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29  Summary:
30 Pulmonary Mycobacterium tuberculosis (Mtb) infection results in highly

31 heterogeneous lesions ranging from granulomas with central necrosis to those primarily

32  comprised of alveolitis. While alveolitis has been associated with prior immunity in human
33  post-mortem studies, the drivers of these distinct pathologic outcomes are poorly

34 understood. Here, we show that these divergent lesion structures can be modeled in

35 C3HeB/FeJ mice and are regulated by prior immunity. Using quantitative imaging,

36  scRNAseq, and flow cytometry, we demonstrate that Mtb infection in the absence of prior
37 immunity elicits dysregulated neutrophil recruitment and necrotic granulomas. In contrast,
38  prior immunity induces rapid recruitment and activation of T cells, local macrophage

39 activation, and diminished late neutrophil responses. Depletion studies at distinct infection
40 stages demonstrated that neutrophils are required for early necrosis initiation and necrosis
41  propagation at chronic stages, whereas early CD4 T cell responses prevent neutrophil

42  feedforward circuits and necrosis. Together, these studies reveal fundamental determinants
43  of tuberculosis lesion structure and pathogenesis, which have important implications for new
44  strategies to prevent or treat tuberculosis.

45

46  Keywords: Mycobacterium tuberculosis, tuberculosis, CD4 T cells, neutrophils, granuloma,
47  alveolitis, quantitative imaging

48

49  Introduction:

50 The outcomes of aerosol infection with Mycobacterium tuberculosis (Mtb), the

51 bacteria that causes tuberculosis (TB), are highly heterogeneous and shaped by prior

52  immunity, including immunity from vaccination or prior Mtb exposure.! The pulmonary

53 granuloma, an organized aggregate of immune cells, often with a necrotic core that destroys
54  normal lung architecture, is frequently considered the hallmark lesion of TB.? However,

55  human post-mortem studies in the pre-antibiotic era showed that many Mtb-infected lung

56 lesions do not exhibit a granulomatous architecture.® In primary TB, where patients had no
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previous exposure to Mtb, pulmonary lesions usually start as granulomas, with a core of
macrophages that often undergo necrosis centrally surrounded by a lymphocytic cuff.
Conversely in post-primary TB (when individuals had prior Mtb exposure), lesions usually
first developed into pneumonia-like alveolitis, with infected macrophages contained within
intact alveolar sacs infiltrated by lymphocytes.* Despite appreciation of the association
between prior immunity and Mtb lesion types for more than a century, the mechanisms by
which prior immunity promotes the development of alveolitis instead of granulomas remain
unknown.

In modern times, human post-mortem studies are rare and most research dissecting
TB immunity is performed in animals without prior Mtb exposure. These studies have
revealed many insights about the varied microenvironments within the granuloma that
restrict immune function, including distinct myeloid cell niches (macrophage subtypes,
monocytes, granulocytes) and various factors that suppress T cell effector functions. T cells
are frequently relegated to the peripheral cuff, being unable to infiltrate the granuloma cores
and engage in cognate interactions with infected cells.** Lesions also directly suppress T
cells through local immunoregulatory factors, including TGFR® and products of tryptophan
metabolism,* some of which are spatially partitioned in distinct immunoregulatory domains
leading to localized immune suppression.” It is largely unknown how these
microenvironments and immune regulatory factors differ in granulomatous versus alveolitis
lesions, raising the possibility that host-directed therapies may be effective only in certain
lesion types. Furthermore, necrotic lesions can progress to lung-destructive cavitary TB
disease, which takes longer to respond to antibiotic treatment and has a high risk of relapse
and recurrent infection. Thus, understanding how to prevent these types of lesions from
forming could lead to new strategies to curb severe manifestations of disease.®*?

Historically, mouse models have lacked the ability to dissect relationships between
lesion structure and disease control. Mtb-infected C57BL/6 mice, the most commonly used
mouse strain for TB research due to the abundance of tools for mechanistic studies, do not

form necrotic granulomas when infected with a conventional aerosol dose of 50-100 colony-
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85 forming units (CFU)."* However, recent work has shown that reducing the infectious dose to
86  a more-physiologic 1-3 CFU results in well-circumscribed lesions that share properties with
87  stereotypical human lesions, including discrete and segregated regions containing T cells,
88 infected macrophages, and B cell follicles, respectively.'* Furthermore, C3HeB/FeJ mice do
89 develop necrotizing granulomas, especially when infected with hypervirulent Mtb strains of
90 the W-Beijing lineage.™ A single gene that confers the extreme susceptibility and necrotic
91 lesions of C3HeB/FeJ mice has been identified as Sp140, an epigenetic regulator with
92  chromatin-binding domains that can influence inflammatory gene transcription,*® and Sp140°
93 " mice on a C57BL/6 background exhibit similar TB susceptibility and pathology phenotypes
94  as C3HeB/FeJ mice."” Use of these mouse models has led to the identification of critical
95 signaling pathways that regulate Mtb infection outcomes, including type | IFN vs IL-1, as well
96 as insights into the temporal processes driving inflammation and disease: neutrophil
97  recruitment, cellular death, pDC sensing, and IFN production/signaling.”*® In addition,
98 studies in collaborative-cross mice have shown that host genetics can heavily influence
99 disease susceptibility and ability to control Mtb after immunization with bacillus Calmette—
100  Guérin (BCG).***! Protection in these models was associated with differences in T cell
101 effector responses and concordant structural changes of pulmonary lesions, suggesting that
102  ability of immune cells to deliver their critical effector functions within the lesions may be
103  associated with improved outcome.
104 Here, we report a mouse model that recapitulates these two divergent types of TB
105 lesions, necrotizing granulomas in non-immune animals and alveolitis in those with prior
106  immunity. Using advanced immunologic techniques and quantitative spatial approaches, we
107 find that pre-existing immunity results in enhanced early T cell and macrophage activation at
108 infected sites, which is associated with decreased neutrophil clustering and tissue
109 destruction at late timepoints. Using depletion studies, we further show that CD4 T cells are
110 critical for the protection afforded by pre-existing immunity against necrosis, and in their
111 absence all lesions develop necrosis and increased neutrophil infiltration. Conversely, we

112  find that neutrophils are required for lesion necrosis throughout infection, including both the
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early generation and propagation of centralized necrosis, and result in reduced T cell and
macrophage activation. Together, these studies provide insight into protective immunity
afforded by pre-existing immunity and reveal pivotal opposing roles for CD4 T cells and

neutrophils in driving disease outcomes.

Results:

Pre-existing immunity abrogates the formation of necrotic granulomas

To examine the impact of pre-existing or ongoing immune responses against Mtb on
de novo lesion structure development and disease progression, we utilized the C3HeB/FeJ
(C3H) mouse model, which generates large necrotic granulomas akin to those found in
human primary TB, especially after aerosol infection with hypervirulent or high transmission
W-Beijing Mtb strains.**? To induce pre-existing or concomitant immunity to Mtb, we used
two established modalities: subcutaneous BCG immunization 8 weeks prior to Mtb
challenge, as well as concomitant Mtb infection (CoMtb), in which a low-level chronic Mtb
infection is established in the cutaneous lymph node after intradermal Mtb inoculation.??*
Mice administered either BCG or CoMtb, or unimmunized controls, were aerosol infected
with a conventional dose (CD, 50-100 CFU) of SA161 Mth, a hypervirulent clinical isolate
from the W-Beijing lineage. As expected, when assessed at day 98 (d98) post-infection (p.i.),
unimmunized mice developed large granulomas with a central necrotic core rimmed by
foamy macrophages, surrounded by a lymphocytic cuff, as well as multiple smaller lesions
without overt necrosis (Fig 1A). In stark contrast, both CoMtb and BCG completely blocked
the formation of necrotic granulomas, instead inducing smaller, less-organized lesions
comprised of histiocytes and lymphoid cells, and exhibiting less neutrophil infiltration (Fig 1A,
S1A). Blinded, quantitative evaluation of multiple lung pathology metrics using principal
component analysis (PCA) showed that CoMtb resulted in the greatest overall changes in

pathology as compared to Mtb infected control mice (Fig 1B, S1B, Table S1). Both BCG and
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CoMtb markedly reduced bacterial burdens at d28 p.i., together indicating that pre-existing
and concomitant immunity offer robust protection at early timepoints. Differences in lung
CFU were less pronounced 98 days post-infection, although the bacterial burdens were still
significantly lower in the CoMtb group (Fig 1C). Given the improved protection seen with
CoMtb as compared to BCG, we chose CoMtb as the modality of prior immunity to dissect
mechanistically.

