112 antidefense system targeting these common domains in the ORF41-48 region is expected.
113 Phages with reduced infectivity in bacteria possessing the AVAST type III defense system
114  were deletion mutants of ORF55, ORF72, ORF83, and ORF84. The mutant with the most
115  reduced infectivity was the ORF84 deletion mutant, with a 10 reduction in EOP. All phages
116 with reduced infectivity against AVAST type IlI-bearing bacteria formed small plaques. This
117 suggests that the proliferation of the phages was reduced by the AVAST type III defense
118  system. Phages with reduced infectivity against the qatABCD defense system were ORF84
119  and ORF85 deletion mutants, resulting in reduced EOP by 102 and 10, respectively. The
120  phage with reduced infectivity against bacteria harboring the hhe defense system was an
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121 ORF65 deletion mutant, exhibiting a decrease in EOP by 1073 and smaller plaque sizes than
122 those of the wild type (Figure S2A). Deletion of PHORF69, located upstream of ORF65, also
123 reduced EOP against hhe-bearing bacteria. Interestingly, ORF58 deletion mutants showed
124 reduced EOP in bacteria expressing SIR2+HerA, DUF4297+HerA, and ppl; however, they
125  showed increased EOP in bacteria harboring Retron-Ec86, Retron-Ec78, and DRT type II,
126 which contain reverse transcriptase domains.

127

128  Candidate antidefense systems, deletions of which were expected to result in reduced EOP,
129 were identified by screening a gene deletion library (Figure 2). To confirm that these genes
130 act as antidefense systems, bacteria were prepared through plasmid complementation of the
131  candidate genes, infected with each deletion mutant phage, and the EOP was measured
132 (Figure 3A). Ectopic expression of ORF71 from ®DruSMI restored the infectivity of the
133 ORF71 deletion mutant against Drunatia type I, resulting in the formation of same size
134 plaques as those of the wild type (Figure 3A, S2A). Coexpression of Brex1 type I, ORF46,
135  and ORF72 restored the infectivity of each ORF deletion mutant (Figure 3A, S2A). Deletion
136 mutants of ORFs 41, 45, and 48 also showed reduced infectivity in Brex type I-bearing
137  bacteria; however, coexpression of these ORFs with Brex type I did not restore infectivity.
138  The ORF58 deletion mutants showed increased infectivity against bacteria harboring retron-
139 Ec86, retron-Ec78, and DRT type II (Figure 2 and Table 1). These results suggested that
140  ORFS58 activates retron-Ec86, retron-Ec78, and DRT type II. Moreover, induced expression
141 of ORF58 caused cytotoxicity in retron-Ec86-bearing strains (Figure 3B), suggesting that
142 ORF58 induces activation of retron-Ec86 and abortive infection. In contrast, ORF58 did not
143 induce cytotoxicity in retron-Ec78-or DRT type II-bearing strains (Fig. S2B), suggesting that
144 factors other than ORF58 are required for retron-Ec78 or DRT type II toxicity.

145

146 Prediction of proteins that inactivate and activate defense systems

147  Functional prediction of antidefense or activator genes was conducted by performing a
148  domain search using the HHpred server, with PFAM and COG_KOG serving as the target
149  databases (Table 2 and 3). ORF46, exhibiting anti-Brex type I activity, was predicted to be a
150  "Trimethylamine methyltransferase corrinoid protein". ORF55, an ORF with anti-AVAST
151  type III activity, was predicted to be a "ATP-dependent DNA ligase". ORF58, which has anti-
152 SIR2+HerA and DUF4297+HerA activity as well as Reron Ec86 sensor activity was
153 predicted to be a "Mu-like prophage host-nuclease inhibitor protein Gam". ORF65, showing
154  anti-hhe activity was predicted to be a "Transcriptional regulator protein (SplA) ". ORF71,
155  exhibiting anti-Druantia type I activity, was predicted to belong to a "Family of unknown
156 function (DUF6614) ". ORF72, an ORF with anti-Brex type I activity was predicted to be a
157  "KfrA N; Plasmid replication region DNA-binding N-term". Finally, ORF83, exhibiting
158  anti-AVAST type III activity was predicted to be a "Smf; Predicted Rossmann fold
159  nucleotide-binding protein DprA/Smf involved in DNA uptake".