Detection of multiple distinct lesion types during primary infection, including both
necrotic and non-necrotic lesions, raised the question of whether this reflected distinct
stages of lesion progression (i.e., initial aerosol-seeded versus secondary, disseminated
lesions) or an earlier divergence in lesion organization. To test these distinct possibilities, we
utilized an ultra-low dose (ULD) aerosol infection (1-3 CFU), which results in the formation of
a solitary organized lesion in most mice.'* Primary and CoMtb mice were assessed at d35
p.i., a timepoint shortly after the formation of mature lesions. In control animals, we observed
formation of single lesions which possessed heterogeneous organization, with 15/27 mice
across two experiments possessing granulomas containing a central necrotic core
dominantly comprised of neutrophils (CD177-positive cells), necrotic debris (nuclear dye),
and absence of alveolar epithelial staining (p120), consistent with destruction of the epithelial
architecture (Fig 1D-F, S1C). In stark contrast, the remaining 12/27 lesions in control
infected mice lacked this necrotic core and instead contained tightly aggregated clusters of
antigen-bearing macrophages (CD68+, Siglec F-, PPD+) which were surrounded by intact
alveolar epithelium (Fig 1D-F), consistent with alvealitis.

We next examined early lesions after ULD Mtb infection of mice with CoMtb infection.
We observed complete absence of lesion necrosis, and instead these lesions again were
comprised of tightly aggregated infected macrophages surrounded by intact alveolar
epithelium, consistent with alveolitis. To quantify these findings, we used histo-cytometry and
CytoMAP.%?® \We first segmented single cells to define major cell types within imaged
tissues (neutrophils (CD177), macrophages (CD68), T cells (CD3, CD4), B cells (B220), Mtb

antigen-bearing cells (PPD)), and also examined alveolar epithelial integrity with p120
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staining (Fig S1D). We next used CytoMAP to raster-scan the spatial neighborhoods (radius
= 50um) within the imaging data and clustered these neighborhoods into discrete tissue
region subtypes (i.e. microenvironments) based on the similarity of cellular composition. This
analysis revealed that 4/10 sampled lesions in the setting of primary infection had regions
consistent with necrosis (neutrophil enrichment, paucity of alveolar epithelium, R1/pink) and
high antigen abundance (R2/orange), surrounded by regions of high myeloid density
(R3/yellow) (Fig 1G-J). In contrast, lesions in CoMtb mice were highly enriched for lymphoid-
dominant regions with intact p120 staining (R4/blue, R5/green), consistent with alveolitis (Fig
11,K). Necrotic granulomas in control animals were also associated with increased PPD
abundance as compared to non-necrotic lesions, while lesions in CoMtb mice had markedly
reduced PPD abundance (Fig 1L), consistent with markedly decreased CFU at early
timepoints (Fig 1C). Since most lesions in this ULD infection model at these early time points
represent those seeded by the initial aerosol infection, this indicated that there is an early
divergence in primary lesion development (necrosis vs. alveolitis) even in genetically
identical mice infected with the same Mtb strain, and that concomitant immunity afforded by

CoMtb abrogates formation of necrotic granulomas and leads to the generation of alveolitis.

CoMtb alters the immune landscape following Mtb infection

We next sought to obtain a holistic understanding of lesion divergence at the early
timepoints. For this, we performed spatial transcriptomics analysis using the Nanostring
GeoMx platform on necrotic and non-necrotic lesions from primary ULD infected mice (d35
p.i.). We selected multiple regions of interest (ROI) within necrotic and non-necrotic lesions,
as well as from uninvolved distal lung regions. ROI counts for each granuloma and
uninvolved region were aggregated, normalized, and assessed by PCoA. This analysis
revealed major transcriptomic distinctions between lesions and uninvolved tissues. Further,
while ROIs from non-necrotic lesions were dispersed along PCoA 1 and overlapped with
uninvolved tissues, ROIs from necrotic granulomas were tightly clustered and entirely

distinct from uninvolved tissues (Fig 2A, S2A). Gene set enrichment analysis of comparing
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necrotic vs non-necrotic ROIs identified multiple pathways increased in necrotic ROIs,
related to neutrophil biology and lesion necrosis, including type-I interferon production and
signaling, neutrophil activation/trafficking (chemotaxis, phagocytosis, reactive oxygen, and
nitrogen species production), cell death, TGFB signaling, and tissue degradation/remodeling
(Fig 2B). Together, this suggests that even in primary infection settings, individual lesions
have vastly different immune and inflammatory landscapes, with a dominant difference being
type | IFN and neutrophil-associated factors.

To gain further insights into lesion development and effects of CoMtb on immune
responses during infection, we performed single-cell RNA sequencing (scRNAseq) and flow
cytometry analysis of lungs from Mtb-infected animals with and without CoMtb immediately
pre-infection and at 10, 17 and 34 days after CD infection. Clustering of sScRNAseq data
across timepoints and conditions allowed for robust identification of the major immune cell
types comprising pulmonary lesions, including T cells, macrophages, neutrophils, and B cells
(Figs 2C, S2B). Primary infection of mice resulted in gradual recruitment of T cells,
monocyte-derived cells, as well as neutrophils which continued to accumulate over time (Fig
2C,D). In contrast, infection of CoMtb mice induced an increased representation of activated
CDA4 T cells (primarily defined by CD44 and IFNg) and monocyte-derived cells (MDC) at
early timepoints (d17), and this was correlated with decreased bacterial burdens at this
timepoint (Fig 2D, S3A). These differences equalized by d34 (Fig 2D), when there was a
greater increase in lung bacterial burdens in the primary group (Fig S3A). Neutrophils were
found in equivalent representation at day 10 and 17 for both conditions, but continued to
increase in control infected mice, and were closely correlated with bacterial burdens over
time, while remaining stable in the CoMtb group (Fig 2D, S2C). Similar observations were
confirmed by flow cytometry, demonstrating early increases in activated CD4 T cells and
MDCs in CoMtb mice, and enhanced neutrophil abundance in primary Mtb settings at later
time points (Figs 2E, S3B-D).

Additionally, we observed heterogeneity and distinct patterns of recruitment in

different neutrophil populations by scRNAseq. We identified a cluster of neutrophils present
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225  within the lung prior to infection, “early neutrophils” which was enriched for pathways

226 including eicosatetraenoic acids and T cell signaling and stimulation (Fig 2F,G, S2D). In

227  CoMtb settings, this early neutrophil population had a more robust representation at d17 but
228 declined by d34, and this contrasted the primary disease group where these cells continued
229 toincrease over the course of infection. A distinct “late” neutrophil cluster was identified at
230 d17 p.i., and these cells showed a strong enrichment in signaling for type | IFN and cell

231 death pathways. (Fig 2F,G, S2D). In primary infection, the late cluster neutrophils were

232  markedly increased by d34, and this contrasted with CoMtb settings, which again

233 demonstrated leveling off of neutrophil abundance at this timepoint (Fig 2F). Together this
234  indicates that CoMtb-mediated pre-existing immunity results in pleiotropic effects on multiple
235 innate and adaptive immune cell populations over the course of infection.

236

237 CoMtb accelerates T cell and MDC activation, blunts neutrophil responses

238 To further dissect the transcriptional changes in distinct cell types in the presence or
239  absence of CoMtb over time, we used GSEA. Even prior to aerosol infection, there were
240  differences in pathways associated with cell cycle and mitochondrial respiration in ILC2s in
241  the setting of CoMtb, but not primary infection, potentially indicating innate training, which is
242  consistent with previous reports (Fig 3A).?” In agreement with our cellular abundance

243 analysis, a stronger cell cycle/division response was seen in CD4 T cells following CoMtb at
244 d17, indicating ongoing cellular activation and proliferation of T cells within the lung

245  parenchyma. Starting d17 p.i., we also observed striking response differences in interferon
246  response pathways which were upregulated over time across most cell populations (Fig 3A).
247 To elucidate what might be driving these interferon pathways, we used CellChat

248 analysis®® to elucidate the predicted ligand-receptor interactions between T cells and myeloid
249  cells. We identified markedly increased outgoing Ifng signals from CD4 and CD8 T cells and
250  multiple myeloid subsets in the setting of CoMtb at very early time points (d10) (Fig 3B),

251  suggesting enhanced activation of myeloid cells by T cells. This was supported by Luminex

252  analysis of whole lung lysate, which demonstrated elevated levels of IFNC0 and CXCL9


https://doi.org/10.1101/2024.04.12.589315
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.12.589315; this version posted April 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

253  (downstream of IFNT) as early as d7 and d14 p.i. (Figs 3D, S3D). Similarly, outgoing Cd40Ig
254  interactions from T cells to Cd40 on myeloid cells were increased d10 and d17 p.i. (Fig 3B).
255  Given that these timepoints are prior to (d10), or shortly after the time (d17), when changes
256  in bacterial burdens are observed (Fig S3A), and that both IFNJ and CD40L have important
257  roles in Mtb immunity, these results suggest a causative role for T cell-derived activation of
258  myeloid cells in CoMtb-mediated protection.

259 We also used CellChat to probe potential chemotactic interactions that could result in
260 enhanced neutrophil recruitment, specifically focusing on neutrophil-neutrophil interactions
261 that can drive feed-forward recruitment loops known to mediate tissue destruction in other
262  models of inflammation.?® We found enhanced Cxcl2-Cxcr2 interactions, and these were
263 increased in CoMtb mice at early time points but were preferentially enriched in primary

264  infected animals at later timepoints associated with enhanced neutrophil abundance (Fig
265  3C). Similarly divergent CXCL2 protein abundance between the groups was also confirmed
266  via Luminex. We found modestly increased CXCL2 protein abundance in settings of CoMtb
267  at early timepoints (d14), but this was then dwarfed by massive upregulation of CXCL2 in
268 primary infected animals one week later (d21) (Fig 3D). Together, these data indicate that
269  Mtb infection in CoMtb settings are associated with rapid recruitment and activation of T cells
270 and enhanced IFN_ sensing by local myeloid cells, as well as with limited neutrophil

271 recruitment at late timepoints. In contrast, primary infection in the absence of prior immunity
272  is associated with limited early T cell activity and continued neutrophil influx over time.

273

274  CoMtb shapes early tuberculous lesion cellularity and organization

275 The above data indicated that prior Mtb exposure induces a fundamental shift in the
276  pulmonary immune landscape during early Mtb lesion formation which leads to divergent
277  disease progression at later time points. To understand the organization of immune cells and
278 investigate signaling microenvironments within developing lesions, we examined very early
279 lesions 17 days p.i. using quantitative microscopy. In accord with our observations by

280 scRNAseq and flow cytometry, we observed accelerated CD4 T cell responses in CoMtb
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281 infected mice, with a higher density of CD4 T cells within developing lesions, and particularly
282 in neighborhoods in close proximity to PPD+ MDCs (Fig 4A, B). CoMtb lesions also

283 demonstrated an increased proportion of MHCII+ MDCs, consistent with increased coupling
284  of T cell activation with downstream myeloid cell maturation (Fig 4A, B).

285 Many of the early lesions formed in the absence of prior immunity (primary) already
286  possessed extensive neutrophil clusters, albeit we also observed extensive heterogeneity in
287  this process, consistent with the divergent lesion outcomes seen at later timepoints (Fig

288  4A,B). In contrast, lesions formed in the setting of CoMtb possessed a much lower density of
289  neutrophils and the infiltrating cells were sparsely distributed throughout the lesions (Fig

290 4A,B). The reduced neutrophil infiltration observed at this early timepoint by quantitative

291 imaging differed markedly from the neutrophil cellularity observed at the same timepoint in
292  flow cytometry and scRNAseq datasets which showed similar neutrophil cellularity across
293  groups, potentially reflecting the inefficiency in recovering viable neutrophils in single cell
294  suspensions especially when these cells are undergoing cell death, as seen in our spatial
295 transcriptomics data (Fig 2B).* To further understand the spatial relationships of different
296 cell types with respect to one another, we analyzed the cell-cell correlations of cellular

297 abundance across tissue neighborhoods within lesions. We found that even at this early time
298  point, there were already distinct organizational features. In control mice without prior

299 immunity, neutrophils were strongly associated with large clusters, as defined by aggregates
300 >3000 um?, which were also highly associated with local PPD antigen abundance (Fig 4C),
301 and both were negatively correlated with T cells. These lesions also had signs of decreased
302 alveolar integrity as compared to CoMtb, with a decreased density of p120+ cells (Fig 4D). In
303 contrast, CoMtb generated lesions in which PPD antigen was positively correlated with both
304 macrophages expressing MHCIl and CD4 T cells, suggesting closer proximity and cross-talk
305 between these cells. Together, this suggests that CoMtb has a dominant effect on shaping
306 immune cell organization, abundance, and activation within early developing pulmonary

307 lesions following aerosol Mtb infection.

308
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CDA4 T cells are required for CoMtb-mediated protection from lesion necrosis

We hypothesized that the CoMtb-mediated acceleration of CD4 T cell responses was
responsible for improving local myeloid responses and CFU burden. To test this, we
depleted CD4 T cells in control and CoMtb infected mice using anti-CD4 antibody, with the
depletion beginning one day prior to infection, and examined lesion structures and lung CFU
35 days later (Figs 5A, S4A). In stark contrast to aerosol Mtb-challenged CoMtb mice which
completely lacked necrotic lesions, CD4 T cell-depleted CoMtb mice developed highly
necrotic lesions which contained a central core that was densely packed with infiltrating
neutrophils and which lacked epithelial staining (Figs 5B, 5D-F, S4B). Depletion of CD4 T
cells also led to a near-complete reversion of bacterial protection offered by CoMtb, resulting
in minimal differences in lung CFU between control and CoMtb infected CD4-depleted mice
(Fig 5C). Together, this suggests that CD4 T cells play a pivotal role in regulating neutrophil
abundance and lesion necrosis and are a major contributing factor mediating the CoMtb-

reduction in bacterial burdens.

Neutrophils drive lesion necrosis

Given the correlation in neutrophil abundance, increased bacterial burdens, and
severe pathology that we and others have observed, we next hypothesized that neutrophils
were necessary for pulmonary lesion necrosis and promote enhanced bacterial replication.
The role of neutrophils during Mtb infection is multifaceted, with evidence suggesting both
beneficial roles for bacterial control, and detrimental roles driving worsened outcomes,
especially in severe disease. Neutrophil depletion has been shown to compromise control of
Mtb bacterial burden in the C3H model, though the impact of neutrophils on determining
lesion organization has not been examined directly.*"** To directly test the role of
neutrophils in promoting granuloma formation in the C3H mouse model, we infected mice
with a CD of Mtb, and depleted neutrophils with an anti-Ly6G ([Ly6G, 1A8) antibody starting
at d7 p.i., when Mtb first starts to infect non-alveolar macrophage cell types, to d28 p.i.,

when mature necrotic lesions have formed (Fig 6A, S5A). Neutrophil depletion resulted in a
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337 complete abrogation in lesion necrosis (Fig 6B), instead generating lesions comprised of
338 alveolitis, akin to CoMtb, with less overall extent of lung involvement (Fig 6D-F). Neutrophil
339 depletion also resulted in an approximately 2-log reduction in lung bacterial burdens (Fig
340 6C), together indicating that neutrophils promote lesion necrosis and restrict Mtb immune
341  control.

342 To explore how neutrophils affect local immune landscapes within lesions, we again
343 performed quantitative image analysis. Lesions in neutrophil-depleted mice exhibited

344  enhanced infiltration of CD4 T cells into the Mtb-infected, macrophage-rich, central

345 granuloma cores, including CD4 T cells with increased pS6 staining, suggesting recent TCR
346  signaling, directly adjacent to PPD+ myeloid cells (Fig 6G). We also observed markedly
347 increased MHC-II staining in neighboring cells, likely reflecting local inflammatory signaling
348 and myeloid cell activation (Fig 6H).

349 We next hypothesized that neutrophil recruitment during the early stages of lesion
350 formation might shape the downstream events of lesion progression. To test this, we

351 administered MNLy6G depleting antibody 7-15 days p.i. (early depletion), then waited an

352  additional 4 weeks to allow for lesion development (Fig 61). When we evaluated the lungs of
353 these mice at d42, we observed that early neutrophil depletion completely blocked lesion
354  necrosis, instead driving generation of alveolitis. Early neutrophil depletion also resulted in a
355  2-log decrease in lung bacterial burdens, comparable to that observed using the extended
356  depletion protocol (Fig 6J-L, S5B). Neutrophils were still observed in these lesions, albeit at
357 lower numbers as compared to full-depleted animals, but the cells that did infiltrate did not
358 exhibit extensive clustering (Fig 6M). Together this suggests that neutrophil influx during the
359 very initial stages of lesion formation shape granuloma development and downstream

360 disease progression.

361 Finally, we examined whether continued neutrophil recruitment at later stages of
362 infection, after the necrotic lesions have been established, is required for maintenance of
363 disease pathology. To test this, we administered MLy6G antibody 28 days after CD infection

364  with SA161 Mtb, and continued treatment for two weeks (late depletion) (Fig 6N). Evaluation
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365  of these lungs via imaging revealed that late neutrophil depletion also had marked beneficial
366 effects on tissue pathology. Nearly all lesions in late depleted animals lacked necrosis and
367 caseation, and we found only a single lesion in 1/6 mice containing a small necrotic center
368 (Figs 60,Q, S5C,D). Further, late neutrophil depletion was associated with a 2.5 log

369 reduction in lung bacterial burdens (Fig 6P). Together, this suggests that continued

370 neutrophil recruitment at late timepoints is required to propagate lesion necrosis and restrict
371  immunity against Mtb.