160

161  Phages equipped with Druad1l can infect bacteria possessing Druantia type 1.

162 In this study, we focused on Druantia type I because this defense system exhibited the most
163  extensive defense activity in our collection of 263 E. coli phage libraries (Figure 4A and B).
164  Among the antidefense genes identified in this study, we selected ORF71, which inhibits
165  Druantia type I. ORF71 was named Druadl (Druantia antidefense 1) because of its ability to
166  inhibit Druantia type I. Other members of the Quenovirinae family to which ®DruSM1
167  belonged included KSA3, KSAS, KSS4, KSW4, and SHINS (Figure 4C)?!22, Of these six
168  phages, only ®DruSM1 killed DH10B expressing Druantia type I (Figure 4D and Figure
169  S3A). Notably, ®DruSM1ADruadl failed to block Druantia type I, indicating the
170  indispensable role of Druadl in the inactivation of Druantia type I during phage infection.
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171~ We then searched for homologs of Druadl and found no proteins with a BLAST value <0.1,
172 suggesting that it is an extremely rare gene. Furthermore, the genome of ®DruSM1 showed
173 83.0 % homology with that of the most closely related phage, vB Ecos SA126VB,
174  indicating that ®DruSM1 itself is a novel phage (Figure S4A and B). Druantia type I system
175  harbors a DNA helicase domain (Figure 4B). Given that type I restriction-modification
176 systems, which encode helicase domain proteins, facilitate DNA translocation upon
177 recognizing unmethylated restriction sites, we speculated that Druantia type I employs DNA
178  methylation as well.?* Utilizing PacBio sequencing, the methylation status of DNA in strains
179  expressing Druantia type I was compared with that in non-expressing strains. As a result,
180  methylation of m6A in the CAGCTGNC sequence was only observed in strains expressing
181  Druantia type I (Figure 4E), suggesting that Druantia type I adds m6A methylation to the
182  host bacterial genome. Considering the potential involvement of DNA methylation in the
183  function of Druadl, the methylation status of DNA in ®DruSM1 and ®DruSM1ADruad1
184  was compared. Consequently, mo6A methylation in the AANGA sequence was confirmed
185  only in ®DruSMI1 carrying Druadl (Figure 4F). Thus, while Druantia type I distinguishes
186  between bacterial genomic DNA and phage DNA through m6A methylation, Druadl may
187  facilitate evasion from recognition by Druantia type I by inducing m6A modification in phage
188 DNA (Figure 4G). Various phages, including Quenovirinae family and T-series, infected E.
189  coli expressing both Druantia type I and Druadl, but not E. coli expressing Druantia type |
190  alone (Figure 4H). This suggests that in the presence of sufficient Druadl expression, phages
191  are capable of escaping detection by Druantia type I. To confirm the activity of Druadl
192 against native Druantia type I, the infectivity of ®DruSM1ADruadl was tested using the E.
193 coli clinical isolate A17 harboring Druantia type 1. Sequence alignment of the Druantia type
194 I gene from Gao et al. and the Druantia type I gene from E. coli A17 showed an overall
195  similarity of more than 98 %. The similarities for each gene were 99.2 %, 98.5 %, 98.4 %,
196  99.7 %, and 99.4 % for DruA, DruB, DruD, and DruE, respectively (Figure S3B). ®DruSM 1
197  infected E. coli A17 harboring Druantia; however, the infectivity of ®@DruSM1ADruadl was
198  markedly reduced, suggesting that Druad] also functions against clinical isolates harboring
199  Druantia type I (Fig. 41). In phage therapy, phages that can evade the potent Druantia type I
200  defense system are valuable. Therefore, we decided to artificially create a phage that can
201  evade the Druantia type I defense system: ®KSAS, which is similar to ®DruSM1 and lacks
202 the Druadl homolog. Incorporating Druadl into this phage increased its infectivity against
203 DHI10B expressing Druantia type I (Figures 4J and S3C).

204

205
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206  Discussion

207  In this study, we created a phage knockout library using ®DruSM1 with a genome size of 60
208 kb. A comprehensive assay, combining the phage knockout library with the defense system
209  expression vector library, revealed that ®DruSM1 possesses more than seven antidefense
210  systems.