372

373  Discussion:

374 From the earliest pathologic examinations of TB, it has been apparent that Mtb

375 infection results in pulmonary lesions with vastly different organization, which range from
376  generation of necrotizing and cavitating lesions to pneumonia-like alveolitis, and these are
377  known to have major implications for disease severity and resiliency to antibiotic therapy.*®
378  However, dissecting the mechanistic basis of these divergent processes in humans has
379  been challenging due to extensive genetic and environmental variation among the

380 populations, differences in past exposure history, including BCG immunization or infection
381  with either Mtb or nontuberculous mycobacteria, and based on antibiotic usage. Some

382  historical studies examined differences between Mtb lesion structures in vaccinated versus
383 unvaccinated animals, but lacked the modern tools to examine cellular organization and
384 interactions in a quantitative manner. More recent studies have focused on granuloma

385  structures in animals in the absence of prior immunity. To investigate how pre-existing

386 immunity affects lesion composition and organization we used a mouse model for

387  concomitant immunity (CoMtb) in C3H mice. We find that prior immunity rapidly reshapes
388 lesion pathology by abrogating the formation of necrotic granulomas and instead leading to
389 generation of alveaolitis with reduced bacterial burdens, and that these changes are

390 dominantly dictated by the opposing roles served by CD4 T cells and neutrophils. Together,

391  this study uncovers major cellular mechanisms leading to the divergence in lesion structure


https://doi.org/10.1101/2024.04.12.589315
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.12.589315; this version posted April 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

392 and disease progression based on immune history and lends insights into the mechanisms
393 underlying the differences in pathology caused by primary and post-primary TB.

394 Akin to our previous work examining responses to Mtb infection following BCG

395 immunization,* we show that the pre-existing immunity conferred by CoMtb accelerates the
396 localization of T cells and monocyte-derived cells to lesions and enhances their activation
397 state at the site of infection, and this in turn is associated with a blunted neutrophil response
398 at late timepoints. This results in a complete abrogation of lesion necrosis, which we

399 demonstrate is CD4 T cell-dependent.®” While an important role for CD4 T cells in controlling
400 Mtb infection has been appreciated for decades, our study demonstrates how this immunity
401 is achieved at the tissue level and in the context of lesion composition and architecture. In
402  settings without prior exposure, the activation of T cells and their recruitment to infected sites
403  within the lung is delayed and occurs only after the early onslaught of infiltrating innate cells,
404  including neutrophils. This allows for the establishment of early pro-necrotic lesions which
405  we see developing as early as d17 p.i., and these early lesions likely already have the ability
406  to suppress local adaptive immune responses, promote further neutrophil recruitment, and
407  provide a safe harbor within the developing core for enhanced bacterial replication. In

408 contrast, pre-existing immunity elicits rapid recruitment of T cells to the infected sites and
409 these in turn promote local monocyte and macrophage activation, together restraining the
410  establishment of pro-necrotic lesion centers and unchecked bacterial replication. Additional
411  differences between primary TB and settings of prior immunity may also arise from training
412  of innate responses, including that of alveolar macrophages, monocytes, and neutrophils,
413  and these could directly impact responses to Mtb or indirectly alter crosstalk with CD4 T

414  cells.”"*®

415 Potential mechanisms for the protection afforded by CD4 T cells as elucidated by our
416  scRNAseq analysis include increased IFNTT production by T cells and local sensing by

417  myeloid cells, which would promote enhanced bacterial control during the earliest stages of
418 infection. Moreover, IFN™ signaling in non-hematopoietic stromal cells as well as intrinsically

419  in neutrophils has been shown to reduce neutrophil localization to the Mtb-infected lung,
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suggesting pleiotropic effects.***° Additional candidate mechanisms include differential
activation of monocyte-derived cells via CD40L or MIF, which are both important for optimal
bacterial control,**** as well as regulation of myeloid trafficking via CD6-ALCAM
interactions.*® Of note, our findings that every lesion underwent necrosis in the setting of
CD4 depletion is distinct from what we observe during ULD infection of C3H mice in the
absence of prior immunity, in which only a subset of lesions develop necrosis. Thus, our
data show that CD4 T cells are essential for preventing lesion necrosis in settings of prior
immunity, suggesting that their rapid recruitment and function within early developing lesions
dominantly shapes downstream disease progression.

While pre-existing immunity may be one manner which promotes alveolitis following
Mtb infection, there is evidence that several other factors may also influence lesion structure.
For example, the lesion heterogeneity that we observed in isogenic mice infected with
genetically identical bacteria suggest that stochastic events, such as differences in the
activation phenotype of the first cell to uptake Mtb or early cellular interactions in distinct
regions of the lung, may also lead to necrotizing granulomas in some cases and alveolitis in
others. Mtb strain characteristics and host genetics also likely contribute, as large necrotic
granulomas form more readily in C3H mice infected with the Mtb SA161 strain than with the
H37Rv strain,™ whereas infection by either Mtb strain in C57BL/6 mice, which mount a
robust Thl response, leads to lesions comprised of alveolitis even in the absence of prior
immunity.** Further evidence that genetic differences in the Mtb strains themselves can drive
different lesion types comes from recent work showing that clinical Mtb strains associated
with high transmission in human populations induce more granuloma necrosis in C3H mice
than Mtb strains associated with low transmission. Environmental factors, including co-
infections, may also shape Mtb lesion organization. Clinical studies demonstrate that HIV
infected patients with low CD4 T cell counts are less likely to form cavities.* Initially, this
seems incongruent with our findings that the absence of CD4 T cells strongly promotes
necrosis. However, the CD4 depletion in HIV-infected individuals does not occur in isolation.

These individuals are viremic, often have additional co-infections, and their immune systems
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are globally dysregulated, all of which may influence lesion structure.*® Thus, while pre-
existing immunity strongly influences lesion structure, additional work is needed to dissect
the mechanisms driving lesion progression and disease pathogenesis across different
settings and clinical scenarios.

Neutrophils have a strong association with severe disease in tuberculosis, as shown
in several mouse models, experimentally and using computational modeling in NHPs, and
observationally in clinical studies.*’~*° This has led to the proposal of a “tipping point” model,
where neutrophils mediate disease exacerbation downstream of multiple mechanisms of
impaired host resistance.”* We now further this model showing that neutrophils actively
regulate lesion organization and negatively affect disease pathology, and that they are
required for this throughout the different phases of infection. We find that neutrophils are
essential very early during infection to drive necrosis and enhance disease severity, and
even when neutrophils are later given the chance to enter tissues, they do not display the
same magnitude of recruitment, do not drive necrosis, nor markedly affect bacterial burdens.
This suggests that there is a brief window for neutrophils to cause lesion necrosis, and if
neutrophils are not present during that time, responses by other cell types such as CD4 T
cells or macrophages dominantly shape local tissue environments that alter downstream
disease progression. Mechanistically, it is likely that in addition to their role in driving
necrosis, early clusters/swarms of recruited neutrophils locally impair immune responses,
and we see reduced T cell localization and TCR sensing near antigen-bearing cells, and this
is associated with less downstream myeloid cell activation. In addition to early time points,
we find that neutrophils are required for sustaining disease pathology even after initial
necrotic lesion formation, and that depletion of neutrophils after formation of necrosis leads
to dramatic improvements in lesion pathology and marked reduction in lung bacterial
burdens. To our knowledge, this represents the largest improvement seen in pulmonary
bacterial burdens with host-directed therapy initiated at late timepoints. This also represents
a more clinically relevant scenario, since patients present to clinic late after exposure and

almost always with radiographically-apparent pulmonary lesions.>*** Thus, our work builds
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476  on the “tipping point” model by elucidating the role of neutrophils in shaping lesion structure,
477  as well as demonstrate that neutrophils do not simply respond to immune failure at chronic
478  timepoints, but act during early inflection points to drive downstream disease progression.
479  The potential mechanisms by which neutrophils mediate this process include NETosis**"*®
480  driving type | IFN production,*® and ROS,* warranting careful evaluation in future studies.
481 Overall, our work establishes a mouse model to dissect how pre-existing or

482  concomitant immunity modifies disease progression and leads to the formation of distinct
483 lesion types. Clinically, necrotic pulmonary lesions pose a significant challenge for antibiotic
484  treatment, in large part due to the reduced penetration of antibiotics into necrotic centers.
485  Necrotic lesions that have emptied their caseous core to form cavitary lesions also pose an
486 increased risk of relapse and long-term pulmonary sequelae, such as impaired clearance of
487  respiratory secretions and recurrent infections.™*** Our demonstration that neutrophil

488  depletion, even administered after granuloma formation, can limit lung destruction and

489  preserve alveolar epithelium architecture, suggests that neutrophils may provide a useful
490 target for host-directed therapy in conjunction with antibiotic treatment. While an

491  indiscriminate neutrophil depletion is not a practical clinical solution due to the overwhelming
492  risk of other infections, multiple inhibitors of neutrophil trafficking and activation are currently
493  developed for other indications, and may be useful in reducing detrimental pathology and
494  potentially even shortening treatment courses.
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Figure titles and legends

Figure 1: Pre-existing immunity abrogates the formation of necrotic granulomas. A-C:

Day 98 post CD infection (n=5 per group). A) Representative histology images of lung
sections. B) Principal component analysis of pathology scores. C) Mtb lung burden in

Primary, BCG, and CoMtb Groups. D-L: Day 35 post ULD infection (n=10 primary, 5

CoMtb). D) Representative confocal microscopy images demonstrating preserved alveolar
integrity in non-necrotic Primary and CoMtb lesions. E) Representative confocal microscopy
images depicting major cell populations within lesions. F) Percent of mice with necrotic
lesions, covers two independent experiments. G) Heatmap showing cellular composition of
clustered microenvironments. H) Representative map showing 50um? neighborhoods, color-
coded microenvironment. I) Percent area of lesion comprised by each microenvironment.
Uninvolved regions (grey) not included. J) Percent of lesion comprised by necrotic region
(pink). K) Ratio of lymphoid (blue, green) to myeloid (yellow, orange, pink) predominant
regions. L) Relative density of PPD signal per 50 um? neighborhood. Single-group

comparisons by Mann-Whitney U test. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001.
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Error bars (F) reflect 95% confidence intervals. Points represent individual mice or lesions
from individual mice. Data are representative of one (A-C) or two (D-L) independent

experiments. See also Figure S1.

Figure 2: CoMtb alters the immune landscape following Mtb infection. A-B: Day 35 post

ULD infection, n = 8. A) PCoA analysis of ROI transcriptomes, color coded by lesion type

(necrotic vs non-nercotic, 3 ROIs per point) or location (uninvolved, 1 ROI per point)). B)
GSEA analysis showing pathways enriched in primary necrotic lesions vs primary non-

necrotic lesions. C-E: Multiple timepoints post CD infection. C) UMAP depicting cell types

identified by scRNAseq analysis of lung parenchymal cells, heatmap showing changes in
cellular abundance across timepoints, numbers reflect the median number of cells of a given
type per thousand cells. D) Change in proportions of selected cell populations over time, as
determined by scRNAseq. E) Change in numbers of selected cell populations over time, as
determined by flow cytometry. F) Change in proportions of early and late neutrophil clusters
over time, as determined by scRNAseq. G) GSEA analysis showing pathways enriched in
early and late neutrophil clusters. Points represent individual lesions (A, 3 ROIs samples per
lesion, 1 per uninvolved area), and individual mice (D, E, F). False discovery rate-adjusted p
values determined using the R fgsea package. Data are representative of one (A-D, F-G) or

two (E) independent experiments. See also Figures S2 and S3.

Figure 3: CoMtb accelerates T cell and MDC activation, blunts neutrophil responses.

Multiple timepoints post CD infection. A) GSEA analysis showing pathways enriched

following aerosol infection at days 10, 17, and 34 post infection, in the setting of primary
infection and CoMtb. B) Predicted strength of selected T cell to myeloid cell signaling
interactions quantified using CellChat. C) Predicted strength of significant neutrophil-
neutrophil interactions in CellChat's chemokine pathways. D) Levels of IFNTT, CXCL9, CCL5,

and CXCL2, measured by Luminex. False discovery rate-adjusted p values determined
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using the R fgsea package. Dots in B and C indicate strength is significantly higher
compared to a null distribution (i.e., CellChat-reported p value < 0.05). Single-group
comparisons in D by t test. Data are representative of one (A-C) or two independent

experiments (D) experiments. See also Figures S2 and S3.

Figure 4: CoMtb shapes early tuberculous lesion cellularity and organization. Day 17

post CD infection, n = 5 per group. A) Representative confocal images showing lesions and

zoom-ins highlighting T cells, MDCs, and neutrophils. B) Relative cellular density of these
cell types within lesions as determined by histo-cytometry. C) Pearson correlation
coefficients of the indicated cell populations within microenvironments. D) Confocal image
and spots/neighborhood of p120 staining. Single-group comparisons in by unpaired t test.
Correlations by Pearson’s correlation test. Points represent individual lesions. Data are

representative of two independent experiments.

Figure 5: CD4 T cells are required for CoMtb-mediated protection from lesion

necrosis. A) Experimental outline. Subset of mice received CoMtb, then all mice aerosol

infected with CD Mtb. Mice then received ~ CD4 depleting antibody or isotype from d-1 until

harvest. n = 3-5 per group. B) Representative confocal images showing presence of

necrosis with NCD4 administration. C) Pulmonary bacterial burdens. D) Representative map
showing 50um? neighborhoods, color-coded microenvironment and heatmap showing
cellular composition of clustered microenvironments. E) Percent area of lesion comprised by
each microenvironment. Uninvolved regions (grey) not included. F) Percent of lesion
comprised by necrotic region (pink). Single-group comparisons by Mann-Whitney U test.
Points represent individual mice. Data are representative of two independent experiments.

See also Figure S4.

Figure 6: Neutrophils drive lesion necrosis. A) Experimental outline for A-H. Mice

received CD aerosol infection, then administered “Ly6G depleting antibody or isotype from
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588  d7-d28, lungs taken d29. B) Representative confocal images showing abrogation of necrosis

589  with OLy6G administration. C) Pulmonary bacterial burdens. D) Representative map

590 showing 50um? neighborhoods, color-coded microenvironment and heatmap showing

591  cellular composition of clustered microenvironments. E) Percent area of lesion comprised by
592  each microenvironment. Uninvolved regions (grey) not included. F) Percent lesion (any

593  color) of total lung area, and percent of lesion comprised by necrotic region (pink). G)

594  Representative confocal images and quantification showing increased pS6+ T cells following
595  _Ly6G administration. H) Representative confocal images and quantification showing

596 increased MHCII+ in MDCs following [Ly6G administration. |) Experimental outline for I-M.

597 Mice received CD aerosol infection, then administered _ Ly6G depleting antibody or isotype

598 from d7-d15, lungs taken d43. J) Representative confocal images showing abrogation of

599  necrosis with “Early” _Ly6G administration. K) Pulmonary bacterial burdens. L) Percent of
600 lesion comprised by necrotic region (pink). M) Percent of lesion comprised by

601  microenvironments with high neutrophil density. N) Experimental outline for N-Q. Mice

602 received CD aerosol infection, then administered ~Ly6G depleting antibody or isotype from

603  d28-d49, lungs taken d50. O) Representative confocal images showing decreased necrosis

604  with “Late” Ly6G administration. P) Pulmonary bacterial burdens. Q) Percent of lung area
605 comprised by necrotic region (pink). Single-group comparisons by unpaired t test (C, F left,
606 K, P) or Mann-Whitney U test (F right, G, H, L, M, Q). Points represent individual mice. Data
607 are each representative of three (A-H) or two (I-Q) independent experiments. See also

608  Figure Sb.

609

610 STAR Methods

611

612 Resource availability

613

614 Lead contact


https://doi.org/10.1101/2024.04.12.589315
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.12.589315; this version posted April 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

615  Further information and requests for resources and reagents should be directed to and will
616 be fulfilled by the Lead Contact, Kevin Urdahl.

617

618 Materials availability

619  This study did not generate new unique reagents.

620

621 Data and code availability

622  The mouse lung scRNAseq and spatial transcriptomics data generated during this study will
623  be made publicly available upon publication.

624

625 Experimental model and subject details

626

627 Mice

628 C57BL/6 and C3HeB/FeJ mice were purchased from Jackson Laboratories (Bar Harbor,
629  ME). All mice were housed in individually ventilated cages in specific pathogen-free

630 conditions (maximum 5 mice/cage) within rooms with negative pressure ventilation and air
631 filtering at Seattle Children’s Research Institute (SCRI). Animals were monitored under care
632  of full-time staff, given free access to food and water and maintained under 12-hour light and
633  dark cycles, with temperature controlled between 22-25 degrees Celsius. All possessed
634  normal health and immune status. None had previous treatments, procedures, nor invasive
635  testing prior to the initiation of our studies. Experiments were performed in compliance with
636 the SCRI Animal Care and Use Committee. All experiments were conducted with sex and
637 age-matched mice (both male and female mice between the ages of 8-12 weeks). The

638 influence of sex was not assessed.

639

640 Mycobacterium tuberculosis (Mtb)

641  For use in murine infections, Mtbh SA161 strain was provided by lan Orme (Colorado State

642  University).>
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643

644 Method details

645

646  Aerosol infections

647 Infections were done with a stock of Mtb SA161, as described previously. *>To perform CD
648  aerosol infections, mice were placed in a Glas-Col aerosol infection chamber, and 50-100
649 CFU were deposited into their lungs. To confirm the infectious inoculum, two mice per

650 infection were euthanized on the same day of infection, then their lungs homogenized and
651 plated onto 7H10 or 7H11 plates for determination of CFU. To perform ULD aerosol

652 infections, mice were placed in a Glas-Col aerosol infection chamber, and 1-3 CFU were
653  deposited into their lungs.*

654

655 CFU determination

656  Mouse organs (such as right or left lung, spleen) were individually homogenized in an M
657  tube (Miltenyi) containing BS+0.05% Tween-80. The resulting homogenates were diluted
658 and plated onto 7H10 plates. Plates were incubated at 37 degrees Celsius for a minimum of
659 21 days before CFU enumeration.