211

212 For creating knockout strains of ®DruSM1, we used in vitro phage synthesis by assembling
213 PCR fragments (Figure 1A)'"'®. Although the genome length for phage synthesis in vitro
214  was reported in 2023 to be appr0x1mately 50 kb'8, we succeeded in artificially synthesizing
215  a 60 kb phage, ®DruSM1, and knocked out 73 out of 105 genes (Figure 1B). In the reboot
216  experiments using gene knockout phages, deleted genes resulting in the formation of 10 or
217  fewer plaques, were classified as essential, whereas those leading to the formation of 11 or
218  more plaques were classified as nonessential; however, this is not a perfect classification.
219  This is because genes essential for phage proliferation within HSTOS strain used in this study
220  are not always essential for proliferation within other £ coli strains. For instance, if DruSM1
221 harbors an inhibitor against the defense system of HSTOS, this inhibitor may be essential for
222 proliferation within HSTO8 but not necessarily essential within other E. coli strains. This
223 study implemented a knockout library using the ®DruSM1 phage infecting E. coli. As phage
224 in vitro synthesis methods and genetic engineering methods have advanced, this approach
225  will be applicable to other phages infecting diverse bacterial species in the future. Large-
226  genome phages such as jumbo phages are believed to have special antidefense systems?®*;
227  however, a synthesis method for jumbo phages has not yet been established.

228

229  Although many antiphage defense systems have been discovered, systems that counteract
230  them have been rarel gorted3 On average, a bacterium has been reported to have at least
231  five defense systems>*>-2%, and phages have likely evolved the means to counteract them. In
232 this study, we identified more than seven antidefense systems in a single phage (Figure 3A).

233 Considering that more than 100 defense systems have already been reported? and many more
234 subspecies exist, we assumed that ®DruSM1 has a greater number of antidefense systems.
235  As many anti-defense systems were found in ®DruSM1 alone, it is expected that many more
236  antidefense systems will be discovered in the future. Many of the genes identified as
237  antidefense systems are hypothetical proteins, which opens up the possibility of identifying
238  the functions of previously unknown phage genes. In some cases, plasmid complementation
239  of the knockout gene did not restore the phenotype of the knockout phage (Figure 2 and 3A).

240  This could be due to a polar effect, in which the knockout gene affects the expression of
241  surrounding genes. This could also be due to inadequate phage annotation because phages
242 often encode small proteins®. In addition, as phage-derived RNAs are also known to inhibit
243 these defense systems!#, it is possible that noncoding nucleic acids rather than proteins were
244  responsible for these results.

245

246  Notably, our experiments also revealed that the Gam protein of ®DruSM1 acts as an activator
247  of Retron Ec86 (Figure 3B). This finding aligned with previous studies on Gam in A phage
248  serving as a sensor for Retron?’, further supporting the validity of our methodology. Of note,

249  Gam simultaneously inhibited Sir2 + HerA and DUF4297 + HerA, suggesting the inhibition
250  of the common helicase domain known as HerA; however, the mechanism remains unclear
251  (Tables 2 and 3). One gene may be a sensor for another such as Ocr, which acts as an anti-
252 RM or anti-Brex system and is sensed by PARIS?3, and Gam, like Ocr, may be involved in
253 various antidefense systems. More than seven genes were found to inhibit the bacterial
254  defense systems; however, only one gene was identified as activator of the defense systems.
255  One reason for this may be that many defense system activator genes are essential genes>?7-31,
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256  Because essential genes in phages cannot be genetically deleted, searching for activator genes
257  of the defense system using our screening method is difficult.

258

259 It has been revealed that both Druantia type I and Druadl are involved in DNA methylation
260  at mo6A sites (Figure 4E-G). However, within Druantia type I, which lacks a Methylase
261  domain, the gene responsible for m6A methylation has yet to be identified.?**? Similarly,
262  Druadl, a small 44-amino acid gene, also lacks a Methylase domain, leaving the mechanism
263  of mo6A site methylation unclear. Considering that DNA adenine methyltransferase and DNA
264  cytosine methyltransferase in E. coli MG1655 consist of 278 and 472 amino acids,*
265  respectively, it is unlikely that Druadl acts alone in methylation. Instead, its interaction with
266  other factors suggests a potential collaborative role in methylation. Furthermore, since
267  Druadl neutralizes the defense of Druantia type I against phages beyond its original host
268  ®DruSMI (Figure 4H), Druadl may be associated with host methyltransferases.