660

661 Concomitant Mtb model (CoMtb)

662 The CoMtb model was established as described previously.?*?* Briefly, mice were first

663  anesthetized by intraperitoneal injection of 400 ul of ketamine (4.5 mg/ml) and xylazine (0.5
664 mg/ml) diluted in PBS. Mice were placed in a lateral recumbent position, and the ear pinna
665  was flattened with forceps and pinned onto an elevated dissection board using a 22 G

666 needle. H37Rv Mtb grown to an OD between 0.2-0.5 over a 48-hour period was diluted to
667  10° CFU/mlin PBS, and 10 ul (10* CFU) was administered into the dermis of the ear using a
668 26s G Hamilton syringe. Mice were then rested for 6-8 weeks prior to subsequent aerosol
669 challenge.

670
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671 Antibody depletions

672  For CD4 depletion studies, 500ug of an anti-CD4 depleting antibody (clone GK1.5) was
673  administered intraperitoneally to mice once weekly, from the day prior to aerosol infection
674  until harvest. For neutrophil depletion studies, 200ug of an anti-Ly6G depleting antibody
675 (clone IA8) was administered intraperitoneally to mice three times weekly for the specified
676 timepoints.

677

678 Histology

679  Lungs processed for histology were fixed in 10% formalin for 24 hours, then dehydrated in
680  70% ethanol at 4 degrees for at least 24 hours. Samples were paraffin embedded and

681  sectioned at the University of Washington Histology Core. Subsequently, slides were

682 reviewed by a veterinary pathologist and scored in a blinded fashion based on the following
683  metrics (see table S1): mixed granulomas (lll-formed granulomas with mixture of

684  macrophages and lymphocytes), defined granulomas (Well defined with increased

685  separation of macrophages, epithelioid or multinucleated giant cells (MNGC) with lymphoid
686  aggregates), perivascular lymphoid aggregates (PV LA), peribronchiolar lymphoid

687  aggregates (PB LA), histiocytes, foamy macrophages, multinucleated giant cells, alveolar
688  hyperplasia, neutrophils, necrosis, cholesterol clefts, edema, extent 1 (percent involvement
689  of the lung), extent 2 (percent involvement of the lung in the worst manner).

690

691 Lung single cell suspensions

692 At the indicated times post-infection, mice were anesthetized with isoflurane and

693 administered 1 ug anti-CD45.2 antibody intravenously. After 5-10 minutes of in vivo

694  incubation, mice were euthanized by CO, asphyxiation. Mouse lungs were excised and
695 lightly homogenized in HEPES buffer containing Liberase Blendzyme 3 (70 ug/ml; Roche)
696 and DNasel (30 pug/ml; Sigma-Aldrich) using a gentleMacs dissociator (Miltenyi Biotec). The

697  lungs were then incubated for 30 min at 37°C and then further homogenized a second time
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with the gentleMacs. The homogenates were filtered through a 70 um cell strainer, pelleted

for RBC lysis with RBC lysing buffer (Thermo), and resuspended in FACS buffer (PBS

containing 2.5% FBS and 0.1% NaNs).

Antibody staining

Single cell suspensions were first washed in PBS and then incubated with 50 ul Zombie UV
viability dye (BioLegend) for 10 min at room temperature in the dark. Viability dye was
immediately quenched by the addition of 100 ul of a surface antibody cocktail diluted in 50%
FACS buffer/50% 24G2 Fc block buffer using saturating levels of antibodies. Surface
staining was performed for 20 min at 4°C. Then, the cells were washed once with FACS
buffer and fixed overnight with the eBioscience Intracellular Fixation and Permeabilization kit
(Thermo Fisher). The following day, cells were permeabilized with the provided
permeabilization buffer, incubated for 20 min at 4°C with 100 ul of an intracellular antibody
cocktail diluted 1:100 in permeabilization buffer, and washed with FACS buffer. Cells were

analyzed on a BD Symphony A5 cytometer (BD).

Antibodies

The following antibodies were used for staining mouse tissue sections for imaging or isolated
cells for flow cytometry: B220 PCPCy5.5 (clone RA3-6B2; Biolegend), B220 PE/Fire 700
(clone RA3-6B2; Biolegend), CD103 PE (clone 2E7; Biolegend), CD105 R718 (clone
MJ7/18; BD), CD11b BVv480 (clone M1/70; BD), CD11b BV570 (clone M1/70; Biolegend),
CD11b PCPCy5.5 (clone M1/70; Biolegend), CD11b PE/Fire 640 (clone M1/70; Biolegend),
CD11b R718 (clone M1/70; BD), CD11c BVv480 (clone HL3; BD), CD11c BV711 (clone
N418; Biolegend), CD11c PCPCy5.5 (clone N418; Biolegend), CD11c PE (clone HL3; BD),
CD177 AF647 (clone Y127; BD), CD177 CF555 [conjugated in house] (clone Y127; BD),
CD177 CF633 [conjugated in house] (clone Y127; BD), CD177 PE (clone 1171A; R&D

Systems), CD19 PE/Dazzle 594 (clone 6D5; Biolegend), CD26 PE-Cy7 (clone H194-112;
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Biolegend), CD3 BV480 (clone 17A2; BD), CD3 BV785 (clone 17A2; Biolegend), CD3
CF633 [conjugated in house] (clone 17A2; Biolegend), CD3 PE/Fire 640 (clone 17A2;
Biolegend), CD3 PE/Fire 700 (clone 17A2; Biolegend), CD3e BUV737 (clone 145-2C11;
BD), CD4 BV510 (clone RM4-5; Biolegend), CD4 CF594 [conjugated in house] (clone RM4-
5; Biolegend), CD4 PE/Fire 700 (clone GK1.5; Biolegend), CD44 BV711 (clone IM7; BD),
CD45.2 AF700 (clone 104; Biolegend), CD45.2 APC (clone 104; Thermo Fisher), CD45.2
R718 (clone 104; BD), CD62L AF488 (clone MEL-14; Biolegend), CD64 PerCP-eF 710
(clone X54-5/7.1; Thermo Fisher), CD68 BV421 (clone FA/11; BD), CD68 CF514
[conjugated in house] (clone FA-11; Thermo Fisher), CD68 CF750 [conjugated in house]
(clone FA-11; Thermo Fisher), CD69 PE/Dazzle 594 (clone H1.2F3; Biolegend), CD86
BUV737 (clone 2331 (FUN-1); BD), CD8a BUV661 (clone 53-6.7; BD), Col1lA1l CF660c
[conjugated in house] (clone EBFA4L; Cell Signaling), Col1A1 CF750 [conjugated in house]
(clone E8FAL; Cell Signaling), CTLA4 (CD152) BV421 (clone UC10-4B9; Biolegend), CXCL2
CF555 [conjugated in house] (polyclonal; R&D Systems), FoxP3 AF700 (clone FIK-16s;
Thermo Fisher), Gamma Delta TCR BUV805 (clone GL3; BD), iNOS AF405 (clone C-11;
Santa Cruz Biotechnology), INOS CF633 [conjugated in house] (clone CXNFT; Thermo
Fisher), Ki67 BV605 (clone 16A8; Biolegend), Ki67 BV650 (clone 11F6; Biolegend), Ki67
eF506 (clone SolA15; Thermo Fisher), KLRG1 BUV395 (clone 2F1; BD), Ly6C AF700 (clone
HK1.4; Biolegend), Ly6G BV605 (clone 1A8; Biolegend), MHCII (I-Ab) FITC (clone KH74;
Biolegend), MHCII (I-Ak) FITC (clone 10-3.6; Biolegend), MHCII AF700 (clone M5/114.15.2;
Biolegend), MHCII BV480 (clone M5/114.15.2; BD), Mtb FITC (polyclonal; Abcam), NOS2
APC eF780 (clone CXNFT; Thermo Fisher), p120 AF488 (clone 6H11; Santa Cruz
Biotechnology), p120 AF594 (clone 6H11; Santa Cruz Biotechnology), Phospho-S6 CF750
[conjugated in house] (clone 2F9; Cell Signaling), Siglec F BV421 (clone E50-2440; BD),
Siglec F Bv480 (clone E50-2440; BD), SIRPa BV421 (clone P84; BD), T-bet PE-Cy7 (clone

4B10; Biolegend).

Confocal microscopy
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753  Lungs were removed and placed in BD Cytofix diluted 1:3 with PBS for 24hr at 4°C. Lungs
754  were then washed two times in PBS and incubated in 30% sucrose for 24 hours at 4°C.

755  Lungs were then embedded in OCT and freezing in a dry ice slurry with 100% ethanol. A
756  CM1950 cryostat (Leica) was used to generate 20um sections. Sections were rehydrated
757  with 0.1M TRIS for 10 minutes, incubated for 1 hour at room temperature with blocking

758 buffer (0.1M TRIS with 1% normal mouse serum, 1% bovine serum albumin, and 0.3%

759  Triton X100), and then stained for 6 hours to overnight at room temperature with

760 fluorescently conjugated antibodies. Following staining, slides were washed with 0.1M TRIS
761  for 30 minutes and subsequently cover-slipped with Fluoromount G mounting media

762  (SouthernBiotech). Images were acquired on a Leica Stellaris8 confocal microscope. For
763  visual clarity, thresholds were applied to the displayed channel intensities in Imaris with

764  identical settings applied across experimental groups.