269

270  The in vitro synthesis system of phages that we utilized in this study has limited efficiency
271  in synthesizing phages with large genomes**3°, Therefore, employing the same methodology
272 to identify antidefense genes from phages with large genomes presents challenges. However,
273 applying methods such as random mutagenesis to large-genome phages may enable the
274  construction of a more diverse library of gene knockouts, potentially leading to the discovery
275  of a greater number of antidefense genes. Additionally, in this study, we explored antidefense
276  genes by expressing defense systems in laboratory strains of E. coli using plasmids. However,
277  overexpression of genes by plasmids may not fully reflect native conditions and
278  physiological conditions of bacteria. Conducting large-scale studies infecting phage
279 knockout libraries to various clinical isolates in the future would elucidate the interactions
280  and evolution of diverse defense genes and antidefense genes under native conditions.

281

282  Owing to the escalatinég 4}8r0blem of drug-resistant bacteria, phage-based antibacterial therapy

283  is gaining attention!®3%4%_ As phage infectivity is defined by the defense system and bacterial
284  receptor affinity, phage therapy requires screening for phages that can efficiently kill clinical
285  isolates from the environment or library!'®2!3%4! Incorporation of antidefense genes into

286  phages can facilitate the implementation of phage therapy without the limitations imposed
287 by the defense system. Our study demonstrated that phages artificially incorporating Druad1
288  killed bacteria harboring Druantia type I (Figure 4J and S3C). We believe that this set of
289  methods provides a roadmap for enhancing the host range and bactericidal effects of phages
290  during phage therapy.

291
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Figure legends

Figure 1. Construction of gene deletion library of ®DruSM1 phage

(A) Schematic diagram of the construction of the phage gene deletion library. Deletion of
ORFs was performed by excluding PCR fragments from the genome of ®DruSM1 phage,
assembling the fragments, and rebooting the phage using E. coli. (B) The number of plaques
appearing on the plate after rebooting each ORF deletion phage were counted. (C) Genome
map of ®DruSM1 phage ORFs colored by the number of plaques obtained in (B). ORFs that
could not be deleted are colored wine red, whereas those that could be deleted are colored
turquoise blue. ORF annotations were done using pharokka.

Figure 2. Genetic deletions of phage alter susceptibility to bacterial defense systems

(A) Measurement of phage infectivity to bacteria expressing each defense system using the
spot assay. Phages with deletions of 73 ORFs infected bacteria harboring defense systems.
Four independently synthesized phages were used.

Figure 3. Identification of phage genes modulating susceptibility to defense systems

(A) Candidate ORFs identified in the experiment from Figure 2 were cloned and coexpressed
with the defense system in E. coli DH10B. Phages with deleted ORFs were used for infection
followed by plaque counting (N = 3). "T" indicates turbid plaques, whereas "S" indicates
reduced plaque size compared with that in the absence of the defense system. (B) E. coli
DH10B transformed with Retron Ec86-expressing plasmid and arabinose-inducible ORF58-
expressing plasmid were cultured on arabinose-containing medium. (C) Schematic diagram
depicting the action of the antidefense systems carried by ®DruSM1 phage. The defense
systems highlighted in orange are inhibited by phage genes. The ones highlighted in pink are
activated by phage genes.

Figure 4. Druadl suppresses the potent defense system Druantia type I

(A) 263 sewage-derived E. coli phages infected E. coli DH10B possessing 33 different
antiphage defense systems, and plaque formation efficiency was calculated. The defense
systems are listed in order of decreasing plaque formation efficiency. (B) Gene structure of
Druantia type I’. (C) Genome comparison of phages belonging to the Quenovirinae
seuratvirus family isolated in this study. (D) Comparison of bactericidal activity of
Quenovirinae phages and Druadl (ORF71) deletion mutant of ®DruSM1. Phages infected
DH10B expressing Druantia type I at MOI 0.01, and bacterial growth was measured. (E)
Unique m6A-modified DNA sequence found in DH10B with Druantia Type I and absent in
DH10B with empty vector. (F) Unique m6A-modified DNA sequence found in ®DruSM1
and absent in ®DruSM1ADruadl. (G) A schematic diagram illustrating the mechanism by
which Druad1-bearing phages evade the Druantia type I defense system. (H) Defense activity
of Druantia type I in DH10B expressing Druadl. (I) Phage sensitivity of E. coli DH10B and
A17 were measured using the spot assay. (J) Druadl was artificially inserted into the PKSAS
genome, resulting in ®KSA8 Druadl. Synthesized phages infected E. co/i DH10B harboring
Druantia type I antiphage defense systems. Phage infectivity was measured using the spot
assay.



354  Tables
355  Table1. List of deleted genes with altered susceptibility to defense systems

Brex type | AORF38, AORF41, AORF45, | AORF32, AORF42, AORF68
*AORF46, AORF48, *AORF72
Druantia type | *AORF71(Druad1) APHORF69, AORF65
Ec86 retron *AORF58
Ec78 retron AORF58
DRT type Il AORF57, AORF58
AVAST type llI *AORF55, AORF72, *AORF83,
AORF84
SIR2+HerA *AORF58
DUF4297+HerA | *AORF58
gatABCD AORF84, AORF85
hhe *AORF65 APHORF69
pp! AORF58
restriction-like AORF41, AORF45, AORF48
356 * Genes whose activity was confirmed in complementation experiments (Fig.3).

357
358  Table2. Anti-defense genes discovered from DruSM1 phage

ORF46 Brex type | 62 AA Trimethylamine methyltransferase 76.55 9.4
corrinoid protein

ORF55 AVAST type llI 304 AA ATP-dependent DNA ligase 100 2.7E-38

ORF58 Sir2+HerA, 152 AA Mu-like prophage host-nuclease inhibitor | 97.02 0.059

DUF4297+HerA protein Gam

ORF65 Hhe 74 AA Transcriptional regulator protein (SplA) 72.24 8.1

ORF71 Druantia type | 44 AA Family of unknown function (DUF6614) 40.55 17

(Druad1)

ORF72 Brex type | 204 AA KfrA_N; Plasmid replication region DNA- | 64.96 39
binding N-term

ORF83 AVAST type IlI 130 AA Smf; Predicted Rossmann  fold | 99.81 5E-18
nucleotide-binding protein DprA/Smf
involved in DNA uptake

359
360
361  Table3. Defense activator genes discovered from DruSM1 phage

ORF58 Retron Ec86 152 AA Mu-like prophage host-nuclease 97.02 0.059

inhibitor protein Gam

362
363
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Supplementary Figure Legends

Figure S1. Confirmation of each DruSM1 open reading frame (ORF) deletion mutant, and
coding sequence map containing the antidefense and defense sensor genes of ®DruSM1,
relating to Figure 1.

(A) Photographs of plaque PCR electrophoresis for each ORF deleted mutant resulting in
altered defense activity. (B) Coding sequence map of ®DruSM1 containing antidefense
activity and defense sensor genes on synthetic efficiency of ORF deletion mutants.
Descriptions of defense with altered activity in the Figure 1C map were added here.

Figure S2. Photographic data on antidefense or defense sensor activity, relating to Figure 3.
(A) Photographic data of spot assays evaluating antidefense activity. ®DruSM1 WT and
respective ®DruSM1 ORF deletion mutant were spotted onto E. coli DH10B harboring
respective defense systems and antidefense genes. (B) Photographic data of toxicity assay on
combinations for retron Ec78 and ORF58, or DRT type 2 and ORF58. E. coli DH10B
harboring respective defense systems and ORF58 were grown in LB supplemented with
glucose, and a 10-fold dilution of each O/N culture was made and spotted onto glucose- or
arabinose-supplemented LB plates.

Figure S3. Support data for Druantia type I analysis, relating to Figure 4.

(A) Defense pattern of 6 Quenovirinae phages in the defense library by Gao et al. ®DruSM1,
OSHINS, ®KSS4, DKSA3, DKSW4, and DKSAS were screened using the spot assay in E.
coli DH10B harboring pLG001-034. The fold reduction in EOP was calculated based on the
EOP on DH10B harboring pLG001 (no defense system). (B) Comparison of Drunatia type I
between the defense library by Gao et al. and E. coli clinical isolate A17 strain. Coding
sequence (CDS) annotations were done using PADLOC and CDS alignment was done using
Clinker. (C) Photographic data of the bactericidal effect of ®KSAS artificially expressing the
anti-Druantia type I gene following infection of bacteria expressing Druantia type I using the
spot assay.

Figure S4. Phage classification of ®DruSM1, relating to Figure 4.

(A) Phylogenetic tree of ®DruSM1 and similar phages. Viptree was used for constructing
the protein-based phylogenic tree. (B) Phages with similar nucleotide identity with
®DruSM1. The genomes of phages showing similar nucleotide identity were identified using
online blast, while average nucleotide identity (ANI) was determined using VIRIDIC with
default settings.

11
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