765

766  Histo-cytometry

767  Histo-cytometry analysis was performed as described previously, with only minor

768  modifications.”® First, multiparameter confocal images were corrected for fluorophore

769  spillover. Single color controls were made by mixing fluorophore-conjugated antibodies with
770  Fluoromount G mounting media (SouthernBiotech) on a slide, then cover-slipping and

771  collecting images with the same settings used for tissue imaging. Next fluorophore spillover
772  was calculated and corrected using the Channel Dye Separation module in LAS X (Leica).
773  Cell surfaces were created using Nucspot 750/780 nuclear staining using the Imaris surface
774  creation module. Surfaces around neutrophils clusters were created on CD177 signal using
775  the Imaris surface creation module (without splitting) followed by the application of size

776  exclusion to only include surfaces >300 pm®. The location of PPD and p120 signal was

777  determined using the Imaris spot creation module. The surface object and spot statistics
778  were exported as CSV files. Object statistics were concatenated into CSV files and imported
779  into FlowJo software for hierarchical gating.

780
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CytoMAP Spatial Organization Analysis

Spatial organization analysis was performed using CytoMAP.? In brief, the position of all cell
objects within tissues was used for virtual raster scanning with 50-um radius neighborhoods.
Raster-scanned neighborhoods were also used for clustering based on cell type abundance
(cell types used denoted in associate heat maps) to identify distinct region types, and these
regions were used for heatmap and positional visualization of regions. For figure 4B, cell
centered neighborhoods with 50-um radius were created around PPD+ cells, and the T cell
density within these regions was calculated. The Pearson correlation coefficient was

calculated for the number of cells of the different cell types within these neighborhoods.

GeoMx DSP

A CM1950 cryostat (Leica) was used to generate 10pm sections from lungs processed as
outlined above, then stored at -80°C. During the sectioning process, lesions were classified
as necrotic or non-necrotic by visual inspection (presence of caseum) and brightfield
microscopy (assessing alveolar integrity and presence of necrotic debris). The fixed frozen
sample slides were baked for 2 hours at 60°C to ensure lung tissue adhered to slides.
Following baking, we performed target retrieval for 20 minutes following all recommended
settings (man-10115-04). RNA targets were exposed using recommended concentration and
duration of proteinase K (1ug/ml for 15 min). In situ probe hybridization took place overnight
(18 hours) using standard hybridization solution with no custom spike-in (v1.0) Mouse NGS
Whole Transcriptome Atlas RNA - lot # MWTA12002). The next day, off target probes were
removed using stringent washes as recommended. Finally, morphology markers (SYTO13,
B220 - PE, CD3 — CF594, and CD11b eF660) were added. Following antibody staining,
slides and collection plate were loaded into GeoMx DSP instrument as recommended (MaN-

10152-01). Slides were identified and records created for each.

Scan parameters were set for each channel: FITC/525 was utilized for SYTO13 nuclear

staining, with exposure time of 50ms. Cy3/568nm was used for Alexa 532 to detect B220.
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809 Texas Red/615nm was used for Alexa 594 to detect CD3. Cy5/666nm was used for Cy5 to
810 detect CD11b. All non-nuclear exposures were set for 200ms. Configuration files were

811 obtained from the nanostring website. Syto 13 was used for focus. Slides were then

812  scanned. Multiple ROIs were obtained per lesion, including necrotic core (when applicable),
813 inner lesion, outer lesion border, and full thickness (encompassing inner and outer areas), as
814  assessed by nuclear density and autofluorescence pattern. More fine-grained region

815 determination was not possible due to poor performance of antibody staining. ROIs were
816  then collected.

817

818 GeoMx Library Prep and Sequencing

819  Following collection, GeoMx samples were removed from the machine and allowed to air dry
820  overnight. The following day samples were placed in an open top thermal cycler at 65C for
821 10 minutes. Next, 10ul of nuclease free water were added to all samples well and pipetted
822  up and down 5 times. PCR was run according to standard GeoMx protocols available in their
823  quick start guide (man-10133-03). Pooling and cleanup were also run according to GeoMx

824  protocols, with no deviations. The pooled library was assessed via Bioanalyzer and

825 demonstrated a clean trace. Samples were loaded on the lllumina NextSeq platform at

826 1.6pM and sequenced twice using the recommended paired end 2 x 27 read acquisition.
827  Sequenced library included 5% PhiX. Fastq files were assessed by QC metrics prior to

828  further analysis.

829

830 GeoMx data analysis

831 Raw probe counts from 2 sequencing runs were combined at the fastq levels and then

832  converted to .DCC files via Nanostring’s geomxngspipeline function. The DCC files were

833  uploaded to the DSP instrument and automatically associated with individual scans.
834  Sequencing and Probe QC was performed using default parameters (Analysis suite version

835 2.5.1.145). 4 of 32 original samples were removed for low sequencing saturation.
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Because we intended to pseudobulk ROIs within the same animal and thus required
normalization strategies not available on the DSP analysis suite, we exported two datasets:
(1) raw, post-gc probe counts and (2) g3 normalized counts (the recommended

normalization approach by Nanostring).

For normalization assessment, we first removed control probes from the non-normalized
data. These raw data were assessed by PCA, which indicated strong biases induced by raw
reads, surface area, and nuclei count, as expected. Given the publication of some biases
that occur when using the Q3 normalization strategy on GeoMx data sets, we used a
compositionally aware normalization strategy known as a centered-log ratio approach. To
obtain CLR-transformed values for each gene, we first calculated the geometric mean of
counts for each sample. We then created a ratio of an individual gene’s counts against the
geometric mean from each sample. Finally, we calculated the log2 value of this ratio. Thus,
all genes from a given sample were in essence normalized to their read-depth. Unlike
proportional (relative) normalization strategies, this method preserves the opportunity for
downstream statistical analyses. We next assessed the samples using their CLR-
transformed data by PCA. The CLR normalization strategy effectively eliminated the
relationships between PCA dimensions and read depth, surface area and nuclei count.
Interestingly, when compared to PCA based on the Q3 normalized data (which also directly
accounted for surface area and nuclei), the results were highly concordant. This contrasts
sharply with recent accounts of Q3-induced skew in GeoMx data sets, which our
assessments indicate were the result of using small, focused gene panels like the Cancer
Transcriptome Atlas — and not a fundamental flaw in the Q3 strategy. We have reached
similar conclusions when using targeted gene sets on the Nanostring nCounter. Because
this PCA analysis appeared to validate our use of the compositionally aware CLR approach,

all downstream data used CLR values.
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To create a pseudobulked data set, we first aggregated all raw, QC-counts originally
exported from the DSP, which created 2 sets of data per animal: aggregated counts from
granuloma-associated ROIs and counts from distal, uninvolved regions. Due to the removal
of samples for low sequencing saturation (see above) 14/16 potential pseudobulk samples
remained. Because CLR-transformed values are more appropriately assessed by Aitchison-
distance PCoA (which is the Euclidean distance between CLR-transformed samples), PCoA
was used for dimensionality reduction. To perform GSEA, we first calculated log2fc (using
the CLR-transformed values) by directly comparing counts between necrotic and non-
necrotic granulomas. We then used these log2fc values to rank genes. Ranked gene lists
were supplied to a gsea function in R and results for significant enrichment and associated P

values were obtained using the C5 Ontology gene sets from MSigDB.

Luminex

For Luminex analyses, lungs from Mtb-infected mice were divided into 3 samples: the left
lobe was homogenized in 1 ml PBS-Tween for CFU analysis, the inferior right lobe was
placed in 5 ml Cytofix (BD) solution for overnight fixation and subsequent image analysis,
and the remainder of the right lung was homogenized in 1 ml ProcartaPlex Cell Lysis Buffer
(ThermoFisher) supplemented with Halt Protease Inhibitor (Invitrogen) and DNasel (30
ug/ml; Sigma-Aldrich) to generate protein lysates. After homogenization, the lysate was
pelleted at maximum speed at 4°C for 10 min, and the supernatant was centrifuged through
two sequential rounds of 0.2 um SpinX (Costar) columns to sterilize the sample for removal
from the BSL3 facility. Homogenates were then assayed for protein levels using a custom
17-plex ProcartaPlex kit following the manufacturer’s instructions (Luminex). Homogenates
were also assayed for total protein content using a BCA assay (Pierce), and protein levels of

each analyte were normalized to 100 ug protein input.

Single-cell RNA-sequencing.
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Single cell suspensions were generated from lung samples as described above prior to Mtb
infection and at days 10, 17 and 34 post-Mtb infection. Cells were resuspended in 200 pl
MACS buffer (PBS containing 2.5% FBS plus 1 mM EDTA), filtered through a 70 um filter,
and run on a FACS Ariall (BD) sorter. To collect parenchymal cells for single-cell RNA
sequencing, alveolar macrophages (AM, SiglecF+CD11c+) were sorted separately into one
collection tube to account for autofluorescence in the IV label channel, and all other V-
negative cells were sorted into another collection tube. After sorting, the two populations
were combined and counted on a hemocytometer. After one round of washing with ice-cold
DPBS, cells were resuspended to 1000 cells/ul in DPBS, and 8000 cells were inputted into
the 10X Genomics pipeline following the manufacturer’'s recommendations. After the
generation of cDNA following the manufacturer’s protocol, samples were centrifuged through
two sequential rounds of 0.2 um SpinX (Costar) columns to sterilize the sample for removal
from the BSL3 facility and subsequent library generation. Libraries were submitted to

Psomagen (Rockville, MD) for NovaSeq sequencing, with 300M reads per sample.

Alignment and processing of single cell RNAseq data
10X Chromium 3’ derived single-cell RNAseq sequence reads were aligned to the 10X
Genomics pre-built mouse reference genome mm10-2020-A, assigned to individual cells by

barcode, and UMI summarized using the 10X Cell Ranger 7.1.0 software package.

The Seurat R package was used for initial QC filtering and integration. First, a filtering step
was applied across all samples, requiring all passing cells to have UMIs mapped to at least
500 distinct genes, and fewer than 5% of UMIs mapped to mitochondrial genes. Genes
detected in fewer than 3 cells per mouse were excluded from further analysis. The Seurat
integration pipeline® was then applied to correct for batch effects and align cells across
conditions including all combinations of mouse strain, Mtb strain, time post challenge, and

CoMtb status.
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Initial cell type assignment was performed using the CellTypist python package.®’ As
CellTypist does not have an available cell type model suitable for mouse lung or mouse
immune cells, we created a de novo mouse lung immune cell type model using two
published mouse cell atlases, namely the Tabula Muris®® and scMCA®® resources. Cell type
labels were harmonized between both sources (e.g. macrophage -> Macrophage) and both
datasets were filtered to retain immune and lung-associated cell types, excluding cells
specific to other organs. The CellTypist python package was then used to train a mouse lung
cell type model based on this combined resource. This model was then used to assign cell
types to count-normalized log transformed data on a per-cell level from mouse lung
scRNAseq samples, using the python scanpy® package to normalize total counts per cell to

10,000 and log transform as required by CellTypist.

After initial cell type labelling, further unsupervised clustering of specific cell subtypes was
performed, for cells labelled as ‘T cells’ or ‘NK cells’ and separately for all antigen presenting
cell subtypes, i.e. “Alveolar macrophage”, “Dendritic cell”, “Monocyte” and “Macrophage”.
Unsupervised clustering was run using the standard Seurat pipeline which identifies the top
2,000 most variable genes in the data, creates a shared nearest-neighbor (SNN) network of
cells, and divides the SNN into discrete clusters using the Louvain algorithm. The resulting
clusters were manually annotated by identifying differentially expressed marker genes for
each cluster (using the Seurat FindAllMarkers) function, and linking these marker genes to

known cell types, e.g. Cd4+ IFNg+ Th1 cells express high levels of Cd3, Cd4 and Ifng).

To quantify changes in cell type proportion over time, total numbers of cells per-sample were
calculated and normalized to cells per thousand per sample. Negative-binomial linear
models, appropriate for zero-inflated count data, were fit and used to calculate p-values

using the R glm.nb function.
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Gene expression changes within specific cell types were determined using a pseudobulk
approach, where counts from all similarly labelled cells were combined into a single sample
X gene count matrix using the Seurat AggregateExpression function. The standard bulk
RNAseq analysis package DESeq2°®* was then used to calculate differential expression fold-

changes and p-values for contrasts of interest.

Ranked gene lists from the above pseudobulk analysis were used as input for gene-set
enrichment analysis using the R fgsea package.®” Gene sets used were previously-

6364 35 available in the R tmod®®

published human coherent blood transcriptional modules
package, as well as mechanistic pathway modules from the REACTOME database® as
available in the R msigdbr package.®” To adapt human blood transcriptional gene sets to
mouse, human genes were mapped to mouse orthologs using the Jackson Lab Mouse
Genome Informatics Human-Mouse mapping
[https://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt]. The
resulting mouse-translated gene sets were filtered to retain only blood transcriptional
modules with at least 5 mouse genes where > 80% of the original human genes were

successfully mapped to mouse orthologs. Unannotated gene sets (“TBA” or “Undetermined”)

were removed from further analysis.

We used the CellChat analysis package? (version 1.6.1) to quantify the strength of receptor-
ligand communications among cell types in our scRNAseq dataset. To simplify
interpretability and ensure a sufficient number of cells of each type in the analysis, the sub-
types of CD4+ and CD8+ T cells were grouped into the broader categories “CD4+ T cell”
and “CD8+ T cell”. Additionally, the IM and monocyte sub-types were grouped into
“monocyte-derived cells” and AM sub-types were grouped into a broader “AM” category. Our
analyses focused on examining 1) whether intercellular communications originating with T

cells and targeting myeloid cells differed between the primary and CoMtb conditions and 2)
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972  whether neutrophil-to-neutrophil chemotactic communications (those represented in the
973 “CCL” and “CXCL" CellChat pathways) differed between conditions.

974

975 Quantification and statistical analysis

976  Statistical tests were selected based on appropriate assumptions with respect to data

977  distribution and variance characteristics. Statistical details of experiments can be found in
978 the figure legends. No statistical methods were used to predetermine sample size. The

979  statistical significance of differences in mean values was determined by the appropriate test,
980 as denoted in the figure legends. Paired t tests were performed only when comparing

981 responses within the same experimental animal or tissue, or group means within the same
982  experiment (indicated in the legend). Correlations and corresponding p values by Pearson’s
983  correlation test. #xxx, p £ 0.0001; ***, p £ 0.001; **,p £ 0.01; and *, p £ 0.05; NS, p > 0.05.
984

985 Supplemental Information

986

987  Figure S1. Related to Figure 1. Pre-existing immunity abrogates the formation of

988 necrotic granulomas: A) Lesion zoom-ins from Fig 1A. B) PCA loadings from Fig 1B. C)
989 Representative confocal images showing necrotic debris in center of primary necrotic lesion,
990 and intact nuclei of immune cells within lesion formed in setting of CoMtb. D) Histocytometry
991  gating scheme to determine cell types for analysis in Figs 1G-K.

992

993 Figure S2. Related to Figure 2. CoMtb alters the immune landscape following Mtb

994  infection, and Figure 3: CoMtb accelerates T cell and MDC activation, blunts

995 neutrophil responses: A) Top 50 DEGs for necrotic and non-necrotic lesions in Fig 2A. B)
996  Top genes which discriminate scRNAseq clustering into the specific cell types in Fig 2C. C)
997  Correlations of cell proportion as determined by scRNAseq with CFU. D) Early and late

998 neutrophil clustering and top 10 DEGs, corresponding to Figs 2F,G. E) GSEA analysis
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comparing CoMtb to primary Mtb infection across timepoints, corresponding to Fig 3A. FDR

determined by the R fgsea package. Correlations by Pearson’s correlation test.

Figure S3. Related to Figure 2. CoMtb alters the immune landscape following Mtb
infection, and Figure 3: CoMtb accelerates T cell and MDC activation, blunts
neutrophil responses: A) Pulmonary bacterial burdens corresponding to Fig 2E. B)
Lymphoid flow cytometry gating scheme for Fig 2E. C) Myeloid flow cytometry gating

scheme for Fig 2E. D) Pulmonary bacterial burdens corresponding to Fig 3D.

Figure S4. Related to Figure 5. CD4 T cells are required for CoMtb-mediated protection
from lesion necrosis: A) Representative flow plots and CD4 T cell enumeration following
_1CD4 depleting antibody administration. B) Representative flow plots and neutrophil
enumeration following [1CD4 depleting antibody administration. Single-group comparisons

by unpaired t test.

Figure S5. Related to Figure 6: Neutrophils drive lesion necrosis: A) Representative
flow plots and neutrophil enumeration following ~Ly6G depleting antibody administration.
Also demonstrates concordance of CD177 and Ly6G in an Mtb-infected lung. B) Heatmap
showing cellular composition of clustered microenvironments and percent area of lesion
comprised by each microenvironment, uninvolved regions not included, corresponding to Fig
6l. C) Heatmap showing cellular composition of clustered microenvironments and percent
area of lesion comprised by each microenvironment, uninvolved regions not included,
corresponding to Fig 6N. D) Confocal microscopy image of one small necrotic lesion with low

antigen abundance, identified following Late Ly6G depletion.

Table S1: Related to Figure 1. Pre-existing immunity abrogates the formation of
necrotic granulomas: Pathology scores for hematoxylin and eosin-stained tissue sections

in Figure 1A.
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